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Abstract 

In this paper, designing, preparation and characterization of a unique nanosized molten salt 

namely triphenyl(3-sulfopropyl)phosphonium trinitromethanide (TPSPPTNM) was reported. 

The successful formation of nanosized catalyst was verified by using suitable skills like 

fourier transform infrared spectroscopy (FT-IR), proton, carbon and phosphor NMR, X-ray 

diffraction patterns (XRD), field emission scanning electron microscopy (FESEM), energy 

dispersive X-ray analysis (EDX), SEM elemental mapping, high resolution transmission 

electron microscopy (HRTEM), thermogravimetry (TG) and derivative thermogravimetry 

(DTG) analysis. The catalytic application of the novel molten salt was explored towards the 

synthesis of pyrano[3,2‐c]pyrazole derivatives under mild and green reaction conditions. 

Keywords: Triphenyl(3-sulfopropyl)phosphonium trinitromethanide, Nanosized molten 

salt, Pyrano[3,2‐c]pyrazole derivatives, Multicomponent reactions.  
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1. Introduction 

Heterocyclic structural kernels have found their prominent position among the therapeutic 

active molecules. Heterocyclic compounds play a critical role in molecular form of life for 

example nucleotides, carbohydrates, hemes and amino acids [1]. Specifically, nitrogen-rich 

heterocyclic molecules containing pyrazole moieties due to the privilege applications as 

biological and pharmacological active species, occupy a distinguish location in the domain of 

medicinal chemistry [2]. Figure 1 depicted some drug structures containing pyrazole moiety 

[3-4]. Among fused nitrogen-containing heterocyclic molecules, dihydropyrano[2,3-

c]pyrazole derivatives which established significant precursors for the drug compounds, 

exhibit a broad scope of vital medicinal and pharmaceutical applications. They can be used as 

inhibitors of human Chk1 kinase [5], antimicrobial [6] anti‐inflammatory [7] and anticancer 

agents [8-10]. Therefore, because of the high biological importance of these compounds, it is 

not surprising that several protocols have been reported for their preparation [11-21]. Various 

methods are reported for the synthesis of target molecules such as sonication in H2O [12], 

DIPH in refluxing H2O [13], nanomagnetic acidid catalyst under solvent free conditions [14], 

Uncapped SnO2 QDs [16], ZrO2, EtOH-H2O [17], CTACl [18] and [DMDBSI]-2HSO4 [20].     

 

Figure 1: Some therapeutic active molecules bearing pyrazole moiety.  

Nano ionic liquids and molten salts are fast developing fields across many areas of chemistry 

as they can offer a broad range of encouraging versatilities in catalysis and as excellent 

alternative for unsafe and/or volatile organic solvents and reagents. Using nano ionic liquids 

and molten salts can trigger positive improvements regarding to efficiency, selectivity, yield, 

time and recycling capability in a typical reaction [22]. Also, currently ionic liquids and 
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molten salts have found diverse utilities in modern technologies including synthesis, 

processes, electrochemistry, materials and transporting things [23]. Duo to these versatilities 

of ionic liquids and molten salts, the synthesis, chemistry and application of them is well 

reviewed [24-31]. 

On the other hands, multicomponent reactions (MCRs) as a dominant protocol for the 

construction of highly valuable complex molecules represent a number of superior synthetic 

merits over conventional stepwise consecutive methods. The tangible benefits of MCRs 

protocol are reduce energy consumption, accelerating the reaction while increasing the 

efficiency, atom and step economy and prevention of time consuming product isolation and 

purification procedures [32-37]. MCRs can be divided into three distinguished classes 

including domino-type, sequential and consecutive ones based on reactivity concept [38]. 

In continuation of our investigation on the knowledge-based development of phosphonium 

based ionic liquids, molten salts and presentation of eco-compatible catalytic methods for the 

construction of biologically significant heterocyclic structures [39-41], we encouraged to 

study the design, synthesis and catalytic activity of a novel nanosized phosphonium based 

molten salt namely triphenyl(3-sulfopropyl)phosphonium trinitromethanide (TPSPPTNM) 

(Scheme 1) at the preparation of dihydropyrano[2,3-c]pyrazole through an eco-compatible 

manner (Scheme 2). 

 

Scheme 1: Synthetic route to TPSPPTNM. 
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Scheme 2: Preparation of dihydropyrano[2,3-c]pyrazole in the presence of TPSPPTNM. 

 

2. Experimental 

2.1. General  

All chemicals were obtained from Alfa Aesar, Sigma Aldrich and used without further 

purification. The known products have been identified by comparison of their melting points 

and spectral data with those reported in the literature. Progress of the reactions was monitored 

by TLC using silica gel SIL G/UV 254 plates. Melting points were recorded on a Büchi B-

545 apparatus in open capillary tubes. Rf values were measured using EtOAc: n-Hexane 

(3:10) as elution solvents. Fourier transformed infrared (FT-IR) spectra of the catalyst and the 

synthesized products were performed on a FTIR spectrometer JEOL spectrum 4100 typeA. 

High resolution mass spectra (GC/QTOF, Chemical Ionization (CI) mode with 20% CH4 and 

300 °C source temperature) were obtained using an Agilent 7200 Network spectrometer. 

Each sample was dissolved in DMSO and directly injected to the instrument by using 

standard Agilent glass capillary. 1H NMR (300 MHz) spectra were obtained on a Bruker 

Avance 300 spectrometers under proton coupled mode using CDCl3 as solvent. 13C NMR 

(101 MHz) spectra were acquired on a Bruker Avance 400 NMR spectrometer in the proton 

decoupled mode at 20 °C in DMSO-d6 as solvent. 31P NMR (400MHz) were run on a Bruker 

Avance DPX-250 FT-NMR spectrometer (δ in ppm).  Chemical shifts are given in δ (parts 

per million) and the coupling constants (J) in Hertz. 19F NMR (282 MHz) spectra were 

recorded on a Bruker Avance 300 NMR spectrometer, in proton coupled mode. Data for 1H 

NMR spectra is reported as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; 

t, triplet; q, quartet; m, multiplet; and br., broad), coupling constant (Hz), and integration. 

Simultaneous thermal gravimetry analysis TG-DTG, were carried out on a Mettler Toledo 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

equipment (model TGA/SDTA851and/LF/1600), capable of working between room 

temperature and 1600 °C under inert Argon atmosphere and is equipped with a 34 position 

autosampler. The experiment was carried out at 25°C and using a heating rate of 25 °C min-1 

up to 800 °C. Powder X-ray diffraction (XRD) pattern was recorded with a Bruker D8-

Advance with mirror Goebel (non-planar samples), high temperature Chamber (up to 900°C), 

generator of x-ray KRISTALLOFLEX K 760-80F (power: 3000W, voltage: 20-60KV and 

current: 5-80 mA) and with a tube of RX with copper anode Kα (λ = 0.154 nm) in the range 

10° < 2θ < 90°. Field emission scanning electron microscopy (FESEM) studies were 

performed using a Merlin VP Compact from Zeiss, equipped with an EDS microanalysis 

system Quantax 400 from Bruker. Scanning electron microscopy (SEM) studies were 

performed using a Hitachi S3000 N, equipped with an X-ray detector (Bruker XFlash 3001) 

for microanalysis (energy-dispersive X-ray, EDX) and mapping (wavelength-dispersive X-

ray, WDX). High-resolution transmission electron microscopy (HRTEM) images were 

obtained using a JEOL JEM-2010 microscope operating at an accelerating voltage of 200 kv. 

This microscope is equipped with an X-ray detector OXFORD INCA Energy TEM 100 for 

microanalysis (EDS) and acquisition of the images is made by means of a digital camera 

GATAN ORIUS SC600 mounted on-axis, integrated with the program GATAN 

DigitalMicrograph 1.80.70 for GMS 1.8.0. Sample was prepared by drop casting the 

dispersed particles in absolute ethanol onto a 300-mesh copper grid from TED PELLA, INC. 

model 01883-F, coated with a lacey formvar film enforced by a heavy coating of carbon. 

Holes are completely open. 

2.2. General method for the synthesis of TPSPPTNM 

In the  first step, a mixture of triphenylphosphine (3 mmol, 0.787 g) and 1,3-propane sultone 

(3 mmol, 0.367 g) dissolved in toluene (30 mL), stirred at reflux condition for 12 h. Then, the 

obtained white zwitterion form 1, was filtered off, washed with diethyl ether and dried in a 

vacuum [42]. In next step, to a round bottom flask containing zwitterionic form 1 (2 mmol, 

0.769 g) dissolved in acetonitrile, trinitromethane (2 mmol, 0.302 g) was added. Then the 

mixture was stirred under reflux condition for 3 h. Finally, solvent was removed under 

vacuum to provide desired catalyst in a quantitative yield (Scheme 1). 

2.3. General method for the catalytic synthesis of dihydropyrano[2,3-c]pyrazoles 

To a reaction vessel containing a mixture of aromatic aldehydes (1 mmol), malononitrile (1 

mmol, 0.066 g) and 5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (1 mmol, 0.174 g),  
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TPSPPTNM (1 mol%, 5 mg) was added. The obtained reaction mixture was stirred at 60 oC 

for adequate period of times as indexed in table 3. The progress of the reaction was 

monitored via TLC (n-hexane/EtOAc as eluant). Finally, purification process using hot 

ethanol provides desired molecules in high yields (Scheme 2).  

2.4. Spectral data 

Triphenyl(3-sulfopropyl)phosphonium trinitromethanide (TPSPPTNM) 

Melting point: >300  °C,  

FT-IR: υ (cm-1) = 3434, 3018, 2908, 1587, 1384, 1213, 1113, 1033. 

 1H NMR δ 8.71 (s, 1H, Acidic), 7.97 (d, 6H, J= 8.4 Hz, Aromatic), 7.60 (d, 6H, J= 8.4 Hz, 

Aromatic), 7.35 (t, 6H, J= 4 Hz, Aromatic), 4.04 (q, 2H, J= 7.6 Hz, Aliphatic), 1.94 (t, 2H, J= 

7.2 Hz, Aliphatic), 0.76-0.68 (m, 2H, Aliphatic). 

 13C NMR δ 152.7, 134.4, 130.1, 124.5, 123.0, 52.7, 29.5, 23.1. 

 31P NMR δ 23.5. 

6-amino-4-(4-chlorophenyl)-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-

carbonitrile (3a): 

 (340 mg, 94%), Rf: 0.10, Melting point: 193 – 195 °C. 

 FT-IR: υ (cm-1) = 2205, 1656, 1594, 1517, 1490, 1443, 1388, 1261, 1127, 1063, 1014, 803, 

750. 

1H NMR δ 7.83 – 7.76 (m, 2H), 7.55 – 7.46 (m, 2H), 7.46 – 7.38 (m, 2H), 7.39 – 7.24 (m, 

5H), 4.73 (s, 1H), 1.80 (s, 3H). 

 13C NMR δ 159.9, 145.6, 144.4, 143.1, 137.9, 130.2, 129. 8, 129.5, 129.2, 129.0, 126.7, 

120.5, 98.6, 58.2, 36.5, 13.0. 

 HRMS calcd. for C17H15ClN2O ([M – C3N2]+H)+ 299.0951, found. 299.0937. 

6-amino-4-(2-chlorophenyl)-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-

carbonitrile (3b):  

 (329 mg, 91%), Rf: 0.14, Melting point: 176 – 178 °C. 

FT-IR: υ (cm-1) = 2187, 1648, 1583, 1518, 1495, 1445, 1391, 1266, 1127, 1068, 1028, 750, 

690. 

 1H NMR δ 7.82 – 7.76 (m, 2H), 7.54 – 7.43 (m, 3H), 7.37 – 7.28 (m, 6H), 5.16 (s, 1H), 1.76 

(s, 3H). 

 13C NMR δ 160.3, 145.3, 144.7, 140.5, 137.9, 132.6, 131.6, 130.0, 129.8, 129.4, 128.3, 

126.7, 120.5, 120.1, 98.2, 57.1, 34.5, 12.8. 

HRMS calcd. for C17H15ClN2O ([M – C3N2]+H)+ 299.0951, found. 299.0926. 
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6-amino-4-(2,4-dichlorophenyl)-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-

carbonitrile (3c):  

 (364 mg, 92%), Rf: 0.12, Melting point: 196 – 197 °C. 

 FT-IR: υ (cm-1) = 3457, 3326, 2197, 1655, 1581, 1519, 1388, 1288, 1125, 1064, 1027, 835, 

814, 756, 690, 647. 

1H NMR δ 7.82 – 7.76 (m, 2H), 7.64 (d, J = 2.0, 1H), 7.54 – 7.32 (m, 7H), 5.16 (s, 1H), 1.78 

(s, 3H). 

13C NMR δ 160.4, 145.3, 144.7, 139.7, 137.9, 133.5, 133.0, 132.9, 129.8, 129.4, 128.6, 126.7, 

120.5, 120.0, 97.7, 56.6, 34.0, 12.8. 

HRMS calcd. for C17H14Cl2N2O ([M – C3N2]+H)+ 333.0561, found. 333.0516. 

6-amino-4-(4-bromophenyl)-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-

carbonitrile (3d):  

 (374 mg, 92%), Rf: 0.12, Melting point: 201 – 203 °C. 

 FT-IR: υ (cm-1) = 3675, 2986, 2898, 2356, 2325, 2202, 1659, 1514, 1391, 1254, 1063, 896. 

1H NMR δ 7.83 – 7.76 (m, 2H), 7.60 – 7.46 (m, 4H), 7.37 – 7.21 (m, 5H), 4.72 (s, 1H), 1.80 

(s, 3H). 

 13C NMR  δ 159.9, 145.6, 144.4, 143.5, 137.9, 131.9, 130.5, 129.8, 126.7, 120.6, 120.5, 

120.3, 98.6, 58.1, 36.6, 13.0. 

 HRMS calcd. for C17H15BrN2O ([M – C3N2]+H)+ 343.0446, found. 343.0396. 

6-amino-4-(4-fluorophenyl)-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-

carbonitrile (3e):  

 (325 mg, 94%), Rf: 0.13, Melting point: 186 – 187 °C. 

FT-IR: υ (cm-1) = 3457, 2202, 1664, 1596, 1517, 1444, 1339, 1227, 1125, 1068, 1024, 812, 

752, 684, 650. 

1H NMR δ 7.83 – 7.75 (m, 2H), 7.54 – 7.45 (m, 2H), 7.36 – 7.27 (m, 3H), 7.27 – 7.13 (m, 

4H), 4.73 (s, 1H), 1.79 (s, 3H). 

13C NMR δ 161.6 (d, J = 242.9), 159.8, 145.7, 144.3, 140.3 (2c), 138.0, 130.1 (d, J = 8.1), 

129.7, 126.6, 120.4, 115.7 (d, J = 21.4), 98.9, 58.6, 36.5, 13.0. 

 19F NMR δ -113.63. 

HRMS calcd. for C17H15FN2O ([M – C3N2]+H)+ 283.1247, found. 283.1247. 

6-amino-4-(2,6-difluorophenyl)-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-

carbonitrile (3f):  

 (335 mg, 92%), Rf: 0.10, Melting point: 203 – 205 °C. 
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 FT-IR: υ (cm-1) = 3477, 3330, 2193, 1655, 1589, 1518, 1459, 1393, 1270, 1122, 1030, 966, 

835, 785, 753, 687, 633. 

1H NMR δ 7.81 – 7.74 (m, 2H), 7.55 – 7.45 (m, 2H), 7.45 – 7.30 (m, 4H), 7.12 (t, J = 8.9, 

2H), 5.12 (s, 1H), 1.86 (s, 3H). 

 13C NMR δ 161.1 (dd, J = 248.5, 7.1), 160.9, 145.1, 144.7, 137.9, 130.3 (t, J = 10.7), 129.8, 

126.7, 120.3, 120.2, 118.4 (t, J = 14.7), 112.5 (d, J = 23.5), 96.9, 55.1, 26.4, 12.3. 

19F NMR δ -115.17. 

HRMS calcd. for C17H12F2N2O ([M – C3H2N2]+H)+ 299.0996, found. 299.0996. 

6-amino-4-(3,5-difluorophenyl)-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-

carbonitrile (3g):  

(342 mg, 94%), Rf: 0.12, Melting point: 185 – 186 °C. 

FT-IR: υ (cm-1) = 3662, 2988, 2884, 2194, 1664, 1451, 1393, 1252, 1061, 893. 

1H NMR  δ 7.83 – 7.76 (m, 2H), 7.55 – 7.46 (m, 2H), 7.38 – 7.29 (m, 3H), 7.20 – 7.02 (m, 

3H), 4.79 (s, 1H), 1.83 (s, 3H). 

13C NMR  δ 162.9 (dd, J = 246.8, 13.0), 160.1, 149.0 (t, J = 7.9), 145.5, 144.5, 137.9, 129.7, 

126.7, 120.6, 120.2, 111.5 (dd, J = 18.6, 6.5), 103.12 (t, J = 25.8), 97.9, 57.5, 36.8, 13.0. 

19F NMR δ -107.42. 

HRMS calcd. for C17H12F2N2O ([M – C3H2N2]+H)+ 299.0996, found. 299.0999. 

6-amino-4-(3,4-difluorophenyl)-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-

carbonitrile (3h):  

 (338 mg, 93%), Rf: 0.21, Melting point: 184 – 186 °C. 

FT-IR: υ (cm-1) = 2981, 2902, 2201, 1664, 1594, 1517, 1494, 1439, 1393, 1283, 1121, 1067, 

1025, 751, 686. 

 1H NMR δ 7.83 – 7.76 (m, 2H), 7.54 – 7.46 (m, 2H), 7.45 – 7.26 (m, 5H), 7.20 – 7.12 (m, 

1H), 4.76 (s, 1H), 1.81 (s, 3H). 

13C NMR δ 160.0, 150.6 (dd, J = 98.3, 12.5 Hz), 148.2 (dd, J = 97.2, 12.5), 145.6, 144.4, 

142.0 (t, J = 3.6), 137.9, 129.7, 126.7, 125.0 (d, J = 3.5), 120.6, 120.3, 117.9 (d, J = 17.1), 

117.3 (d, J = 17.2), 98.3, 57.9, 36.4, 13.0. 

19F NMR δ -136.18 (dd, J = 22.4, 13.3), -138.69 (dd, J = 22.4, 13.3). 

HRMS calcd. for C17H12F2N2O ([M – C3H2N2]+H)+ 299.0996, found. 299.1000. 

6-amino-3-methyl-1-phenyl-4-(4-(trifluoromethyl)phenyl)-1,4-dihydropyrano[2,3-

c]pyrazole-5-carbonitrile (3i):  

 (372 mg, 94%), Rf: 0.21, Melting point: 183 – 186 °C. 
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FT-IR: υ (cm-1) = 3332, 2199, 1664, 1591, 1517, 1388, 1327, 1135, 1124, 1067, 1017, 812, 

750, 685. 

1H NMR  δ 7.83 – 7.77 (m, 2H), 7.74 (d, J = 8.1, 2H), 7.55 – 7.46 (m, 4H), 7.37 – 7.30 (m, 

3H), 4.85 (s, 1H), 1.79 (s, 3H). 

13C NMR δ 160.1, 148.7, 145.6, 144.4, 137.9, 129.8, 129.1, 128.2 (d, J = 31.6), 126.7, 126.0 

(d, J = 3.5), 123.4, 120.5, 120.3, 98.3, 57.8, 36.9, 13.0. 

19F NMR δ -58.76. 

HRMS calcd. for C18H13F3N2O ([M – C3H2N2]+H)+ 331.1058, found. 331.1064. 

6-amino-4-(3,5-bis(trifluoromethyl)phenyl)-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-

c]pyrazole-5-carbonitrile (3j):  

 (422 mg, 91%), Rf: 0.13, Melting point: 201 – 203 °C. 

FT-IR: υ (cm-1) = 3640, 3303, 2385, 2187, 1639, 1590, 1519, 1368, 1278, 1171, 1115, 1024, 

909, 752, 687. 

1H NMR δ 8.06 (s, 3H), 7.85 – 7.78 (m, 2H), 7.54 – 7.46 (m, 2H), 7.43 (s, 2H), 7.37 – 7.30 

(m, 1H), 5.09 (s, 1H), 1.78 (s, 3H). 

13C NMR δ 160.4, 147.5, 145.4, 144.6, 137.9, 131.04 (q, J = 32.8), 129.6, 127.9 (d, J = 

262.0), 127.8, 123.7 (d, J = 272.9), 121.4, 120.5, 120.1, 119.6, 97.5, 57.0, 36.7, 12.9. 

19F NMR δ -59.40. 

HRMS calcd. for C19H12F6N2O ([M – C3H2N2]+H)+ 399.0932, found. 399.0948. 

6-amino-4-(4-cyanophenyl)-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-

carbonitrile (3k):  

 (321 mg, 91%), Rf: 0.07, Melting point: 214 – 217 °C. 

FT-IR: υ (cm-1) = 3733, 3398, 3312, 2238, 2188, 1648, 1590, 1513, 1448, 1384, 1263, 1123, 

1069, 1028, 815, 757, 692. 

1H NMR δ 7.88 – 7.75 (m, 4H), 7.54 – 7.46 (m, 4H), 7.41 – 7.29 (m, 3H), 4.85 (s, 1H), 1.79 

(s, 3H). 

13C NMR δ 160.1, 149.6, 145.6, 144.5, 137.9, 133.1, 129.8, 129.4, 126.7, 120.6, 120.2, 119.2, 

110.4, 98.1, 57.5, 37.1, 13.0. 

HRMS calcd. for C18H15N3O ([M – C3N2]+H)+ 290.1293, found. 290.1296. 

6-amino-3-methyl-4-(3-nitrophenyl)-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-

carbonitrile (3l):  

 (350 mg, 94%), Rf: 0.18, Melting point: 198 – 200 °C. 

FT-IR: υ (cm-1) = 3690, 3645, 2356, 2322, 2192, 1648, 1590, 1513, 1390, 1350, 1259, 1068, 

899, 754, 690. 
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1H NMR δ 8.20 – 8.13 (m, 2H), 7.84 – 7.76 (m, 3H), 7.72 – 7.64 (m, 1H), 7.55 – 7.47 (m, 

2H), 7.42 – 7.30 (m, 3H), 4.98 (s, 1H), 1.81 (s, 3H). 

13C NMR δ 160.2, 148.4, 146.4, 145.6, 144.5, 137.9, 135.2, 130.7, 129.8, 126.7, 122.7 (2c), 

120.5, 120.2, 98.1, 57.6, 36.7, 13.1. 

HRMS calcd. for C17H13N3O3 ([M – C3H2N2]+H)+ 308.1035, found. 308.1040. 

6-amino-3-methyl-4-(4-nitrophenyl)-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-

carbonitrile (3m):  

 (347 mg, 93%), Rf: 0.14, Melting point: 205 – 207 °C. 

FT-IR: υ (cm-1) = 3431, 3334, 3199, 2211, 2186, 1664, 1593, 1510, 1446, 1389, 1351, 1264, 

1124, 1063, 1029, 820, 752, 688. 

1H NMR δ 8.28 – 8.19 (m, 2H), 7.83 – 7.76 (m, 2H), 7.63 – 7.55 (m, 2H), 7.55 – 7.46 (m, 

2H), 7.44 – 7.29 (m, 3H), 4.93 (s, 1H), 1.80 (s, 3H). 

13C NMR δ 160.2, 151.6, 147.1, 145.6, 144.5, 137.9, 129.8, 129.6, 126.8, 124.3, 120.5, 120.2, 

98.0, 57.4, 36.9, 13.0. 

 HRMS calcd. for C17H13N3O3 ([M – C3H2N2]+H)+ 308.1035, found. 308.1037. 

6-amino-3-methyl-1,4-diphenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (3n):  

 (295 mg, 90%), Rf: 0.32, Melting point: 195 – 197 °C. 

FT-IR: υ (cm-1) = 3320, 2197, 1654, 1588, 1512, 1449, 1385, 1125, 1024, 824, 753, 692. 

1H NMR  δ 7.84 – 7.76 (m, 2H), 7.55 – 7.46 (m, 2H), 7.41 – 7.32 (m, 3H), 7.31 – 7.18 (m, 

5H), 4.69 (s, 1H), 1.78 (s, 3H). 

13C NMR δ 159.9, 145.7, 144.3, 144.1, 138.0, 129.8, 129.0, 128.2, 127.5, 126.6, 120.4, 99.1, 

58.6, 37.2, 13.0. 

HRMS calcd. for C17H16N2O ([M – C3N2]+H)+ 265.1341, found. 265.1340. 

6-amino-3-methyl-1-phenyl-4-(p-tolyl)-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile 

(3o):  

 (318 mg, 93%), Rf: 0.12, Melting point: 186 – 188 °C. 

FT-IR: υ (cm-1) = 3468, 3343, 2183, 1644, 1584, 1512, 1441, 1386, 1260, 1180, 1126, 1068, 

1024, 794, 757. 

1H NMR δ 7.82 – 7.76 (m, 2H), 7.53 – 7.45 (m, 2H), 7.36 – 7.28 (m, 1H), 7.25 – 7.13 (m, 

6H), 4.64 (s, 1H), 2.29 (s, 3H), 1.79 (s, 3H). 

13C NMR δ 159.8, 145.7, 144.3, 141.1, 138.0, 136.5, 129.8, 129.5 (2c), 128.1, 126.6, 120.4, 

99.2, 58.9, 36.8, 21.1, 13.0. 

HRMS calcd. for C18H16N2O ([M – C3H2N2]+H)+ 277.1341, found. 277.1346. 
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6-amino-4-(4-methoxyphenyl)-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-

carbonitrile (3p):  

 (333 mg, 93%), Rf: 0.12, Melting point: 197 – 198 °C. 

FT-IR: υ (cm-1) = 3388, 3322, 3208, 2190, 1656, 1592, 1509, 1490, 1455, 1390, 1250, 1172, 

1128, 1026, 812, 757, 692. 

1H NMR δ 7.82 – 7.74 (m, 2H), 7.53 – 7.45 (m, 2H), 7.36 – 7.28 (m, 1H), 7.22 – 7.12 (m, 

4H), 6.94 – 6.86 (m, 2H), 4.63 (s, 1H), 3.75 (s, 3H), 1.79 (s, 3H). 

13C NMR  δ 159.7, 158.6, 145.8, 144.2, 138.0, 136.1, 129.8, 129.3, 126.6, 120.5, 120.4, 

114.3, 99.3, 59.1, 55.5, 36.4, 13.0. 

HRMS calcd. for C18H16N2O2 ([M – C3H2N2]+H)+ 293.1290, found. 293.1292. 

6-amino-4-(3-ethoxy-4-hydroxyphenyl)-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-

c]pyrazole-5-carbonitrile (3q):  

(341 mg, 88%), Rf: 0.03, Melting point: 183 – 185 °C. 

FT-IR: υ (cm-1) = 3418, 3229, 3203, 3015, 2936, 2194, 1655, 1593, 1509, 1441, 1392, 1266, 

1236, 1121, 1029, 808, 754. 

1H NMR δ 8.84 (s, 1H), 7.82 – 7.75 (m, 2H), 7.54 – 7.45 (m, 2H), 7.37 – 7.26 (m, 1H), 7.14 

(s, 2H), 6.80 (d, J = 2.0, 1H), 6.75 (d, J = 8.1, 1H), 6.62 (dd, J = 8.1, 2.0, 1H), 4.56 (s, 1H), 

3.98 (q, J = 7.0, 2H), 1.82 (s, 3H), 1.31 (t, J = 7.0, 3H). 

13C NMR δ 159.7, 146.9, 146.3, 145.9, 144.2, 138.1, 135.0, 129.7, 126.5, 120.7, 120.6, 120.3, 

116.1, 113.9, 99.3, 64.4, 59.2, 36.8, 15.2, 13.1. 

HRMS calcd. for C19H20N2O3 ([M – C3N2]+H)+ 325.1552, found. 325.1546. 

3. Results and discussion 

3.1. Characterization of the catalyst 

Successful synthesis of novel nanosized phosphonium based molten salt confirmed by varied 

analysis such as FT-IR, proton, carbon and phosphor NMR, XRD, SEM, HRTEM, TG and 

DTG as discussed in more detail in follow. 

In FT-IR spectrum of nanosized phosphonium based molten salt catalyst the absorption bond 

at 3434 cm-1 is connected to stretching vibration of O–H in the SO3H group. The two peaks at 

about 1530 cm-1 and 1384 cm-1 are linked to –NO2 stretching on trinitromethanide counter 

ion. Also, the peak at 1213 cm-1 is related to S=O bond vibration mode (Figure 2).  
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Figure 2: FT-IR spectrum of nanosized molten salt catalyst 

 

As it can be seen in Figure 3, proton NMR spectrum confirmed the existence of all 

anticipated protons within the structure of TPSPPTNM as catalyst. In aliphatic region the 

methylenic protons resonate as three separate peaks which confirmed the existence of propyl 

chain. Also, all fifteen protons of phenyl rings can be easily distinguished in aromatic region. 

Acidic proton of the described phosphonium based molten salt verified by observing of the 

corresponding broad singlet at 8.71 ppm. In another study, the successful formation of the 

catalyst was approved by 13C and 31P NMR spectra as depicted in Figure 4a-b. In 13C NMR 

spectrum, three separate peaks at aliphatic region appear at 23.1, 29.5 and 52.7 are related to 

propyl moiety. Aromatic carbons resonate at 123.0, 124.5, 130.1 and 134.4 ppm as four 

separate peaks. Furthermore, the resonance peak at 152.7 ppm is related to the 

trinitromethanide carbon atom (Figure 4a). Also, the phosphor atom within the structure 

confirmed by a peak at 23.5 ppm in 31P NMR spectrum (Figure 4b). 
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Figure 3: 1H NMR spectrum of TPSPPTNM 
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Figure 4a-b: 13C and 31P NMR spectrum of TPSPPTNM 

Also, The XRD pattern of the TPSPPTNM as molten salt catalyst was inspected (Figure 5). 

From the obtained XRD profile, it can be concluded that the prepared catalyst has a 

crystalline nature with diffraction lines at 2θ = 12.90o, 15.70o and 24.60o. Using Scherrer 

equation "D = Kλ/(β cosθ)", where λ is the X-ray wavelength of Cu kα (1.54Å), K is the 

Scherrer constant with a value of 0.9, β is the peak width at half maximum (FWHM) of the 

peak in radians, and θ is the Bragg diffraction angle, XRD pattern data were extracted and 

inserted in Table 1. Based on calculated XRD data as depicted in Table 1, it is verified that 

the catalyst has a nanosized structure. 

Figure 4b 

Figure 4a 
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Figure 5: XRD pattern of novel phosphonium based molten salt catalyst. 

Table 1: XRD data of the novel phosphonium based molten salt. 

Entry 2θ Peak width [FWHM] (degree) Size [nm] Interplanar distance [nm] 

1 

2 

3 

12.90 

15.70 

24.60 

0.76 

0.71 

0.56 

10.52 

11.30 

14.52 

0.685443 

0.563772 

0.361451 

 

The recorded field emission scanning electron microscopy (FESEM), and images of novel 

nanosized molten salt catalyst illustrated in Figure 6. According to the provided FESEM 

images the novel catalyst consists of nanosized particles in the domain of 8.93-18.10 nm. 
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Figure 6: Field emission scanning electron microscopy (FESEM) images of novel nanosized molten salt catalyst 

 

Furthermore, the EDX data of catalyst confirms the presence of the anticipated elements in 

the structure of the catalyst: carbon, nitrogen, oxygen, phosphorus and sulfur (Figure 7). On 

the other hand, the atomic (at%) or weight percentage (wt%) of sulfur and phosphor were 

same in the catalyst which has confirmed the presence of triphenyl phosphine and SO3H in a 

same molar ratio.  

 

Figure 7. EDX spectrum of cat 2. 

In order to approve the elemental composition of the catalyst, SEM images and WDX 

elemental maps were done and shown in Figure 8. Presence of C, N, O, S and P elements in 

the catalyst are shown via WDX analysis. 

El AN  Series  unn. C norm. C Atom. C  Error 

               [wt.%]  [wt.%]  [at.%] [wt.%] 

-------------------------------------------- 

C  6  K-series  72.92   72.92   79.85    8.6 

N  7  K-series   5.55    5.55    5.22    1.3 

O  8  K-series  14.69   14.69   12.07    2.1 

P  15 K-series   3.58    3.58    1.52    0.2 

S  16 K-series   3.26    3.26    1.34    0.1 

-------------------------------------------- 

        Total: 100.00  100.00  100.00 
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Figure 8: SEM image (a) and WDX elemental mapping images of cat 2 (b) sulfur (c), phosphorus (d), oxygen 

(e) nitrogen (f), and carbon (g). 

 

 
 

 

 

(a) 

(b) (c) (d) 

(e) (f) (g) 
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Figure 9: a-c) High resolution transmission electron microscopy (HRTEM) images of novel nanosized 

molten salt catalyst, d) electron diffraction (SAED) patterns. 

To investigate the morphology, topography and resolve the interior of the structures of 

the described catalyst, high-resolution transmission electron microscopy (HRTEM) was 

carried out as shown in figure 9. As it is clear in the figures 9 a-c, clearly aproved the 

spherical uniform of the catalyst particles and confirmed that the catalyst has nanosized 

particles. This observation is in good agreement with obtained data from XRD and SEM 

images. Morover, Figure 9d was shown a polycrystaline system for desired catalyst. 

In a separate study, the thermal stability of the synthesized molten salt catalyst in elevated 

temperatures was explored as portrayed in Figure 10. Conducted thermogravimetry (TG) and 

derivative thermogravimetry (DTG) analysis plot indicated a main weight loss at around 375 
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oC which present high thermal stability for the TPSPPTNM at elevated operational 

temperatures. 

 

Figure 10: TG and DTG plot of novel nanosized phosphonium based molten salt catalyst 

3.2. Catalytic performance of the novel nanosized molten salt 

From the interpretation of applied techniques, it can be concluded that the catalyst has a dual 

activation rule due to the presence of both acidic and basic cites within its structure. It has 

also a nanoscale structure with high thermal stability. After insurance the successful synthesis 

of the novel nanosized molten salt with varied important techniques as discussed in section 

3.1, we decided to test its catalytic activity in a multicomponent reaction. Based on the 

structure of the prepared catalyst which bears both acidic and basic sites, it is predicted that it 

can act as a powerful multi rule catalyst for multicomponent reactions. Therefore, we 

examined its catalytic activity upon a four component condensation reaction between 

arylaldehydes, malononitrile, 5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one and 

ammonium acetate as nitrogen source for the synthesis of pyridine derivatives (4a-u) 

(Scheme 3). These structures are very important to us for developing the anomeric based 

oxidation. This significance comes from there that the pyridines 4a-n could be a puzzle piece 

of our new introduced concept entitled "anomeric based oxidation (ABO)" mechanism [43]. 

But, scrutinizing of obtained spectral data disclose that the reaction proceed towards the 

formation of dihydropyrano[2,3-c]pyrazoles (structure 3a-u). As in the case of pyridine 

systems, dihydropyrano[2,3-c]pyrazole derivatives are very influential scaffolds. Therefore, 
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we persuade to complete the exploration and report an efficient protocol for their synthesis 

via a three component approach.  

 

Scheme 3: Catalytic behavior of the novel phosphonium based molten salt in a multicomponent reaction. 

In the first phase of our investigation, to get an insight into the optimal operational reaction 

conditions, we consider the 4-chlorobenzaldehyde, malononitrile and 5-methyl-2-phenyl-2,4-

dihydro-3H-pyrazol-3-one as model substrates and performed the reaction using different 

conditions to yield the corresponding desired molecule 1a as depicted in scheme 4. In order to 

establish the most congruous reaction conditions, different crucial experimental variables 

including solvents, temperatures and load of nano molten salt catalyst were screened. Table 2 

exhibits the obtained experimental data. From the achieved data it can be concluded that, the 

optimal reaction conditions is where the reaction performed under solvent free conditions, at 

60 oC and in the presence of 1 mol% of TPSPPTNM as catalyst. Increasing the amount of 

catalyst, elevating the reaction temperature or carrying out the model reaction in different 

solvents shows no further improvement in the obtained data.  

 

Scheme 4: Synthesis of molecule 3a as model reaction. 
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Table 2: Optimizing of the reaction conditions for the                                                                                                                                                                                                                                                                                                                    

synthesis of dihydropyrano[2,3-c]pyrazole derivativesa  

Entry Solvent Temperature (˚C) Load of catalyst (mol%) Time (min.) bYield (%) 

1 - r.t. 1 50 70 

2 - 60 1 12 94 

3 - 80 1 13 93 

4 - 60 - 60 55 

5 - 60 0.5 18 87 

d6 - 60 1.5 11 94 

9 H₂O 60 1 10 60 

10 C₂H₅OH 60 1 16 88 

11 CH₃CN 60 1 70 40 

12 EtOAc 60 1 60 35 

14 n-Hexane 60 1 40 56 

aReaction conditions: 4-chlorobenzaldehyde (1 mmol, 0.141 g), malonontrile (1 mmol, 0.066 g) 5-methyl-2-

phenyl-2,4-dihydro-3H-pyrazol-3-one (1 mmol, 0.174 g), bIsolated yields,  

In next step, because of the satisfactory results from the synthetic point of view from previous 

stage, we decided to study the scope, limitations and productivity of the presented three 

component process for the synthesis of target molecules by screening of different aromatic 

aldehyde substrates as presented in Table 3. The resulting data illustrated that under the 

optimal reaction conditions, the applied substrates underwent the presented three component 

process gently and generate the corresponding desired molecules in short reaction periods 

with high to excellent yields. 

Table 3: Catalytic synthesis of dihydropyrano[2,3-c]pyrazole derivatives in the presence of nano molten salt 2a 

Entry Time (min) Structure Product bYield (%) C): found (Lit.)oM.p. ( 

1 12 

 

3a 94 ]a[15182)-195 (179-193 
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2 17 

 

3b 91 
]a[15167)-(164178 -176 

 

3 16 

 

3c 92 
]a[15194)-(189 719-619 

 

4 14 

 

3d 92 
[13]188)-(187 203-201 

 

5 13 

 

3e 94 ]a[15165)-(163 187-186 

6 14 

 

3f 92 (New)  520-320 

7 15 

 

3g 94 (New) 681-581 

8 14 

 

3h 93 184-186 (New) 

9 13 

 

3i 94 [15d]165)-(163 186-831 
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10 16 

 

3j 91 (New) 203-201 

11 17 

 

3k 91 ]a[15214)-(212 217-214 

12 13 

 

3l 94 ]a[15(207) 200-198 

13 14 

 

3m 93 15b][198)-(197720-520 

14 15 

 

3n 90 ]a[15(178) 197-195 

15 15 

 

3o 93 ]a[15178)-(177 188-186 

16 15 

 

3p 93 ]a[15206)-(204 198-197 

17 20 

 

3q 88 ]a[15(178) 185-183 

aReaction conditions: aromatic aldehyde (1 mmol), malononotrile (1 mmol, 0.066 g) 5-methyl-2-phenyl-2,4-
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dihydro-3H-pyrazol-3-one (1 mmol, 0.174 g), bIsolated yields 

As a model, a reasonable mechanism for the synthesis of target molecule 3n was depicted in 

Scheme 5. The mechanistic route triggers by a nucleophilic attack from malononitrile to the 

activated benzaldehyde to produce the corresponding Knoevenagel adduct 1 through 

dehydration. At the same time, tautomerization in the presence of the catalyst generates the 

enol form 2. Subsequently, the nucleophilic attack of enol form 2 to Knoevenagel adduct 1, 

yields intermediate 3. In the next stage, an intramolecular nucleophilic attack from oxygen of 

carbonyl functional group to nitrile functional group in the presence of nano molten salt 

catalyst generates intermediate 4. Finally, intermediate 4 is converted to the desired molecule 

3n via a tautomerization process in the presence of catalyst.  

 

Scheme 5: Plausible catalytic mechanism for the synthesis of favorable molecule 3n. 

In the another investigation, in order to show the effectiveness and catalytic efficiency of the 

presented method towards the synthesis of dihydropyrano[2,3-c]pyrazoles as target 

molecules, we compared our achieved operational data with some of other those previously 

reported protocols. The data embedded in Table 4. The collected data revealed that our new 
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protocol has a high competitive power with other reported methods in the literatures and 

represent encouraging results towards the synthesis of target molecules. 

Table 4: Comparison of the catalytic activity of described novel molten salt catalyst with other those reported 

catalytic systems for synthesis of dihydropyrano[2,3-c]pyrazoles 

Entry Reaction conditions Time 
Yield 

(%) 
Reference 

1 Ultasonication, H2O, Ni NPs (10 mol%) 5-14 min. 85-90 12 

2 DIPH (20 mol %), H2O, Reflux 10-20 min. 80-93 13 

3 Fe3-xTixO4@SO3H MNPs (0.05 g), Solvent free, 105 oC 60-90 min. 87-96 14 

4 Uncapped SnO2 QDs, H2O, r.t.   1.5-3 h 88-98 16 

5 ZrO2 (10 mol%), EtOH-H2O (6:1), r.t.   2-10 min. 90-98 17 

6 CTACl (20 mol%), H2O, 90 oC 4 h 72-90 18 

7 [DMDBSI]-2HSO4 (10 mol%), H2O, 60 oC 10-15 min. 74-90 20 

8 MorT (10 mol%), EtOH-H2O (9:1), Reflux,  10-12 h 57-89 21 

9 TPSPPTNM (1 mol%), Solvent free, 60 oC 12-20 min. 88-94 This work 

4. Conclusion 

In the present study, we unveiled the synthesis of a novel nanosized molten salt and its 

application for the preparation of dihydropyrano[2,3-c]pyrazole derivatives via a three 

component reaction. The catalyst synthesized through a two steps process. Sophisticated 

physicochemical tools like FT-IR, 1H, 13C and 31P NMR, XRD, FESEM, HRTEM, EDX, 

SEM, elemental mapping, TG and DTG have been applied for the structural approving of the 

above said nanostructured catalyst. Mild reaction conditions, high catalytic activity, easy 

work-up, short reaction time and excellent yields are the major advantages of the represented 

investigation. 

5. Acknowledgements 

We thank Bu-Ali Sina University, Iran National Science Foundation (INSF) (Grant Number: 

940124), National Elites Foundation, University of Alicante (VIGROB-173, UAUSTI16-03), 

and the Spanish Ministerio de Economía y Competitividad (CTQ2015-66624-P) for financial 

support to our research groups. 

6. References 

[1] T.Y. Zhang, Adv. Heterocycl. Chem. 121 (2017) 1. 

[2] A. Jamwal, A. Javed, V. Bhardwaj, J. Pharm. BioSci. 1 (2013) 114. 

[3] F. Abrigach, R. Touzani, Med. Chem. (Los Angeles) 6 (2016) 292. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

[4] A. Ansari, A. Ali, M. Asif, Shamsuzzaman, New J.Chem. 41 (2017) 16. 

[5] N. Foloppe, L.M. Fisher, R. Howes, A. Potter, A.G. Robertson, A.E. Surgenor, Bioorg. 

Med. Chem. 14 (2006) 4792. 

[6] M.E.A. Zaki, H.A. Soliman, O.A. Hiekal, A.E. Rashad, Z. Naturforsch 61 (2006) 1. 

[7] Z.H. Ismail, G.M. Aly, M.S. El-Degwi, H.I. Heiba, M.M. Ghorab, Egypt. J. Biot. 13 

(2003) 73.  

[8] S.C. Kuo, L.J. Huang, H. Nakamura, J. Med. Chem. 27 (1984) 539. 

[9] F.M. Abdelrazek, P. Metz, O. Kataeva, A. Jaeger, S.F. El‐Mahrouky, Arch. Pharm. 340 

(2007) 543. 

[10] N.R. Mohamed, N.Y. Khaireldin, A.F. Fahmy, A.A. El-Sayed, Der Pharma Chem., 2 

(2010) 400. 

[11] M.A. Zolfigol, M. Tavasoli, A.R. Moosavi-Zare, P. Moosavi, H.G. Kruger, M. Shiri, V. 

Khakyzadeh, RSC Adv., 3 (2013) 25681 and references cited therein. 

[12] M. Saha, B. Das, A. K. Pal, C. R. Chimie. 16 (2013) 1079. 

[13] B. Maleki, N. Nasiri, R. Tayebee, A. Khojastehnezhad, H.A. Akhlaghi,  RSC Adv. 6 

(2016) 79128.  

[14] D. Azarifar, Y. Abbasi, Synth. Commun. 46 (2016) 745. 

[15] (a) M.A. Zolfigol, M. Navazeni, M. Yarie, R. Ayazi‐Nasrabadi, Appl. Organometal. 

Chem. 31 (2017) e3633 and references cited therein; (b) M.A. Zolfigol, R. Ayazi‐Nasrabadi, 

S. Baghery, V. Khakyzadeh, S. Azizian, J. Mol. Catal. A: Chem. 418 (2016) 54.;(c) M.A. 

Zolfigol, F. Afsharnadery, S. Baghery,  S. Salehzadeh, F. Maleki,   

RSC Adv. 5 (2015) 75555.; (d) H.-X. Wang, L.-L. Wu, Y.-M. Wang, Z.-H. Zhou, RSC Adv. 5 

(2015) 42836. 

[16] S. Paul, K. Pradhan, S. Ghosh, S.K. De, A. R. Das, Tetrahedron 70 (2014) 6088. 

[17] A. Saha, S. Payra, S. Banerjee, Green Chem. 17 (2015) 2859. 

[18] M. Wu, Q. Feng, D.Wan, J. Ma, 43 (2013) 1721. 

[19] I.A. Khodja, A. Fisli, O. Lebhour, R. Boulcina, B. Boumoud, A. Debache,  Lett. Org. 

Chem.13 (2016) 85. 

[20] M. Zakeri,  M.M. Nasef, T. Kargaran, A. Ahmad,  E. Abouzari-Lotf,  Res. Chem. 

Intermed. 43 (2017) 717. 

[21] C.F. Zhou, J. J. Li,  W. K. Su,   Chin. Chem. Lett., 27 (2016) 1686. 

[22] G. Chatel, D.R. MacFarlaneb, Chem. Soc. Rev. 43 (2014) 8132.  

[23] K. Dong, X. Liu, H. Dong, X. Zhang, S. Zhang, Chem. Rev., 117 (2017) 6636. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

[24] R. Hayes, G. G. Warr, R. Atkin, Chem. Rev. 115 (2015) 6357. 

[25] A. Eftekhari, T. Saito, Eur. Polym. J. 90 (2017) 245. 

[26] Z. He, P. Alexandridis, Adv. Colloid Interface Sci. 244 (2017) 54. 

[27] W. Qian, J. Texter, Feng Yan,  Chem. Soc. Rev., 46 (2017) 1124.  

[28] M. Salanne, Top Curr. Chem. (Z) 375 (2017) 63. 

[29] B. Wang, L. Qin, T.Mu, Z. Xue, G. Gao, Chem. Rev. 117 (2017) 7113. 

[30] S. Wegner, C. Janiak, Top. Curr. Chem. (Z) 375 (2017) 65. 

[31] S. Zhang, J. Zhang, Y. Zhang, Y. Deng, Chem. Rev. 117 (2017) 6755. 

[32] G. Mohammadi Ziarani, F. Alealia, N. Lashgari, RSC Adv. 6 (2016) 50895. 

[33] T. Ahmadi, G. Mohammadi Ziarani, P. Gholamzadeh, H. Mollabagher, Tetrahedron: 

Asymmetry 28 (2017) 708. 

[34] R.C. Cioc, E. Ruijter, R.V.A. Orru, Green Chem., 16 (2014) 2958. 

[35] R. Kakuchi, Angew. Chem., Int. Ed., 53 (2014) 46. 

[36] C. Shen, X.F. Wu, Chem. – Eur. J. 23 (2017) 2973. 

[37] S. Garbarino, D. Ravelli, S. Protti, A. Basso, Angew. Chem., Int. Ed., 55 (2016) 15476. 

[38] L. Levi, Thomas J.J. Muller, Chem. Soc. Rev., 45 (2016) 2825.  

[39] (a) A. Khazaei, M.A. Zolfigol, T. Faal-Rastegar, J. Chem. Res., 37 (2013) 617.; (b) E. 

Kianpour, S. Azizian, M. Yarie, M.A. Zolfigol, M. Bayat, Chem. Eng. J. 295 (2016) 500.; (c) 

F. Rafiee Moghadam, S. Azizian, M. Yarie, E. Kianpour, M. Bayat, M.A. Zolfigol, Chem. 

Eng. J. 309 (2017) 480.; (d) F. Rafiee Moghadam, S. Azizian,  M. Bayat, M. Yarie, E. 

Kianpour,  M.A. Zolfigol, Fuel  208 (2017) 214.; (e) M.A. Zolfigol, M. Yarie, M. Saeidi-Rad, 

J. Mol. Liq., 249 (2018) 144.   

[40] M.A. Zolfigol, M. Yarie and S. Baghery, J. Mol. Liq., 2016, 222, 923.; (b) M. A. 

Zolfigol, M. Yarie and S. Baghery, Synlett, 2016, 1418.; (c) M. Yarie, M. A. Zolfigol, S. 

Baghery, D. A. Alonso, A. Khoshnood, M. Kalhor, Y. Bayat, A. Asgarid, New J. Chem., 

2017, 41, 4431; (d) M.A. Zolfigol, M. Yarie, S. Baghery, A. Khoshnood, D. A. Alonso, Res. 

Chem. Intermed. 43 (2017) 3291.  

[41] (a) M.A. Zolfigol, M. Yarie, RSC Adv. 5 (2015) 103617.; (b) M. Yarie, M.A. Zolfigol, 

Y. Bayat, A. Asgari, D.A. Alonso, A. Khoshnood, RSC Adv. 6 (2016) 82842.; (c) M.A. 

Zolfigol, M. Navazeni, M. Yarie, R. Ayazi‐Nasrabadi, RSC Adv. 6 (2016) 92862.; (d) M. 

Aghayee, M.A. Zolfigol, H. Keypour, M. Yarie, L. Mohammadi, Appl. Organometal. Chem. 

30 (2016) 612.; (e) M.A. Zolfigol, M. Yarie, Appl. Organometal. Chem. 31 (2017) e3598. 

[42] S.M. Vahdat, M.A. Zolfigol, S. Baghery, Appl. Organometal. Chem. 30 (2016) 311.  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

[43] (a) M. Yarie, Iran. J. Catal. 7 (2017) 85, and reference sited therein.; (b) M. Yarie, Iran. 

J. Catal. 8 (2018) 151.; (c) M.A. Zolfigol, F. Karimi, M. Yarie, M, Torabi, Appl. 

Organometal. Chem. 32 (2018) e4063.; (d) M.A. Zolfigol, M. Kiafar, M. Yarie, A. (A) 

Taherpour, T, Fellowes, A. Nicole Hancok, A. Yari, J. Mol. Struct. 2017, 1137, 674.; (e) S, 

Baghery, M.A. Zolfigol, F. Maleki, New J. Chem. 41 (2017) 9276.; (f) M. A. Zolfigol, 

M. Safaiee, B. Ebrahimghasr, S. Baghery, S. Alaie, M. Kiafar, A. (A) Taherpour, Y. Bayat, 

A. Asgari, J. Iran. Chem. Soc. 14 (2017) 1839.  

 

 

 

 

 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Graphical abstract 

 

 

Triphenyl(3-sulfopropyl)phosphonium trinitromethanide, efficiently promoted the 

preparation of dihydropyrano[2,3-c]pyrazole derivatives under mild reaction conditions with 

high to excellent yields. 
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Highlights 

1: Triphenyl(3-sulfopropyl)phosphonium trinitromethanide as a novel nanosized molten salt 

was designed and synthesized. 

2: The structure of catalyst was characterized using FT-IR, 1H, 13C and 31P NMR, XRD, 

FESEM, HRTEM, TG and DTG analysis. 

3: The catalyst successfully applied for the synthesis of dihydropyrano[2,3-c]pyrazole 

derivatives. 

4: Products were obtained under mild reaction conditions with easy work-up, short reaction 

time and excellent yields. 
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