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ABSTRACT 

The microporous nature of monodisperse Stöber silica spheres is demonstrated in the literature, 

although usually via indirect evidence. Contradictorily, there also exist numerous reports of 

nonporosity based on conventional N2 adsorption isotherms, leading to a confusing scenario and 

questioning the evaluation methodology. Thus, there is the strong need of straight measure of 

microporosity in Stöber spheres, at best by available adsorption techniques, which must be 

further directly confronted with the standard nitrogen method. Here, for the first time, 

microporosity detection by N2 and CO2 adsorption are compared in Stöber spheres. We 

demonstrate that CO2 isotherms at 273 K allows direct detection and quantification of the 

microporosity (about 0.1 cm
3
/g in our samples), while N2 at 77 K cannot probe adequately the 

internal volume. We also show that a large amount of water fills the micropores under usual 

ambient conditions, also revealing the presence of small mesoporosity. Thus, the porous nature 

of Stöber spheres is investigated by a simple combination of adsorption isotherms, and the 

different accessibility of N2, CO2 and H2O molecules are discussed. We emphasize the 

inadequacy of standard N2 isotherms for micropore detection in Stöber silica, as the access of 

nitrogen molecules at cryogenic temperatures is kinetically restricted and may lead to erroneous 
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conclusions. Instead, we propose CO2 isotherms as a simple and direct means for evaluation of 

microporosity. 

 

 

1. INTRODUCTION 

The Stöber-Fink-Bohn (abbr. Stöber or SFB) process
1
 is the most-widely employed method 

for fabrication of monodisperse silica beads. It provides a low-temperature, cost-effective 

synthesis of colloidal spheres of controlled size with many scientific and industrial uses, such as 

chromatography,
2
 catalysis,

3,4
 biological,

5─9
 drug release,

10,11
 colloidal assemblies,

12,13
 

sieves,
14,15

 fillers
16,17

 or as templates.
10,18─21

 Extensive investigations have been made on 

particle nucleation and growth mechanisms of Stöber spheres,
22─26

 size control,
27─31

 structural 

properties,
32─35 

etc. Paradoxically, after decades of research and practical application, main 

aspects of Stöber spheres are still not well understood, revealing that, despite apparent 

simplicity, they are actually a very complex system with structural and chemical features 

difficult to apprehend. 

In particular, a fundamental characteristic such as the presence or not of microporosity in the 

spheres (and its convenient experimental evaluation) is still controversial, and even recent data 

found in the literature are inconsistent. N2 adsorption at 77 K up to atmospheric pressure is the 

most standard technique for the characterization of the porous structure in inorganic solids,
36

 

providing information about microporosity (pores < 2 nm) and mesoporosity (from 2 to 50 nm) 

of the evaluated sample. However, it is frequently overlooked that such assumption is only valid 

if no pore access restrictions concur. In particular, this aspect regarding Stöber spheres has 

already been discussed by some authors,
23,33─35,37─40

 concluding that nitrogen molecules at 
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cryogenic temperatures typically have restricted accessibility to Stöber micropores, leading to 

unreliable characterization. Only exceptionally, significant internal volume has been detected in 

SFB spheres by N2 adsorption,
40─44

 which must be ascribed to an unusually accessible 

micropore structure.
40,44

 (Similar difficulties have also been found in Ar,
25,40, 45

 Kr,
23,41 

or Xe
23

 

adsorption isotherms). Alternatively to gas adsorption, Stöber microporosity has been indirectly 

deduced from the specific surface area, determined by different techniques, such as small-angle 

x-ray scattering (SAXS),
39

 nuclear magnetic resonance (NMR),
35

 thermogravimetry 

(TGA),
34,41,45,46

 titration
38,47

 and liquid sorption,
39,48

 or from the spheres density.
22,27,28,41,49,50 

These studies constitute experimental proof that significant microporosity is connatural to 

Stöber spheres, including those with larger diameters (> 100 nm) and considering usual 

fabrication-dependent differences. 

Nevertheless, the aforementioned considerations are often ignored and N2 adsorption has 

habitually been used, even recently, for pore and surface characterization of Stöber and Stöber-

modified particles without questioning its validity.
6,19,30,42,43,51─58

 On such basis, many studies 

(and manufacturers) claim no (or very low) microporosity in Stöber 

spheres.
3─5,7─10,17,28,29,51,59─61

 To our knowledge, Stöber spheres (without modified synthesis or 

post-treatment) have never been demonstrated as nonporous by other means, so these results 

should be considered, at least, inconclusive on account of the previous experimental evidence of 

microporosity. Such inconsistency in the literature, embracing contemporary reports, manifests 

the lack of a well-established methodology for characterization of porosity with complex 

accessibility, as that of Stöber spheres. 

The knowledge of internal pore volume is indispensable to rationalize the properties of 

Stöber spheres and better know their functionalities. The pore characteristics define basic 
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magnitudes, such as the refractive index or the mass density, which are crucial to understand 

many systems integrating Stöber silica. This comprehension also involves identifying the 

accessibility of molecules that are able to be effectively adsorbed and fill the internal volume, 

which is relevant for e.g. correct spheres characterization by dynamic light scattering and 

pycnometry.
49

 More importantly, this aspect critically determines the functionalities of Stöber 

spheres in a variety of scientific and technological applications, such as molecular and ion 

sieving,
14,15,23,38,47,48 

charge control
62─64

 and pH-sensing.
11

 SFB spheres are also employed as 

model microsystems,
56,63─65

and as “non-porous” reference in biological assays,
5,7,9─11,21,55

 so 

that the acquaintance of their actual porosity and accessibility is essential to avoid current 

misleading assumptions. 

Molecular accessibility in Stöber silica is still poorly understood to-date. In particular, very 

few studies have investigated the ability of water to penetrate and fill the Stöber 

micropores,
32,39,59,66,67

 in spite of the usual presence of surrounding moisture or imbibing liquid 

water. Thus, the spheres charge,
62,63 

mechanical properties
50

 or aging
35,44

, may depend on the 

soaking of the inner volume. More generally, the presence and behavior of water inside Stöber 

particles at given ambient conditions may greatly influence the performance of a system, of 

which they are part. A prominent example are artificial silica opals, which are nanostructured 

photonic crystals customarily made by self-assembled Stöber spheres.
68

 As periodically 

dielectric structures, opals exhibit a photonic response dependent on the refractive index of both 

the sphere and the medium filling the interparticle space (void). Specifically, it is known that the 

photonic performance of silica opals is directly affected by the ability of Stöber spheres to 

adsorb water from the surrounding moisture and its distribution.
46,69

 To this regard, it is 

particularly important to know the spheres porous volume, and understand the accessibility of 
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water and the pore filling, as well as the occurrence of adsorption and capillary condensation in 

the voids between the spheres. Indeed, the correct evaluation of these aspects is subject of active 

investigation,
65,68

 which largely depends on accurate structural information about Stöber 

spheres. Unfortunately, the abovementioned contradictions existing in the literature can lead to 

erroneous interpretations. 

On account of these considerations, it is still necessary a simple methodology to allow 

straightforward micropore evaluation (instead of indirect pore volume estimation through 

measurement of densities or specific surface areas that, in addition, frequently involves 

expensive facilities like SAXS or NMR). Furthermore, a better knowledge of molecular 

accessibility to Stöber micropores is required, including water. We directly measure the 

micropore volume of three different Stöber spheres (~ 300-nm size) by CO2 adsorption 

isotherms at 273 K and estimate the pore characteristics. By comparison, we explicitly 

demonstrate that standard N2 isotherms at 77 K cannot detect any microporosity in these 

spheres. We further measure water isotherms to prove that a large amount of water can fill the 

microporous volume, being its humidity-dependent accessibility discussed. Combined features 

of these adsorption measurements give relevant insights into the different adsorbate 

accessibilities and pore characteristics of the Stöber spheres. 

 

2. RESULTS 

2.1. Nitrogen adsorption isotherms 

As the conventional methodology for micro- and mesoporosity evaluation, we first perform 

N2 adsorption measurements at 77 K. Figure 1 shows the N2 adsorption/desorption 

measurements for the three SFB spheres evaluated. As it can be appreciated, all samples exhibit 
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very similar isotherms, whose shape corresponds to the type II (IUPAC recommendation), 

characteristic of multilayer adsorption in non-porous materials. In fact, the amount adsorbed at 

low relative pressures (p/p0 < 0.1), corresponding to the adsorption in micropores, is very low 

(< 5 cm
3
 STP/g), demonstrating the virtual absence of microporosity accessible to nitrogen at 77 

K in all spheres evaluated. After a slow ramp all along the mid relative pressures, nitrogen 

adsorption exhibited a large increase above p/p0 = 0.8, attributed to the condensation in the 

voids, that is, in the interparticle space between the spheres. This capillary condensation is 

larger for SFB-260 and SFB-245, in accordance with their smaller particle size. 
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Figure 1 N2 adsorption (filled symbols) and desorption (empty symbols) isotherms for SFB-

300, SFB-245 and SFB-260 spheres samples at 77 K. Insets: zoomed-in low-pressure regions. 
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The resulting textural characteristics of the samples have been calculated using the BET 

equation to estimate the apparent surface area (SBET) and the Dubinin-Radushkevich (DR) 

equation to calculate the micropore volume (V0).
70

 Table 1 contains a summary of the calculated 

parameters. The obtained SBET, only slightly larger than the external (geometrical) spheres 

surface (Sext), and the very small V0 indicate both low surface roughness and, apparently, scarce 

microporosity. Similar results have frequently been obtained from N2 adsorption in Stöber 

spheres, although the possible inaccessibility of nitrogen at cryogenic temperatures to the inner 

porosity has unfortunately been often ignored, as mentioned above. Interestingly, we found a 

small delay between adsorption and desorption branches at low relative pressure for samples 

SFB-245 and SFB-260 (insets in Figure 1). The presence of a certain hysteresis at low pressures 

reflects the presence of a complex porous structure with associated kinetic restrictions in the 

adsorption branch.
71

 Similarly delayed desorption has also been observed in other N2 studies on 

SFB spheres.
40,48,58 
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Table 1. Textural parameters obtained from the N2, CO2 and H2O adsorption isotherms. 

  N2 adsorption  CO2 adsorption  H2O adsorption 

sample 
Sext

 a  

(m
2
/g)

 

SBET
 b
 

(m
2
/g) 

V0
 b
   

(cm
3
/g) 

Vt 
 c

 

(cm
3
/g) 

 SNLDFT 
d
 

(m
2
/g) 

Vn 
e
 

(cm
3
/g) 

Vads
 f
 

(cm
3
 STP/g)

 

 SBET
 b

   

(m
2
/g) 

VH
2
O

  b
   

(cm
3
/g)

 

V t 
 g

 

(cm
3
/g) 

SFB-245 13.4 17 0.0073 0.13  309 0.111 (0.110) 31.0  210 0.089 0.122 

SFB-260 12.6 15 0.0064 0.11  262 0.090 (0.079) 24.2  185 0.075 0.156 

SFB-300 10.8 15 0.0065 0.06  245 0.084 (0.071) 23.3  150 0.055 0.076 

a
 Sext = 6/ D, where  and D are the bulk density and diameter of the spheres ( ≈ 1.83 g/cm

3
 

was taken, as obtained by considering an empty volume of 0.1 cm
3
/g inside the sphere with 

skeletal (amorphous silica) density of 2.24 g/cm
3
). 

b
 Apparent surface area calculated from BET 

and micropore volume calculated after application of the Dubinin-Radushkevich (DR) equation 

c
 Total adsorbed volume measured at p/p0 = 0.99 

d
 Micropore apparent surface area determined 

after application of the NLDFT model  
e
 Narrow micropore volume calculated from DR 

equation from 273 K data (in parentheses, from 298 K data). 
f
 Total adsorbed volume (assuming 

ideal gas) measured at 1 bar and 273 K. 
g
 Total adsorbed volume at p/p0 = 0.96. (Note that all 

volumes calculated from DR equation are expressed considering the probe as a liquid; only Vads, 

directly calculated from the CO2 isotherms, is expressed as ideal gas (STP).) 

 

2.2. CO2 adsorption isotherms 

Previous studies described in the literature
72

 have shown that CO2 adsorption at 273 K is an 

excellent probe molecule to complement the nitrogen adsorption results. While standard N2 

adsorption provides information about the micro- and mesoporosity of the evaluated sample, it 

is widely accepted that CO2 adsorption up to atmospheric pressure tests only the narrow 

porosity (pores below ~ 0.7 nm).
72,73

 Although commonly been employed for carbon materials, 

CO2 adsorption has barely been applied in the evaluation of silicas due to the presence of 

specific interactions between the silanol groups and the quadrupole moment of CO2 that can 

alter (shift to lower pressures) the filling of the narrow micropores and make uncertain the 

cross-sectional area of the CO2 molecule. However, considering the high specificity of CO2 for 
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narrow pores, along with its smaller kinetic diameter (0.33 nm compared to 0.36 nm of N2) and 

the higher adsorption temperature of the measurement (273 K vs. 77 K), CO2 was chosen as 

probe molecule to evaluate the Stöber spheres and identify potential kinetic restrictions to very 

narrow (or hardly accessible) micropores. 

CO2 isotherms up to atmospheric pressure showed perfect match between adsorption and 

desorption branches for the three samples evaluated (Figure 2). As observed at 273 K, all 

samples exhibited a considerable adsorption capacity, with adsorbed volumes of 23−31 cm
3
 

STP/g at atmospheric pressure (Table 1). Such significant values unambiguously show that the 

spheres are indeed substantially microporous, contrasting to the small nitrogen volume adsorbed 

(< 5 cm
3
 STP/g). In the same way as before, CO2 adsorption data were evaluated using the DR 

equation to determine the volume of narrow micropores (Vn): ca. 0.08-0.1 cm
3
/g was obtained 

for all samples, being much larger than the total micropore volume V0 deduced from the N2 

adsorption data (Table 1). Figure 3a shows the high linearity of the DR plot in a representative 

sample (SFB-245). 
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Figure 2 CO2 adsorption (filled symbols) and desorption (empty symbols) isotherms for SFB-

300, SFB-245 and SFB-260 spheres samples at 273 K, 298 K and 323 K. 
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Figure 3.Analysis of CO2 adsorption data. (a) DR plot for 273 and 298 K; fitting parameters of 

the corresponding linear regressions are shown. b)  PSD and cumulative pore volume for 273 K 

obtained by NLDFT model (assuming carbon as adsorbent). Data correspond to the sample 

SFB-245. 

 

In order to analyze if CO2 molecules underwent some kinetic-limited adsorption, isotherms 

were also performed at 298 K and 323 K. As observed in Figure 2, all isotherms followed the 

expected thermodynamic tendency over the whole pressure range: the higher the adsorption 

temperature, the less the amount adsorbed. Note that, in the case of significant kinetic 

restrictions for CO2 to access the porosity, the opposite trend would have been observed: at 

higher temperature, the faster kinetics of the adsorptive molecules would have minimized the 

restricted accessibility and led to increased adsorption.
72

 DR equation was also applied to the 
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298 K data assuming the density of liquid CO2. (DR application was precluded at 323 K as CO2 

is in supercritical conditions). As shown in Figure 3a, the linearity of the DR plot is maintained 

at 298 K and the intersect of the fitting straight line, which yields Vn, is rather coincident to that 

of 273 K, thus excluding any diffusional limitation. On account of these results, we can 

consider CO2 molecules having full accessibility to the narrow Stöber microporosity under 

standard experimental conditions, validating its adequacy for micropore evaluation of Stöber 

spheres. (Similar behavior was also obtained for the other two samples; note that some 

differences in Vn were observed –see Table 1–, which may arise from the interaction with the 

silica surface, leading to some tilting of the adsorbed CO2 molecules and alteration of the 

assumed density). 

An open question at this point concerns the size of Stöber porosity. Standardly, pore size 

distributions (PSD) are calculated through the application of density functional theory (DFT) 

models to N2 adsorption data,
74

 but the barely detected microporosity ruled out this option. In 

the uncommon case of CO2 adsorption measurements on silica, DFT is not applied due to the 

presence of specific interactions of CO2 with the silica surface (in fact, DFT models for CO2 

adsorption in silica are not provided by commercial software). Being aware of this, we applied 

the available DFT model for carbon materials to our CO2 adsorption data. Although this 

assumption is obviously not fully correct, it complements the general picture about the porous 

structure in these systems. To this end, Figure 3b shows the resulting evaluation of the 

cumulative pore volume and the PSD for a representative sample (SFB-245). According to this 

approximation, the PSD shows an extensively developed narrow microporosity in the Stöber 

spheres, with main contributions in the size range of 0.3-0.6 nm. The total surface area 

estimated from these calculations is ca. 300 m
2
/g (Table 1). 
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2.3. Water adsorption isotherms 

The small kinetic diameter of H2O (0.265 nm) constitutes a priori an advantage for the 

characterization of microporous solids with narrow constrictions. However, it is important to 

highlight that water adsorption mechanism in nanoporous solids is quite complex due to the 

high sensitivity of water molecules to the surface chemistry, by contrast with the cases of N2 

and CO2. For instance, in the case of hydrophobic carbon materials, water adsorption proceeds 

through cluster formation (up to several water molecules), while the adsorption on silicas is 

more uniform and defined by the hydroxyl groups (silanols) in the surface.
75,76

 Thus, water 

isotherms not only characterize the presence of porosity but also fundamental aspects of the 

sorption behavior of water molecules, like the surface affinity or the pore accessibility. 

Figure 4 shows the water adsorption isotherms at 298 K for our three Stöber samples, 

evaluated up to two different relative pressures, 0.85 and 0.96. In all cases, the amount of water 

adsorbed at low relative pressures (p/p0 < 0.2) is very significant (> 50 cm
3
 STP/g) and the 

isotherm shape corresponded to a type II, according to the IUPAC classification. This behavior 

is typically observed in hydrophilic materials and clearly reflects the presence of specific 

interactions of water with the silica surface, even at low relative pressure. At higher relative 

pressures, the amount adsorbed increased smoothly until p/p0 ~ 0.8, where capillary 

condensation in the voids between particles begins to take place (a change in the slope of the 

adsorption branch is observable). A BET surface area of ~ 150−200 m
2
/g from water adsorption 

was estimated for the three spheres (Table 1), in fair agreement with the apparent surface areas 

calculated from the CO2 adsorption data, although being systematically smaller. The micropore 

volume for water (VH2O) was also calculated using the DR equation applied to the water 

adsorption values (see Table 1). VH2O follows the same tendency in the three samples than Vn 
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calculated from CO2, being again somewhat smaller (ca. 20-30% smaller). Assuming the 

validity of the DR equation for water adsorption in silicas, this observation points to some 

limited accessibility of water to the microporosity in SFB spheres. 
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Figure 4 H2O adsorption (filled symbols) and desorption (empty symbols) isotherms for SFB-

300, SFB-245 and SFB-260 spheres samples at 298 K. Isotherms were measured up to ~ 0.96 

or 0.85 relative pressure (black and orange symbols). 

 

For p/p0 > 0.9, capillary condensation occurred in the voids, which was associated with a 

type H4 hysteresis loop (Figure 4). This loop disappeared when the adsorption branch stopped 

at p/p0 < 0.9, thus precluding the voids filling, and the rest of the isotherm was perfectly 

reproducible. In both cases, that is, independently of the onset of capillary condensation, the 
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desorption branch exhibited a lasting delay compared to the adsorption branch. This delay even 

increased at very low relative pressures, a phenomenon usually known as low-pressure 

hysteresis. Last but not least, the presence of an additional, small hysteresis loop was found at 

mid relative pressures (0.2 < p/p0 < 0.5), preferentially in the sample SFB-260, indicating 

capillary condensation in some narrow mesopores. Although the amount of these mesopores (or 

large micropores) must be quite limited, it is remarkable that water adsorption could detect them 

while N2 adsorption could not. 

 

3. DISCUSSION 

3.1. Porosity quantification 

CO2 adsorption isotherms have shown, directly and unambiguously, the existence of large 

microporous volume in all Stöber spheres measured. Straightforward DR calculation yielded a 

narrow micropore volume Vn ~ 0.08−0.11 cm
3
/g, which corresponds to ca. 15−20% of the 

Stöber sphere volume and  ≈ 1.8−1.9 g/cm
3
 as density of the empty (evacuated) sphere. A 

similar but lower micropore volume VH2O ~ 0.06 – 0.09 cm
3
/g was obtained from water 

isotherms, using the DR equation as well (Table 1 It is important to note that, assuming that 

both CO2 and H2O are filling the cavities with the condensed adsorptive in the normal liquid 

density (Gurvich rule
36

), Vn and VH2O (in liquid units) should be coincident, provided that both 

probe molecules fill the same porosity. The obtained volumes are in fair accordance with some 

of the very few direct measurements of micropore volume previously reported in SFB spheres, 

in the range of 0.05-0.13 cm
3
/g.

31,40,41,44
 Other authors measured much larger accessible 

volumes, e.g. 0.23 cm
3
/g from CO2 isotherms

54
 and 0.32 cm

3
/g from spin-echo small-angle 

neutron scattering.
77

 Such large micropore volumes seems to be overestimated, since they 
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would correspond to spheres with an empty volume of > 40% (mass density < 1.3 g/ cm
3
), a fact 

hardly reconcilable with the densities usually measured (> 1.8 g/ cm
3
). Also, by considering the 

porosity effect on the mechanical robustness,
78

 the high Young modulus of Stöber spheres 

(about half of the silica bulk value),
50

 agrees with the porosity we estimate, while a drastic 

decrease in a factor of ten would be expected for 40% porosity. Other volume estimates are 

indirectly deduced from density measurements, mainly, and span over a larger range (e.g. 

11−15%,
27 

15−24%,
50

  ~ 12%,
49

), although agreeing reasonably with our result. 

Our CO2 adsorption measurements also allowed direct calculation of the apparent surface 

area of ~ 250−300 m
2
/g using DFT. Although we applied a model for carbon adsorbents 

(instead of silica, which is not available), this area is roughly comparable to the BET surface 

area of ~ 150−200 m
2
/g obtained from water adsorption data (Table 1). Such acceptable 

agreement validates the approximation undertaken. The difference between both values could 

be ascribed to an overestimate of the actual CO2 cross-sectional area in silica, if the CO2 

molecules undergo some orientation due to interaction between its quadrupole moment and the 

polar silanol groups. However, the water adsorption could also underestimate the actual surface 

area if the access of water molecules to the inner volume is somewhat limited, in particular at 

very low pressures. This option seems probable in accord with the fact that VH2O < Vn, (see 

below). A comparison with literature values is difficult, since a huge range of apparent surface 

areas (100 to 1300 m
2
/g) has been obtained by a variety of methods

15,25,34,35,39─44,46,48,54,60 
(not 

including numerous reports of vanishing surface area from N2 isotherms). 

Our three Stöber samples exhibited a similar degree of microporosity, although with 

consistent differences between them. SFB-300 presented somewhat smaller both micropore 

volumes and apparent surface areas than SFB-260, and this in turn showed slightly smaller 
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values than SFB-245 (Table 1), indicating distinct development of microporosity. The 

micropore size range of 0.3-0.6 nm obtained from CO2 adsorption was similar in all cases; note 

that, although a DFT model for carbon and not for silica was applied, as discussed above, this 

PSD is in fair accordance with other authors indicating a cut-off size in Stöber spheres of 0.3 

nm
14,15,23

 and a pore size span of 0.3−0.5 nm.
64 

Taking into account that Vn (from CO2 data) is 

exclusively sensitive to narrow microporosity, the lower value achieved for VH2O indicates 

limited access for water to these narrow constrictions. Contrasting the values (Table 1; see also 

Figure 5 for graphical comparison), the smallest difference is found for SFB-260, suggesting a 

larger fraction of wider micropores; according to this argument, SFB-300, as it shows the 

biggest discrepancy between Vn and VH2O, would have the largest proportion of narrow pores. 

This trend is coincident with the observation of mid-pressure hysteresis in the water isotherms 

(Figure 4), mainly in SFB-260 but also in SFB-245, indicating certain small mesoporosity, 

while no hysteresis was discernible in SFB-300. Given the early occurrence (low p/p0) of the 

hysteresis, small mesopores of 2-4 nm can be suggested.  
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Figure 5. H2O adsorption isotherms at 298 K (symbols) for SFB-300, SFB-245 and SFB-260 

spheres samples. For sake of comparison, the corresponding micropore volumes Vn, obtained 

from CO2 adsorption data, and VH2O (solid and dashed red lines), and the water monolayer 

volumes on the BET and external surface areas, ML(SBET) and ML(Sext), respectively (solid and 

dashed green lines) are also represented. The monolayer volumes were calculated assuming a 

covering of 0.28 mg/m
2
.
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It is known that several factors, such as synthesis parameters, sphere size and post-

fabrication aging, may influence the internal structure of Stöber spheres.
27,32,35,43,44

 In this study, 

spheres with very similar synthesis and size were employed, in order to discard such influences; 

indeed, no correlation between the type of porosity and our spheres size was found. By contrast, 
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as a distinguishing aspect, samples with different aging were chosen. In fact, our samples have 

different ages, being SFB-260 the eldest one (about ten years) and SFB-300 the newest one (one 

year). According to this hypothesis, aging would favor the development of larger microporosity 

or even the creation of some mesoporosity. A plausible mechanism would be pore coarsening, 

through which dissolution and re-deposition of silica, preferentially at convex surfaces (Ostwald 

ripening), would lead to gradual increase of the average pore size.
79

 Indeed, pore coarsening 

during aging is known in microporous systems such as gels
35,80

 and membranes
81

. Future 

studies should confirm this proposition. 

Finally, since nitrogen isotherms at 77 K virtually detect only open porosity in Stöber 

spheres (see next Section), the corresponding SBET rather reflects the SFB surface roughness. 

Thus, the fact that SBET (N2) in our samples were only slightly larger than the corresponding 

external surface areas (Table 1) denotes relatively smooth sphere surfaces. 

3.2. Molecular accessibility 

Given the evidence of significant microporosity found in our Stöber spheres, the type II N2 

isotherms measured in the same samples (Figure 1) unambiguously demonstrate that nitrogen at 

77 K has strongly restricted access to the inner volume. Both micropore volume and apparent 

surface area obtained from N2 adsorption data underestimated those measured by CO2 or H2O 

isotherms in about 15-20 times (Table 1). On the contrary, CO2 molecules at 273 K exhibited no 

access restrictions to Stöber microporosity, as demonstrated here for the first time. Such 

conclusion was drawn from adsorption experiments at higher temperature, along with the 

perfect match between adsorption and desorption branches in all cases and the linearity of DR 

plots.  
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The allowed entrance of CO2, in turn, indicates that the non-access of the similarly large N2 

molecules must be attributed to serious kinetic restrictions at 77 K, as pointed out 

previously.
23,32,35,37─40

 Indeed, only the lower size region of the estimated PSD (0.3-0.6 nm) 

should hinder the entrance to nitrogen, which is usually capable to probe narrow pore sizes 

down to 0.35−0.4 nm, even at 77 K. This argument rather points to a peculiar morphology of 

the Stöber porous structure as main responsible for the difficult access, probably involving 

strongly constricted entrances of micropores, high tortuosity and, probably, compacter outer 

sphere region.
15,32 

Then, such a particular structure, rather than the pore size, would avoid 

molecules without enough kinetic energy to probe the inner volume. (Note that spheres post-

treatment can largely relieve such pore blocking to N2 at 77 K,
40,44

 although it was possibly 

accompanied by some pore enlargement, since a resulting pore size of 0.8-1.1 nm was reported 

there). Remarkably, we further proved that N2 at 77 K cannot even properly detect small 

mesoporosity, which was however distinguished by water isotherms. The observation of some 

hysteresis in the N2 isotherms of samples SFB-260 and SFB-245 (Figure 1, insets) reflects the 

complexity of the porous Stöber structure, as it evidences the extremely difficult pore access of 

nitrogen even to those samples exhibiting wider porosity (as discussed in the previous Section). 

In the case of SFB-300, with no mesoporosity, the N2 adsorption consistently exhibited no 

hysteresis (Figure 1), indicating again that N2 molecules did not probe the Stöber microporosity. 

These facts evidence that N2 adsorption isotherms are an unsuitable means for pore evaluation 

in Stöber spheres and should not be considered as proof of nonporosity in such system (and 

potentially in others with difficult pore access
82

). 

Water adsorption isotherms demonstrated that the Stöber micropores were also accessible 

to water vapor molecules at room temperature. Such accessibility is relevant as it implies that 
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the inner Stöber volume can be filled with water e.g. taken from the surrounding moisture under 

normal ambient conditions. However, this has barely been investigated and water adsorption 

isotherms in Stöber spheres has rarely been reported.
15,34,59,75

 As discussed above, both 

micropore volume and area calculated in our samples from the water adsorption data were in 

reasonable agreement with those obtained from CO2 data, also serving for evaluation of SFB 

microporosity. As an advantage, water isotherms additionally allowed revealing mesoporosity, 

which is undetectable for CO2. Nevertheless, the delay of the desorption branch observed in all 

samples (Figure 4) denotes some restriction in the adsorption process. This would be consistent 

with e.g. density measurements, usually yielding lower values for H2O than for He pycnometry, 

which had already suggested being due to limited access of water to the inner Stöber 

volume.
27,28,

 Thus, a possibility is the existence of narrow pores with singular constrictions, 

which would be accessible only at high relative pressures: during the desorption branch, these 

pores would be difficult to evacuate, causing the delay and the final entrapment of water 

molecules at p/p0 < 0.1 (low-pressure hysteresis). However, an active role of the surface 

chemistry cannot be ruled out.
34,75

 For instance, the development of stronger bonds between 

water molecules and silanols along the adsorption branch would require some extra driving 

force (lower relative pressure) during desorption, leading to the delay. Further investigation is 

required to discern the mechanisms involved. 

3.3. Water uptake and location 

As stated above, it is important to know not only the ability of the Stöber silica to uptake 

water, from e.g. humid air, but also where this water is placed, whether inside the spheres 

porosity or outside (in the interparticle voids). To get a deeper insight, we re-plot the water 

isotherms (adsorption branches only) in units of water volume as a liquid (Figure 5, symbols) 
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and compare with the corresponding micropore volumes deduced along the article, i.e. Vn and 

VH2O (Figure 5, red horizontal lines). 

The narrow micropore volume Vn, obtained from CO2 adsorption, exceeds the water 

isotherm during most of the range of relative pressures. Thus, the water uptake in SFB-300 

equals Vn only at p/p0 ~ 0.9, which indicates that, up to this relative humidity, the water 

adsorbed can be allocated in the micropores inside the spheres. The water isotherm surpasses Vn 

only at higher pressures, as the capillary condensation sets in and the voids, in the inter-sphere 

space, had started to be filled. By contrast, the calculated VH2O cut the water isotherms of SFB-

300 at p/p0 ~ 0.5. This point is coincident with a change in the isotherm slope, a fact that is 

compatible with the saturation of the micropore volume accessible for water and the beginning 

of voids through multilayer adsorption on the spheres external surface. The sample SFB-260 

exhibits a certain deviation from this picture, in which the water adsorption branch reaches the 

micropore volume VH2O at a lower pressure (p/p0 ~ 0.4) and keeps growing faster than the other 

two samples (Figure 5). We attribute this fact to the higher proportion of accessible 

microporosity (as described above) and the appreciable mesoporosity detected (Figure 4), which 

leads to extra water uptake at mid pressures from capillary condensation in these small 

mesopores (or large micropores). As this volume is not accounted by Vn, this value is reached 

by the water isotherm sooner, at p/p0 ~ 0.55, in spite of not having the largest micropore volume 

VH2O (Table 1). SFB-245, which exhibited a slight mesoporosity (Figure 4), presents an 

intermediate behavior: its adsorption branch grows with a slope between those of SFB-260 and 

the non-mesoporous SFB-300, and cuts Vn at p/p0 ~ 0.8. 

This analysis provides direct evidence of the location of the adsorbed water as function of 

the relative humidity. It is shown that a significant amount of water is taken from surrounding 
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humidity at normal ambient conditions (p/p0 = 0.3−0.5 and 25 ºC). This agrees with the water 

contained in aggregates of Stöber spheres at standard laboratory conditions, which has often 

been measured by TGA, typically corresponding to 5−8 wt.%,
23,32,40,41,45,46,52,54,57,69,76 

or, 

equivalently, 0.05−0.08 cm
3
/g. However, any discussion about where this water is placed is 

practically absent in the literature. Here, as a major conclusion, we demonstrate that the water 

adsorbed by Stöber spheres at p/p0 < 0.6 is predominantly located inside the spheres, filling the 

significant inner micropore volume. This is consistent with the Polanyi potential theory for open 

surfaces and the presence of van der Waals interactions between the gas molecules and the host 

surface, determining the adsorption potential. In narrow cavities with facing surfaces, these 

interactions overlap and the adsorption potential is larger, defining the sequence of pore filling, 

which is preferential in the case of smaller pores. 

From the BET calculation of the specific (microporous) surface area accessed by the water 

molecules, the corresponding volume of water covering this surface (building a monolayer, as 

assumed by the BET theory) is represented in Figure 5 (ML(SBET), solid green lines). Figure 5 

shows that these values are clearly below the corresponding micropore volumes VH2O, 

suggesting that the micropores are progressively filled by more than a monolayer. Indeed, 

ML(SBET) values coincide well with the knees of the isotherms in all three samples (the so-

called point B), which mark a slowing down in the isotherm that is compatible with monolayer 

completion and begin of multilayer formation in the micropore filling mechanism. Notice that, 

during micropore filling, the concomitant adsorption of a water monolayer on outer sphere 

surface is probable; however, such a monolayer would amount a volume ML(Sext) < 0.003 

cm
3
/g, so it would be hardly distinguishable from the growing micropore filling (Figure 5, 

dashed green lines). On the other hand, the transition between micropore filling and capillary 
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condensation in the voids must surely involve the progressive growth of water multilayers on 

the outer surface of the spheres. From the water adsorption data, multilayer adsorption probably 

occurs mostly at p/p0 = 0.6−0.8 in our samples. 

 

4. CONCLUSIONS 

Here we have assessed a significant microporosity in Stöber spheres by simple CO2 

adsorption isotherms, allowing direct quantification of the narrow micropore volume (Vn ~ 30 

cm
3
 STP/g or 0.1 cm

3
/g) and apparent surface area (SNLDFT ~ 300 m

2
/g). We demonstrate for the 

first time that CO2 molecules at 273 K exhibited no access restrictions to Stöber microporosity. 

We further proved, by contrast, the non-accessibility of N2 molecules at 77 K to this 

microporosity due to drastic kinetic restrictions. The obtained pore sizes suggested that such 

limitation rather relies on the peculiar pore morphology in the spheres (involving tortuous 

channels and restrained pore entrances), which is compatible with actual models for Stöber 

growth considering the progressive aggregation of nanometric granules and final structure 

densification.
22─24

 

At the same time, we also showed the high accessibility of water molecules to the spheres 

inner porosity, although some access constraints are suggested. As an advantage, water 

isotherms detected microporosity above 0.7 nm and even slight, aging-related mesoporosity in 

our samples, thus complementing the pore evaluation by CO2 adsorption. Furthermore, it was 

found that the adsorbed water is preferentially located inside the spheres up to p/p0 = 0.6, while 

the voids between spheres are significantly filled only at higher pressures. The availability of 

the microporous structure of Stöber spheres for water filling (and emptying) under usual 

humidity conditions has barely been studied, although it will surely affect e.g. their mechanical 
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properties, individual
50

 and collectively,
83

 charge state
62,63

 or optical performance of Stöber-

composed colloidal crystals.
68

 Our findings of unambiguous and notable water uptake in the 

micropores, together with previous evidence of fast dynamics related to water sorption in Stöber 

spheres,
65,84

 may also raise questions about the ability of water to easily, and rapidly, adsorb and 

desorb in such strongly confined environment. Work is currently in progress in order to account 

for kinetics aspects and achieve deeper understanding about water access mechanisms. 

 We then propose CO2 adsorption isotherms as a simple means for reliable evaluation of 

Stöber narrow microporosity, which represents a radical advantage over demanding techniques 

such as SAXS or NMR. Water isotherms are a suitable complement for evaluation of larger 

microporosity and mesoporosity. Moreover, we emphasize the inadequacy of the conventionally 

employed N2 isotherms for micropore detection in Stöber spheres, as explicitly demonstrated 

here, and, possibly, in other microporous systems. 
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METHODS 

Stöber Silica Spheres Three different Stöber silica monodisperse spheres were purchased from 

the same manufacturer (Microparticles GmbH). Scanning electron microscopy (FEI Nova 

NANOSEM 230) verified their sphericity and apparently smooth surface. Size and dispersion 
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were determined to be 300, 245 and 260 nm and < 3% polydispersity. Solid spheres packings 

were obtained by vertical sedimentation and drying under ambient conditions (~ 35 % 

humidity). The samples, accordingly named as SFB-300, SFB-245 and SFB-260 and, have 

different ages since fabrication (about 1, 3 and 10 years, respectively) and were stored under 

ambient conditions in closed vessels. Thermogravimetric and infrared measurements
46,76

 

indicated that the spheres surface was fully hydroxylated (ca. 5 silanols/nm
2
, Ref. 75), as 

expected. Elemental analysis (Perkins Elmer 2400) showed small amounts of carbon (< 0.4 %) 

in all samples, indicating low degree of incomplete hydrolysis of ethoxy groups during 

synthesis. No impurities were found. 

Textural Characterization The textural properties of the Stöber spheres were evaluated by N2 

adsorption at 77 K and CO2 adsorption at 273, 298 and 323 K. These measurements were 

performed in a home-made fully automated manometric equipment designed and constructed by 

the LMA group, and now commercialized by G2MTech. Gas adsorption measurements were 

performed under strict equilibrium conditions (equilibrium points: 10; interval time: 120 s; 

sorption rate limit: 0.001 Torr/min). Before the adsorption measurements the samples were 

outgassed at 393 K for 12h under UHV conditions. Water adsorption measurements were 

performed under similar conditions at 298 K (equilibrium points: 10; interval time: 30 s; 

sorption rate limit: 0.005 Torr/min). These measurements were performed in a home-made fully 

automated manometric equipment, now commercialized by Quantachrome as VStar. 

Apparent surface area was estimated from N2 and H2O adsorption data after application of the 

BET equation:       
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where n is amount adsorbed at each relative pressure, nm is the specific monolayer capacity, and 

c is the BET constant. The BET equation was applied in the relative pressure range up to 0.15. 

A cross-sectional area of 0.162 nm
2
 and 0.106 nm

2
 for N2 and H2O adsorption on silicas. 

The micropore volume for N2, CO2 and H2O was estimated from the Dubinin-Radushkevich 

(DR) equation: 

                        –       
  (

  

 
) 

where V is volume adsorbed, V0 is the micropore volume (referred to as Vn and VH2O in the 

specific cases of CO2 and H2O for clarity) and A is a constant. The DR plot was linear over the 

whole pressure range for CO2 (Figure 3a). For N2 and H2O, however, the DR plot exhibited a 

typical S-shape; therefore, only the linear region was used to estimate the corresponding 

micropore volume, this region ranging from log
2
(p0/p) = 2 to 10 for N2 and  from 0.5 to 1.5 for 

H2O. The liquid densities used for these calculations are: N2 (0.808 g/cm
3
), CO2 (1.023 g/cm

3
 at 

273 K and 0.97 g/cm
3
 at 298 K), and H2O (0.997 g/cm

3
). 
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