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Highlights: 

 -Biodegradable potato starch/PVA/rosin blends were developed. 

 -Addition of rosin to the blends improves mechanical properties substantially.  

 -Mechanical properties are comparable to those offered by polymers such as LDPE. 

 -Starch/PVA/rosin blends could be interesting materials for packaging applications. 

 

 

Abstract 

Biodegradable potato starch/PVA samples containing different concentrations of rosin 

were prepared by melt-mixing in order to study the enhancement of the properties of 

native starch films. Glycerol and polyvinyl alcohol (PVA) are commonly used as 

plasticizers of starch. Their relatively low molecular weight (compared with starch) 

contributes to a good processability. Rosin is a renewable product whose incorporation 

in the starch/PVA matrix induces processing aid and reinforcing effects. Its relatively 

high molecular weight might prevent its migration to the surface of the final product. 

Water content, solubility in water, mechanical properties, microstructure and dynamic 

mechanical analysis of the samples were studied. The addition of 8% rosin to starch/PVA 

blends led to tensile strength values higher than 10 MPa and elongation at break values 

close to 2000%, values comparable to those offered by conventional polymers used in 
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food packaging, for example LDPE. Furthermore, starch compounds have low cost and 

high biodegradability. 

Keywords: Potato starch; polyvinyl alcohol; rosin; melt mixing; polymer blend. 

1. Introduction 

The extensive use of petroleum-based synthetic polymers for the packaging industry in 

recent decades has brought with it severe pollution problems. Increased environmental 

concerns and the fact that petroleum reservoirs are being dramatically reduced have led 

to a search for new alternatives to the non-biodegradable and non-renewable polymers 

used at present (Aydin & Ilberg, 2016; Cano et al., 2015). Bioplastics obtained from 

biopolymers such as starch, cellulose, lignin, chitin, etc. are renewable, environmentally-

friendly and biodegradable materials, whose use contributes to the reduction of waste and 

to a more sustainable ecosystem (Tian et al., 2017).  

Starch is a polymeric carbohydrate composed of two major biomacromolecules: amylose 

(mainly linear) and amylopectin (hyper-branched) (Xie et al., 2014). It is used by nature 

as a way to store energy in cereals, tubers and legumes. Starch is considered as one of the 

most promising options for replacing petrochemical polymers mainly due to its wide 

availability and low cost (Souza et al., 2012). Nevertheless, starch-based plastics have a 

major drawback, their fast aging and retrogradation of starch, which makes difficult their 

use in long-term applications (Malmir et al., 2018; Thakur et al., 2018; Zhu et al., 2012). 

Starch retrogradation is the responsible of the reorganization of gelatinized amylose and 

amylopectin chains in new and different ordered structures (Wang et al., 2015; Jiménez 

et al., 2012). Retrogadation is an ongoing process, which initially involves the rapid 

recrystallization of amylose molecules followed by the slow recrystallization of 

amylopectin molecules (Wang et al., 2015). Starch retrogadation is usually accompanied 

by physical changes in the films, as for example the migration of water and other 
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plasticizers and a relevant increase in the degree of crystallinity, processes that may 

involve significant changes of their mechanical properties with time and hence a marked 

starch samples instability (Zhang & Rempel, 2012; Wittaya, 2012; Morales et al., 2015). 

In addition, the lack of tensile strength of starch-based films is also remarkable and is 

limiting their applications in materials engineering (Tian et al., 2017).  

Among all types of starch, potato starch represents 14% of the starch produced in Europe 

(Waterschoot et al., 2015) and 4% in the world (Basiak et al., 2017). Potato starch is a 

very refined starch, which contains minimum quantities of proteins and lipids. Besides its 

lower cost, potato starch has a higher swelling power, solubility, paste clarity and 

viscosity than the starch obtained from other natural sources such as wheat, rice or corn 

(Teixeira et al., 2018).  

The blending of starch with other biodegradable materials, such as polyvinyl alcohol 

(PVA), has been proposed as an alternative because it improves the properties of starch 

materials, has a relatively low cost, and can be used in food applications (Aydin & Ilberg, 

2016; Tian et al., 2017). Although PVA is a synthetic polymer, it is easily degraded by 

biological organisms. During the last century, many applications were developed with 

PVA in different sectors, such as food and medicine, yielding products such as lacquers, 

resins, surgical threads and food packaging materials (Gaaz et al., 2015). PVA has a high 

degree of biocompatibility and notable physical properties due to its hydroxyl groups, 

which promote the formation of hydrogen bonds (Cano et al., 2015). 

Starch-PVA films made with starch obtained from different sources by the casting 

solution technique have been widely studied (Cano et al., 2015; Aydin & Ilberg, 2016; 

Jayasekara et al., 2004; Ramaraj, 2007; Shi et al., 2008), even though this processing 

technique is highly inefficient and time-consuming. By contrast, melt processing under 

shear force conditions enables starch and PVA to be blended in an industrially scalable 
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process. Few studies involving the preparation of starch/PVA blends by melt-mixing can 

be found in the literature (Tian et al., 2017; Liu et al., 2016), and more studies are 

necessary as a prior step to the manufacture of starch/PVA blends for applications such 

as food packaging. 

Rosin, also known as colophony, is a naturally occurring solid form of resin obtained 

from pines and other conifers. Rosin and its derivatives have been used as plasticizers of 

polylactic acid (Moustafa et al., 2017; Narayanan et al., 2017) and poly(butylene adipate-

co-terephthalate) (Moustafa et al., 2017) due to their chemical structure with highly 

hydrogenated phenanthrene rings (Niu et al., 2018). They can also be used as reinforcing 

and co-antimicrobial agents in polylactic acid films (Niu et al., 2018). Among their 

properties should be mentioned their biocompatibility, biodegradability, non-toxicity, 

antimicrobial activity and film-forming and UV-light absorbing capabilities. All these 

properties make rosin a potential candidate to be used in food packaging materials 

(Narayanan et al., 2017; Niu et al., 2018). 

The aim of the present work is the study of the behavior of potato starch/PVA/rosin blends 

obtained by melt mixing and compression molding for potential application in food 

packaging. Specifically, the effect of the rosin content on the composite’s mechanical 

properties, thermo-mechanical behavior and morphology was evaluated using sheets with 

different proportions of rosin. To the best of our knowledge, this is the first time that rosin 

has been used in the literature for starch/PVA compounding.  

 

2. Materials and methods 

 

2.1. Materials 

Potato starch was provided by Across Organics (Geel, Belgium). PVA (Mw: 125000) was 

purchased from Sigma-Aldrich (Madrid, Spain) and the plasticizer glycerol was supplied 
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by Fisher Chemical (Geel, Belgium). Rosin (CAS: 8050-09-07) was generously supplied 

by Ismael Quesada S.A. (Elche, Spain). Butylhydroxytoluene (BHT) and zinc stearate, 

used as antioxidant and lubricant respectively, were provided by Sigma-Aldrich (Madrid, 

Spain). All chemicals were used without further purification. 

2.2. Sample preparation 

Starch, PVA, water and glycerol were weighed and manually pre-mixed at room 

temperature for 3 min. The content of glycerol and water in the sample was fixed at 29.7 

wt. % and 19.8 wt. %, respectively, and the solid materials, starch and PVA, represented 

24.75 wt. % and 24.75 wt. %, respectively. Small amounts (0.5 wt. %) of BHT and zinc 

stearate were also added to all formulations. To this blank formulation different amounts 

of rosin were added in variable ratios in order to obtain 80 grams of the formulations 

employed in the present study (0, 1, 5, 8, 10, 12 and 15 wt. % of rosin on the basis of the 

blank formulation yielded the formulations labeled as R0, R1, R5, R8, R10, R12 and R15, 

respectively). Sample preparation was done following procedures for starch melt-

compounding previously described in the literature (Róz et al. (2006); Tian et al. (2017)) 

with some modifications after their optimization with our equipment. The blends were 

processed at 110ºC in a HAAKETM PolyLabTM QC Modular Torque Rheometer 

(ThermoFisher Scientific, Waltham, MA, USA) for 25 min at 100 rpm. Blends were hot 

pressed at 160 ºC at a pressure of 6 ton for 10 min into 1 mm thick plates. Then, the 

samples were cooled under pressure. 

2.3. Samples Characterization 

The samples were conditioned at 25ºC and relative humidity of 50% for a week before 

characterization. The 50% of relative humidity was obtained by placing the samples in a 

desiccator with saturated magnesium nitrate solution at room temperature as in Xie et al. 

(2014). Their thickness was measured with a Format digital IP54 micrometer (Madrid, 
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Spain) at different locations and the mean value was calculated. The thickness of the 

samples ranged from 0.9 to 1.1 mm. 

2.3.1. Hydration properties 

The water content and solubility in water of the samples was determined in 1 x 1 cm2 

specimens following the procedures described by Hornung et al. (2018) and Medina-

Jaramillo et al. (2017) with some modifications. Firstly, the water content was measured 

by determining the loss of weight of the sheets after drying in an oven for 5 h at 110 ºC. 

The measurements were taken in quadruplicate. The quantity of absorbed water or 

moisture content (H) was expressed as a percentage (grams of water in 100 grams of 

sample) using Eq. (1). 

𝐻 (%) = (
𝑚0−𝑚1

𝑚0
) × 100                               (1) 

 where m0 and m1 are the mass before and after drying, respectively. 

After that, the solubility in water was measured by placing the above dried samples 

individually in 10 mL tubes filled with 9 mL of distilled water. The tubes were capped 

and stored at 25 ºC for 24 h, after which the samples were taken out and dried again at 

110 ºC for 5 h in order to determine the final mass of dry matter, mf. The solubility in 

water was calculated from the loss of total soluble matter as follows (Eq. 2): 

𝑆𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦 (%) =  (
𝑚0−𝑚𝑓

𝑚0
) × 100                                     (2) 

Water solubility values were obtained from the average of at least four repetitions. 

2.3.2. Mechanical properties 

The mechanical properties of the sheets were determined with an Instron 3344 Universal 

Test instrument (MA, USA) equipped with 2000N load cell and operated at 25 mm/min 

following ASTM D882-12 (2012) standard recommendations as in previous works 
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(Hornung et al. (2018); Luchese et al. (2017); Edhirej et al. (2018); Phetwarotai et al. 

(2018); Medina Jaramillo et al. (2015); Lopez et al. (2014)). The samples were cut into 

dumbbell-shaped specimens. The mechanical properties of each sample sheet were 

calculated using the average thickness of the specimen and at least 8 specimens per 

sample. The tensile properties studied were tensile strength at break, percentage of 

elongation at break and Young’s modulus. 

2.3.3. Scanning Electron Microscopy (SEM) Analysis 

The morphology of the sheets was observed by SEM images obtained with a Hitachi 

Scanning Electron Microscope (Hitachi S3000N, USA) using an accelerating voltage of 

5 kV. Dry sheet samples were cryofractured by immersion in liquid nitrogen. Before 

analysis, the fractured section was coated with gold for better observation. 

2.3.4. Dynamic Mechanical Analysis (DMA) 

The DMA analysis was performed in a DMA 1 Instrument (Mettler-Toledo, Barcelona, 

Spain) working in single-cantilever mode in two types of experiment: i) frequency sweep 

(0.09-50 Hz) at constant temperature (100 ºC) and ii) temperature sweep (from -100 to 

60 ºC at a rate of 3 ºC/min) at constant frequency (1 Hz) as in Malmir et al. (2018). The 

dimensions of the specimens used for the DMA were 8.5 x 25 x 1 mm. 

 

3. Results and discussion 

Visual observation of the plates obtained by hot-pressing showed that R0 samples were 

clear and transparent. The higher the rosin content, the lower the transparency while, at 

the same time, the material became gradually more yellowish. ACCEPTED M
ANUSCRIP
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Figure 1. Visual appearance of the sheets obtained. From left to right: R0, R1, R5, R8, 

R10, R12 and R15 samples. 

3.1. Hydration properties 

Generally, the sensitivity of films to environmental conditions is a very important limiting 

factor (Bergo et al., 2013). As regards the application of films in food packaging, it is 

advisable to determine the water content of the sheets because starch sheets and food are 

hygroscopic. Both starch and PVA are multi-hydroxyl polymers with a hydrophilic 

character (Tian et al., 2017). In addition, water is a plasticizer of starch, and so the water 

molecules in sheets can change their physical properties (Lawton, 1996). The water 

content of the samples is shown in Table 1. As can be seen, sheets containing rosin 

showed a slightly decreasing water content until the rosin content was 10% (wt.). Values 

of the water content were similar or, in many cases, lower than those found in the literature 

for starch/PVA films (Cano et al., 2015; Ramaraj, 2007; Das et al., 2010). In addition, 

our values for the water content are considerably lower than those previously published 

for native starch films (López et al., 2011; Medina Jaramillo et al., 2015; Basiak et al., 

2017). This could be an advantage of the developed starch/PVA blends compared with 

starch films and with other previously synthesized starch/PVA films maintaining the 

biodegradability of the material.  

Table 1. Water content and solubility in water values of the sheets studied. 

Sample Water content (%) Solubility in water (%) 

R0 14.6 ± 0.2 41.9 ± 0.8 
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R1 5.3 ± 0.2 37.3 ± 0.7 

R5 4.5 ± 0.3 35.9 ± 0.4 

R8 3.3 ± 0.4 33.7 ± 0.3 

R10 2.3 ± 0.8  32.7 ± 0.7 

R12 4.0 ± 0.1 35.7 ± 0.8 

R15 4.3 ± 0.6 34.7 ± 0.1 

 

The solubility in water is a key parameter of biodegradable blends of a water-sensitive 

biopolymer such as starch, and a water-soluble polymer such as PVA. Indeed, water 

solubility is closely related to biodegradability (Medina Jaramillo et al., 2015). Water 

insolubility of the blends could be required for future applications as biodegradable 

packaging in order to ensure product integrity and water resistance (Basiak et al., 2017).  

However, for other applications such as the encapsulation of food or additives, partial 

solubility in water might be more suitable (Shen et al., 2010). The water solubility of the 

samples is also shown in Table 1. This parameter follows the same trend as the water 

content results. It is known that rosin is a hydrophobic material (Pathak & Dorle, 1990; 

Huang et al., 2015) because it is mostly composed of rosin acids (90%) whose structure 

is formed by a hydrophobic skeleton with hydrophilic carboxyl groups attached (Atta et 

al., 2006). Therefore, both parameters (water content and solubility in water) should 

decrease when the rosin content in blends increases. More specifically, these molecules 

provide fewer active sites in the starch/PVA matrix, in which the water molecules can be 

adsorbed. In fact, rosin-based sizing agents have traditionally been used in the paper 

industry to increase hydrophobicity (Huang et al., 2015). However, in our case a plateau 

was observed at a 10% (wt.) rosin content, pointing to a certain saturating effect. Similar 

values of solubility in water can be found in the literature for starch films (Medina 

Jaramillo et al., 2015). 

3.2. Mechanical properties, SEM and Dynamic Mechanical Analysis  
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Mechanical properties can be influenced by the sample thickness, processing method, test 

speed, specimen shape, etc. (Souza et al., 2012) making a rigorous comparison with the 

results obtained by other researchers complicated.  

Tensile strength-elongation curves were obtained for all the samples at room temperature. 

Figure 2 shows the mechanical properties of the starch/PVA blends studied with different 

rosin contents. As can be seen, standard deviations for elongation at break were higher 

than those obtained for the other magnitudes, which is in good agreement with the results 

reported by other researchers (Ferry & Morrison, 1944).  

Maximum tensile strength varied from (4.6 ± 0.8) MPa to (10.7 ± 0.3) MPa. Figure 2a 

shows that the maximum tensile strength of the blends increased as the rosin content 

increased from 0 to 8% (wt.), reaching a maximum value at this concentration.  

Similar behavior was observed for elongation at break (Figure 2b), which showed a 

maximum of (1987 ± 187) % at a rosin content of 8% (wt.). Young’s Modulus in the 

different samples presented a minimum value above 8% rosin (Figure 2c), meaning that 

the sample becomes more elastic and hence less stiff. 

These maxima at both tensile strength and elongation at break suggest that rosin at 

concentrations up to 8% forms a partially compatible blend with starch and PVA, rosin 

readily contributing to enhanced mechanical properties. However, the decrease in both 

properties in samples with a higher rosin content could be interpreted in terms of the 

segregation of a new phase poorly compatible with the blend. This hypothesis was 

investigated by two different techniques, SEM and DMA (see below). 
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Figure 2. Mechanical properties of the starch/PVA blends studied. a) Maximum tensile 

strength; b) Elongation at break; c) Young’s modulus. 

As regards the mechanical properties, it was concluded that starch/PVA blends 

incorporating a medium content of rosin have tensile strength values higher than 10 MPa 

and elongation at break close to 2000 %, which is much better than that offered by 

common LDPE package films (Kormin et al., 2017). 

In summary, each component of the blends (starch, PVA and rosin) not only contributes 

to the properties of the sample, but also modifies the starch-PVA and starch-rosin 

interactions which eventually influences the mechanical properties of the sheets. In this 

work, both polymers and rosin show good affinity and mutual property supplement, 

providing good tensile strength without sacrificing elongation of the samples. 

Figure 3 shows the SEM images of the cross section of all the studied samples, where the 

presence of heterogeneous zones could be attributed to the amorphous nature of the 

blends. It can be observed that some particle domains appear, indicating phase separation. 
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It is known that the addition of starch to PVA decreases PVA crystallinity. Phase 

separation was also observed in starch/PVA blends by other authors (Tian et al., 2017; 

Cano et al., 2015; Sreekumar et al., 2012) as well as in pure thermoplastic starch systems, 

where it was attributed to the remains of starch granules that are still recognizable (called 

ghost granules). The ratio of these ghost granules in formulations with 0 and 1% rosin 

seems to be so low that they have no negative effect, since they exhibit both good 

transparency and acceptable mechanical strength, revealing that the blends behave as an 

apparent single-phase system. Indeed, in Figure 3, the presence of rosin grains is almost 

negligible in the sheets containing 1% rosin.  

For higher rosin contents (above 5%), a new phase becomes prominent. This consists of 

spherical “droplets”, somewhat deformed in some cases (Figures 3c, 3d, 3e, 3f and 3g), 

that become more noticeable with the rosin content increases. It is worth mentioning that 

this new phase seems to show good miscibility or adhesion to the continuous phase in the 

sense that they seem closely joined. Nevertheless, at concentrations of 10 and 12% 

(coinciding with a drop in the mechanical properties) some cracks and a lack of cohesion 

is observable. 
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Figure 3. SEM micrograph of the cryogenic fracture surface of the samples. a) R0; b) R1; 

c) R5; d) R8; e) R10; f) R12; g) R15. 
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It is well known that dynamic mechanical properties provide valuable information 

concerning the structure and morphology of polymeric materials (Lopez et al., 2014).  

Temperature sweeps at a constant frequency are shown in Figure 4. In general terms, the 

behavior observed is that expected according to the literature: loss tangent reflects two 

maxima corresponding to two different thermal transitions, as reported (Sreekumar et al., 

2012); the first one, a temperature transition between -60 and -55 ºC corresponds to a 

glycerol-starch rich phase (Medina Jaramillo et al., 2015; Sreekumar et al., 2012; Lopez 

et al., 2014; López et al., 2011) while the second temperature transition, between -10 and 

0 ºC (Figure 4a), is related to the molecular dynamics transition of the PVA-starch rich 

phase (Sreekumar et al., 2012). 

Nevertheless, for those samples with a rosin content above 5% a third peak is readily 

noticed at around 40-50 ºC. The intensity of the peak tends to increase with the rosin 

content and at the same time is shifted to higher temperatures. This peak is logically 

associated to the rosin:  at 5% rosin this peak is of low intensity and appears at around 30 

ºC, at 8% the peak gains in importance and is shifted to 40 ºC and at higher rosin 

concentration the peak is still bigger but the peak temperature seems to remain 

unchanged, at around 50 ºC. These data, together with the SEM images and mechanical 

properties, suggest that above 8% rosin, it segregates into an immiscible phase (whose 

glass transition is at around 50 ºC) which shows poor compatibility with the continuous 

phase. At lower concentrations, a rosin-rich phase interacts with the rest of the 

components; these interactions provoke a decrease in the glass transition and have a 

reinforcement effect on the mechanical properties of the blend. 

Frequency sweeps at 100 ºC were also performed since it was thought that complex 

viscosity profiles might increase our understanding of the processability of the blends 

studied since, in terms of the Cox-Merz´s rule, complex viscosity-frequency and 
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viscosity-shear rate profiles are equivalent. In addition, the idea was to elucidate likely 

miscibility by representations of the type of Cole-Cole plots (Li et al., 2016; Li et al., 

2006). 

Complex viscosity results as a function of frequency are given in Figure 5a. The 

starch/PVA samples with a rosin content lower than 8% behaved as typical non-

Newtonian fluids that follows the power law over the whole tested frequency range, 

showing a marked decrease in viscosity as the rosin content increases. When the rosin 

content increases above 8%, a Newtonian plateau at low frequencies appears, but at 12 

and 15% rosin the behavior is totally unexpected, and both formulations behave in a 

totally different way to the rest. 

The Cole-Cole diagrams are shown in Figure 5b. In good agreement with the above 

results, it is possible to observe the smooth behavior in samples up to 8% rosin. Above 

this concentration, a more complex pattern is observed, revealing a lack of uniformity in 

the system and the existence of a multiphasic system which, in view of mechanical 

properties, seems to be immiscible.  
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Figure 4. DMA spectra of the studied sheets. Dependence of Loss tangent (tan δ) on 

temperature at a constant frequency of 1 Hz. 

 

 

Figure 5. (a) Complex viscosity, η*, and (b) Cole-Cole diagram for the studied 

starch/PVA sheets.  
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4. Conclusion 

Biodegradable starch/PVA blends containing rosin were successfully prepared by melt-

mixing. This experimental procedure is comparatively cheaper and more scalable for 

industrial purposes than other processes, such as casting, to obtain sheets. The rosin 

content affects the mechanical properties of the blends significantly; the results obtained 

indicate that rosin is partially miscible with PVA/starch formulations, but at low 

concentrations its effect on processability (in terms of melt viscosity) and mechanical 

properties is positive. It is concluded that a rosin content of 8% achieves increases in 

maximum tensile strength and elongation at break of 72% and almost 400%, respectively, 

compared to the native starch/PVA blend. The results establish that formulations based 

on plasticized starch/PVA blends reinforced with rosin could be considered as interesting 

biodegradable materials for packaging applications. 
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