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Abstract
The aim of this study was to determine the antimicrobial resistance profi les of indicator 
bacteria isolated from domestic animal feces. Minimal inhibitory concentration (MIC) was 
determined by agar dilution. Interpretative criteria on the basis of wild-type MIC 
distributions and epidemiological cutoff values (ECOFF or ECV) were used according to the 
‘European Committee on Antimicrobial Susceptibility Testing’ (EUCAST) data. Results from 
237 isolates of Escherichia coli showed reduced susceptibility for ampicillin, streptomycin 
and tetracycline, the antimicrobials commonly used in intensive breeding of pigs and hens. 
Regarding all the species of the genus Enterococcus spp., there are only ECOFF or ECV for 
vancomycin. Of the 173 Enterococcus spp. isolated, only one showed reduced susceptibility 
to vancomycin and was classifi ed as ‘non-wild-type’ (NWT) population. This is the fi rst 
report in Argentina showing data of epidemiological cutoff values in animal bacteria.
© 2013 Asociación Argentina de Microbiología. Published by Elsevier España, S.L. All 
rights reserved.

Distribución de la concentración inhibitoria mínima y puntos de corte “wild-type” 
en bacterias de origen animal en Argentina

Resumen
El objetivo de este estudio fue determinar los patrones de resistencia antimicrobiana en 
bacterias indicadoras aisladas de muestras fecales de animales domésticos. La concen-
tración inhibitoria mínima (CIM) fue determinada por el método de dilución en agar. El 
criterio de interpretación usado se basó en la distribución de la CIM y el punto de corte 
epidemiológico (ECOFF o ECV) de acuerdo con los datos del European Committee on An-
timicrobial Susceptibility Testing (EUCAST). Los resultados obtenidos de 237 aislamientos 
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Antimicrobial resistance is a global public and animal health 
concern that is infl uenced by both human and non-human 
antimicrobial usage. The human, animal and plant sectors 
have a shared responsibility to prevent or minimise antimi-
crobial resistance selection pressures on both human and 
non-human pathogens10. Epidemiologists need to be aware of 
emerging changes in bacterial susceptibility, which may indi-
cate emerging resistance, and allow for appropriate control 
measures to be considered3. In an attempt to overcome the 
problems of differences in interpretative criteria based on 
clinical or epidemiological data, the European Committee on 
Antimicrobial Susceptibility Testing (EUCAST) has decided to 
defi ne separate dividing points for the detection of bacteria 
with resistance mechanisms and the monitoring of resistance 
development using wild-type cutoff values (WCV) or epide-
miological cutoff values (ECOFF or ECV) and the guidance of 
therapy via clinical breakpoints9. ECOFF or ECV are determi-
ned on the basis of the distribution of minimal inhibitory con-
centrations (MICs) for an antimicrobial agent and a given 
bacterial species. EUCAST is in the process of collecting full 
range MIC data from as many sources as possible. Data are 
inserted into a database and each distribution is screened for 
acceptance, and then made freely available5. Although the 
use of ECOFF or ECV is important for the early detection of 
decreased susceptibility, this value is inappropriate to deter-
mine the percentage of clinical resistance14. This is because 
there are instances when a bacterial isolate will have a MIC 
value above the ECOFF or ECV but below the clinical suscep-
tible breakpoint; in this case, such isolate will be clinically 
susceptible and should therefore not be categorized as resis-
tant but as having decreased susceptibility4. In fact, when 
reporting data using ECOFF or ECV, the terms ‘susceptible’ or 
‘resistant’ are inappropriate; instead, bacteria should be re-
ported as ‘wild-type’ if the MIC or zone diameter falls below 
the epidemiological cutoff value and as ‘non-wild-type’ if the 
MIC is higher or the zone diameter is smaller than the epide-
miological cutoff value13. Thus, the populations of microor-
ganisms without an acquired phenotypically detectable resis-
tance mechanism are defi ned as wild-type bacteria and the 
populations that clearly depart from the ‘wild-type’ popula-
tions are classifi ed as ‘non-wild-type’ (NWT). 

In Argentina, there is no current antimicrobial resistance 
surveillance system of public health importance in animals 
to describe the level of resistance to animal bacteria. In a 
previous study with the same bacterial isolates used in this 
work, we determined the antimicrobial susceptibility by 
the agar diffusion method and showed the results as 
resistance percentage12.

The purposes of the present study were to determine the 
antimicrobial resistance profi les of indicator bacteria of 

animal origin using the wild-type MIC distributions and ECOFF 
or ECV according to EUCAST data and to begin collecting data 
that could be used in a future monitoring program. 

Escherichia coli and Enterococcus spp. were chosen and 
collected as indicator microorganisms for susceptibility 
testing. These bacteria are common commensals, which are 
considered to constitute a reservoir of antimicrobial 
resistance genes, which may be transferred to pathogenic 
bacteria causing disease in animals or humans11. The isolates 
included in this study were collected from 2006 to 2007. A 
number of 237 Escherichia coli and 173 Enterococcus spp. 
were isolated from fi fty fecal samples from healthy animals 
(cattle, horses, sheep, pigs, layer hens and dogs) without 
clinical signs. Samples were inoculated onto selec tive and 
differential media according to the bacterial genus11. The 
Enterococcus species were identifi ed on the basis of yellow 
pigment production, motility, deamination of arginine, 
utilization of pyruvate and carbohydrate fermentation of 
arabinose, sorbose, ribose, raffi nose, sucrose and mannitol6. 
The agar dilution susceptibility test was used to determine 
the minimal inhibitory concentration (MIC)2 of different 
antimicrobials. Interpretative criteria were used on the 
basis of wild-type cutoff values also called “epidemiological 
cutoff values” (ECOFF or ECV) according to EUCAST data5.

Escherichia coli ATCC 25922, Enterococcus faecalis ATCC 
29212 and Staphylococcus aureus ATCC 29213 were used as 
quality control. For E. coli, the following antimicrobial agents 
were tested according to the following ECOFF or ECV: 
ampicillin ≤ 8 μg/ml, cephalothin ≤ 32 μg/ml, gentamicin 
≤ 2 μg/ml, amikacin ≤ 8 μg/ml, streptomycin ≤ 16 μg/ml, nalidixic 
acid ≤ 16 μg/ml, enrofl oxacin ≤ 0.12 μg/ml, ciprofl oxacin 
≤ 0.06 μg/ml, chloramphenicol ≤ 16 μg/ml, fl orfenicol ≤ 16 μg/ml, 
tetracycline ≤ 8 μg/ml and trimethoprim-sulfamethoxazole 
≤ 1 μg/ml. For Enterococcus spp., ampicillin, vancomycin, 
tetracycline, erythromycin and gentamicin were tested.

According to EUCAST, there are no data of ECOFF or ECV 
in all Enterococcus species for some of the antimicrobials 
analysed. For E. faecalis and E. faecium, the ECOFF or ECV 
of ampicillin, vancomycin, tetracycline and erythromycin is 
≤ 4 μg/ml whereas that of gentamicin is ≤ 32μg/ml. For 
E. hirae, the ECOFF or ECV of tetracycline is ≤ 4 μg/ml 
whereas that of erythromycin is ≤ 2 μg/ml. For E. avium, 
E. casselifl avus and E. gallinarum, the ECOFF or ECV of 
ampicillin is ≤ 4 μg/ml, whereas for Enterococcus spp. the 
ECOFF or ECV of vancomycin is ≤ 4 μg/ml. 

Table 1 shows the distribution of MICs and wild-type 
cutoff values according to EUCAST for E. coli. Table 2 shows 
the Enterococcus species and number of isolates among 
pigs, cattle, sheep, layer hens, horses and dogs. Table 3 
shows the MIC distribution for Enterococcus spp. 

de Escherichia coli mostraron sensibilidad reducida a ampicilina, estreptomicina y tetra-
ciclina, antimicrobianos comúnmente usados en porcinos y aves de explotación intensiva. 
Con respecto a todas las especies del género Enterococcus spp., solo existe ECOFF o ECV 
para la vancomicina. De los 173 Enterococcus spp. aislados, sólo uno presentó sensibili-
dad reducida a dicho agente y fue categorizado como población ‘non-wild-type’ (NWT). 
Este es el primer informe en Argentina que presenta datos de puntos de corte epidemio-
lógico en bacterias animales.
© 2013 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L. Todos 
los derechos reservados.
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Table 1 MIC distribution for Escherichia coli from pigs (n=43), cattle (n=43), sheep (n=18), hens (n=49), horses (n=35) and 
dogs (n=49)

ATM Sample ≤0.004 0.008 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 >128

AMP Pigs          11 1 7   1 23
 Cattle          6 23 13    1
 Sheep          14 4      
 Hens          10 10 18 4  1 6
 Horses          7 20 7    1
 Dogs          4 10 25 3  1 6
CEP Pigs           27 13 3    
 Cattle       1   1 23 18     
 Sheep           5 10 2  1  
 Hens           16 29 4    
 Horses           11 15 8 1   
 Dogs           20 27 2    
GEN Pigs      7 22 10  1  1  1 1  
 Cattle       21 10 9 3       
 Sheep       9 7 2        
 Hens       22 8 16 2 1      
 Horses      1 15 8 9 1     1  
 Dogs      1 20 18 5 2 1   1 1  
AMK Pigs        2 41        
 Cattle        4 19 20       
 Sheep        1 16  1      
 Hens        3 31 12 1 2     
 Horses        2 19 14       
 Dogs        1 24 24       
STR Pigs          9 7 2 1 6 6 12
 Cattle          19 21 2  1   
 Sheep          1 8 7  2   
 Hens          22 17   2 3 5
 Horses          12 18 3  1  1
 Dogs          21 19  1 1 4 3
NAL Pigs          5 10 13 3 3 4 5
 Cattle         1 24 14 4     
 Sheep           17 1     
 Hens          4 2 13 6 4  20
 Horses         4 16 12 3     
 Dogs         3 29 12  1   4
ENR Pigs  12 10 11 3 3 2 1  1       
 Cattle  9 9 20 5            
 Sheep  1 5 12             
 Hens  2 9 1 3 4 10 11 7  1 1     
 Horses  6 13 10 6            
 Dogs  19 21 5   1 1 1   1     
CIP Pigs 18 4 15  1 3 1 1         

 Cattle 12 10 16 4 1            

 Sheep  1 16 1             

 Hens 9 2 1 2 12 4 15 2   2      

 Horses 7 8 17 2 1            

 Dogs 35 6 4   1 2    1      
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Table 1 (continuation) MIC distribution for Escherichia coli from pigs (n=43), cattle (n=43), sheep (n=18), hens (n=49), 
horses (n=35) and dogs (n=49)

ATM Sample ≤0.004 0.008 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 >128

CMP Pigs         1 9 6 6 1 4 2 14

 Cattle         11 20 11     1

 Sheep         1 1 11 5     

 Hens         1 2 34 10    2

 Horses         3 16 14 1    1

 Dogs         1 24 21 2 1    

FLO Pigs          1 12 11 1 18   

 Cattle          10 12 21     

 Sheep           9 9     

 Hens          1 28 16 3 1   

 Horses          5 14 15 1    

 Dogs          9 15 25     

TET Pigs         2 2 1   6 32  

 Cattle        2 27 11     3  

 Sheep         15 1     2  

 Hens           16 1  4 28  

 Horses        1 22 9 1  1   1

 Dogs        3 27 5 3    11  

TMS Pigs       23 2 7 2  2 7    

 Cattle       42 1         

 Sheep       18          

 Hens       45 1     3    

 Horses       33     2     

 Dogs       40 3 2  1 1 2    

ATM: antimicrobials, AMP: ampicillin, CEP: cephalotin, GEN: gentamicin, AMK: amikacin, STR: streptomycin, NAL: nalidixic 
acid, ENR;: enrofl oxacin, CIP: ciprofl oxacin, CMP: chloramphenicol, FLO: fl orfenicol, TET: tetracycline, TMS: trimethoprim-
sulphametoxazole.
The vertical lines indicate wild-type cutoff value.
The grey zone indicates the number of bacteria with decreased susceptibility above ECOFF or ECV denominated as 
‘non-wild-type’.

Table 2 Enterococcus species and number of isolates among pigs, cattle, sheep, hens, horses and dogs

Pigs Cattle Sheep Hens Horses Dogs

E. casselifl avus (n = 75) 9 2 17 3 29 15

E .mundtii (n = 39 ) 7 3 18 4 7

E. gallinarum (n = 5) 3 1 1

E. dispar (n = 9) 5 1 3

E. faecalis (n = 35 ) 1 1 2 19 2 10

E. hirae (n = 2) 2

E. faecium (n = 3) 1 1 1

E. raffi nosus (n= 5) 1 1 1 1 1
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Table 3 MIC distribution for Enterococcus species from pigs (n=26), cattle (n=5), sheep (n=25), hens (n=43), horses (n=37) 
and dogs (n=37)

Enterococcus species ≤ 0.25 0.5 1 2 4 8 16 32 64 > 128 

AMP E. casselifl avus  9 21 34 8 2    1

 E. mundtii 6 5 2 19 3 3    1

 E. gallinarum    1 2 2     

 E. dispar   2 2 2 3     

 E. faecalis 3 3 4 15 5 5     

 E. hirae 1 1         

 E. faecium    1 1 1     

 E. raffi nosus 2  1  2      

VAN E. casselifl avus    16 44 14 1    

 E. mundtii 7 6 16 8 2      

 E. gallinarum    4 1      

 E. dispar  5 4        

 E. faecalis 9 1 24   1     

 E. hirae 1  1        

 E. faecium 2  1        

 E. raffi nosus  2 3        

TET E. casselifl avus   49 1  1 6 6 3 9

 E. mundtii   13 1 1 3 2 6 4 9

 E. gallinarum   1    1   3

 E. dispar   2  1 1   1 4

 E. faecalis   13   2 1 1 4 14

 E. hirae   2        

 E. faecium   2       1

 E. raffi nosus   3       2

ERY E. casselifl avus 28 12 17 1 5    12  

 E. mundtii 16 1 4  4    14  

 E. gallinarum  1 1      3  

 E. dispar 4  1      4  

 E. faecalis 13  3 2     17  

 E. hirae 2          

 E. faecium 2        1  

 E. raffi nosus 3        2  

GEN E. casselifl avus      72 2   1a

 E. mundtii      36 1   2a

 E. gallinarum      5     

 E. dispar      9     

 E. faecalis      34    1a

 E. hirae      2     

 E. faecium      3     

 E. raffi nosus      5     

AMP: ampicillin, VAN: vancomycin, TET: tetracycline, ERY: erythromycin, GEN: gentamicin
The vertical lines indicate wild-type cutoff value.
The grey zone indicates the number of bacteria with decreased susceptibility above ECOFF or ECV denominated as 
‘non-wild-type’.

a = 2000 μg/ml; E. casselifl avus and E. faecalis isolated from canines and E. mundtii from hens.
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Indicator bacteria constitute a natural part of the 
intestinal fl ora of many different animal species that easily 
acquire resistance, and allow to compare levels of 
antimicrobial resistance among animal populations. In 
addition, indicator bacteria allow the direct comparison of 
resistance among different animal species and the analysis 
of resistance trends over time. 

The results obtained showed decreased susceptibility 
in intensive breeding of pigs and hens. In pigs, 24 NWT 
of the 43 Escherichia coli strains isolated showed 
reduced susceptibility to ampicillin and streptomycin, 
20 to chloramphenicol, 18 to florfenicol and 38 to 
tetracycline, coinciding with the antimicrobials most 
used in pig farms. In hens, 24 NWT of the 49 Escherichia 
coli strains isolated showed reduced susceptibility to 
quinolones, 30 to enrofloxacin, 2 to ciprofloxacin and 
32 to tetracycline, the drugs most commonly used in 
this animal species.

In intensive pig and poultry production, animals are kept 
confi ned in overcrowded conditions and they are bred and 
managed for maximum yield. These conditions compromise 
their health and their immune responses and encourage 
infectious disease to develop and spread easily7,8. Up to 
now, without the aid of drugs for disease prevention, it 
would not be possible to keep the animals productive under 
these intensive conditions.

 In Enterococcus species, there are ECOFF or ECV only for 
vancomycin (≤ 4 μg/ml), and in this study only one E. faecalis 
isolate was classifi ed as NWT. For tetracycline, a bimodal 
distribution was observed in some species. Based on the 
results, 26 E. casselifl avus of the wild-type population were 
isolated from horses and 8 from dogs, where the selective 
pressure of antimicrobials is minimal. For E. mundtii and E. 
faecalis most NWT strains came from layer hens, in which 
the same behaviour was observed for erythromycin. On the 
other hand, 75 strains of E. casselifl avus and 5 E. gallinarum 
were found to have MICs between 2 and 32 μg/ml for 
vancomycin, phenotypically corresponding to the gene 
VanC, which is characterized by chromosomally mediated, 
non-transferable, intrinsic low-level resistance to 
vancomycin1.

Some monitoring programs show the resistance 
percentage as well as the MIC distribution in their result 
tables15. In the present study, we decided not to determine 
this percentage, and, instead, to follow Schwarz’s 
criterion13, which considers that when comparing resistance 
percentages among published studies, authors must make 
sure that the same methodologies and the same 
interpretative criteria have been used. 

This study represents the fi rst published data of wild-
type MIC distributions of bacteria isolated from different 
animals in Argentina and we consider that the values herein 
obtained might serve as a starting point for a future 
monitoring program.
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