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Abstract 

The performance of many advanced catalytic systems depends not only on the size and 

composition but also on the specific shape of the metal nanoparticles (NPs) from which they 

are assembled. In turn, the shape of colloidal NPs depends on the specific capping agent 

involved in their synthesis, though the mechanism is still poorly understood. Here, supported 

by electrochemical experiments, FTIR spectra and DFT calculations, on well-defined 

surfaces, we show how a specific capping agent determines the shape of colloidal NPs. 

Solvated citrate can become simultaneously adsorbed on the Pt(111) surface through three 

dehydrogenated carboxylic groups, each one of them in bidentate configuration. On the other 

basal planes, citrate is adsorbed through only two of them. For this reason, under the synthesis 

conditions, citrate is more favorably adsorbed on the Pt(111) than on the other two basal 

planes of platinum. This adsorption behavior explains why colloidal platinum NPs of 

tetrahedral and octahedral shape are produced when citrate is used as the capping agent in 

water. The mechanism for citrate would also operate determining the shape of other pure fcc 

metals and can inspire the engineering of future capping agents. 
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1. Introduction 

The performance of catalytic processes, such as those involved in electrochemical 

synthesis and fuel cells, depends on the way in which the desired reactions are favored on the 

accessible surfaces of key materials (the catalysts). These are usually composed of expensive 

and scarce pure metals and their alloys. Thus, to maximize the exposed surface for a given 

load of catalyst, metal nanoparticles (NPs) have been widely used in the most advanced 

catalytic systems. 1–7 In turn, the catalytic performance of metal NPs (activity and selectivity 

toward the target reaction) depends, in general, not only on their size and composition, but 

also on their specific shape, determined by the nature of the crystalline surfaces (the 

combination of terraces, steps, edges and defects) that they expose. For this reason, the 

effective application of the NPs approach to the optimization of catalysts is not a trivial task. 

On one side, the nature of the most active NPs (composition, size, and shape) has to be 

determined. On the other side, methods allowing the synthesis of the NPs, not only with the 

desired composition but also with the preferred size and shape, must be fine-tuned.8,9 As a 

counterpart, the NPs approach broadens enormously the design space for a catalyst, being 

currently considered an essential resource to solve the most challenging problems in 

sustainable chemistry and energy development. In the limit, the quantum effects, which 

emerge when small enough NPs (clusters) are approached, have to be specifically addressed 

and exploited. 

Thus, numerous efforts have been aimed to control not only the size but also the shape 

of metal NPs produced by colloidal synthesis.10,11 To achieve the desired control, capping 

agents, such as polyvinylpyrrolidone (PVP),12 hexadecyltrimethylammonium bromide 

(CTAB)13,14 or citrate15 have been extensively used in these processes. It is generally accepted 

that solvated capping agents are preferentially adsorbed on certain surfaces of the growing 

crystals, during the synthesis process, selectively limiting the relative growth rate of each 
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specific face, and eventually controlling the final shape of the produced NPs. So, for a given 

composition (via precursors) and synthesis conditions, the capping agent would determine the 

shape of the obtained NPs. Therefore, the ability of engineering specific capping agents for 

the synthesis of any desired NP of a specific shape would represent a major breakthrough in 

the area. Although the relationship between capping agents and NPs shapes has been 

previously investigated,8,9 it is still poorly understood even for the most frequently used 

capping agents and metals due to inherent research difficulties. Among these, two of them can 

be emphasized. First, colloidal processes of synthesis are not, in general, very reproducible 

because the resulting products depend on the accurate control of several parameters (such as 

precursors, temperature, pH or even purity of the capping agents), which is not always 

experimentally achievable. And, second, the detailed adsorption behavior of solvated species 

on the surfaces of particles in suspension cannot be directly established. In any case, a more 

in-depth knowledge of the mechanisms determining not only the size by also the shape of NPs 

seems essential in order to engineer future capping agents. 

Because citrate can be easily removed from many metal surfaces, which is essential to 

activate their catalytic properties, it has been extensively used as a capping agent. Citrate for 

gold NPs is by far the most investigated capping agent,16–23 though the mechanism is not still 

known in detail. Due to the fact that platinum is a much more relevant electrocatalyst, the 

relationship between citrate used as a capping agent and the shape of the colloidal platinum 

NPs to which gives rise to in water is here considered. It is known that, under certain 

conditions, citrate gives rise to platinum NPs of tetrahedral and octahedral shape in water,16,24 

but the mechanism is still poorly understood.  On conducting materials, several aspects of the 

adsorption behavior of species on surfaces can be explored by means of electrochemical 

experiments. In fact, the adsorption of solvated citrate on polycrystalline electrodes of 

platinum in water has been investigated by Electrochemical Quartz Crystal Microbalance 
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(EQCM),25 and Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) and XPS 

techniques.26 However, since adsorption properties are, in general, very dependent on the 

specific surface and site, only when well-defined surfaces are used in research, adsorption 

process on crystals, and how they operate during colloidal synthesis, can be completely 

understood. Additional features regarding adsorption processes, which are essential to 

untangle the mechanisms, can be obtained from DFT calculations. Here, using a strategic 

combination of electrochemical experiments, FTIR spectra and DFT calculations, on well-

defined surfaces, the adsorption behavior of solvated citrate on the basal planes of platinum 

(Pt(111), Pt(100) and Pt(110)) in water, under different solvation conditions, are for the first 

time established. Because on the Pt(111) electrode hydrogen and OH adsorptions in water 

take place at different potential windows, a full thermodynamic analysis of the adsorption 

properties of solvated citrate on this surface can be carried out from electrochemical 

experiments following the method previously applied to sulfate.27 However, since under 

electrochemical conditions in water the Pt(110) surface reconstructs,28 and on the Pt(100) and 

Pt(110) surfaces the hydrogen and OH adsorption processes are competitive,29,30 the approach 

followed for the Pt(111) electrode cannot be applied to these surfaces. Elements of the 

adsorption behavior of citrate on the Pt(100) and Pt(110) surfaces will be experimentally 

established by comparison with the adsorption behavior of analogs to citrate on the different 

basal planes of platinum. The reported electrochemical results under different citrate 

concentrations and pH conditions, complemented by FTIR spectra and DFT calculations, 

provide insights explaining why citrate as capping agent gives rise to colloidal platinum NPs 

with preferential tetrahedral and octahedral shape under certain conditions in water. 
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2. Methods 

Platinum single crystal electrodes were prepared from spherical single crystal beads 

obtained after the controlled fusion of a 0.5 mm diameter high purity platinum wire.31 The 

beads were mounted in a four-circle goniometer on an optical bench, oriented using the 

reflections of a laser, cut and polished along the desired orientation (miscut below 0.1º). Prior 

their use, they were flame annealed, cooled down in a reductive atmosphere (hydrogen + 

argon) and protected with a droplet of water in equilibrium with the atmosphere. It has been 

shown that this procedure leads to surfaces with the lower number of defects.32 The absence 

of the peaks at 0.125 and 0.27 V, related to the presence of defects and steps on the surface, 

and the sharp peak at 0.8 V in 0.1 M HClO4 are characteristics of a well ordered surface, with 

a miscut in the order of the nominal value.  

A glass cell equipped with a platinum counter electrode was used in all cases. For 

solutions with pH<3, a reversible hydrogen electrode (RHE) was used as a reference, 

whereas, in the remaining solutions, the reference was measured versus an Ag/AgCl 

electrode. In this latter case, the electrode potentials were converted to the RHE for 

comparison. Cyclic voltammograms were recorded at v=50 mV s−1, using a wave signal 

generator (EG&G PARC 175), a potentiostat (eDAQ 161), and a digital recorder (eDAQ e-

corder 401). All experiments were performed at room temperature. 

IR experiments were performed with a Nicolet Magna 850 spectrometer equipped with 

a MCT (Mercury–Cadmium–Telluride) detector. In this type of experiments, the cell has a 

prismatic CaF2 window beveled at 60º. 100 interferograms were collected for each spectrum 

with a resolution of 8 cm-1. P- and s-polarized light were used to discriminate between 

solution and adsorbed species. The spectra are plotted as -log(R1-R2/R1), where R2 and R1 

represent the reflectance values corresponding to the spectra recorded at the sample and 

reference potentials. The formation of new species at the sample potential (or the increase in 
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their concentration) gives rise to the appearance of positive bands in the spectra, whereas the 

negative bands are associated with a diminution of the concentration of the species.  

Solutions were prepared using Elga Purelab Ultra water (18.2 MΩ cm resistivity), 

HClO4 (Merck Suprapur), citric acid (Sigma-Aldrich ≥99.5%), sodium citrate (Sigma-Aldrich 

≥99%), NaF (Sigma-Aldrich 99.99%). Solutions were deoxygenated using with Ar (N50, Air 

Liquide). 

All DFT calculations were carried out using numerical basis sets,33 semi-core 

pseudopotentials 34 (which include scalar relativistic effects) and the PBE35 and RPBE36 

functionals as implemented in the Dmol3 code37. When considered, dispersion forces were 

corrected by the Tkatchenko and Scheffler method.38 Continuous solvation effects were taken 

into account by the COSMO model.39 The effects of non-zero dipole moments, in the 

supercells, were canceled by means of external fields.40 Proton-coupled electrons transfers 

were modeled by means of the computational hydrogen electrode formalism.41 

Being specifically developed for catalysis, it is generally assumed that RPBE provides 

a better description of adsorption on transition metals than PBE. In fact, it is known that PBE 

systematically over-bind regarding RPBE. Moreover, due to the size of the investigated 

adsorbate, it can be anticipated that the effect of the dispersion forces could become 

significant. However, the treatment of the dispersion forces under the RPBE functional is not 

supported by the aforementioned software package. In order to obtain results under the RPBE 

functional with dispersion forces, dispersion corrected estimations under the PBE functional 

were in turn corrected by the difference between calculations under the PBE and the RPBE 

functionals, both of them without considering the effect of the dispersion forces. Constant 

lattices were specifically estimated for each numerical treatment, that is, PBE, RPBE, and 

PBE-D, and the corresponding one was used in the assembling of each model.  
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The Pt(111), Pt(100) and Pt(110) surfaces were modeled by means of periodic 

supercells comprising 48 Pt atoms (four layers of metal atoms) and a vacuum slab of 20 Å. 

The bottom 24 Pt atoms were frozen in their bulk crystal locations, meanwhile the remaining 

24 Pt atoms were completely relaxed joint to the adsorbates. The shortest distance between 

periodic images was in the order of 8.50 Å for all the models. Additional details, about the 

computational methods, are provided in the Supporting Information. 

3. Results and Discussion 

3.1. Citrate adsorption on platinum from experiments. 

3.1.1. Citrate adsorption on the Pt(111) electrode 

To explore the adsorption behavior of citrate on the Pt(111) surface, voltammetric 

profiles for this electrode in 0.1 M HClO4 under different concentrations of citric acid in 

solution are displayed in Figure 1. The pH was maintained constant throughout the 

experiment by adding citric acid as a reactant. The presence of citrate in solution leads to the 

disappearance of adsorption states above 0.6 V, which are associated with the OH adsorption 

on the Pt(111) electrode in perchloric acid solution.42 Moreover, new adsorption states 

between 0.3 and 0.6 V appear upon the addition of citric acid, which are connected to citrate 

adsorption on the electrode. The hydrogen adsorption profile between 0 and 0.3 V is not 

affected by the presence of citrate. However, a small overlap between the 

adsorption/desorption process of hydrogen and citrate takes place between 0.3 and 0.4 V, 

giving rise to the formation of a small peak at 0.34 V for low citrate concentrations. This peak 

is linked to the competitive hydrogen/citrate adsorption/desorption process. As the citric acid 

concentration increases, the citrate adsorption states shift to lower potential values, increasing 

the overlap between both processes. As a result, the peak at 0.34 V shifts to lower potential 

values and increases its intensity.  
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Figure 1. Voltammetric profiles of Pt(111) electrodes in solution at 0.1 M HClO4(pH=1.2) under 
different concentrations of citric acid. Scan rate: 50 mV s-1. 

Using the electrocapillary equation for the Pt/solution interface as starting point,43 the 

voltammetric profiles obtained under different citric acid concentrations allow to determine 

the Gibbs excesses of citrate adsorbed on the Pt(111) electrode, as has been already done for 

sulfate,44,45 chloride,46,47 or phosphate48 (Complete details for the calculation of these excesses 

are provided in the Supporting Information). These surface excesses as a function of the 

charge are plotted as Figure 2A. Note that the specific nature of the adsorbed species (citrate, 

monohydrogen citrate, or dihydrogen citrate) cannot be determined from thermodynamic 

considerations only. Thus, the calculated values correspond to the accumulated excess of the 

three adsorbed species. From this plot, and using the potential vs. surface charge density for a 

given concentration displayed as Figure S1A, plots for the surface excess vs. electrode 

potential can be constructed (Figure 2B). As can be seen, the onset of the adsorption of citrate 

species is ca. 0.3 V and the maximum surface excess is ca. 3.0×1014 ions cm-2. This number 

corresponds to a surface coverage of 0.20, whose value is the same as that obtained for 

sulfate44,45,49,50 or phosphate48 on this electrode.  
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Figure 2. Surface excess for citrate adsorbed on the Pt(111) electrode vs. A) surface charge density 
and B) electrode potential for 0.1 M HClO4 solutions. 

 Although the specific nature of the adsorbed species cannot be determined from 

thermodynamic results only, the number of electrons flowing through the circuit per adsorbed 

species (charge numbers) can provide some insight into the subject. Two different charge 

numbers can be calculated from the cross differential of the electrocapillary equation:51 the 

formal partial charge at constant electrode potential l, usually known as electrosorption 

valency, and the charge number at a constant chemical potential n´, which is the reciprocal of 

the Essin-Markov coefficient (details about the calculation of these charge numbers are 

provided in the Supporting Information). Both charge numbers vs. charge and electrode 

potential are displayed as Figure 3. These charge numbers are between 3 electrons per ion at 

low coverages and 2 when the adlayer reaches the saturation, suggesting that the adsorbed 

species are citrate and monohydrogen citrate. Therefore, the adsorption reactions would be: 

 + -
6 8 7 6 5 7Pt+C H O Pt-C H O +3H +3e→  (1) 

and 

 + -
6 8 7 6 6 7Pt+C H O Pt-C H O +2H +2e→  (2) 
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Figure 3. Charge numbers (l and n’) obtained according to equations S6 and S7, respectively. 

Thus, the major adsorbed species are deprotonated, although the predominant species in 

solution is the acid form. This evidence suggests that adsorbed citric acid behaves as a 

stronger acid, with pKa values of the adsorbed species significantly smaller than that 

corresponding to the species in solution. A similar behavior has been observed for other cases, 

such as sulfate or carbonate,50,52 whose pKa for the adsorbed species is significantly smaller. 

The observed behavior in acid indicates that citrate would be the only species adsorbed on the 

surface irrespectively of the pH.  

Additional insights into the nature of the adsorbates can be obtained from pH-

dependent studies. If the adsorption process occurs according to the reactions (1) and (2) the 

equilibrium potential should shift 59 mV per pH unit, which implies that in the RHE scale, the 

adsorption process should occur at a constant potential. Note that the reactions (1) and (2) are 

only valid when citric acid is the main species in solution (that is, pH<3.13). For the pH range 

between 3.13 and 4.76, where dihydrogen citrate is the main species in solution, the 

adsorption reactions would be:  

 + -
6 7 7 6 5 7Pt+C H O Pt-C H O +2H +3e− →  (3) 

and  
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 + -
6 7 7 6 6 7Pt+C H O Pt-C H O +1H +2e− →  (4) 

and thus, the equilibrium potential should shift 40 or 30 mV per pH unit, respectively. 

Therefore, in the RHE scale, the adsorption process should shift to higher potential values. To 

verify this behavior, voltammetric profiles at different pH values were measured (Figure 4). 

By using mixtures of NaF and HClO4, the pH was maintained constant during each 

experiment due to the buffering capacity of the HF/F- acid-base equilibria (pKa=3.17).53 It can 

be observed in Figure 4 that for pH<3.13 the voltammetric profiles are almost independent of 

the pH. On the other hand, for pH=4.3 (Figure 4C) some changes are already detectable. First, 

there is a slight shift of the adsorption processes to higher potential values and the 

voltammogram is no longer symmetric with respect to the x-axis. Moreover, a significant 

shoulder, which is very prominent in the negative scan direction, appears at 0.5 V. This 

shoulder is especially evident for low citrate concentrations, suggesting an important change 

in the adsorption process.  
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Figure 4. Voltammetric profiles of the Pt(111) electrode in different solutions A) 0.01 M HClO4+ 0.09 
M NaClO4 (pH=2.2); B) 2.99×10-2 M HClO4+ 4.84×10-2 NaF (pH=2.9); and C) 0.028 M HClO4+ 0.2 
M NaF (pH=4.3) under different citric acid concentrations. Scan rate 50 mV s-1. 

For the solutions with pH<3.13, the thermodynamic analysis of the data is possible, 

since the voltammograms are symmetrical. Using the procedure previously used, surface 

excesses and charge numbers were estimated under different pH conditions (Figures 5 and 6). 

Excesses for citrate are almost pH independent, which confirms that, in the citrate adsorption 

process, the number of exchanged protons and electrons is the same. On the other hand, 

charge numbers are slightly higher for pH>2, corroborating the conclusion for pH=1.2 that the 

pKa values for the adsorbed species are significantly lower than those measured for the 
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species in solution. For pH=1.2, as the coverage increases, the number of electrons exchanges 

diminishes, suggesting that at high coverages the main adsorbed species is monohydrogen 

citrate. However, as pH increases, the major adsorbed species is citrate for the whole of the 

coverage range. 
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Figure 5. Surface excesses for citrate vs. electrode potential in different pH solutions with 1 mM citric 
acid.  
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Figure 6. Charge number (l) calculated for adsorbed citrate in different pH solutions with1 mM citric 
acid.  

These results for the Pt(111) electrode are very similar to those reported for 

Au(111).54,55 In fact, the maximum coverage obtained for adsorbed citrate on both metals is 

the same for pH<pKa (3.0×1014 ions cm-2). Additionally, the calculated charge numbers for 
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the adsorption process are also very similar, ranging between 2 and 3.54,55 The only minor 

difference is that the charge numbers close to the saturation coverage increase to values close 

to 3 on the Au(111) electrode. For the Pt(111) electrode, the completion of the adlayer occurs 

at the same potential as the onset of OH adsorption in perchloric acid solutions. Therefore, the 

thermodynamic analysis for E>0.55 V leads to an underestimation of the charge transfer 

values. From the initial state in perchloric acid solution to the final state in citrate containing 

solution at E>0.55 V, there is a reductive desorption of OH and an oxidative adsorption of 

citrate, so that the overall electron transfer is smaller than that taking place in a surface free 

from adsorbed OH.     

FTIR experiments provide additional information on the nature of the adsorbed 

species. The spectra evolution with the electrode potential for the Pt(111) electrode in acidic 

solutions containing citric acid is displayed as Figure 7. The spectrum acquired at 0.05 V was 

used as reference because no citrate was detected at this potential. Two major bands can be 

appreciated: one in the region between 1700-1650 cm-1 and other one centered at 1412 cm-1. 

The first band corresponds to the water bending mode and is related to the movement of water 

molecules in and out the thin gap between the prism and the electrode as potential changes. 

From complementary spectra and location, the second band can be related to adsorbed citrate. 

Owing to the selection rules, adsorbed species are not visible to the s-polarized light. This 

second band is not present when the spectra are taken with s-polarized light (obtained but not 

shown). Therefore, it is clearly related to adsorbed species. Being located at the onset of 

citrate adsorption (around 0.4 V), the band should be related to adsorbed citrate. In fact, the 

band at 1412 cm-1 can be assigned to the C-O symmetric stretching vibration of the COO 

group adsorbed on the electrode surface in a bidentate configuration. The same band has been 

observed for adsorbed acetate on platinum single crystal electrodes.56 Moreover, a similar 

band at 1385 cm-1 is observed for adsorbed citrate on Au(111), which has been also assigned 
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to the COO group bonded to the surface in a bidentate configuration.55 Finally, the small 

Stark tuning effect of the detected vibrational modes of adsorbed citrate (>10 cm-1 V-1) is very 

similar to that observed for other species in which the COO group is adsorbed in a bidentate 

configuration such as acetic acid or trifluoroacetic acid.56,57 

On the other hand, owing to the selection rules of the adsorbed species, only those 

vibrational modes in which the change of dipole has a component perpendicular to the surface 

are active in IR for the p-polarized light. Thus, the absence of additional bands related to 

citrate adsorption suggests that the main chain of the adsorbed species lays parallel to the 

surface. This condition could be satisfied by citrate being simultaneously bonded to the 

surface by one, two or even three of the carboxylic groups of the molecule, each one of them 

in bidentate configuration.  
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Figure 7. FTIR for the adsorbed species on the Pt(111) electrode in solutions containing 0.1 M HClO4 
10  mM citric acid (pH=1.2) for different electrode potentials. 
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3.1.2. Citrate adsorption on Pt(100) and Pt(110) electrodes. 

Because Pt(110) reconstructs in water under electrochemical conditions,28 and on 

Pt(100) and Pt(110) the hydrogen and OH adsorption processes are competitive,29,30 the 

complete experimental approach used for Pt(111) cannot be applied to Pt(100) and Pt(110). 

So, absolute coverages and charge transfer numbers cannot be determined for these surfaces. 

However, a qualitative analysis of the adsorption properties of these planes can be performed 

by comparison with other adsorbed anions. Voltammograms for Pt(100), Pt(110) and Pt(111) 

in 1 mM of citric acid, sodium chloride and acetic acid together with the blank voltammogram 

in perchloric acid are displayed as Figure 8. For the Pt(111) electrode, when the citrate 

adsorption is compared with that of acetate and chloride two significant insights can be 

drawn. First, the adsorption of citrate takes place at lower potentials than that of acetate, 

which means that the first one is stronger. Note that both species are adsorbed through 

carboxylic groups bonded to the surface in a bidentate configuration. Second, the onsets of the 

citrate and chloride adsorptions are very similar. However, the completion of the adsorbed 

layer takes place at more positive potentials for chloride (ca. 0.8 V) vs. citrate (ca. 0.5 V). 

This fact indicates that adsorbed chloride species should have strong repulsive interactions 

that hinder the final stages of the adsorption process. Although chloride transfers an electron 

upon adsorption,46 the Pt—Cl bond is likely highly polarized, generating strong repulsive 

interactions among adsorbates, which hinders the formation of a complete adlayer. 

Conversely, for adsorbed citrate, the possible formation of hydrogen bonds with water 

stabilizes the adlayer. 

For Pt(100) and Pt(110), the presence of specifically adsorbed anions (citrate, acetate 

or chloride) results in the appearance of well-defined peaks in the voltammograms, which are 

related to the competitive adsorption of hydrogen and the specifically adsorbed anion. At 

positive potentials to the peak anions are adsorbed, whereas at negative potentials the surface 
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is covered by hydrogen. Thus, the position of the peak reflects the interaction strength of the 

anion with the surface. Therefore, the specific order of interaction strength for the analyzed 

anions on the different basal planes of platinum is:   

Pt(111): Chloride≈citrate>acetate 

Pt(100): Chloride>citrate>acetate 

Pt(110): Chloride≈citrate>acetate 
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Figure 8. Voltammetric profiles of platinum basal planes at 0.1 M HClO4 with the addition of 1 mM 
of citric acid, NaCl, and acetic acid. Scan rate: 50 mV s-1. 
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 Additionally, FTIR spectra for adsorbed citrate was recorded for the Pt(100) and 

Pt(110) electrodes. The measured spectra are very similar to those measured for the Pt(111) 

electrode and only the bands at ca. 1410 cm-1 and those related to water are observed, 

indicating that the citrate species are boded through the carboxylic groups. The only major 

difference with the spectra of the Pt(111) electrode is the onset for the detection of the band at 

1410 cm-1, which coincides with the onset for citrate adsorption of each electrode.  

 

3.2. Citrate adsorption on platinum from DFT calculations.  

Considering the experimentally derived insights regarding citrate adsorption on 

platinum, chemisorbed states of citrate on the different basal planes of platinum (Pt(100), 

Pt(110) and Pt(111)), after one, two and three proton-coupled electron transfers (PCETs), 

with the main chain of the adsorbate laying parallel to the surface and each one of the 

dehydrogenated carboxylic groups simultaneously bonded to the surface in bidentate 

configuration, were searched for using DFT. For each significant configuration found, the free 

energy (∆G) and the resultant equilibrium potential (E) were calculated using the 

corresponding electrode reaction:  

 6 8 7 6 7 7 2Pt+C H O Pt-C H O +1 2H→  (5) 

 6 8 7 6 6 7 2Pt+C H O Pt-C H O + H→  (6) 

 6 8 7 6 5 7 2Pt+C H O Pt-C H O +3 2H→  (7) 

The most favorable configurations found after each number of PCETs on each one of 

the basal planes of platinum are displayed in Table S1, whereas the corresponding energies 

and electrode potentials are collected in Table 1 (details about energetic calculations are 

provided in the Supporting Information). Additionally, the most relevant of the obtained 

chemisorbed states of citrate on the different basal planes of platinum (those binding the 
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higher number possible of carboxylic groups to the surface in bidentate configuration) are 

summarized as Figure 9. After a single PCET, chemisorbed states of citrate satisfying the pre-

established conditions were found on each one of the basal planes of platinum (Table S1). 

From Table 1, it can be concluded that these adsorption processes (through a single 

dehydrogenated carboxylic group bonded to the surface in bidentate configuration after a 

single PCET) are very favorable on platinum, given that ∆G values are between -0.19 and -

0.73 eV, which correspond to equilibrium electrode potentials between -0.19 and -0.73 V, 

depending on the surface. 

  After two PCETs, plausible chemisorbed states of citrate satisfying the pre-

established conditions were also found on each one of the basal planes of platinum (Table S1 

and Figures 9A-B).  In Table 1 can be observed that, under electrochemical conditions, citrate 

can be also adsorbed on platinum through two dehydrogenated carboxylic groups 

simultaneously, each one of them in bidentate configuration. For the Pt(100) and Pt(110) 

surfaces, the calculated potentials for these adsorption process are lower than those 

corresponding to the onset of hydrogen desorption on those planes (ca. 0.20 and 0.1 V, 

respectively). Thus, citrate must compete with hydrogen for the adsorption sites, giving rise to 

sharp and intense peaks, as those observed in Figure 8. For the Pt(111) surface, the calculated 

potential for the onset of citrate adsorption in the bidentate configuration coincides with the 

final stages of hydrogen desorption (ca. 0.35 V), originating the peak at ca. 0.3 V observed in 

Figure 1.  

Finally, after three PCETs, possible chemisorbed states of citrate satisfying the pre-

established conditions were only found on the Pt(111) surface (Figure 9C). The reason for 

that would be the next one. Given the bond strength of a dehydrogenated carboxylic group 

adsorbed on platinum in bidentate configuration, the rigidity of the backbone of the 

considered adsorbate, and the specific layouts of the platinum atoms exposed by the Pt(100) 
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and Pt(110) surfaces, an additional pair of platinum atoms to simultaneously bond the third 

carboxylic group in bidentate configuration is not accessible on these surfaces. Note that 

citrate would be already adsorbed on the surface through two dehydrogenated carboxylic 

groups simultaneously, each of them in bidentate configuration, However, on Pt(111), the 

atoms exposed by the surface are arranged in such a way as to enable the simultaneous 

adsorption of the three dehydrogenated carboxylic groups of citrate, each one of them in 

bidentate configuration. This adsorption mode has been already proposed for citrate on 

Au(111) analyzing STM images58 or FTIR spectra.55 However, other results indicate that 

dihydrogen citrate would be adsorbed in acid and neutral conditions, mainly in a monodentate 

configuration.59 Those results were obtained using ex-situ conditions, in which water and bulk 

citrate species were removed from the sample. The elimination of water and citrate species 

may have altered the interfacial equilibria and the adsorption modes of citrate species, 

explaining the observed differences with the results presented here. 

From the energetic in Table 1, it can be concluded that, under electrochemical 

conditions, citrate can be adsorbed on platinum through three dehydrogenated carboxylic 

groups simultaneously, each one of them in bidentate configuration, only on the Pt(111) 

surface at 0.54 V of potential (∆G 1.63 eV), which coincides with the final stages of the 

adsorption process experimentally observed. 

 

   

Figure 9. Adsorbed citrate on Pt(100) (A), Pt(110) (B) and Pt(111) (C) for the most favorable 
configuration found among those binding the higher number possible of carboxylic groups to the 
surface in bidentate form.  
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 Pt(100) Pt(110) Pt(111) 

∆G/eV E/V ∆G/eV E/V ∆G/eV E/V 

1 PCET -0.25 -0.25 -0.73 -0.73 -0.19 -0.19 

2 PCETs 0.24 0.12 -0.51 -0.26 0.66 0.33 

3 PCETs - - - - 1.63 0.54 

Table 1. Energetics (free energy ∆G and electrode potential E) of the adsorption processes of citrate 
on the different basal planes of platinum after one, two and three proton-coupled electron transfers 
(PCETs) under the dehydrogenated carboxylic groups bonded to the surface in bidentate configuration 
conditions. 

3.3. Relationship between citrate and the shape of platinum colloidal NPs. 

Because the adsorption behavior under electrochemical conditions can be related to 

the adsorption behavior in solution, the full set of the experimental and computational results 

reported here can be considered a consistent and reliable description of the adsorption 

properties of citrate on the different basal planes of platinum in water. The FTIR results prove 

that citrate can be strongly adsorbed on the Pt(111) surface in water through dehydrogenated 

carboxylic groups in bidentate configuration. This observation is consistent with the previous 

insight that the adsorption of acids lowers their pKa, favoring their deprotonation. 

Moreover, the charge numbers estimated from experiments point out that citrate can 

be adsorbed on the Pt(111) surface in water through two and three dehydrogenated carboxylic 

groups simultaneously, each one of them in bidentate configuration. The evidence supporting 

this assessment is multiple. First, plausible chemisorbed states of citrate on Pt(111) after two 

and three PCETs under the pre-established conditions were found using DFT. Second, the 

equilibrium potentials estimated from DFT for the citrate adsorption on Pt(111) are 

completely consistent with the experiments. Third, FTIR results indicate that the main chain 

of the adsorbed species lays parallel to the surface, a condition satisfied by all the found 

chemisorbed states. Finally, the simultaneous adsorption of the three carboxylic groups has 

been already proposed for citrate on the Au(111) electrode. It should be taken into account 

that nanoparticle synthesis is generally carried out in solutions where citrate is the main 
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species in solution. Under these conditions, and, owing to the higher Ka values of the 

adsorbed species, the only possible species adsorbed on the surface is citrate. Additionally, 

the adsorption isotherm show negligible dependence on the pH (figure 5). All these facts 

justify the extrapolation of the results obtained under acidic conditions to solutions with 

higher pH values.  

On the other hand, as aforementioned, pieces of evidence of the adsorption modes of 

citrate on Pt(100) and Pt(110) cannot be directly obtained from experiments. However, on the 

one side, the comparison of the computational results obtained on Pt(111) with those obtained 

on Pt(100) and Pt(110) allows reasonably to establish that citrate can also be adsorbed on the 

Pt(100) and Pt(110) surfaces in water through two dehydrogenated carboxylic groups 

simultaneously, each one of them in bidentate configuration. On the other side, possible 

configurations of citrate adsorbed though three dehydrogenated carboxylic groups 

simultaneously, each one of them in bidentate configuration, could not be found on the 

Pt(100) and Pt(110) surfaces and, what is the most important, overwhelming geometric 

reasons have been given for that. 

Additionally, the relative adsorption strength of each anion on each basal plane of 

platinum has been experimentally determined. It is found that citrate is more strongly 

adsorbed on all the platinum surfaces than acetate, which fact can be now easily explained.  

Because citrate can be adsorbed on these planes through two dehydrogenated carboxylic 

groups simultaneously, each one of them in bidentate configuration, instead of only one of 

them (the single one present in acetate), it is more strongly adsorbed than acetate. 

Unfortunately, the relative adsorption strength of citrate among the different basal planes of 

platinum could not be determined from qualitative comparisons. 

At any case, the relevance of the adsorption mode of citrate in which the three 

carboxylic groups are simultaneously bonded to the surface in bidentate configuration, on the 
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Pt(111) surface, under certain synthesis conditions, can be established from the here reported 

results. On one side, according to our experimental and computational results, this adsorption 

mode of citrate on the Pt(111) surface under electrochemical conditions is favorable above ca. 

0.5 V. On the other side, Pt nanoparticles are usually synthesized from [PtCl4]
2+, whose 

standard potential for the reduction to Pt0 is 0.73 V, which implies that Pt(II) ions are reduced 

at potentials below this value. The exact potential reached for the reduction process during the 

synthesis process will depend on the nature of the reductant species and the concentrations of 

this one and Pt(II) ions. However, it is clear that the lower the potential, the faster the 

reduction process will be. Thus, under controlled conditions, giving rise to low Pt reduction 

rates, the effective potential reached during the synthesis process will be close to the standard 

value, 0.73 V, ensuring the adsorption of citrate through the three carboxylic groups.  

The detected adsorption behavior differences between the Pt(111) surface and the 

other two basal planes of platinum explain why colloidal nanoparticles of tetrahedral and 

octahedral shape are preferentially produced under certain conditions when citrate is used as 

the capping agent in water. If the shape of the NPs were determined only by the 

thermodynamics, all the NPs of fcc metals synthesized in absence of capping agents would 

have a cubo-octahedral shape (exhibiting (100) and (111) facets), since this configuration 

minimizes the surface energy.60,61 This cubo-octahedral shape, and, more specifically, the 

ratio of (111) and (100) facets in the equilibrium shape, is determined by the relative surface 

energy of the (111), (100) and (110) planes. This ideal shape is difficult to obtain, because the 

growing process of the crystals is also affected by the kinetics.23 It is generally accepted that a 

freshly deposited atom moves on the surface of the NP until it reaches a location where the 

energy is minimized. Under fast deposition conditions, the simultaneous interaction among 

several wandering atoms and the surface can trap them in sub-optimal locations, resulting in 
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rounded NPs without well-defined facets. Only under very controlled deposition conditions, 

NPs can attain a shape very close to his equilibrium shape, that is, the cube-octahedral shape.  

The presence of capping agents modifies the thermodynamics and kinetics of the 

process, and under slow and controlled conditions, a preferential shape can be induced.61 

First, this equilibrium shape is determined by the relative surface energy of the different 

planes, and the presence of adsorbed species on them modifies the relative values of the 

planes. For the (111) plane, citrate bonds to 6 Pt surface atoms, implying a higher diminution 

of the surface energy than that obtained for the other two basal planes, where citrate only 

bonds to 4 atoms. Then, the lower energy of the (111) plane with respect to the (100) and 

(110) planes implies that the equilibrium shape of the nanoparticle would tend to have a 

higher ratio of (111) facets and a shape close to the perfect octahedral. On the other hand, 

kinetics effects can also operate on the mechanism. When the initial seed of the NP is formed, 

the small size of the nanocrystal (without well-defined facets) only allows the adsorption of 

citrate through a single carboxylic group. However, as the nanocrystal grows, the possible 

interaction of the free carboxylic groups of an adsorbed citrate with a Pt atom in the solution 

close to the surface will favor is faster deposition in a location that can be favorable for both 

the adsorbate and the substrate. Being the interaction of citrate larger on the Pt(111) surface, 

the described mechanism favors the formation of (111) facets, which leads to platinum NPs of 

tetrahedral and octahedral shape. 

As aforementioned, the results obtained here for adsorbed citrate on platinum virtually 

match those reported for gold. In fact, the experimental evidence suggests that the adsorption 

behavior of different anions on the different fcc metals is almost identical. The examples in 

the literature are numerous. For instance, the adsorption of sulfate on (111) surfaces is similar 

for Pt, Rh, Au, Ir, Pd, Ir or Cu 62–68. On all these surfaces, an identical rotated √3×√7 surface 
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structure is observed for the adlayer of sulfate. Thus, it seems reasonable to assume that the 

here identified mechanism for citrate should also operate at least on pure fcc metals.  

Finally, from the results reported here, a possible design principle for capping agents 

seems to emerge. To produce preferentially NPs of any shape, the adsorption modes of the 

capping agent on the different surfaces exposed by the growing crystals have to be 

thermodynamically and/or kinetically different enough. For certain adsorbable motifs and 

metals, such as the ones considered in this research (the carboxylic group on platinum), 

simple capping agents including a single adsorbable functional group would not be capable of 

giving rise to adsorption modes different enough. However, by incorporating several 

instances of a same absorbable motif to the supporting backbone of a more structurally 

complex capping agent, different enough adsorption modes can be potentially originated, 

depending on the specific surfaces exposed by the material. On the one side, bonding several 

functional groups to the surface, adsorption energies can potentially be increased. On the 

other side, the stretching, torsion, and bending of the backbone, required to enable the 

adsorption, would diminish them. Therefore, the final balance would depend on the specific 

surface exposed by the material. 

 

4. Conclusions 

The performance of advanced catalytic systems depends not only on the size and 

composition but also on the specific shape of the metal NPs from which many of them are 

assembled. Moreover, the shape of colloidal NPs depends on the substance used as the 

capping agent during their synthesis process. In turn, the action of capping agents is 

determined by their adsorption behavior on the different facets of the growing crystals whose 

shape they control. Unfortunately, the detailed adsorption properties of solvated species on 

the surfaces exposed by particles in suspension cannot be directly established. However, here 
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it is demonstrated that, from a careful combined reading of electrochemical experiments, 

FTIR spectra and DFT calculations, on well-defined surfaces, the adsorption behavior of 

capping agents on the surfaces exposed by metal NPs, during their synthesis process, can be 

reliably determined in sufficient detail to allow reasoning about the relationship between 

capping agents and NPs shapes. It is found that, because solvated citrate can become adsorbed 

on the Pt(111) surface through three dehydrogenated carboxylic groups simultaneously, each 

one of them in bidentate configuration, instead of only two, under the synthesis conditions, its 

interaction is stronger on the Pt(111) surface than on the other two basal planes of platinum. 

Although the experiments have been conducted in acid media, where the main bulk species is 

the citric acid, the adsorbed species is citrate, owing to the higher Ka values of adsorbed 

species. Thus, in neutral media, the described adsorption behavior explains why platinum 

colloidal nanoparticles of tetrahedral and octahedral shape are preferentially produced under 

certain conditions when citrate is used as the capping agent in water. But, the effort of 

untangle the mechanisms provides additional returns. From the understanding of the described 

mechanism regarding citrate, it can be reasoned that it should also operate determining the 

shape on other pure fcc metals. Additionally, the conceptualization of the identified 

mechanism suggests a design strategy which contributes to pave the way toward the 

engineering of specific capping agents for specific NP shapes. Finally, the way in which 

experimental and computational methods are here combined to determine adsorption 

properties of solvated species on particles in suspension could inspire future research. 
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