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Abstract- Nowadays malware is a major threat to the security of cyber activities. The rapid development 

of the Internet and the progressive implementation of the Internet of Things (IoT) increase the security 

needs of networks. This research presents a theoretical model of malware propagation for mobile 

computer devices. It is based on the susceptible-exposed-infected-recovered-susceptible (SEIRS) 

epidemic model. The scheme is based on a concrete connection pattern between nodes defined by both a 

particular neighbourhood which fixes the connection between devices, and a local rule which sets whether 

the link is infective or not. The results corroborate the ability of our model to perform the behaviour 

patterns provided by the ordinary differential equation (ODE) traditional method.   

Key-words- Epidemic model, Malware propagation, Mobile devices, Local rules, Von Neumann 

neighbourhood, Moore neighbourhood. 

 

1. Introduction 

Nowadays malware is a major threat to the security of cyber activities. The rapid development 

of the Internet and the progressive implementation of the Internet of Things (IoT) increase the 

security needs of networks. Several malicious objects (virus, worm, Trojan horse…) attack 

users and causes a great variety of damages: not only information resources are the targets of the 

cyber-attacks, humans can also be vulnerable even without being aware [1, 2]. Messages with 

malware can arrive from many sources and in a variety of forms. They can be sent as an 

attachment to spam email, embedded in a file or hidden in a link within the body of a message. 

The extent of the damage depends on the targets of the virus and sometimes the results of its 

activity are imperceptible for the users of a machine. The scenarios created by the apparition of 

many new instances can be classified among existing threat intelligence types [3, 4]. Malware 

epidemiology can be considered as a particular case of the propagation process of a disease 

expansion, since biological viruses, bacteria, fungi or prions, behave like computer viruses and 

worms [5]. The Kermack and McKendrick susceptible-infected-recovered (SIR) model and its 

variants susceptible-infected-susceptible (SIS), susceptible-infected-recovered-susceptible 

(SIRS) and susceptible-exposed--infected-recovered-susceptible (SEIRS) are dynamical 

approaches that assume the population is confined in different compartments; these are, S for 

susceptible people, I for infected people and R for recovered people when acquired immunity is 

permanent [6-11]. When the infection is not instantaneous, the E compartment stands for 

exposed people [12]. This approach can be improved by considering births and deaths in 

population instead of constant population. These models have traditionally been solved by 

means of ODE which provide accurate results for large populations. Stochastic models 

generally use Markov chains and are more suitable for small populations [13]. Both, 

deterministic and stochastic models consider the population as a whole and cannot assess local 

interactions between individuals because they do not take into account the individual behaviour 

of the nodes [14]. These drawbacks can be overcome by means of discrete models, which depict 

the local characteristics of the spreading processes [15-17]. This paper presents a time-space 

framework to model the malware propagation, based on local Boolean rules that fix the 
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evolution of the nodes placed in a square grid.  The interactions between nodes are fixed 

through different connection types, such as Von Neumann, Moore or chess horse jumping 

neighbourhoods. This model succeeds in obtaining the same behavioural patterns than the 

simulation of ODE system. Following the Introduction, Section 2 presents an analysis of related 

work, section 3 is entirely devoted to the exposition of our method; the connectivity and local 

rule application are explained and illustrated. Section 4 compares our method with the proposal 

from W. Liu and S. Zhong [1]. Finally, Section 5 summarizes and presents some concluding 

remarks and future work. 

 

 

2. Related work 

In this section we specially pay attention to the recent works that model the worm propagation, 

specifically if they are inspired on the Kermack and McKendrick disease expansion model and 

operate in finite and discrete space and time. A theoretical model that characterizes the 

propagation dynamics of worms in smartphones is presented by S. Peng et al. in [18]. N 

smartphones (nodes) are randomly deployed on a square 2-D grid. The smartphones are in one 

out of five states, susceptible-exposed-infected-diagnosed-recovered (SEIDR). The model 

incorporates the spatial distribution of the population by use of the Von Neumann or the Moore 

neighbourhood. The transition rule is structured in five steps and each node collects the 

information of its neighbours in order to calculate the next state of the node. The model 

provides two important factors, the infection factor, in order to evaluate the degree of the spread 

of infected nodes, and the resistance factor, which measures the resistance degree of a node on 

infection from other nodes. In [19], Martin et al. apply the SIS model to study the impact of 

mobile malware on cell phones. They aim to help users prepare in the event of a future mobile 

malware epidemic in Washington DC metropolitan area by proposing some preventative 

measures. Feng et al. [11] proposed a time-delayed SIRS model which introduces two 

parameters: temporal immunity, variable infection rate and explore the impact of the variable 

infection rate on the scale of malware outbreak. In [20], Pradip De et al. model the process of 

compromise spreading from a single node to the whole network which has been modelled as a 

random graph. The approach is analysed in two scenarios: with or without node recovery, 

depending on whether infected nodes will be recovered by external measures such as key 

revocation, immunization, or not. In [21] W. Xia builds a theoretical model based on five 

compartments susceptible- exposed-infected-recovered-dormancy (SEIRD) for the Bluetooth 

and MMS hybrid spread mode. The simulation keeps good correlation with the theoretical 

analysis. This approach analyses the influence of the propagation parameters such as user gather 

density in groups, moving velocity of smart phone, the time for the worm to replicate itself and 

provides some feasible control strategies. In [22] B. K. Mishra and N. Jha propose a susceptible-

exposed-infectious-quarantined-recovered (SEIQR) model for the transmission of malicious 

objects in computer network. The model has a constant recruitment of nodes and an exponential 

natural and infection-related death (crashing) of the nodes. Thresholds, equilibria, and their 

stability are also found with cyber mass action incidence and the effect of quarantine on 

recovered nodes is analysed. The simulation of the system is numerically solved. In [23], F. 

Wang et al. propose a novel epidemic model which combines both vaccinations and dynamic 

quarantine methods (SEIQV). Using this model, the authors obtain the basic reproduction 

number that governs whether or not a worm threat is extinct. The impact of different parameters 

on this model is studied. Simulation results show the model has the capability to decrease the 

number of infected hosts and reduce the worm propagation speed. In [24], A. Martin del Rey 

and G. Rodríguez consider the case of the malware propagated using Bluetooth connections, 

which infects devices in its proximity similar to a biological virus. They use a compartmental 

model where the mobile devices are classified into four types: susceptible-carriers-exposed-

infectious (SCEI) and its dynamic is governed by means of a couple of two-dimensional cellular 

automata (CA). The simulation of the model allows to determine how a mobile malware might 

spread under different conditions. In [25] G. González García et al present a compartmental 
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epidemiological model to study the space-time propagation dynamics of Bluetooth worms. The 

model is based on CA. The model considers the local interactions between the smartphones and 

is able to simulate the individual dynamic of each device and the effect of mobility of their users 

on the infection propagation. In [26], Mickler et al. present a global stochastic CA paradigm. 

The interaction measure between the cells is a function of population density and Euclidean 

distance, and extends to include geographic, demographic and migratory constraints. This 

model improves both the traditional CA paradigm and the classic SIR model and facilitates 

optimal deployment of public health resources for prevention, control and surveillance of 

infectious diseases. 

 

 

3. The method 

As mentioned in Section 2, generic epidemic models are very useful to deal with the dynamics 

of malware propagation [27-29]. In this section we present the SEIRS epidemic model to 

analyse the propagation behaviour of the malware in mobile computing devices. Our space-time 

framework is based on a concrete connection pattern between nodes defined by both a particular 

neighbourhood which fixes the connection between devices, and a local rule which sets whether 

the link is infective or not.  

 

3.1 Connectivity and local rule   

In this work, we have considered three types of connectivity defined by a neighbourhood 

relationship on a square NxN-sized grid.  Each cell in the grid represents a node. The Von 

Neumann neighbourhood is composed of a central cell and its four adjacent cells (4-neighbours, 

horizontal and vertical connection). The Moore neighbourhood is composed of a central cell and 

the eight cells surrounding it (8-neighbours, horizontal, vertical and diagonal connection). 

Finally, we have the “L” neighbourhood, moving two squares horizontally then one square 

vertically, or moving one square horizontally then two squares vertically.  

 

Let R be a local Boolean rule implemented by a binary operation shown by Equation 1. 

 

ia y)R(x,y)(x,               

}1,0{}1,0{ x }1,0{:R




                  (1) 

                                                                         

Without loss of generality we set: Ra Ra2,   Ra1andRa0  

We can define 2
4 
=16 different local rules depending on the values of the sequence a3 a2 a1 a0.  

Let Rm denote a particular rule, m  [0, 2
4
-1]. The binary representation of m is: m = a3 a2 a1 a0. 

 

In order to model the dynamics of SEIRS, we set: 

R=a2 = 1, an infected node (with value = 1) propagates infection to an exposed neighbour 

node (with value = 0), so this value turns to 1. 

R=a0 = 1, an infected node has no effect on another infected node. 

R= a1= a recovered node promotes the healing of an infected neighbour node, before it 

becomes susceptible again

R= a= exposed, or recovered or susceptible nodes (with value = 0) have no effect on 

exposed, or recovered or susceptible nodes. 
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So, the suitable local rule to depict this case is R5. We also use colours to discern between 

susceptible and exposed: 

Cells (nodes): yellow colour for susceptible, grey colour for exposed 

Number (generation): red colour for infected, green colour for recovered. 

We set: 

 A node recovers two generations after it is infected 

 A node is exposed when it is in the neighbourhood of an infected node. 

 A node is able to infect again three generations after it is recovered, after being 

susceptible and exposed.         

     

As follows, we apply the rule R5 to the different connectivity patterns. 

 

a) The Von Neumann neighbourhood 

Figure 1 shows the evolution of the infection process of 100 nodes placed on a 10x10 grid, 

where 99 nodes are susceptible and the one at the centre is infected. The Von Neumann 

neighbours of the infected nodes are exposed and the rest are susceptible nodes. The number 

stands for the generation. 

 

 
          

          

          

          

    0      

          

          

          

          

          

Generation 0: 
1 Infected, 4 exposed, 95 susceptible 

 

 

 
          

          

          

    1      

   1 0 1     

    1      

          

          

          

          

Generation 1: 
4 new infected, 8 exposed, 87 susceptible   

 

 
          

          

    2      

   2 1 2     

  2 1 0 1 2    

   2 1 2     

    2      

          

          

          

Generation 2: 
8 new infected, 12 exposed, 1recovered, 75 

susceptible   

 

 
          

    3      

   3 2 3     

  3 2 1 2 3    

 3 2 1 0 1 2 3   

  3 2 1 2 3    

   3 2 3     

    3      

          

          

Generation 3: 
12 new infected, 16 exposed, 4 recovered, 1 

new susceptible and 59 susceptible 
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8 7 6 5 4 5 6 7 8 9 

7 6 5 4 3 4 5 6 7 8 

6 5 4 3 2 3 4 5 6 7 

5 4 3 2 1 2 3 4 5 6 

4 3 2 1 0 1 2 3 4 5 

5 4 3 2 1 2 3 4 5 6 

6 5 4 3 2 3 4 5 6 7 

7 6 5 4 3 4 5 6 7 8 

8 7 6 5 4 5 6 7 8 9 

9 8 7 6 5 6 7 8 9 10 

Generation 12 
8 new infected, 8 new exposed, 1 recovered, 12 

exposed, 12 new second infected, 18 new 
recovered, 16 susceptible, 4 new susceptible 

 

 S E I R 

Gen.0 99 4 1 0 

Gen.1 87 8 5 0 

Gen.2 75 12 12 1 

Gen.3 60 16 20 4 

Gen.4 45 19 28 8 

Gen.5 33 20 35 12 

Gen.6 25 20 39 16 

Gen.7 21 20 40 19 

Gen.8 20 20 40 20 

Gen.9 20 20  40 20 

Gen.10 20 20  40 20 

Gen.11 20 20  40 20 

Gen 12. 20 20  40 20 

 
Figure 1. Schedule of the propagation of malware for a SEIRS model, implemented by R5 and 

the Von Neumann neighbourhood (grid 10x10) (generations 4-11 are not shown) 

 

 

 
 

Figure 2. Evolution of the propagation of malware. SEIRS model for the Von Neumann 

neighbourhood and the local rule R5 (N = 100) 

 

For the Von Neumann neighbourhood, we observe an asymptotic behaviour for S, E, I and R 

plots.  The number of Infected, Recovered and Exposed increases smoothly and reaches the 

equilibrium value from generation 7; the equilibrium value is equal to 40 nodes (40%) for I, and 

20 nodes (20%) for the others. The number of Susceptible decreases smoothly and achieve the 

equilibrium value which is 40 nodes (40%).   

 

b) The Moore neighbourhood 

Figure 3 shows the evolution of the infection process of 100 nodes placed on a 10x10 grid, 

where 99 nodes are susceptible and the one at the centre is infected. The Moore neighbours of 

the infected nodes are exposed and the rest are susceptible nodes. The number stands for the 

generation. 
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Generation 0: 
1 Infected (centre), 8 exposed, 91 susceptible 

 

          

          

          

          

    0      

          

          

          

          

          

 

 

 

 

Generation 1: 
1 infected, 8 new infected, 16 exposed, 75 susceptible 

          

          

          

   1 1 1     

   1 0 1     

   1 1 1     

          

          

          

          

Generation 2 
16 new infected, 1 recovered, 24 exposed, 51 

susceptible 

          

          

  2 2 2 2 2    

  2 1 1 1 2    

  2 1 0 1 2    

  2 1 1 1 2    

  2 2 2 2 2    

          

          

          
Generation 3 

24 new infected, 8 recovered, 32 exposed, 20 
susceptible  

 

          

 3 3 3 3 3 3 3   

 3 2 2 2 2 2 3   

 3 2 1 1 1 2 3   

 3 2 1 0 1 2 3   

 3 2 1 1 1 2 3   

 3 2 2 2 2 2 3   

 3 3 3 3 3 3 3   

          

          

 
 

Generation 7 
16 new infected, 20 recovered, 24 exposed, 32 

susceptible 
 

4 4 4 4 4 4 4 4 4 5 

4 3 3 3 3 3 3 3 4 5 

4 3 2 2 2 2 2 3 4 5 

4 3 2 1 1 1 2 3 4 5 

4 3 2 1 0 1 2 3 4 5 

4 3 2 1 1 1 2 3 4 5 

4 3 2 2 2 2 2 3 4 5 

4 3 3 3 3 3 3 3 4 5 

4 4 4 4 4 4 4 4 4 5 

5 5 5 5 5 5 5 5 5 5 

 

 S E I R 

Gen.0 91 8 1 0 

Gen.1 75 16 9 0 

Gen.2 51 24 24 1 

Gen.3 20 32 40 8 

Gen.4 8 20 56 16 

Gen.5 16 8 52 24 

Gen.6 24 16 28 32 

Gen.7 32 24 24 20 

Gen.8 20 32 40 8 

Gen 9 8 20 56 16 

Gen 10 16 8 52 24 

Gen 11 24 16 28 32 

Gen 12 32 24 24 20 

Figure 3. Schedule of the propagation of malware, related to the nodes state, for a SEIRS model 

implemented by R5 and the Moore neighbourhood (grid = 10x10) (Generations 4-6 are not 

shown) 
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Figure 4. Evolution of the propagation of malware. SEIRS model for the Moore neighbourhood  

and the local rule R5 (N = 100) 

 

For the Moore neighbourhood, we observe a cyclic behaviour for S, E, I and R.  The evolution 

of Susceptible, Recovered and Exposed is very similar from generation 5: they exhibit 

oscillations almost in phase (the phase difference between them is only one generation), with an 

average value of 20%, an amplitude of 10% and a frequency of 5 generations. The Infected 

behaviour has the same dynamics but the oscillation is out of phase related to Susceptible; the 

average value is almost 40%, the amplitude is 18% approximately and the frequency is 5 

generations. 

 

c) The L neighbourhood 

Figure 5 shows the evolution of the infection process of 100 nodes placed on a 10x10 grid, 

where 99 nodes are susceptible and the one at the centre is infected. The L-neighbours of the 

infected nodes are exposed and the rest are susceptible nodes. The number stands for the 

generation. 
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                                    Generation 0    
1 Infected (centre), 8 exposed, 91 susceptible           

 

          

          

   1  1     

  1    1    

    0      

  1    1    

   1  1     

          

          

          

Generation 1 
8 new infected, 32 exposed, 59 susceptible 

  2  2  2    

 2  2  2  2   

2   1 2 1   2  

 2 1 2  2 1 2   

2  2  0  2  2  

 2 1 2  2 1 2   

2   1 2 1   2  

 2  2  2  2   

  2  2  2    

          

Generation 2 
32 new infected, 1 recovered, 42 exposed and 17 

susceptible 

 3 2 3 2 3 2 3  3 

3 2 3 2 3 2 3 2 3  

2 3  1 2 1  3 2 3 

3 2 1 2 3 2 1 2 3  

2 3 2 3 0 3 2 3 2 3 

3 2 1 2 3 2 1 2 3  

2 3  1 2 1  3 2 3 

3 2 3 2 3 2 3 2 3  

 3 2 3 2 3 2 3  3 

3  3  3  3  3  

 Generation 3 
42 new infected, 8 recovered, 1 susceptible, 

17 exposed 

 

4 3 2 3 2 3 2 3 4 3 

3 2 3 2 3 2 3 2 3 4 

2 3 4 1 2 1 4 3 2 3 

3 2 1 2 3 2 1 2 3 4 

2 3 2 3 0 3 2 3 2 3 

3 2 1 2 3 2 1 2 3 4 

2 3 4 1 2 1 4 3 2 3 

3 2 3 2 3 2 3 2 3 4 

4 3 2 3 2 3 2 3 4 3 

3 4 3 4 3 4 3 4 3 4 

 
………………………………………………………………… 

Generation 12 
32 new infected, 1 recovered, 42 exposed, 17 

susceptible 

4 3 2 3 2 3 2 3 4 3 

3 2 3 2 3 2 3 2 3 4 

2 3 4 1 2 1 4 3 2 3 

3 2 1 2 3 2 1 2 3 4 

2 3 2 3 0 3 2 3 2 3 

3 2 1 2 3 2 1 2 3 4 

2 3 4 1 2 1 4 3 2 3 

3 2 3 2 3 2 3 2 3 4 

4 3 2 3 2 3 2 3 4 3 

3 4 3 4 3 4 3 4 3 4 

 

 
 

 S E I R 

Gen.0 91 8 1 0 

Gen.1 59 32 9 0 

Gen.2 17 42 40 1 

Gen.3 1 17 74 8 

Gen.4 8 1 59 32 

Gen.5 32 8 18 42 

Gen.6 42 32 9 17 

Gen.7 17 42 40   1 

Gen.8 1 17 74 8 

Gen.9 8 1 59 32 

Gen.10 32 8 18 42 

Gen.11 42 32 9 17 

Gen.12 17 42 40   1 

 

Figure 5. Schedule of the propagation of malware, related to the nodes state, for a SEIRS model 

implemented by R5 and the L neighbourhood (grid 10x10) (generations 4-11 are not shown). 
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Figure 6. Evolution of the propagation of malware. SEIRS model for the L neighbourhood  

and the local rule R5, (N = 100). 

 

 

For the L neighbourhood, we also observe a cyclic behaviour for S, E, I and R.  The evolution 

of Susceptible, Recovered and Exposed is very similar from generation 5: they exhibit 

oscillations almost in phase (the phase difference between them is only one generation), with an 

average value of 20%, an amplitude of 20% and a frequency equal to 5 generations. The 

Infected behaviour has the same dynamics but the oscillation is out of phase related to 

Susceptible; the average value is almost 40%, the amplitude is 35% approximately and the 

frequency is 5 generations. 

As follows we present the time evolution of S, E, I and R when N=100, 2500 and 10000, for 

Von Neumann, Moore and L neighbourhoods. See Figure 7. 
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The number of susceptible nodes decreases initially 

when generations pass. The dynamics are quite 

different depending on the connectivity pattern.  

For the Von Neumann neighbourhood, the decrease 

is continuous and very smooth, and the equilibrium 

value always reaches 20%, for any N. 

 

The number of susceptible nodes decreases more 

dramatically in the case of the Moore and L 

neighbourhoods and when the equilibrium value is 

reached an oscillatory regular cycle appears, with 

different average values: 

Moore:  

20% (N = 100), 40% (N = 2500), 30% (N = 10000) 

L: 

20% (N = 100), 40% (N = 2500), 20% (N = 10000) 

 

  
 

   

The number of exposed nodes increases initially 

when generations pass. The dynamic is quite 

different depending on the connectivity pattern. 

 

For the Von Neumann neighbourhood, the increase 

is continuous and very smooth, and the equilibrium 

value always reaches 20%, for any N. 

The percentage of exposed nodes increases more 

dramatically in the case of the Moore and L 

neighbourhoods and then, when the equilibrium 

value is reached, an oscillatory regular cycle appears 

with different average values: 

 

Moore:  

20% (N = 100), 12% (N = 2500), 17,5% (N = 

10000) 

L: 

 20% (N = 100), 17,5% (N = 2500), 22% (N = 

10000) 

 

0

2000

4000

6000

8000

10000

12000
1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

N
u

m
b

er
 o

f 
n

o
d

es
 

Generation 

Evolution of the SUSCEPTIBLE nodes 
N=10000 

Von Neumann Moore

L neighbourhood

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12 13

N
u

m
b

er
 o

f 
 n

o
d

es
 

Generation 

Evolution of the EXPOSED nodes 
N = 100 

Von Neumann Moore

L neighbourhood

0

100

200

300

400

500

600

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

N
u

m
b

er
 o

f 
n

o
d

es
 

Generation 

Evolution of the EXPOSED nodes 
N = 2500 

Von Neumann Moore

L neighbourhood

0

500

1000

1500

2000

2500

3000

1 9
1

7
2

5
3

3
4

1
4

9
5

7
6

5
7

3
8

1
8

9
9

7
1

0
5

N
u

m
b

er
 o

f 
n

o
d

es
 

Generation 

Evolution of the EXPOSED nodes 
N = 10000 

Von Neumann Moore

L neighbourhood



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

 

 
 

 

 

The number of infected nodes increases initially 

when generations pass. The dynamic is quite 

different depending on the connectivity pattern. 

For the Von Neumann neighbourhood, the increase 

is continuous and very smooth, and the equilibrium 

value always reaches 40% for any N. 

 

The percentage of infested nodes increases more 

dramatically in the case of the Moore and L 

neighbourhoods and when the equilibrium value is 

reached, an oscillatory regular cycle appears with 

different average values: 

  

Moore:  

40% (N = 100), 28% (N = 2500), 35% (N = 10000) 

L:  

40% (N = 100), 28% (N = 2500), 40% (N = 10000) 
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The number of recovered nodes increases initially 

when generations pass. The dynamic is quite 

different depending on the connectivity pattern. 

 

For the Von Neumann neighbourhood, the increase 

is continuous and very smooth, and the steady state 

value always reaches 20% for any N. 

 

The percentage of recovered nodes increases more 

dramatically in the case of the Moore and L 

neighbourhoods and when the equilibrium value is 

reached, an oscillatory regular cycle appears with 

different average values: 

  

Moore:  

20% (N = 100), 14% (N = 2500), 17,5% (N = 

10000) 

L: 

20% (N = 100), 14% (N = 2500), 17,5% (N = 

10000) 

.  

Figure 7. SEIRS Model. Evolution of S, E, I and R nodes for the three neighbourhoods, for 

N=100, 2500 and 10000 

 

4. A comparative study 

In this section, we compare the work by W. Liu and S. Zhong presented in [1] with ours. 

Although this work concretely aims to implement malware immunization strategies, we are now 

interested in the previous numerical simulations of the ODE system in order to provide an initial 

discussion about two different theoretical approaches. Table 1 presents a comparison between 

the statements of the two models. 

Table 1. Comparison between the statements of the two models 

 W. Liu and S. Zhong model  Our model 
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Computational tool 

Mathematical/ 
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  ( )

  
   ( )    ( )    ( ) 

 
  ( )

  
   ( )    ( )    ( )    ( ) 

 

Grid NxN 
  

Neighbourhood + local rule 

 
Von Neumann (VN), Moore (M), L (L) 

 

These neighbourhoods define the interactions 
between nodes  

 

R5 is the local Boolean rule, which fixes the 
result of the interaction between two neighbour 

nodes.  

Dynamics 

 

 
 

S = susceptible  
D = delitescent 

I = infected  

R = recovered 



  how fast nodes move from being susceptible to 

delitescent 

 how fast nodes move from being delitescent to 

infected  

 how fast nodes move from being infected to 

resistant  

 :  how fast nodes move from being resistant to 

susceptible 
 

 

 
 
S = susceptible (0) yellow cell 

E = exposed (0) grey cell 

I = infected (1) red number 
R = recovered (0) green number 

 

We assume The E compartment is equivalent 
to the D (delitescent) compartment of the ODE 

system. 

 

Conditions In order to make easier the comparison with our 

research, we set: 
b=d=0 (static network) 

η=0 (we do not consider the impact of the human 

decision).  
 

* we assimilate the groups D and E, since they 

are almost equivalent. 
* the central cell in the grid is set to I 

* the neighbourhood cells of I cells are set to E 

* the other cells are set to S 
* the infection lasts 2 generations, states I1 and 

I2, (it could have been set otherwise) 

* the generation is a generic measure of time 
 

Analysis  fourth-order Runge-Kutta algorithm Eclipse IDE 2, Release (4.5.2) 

 

 

As follows, Tables 2a-c present the results obtained by the two models (ODE and ours) for 

different population size (nodes) and different connectivity patterns. 

 

 

Table 2-a. Comparison of the results obtained by the two models for N = 100 nodes 

N = 100  

Neighbourhood 

 

Von Neumann Moore L 

Initial conditions 

 

S = 95; E = 4; I = 1; R = 0 S = 91; E = 8; I = 1; R = 0 

 S and I curves intersect at 

generation 5 (value = 35 

nodes).  

 

For generation > 7 

the equilibrium is achieved  

S and I curves intersect at 

generation 3 (value = 40 

nodes).  

 

 

For generation > 5 

S and I curves intersect at 

generation 2 (value = 40 nodes). 

 

 

For generation > 5 

S, E, I and R exhibit oscillations 
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The equilibrium values are: 

I ≈ 40 nodes (40%) 

S, E and R ≈ 20 nodes 

(20%) 

 

S, E, I and R exhibit 

oscillations (cycle = 5 

generations)  

 

S, E and R are almost in 

phase. average value = 20 

nodes (20%), 

amplitude =12 nodes (12%)   

 

S and I out of phase 

average value = 40 nodes 

(40%) 

amplitude value = 16 nodes  

(16%) 

 

(cycle = 5 generations).  

 

S, E and R are almost in phase. 

average value = 20 nodes (20%) 

amplitude = 20 nodes (20%)  

   

S and I out of phase 

average value = 41 nodes (41%) 

amplitude value = 33 nodes 

(33%)  

 

ODE system ( = 0,9;  = 0,5; γ = 0,2; ζ = 0,6) 

 

Initial conditions S = 95; D = 4; I = 1; R = 0 S = 91; D = 8; I = 1; R = 0 

 

 S and I curves intersect at t 

= 12 (value = 35 nodes).  

 

For t >16 

the equilibrium is achieved 

(constant values for S, D, I 

and R). 

 

The equilibrium values are: 

I ≈ 43 nodes (43%) 

S, D and R ≈ 20 nodes 

(20%) 

S and I curves intersect at t = 9  

(value = 35 nodes).  

 

For t >14  

the equilibrium is achieved (constant values for S, D, I and R). 

 

 

 

The equilibrium values are: 

I ≈ 43 nodes (43%) 

S, D and R ≈ 20 nodes (20%) 

Observations For N = 100 

*The comparison between the Von Neumann approximation and the ODE solution for the same 

initial conditions show very similar results, although generation and time are different units. 

 

*The Moore and L approximations have almost the same results, the only difference is the 

amplitude of the oscillation of S and I that is greater in L than in the Moore neighbourhood.  

The main difference of these approaches with ODE system is the existence or not of 

oscillations, but the equilibrium value (average value) in the systems is the same, at least for I. 

 

 

 

 

 

 

 

Table 2-b. Comparison of the results obtained by the two models for N = 2500 nodes 

N = 2500 

Neighbourhood Von Neumann Moore L 

Initial conditions S = 2495; E = 4; I = 1; R = 0 

 

S = 2491; E = 8; I = 1; R = 0 
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 S and I curves intersect at 

generation 34  

(value = 844 nodes).  

 

For generation > 43 

the equilibrium is achieved  

 

The equilibrium values are: 

I ≈ 1000 nodes (40%) 

S, E and R ≈ 500 nodes 

(20%) 

S and I curves intersect at 

generation 22  

(value = 841 nodes).  

 

For generation > 25 

S, E, I and R exhibit 

oscillations (cycle = 10 

generations).  

 

E, I and R are almost in 

phase. 

average and amplitude: 

E ≈ 305 and 205 nodes 

(8,2%) 

I ≈ 796 and 283 nodes 

(11,3%) 

R ≈ 368 and 152 nodes (6%) 

 

S and I are out of phase 

average value of S  ≈ 954 

nodes (38,16%) 

amplitude of S  ≈  512 nodes  

(20,48%) 

S and I curves intersect at 

generation 12  

(value = 824 nodes).  

 

For generation >14 

S, E, I and R exhibit 

oscillations (cycle = 10 

generations).  

 

E, I and R are almost in 

phase.  average and 

amplitude: 

E ≈ 429 and 101 nodes (4%) 

I ≈ 700 and 280 nodes 

(11,2%) 

R ≈ 339 and 156 nodes 

(6,24%) 

 

S and I are out of phase 

average value of S  ≈ 1012 

nodes (40,48%) 

amplitude of S  ≈  525 nodes 

(21%) 

ODE system ( = 0,9;  = 0,5; γ = 0,2; ζ = 0,6) 

Initial conditions S = 2495; D = 4; I = 1; R = 0 S = 2491; D = 8; I = 1; R = 0 

 S and I curves intersect at t = 

22 (value = 875 nodes).  

 

For t >28 

 the equilibrium is achieved 

(constant values for S, D, I 

and R). 

The equilibrium values are: 

I ≈ 1100 nodes (40%) 

S, D and R ≈ 500 (20%) 

S and I curves intersect at t = 19 (value = 875 nodes).  

 

 

For t >25 

the equilibrium is achieved (constant values for S, D, I and R). 

 

 

The equilibrium values are: 

I ≈ 1100 nodes (40%) 

S, D and R ≈ 500 (20%) 

Observations For    N = 2500 

*The comparison between the Von Neumann approximation and the ODE solution for the same 

initial conditions show very similar results, although generation and time are different units. 

 

*The Moore and L approximations have similar results but also have some differences: the 

Moore is slower than the L approximation and the amplitude of the oscillation of the E nodes is 

more important in Moore than in L neighbourhood.  

The main difference of these approaches with ODE system is the existence of oscillations, but 

the equilibrium value (average value) in the systems is almost the same, at least for S and I. 

 

 

 

 

 

Table 2-c. Comparison of the results obtained by the two models for N = 10000 nodes 

N = 10000 

Nieghbourhood 

 

Von Neumann Moore L 

Initial conditions S = 9995; E = 4; I = 1; R = 0 S = 9991; E = 8; I = 1; R = 0 
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 S and I curves intersect at 

generation 70 

(value = 3328 nodes).  

 

For generation > 94 

the equilibrium is achieved  

The equilibrium values are: 

 

I ≈ 4000 nodes (40%) 

S, E and R ≈ 2000 nodes 

(20%) 

S and I curves intersect at 

generation 45  

(value = 3382 nodes).  

 

For generation > 51 

S, E, I and R exhibit 

oscillations (cycle = 10 

generations) 

 

E, I and R are almost in phase. 

average and amplitude: 

E ≈ 1781 and 340 (3,4 %) 

I ≈ 3535 and 584 (5,84 %) 

R ≈ 1708 and 332 (3,32%) 

 

S and I are out of phase 

average value of S  ≈ 2984 

(29,40%) 

amplitude of S  ≈  1880 

(18,80%) 

S and I curves intersect at 

generation 24  

(value = 3292 nodes).  

 

For generation >29 

 S, E, I and R exhibit 

oscillations (cycle = 10 

generations). 

 

E, I and R are almost in 

phase. 

average and amplitude: 

E ≈ 2235 and 219 (2,19 %) 

I ≈ 3873 and 286 (2,86 %) 

R ≈ 1830 and 255 (2,55%) 

 

S and I are out of phase 

average value of S  ≈ 2174 

(21,74 %) 

amplitude of S  ≈  566 

(5,66%) 

ODE system ( = 0,9;  = 0,5; γ = 0,2; ζ = 0,6) 

Initial conditions S = 9995; E = 4; I = 1; R = 0 S = 9991; E = 8; I = 1; R = 0 

 S and I curves intersect at t = 

25 (value = 4500 nodes).  

 

For t>28 the equilibrium is 

achieved (constant values for 

S, D, I and R). 

 

The equilibrium values are: 

I ≈ 4500 nodes (45%) 

S, D and R have almost the 

same equilibrium value, 

which is about 2000 (20%) 

S and I curves intersect at t = 22 (value = 3500 nodes).  

 

 

For t>28 the equilibrium is achieved (constant values for S, D, 

I and R). 

 

 

The equilibrium value are 

I ≈ 4500 nodes (45%) 

S, D and R have almost the same equilibrium value, which is 

about 2000 (20%) 

Observations For    N = 10000 

*The comparison between the Von Neumann approximation and the ODE solution for the same 

initial conditions shows very similar results, although generation and time are different units. 

 

* When N increases although the Moore and L approximations follow the same trend, they are 

less and less similar. The Moore is slower than the L approximation and the amplitude of the 

oscillation of the S nodes is more important in Moore than in L neighbourhood.  

The main difference of these approaches with ODE system is the existence of oscillations, and 

more, the equilibrium value (average value) are quite different, at least for S and I. 

 

From Table 2a-c, some general trends can be highlighted. In our model, the connectivity and the 

number of nodes are crucial parameters to the evolution of S, E, I and R. In the ODE system, the 

parameters   γ and ζ are crucial to the evolution of S, D, I and R. A qualitative analysis leads 

to the following equivalences as shown in Table 3. 

 

Table 3. Equivalences between the parameters of the two approaches 

Behavioural pattern ODE Our model 

S and I intersect  and/or    always 

S and I reach the equilibrium value 

without intersection 
  and/or    never 

the equilibrium value of I   When    When N  

the equilibrium value of I   When   When N  

the equilibrium value of S  When    When N  

the equilibrium value of S  When   When N  

S, D, I and R present oscillations When ζ,  Von Neumann: never oscillates  
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with increasing amplitude Moore: always oscillates 

and L: always oscillate 

 

the amplitude of the oscillations  when N 

although it represents a lower percentage 

of the value) 


the amplitude of the oscillations is larger in 

Moore than in L neighbourhood. 

 

Speeding up the intersection 

between S and I 
When S  and/or D  When N  

Von Neumann is always the slowest and L is 

always the fastest in relation to the 

intersection of S and I  

 

The comparison between the two different theoretical approaches shows the capability of our 

proposal to meet the behavioural patterns provided by the ODE in the case of intersection 

between S and I, that is to say for high values for   and low values for  The best match is with 

the Von Neumann neighbourhood for any N. For N = 100, the matching could also be 

acceptable for Moore and L neighbourhood, at least for compartment I. For N = 10000, the 

matching could also be acceptable for L neighbourhood, for compartments I and S. 

 

5. Conclusion 

In this paper, we present a discrete time-space version of the SEIRS model of disease spread to 

address the expansion of malware in mobile computing devices. We have studied the tuning 

parameters and have compared the scope of our approach with the traditional ODE model. The 

results of this preliminary work corroborate the ability of our model to perform some 

behavioural patterns provided by the ODE system. As a future work we plan to improve our 

model. We may build more progressive local rules, by combining different neighbourhoods. We 

should consider the impact of the human awareness and decision and therefore some exposed 

nodes could recover before they become infected. This could be useful to envisage social tools 

to provide control capability to our model. Finally, it may be interesting to complete our study 

by a comparison between our model and the discrete-time SEIRS epidemic model in scale-free 

networks. 
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