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• Shale gas hydraulic fracturing demands large amounts of water, on average 9000-29000 m3 of water to
complete each well (Yang el al. 2014). (10% used in drilling and 90% in hydraulic fracturing).

• A fraction of the water used for drilling and hydraulic fracture return to the surface (between 10% and 70%)
with typical values around 35%.

• Consequently, high volumes of wastewater from shale gas well pads are generated. As an example, a
production forecast for the Marcellus play suggests that Pennsylvania will generate over half billion cubic
feet per year by 2025 (Gay et al. 2012)

• Most of the water returns to the surface in the first two weeks -flowback water- then it tends to stabilize and
continues producing water during the whole life of the well -produced water-.

• The flowback water include part of the additives included in the hydraulic fracturing fluid: Proppant (sand);
Friction reducers; surfactants, scale inhibitors, Biocide, etc. And other compounds depending on the
geological characteristics of the shale.

Motivation
Introduction
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Motivation

Constituent Low (mg/l) Medium (mg/l) High (mg/l)

Total dissolved solids 66000 150000 261000

Total suspended solids 27 380 3200

Hardness (as CaCO3) 9100 29000 55000
Alkalinity (as CaCO3) 200 200 1100

Chloride 32000 76000 148000
Sulfate Not Detected 7 500
Sodium 18000 33000 44000

Calcium, total 3000 9800 31000
Strontium, total 1400 2100 6800

Barium, total 2300 3300 4700
Bromide 720 1200 1600

Iron, total 25 48 55
Manganese, total 3 7 7

Oil and grease 10 18 260
Total radioactivity Not Detected Not Detected Not Detected

Typical range of concentrations for some common constituents of flowback/produced water 
from natural gas development in the Marcellus shale. 

(Data compiled by Elise Barbot, University of Pittsburgh, and Juan Peng, Carnegie Mellon University.)
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Motivation
Introduction

Shale Average TDS, ppm Maximum TDS, ppm

Fayetteville 13,000 20,000

Wooford 30,000 40,000

Barnett 80,000 > 150,000

Marcellus 120,000 > 280,000

Haynesville 110,000 > 200,000

Lebien ~ 16,000  - 70,000 *

Lubocino ~ 17,000*

Salinity of the flowback waters from various shales expressed in terms of Total Dissolved Solids (TDS). 

* Estimated by correlation with other parameters. 
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Motivation
Introduction
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Motivation
Introduction
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• To address these issues, we introduce a two stage stochastic model for the robust design of ZLD desalination
systems under uncertainty

• In this new approach, wastewater salinity and flowrate are both treated as uncertain design parameters: The
uncertainty is mainly related to the great variability presented in well data from real shale plays

• To the best of our knowledge, this is the first study assessing the impacts of data uncertainty on the optimal design
of ZLD evaporation systems, specially developed for high-salinity shale gas wastewater

• Also, important improvements on the MEE-MVC process are implemented, including the use of an external energy
source to avoid oversized equipment and the consideration of variable compressor efficiency that allows obtaining
a more precise and robust operating performance

Motivation
Introduction
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• Given is a high-salinity stream of shale gas wastewater, with known inlet state (described by temperature, and
mean values for salt concentration and flowrate) and target condition defined by the ZLD specification

• Furthermore, desalination system and energy services (steam and electricity) are also provided with their
corresponding costs

• Salt concentration and flowrate of the inlet water stream are both considered as uncertain design parameters
that can be explicitly expressed through a set of correlated feeding scenarios with given probability of
occurrence

Problem statement
ZLD desalination under uncertainty

The new stochastic modelling approach is aimed at obtaining a robust design of MEE-MVC
desalination systems by reducing brine discharges and energy consumption, while
accounting for different feeding scenarios. The MEE-MVC system should be able to
efficiently operate at ZLD condition in a large range of correlated feeding scenarios
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Process description
Superstructure

Figure 1. General superstructure proposed for the MEE-MVR desalination plant of wastewater from shale gas production
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Two stage stochastic model
Mathematical modelling approach

Figure 2. Decision variables for the optimization of: (a) single-stage compressor; 
and, (b) effect i of the horizontal falling film evaporator coupled to flashing tank i
in the MEE-MVR system

Index sets

Decision variables

• First stage (here and now): sizing-related 
variables (e.g., volumes,  and heat transfer 
areas)

• Second stage (wait and see): all remaining 
optimization variables 

o Sizing equations for all equipment
o Mass and energy balances
o Temperature and pressure feasibilities
o Design constraints (ZLD operation)
o Objective function

}{
}{

 / 1, 2,...,   is an evaporation effect

/ 1, 2,...,  is a feeding scenario

= =

= =

I i i I
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1. Mass balances

Design of the multiple-effect evaporator 

Mathematical modelling approach

1, , ,            1 1,   + = + ∀ ≤ ≤ − ∀ ∈  

brine brine vapor
i s i s i sm m m i I s S

1, 1, , ,     1 1,  + +⋅ = ⋅ ∀ ≤ ≤ − ∀ ∈ 

brine brine brine brine
i s i s i s i sm S m S i I s S

Evaporator effect i:

First effect:

, , ,          ,  = + ∀ = ∀ ∈  

feed brine vapor
in s i s i sm m m i I s S

, , , ,    ,  ⋅ = ⋅ ∀ = ∀ ∈

 

feed feed brine brine
in s in s i s i sm S m S i I s S

are the stochastic parameters that define
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Two stage stochastic model
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2. Global energy balances

Design of the multiple-effect evaporator 

Mathematical modelling approach

1, 1, , ,, , ,     ,   + ++ ⋅ = ⋅ + ⋅ ∀ < ∀ ∈  

brine brine brine brine vapor vapor
i s i s i s i s i s i si s m H m H m H i sQ I S

, ,, , , , ,     ,   + ⋅ = ⋅ + ⋅ ∀ = ∀ ∈  

feed feed brine brine vapor vapor
in s i s i s i s i s ii s sm H m H m H i I s SQ

specific enthalpies are estimated at the 
same boiling point temperature 

, , ,       ,= + ∈ ∀ ∈∀boiling ideal
i s i s i sT T BP iE I s S

3. Boiling point temperature
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Two stage stochastic model
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4. Energy requirements

Design of the multiple-effect evaporator 

Mathematical modelling approach

In which,

( ) ( ), , , , ,+      1,  = ⋅ ⋅ − ⋅ − + ∀ = ∀ ∈ 

sup vapor sup condensate sup cv condensate external
i s s i s s i s s i s i s sQ m Cp T T m H H Q i s S

( )1,, 1, ,      1,  λ
−−= + ⋅ ∀ > ∀ ∈ 

i s

vapor vapor
i s i s c i sQ m m i s S

( ) ( ), , ,+        1,  = ⋅ ⋅ − ⋅ − ∀ = ∀ ∈ 

steam vapor steam condensate steam cv condensate
s s s i s s i s

e
i

xte
s

rnal
s m Cp T T mQ H H i s S

energy amount from the external source 
(steam) used to avoid oversized equipment

Two stage stochastic model
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5. Heat transfer area

Design of the multiple-effect evaporator 

Mathematical modelling approach

In which,
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Overall heat transfer coefficient: 

Log mean temperature difference : 

Two stage stochastic model
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6. Pressure feasibility

Design of the multiple-effect evaporator 

Mathematical modelling approach

, 1, min     ,  +≥ + ∆ ∀ < ∀ ∈vapor vapor
i s i sP P P i I s S

7. Constraints on temperature

1
, min      ,  1   ≥ + = ∀ ∈∆ ∀sup condensate

s i sT T T i s S

1
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2
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, 1, min      ,   + < ∀ ∈≥ + ∆ ∀condensate boiling

i s i s IT T i sT S

3
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4
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4
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Two stage stochastic model
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1. Isentropic temperature

Design of the mechanical vapor compressor

Mathematical modelling approach

2. Superheated vapor temperature

( ) ( )
1

, ,273.15 273.15       ,  
γ
γ
−

= + ⋅ − ∀ = ∀ ∈is mix sup vapor
s i s s i sT T P P i I s S

max ,          ,  ≤ = ∈⋅ ∀∀sup vapor
s i sRP C P I si S

In which,

( ), ,
1       ,   
η

= + ⋅ − ∀ = ∀ ∈sup mix is mix
s i s s i s

s

T T T T i I s S

isentropic efficiency

Two stage stochastic model

3. Isentropic efficiency

In which,

( )0.35 0.8 0.2   0.5      η  = ⋅ − + ∀ ∈ 
 

s
s

W s S
WC

     ≥ ∀ ∈sWC W s S

 0.5 0.85η≤ ≤s 0.2 1≤ ≤sW
WC

These equations are valid for:
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Mathematical modelling approach

Two stage stochastic model
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4. Compression work

Design of the mechanical vapor compressor

Mathematical modelling approach

5. Constraints on temperature and pressure

( ),          ,   = ⋅ − ∀ = ∀ ∈

sup sup vapor
s s s i sW m H H i I s S

,        ,   ≥ ∀ = ∀ ∈sup mix
s i sT T i I s S

,      ,   ≥ ∀ = ∀ ∈sup vapor
s i sP P i I s S

Two stage stochastic model
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Design specification for ZLD operation

Two stage stochastic model
Mathematical modelling approach

ZLD operation is ensured by the following constraint:

,          1,   ≥ ∀ = ∀ ∈brine design
i sS S i s S

In this case,

1= 300  TDS        −design g kgS

o The inclusion of this constraint in the model restricts the
search space to solutions that meet a minimum salinity
requirement for the bine (i.e., brine salinity close to salt
saturation conditions)

o Lower costs are expected for weaker brine salinity
restrictions
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Stochastic objective function

The stochastic objective function for the minimization of the expected total annualized cost is given by:

o The resulting formulation was implemented
in GAMS (version 24.8.5) and solved with the
interior-point local solver IPOPT (with CPLEX
sub-solver)

o The CPU time for stochastic optimizations did
not exceed 60 s

o The MEE-MVR system should operate at low
temperatures and pressures to avoid rusting,
fouling and instability problems. Then, lower
and upper bounds on such decision variables
are decisive to properly design ZLD systems

Observations:

Two stage stochastic model
Mathematical modelling approach

( ) ( ) ( )min    

s.t.      all equality and inequality constraints 
∈ ∈

= ⋅ = ⋅ +∑ ∑Exp
s s s s

s S s S
TAC prob TAC prob CAPEX OPEX

In which, the distributions of capital investment and operational costs are given by:

( ) ( )

( )
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2003

1
 

=

 ⋅ ⋅ + ⋅ ⋅ +
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evaporator compressor
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flashI
preheater
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i
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Two stage stochastic model
Scenarios generation

Figure 3. Correlated feeding scenarios generated with marginal normal distribution, considering matrix
correlation of -0.8 and standard deviation of 10% from expected mean values (200 scenarios)

• Correlated feeding scenarios are generated via Monte
Carlo sampling technique, from a multivariate normal
(Gaussian) distribution (random number generator
algorithm)

• The probability density function for continuous
random variables can be expressed as follows:

• In which, the covariances between variables in the
matrix are obtained from the correlation symmetric
matrix:

• This matrix relates each pair of correlated random
variables, wherein non-diagonal elements can assume
values between –1 and 1

 2 11
1 2 2

( , , , ) 1 (2 ) | | exp ( ) ( )T
X df X X X X X       

 2 2
ij ij i j    
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Case study
Shale gas wastewater desalination

Liquefaction
plant

Figure 4. Wastewater management alternatives for shale gas industry

Zero-liquid discharge 
MEE-MVC system
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Case study
Shale gas wastewater desalination

Feed water
Expected mean value for mass flowrate,  (kg s-1) 8.68
Temperature,  (ºC) 25
Expected mean value for salinity, (g kg-1 or k ppm) 80

Mechanical vapor compressor
Isentropic efficiency,  (%) 50−85
Heat capacity ratio 1.33
Maximum compression ratio 3

Process specification and 
restrictions

Brine salinity for ZLD operation, (g kg-1 or k ppm) 300
Maximum effect temperature,  (ºC) 100
Maximum effect pressure,  (kPa) 200

Cost data

Electricity cost a, (US$ (kW year)-1) 850.51
Steam cost, (US$ (kW year)-1) 418.80
Fractional interest rate per year 0.1
Amortization period 10
Working hours per year 8760

Table 1. Problem data for the case study regarding the optimal design of MEE-MVR desalination systems under well data uncertainty

a Cost data obtained from Eurostat database (European Commission, 2016)

Standard deviations: 
5, 10 and 20 % 

Matrix correlation: –0.7 
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Case study
Shale gas wastewater desalination

Liquefaction
plant

Figure 5. Energy consumption distribution throughout the different feeding scenarios, obtained via
stochastic approach with fixed equipment capacities as provided by the deterministic solution

OPEX:

479 kUS$ year-1

572 kUS$ year-1

Deterministic solution:

TAC: 1055 kUS$ year-1 

OPEX: 463 kUS$ year-1 

OPEX:

705 kUS$ year-1

803 kUS$ year-1
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Case study
Shale gas wastewater desalination

Liquefaction
plant

Figure 6. Freshwater cost distribution throughout the different feeding scenarios, obtained via stochastic approach with fixed equipment capacities as
provided by the deterministic solution

~6.8 US$ per cubic 
meter (~0.03 US$ 

gallon-1)

This value 
correspond to 
an increase of 

~30% in 
comparison 

with the 
deterministic 

solution



This project has received funding from the European

Union’s Horizon 2020 research and innovation programme

under grant agreement No 640979

Case study
Shale gas wastewater desalination

Liquefaction
plant

Figure 7. Distributions of freshwater production cost and produced freshwater obtained by the stochastic model throughout the distinct feeding
scenarios

~3.8 US$ per cubic 
meter (~0.02 US$ 

gallon-1)
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Case study
Shale gas wastewater desalination

Liquefaction
plant

Figure 8. Cumulative probability curves for the ZLD system economic performance under consideration of correlated uncertain parameters (matrix
correlation of 0.7)

Higher standard 
deviations imply riskier 

decision-making

20% curve presents ~8% of probability 
of exceeding the target cost of 1351 
kUS$ year-1, while this probability is 

null for the 5% curve
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• A new stochastic multiscenario optimization model is introduced for the robust design of ZLD
desalination systems under uncertainty

• Flowback water salinity and flowrate are both considered as uncertain design parameters

• These uncertain parameters are mathematically modelled as a set of correlated scenarios with given
probability of occurrence

• The correlated scenarios are generated from a multivariate normal distribution via Monte Carlo
sampling technique with a symmetric correlation matrix

• For ensuring the goal of ZLD operation in the uncertain space, we define the discharge brine salinity
close to salt saturation condition as a design constraint for all feeding scenarios

• The resulting stochastic multiscenario NLP-based model is implemented in GAMS, and optimized by
the minimization of the expected total annualized cost of the desalination process

Remarks
Overview
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• Comparative results between deterministic and stochastic (with fixed deterministic solution) approaches
indicate that operational expenses can be prohibitive for some correlated scenarios

• This is because the ZLD process is not able to provide all system flexibility required against feeding
variability conditions

• These results highlight the importance of the proposed stochastic model to optimize systems subjected to
design parameters uncertainty

• Furthermore, cumulative probability curves show that higher standard deviations for uncertain
parameters imply riskier decision-making

• This is a consequence of their increased probability of exceeding a target total annualized cost

• The results obtained can be used to support decision-makers towards the implementation of more robust
and reliable ZLD desalination systems in the shale gas industry

Remarks
Conclusions
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