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Abstract 39 

Background: Parkinson’s disease patients often have visual alterations, for example loss 40 

of visual acuity, contrast sensitivity or motion perception, and diminished electroretinogram 41 

responses. Parkinson’s disease pathology is mainly characterized by the accumulation of 42 

pathological α-synuclein deposits in the brain, but little is known about how synucleinopathy 43 

affects the retina.  44 

Objective: To study the correlation between α-synuclein deposits in the retina and brain 45 

of autopsied subjects with Parkinson’s disease and Incidental Lewy Body Disease. 46 

Methods: We evaluated the presence of phosphorylated α-synuclein in the retina of 47 

autopsied subjects with Parkinson’s disease (9 subjects), incidental Lewy body disease (4 48 

subjects), and controls (6 subjects) by immunohistochemistry and compared the retinal 49 

synucleinopathy with brain disease severity indicators.  50 

Results: While controls did not show any phosphorylated α-synuclein immunoreactivity 51 

in their retina, all Parkinson’s disease subjects and 3 of 4 incidental Lewy body disease 52 

subjects had phosphorylated α-synuclein deposits in ganglion cell perikarya, dendrites and 53 

axons, some of them resembling brain Lewy bodies and Lewy neurites. The Lewy-type 54 

synucleinopathy density in the retina significantly correlated with Lewy-type synucleinopathy 55 

density in the brain, with the Unified Parkinson’s disease pathology stage and with the motor 56 

Unified Parkinson’s Disease Rating Scale. 57 

Conclusion: This data suggests that phosphorylated α-synuclein accumulates in the retina 58 

in parallel with that in the brain, including in early stages prior to the development of clinical 59 

signs of parkinsonism or dementia. Therefore, the retina may provide an in vivo indicator of 60 

brain pathology severity, and its detection could help in the diagnosis and monitoring of 61 

disease progression. 62 

 63 

 64 

 65 



Introduction 66 

Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, 67 

affecting between seven and ten million people worldwide according to the Parkinson’s 68 

Foundation (http://www.parkinson.org/Understanding-Parkinsons/Causes-and-69 

Statistics/Statistics). The most characteristic symptoms are bradykinesia, rest tremor, rigidity, 70 

and postural instability (1–3). Non-motor symptoms have also been widely described, 71 

including mood disturbance, sleep disorders, cognitive decline and autonomic impairment (2–72 

4). Visual symptoms, including dry eyes, reading difficulties and visual hallucinations, are 73 

relatively common. Detailed ophthalmological examinations also suggest a loss of visual 74 

acuity, contrast sensitivity, color discrimination and motion perception, and a reduced 75 

electroretinogram response (5–11). The cellular and molecular mechanisms that lead to vision 76 

impairment in PD are still unclear and little information is known about how PD affects the 77 

retina.  78 

The pathology of PD is characterized by the presence of pathological deposits of α-79 

synuclein throughout the central (12,13) and peripheral nervous systems (14–18), causing 80 

parkinsonism due to the massive and irreversible loss of dopaminergic neurons in the 81 

substantia nigra pars compacta, and eventual cognitive dysfunction due to its effects on the 82 

cerebral cortex. The pathological α-synuclein deposits, contained within Lewy bodies and 83 

Lewy neurites, are associated with abnormally phosphorylated α-synuclein (p-syn) (19,20). α-84 

synuclein is a small and highly-conserved protein of 140 amino acids that is enriched in 85 

presynaptic terminals in different neural regions (21,22). Its physiological functions remain 86 

unclear, but some studies suggest a role in the regulation of synaptic vesicle formation and 87 

neurotransmitter release (22,23). While the native, unphosphorylated conformation is present 88 

in several retinal cell types (21,24), the phosphorylation of α-synuclein at serine 129 can be 89 

used as a specific marker of CNS synucleinopathy (25,26).  90 

Because of the importance of p-syn in the possible spreading of the disease and findings 91 

of its presence in the peripheral nervous system (PNS) in PD (4,16), this study analyzed Lewy 92 

type α-synucleinopathy (LTS) in the retina of autopsied PD subjects. Additionally, subjects 93 

that showed no clinical signs of parkinsonism or dementia but had LTS in the brain 94 

(incidental Lewy body disease subjects (ILBD), were also studied, as possible prodromal 95 

disease. We aimed to characterize which cells and structures accumulate p-syn and to study if 96 

the amount of p-syn in the retina was related to p-syn load in the brain. These results could 97 
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lead to a better understanding of disease spread and help in the search for an accessible 98 

diagnostic and progression biomarker for Parkinson’s disease and other synucleinopathies. 99 

Materials and Methods 100 

Source of human subjects  101 

Human retina samples from six controls, four subjects with incidental Lewy body disease 102 

(ILBD), and nine PD subjects were obtained postmortem from volunteer donors in the 103 

Arizona Study of Aging and Neurodegenerative Disorders (AZSAND)/Banner Sun Health 104 

Research Institute Brain and Body Donation Program 105 

(BBDP; www.brainandbodydonationprogram.org) (27). All procedures were conducted in 106 

accordance with The Code of Ethics of the World Medical Association (Declaration of 107 

Helsinki) for experiments involving humans. All subjects provided signed written informed 108 

consent approved by an Institutional Review Board. 109 

Clinical and neuropathological characterization of human subjects 110 

Individuals included in the study were clinically characterized using standard tests that 111 

analyzed neurological, cognitive and movement disorder components, and private medical 112 

records were reviewed and abstracted for each subject as previously described (27). These 113 

included the Unified Parkinson Disease Rating Scale (UPDRS). Standardized 114 

neuropathological examinations determined the Unified Staging System for Lewy Body 115 

disorders histopathological stage as previously described (28). The diagnosis of PD is 116 

clinicopathological: the subjects must have had motor parkinsonism as well as Lewy body 117 

pathology and pigmented neuron loss in the substantia nigra at autopsy (29).  118 

Immunohistochemistry 119 

After enucleation, eyeballs were immediately fixed in cold neutral-buffered 10% formalin 120 

for 48-72 hours. They were washed in 0.1 M sodium phosphate buffer (pH 7.4) and 121 

sequentially cryoprotected in 15%, 20% and 30% sucrose. Cornea, lens and vitreous body 122 

were removed and eyecups were processed and cut in eight pieces (30). Some portions were 123 

employed as wholemount retinas, for which they were subjected to a freeze-thaw cycle to 124 

improve antibody penetration. Others were cut on a cryostat to obtain vertical sections of 14 125 

μm. 126 
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Immunohistochemistry using the di-aminobenzidine method was performed on flat whole 127 

mount retinas to specifically stain p-syn, following a previously published protocol (30). A 128 

rabbit antibody against α-synuclein phosphorylated at serine 129 was used, kindly provided 129 

by Dr. Haruhiko Akiyama, at a 1:1000 dilution. Its specificity has been demonstrated in other 130 

studies (14,25,26). Samples were flat-mounted in glycerol:phosphate buffer (PB) 0.1 M (1:1) 131 

with the ganglion cell layer side up. Images were taken with a Leica DMR microscope (Leica 132 

Microsystems, Wetzlar, Germany). Drawings were made using camera lucida. 133 

Fluorescence immunohistochemistry was performed in vertical sections and in whole 134 

mount retinas. First, transverse sections were washed with PB 0.1 M and incubated overnight 135 

at room temperature in either the p-syn antibody or a rabbit polyclonal primary antibody 136 

against native α-synuclein (Santa Cruz Biotechnology, Dallas, TX, USA, Catalog No. sc-137 

7011) diluted 1:100 in 0.1 M PB plus 0.5% Triton X-100. Next, samples were washed and 138 

incubated for 1 h at room temperature with Alexa Fluor 488 donkey anti-rabbit IgG secondary 139 

antibody (Life Technologies, Eugene, OR, USA) at a 1:100 dilution. Finally, sections were 140 

washed with 0.1 M PB and covered with a coverslip. In whole mount retinas, the incubation 141 

times were longer: 3 days for the primary antibodies, which included, for some sections, 142 

double-staining with rabbit polyclonal anti-RBPMS (RNA-binding protein with multiple 143 

splicing), diluted 1:1000, and 2 days for the secondary antibody (Alexa Fluor 555 donkey 144 

anti-rabbit IgG at a 1:100 dilution). The RBPMS antibody was a generous gift from Dr. 145 

Nicholas Brecha and specifically recognizes retinal ganglion cells (31). Retinas were flat-146 

mounted in Citifluor® (Citifluor Ltd, London, UK) with the ganglion cell layer side up. 147 

Fluorescence images were taken using a TCS SP2 confocal laser-scanning microscope (Leica 148 

Microsystems). 149 

Lewy-type synucleinopathy density score in retina and brain 150 

P-syn stained whole mount retinas and brains were semi-quantitatively rated for the 151 

density of p-syn immunoreactive cellular structures by reviewers who were blinded to clinical 152 

diagnosis. In brain tissue, the load of p-syn immunoreactivity was assessed semi-153 

quantitatively in ten standard brain regions, and their summation represents the final brain p-154 

syn load score (12). In retina, the number of stained neuronal perikarya in the nasal-inferior 155 

quadrant was manually counted. The density of stained axons and dendrites was assessed 156 

using a semi-quantitative 0-3 scale, where 0 revealed no p-syn and 3 represented high 157 



densities of p-syn. The final retina score was calculated as the summation of the separate 158 

scores for perikarya as well as axons and dendrites (Table 1).  159 

Statistical analysis 160 

All studied subjects were included in correlation analyses to compare retina and brain 161 

Lewy-type synucleinopathy density score; retina Lewy-type synucleinopathy density score 162 

and brain pathology stage; and retina Lewy-type synucleinopathy density score and motor 163 

Unified Parkinson’s Disease Rating Score. The Lewy-type synucleinopathy score was based 164 

on the number and amount of p-syn immunoreactive structures in standard regions of the 165 

brain and retina. For the retinal analysis, only one eye per subject was employed, using 166 

always the nasal inferior quadrant. SigmaPlot (Systat Software, Inc, San Jose, CA, USA) and 167 

GraphPad Prism 6 (San Diego, CA, USA) were employed to analyze the data. All the 168 

correlations were performed by a two-tailed Spearman correlation test and all the individuals 169 

were considered for the study. To compare LTS scores between groups (control, ILBD and 170 

PD) the non-parametric Kruskal-Wallis ANOVA was performed and followed by the post-171 

hoc Dunn’s multiple comparison test. The significance level was set at p < 0.05.  172 

Results 173 

The age, clinical diagnosis, neuropathological diagnosis, Unified LTS stage and LTS 174 

density scores in brain and retina, as well as the motor UPDRS scores of analyzed subjects are 175 

shown in Table 1. 176 

Native α-syn is ubiquitous in the CNS and it is present in all retinal layers and cells, 177 

although predominantly in photoreceptor outer segments, amacrine cells and the inner 178 

plexiform layer. No immunostaining differences were found between PD and control subjects: 179 

α-syn was present in the same cell types and with a similar intensity in both groups (Fig. 1A-180 

B). By contrast, p-syn, a specific pathological marker of synucleinopathies, is present in the 181 

retinas of PD subjects and 3 of 4 ILBD subjects compared to controls. Figs. 1-3 show 182 

representative photomicrographs of immunohistochemical staining for p-syn in the retina of 183 

PD and ILBD subjects. P-syn deposits were found as axonal fibers and dendrites and/or 184 

neuronal perikarya (Fig. 1, Fig. 2, Fig. 3). Cells containing p-syn had different morphologies, 185 

soma sizes (ranging from 15 to 30 μm), dendritic lengths (ranging from 570 μm to 1620 μm) 186 

and receptive fields. They had their cell bodies located in the ganglion cell layer, near the 187 



inner surface of the retina, with major dendritic ramifications in retinal strata S3 and S4 of the 188 

inner plexiform layer (Fig. 1C-F).  189 

Along with normal-appearing dendrites and cell bodies, some aberrant structures were 190 

also detected in the ganglion cell layer of PD subjects. In Fig. 2 curly dendrites, abnormal and 191 

twisted structures, swollen dendrites and intracytoplasmic accumulations of p-syn can be 192 

observed. These dendritic alterations are a characteristic mark of cell pathology, degeneration 193 

or dysfunction, including synucleinopathy. Some of the immunoreactive cell bodies clearly 194 

were associated with immunoreactive axons (Fig. 1C-D). Other long fibers, putatively axons, 195 

that crossed the retina but did not visibly emerge from any cell body were also found and can 196 

be seen in Fig. 2. Some of these axons had normal morphology (Fig. 2E), but others had 197 

abnormal beading and swollen segments (Fig. 2F). All of these p-syn immuoreactive 198 

morphological alterations were always found within the ganglion cell layer and the 199 

immunoreactive perikarya were all ganglion cells, as shown by double staining with RBPMS, 200 

a ganglion cell marker (Fig. 2G-I).  201 

Retinas with positive staining for p-syn had either all or several types of these stained 202 

structures present, at relatively sparse densities from the center to periphery. The neural 203 

perikaryal staining shown in Fig. 3 is condensed into defined inclusions in the cell cytoplasm, 204 

resembling classic brain Lewy bodies. P-syn positive Lewy body-like structures in the PD 205 

retinas were more frequent and prevalent than p-syn positive complete perikarya or neurites. 206 

We also observed p-syn immunoreactive dotted neurites with typical dystrophic Lewy neurite 207 

morphology. This is the first time that p-syn Lewy-like bodies and neurites have been 208 

described in the retina of PD subjects.  209 

The p-syn positive structures described were observed in the retinas of all nine PD 210 

subjects and in three of four subjects with incidental Lewy body disease (ILBD). P-syn 211 

immunoreactivity was absent in the brain and retina of all six clinicopathologically diagnosed 212 

controls.  213 

Retina and brain LTS scores differed between the three clinicopathological groups, being 214 

statistically significant between controls and PD (p < 0.001). The Spearman’s correlation test, 215 

done considering only the affected groups (ILBD and PD), revealed a strong positive 216 

correlation between LTS density score in brain and retina (Spearman’s ρ = 0.7861; p < 0.005) 217 

(Fig. 4). Retinal LTS density score also correlated with the brain pathology stage (Spearman’s 218 

ρ = 0.5833; p < 0.05) and with the motor UPDRS score (Spearman’s ρ = 0.6661; p < 0.05), 219 



suggesting that the pathology progression is related in both tissues and that retinal analysis 220 

may give information about the brain disease stage and severity. 221 

Discussion 222 

Possibly due to the difficulty in obtaining high quality postmortem human retinas, there 223 

are very few studies about retinal changes at a cellular level in PD subjects. The aim of the 224 

study was to analyze the presence of p-syn, one of the main hallmarks of PD, in postmortem 225 

retinal tissue of control and PD donors and to compare it with clinical and brain 226 

neuropathological features.  227 

While Parkinson’s disease can be clinically diagnosed with reasonable accuracy in 228 

subjects with longstanding disease, in those with clinical symptoms of less than 5 years 229 

duration, diagnostic accuracy may be as low as 53% (32). The importance of early diagnosis, 230 

and the need to monitor the effects of therapy, makes necessary the identification of new 231 

biomarkers for PD. Due to the close relationship of the eye with the brain, their common 232 

embryonic nature and the ability to examine the eyes and retina of living subjects with 233 

imaging techniques, the retina could be a candidate biomarker tissue for neurodegenerative 234 

diseases. As a part of the CNS, the retina reflects some of the pathological alterations of 235 

brain-predominant neurodegenerative diseases like Alzheimer’s disease, Parkinson’s disease, 236 

and Huntington’s disease (33).  237 

Visual dysfunction and retinal changes in PD have been widely reported (5,6). Patients 238 

suffering from PD have functional visual alterations such as reduced electroretinogram (ERG) 239 

responses and prolonged latency in visual evoked potentials (33–36). They also show a loss in 240 

contrast sensitivity and color perception abnormalities (11,33,34,37,38). In PD animal 241 

models, loss of dopaminergic amacrine cells together with reduced ERG scotopic a- and b-242 

wave amplitudes, have been demonstrated (33,39,40). In addition, using the optical coherence 243 

tomography (OCT) imaging technique in patients in vivo, some authors have shown a 244 

thinning of the inner retinal layers: the ganglion cell layer, inner plexiform layer and inner 245 

nuclear layer (41–43), although there is some controversy about this issue and other studies 246 

show no difference in this aspect (44). All these studies seem to indicate that the retina 247 

becomes involved in PD, although it remains unknown to what extent.  248 

This study establishes the presence of p-syn within retinal ganglion cells, the major 249 

retinal projection neurons, as demonstrated by double-staining with RBPMS. This 250 



accumulation is relatively sparse, with relatively few ganglion cells affected. The exact type 251 

of ganglion cell affected is still undetermined but they seem to be different ganglion cell types 252 

based on their different morphologies. This suggests that the p-syn accumulation may not be 253 

cell-type-specific. Supporting a localization exclusively to ganglion cells, retinal amacrine 254 

cells, including dopaminergic amacrine cells, did not have any p-syn immunoreactivity. 255 

This study is the first to demonstrate p-syn immunoreactive retinal structures similar to 256 

brain Lewy bodies and neurites. Previous research using antibodies against α-syn in thin 257 

paraffin sections stated that no pathological α-syn immunoreactivity could be found in the 258 

retina and lens of PD patients (45) or in any part of the ocular globe in AD (46). Differences 259 

with our study may be due to our use of antibodies against p-syn rather than unmodified α-260 

syn, and our use of retinal whole mounts rather than thin paraffin sections. The relatively 261 

small number of p-syn positive structures may be difficult to detect in the small tissue 262 

volumes available in paraffin sections. Despite these differences between studies, further 263 

investigations of the eye in PD are desirable, as it is known that ocular structures are involved 264 

in the pathology of several neurodegenerative diseases (33,47). For example, tears (48,49), 265 

lens (50,51), cornea (52) and retina (53) have already been investigated and proposed as 266 

sources for possible PD biomarkers.  267 

Additionally, in this study it was demonstrated that the accumulation of p-syn in the 268 

retina specifically co-segregated with subjects that had LTS in the brain. This included all 9 269 

PD subjects as well as 3 of the 4 ILBD subjects. No study has previously found p-syn 270 

accumulation in ILBD and its presence, even prior to clinical signs of parkinsonism or 271 

dementia, could be extremely important as a potential biomarker for neuroprotective 272 

prevention trials. Specificity was excellent as none of the 6 controls had p-syn in the retina. 273 

Additionally, there was a strong correlation between brain and retina LTS density scores and 274 

between retinal LTS density and clinical disease. The major limitation of this study is the 275 

small number of subjects in each group. However, this is offset, to some degree, by the fact 276 

that all subjects in the study had autopsy confirmation of disease. The fact that all 9 PD 277 

subjects, and 3 of 4 ILBD subjects had retinal LTS, and that none of the six controls had 278 

retinal LTS, suggests sensitivity and specificity may be very high, even prior to clinical signs 279 

of PD become present. 280 

The positive correlation between LTS density in the retina and the brains of PD subjects 281 

and its correlation with motor scores and disease stage suggests that the progression of the 282 



disease is related in both tissues. Because of that, the retina could act as a window into the 283 

brain pathology and serve as a biomarker of brain PD pathology. In fact, researchers have 284 

been able to detect p-syn:GFP aggregates in the retina of a PD mouse model (transgenic mice 285 

expressing a fused α -syn:GFP gene under the PDGFβ promoter (PDNG78 line)) using a non-286 

invasive in vivo retinal imaging microscope (54). This technique allowed longitudinal 287 

evaluation of the same retinal areas over time.  288 

We suggest that a methodology similar to that employed by Price et al. could be used to 289 

evaluate the in vivo presence of synucleinopathy in the retinas of prodromal and symptomatic 290 

PD patients. As Price at al. have done in the mouse, the retinas of living individuals could 291 

potentially be assessed using available and routine ophthalmological non-invasive imaging 292 

techniques like OCT, eye fundus, angiography, etc. These techniques allow to visualize the 293 

whole retina and to see retinal changes. To specifically mark LTS, development of specific 294 

fluorescent dyes and its delivery to the retina by intravitreal injection could be used. 295 

Intravitreal injections have an extremely low rate of complications or adverse effects, and are 296 

widely used in clinical ophthalmology, especially for the treatment of glaucoma, macular 297 

degeneration, or other retinal diseases. The development of fluorescent ligands specific for p-298 

syn, along with intraocular injection and retinal imaging analysis (as fluorescent OCT or eye 299 

fundus), could theoretically be used to detect and monitor the progression of Parkinson’s 300 

disease in living subjects based on the retinal LTS density. The findings of this research invite 301 

the development of future applications leading to the utilization of retinal LTS as a PD 302 

biomarker.  303 
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GFP Green Fluorescent Protein 305 
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Subject Clinical 
diagnosis 

Neuropathological 
diagnosis 

Age 
(years) Unified LB Brain Stage LTS density score 

in brain 
LTS density score 

in retina nº cells axons  dendrites Motor UPDRS 
score 

1C Control Control 92 0. No Lewy Bodies 0 0 0 0 0 7 

2C Control Control 89 0. No Lewy Bodies 0 0 0 0 0 16 

3C Control Control 93 0. No Lewy Bodies 0 0 0 0 0 17 

4C Control Control 92 0. No Lewy Bodies 0 0 0 0 0 9 

5C Control Control 77 0. No Lewy Bodies 0 0 0 0 0 1 

6C Control Control 84 0. No Lewy Bodies 0 0 0 0 0 2 

1ILBD Control ILBD 90 lla. Brainstem predominant 8 0 0 0 0 0 

2ILBD Control ILBD 87 lll. Brainstem/Limbic 24 2 1 1 0 11 

3ILBD Control ILBD 97 lla. Brainstem predominant 7 1 1 0 0 16 

4ILBD Control ILBD 89 lll. Brainstem/Limbic 28 2 0 1 1 0 

1PD PD PD 88 lV. Neocortical 26 2 1 0 1 45 

2PD PD PD 73 lll. Brainstem/Limbic 18 2 1 1 0 57 

3PD PD PD 82 lV. Neocortical 34 5 2 1 2 58 

4PD PD PD 79 lV. Neocortical 36 18 12 3 3 56 

5PD PD PD 70 lll. Brainstem/Limbic 31 20 14 3 3 

 6PD PD PD 69 lll. Brainstem/Limbic 22 6 0 3 3 29 

7PD PD PD 72 lV. Neocortical 34 12 6 3 3 72 

8PD PD PD 79 lV. Neocortical 27 3 0 1 2 

 9PD PD PD 75 lV. Neocortical 28 6 3 0 3 46 

1T PD Tauopathy 77 0. No Lewy Bodies 0 0 0 0 0 29 

C: Control; ILBD: Incidental Lewy Body Disease; PD: Parkinson Disease; T: Tauopathy; LB: Lewy Bodies; LTS: Lewy-type synucleinopathy; UPDRS: Unified Parkinson's 
Disease Rating Score 

Table 1 Age, gender, clinicopathological diagnosis, pathology brain stage of the donors at the moment of dead; brain and retinal LTS density scores, motor 454 
unified Parkinson’s disease rating scale, and disease duration of the analyzed subjects.455 
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 472 

Fig. 1 Immunohistochemical staining pattern of α-syn and p-syn. A-B: α-syn staining 473 

(green) of a control (left) and a PD (right) retinal transversal cut. No differences in 474 

immunostaining pattern or intensity are found between controls and PD. C-F: Ganglion cells 475 

from PD retinas accumulating p-syn. D and F are drawings of C and E, respectively, made 476 

with camera lucida. Control retinas did not have any stained p-syn structures or cells (data not 477 

shown). Scale bars A-B= 20 μm; C-F=50 μm. 478 
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 494 

 495 

Fig. 2 Other p-syn-immunoreactive structures in PD retinas. A-B: Normal-appearing 496 

dendrites in the ganglion cell layer that contain p-syn. C-D: Dendrites accumulating p-syn that 497 

display an abnormal and aberrant morphology, typical of degenerative processes. E-F: Long 498 

axons stained with p-syn in PD retinas. G-I: Double staining of RBPMS (red) and p-syn 499 

(black) in PD retinas. Arrows show the soma of p-syn-containing ganglion cells stained with 500 

RBPMS. Scale bars A-F: 50 μm; G-I: 20 μm. 501 



 502 

Fig. 3 Lewy-like bodies and neurites in PD. Lewy body- and Lewy neurite-like structures in 503 

PD retinas stained for p-syn. A-C: Lewy body-like structures. D-F: Lewy neurite-like 504 

structures; E and F are higher magnifications of Lewy neurite-like structures. Scale bars A-D 505 

= 20 μm; E-F = 10 μm 506 



507 
Fig. 4 Correlation of retinal Lewy-type synucleinopathy score with indicators of PD 508 

brain pathology. A: Correlation plot between retinal and brain LTS density score in all 509 

subjects, Spearman correlation ρ = 0.7861; p < 0.005. B: Correlation plot between retinal LTS 510 

density score and Unified LTS brain stage in all subjects, Spearman correlation ρ = 0.5833; p 511 

< 0.05. C: Correlation plot between retinal LTS density score and motor Unified Parkinson’s 512 

Disease Rating Scale (UPDRS) score in all subjects, Spearman correlation ρ = 0.6661; p < 513 

0.05. D: LTS density score comparison between control, ILBD and PD groups in retina and 514 

brain. LTS scores differ between the three clinicopathological groups and are significantly 515 

different (P<0.001) between controls and PD subjects both in retina and brain. 516 
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