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® Shale gas hydraulic fracturing demands large amounts of water, on average 9000-29000 m3 of water to
complete each well (Yang el al. 2014). (10% used in drilling and 90% in hydraulic fracturing).

® A fraction of the water used for drilling and hydraulic fracture return to the surface (between 10% and 70%)
with typical values around 35%.

® Consequently, high volumes of wastewater from shale gas well pads are generated. As an example, a
production forecast for the Marcellus play suggests that Pennsylvania will generate over half billion cubic
feet per year by 2025 (Gay et al. 2012)

® Most of the water returns to the surface in the first two weeks -flowback water- then it tends to stabilize and
continues producing water during the whole life of the well -produced water-.

® The flowback water include part of the additives included in the hydraulic fracturing fluid: Proppant (sand);
Friction reducers; surfactants, scale inhibitors, Biocide, etc. And other compounds depending on the
geological characteristics of the shale.
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Typical range of concentrations for some common constituents of flowback/produced water

from natural gas development in the Marcellus shale.
(Data compiled by Elise Barbot, University of Pittsburgh, and Juan Peng, Carnegie Mellon University.)

Low e/ Medium (mg/) | __High (/)

Total dissolved solids 66000 150000 261000

Total suspended solids 27 380 3200

Hardness (as CaCO;) 9100 29000 55000
Alkalinity (as CaCO,) 200 200 1100
Chloride 32000 76000 148000

Not Detected 7 500

Not Detected Not Detected Not Detected
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Salinity of the flowback waters from various shales expressed in terms of Total Dissolved Solids (TDS).

Average TDS, ppm Maximum TDS, ppm

Fayetteville 13,000

Wooford 30,000

Barnett 80,000

Marcellus 120,000
Haynesville 110,000

Lebien ~ 16,000 - 70,000 *
Lubocino ~ 17,000*

* Estimated by correlation with other parameters.
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Introduction -

® To address these issues, we introduce a two stage stochastic model for the robust design of ZLD desalination
systems under uncertainty

In this new approach, wastewater salinity and flowrate are both treated as uncertain design parameters: The
uncertainty is mainly related to the great variability presented in well data from real shale plays

® To the best of our knowledge, this is the first study assessing the impacts of data uncertainty on the optimal design
of ZLD evaporation systems, specially developed for high-salinity shale gas wastewater

® Also, important improvements on the MEE-MVC process are implemented, including the use of an external energy
source to avoid oversized equipment and the consideration of variable compressor efficiency that allows obtaining
a more precise and robust operating performance
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ZLD desalination under uncertainty S

® Given is a high-salinity stream of shale gas wastewater, with known inlet state (described by temperature, and
mean values for salt concentration and flowrate) and target condition defined by the ZLD specification

® Furthermore, desalination system and energy services (steam and electricity) are also provided with their
corresponding costs

® Salt concentration and flowrate of the inlet water stream are both considered as uncertain design parameters
that can be explicitly expressed through a set of correlated feeding scenarios with given probability of
occurrence

The new stochastic modelling approach is aimed at obtaining a robust design of MEE-MVC
desalination systems by reducing brine discharges and energy consumption, while

accounting for different feeding scenarios. The MEE-MVC system should be able to
efficiently operate at ZLD condition in a large range of correlated feeding scenarios

SCAPE 2? Barcelona
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Figure 1. General superstructure proposed for the MEE-MVR desalination plant of wastewater from shale gas production
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Two stage stochastic model

Mathematical modelling approach

Sizing equations for all equipment
Mass and energy balances
Temperature and pressure feasibilities
Design constraints (ZLD operation)
Obijective function

O O O O O

Index sets
| = {i /[1=1,2,...,1 isan evaporation effect}

S= {s /s=12,..,S isafeeding scenario}

Decision variables

® First stage (here and now): sizing-related
variables (e.g., volumes, and heat transfer
areas)

o

Second stage (wait and see): all remaining
optimization variables
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Figure 2. Decision variables for the optimization of: (a) single-stage compressor;
and, (b) effect i of the horizontal falling film evaporator coupled to flashing tank i

in the MEE-MVR system
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Two stage stochastic model -GXT

Mathematical modelling approach

Design of the multiple-effect evaporator

1. Mass balances

Evaporator effect i:

My = mi™ 4 meer V1<i<l -1 VseS

i+1,s i,s

M - Soe =m™ -8 vi<i<l-1, VseS

i+1,s i+1,s ~ "'lis

First effect: ~ feed ) ]
Min s are the stochastic parameters that define

mfeed _ mib;ine 4 rapor Vi=l VseS S"il:e(:d flowrate an'd §a|inity for.the feed water in
’ ' the set of distinct scenarios

in,s i,s

M. Sl = mPe . S = |, YseS

in,s in,s i,s
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Design of the multiple-effect evaporator

2. Global energy balances
ey specific enthalpies are estimated at the

Q.+ MU pyPrine — ppprine  pqbrine y ppuebor yvapor i | \s e S same boiling point temperature

i+1,s i+1,s — ''lis

Qi,s + r.ﬁfeed . Hij‘ied — mbrine . Hil:’);ine + mivlzpor . Hi\fzpor Vi=l ’ VseS

in,s i,s

3. Boiling point temperature

T =T'® + BPE,, Viel, Vse$

0.1581+2.769-(X2")-0.002676 (T, )
BPE, , = Viel, VseS

+4L78(X2) 10.134- (X 2T/
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Two stage stochastic model

Mathematical modelling approach

Design of the multiple-effect evaporator
4. Energy requirements

Q _ msup vaapor (Tssup _Tif:sondensate ) + mssup (HIC\S/ . Hi?(s)ndensate) n Qsexternal Vi=1 VseS

Ci1s

Qu =( + 1) 4, VisL vses
In which,

external _ steam vapor steam _ condensate steam cv condensate HE
Qeternal — .Cpy® (T, T )+ M (H = HE ) Vi=1 VseS

0

energy amount from the external source
(steam) used to avoid oversized equipment
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Design of the multiple-effect evaporator

Overall heat transfer coefficient:
5. Heat transfer area

1939.4+1.40562- ("™ )

! U, =0.001- Vi>1 VseS
Aevaporator — Z A1 ’
i=1

~0.00207525- (T2 )" 10.0023186 (T )

In which, Log mean temperature difference :

mssup ) Cpi\{zpor ,(Tssup _Ti,c:ndensate )/(U S, LMTDi,s) ) LMTDi,s = |:0'5'<01i,s '92i,s)'(01i,3 + 92“ )]fls Viel VseS
Aﬁ 2 Rl '(H-CV . H_condensate )/U _(T_condensate _-I-_boi|ing) Vi=1 Vse$S

TP T2l yj=1 VseS
eli,s = ] e

A = Qi,s/(ui,s ' LMTDi,s) Vi>1l VseS To -TX"  Vi>1 VseS

-I-ilc:ndensate _-I-thiiilsing Vl :1’ VS c S

O o =4 T, 20 T Vi<i<|l, Vse§
Ti,S:t _Ti,fseed Vi=Il, VseS
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Mathematical modelling approach

Design of the multiple-effect evaporator

6. Pressure feasibility

PYr > PR L AP Vi<, VseS

i+1,s

7. Constraints on temperature

. d boili i
-I-ssup ZTif::ndensate + ATriin Vi :1, Vs e S -I-i,cson ensate > Ti+2,lsmg + ATn?in Vi< | ’ VseS
ToOl S oM AL is1 YseS  TEMeSTRATS Vil VseS
ToN0 > T 4 AT 2 Vi<l, VseS Tondensae > T L AT Viel, VseS$

T > T 00+ AT Vi=1, Vse$ T 2T + AT Viel, VseS
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Mathematical modelling approach S
Design of the mechanical vapor compressor
1. Isentropic temperature 3. Isentropic efficiency

_ : W

is __ mix sup vapor o — . s
T =(T, 7" +273.15)- (R /P; ) -27315  Vi=1I, VseS$ 7, =(0.35/0.8) [wc - j +05 VseS
In which, In WhiCh,
F)SSUP SCRmax °Pi?I:p0r Vi=| , VSeS WC =W, VseS
2. Superheated vapor temperature These equations are valid for:

sup mix 1 is mix H
T =T+ = (TF-T™) Vi=I, VseS W

s 0.5<7, <0.85 0.2<—=2<1

,r ) T WC

isentropic efficiency
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Mathematical modelling approach
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Mathematical modelling approach

Design of the mechanical vapor compressor

4. Compression work

W, =m - (HP - H%) Vi=1, Vse$

5. Constraints on temperature and pressure

T*>T™  Vi=I, VseS

PP > P W=, ¥se§
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Design specification for ZLD operation

ZLD operation is ensured by the following constraint:

Sprne > gaesion Vi=1, VseS

In this case The inclusion of this constraint in the model restricts the
‘ search space to solutions that meet a minimum salinity
gdesian = 30 g kg‘l DS requirement for the bine (i.e., brine salinity close to salt

saturation conditions)

Lower costs are expected for weaker brine salinity
restrictions
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Mathematical modelling approach

Stochastic objective function
The stochastic objective function for the minimization of the expected total annualized cost is given by:

min TAC® =) (prob,)-TAC, = > (prob,)-(CAPEX +OPEX)

e . = Observations:
s.t.  all equality and inequality constraints

O The resulting formulation was implemented

In which, the distributions of capital investment and operational costs are given by: in GAMS (version 24.8.5) and solved with the
interior-point local solver IPOPT (with CPLEX
(CPO ) FBM ) Fp )evaporator +(Cpo ) FBM ) FP )compressor " SUb'SOlver)
CEPCI*®
CAPEX = fac:| ———— || / flash et H ime f hasti imizations did
CEPCI (ZCPOi Fyy, .FPJ + (Cop - Fau - F>) The CPU time for stochastic optimizations di
i1 not exceed 60 s
electrici steam external
OPEX, = C#W W, +C*m. Q" The MEE-MVR system should operate at low

temperatures and pressures to avoid rusting

fl This proiect has received funding from the European
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Scenarios generation

v 100 | o % i
x . - L} °
S~ - . -
2 L n'-' -
A .4? 90 B . ..I . T
c .l" .
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! “ .I O "% o N e ®
. 5 80r R T e 1
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3 3 ° : L% 'f‘: ‘-
| x R LT
: 1] 701 . ° e o o=, . . 1
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| 2 .ot
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6 7 8 9 10 11 12
Flowback water flowrate [kg/s]
Wastewater flowrate
‘ > Figure 3. Correlated feeding scenarios generated with marginal normal distribution, considering matrix
0 10 20 30 40 50 60 70 80 90 100 correlation of -0.8 and standard deviation of 10% from expected mean values (200 scenarios)

Days following hydraulic fracturing
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Shale gas wastewater desalination

Water recycling or safe discharge

Pretreated Water

<
Zero-liquid discharge
MEE-MVC system
Direct on-field reuse
Treatment Plant
\ AR’

External Shale Gas Pre.treatment Desalination

Water . (Oil and TSS (TDS

LT [ reshwater Production  /wastewater removal) removal)

4

v Pretreated Water Desalinated Water

Class Il disposal wells

Figure 4. Wastewater management alternatives for shale gas industry
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Shale gas wastewater desalination

Table 1. Problem data for the case study regarding the optimal design of MEE-MVR desalination systems under well data uncertainty

Expected mean value for mass flowrate, (kg s™?) 8.68
Feed water Temperature, (2C) 25
Expected mean value for salinity, (g kg or k ppm) 80
Mechanical Isentropic efficiency, (%) 50-85 Standard deviations:
echanical vapor compressor capacity ratio 133 5, 10 and 20 %
Maximum compression ratio 3
L Brine salinity for ZLD operation, (g kgt or k ppm) 300
Process specification and : o
restrictions Maximum effect temperature, (2C) 100
Maximum effect pressure, (kPa) 200
Electricity cost 9, (USS (kW year)?) 850.51
Steam cost, (USS (kW year)?) 418.80
Cost data ) )
Fractional interest rate per year 0.1
Amortization period 10
Working hours per year 8760

@ Cost data obtained from Eurostat database (European Commission, 2016)
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Deterministic solution:
TAC: 1055 kUSS year!
OPEX: 463 kUSS year!
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Case study

Shale gas wastewater desalination

OPEX:

2700 1 mSteam OPEX:

-1
M Electricity 705 kUSS year

803 kUSS year!

5
o

479 kUSS year!
572 kUSS year!

e

o

o
1

81 and 90

49 and 66

Energy consumption [kW]
g8 8 8 8 8§

g

o
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Scenario

Figure 5. Energy consumption distribution throughout the different feeding scenarios, obtained via
stochastic approach with fixed equipment capacities as provided by the deterministic solution
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Shale gas wastewater desalination ~6.8 US$ per cubic

meter (~0.03 USS
gallon)

6,8 I Stochastic design

~—Deterministic design

6,6

bt This value
correspond to

6,2
an increase of
~30% in
58 comparison
< with the
' deterministic
54 solution

Freshwater cost [USS per cubic meter]

[T
5 _ |

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 8 91 94 97 100
Scenario

Figure 6. Freshwater cost distribution throughout the different feeding scenarios, obtained via stochastic approach with fixed equipment capacities as
provided by the deterministic solution
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Case study SXT-

. SHALEXENVIRONMENT
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Figure 7. Distributions of freshwater production cost and produced freshwater obtained by the stochastic model throughout the distinct feeding
scenarios
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Figure 8. Cumulative probability curves for the ZLD system economic performance under consideration of correlated uncertain parameters (matrix
correlation of 0.7)
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Remarks . SXT--

SHALEXENVIRONMENT

® A new stochastic multiscenario optimization model is introduced for the robust design of ZLD
desalination systems under uncertainty

® Flowback water salinity and flowrate are both considered as uncertain design parameters

® These uncertain parameters are mathematically modelled as a set of correlated scenarios with given
probability of occurrence

® The correlated scenarios are generated from a multivariate normal distribution via Monte Carlo
sampling technigue with a symmetric correlation matrix

® For ensuring the goal of ZLD operation in the uncertain space, we define the discharge brine salinity
close to salt saturation condition as a design constraint for all feeding scenarios

® The resulting stochastic multiscenario NLP-based model is implemented in GAMS, and optimized by
the minimization of the expected total annualized cost of the desalination process
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® Comparative results between deterministic and stochastic (with fixed deterministic solution) approaches
indicate that operational expenses can be prohibitive for some correlated scenarios

® This is because the ZLD process is not able to provide all system flexibility required against feeding
variability conditions

® These results highlight the importance of the proposed stochastic model to optimize systems subjected to
design parameters uncertainty

® Furthermore, cumulative probability curves show that higher standard deviations for uncertain
parameters imply riskier decision-making

® This is a consequence of their increased probability of exceeding a target total annualized cost

® The results obtained can be used to support decision-makers towards the implementation of more robust
and reliable ZLD desalination systems in the shale gas industry
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