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Abstract 

Nicotine (NIC), the main psychostimulant compound of smoked tobacco, exerts 

its effects through activation of central nicotinic acetylcholine receptors 

(nAChR), which become up-regulated after chronic administration. Recent work 

has demonstrated that the recreational drug 3,4-methylenedioxy-

methamphetamine (MDMA) has affinity for nAChR and also induces up-

regulation of nAChR in PC 12 cells. Tobacco and MDMA are often consumed 

together. In the present work we studied the in vivo effect of a classic chronic 

dosing schedule of MDMA in rats, alone or combined with a chronic schedule of 

NIC, on the density of nAChR and on serotonin reuptake transporters. MDMA 

induced significant decreases in [3H]paroxetine binding in the cortex and 

hippocampus measured 24 h after the last dose and these decreases were not 

modified by the association with NIC. In the prefrontal cortex, NIC and MDMA 

each induced significant increases in [3H]epibatidine binding (29.5 and 34.6%, 

respectively) with respect to saline-treated rats, and these increases were 

significantly potentiated (up to 72.1%) when the two drugs were associated. 

Also in this area, [3H]methyllycaconitine binding was increased a 42.1% with 

NIC+MDMA but not when they were given alone. In the hippocampus, MDMA 

potentiated the α7 regulatory effects of NIC (raising a 25.5% increase to 52.5%) 

but alone was devoid of effect. MDMA had no effect on heteromeric nAChR in 

striatum and a coronal section of the midbrain containing superior colliculli, 

geniculate nuclei, substantia nigra and ventral tegmental area. Specific 

immunoprecipitation of solubilised receptors suggests that the up-regulated 

heteromeric nAChRs contain α4 and β2 subunits. Western blots with specific α4 

and α7 antibodies showed no significant differences between the groups, 

indicating that, as reported for nicotine, up-regulation caused by MDMA is due 

to post-translational events rather than increased receptor synthesis. 

 

Keywords: MDMA; ecstasy; up-regulation; nicotinic; nicotine; epibatidine 
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1. Introduction 

 

3,4-Methylenedioxy-methamphetamine (MDMA, ecstasy) is an amphetamine 

derivative used illicitly in developed countries for recreational purposes, usually 

by young people in night clubs and at extended dance parties (known as raves).  

 

A number of fatalities have been reported after acute consumption of this drug 

but there also exists experimental evidence that chronic MDMA can induce 

serotonergic and, to a lesser extent, dopaminergic neurotoxicity in rats and 

primates (see Capela et al. (2009) for a review). Also, serotonergic (Erritzoe et 

al., 2011; Reneman et al., 2002) and cognitive (Adamaszek et al., 2010; Nulsen 

et al., 2010; Parrott et al., 1998; Quednow et al., 2006) deficits have been 

reported in human chronic MDMA users, which could be due to neurotoxicity or 

to drug-induced long-lasting regulatory changes (Biezonski and Meyer., 2011). 

 

The neurotoxicity of amphetamine derivatives can be a consequence of 

coordinated oxidative stress, metabolic compromise and inflammation (see 

Capela et al., 2009 and Yamamoto and Raudensky, 2008 as reviews), and we 

have recently reported that neuronal acetylcholine nicotinic receptors (nAChR), 

mainly the homomeric α7 subtype, also play a key role in MDMA-induced 

neurotoxicity as the blockade of these receptors by the antagonists 

methyllycaconitine (MLA) or memantine prevents in vitro and in vivo MDMA-

induced neurotoxicity (Chipana et al., 2006, 2008a, 2008b, 2008c) as well as 

cognitive impairment in rats (Camarasa et al., 2008). Also, using radioligand 

binding experiments, we have demonstrated that MDMA has affinity for both 

homomeric and heteromeric nAChRs and behaves as a partial agonist at α7 

nAChR (Chipana et al., 2008b, 2008c; Garcia-Rates et al., 2007, 2010).  

 

NAChR are a family of ligand-gated cation channels widely distributed in the 

brain and the peripheral nervous system, whose subunit composition and 

signalling effects depend on subtype and localisation (Albuquerque et al., 2009; 

Gotti et al., 2007). They exert a number of effects on brain functions, involving 

fast synaptic transmission, cognitive enhancement, memory or reinforcement, 

and they are the main target of smoked nicotine. In the brain, nAChRs are 
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pentameric structures formed by the association of  and  subunits and can be 

either homomeric or heteromeric. The homomeric family is made up of the α7- 

α10 subunits and is sensitive to α-bungarotoxin (αBgTx), while the heteromeric 

receptors consist of combinations of α2- α6 and β2-β4 subunits, and are 

insensitive to αBgTx. Of these combinations, the most abundant are homomeric 

α7 and heteromeric (α4)2(β2)3 receptors. A particular feature of some nAChR 

subtypes is that, after chronic nicotine exposure, they undergo radioligand 

binding up-regulation, changes in stoichiometry and increase in their functional 

state (functional up-regulation) (reviewed by Gaimarri et al., 2007). Such up-

regulation occurs at a post-translational level and several mechanisms have 

been proposed to explain it, including a chaperone-like maturation enhancing 

effect of nicotine (Lester et al., 2009; Kuryatov et al., 2005; Sallette et al., 2005; 

Srinivasan et al., 2011;) and stabilisation of the high-affinity state of the 

receptors (Vallejo et al., 2005). Moreover, nAChR play a key role in addiction to 

nicotine (Govind et al., 2009), so up-regulation could enhance addiction to 

nicotine by increasing the pleasant effects of the drug. 

 

In a previous study on PC12 cells, we demonstrated that MDMA pretreatment 

induces in vitro up-regulation of both homomeric and heteromeric receptors 

(Garcia-Rates et al., 2007) through a mechanism that seemed to mimic that of 

nicotine. Then it was of interest to assess whether MDMA induces nAChR up-

regulation in vivo as well, as changes in these receptors could have a role in 

drug addiction and explain some psychiatric effects of this drug, such as 

memory impairment and psychoses, among others in which nAChRs have been 

found to play a role (Levin et al., 2002; Martin et al., 2004; Ripoll et al., 2004). 

  

Consequently, the aim of this study was to determine whether treatment with 

MDMA induces in vivo nAChR up-regulation and, moreover, to investigate 

whether it affects or potentiates the up-regulatory effects of nicotine, as MDMA 

and tobacco are very often associated (Scholey et al., 2004) and this could 

have implications on the addiction induced by both drugs.  
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2. Material and Methods 

 

2.1 Drugs and radioligands 

 

MDMA hydrochloride, obtained from the National Health Laboratory (Barcelona, 

Spain), was dissolved in saline (0.9% NaCl). Nicotine bitartrate dihydrate, 

purchased from Sigma-Aldrich (St. Louis, MO, USA), was also dissolved in 

saline. [3H]MLA came from American Radiolabeled Chemicals (St. Louis, MO, 

USA), while [3H]paroxetine, and [3H]epibatidine came from Perkin-Elmer 

(Boston, MA, USA). All buffer reagents were of analytical grade and purchased 

from several commercial sources. 

 

2.2 Animals and treatment 

 

The experimental protocols for the use of animals in this study follow the 

guidelines set out by the European Communities Council (86/609/EEC) and 

were supervised by the ethics committee of the University of Barcelona. Male 

Sprague-Dawley rats weighing 200-230 g (Harlan Ibérica, Barcelona, Spain) 

were used. They were housed at 21ºC ± 1ºC under a 12 h light/dark cycle with 

free access to food and drinking water.  

 

At the beginning of the treatment they were housed one per cage and a 

combined nicotine and MDMA dosing schedule was carried out for 10 days as 

follows. Six animals were used in each treatment group. The control (Ctrl) group 

received saline (1 ml/kg s.c.) twice daily (7-h interval) for the 10 days; the 

nicotine (NIC) group received 2 mg/kg nicotine bitartrate dihydrate (s.c.) twice 

daily (7-h interval) for 10 days (Flores et al., 1992); the MDMA group was given 

saline (s.c.) twice a day from days 1 to 6, and 20 mg/kg MDMA (s.c., b.i.d., 7-h 

interval) from days 7 to 10 (Battaglia et al., 1987). The MDMA+NIC group 

received nicotine bitartrate for the 10 days as stated for the NIC group, and 

MDMA (same dosing as above) was also injected during the last 4 days, 15 

min. after nicotine and at a different puncture site. The rats were weighed at 

days 1, 4, 6 and 11 and the percentage increase calculated throughout the 

treatment. 
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The rats were killed by decapitation under isoflurane anaesthesia on day 11. 

The brains were rapidly removed from the skull and dissected on a refrigerated 

surface. Prefrontal and parietal cortex, striatum, hippocampus, and a coronal 

block delimited by the thickness of superior colliculi, after removal of cortex and 

hippocampus (contains the colliculi, the geniculate nuclei, the substantia nigra 

and the ventral tegmental area, VTA), were excised, frozen on dry ice and 

stored at -80ºC until use. 

 

These areas were selected on the basis of their abundance in the different 

types of nAChR, ease to be dissected and the amount of protein to perform 

binding assays in homogenates. Thus heteromeric nAChR were measured in 

cortex, striatum and the section containing the colliculi, as they express high 

levels of these receptors. As for α7 nAChR, they were assessed in the 

hippocampus (where they are more abundant and there are low levels of α4β2) 

and in the cortex as well (Tribollet et al., 2004). 

 

2.3 Tissue processing 

 

When required, tissue samples were thawed and homogenised at 4ºC in 10 

volumes of buffer consisting of 5 mM Tris-HCl, 320 mM sucrose, and protease 

inhibitors (aprotinin 4.5 µg/µl, 0.1 mM phenylmethylsulfonyl fluoride, and 1 mM 

sodium orthovanadate), pH 7.4, with a Polytron homogeniser. The 

homogenates were centrifuged at 15,000 x g for 30 min at 4ºC. The resulting 

pellets were resuspended in fresh buffer, incubated 5 min at 37ºC to degrade 

remaining endogenous ligands and recentrifuged twice. The final pellets of 

membrane homogenates were resuspended in 50 mM Tris-HCl buffer (plus 

protease inhibitors) and stored at -80ºC until use in radioligand binding assays 

or receptor solubilisation for Western blotting or immunoprecipitation. Protein 

content was determined using the Bio-Rad Protein Reagent (Bio-Rad Labs., 

Inc., Hercules, CA, USA), according to the manufacturer’s instructions. 
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2.4 [3H]Paroxetine binding 

 

The density of serotonin transporters (SERT) in each rat’s cortex and 

hippocampus was determined to assess the serotonergic changes/neurotoxicity 

induced by MDMA (Pubill et al., 2003). This was accomplished by measuring 

the specific binding of 0.05 nM [3H]paroxetine after incubation with 150 µg 

protein at 25ºC for 2 h in a Tris-HCl buffer (50 mM, pH 7.4), containing 120 mM 

NaCl and 5 mM KCl to a final volume of 1.6 ml. Clomipramine (100 µM) was 

used to determine non-specific binding.  

 

2.5 [3H]MLA binding  

 

Binding of 2 nM [3H]MLA to label α7 nAChRs was performed in duplicates for 

each rat and brain area as described by Davies et al.(1999). Membrane 

homogenates (250 μl containing 200 μg protein) were incubated with the 

radioligand in glass tubes in a final volume of 0.5 ml for 2 h at 4ºC. Incubation 

buffer consisted of 50 mM Tris–HCl, 120 mM NaCl, 2 mM CaCl2, 1 mM MgSO4 

and 0.1% bovine serum albumin. Non-specific binding of each animal/area was 

determined from tubes containing 1 μM unlabelled MLA to be subtracted from 

total binding values. Incubation was terminated by rapid filtration and bound 

radioactivity counted as described below. 

 

2.6 [3H]Epibatidine binding  

 

[3H]Epibatidine binding was used to label heteromeric nAChRs. Binding was 

measured for each rat and brain area in glass tubes containing 1 nM 

[3H]epibatidine and 200 μg of membrane homogenates in buffer (50 mM Tris-

HCl plus protease inhibitors) to a final volume of 0.5 ml. Incubation was carried 

out for 2 h at 25ºC. Non-specific binding was determined in the presence of 300 

μM nicotine. Binding was terminated by filtration and data were treated as 

described below. 
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2.7 Bound radioligand separation and counting 

 

For all radioligand binding experiments, incubation was finished by rapid 

filtration under vacuum through GF-B glass fibre filters (Whatman, Maidstone, 

UK) pre-soaked in 0.5% polyethyleneimine. Tubes and filters were rapidly 

washed four times with 4 ml of ice-cold buffer, and the radioactivity trapped was 

measured by liquid scintillation spectrometry. Specific binding was calculated as 

the difference between the radioactivities measured in the absence (total 

binding) and in the presence (non-specific binding) of the excess of non-labelled 

ligand. 

 

2.8 Receptor solubilisation and radioimmunoprecipitation 

 

Aliquots of tissue homogenates were centrifuged at 15,000 x g for 30 min at 

4ºC. The supernatants were discarded and the pellets were resuspended in an 

appropriate volume of ice-cold solubilisation buffer consisting of 20 mM Tris HCl 

pH 8, 137 mM NaCl, 2 mM EDTA, 1% Nonidet P-40, 4.5 µg/µl aprotinin and 0.1 

mM phenylmethylsulfonyl fluoride. The receptors were solubilised by incubation 

for 2 h at 4ºC under gentle rotation. Thereafter, the samples were centrifuged at 

15,000 x g for 30 min at 4ºC and the supernatants containing solubilised 

receptors were stored at -80ºC after determination of protein content using the 

Bio-Rad Protein Reagent and bovine serum albumin standards prepared in the 

same dilution of solubilisation buffer, in order to compensate for the reaction 

with the buffer detergent. 

 

Immunoprecipitation of receptors containing 4 and 2 subunits was performed 

as described by Turner and Kellar (2005) with some modifications. Rabbit 

polyclonal antibody anti-nAChR 4 subunit was purchased from Abcam 

(Cambridge, UK) and rat monoclonal anti-nAChR 2 subunit, clone mAb290 

was obtained from Sigma-Aldrich (St. Louis, MO, USA). Aliquots of solubilised 

receptors containing 300 μg protein were added to sample tubes containing 1.5 

nM [3H]epibatidine and 1 µg of either one of the subunit-specific antibodies or 

the same volume of normal rabbit serum (supplied by the animal facilities 
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service of the Faculty of Pharmacy, University of Barcelona) in the case of 4 or 

rat normal IgG (Invitrogen Corp., Carlsbad, CA, USA) in the case of 2, in order 

to determine non-specific immunoprecipitation. The optimal antibody 

concentration (1 µg) was obtained from pilot experiments, and 1.5 nM 

[3H]epibatidine was chosen to ensure the occupation of nearly all the 

heteromeric receptors. The final volume of each test tube was 180 µl. The 

samples were incubated overnight at 4ºC under gentle rotation and then 25 µl of 

a slurry of either Protein A-agarose or Protein G Plus-Agarose (Santa Cruz 

Biotechnology, Inc.) was added to each tube for 4 or 2 antibody precipitation, 

respectively. The rotation of the samples was continued for an additional hour. 

The samples were then centrifuged at 7,000 x g for 5 min. and the supernatants 

carefully removed. The pellets were washed with 0.75 ml of cold 50 mM Tris-

HCl buffer pH 7.4 and recentrifuged. The supernatants were discarded and the 

immunoprecipitate pellets were dissolved in 100 µl of 1 N NaOH, transferred to 

scintillation vials and the radioactivity counted in a liquid scintillation counter 

after addition of liquid scintillation fluid (Ultima Gold MV, Perkin Elmer, Boston, 

MA, USA). The counts precipitated in tubes containing normal rabbit serum or 

rat IgG, which were used as control for non-specific precipitation, were 

subtracted from the counts obtained in the presence of the specific antibody, in 

order to calculate specific immunoprecipitation. 

 

Total epibatidine binding was measured in parallel samples, incubated under 

the same conditions but without antibody and agarose beads. After overnight 

incubation they were filtered through Whatman GF-B glass fibre filters that had 

been pre-wet with 0.5% polyethyleneimine, using a cell harvester (Perkin Elmer 

filter mate), followed by four 1 ml washes. The radioactivity trapped on the filters 

was measured by liquid scintillation spectrometry as above. Non-specific 

binding was determined from tubes containing 300 µM nicotine. 

 

2.9 Western blotting and immunodetection 

 

A general Western blotting and immunodetection protocol was used to 

determine 4 and 7 subunit levels in the protein extracts. For each sample, 40 
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μg of protein was mixed with sample buffer (62.5 mM Tris-HCl, pH 6.8, 10% 

glycerol, 2% (w/v) SDS, 5% (v/v) 2-β-mercaptoethanol, 0.05% bromophenol 

blue, final concentrations), boiled for 10 min, and loaded onto a 10% 

polyacrylamide gel. Proteins were separated by electrophoresis until the elution 

of the migration front and transferred from gels to polyvinylidene fluoride sheets 

(Immobilon-P; Millipore, Billerica, MA, USA). These sheets were then blocked 

for 1 h at room temperature with 5% defatted milk in Tris-buffered saline buffer 

plus 0.05% Tween 20 (TBS-T buffer) and incubated overnight at 4ºC with either 

rabbit polyclonal antibody against α7 subunit (ab23832) or rabbit polyclonal 

anti-α4 subunit (ab41172), both purchased from Abcam (Cambridge, UK) and 

used at a 1:1000 dilution in TBS-T buffer plus 5% defatted milk. Thereafter, 

membranes were washed with TBS-T buffer and incubated for 45 min with 

peroxidase-conjugated secondary antibody (donkey anti-rabbit IgG, 1:20,000 

dilution; GE Healthcare, Buckinghamshire, UK,).  

 

Immunoreactive protein was visualised using a chemoluminescence-based 

detection kit following the manufacturer’s protocol (Immobilon Western, 

Millipore, Billerica, MA, USA) and a BioRad ChemiDoc XRS gel documentation 

system (BioRad Labs., Hercules, CA, USA). Apparent molecular weight bands 

corresponding to the target proteins were 56 kDa for α7 subunit and 70 kDa for 

α4 subunit. Scanned blots were analysed using BioRad Quantity One software. 

Immunodetection of -actin (mouse monoclonal anti -actin antibody, Sigma, 

St. Louis, USA; dil.1:2500) served as a control of load uniformity for each lane 

and was used to normalise differences due to protein content. The -actin band 

appeared at a molecular weight of approximately 42 kDa. The α7 and α4 levels 

are expressed as a percentage of those obtained from saline-treated animals.  

 

2.10 Statistical Analysis 

 

All data are expressed as mean ± standard error of the mean (S.E.M.) of the 

values obtained for each treatment group. Two-way analysis of variance 

(ANOVA) for repeated measures was used to analyse the effect of the 

treatment in the temporal evolution of body weight gain. The rest of statistical 

comparisons were made using one-way ANOVA (two-tailed). Significant 
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(P<0.05) differences were then analysed by Tukey’s post-hoc test for multiple 

means comparisons, where appropriate. All statistic calculations were 

performed using PASW Statistics v-18 (SPSS software, IBM, New York, USA).  

 

3. Results 

 

3.1 Effect of treatment on body weight gain 

 

Figure 1 depicts the evolution of body weight in the different treatment groups. 

As can be seen, the main differences among the groups start at the point that 

MDMA was introduced. The two-way ANOVA analysis for repeated measures 

reported significant differences in the effects of the treatment  (F3,21= 5.77, 

P<0.01) and during the days of treatment (F3,21= 18.93, P<0.001).  At day 11, 

the MDMA group significantly had gained less weight than saline (P<0.01) and 

the MDMA+NIC group had gained even less weight than the MDMA group 

(P<0.001 vs. saline), although differences between these two groups did not 

reach statistical significance. No significant differences were found between 

NIC- and saline-treated animals.  

 

3.2 Effects of treatment on serotonin transporter density 

 

Binding of [3H]paroxetine was performed in the parietal cortex and hippocampus 

in order to assess the possible deleterious effect of drug treatment on 

serotonergic terminals. Results are presented in table 1. In the cortex, a 

significant decrease (around 70%) in [3H]paroxetine binding was found in 

MDMA-treated animals (P<0.001 vs. saline), while NIC did not modify these 

levels. In the hippocampus, the decrease in binding was more modest (around 

20%) and it was not modified by nicotine either. 
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Table 1 
Binding of [3H]paroxetine to membranes from parietal cortex (pCTX) and 
hippocampus of rats treated with saline (control), MDMA, NIC or the 
combination of NIC+MDMA, as stated in 2. Results are expressed as the 
percentage of the specific binding obtained in control rats and they are the 
mean ± S.E.M. of the values obtained from 5-6 animals per group. 
 
 Control MDMA NIC NIC + MDMA 

pCTX 100.0 ± 3.6 33.7 ± 3.1 ***     91.0 ± 4.1 26.94 ± 13.7 *** 

HC 100.0 ± 2.9 83.9 ± 5.5 * 114.0 ± 7.2 77.1 ± 5.6 ** 

 

* P<0.05; ** P<0.01; *** P<0.001 vs. control group. One-way ANOVA and Tukey’s post-hoc test. 

 

    

3.3 Effects on [3H]epibatidine binding 

 

The levels of heteromeric nAChRs were measured through [3H]epibatidine 

binding assays and are shown in Fig. 2. In the parietal cortex, NIC and MDMA 

separately induced significant increases in binding of 18.0 ± 3.6% and 16.5 ± 

5.8% respectively, compared with saline-treated rats. When NIC and MDMA 

were associated, such effects were significantly potentiated, rising to a 29.1 ± 

5.7% increase. Similar but more pronounced effects were found in the frontal 

cortex , where NIC and MDMA separately induced increases of 29.5 ± 10.7% 

and 34.6 ± 9.2%, respectively, that rose to 72.1 ± 17.5% when both drugs were 

associated. By contrast, in the striatum and in the coronal section delimited by 

the superior colliculi, NIC alone induced an increase in binding of 41.3 ± 5.5% 

and 47.4 ± 15.4%, respectively, but not MDMA, which did not modify NIC-

induced up-regulation. In the cerebellum, no significant increases were found in 

any of the treatment groups (data not shown). 

 

3.4 Effects on [3H]MLA binding 

 

The levels of homomeric nAChRs (mainly 7) were measured using [3H]MLA 

binding. The results are shown in Fig. 3. In the prefrontal cortex, MDMA and 

NIC failed to induce significant up-regulation separately, but the association of 

the two drugs led to a significant increase of 42.1 ± 20% in [3H]MLA binding. In 
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the parietal cortex, MDMA induced a slight up-regulation (15.3 ± 5.2% increase) 

that was not modified by its association with NIC, which alone did not induce 

any significant effect. 

 

By contrast, in the hippocampus (Fig. 3C), MDMA alone did not induce any 

change in [3H]MLA binding but potentiated the regulatory effects of NIC, which 

rose from a 25.5 ± 7.6% to a 52.5 ± 11.3% increase when both drugs were 

associated. 

 

In the striatum, none of the treatments induced significant changes in [3H]MLA 

binding (data not shown). 

 

3.5 4 and 7 subunit expression 

 

Western blot analysis using specific antibodies against 4 and 7 nAChR 

subunits was performed in the areas where the most marked increases had 

been found, that is, in the prefrontal cortex for 4 and the hippocampus for 7. 

No significant changes in protein expression were observed among the different 

treatment groups (Fig. 4). 

 

3.6 4 and 2 subunit immunoprecipitation 

 

To assess which subunits of heteromeric receptors were up-regulated, we 

performed immunoprecipitation of 4 and 2-containing receptors labelled with 

[3H]epibatidine using prefrontal cortex extracts, where the most marked effects 

on radioligand binding were found. The results are shown in Fig. 5. Overall, the 

increases in binding in the different treatment groups paralleled those observed 

in binding to membranes. The potentiation of the up-regulation was only seen in 

the α4 immunoprecipitate. Immunoprecipitation with anti-2 antibody trapped 

100% of specifically-bound radioligand, indicating that in this area, all receptors 

labelled with [3H]epibatidine contained this subunit. Immunoprecipitation with 

anti-α4 trapped around 80% of total binding. 
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4. Discussion 

 

Nicotinic receptors play a key role in addiction to nicotine (Govind et al., 2009). 

It has been described that the addictive effects of nicotine are produced through 

its interaction with nAChR in the mesolimbic pathway, especially those in the 

nucleus accumbens, leading to dopamine release that activates the reward 

circuitry. In fact, mice with deletion of the β2 gene do not self-administer 

nicotine after previous administration and do not show increased release of 

dopamine in the ventral tegmental area (Picciotto et al., 1999). Although the 

mechanisms involved in the establishment of addiction are complex and still 

being investigated, up-regulation of nAChR increasing the pleasant effects of 

the drug is an event that could feasibly play a role. It is thought that up-

regulation of nAChR is a homeostatic response to the rapid desensitisation of 

the receptors induced after prolonged exposure to an agonist (Fenster et al., 

1999) in order to re-establish the nicotinic pathways. Several mechanisms have 

been proposed to explain such up-regulation and they are mentioned and cited 

in the Introduction section. 

 

According to our previous study (Garcia-Rates et al., 2007, 2010) 

demonstrating that MDMA had affinity for and induced nAChR up-regulation in 

PC12 cells, it was of interest to assess whether the regulatory effects of MDMA 

on nAChR could take place in vivo after repeated administration of MDMA as 

well. Also, because MDMA and nicotine (smoked tobacco) are often associated 

(Scholey et al., 2004), we tested the effect of such an association on nAChR 

up-regulation. One important issue was the selection of the dosing schedule. 

Studies involving nicotine have used either a repeated dosing schedule or the 

implantation of sustained-release osmotic minipumps (Even et al., 2008; 

Nguyen et al., 2003) or constant infusion (Marks et al., 2011; Pauly et al., 1996) 

to achieve constant plasmatic levels, thus reaching the highest levels of nAChR 

up-regulation. The use of these drug delivery methods was rejected for MDMA 

because of possible organ failure after prolonged and sustained plasmatic 

levels and because this drug is not consumed as continuously as nicotine. For 

this reason we chose the established MDMA chronic dosing schedule (20 

mg/kg b.i.d. for 4 days) and combined it with one of the schedules reported in 
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the literature for nicotine, involving two injections per day for 10 days (Flores et 

al., 1992). The relatively high dose of MDMA was chosen based on the fact 

that, according to radioligand binding experiments (Garcia-Rates et al., 2007), 

low micromolar concentrations had to be reached in the target area and 

mantained enough time to induce the up-regulation and also because this is a 

generally accepted schedule of chronic MDMA (Battaglia et al., 1987). 

 

An inconvenience of such a dosing schedule is the possibility of serotonergic 

neurotoxicity from MDMA. MDMA-induced hyperthermia can potentiate its 

neurotoxic events, although it is not mandatory for the long–term neurotoxicity 

that follows MDMA administration (Capela et al., 2009). For this reason, the 

treatment was carried out at 20ºC-21ºC in order not to exacerbate the 

neurotoxic effects by facilitating the hyperthermia (Gordon et al., 1991; Green et 

al., 2005). At ambient temperatures between 20ºC-24ºC, no changes in 

serotonin and 5-hydroxyindolacetic acid were reported following MDMA 

administration (Malberg et al., 1998), although decreases in [3H]paroxetine have 

been reported at these temperatures (O’Shea et al., 2006). In fact the changes 

in [3H]paroxetine binding have been claimed to be a more reliable marker of 

MDMA-induced neurotoxicity, rather than the loss of serotonin and its 

metabolites (O’Shea et al., 2006). However, we must point out that in our 

treatment the rats were killed 24 h after the last dose, while most studies (i.e. 

(Biezonski and Meyer, 2010; Broening et al., 1995; Malberg et al., 1998; 

O’Shea et al., 1998; O’Shea et al., 2006; Pubill et al., 2003) make the 

measurement after leaving a time of at least one week to allow the neurotoxic 

process to occur. Interestingly, we found a robust decrease (around 70%) in 

[3H]paroxetine binding in cortex from MDMA-treated rats as early as 24 h after 

the last dose, a time at which the development of axonal and terminal 

degeneration is unlikely. Also we must point out that measuring [3H]paroxetine 

binding at only one radioligand concentration (0.05 nM) does not inform us on 

whether the observed decrease is due to a drop in total number of transporters 

(Bmax) or to a decrease in the affinity (increase in KD). Battaglia et al. (1987) 

used the same MDMA schedule than us but measured binding two weeks after 

treatment. They performed saturation binding assays and demonstrated that the 
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reduction in [3H]paroxetine binding after MDMA treatment was due to a 

decrease in Bmax without significant changes in KD.  

 

Recent studies, however, have raised the question whether serotonergic marker 

depletion caused by MDMA is reflective of neurodegeneration or rather is an 

effect of biochemical down-regulation in the absence of tissue damage 

(Biezonski and Meyer, 2011). In fact, a significant reduction in SERT gene 

expression, which could explain a reduction in SERT protein irrespective of 

altered terminal integrity, has been reported after treatment with MDMA 

(Biezonski and Meyer, 2010). Both terminal destruction and SERT down-

regulation would produce reductions in Bmax. On the other hand, a decrease in 

KD could be caused by the presence of MDMA in the binding medium (which is 

unlikely in our case seeing as the preparation is washed several times before 

binding) or by acute modifications (i.e. phosphorilation, nitrosilation) in the 

transporter as has been documented for the dopamine transporter (Hansen et 

al., 2002). In fact, in a previous study from our group (Escubedo et al., 2011), 

we demonstrated that incubation of rat brain synaptosomes with MDMA for 1 h 

induced a decrease in [3H]5-HT uptake measured after drug removal, which 

indicates that a rapid change in SERT leading to an impaired function was 

produced. This change could also involve a decreased affinity for paroxetine. 

Due to the fact that our rats were killed 24 h after treatment, such an effect 

decreasing affinity for the radioligand cannot be definitely ruled out. 

 

Regardless of the fact that neurotoxicity could develop after this treatment, it 

can be assumed that changes in nAChR density after moderate-high doses of 

MDMA take place before the neurodegenerative process begins. 

 

The temporal evolution of rats’ body weight was studied to ascertain an easily 

measurable effect of MDMA and to study any possible interaction with nicotine. 

The rats treated with MDMA gained less weight than controls due to the 

anorectic effect of the drug. Serotonin (5-HT) 5-HT4 receptors in the nucleus 

accumbens are specifically involved in the appetite-suppressant effects of this 

drug inducing 5-HT release (Francis et al., 2011). Although nicotine had no 

significant effects on body weight gain, the graph of the association with MDMA 
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suggests a tendence, although not statistically significant, of impaired weight 

gain in this treatment group. It is known that nicotine relieves anxiety and 

people who give up smoking increase food intake (Schnoll et al., 2012). In this 

context, nicotine could enhance the lack of appetite induced by MDMA leading 

to less weight gain although, as mentioned, this did not reach statistic 

significance. 

 

After this treatment, MDMA induced up-regulation of heteromeric and α7 

nAChR in several rat brain areas. Moreover, a synergistic effect was observed 

in the cortex for heteromeric nAChR and in the hippocampus for the α7 type. 

Accordingly, these two areas contain a high density of serotonergic innervation 

in addition to nAChR, and are main targets of MDMA. In striatum and the 

section containing superior colliculi, lateral geniculate nuclei, substantia nigra 

and VTA, only the effect of NIC was detected. With the data to hand, any 

explanation for such a difference can only be a matter of speculation. Striatum, 

geniculate nuclei, substantia nigra and especially superior colliculi exhibit higher 

heteromeric nAchR density than cortex and hippocampus (Tribollet et al., 2004) 

and are highly sensitive to up-regulation by nicotine (Nguyen et al., 2003). It 

might be that MDMA-induced up-regulation in striatum and colliculi was so 

modest in these tissues with high receptor density that the increases do not 

reach statistical significance. In fact, an upward trend can be seen in the 

striatum in the MDMA group. 

 

The effect of NIC on α7 nAChR was less marked than that on heteromeric 

receptors. In fact, the affinity of NIC for α7 nAChR is in the micromolar range 

while the KD for heteromeric nAChR is nanomolar (Marks et al., 1986), so 

higher concentrations of NIC had to be achieved in a given brain area to induce 

such up-regulation. Also it must be pointed out that the intermittent NIC dosing 

schedule used could not be as potent at inducing α7 nAChR up-regulation as 

continuous administration would be. As far as MDMA is concerned, it has higher 

affinity for heteromeric than for α7 nAChR (Garcia-Ratés et al., 2007), thus a 

more marked effect on the heteromeric receptors was expected and confirmed 

by the experimental results. It has been reported that exposure to α7 nAChR 

partial agonists increases the expression of these receptors in rodents 



 18

(Werkheiser et al., 2011) and that MDMA acts as a α7 partial agonist in PC12 

cells (Garcia-Rates et al., 2010). This would account for its effect on the density 

of α7 nAChR in the parietal cortex and the synergy with NIC seen in the cortex 

and hippocampus. 

 

When solubilised receptors were immunodetected with Western blotting, no 

significant changes were observed in levels of protein density, in agreement 

with the general assertion that up-regulation of nAChR takes place at a post-

translational level (reviewed by Gaimarri et al., 2007), promoting the assembly 

of nAChR subunits and their migration from the endoplasmic reticulum (ER) to 

the plasma membrane. Since our extracts were obtained from whole-tissue 

homogenates, the antibodies raised to a specific nAchR subunit did not 

distinguish between assembled plasma membrane receptors and intracellular 

ER-associated subunits at different stages of maturation. Conversely, 

radioligands preferentially labelled assembled/mature receptors. These results 

suggest that MDMA acts on nAChR similarly to nicotine, possibly even exerting 

a synergistic effect. 

 

Nicotine mainly induces up-regulation of α4β2 nAChR, which are the most 

abundant in mammals’ CNS. As [3H]epibatidine labels nearly all heteromeric 

nAChR, we performed the immunoprecipitation of receptors containing α4 and 

β2 subunits and carried out radioligand binding, in order to ascertain the 

participation of these subunits in the up-regulation process. The binding of the 

total solubilised extract paralleled that performed in crude membranes, 

indicating that up-regulation levels persist after receptor solubilisation. Up-

regulation of α4- and β2-containing receptors was found separately in the 

immunoprecipitates, but the synergy of the nicotine + MDMA association was 

found only in the α4 immunoprecipitate. This indicates that, similarly to what 

happens with nicotine, α4β2 nAChR are the main subtype that is up-regulated 

after treatment with MDMA in vivo. However, other associations containing the 

β2 subunit would be resistant to up-regulation because in the β2 

immunoprecipitate the increased binding levels were more modest and there 

was no synergy in the nicotine + MDMA association. In fact, several studies 

have demonstrated that not all nAChR subtypes undergo up-regulation and not 



 19

all show it to the same extent and under the same experimental conditions. For 

example, the α4β2α5 combination is resistant to up-regulation (Mao et al., 

2008), the α6-containing nAChR only undergo up-regulation at high but 

transient nicotine concentrations, while α4β2 nAChR require a lower 

concentration but a more prolonged exposure (Walsh et al., 2008); finally, α3β2 

and α3β4 subtypes undergo much lower up-regulation than α4β2 (Nguyen et 

al., 2003). Also the access of each ligand to a certain brain area and the nAChR 

subtype predominant in it could modify the up-regulation process.  

 

Both nicotinic agonists and antagonists are able to induce nAChR up-regulation 

due to their affinity for the receptors or their immature forms (Peng et al., 1994; 

Gopalakrishnan et al., 1997). In fact, we have previously demonstrated that 

MDMA behaves as a partial agonist on α7 nAChR and as an antagonist on 

α4β2, inducing significant up-regulation of both receptor types in PC 12 cells at 

a concentration of 1 μM (Garcia-Ratés et al., 2007, 2010), which has been 

reported to be reached in vivo (Johnson et al., 2004).   

 

Due to the complexity of brain synapses and regulation, an additional unknown 

mechanism involved in nAChR up-regulation after MDMA cannot definitely be 

ruled out. However, the previously reported results using cultured PC 12 cells 

demonstrate that the simple interaction of MDMA with nAChR is sufficient to 

induce the up-regulation. 

 

All this evidence makes the study of MDMA’s effects on nAChR levels as 

complex as the studies carried out on nicotine for more than 20 years by many 

research groups. What is warranted is the use of autoradiography to produce a 

closer mapping of more defined brain areas that show up-regulation after 

treatment with MDMA. Also, another challenge to face is to find a different 

dosing schedule that uses lower and potentially less neurotoxic MDMA doses, 

while increasing the duration of treatment.  

 

In conclusion, this is the first study to date that demonstrates an in vivo up-

regulation of nAChR after treatment with MDMA, as well as a synergistic effect 

when MDMA is associated with nicotine. Given that these two drugs are often 
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associated, the development of neuroadaptive processes in which nAChR play 

a role could be enhanced. Were specific areas to be affected, such as the 

ventral tegmental area and nucleus accumbens, there could be an increase in 

addiction and drug vulnerability. The fact of having taken one of these drugs 

could later make the subject more prone to the addictive effects of the other. 

Also, as α7 nicotinic receptors are involved in MDMA-induced neurotoxicity 

(cited above), an enhanced risk of toxicity in certain brain areas (i.e. the 

hippocampus) leading to cognitive impairment could be feasible. 
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Figure captions 

 

Figure 1: Evolution of body weight gain throughout the drug treatment. Nicotine 

was started at day 1 and MDMA at day 7. Drug administration was finished at 

day 10 and the rats were killed at day 11. The values are the means ± SEM of 

the body weight of six animals per group. **P<0.01, *** P<0.001 vs. saline. 

 

Figure 2: Binding of [3H]epibatidine to heteromeric nAChR in membranes from 

prefrontal cortex (A), parietal cortex (B), striatum (C) and the coronal section 

containing superior colliculi and substantia nigra (D) of rats belonging to the 

different treatment groups. Data are means ± SEM from 6 animals per group. 

Control (Ctrl) animals received saline. *P<0.05, **P<0.01; ***P<0.001 vs. Ctrl.;  

#P<0.01 vs. NIC; $P<0.05 vs. MDMA. 

 

Figure 3: Binding of [3H]methyllycaconitine ([3H]MLA) to homomeric α7 nAChR 

in membranes from prefrontal cortex (A), parietal cortex (B) and hippocampus 

(C) of rats belonging to the different treatment groups. Data are means ± SEM 

from 6 animals per group. Control (Ctrl) animals received saline. *P<0.05, 

**P<0.01 vs. Ctrl., #P<0.05 vs. NIC. 

  

Figure 4: Western blot analysis of nAChR subunits α4 (panel A) and α7 (panel 

B) in extracts of prefrontal cortex and hippocampus, respectively, from rats 

belonging to the different treatment groups. Bar graphs show overall 

quantification of the blots (mean ± SEM), while a representative 

autoradiography of each determination is shown above. β-actin levels were 

used to ensure gel loading uniformity and to normalise the protein values. 

 

Figure 5: Levels of [3H]epibatidine binging after immunoprecipitation with anti-

α4 (panel A) and anti-β2 (panel B) specific antibodies in cortex extracts of rats 

from the different treatment groups. Also, total binding to these extracts was 

measured in parallel samples (panel C) in order to calculate the percentage of 

immunoprecipitated binding. Data are the means ± SEM of values from 5-6 rats 

per group.  *P<0.05, **P<0.01; ***P<0.001 vs. Ctrl.;  #P<0.05, ##P<0.01 vs. 

NIC. 



 23

References  

 

Adamaszek M, Khaw AV, Buck U, Andresen B, Thomasius R. Evidence of 
neurotoxicity of ecstasy: sustained effects on electroencephalographic activity in 
polydrug users. PLoS One 2010; 5:e14097. 

Albuquerque EX, Pereira EF, Alkondon M, Rogers SW. Mammalian nicotinic 
acetylcholine receptors: from structure to function. Physiol Rev 2009; 89:73-
120. 

Battaglia G, Yeh SY, O'Hearn E, Molliver ME, Kuhar MJ, De Souza EB. 3,4-
Methylenedioxymethamphetamine and 3,4-methylenedioxyamphetamine 
destroy serotonin terminals in rat brain: quantification of neurodegeneration by 
measurement of [3H]paroxetine-labeled serotonin uptake sites. J Pharmacol 
Exp Ther 1987; 242:911-16. 

Biezonski DK, Meyer JS. Effects of 3,4-methylenedioxymethamphetamine 
(MDMA) on serotonin transporter and vesicular monoamine transporter 2 
protein and gene expression in rats: implications for MDMA neurotoxicity. J 
Neurochem 2010; 112:951-62. 

Biezonski DK, Meyer JS. The Nature of 3, 4-Methylenedioxymethamphetamine 
(MDMA)-Induced Serotonergic Dysfunction: Evidence for and Against the 
Neurodegeneration Hypothesis. Curr Neuropharmacol 2011; 9:84-90. 

Broening HW, Bowyer JF, Slikker W, Jr. Age-dependent sensitivity of rats to the 
long-term effects of the serotonergic neurotoxicant (+/-)-3,4-
methylenedioxymethamphetamine (MDMA) correlates with the magnitude of the 
MDMA-induced thermal response. J Pharmacol Exp Ther 1995; 275:325-33. 

Camarasa J, Marimon JM, Rodrigo T, Escubedo E, Pubill D. Memantine 
prevents the cognitive impairment induced by 3,4-
methylenedioxymethamphetamine in rats. Eur J Pharmacol 2008; 589:132-39. 

Capela JP, Carmo H, Remiao F, Bastos ML, Meisel A, Carvalho F. Molecular 
and cellular mechanisms of ecstasy-induced neurotoxicity: an overview. Mol 
Neurobiol 2009; 39:210-71. 

Chipana C, Camarasa J, Pubill D, Escubedo E. Protection against MDMA-
induced dopaminergic neurotoxicity in mice by methyllycaconitine: involvement 
of nicotinic receptors. Neuropharmacology 2006; 51:885-95. 

Chipana C, Camarasa J, Pubill D, Escubedo E. Memantine prevents MDMA-
induced neurotoxicity. Neurotoxicology 2008a; 29:179-83. 

Chipana C, Torres I, Camarasa J, Pubill D, Escubedo E. Memantine protects 
against amphetamine derivatives-induced neurotoxic damage in rodents. 
Neuropharmacology 2008b; 54:1254-63. 



 24

Chipana C, Garcia-Rates S, Camarasa J, Pubill D, Escubedo E. Different 
oxidative profile and nicotinic receptor interaction of amphetamine and 3,4-
methylenedioxy-methamphetamine. Neurochem Int 2008c; 52:401-10. 

Davies AR, Hardick DJ, Blagbrough IS, Potter BV, Wolstenholme AJ, 
Wonnacott S. Characterisation of the binding of [3H]methyllycaconitine: a new 
radioligand for labelling alpha 7-type neuronal nicotinic acetylcholine receptors. 
Neuropharmacology 1999; 38:679-90. 

Erritzoe D, Frokjaer VG, Holst KK, Christoffersen M, Johansen SS, Svarer C et 
al. In vivo imaging of cerebral serotonin transporter and serotonin(2A) receptor 
binding in 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") and 
hallucinogen users. Arch Gen Psychiatry 2011; 68:562-76. 

Escubedo E, Abad S, Torres I, Camarasa J, Pubill D. Comparative 
neurochemical profile of 3,4-methylenedioxymethamphetamine and its 
metabolite alpha-methyldopamine on key targets of MDMA neurotoxicity. 
Neurochem Int 2011; 58:92-101. 

Even N, Cardona A, Soudant M, Corringer PJ, Changeux JP, Cloez-Tayarani I. 
Regional differential effects of chronic nicotine on brain alpha 4-containing and 
alpha 6-containing receptors. Neuroreport 2008; 19:1545-50. 

Fenster CP, Hicks JH, Beckman ML, Covernton PJ, Quick MW, Lester RA. 
Desensitization of nicotinic receptors in the central nervous system. Ann N Y 
Acad Sci 1999; 868:620-23. 

Flores CM, Rogers SW, Pabreza LA, Wolfe BB, Kellar KJ. A subtype of nicotinic 
cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and 
is up-regulated by chronic nicotine treatment. Mol Pharmacol 1992; 41:31-37. 

Francis HM, Kraushaar NJ, Hunt LR, Cornish JL. Serotonin 5-HT4 receptors in 
the nucleus accumbens are specifically involved in the appetite suppressant 
and not locomotor stimulant effects of MDMA ('ecstasy'). Psychopharmacology 
(Berl) 2011; 213:355-63. 

Gaimarri A, Moretti M, Riganti L, Zanardi A, Clementi F, Gotti C. Regulation of 
neuronal nicotinic receptor traffic and expression. Brain Res Rev 2007; 55:134-
43. 

Garcia-Rates S, Camarasa J, Escubedo E, Pubill D. Methamphetamine and 
3,4-methylenedioxymethamphetamine interact with central nicotinic receptors 
and induce their up-regulation. Toxicol Appl Pharmacol 2007; 223:195-205. 

Garcia-Rates S, Camarasa J, Sanchez-Garcia AI, Gandia L, Escubedo E, Pubill 
D. The effects of 3,4-methylenedioxymethamphetamine (MDMA) on nicotinic 
receptors: intracellular calcium increase, calpain/caspase 3 activation, and 
functional upregulation. Toxicol Appl Pharmacol 2010; 244:344-53. 

Gopalakrishnan M, Molinari EJ, Sullivan JP. Regulation of human alpha4beta2 
neuronal nicotinic acetylcholine receptors by cholinergic channel ligands and 
second messenger pathways. Mol Pharmacol 1997; 52:524-34. 



 25

 

Gordon CJ, Watkinson WP, O'Callaghan JP, Miller DB. Effects of 3,4-
methylenedioxymethamphetamine on autonomic thermoregulatory responses of 
the rat. Pharmacol Biochem Behav 1991; 38:339-44. 

Gotti C, Moretti M, Gaimarri A, Zanardi A, Clementi F, Zoli M. Heterogeneity 
and complexity of native brain nicotinic receptors. Biochem Pharmacol 2007; 
74:1102-11. 

Govind AP, Vezina P, Green WN. Nicotine-induced upregulation of nicotinic 
receptors: underlying mechanisms and relevance to nicotine addiction. Biochem 
Pharmacol 2009; 78:756-65. 

Green AR, O'Shea E, Saadat KS, Elliott JM, Colado MI. Studies on the effect of 
MDMA ('ecstasy') on the body temperature of rats housed at different ambient 
room temperatures. Br J Pharmacol 2005; 146:306-12. 

Hansen JP, Riddle EL, Sandoval V, Brown JM, Gibb JW, Hanson GR, et al. 
Methylenedioxymethamphetamine decreases plasmalemmal and vesicular 
dopamine transport: mechanisms and implications for neurotoxicity. J 
Pharmacol Exp Ther 2002; 300:1093-100. 

Johnson EA, O'Callaghan JP, Miller DB. Brain concentrations of d-MDMA are 
increased after stress. Psychopharmacology (Berl) 2004; 173:278-86. 

Kuryatov A, Luo J, Cooper J, Lindstrom J. Nicotine acts as a pharmacological 
chaperone to up-regulate human alpha4beta2 acetylcholine receptors. Mol 
Pharmacol 2005; 68:1839-51. 

Lester HA, Xiao C, Srinivasan R, Son CD, Miwa J, Pantoja R et al. Nicotine is a 
selective pharmacological chaperone of acetylcholine receptor number and 
stoichiometry. Implications for drug discovery. AAPS J 2009; 11:167-77. 

Levin ED, Rezvani AH. Nicotinic treatment for cognitive dysfunction. Curr Drug 
Targets CNS Neurol Disord 2002; 1:423-31. 

Malberg JE, Seiden LS. Small changes in ambient temperature cause large 
changes in 3,4-methylenedioxymethamphetamine (MDMA)-induced serotonin 
neurotoxicity and core body temperature in the rat. J Neurosci 1998; 18:5086-
94. 

Mao D, Perry DC, Yasuda RP, Wolfe BB, Kellar KJ. The alpha4beta2alpha5 
nicotinic cholinergic receptor in rat brain is resistant to up-regulation by nicotine 
in vivo. J Neurochem 2008; 104:446-56. 

Marks MJ, Clure-Begley TD, Whiteaker P, Salminen O, Brown RW, Cooper J et 
al. Increased nicotinic acetylcholine receptor protein underlies chronic nicotine-
induced up-regulation of nicotinic agonist binding sites in mouse brain. J 
Pharmacol Exp Ther 2011; 337:187-200. 



 26

Marks MJ, Stitzel JA, Romm E, Wehner JM, Collins AC. Nicotinic binding sites 
in rat and mouse brain: comparison of acetylcholine, nicotine, and alpha-
bungarotoxin. Mol Pharmacol 1986; 30:427-36. 

Martin LF, Kem WR, Freedman R. Alpha-7 nicotinic receptor agonists: potential 
new candidates for the treatment of schizophrenia. Psychopharmacology (Berl) 
2004; 174:54-64. 

Nguyen HN, Rasmussen BA, Perry DC. Subtype-selective up-regulation by 
chronic nicotine of high-affinity nicotinic receptors in rat brain demonstrated by 
receptor autoradiography. J Pharmacol Exp Ther 2003; 307:1090-97. 

Nulsen CE, Fox AM, Hammond GR. Differential effects of ecstasy on short-term 
and working memory: a meta-analysis. Neuropsychol Rev 2010; 20:21-32. 

O'Shea E, Granados R, Esteban B, Colado MI, Green AR. The relationship 
between the degree of neurodegeneration of rat brain 5-HT nerve terminals and 
the dose and frequency of administration of MDMA ('ecstasy'). 
Neuropharmacology 1998; 37:919-26. 

O'Shea E, Orio L, Escobedo I, Sanchez V, Camarero J, Green AR et al. MDMA-
induced neurotoxicity: long-term effects on 5-HT biosynthesis and the influence 
of ambient temperature. Br J Pharmacol 2006; 148:778-85. 

Parrott AC, Lees A, Garnham NJ, Jones M, Wesnes K. Cognitive performance 
in recreational users of MDMA of 'ecstasy': evidence for memory deficits. J 
Psychopharmacol 1998; 12:79-83. 

Pauly JR, Marks MJ, Robinson SF, van de Kamp JL, Collins AC. Chronic 
nicotine and mecamylamine treatment increase brain nicotinic receptor binding 
without changing alpha 4 or beta 2 mRNA levels. J Pharmacol Exp Ther 1996; 
278:361-69. 

Peng X, Gerzanich V, Anand R, Whiting PJ, Lindstrom J. Nicotine-induced 
increase in neuronal nicotinic receptors results from a decrease in the rate of 
receptor turnover. Mol Pharmacol 1994; 46:523-30. 

Picciotto MR, Zoli M, Changeux JP. Use of knock-out mice to determine the 
molecular basis for the actions of nicotine. Nicotine Tob Res 1999; 1 Suppl 
2:S121-S125. 

Pubill D, Canudas AM, Pallas M, Camins A, Camarasa J, Escubedo E. Different 
glial response to methamphetamine- and methylenedioxymethamphetamine-
induced neurotoxicity. Naunyn Schmiedebergs Arch Pharmacol 2003; 367:490-
99. 

Quednow BB, Jessen F, Kuhn KU, Maier W, Daum I, Wagner M. Memory 
deficits in abstinent MDMA (ecstasy) users: neuropsychological evidence of 
frontal dysfunction. J Psychopharmacol 2006; 20:373-84. 



 27

Reneman L, Endert E, de Bruin K, Lavalaye J, Feenstra MG, de Wolff FA et al. 
The acute and chronic effects of MDMA ("ecstasy") on cortical 5-HT2A 
receptors in rat and human brain. Neuropsychopharmacology 2002; 26:387-96. 

Ripoll N, Bronnec M, Bourin M. Nicotinic receptors and schizophrenia. Curr Med 
Res Opin 2004; 20:1057-74. 

Sallette J, Pons S, Devillers-Thiery A, Soudant M, Prado dC, Changeux JP et 
al. Nicotine upregulates its own receptors through enhanced intracellular 
maturation. Neuron 2005; 46:595-607. 

Schnoll RA, Wileyto EP, Lerman C. Extended duration therapy with transdermal 
nicotine may attenuate weight gain following smoking cessation. Addict Behav 
2012; 37:565-68. 

Scholey AB, Parrott AC, Buchanan T, Heffernan TM, Ling J, Rodgers J. 
Increased intensity of Ecstasy and polydrug usage in the more experienced 
recreational Ecstasy/MDMA users: a WWW study. Addict Behav 2004; 29:743-
52. 

Srinivasan R, Pantoja R, Moss FJ, Mackey ED, Son CD, Miwa J et al. Nicotine 
up-regulates alpha4beta2 nicotinic receptors and ER exit sites via 
stoichiometry-dependent chaperoning. J Gen Physiol 2011; 137:59-79. 

Tribollet E, Bertrand D, Marguerat A, Raggenbass M. Comparative distribution 
of nicotinic receptor subtypes during development, adulthood and aging: an 
autoradiographic study in the rat brain. Neuroscience 2004; 124:405-20. 

Turner JR, Kellar KJ. Nicotinic cholinergic receptors in the rat cerebellum: 
multiple heteromeric subtypes. J Neurosci 2005; 25:9258-65. 

Vallejo YF, Buisson B, Bertrand D, Green WN. Chronic nicotine exposure 
upregulates nicotinic receptors by a novel mechanism. J Neurosci 2005; 
25:5563-72. 

Walsh H, Govind AP, Mastro R, Hoda JC, Bertrand D, Vallejo Y et al. Up-
regulation of nicotinic receptors by nicotine varies with receptor subtype. J Biol 
Chem 2008; 283:6022-32. 

Werkheiser JL, Sydserff S, Hubbs SJ, Ding M, Eisman MS, Perry D et al. Ultra-
low exposure to alpha-7 nicotinic acetylcholine receptor partial agonists elicits 
an improvement in cognition that corresponds with an increase in alpha-7 
receptor expression in rodents: implications for low dose clinical efficacy. 
Neuroscience 2011; 186:76-87. 

Yamamoto BK, Raudensky J. The role of oxidative stress, metabolic 
compromise, and inflammation in neuronal injury produced by amphetamine-
related drugs of abuse. J Neuroimmune Pharmacol 2008; 3:203-17. 


