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Abstract

The volume of data in today’s applications has meant
a change in the way Machine Learning issues are ad-
dressed. Indeed, the Big Data scenario involves scal-
ability constraints that can only be achieved through
intelligent model design and the use of distributed
technologies. In this context, solutions based on the
Spark platform have established themselves as a de
facto standard.

In this contribution, we focus on a very important
framework within Big Data Analytics, namely clas-
sification with imbalanced datasets. The main char-
acteristic of this problem is that one of the classes
is underrepresented, and therefore it is usually more
complex to find a model that identifies it correctly. For
this reason, it is common to apply preprocessing tech-
niques such as oversampling to balance the distribution
of examples in classes.

In this work we present SMOTE-BD, fully scalable
preprocessing approach for imbalanced classification
in Big Data. It is based on one of the most widespread
preprocessing solutions for imbalanced classification,
namely the SMOTE algorithm, which creates new syn-
thetic instances according to the neighborhood of each
example of the minority class. Our novel development
is made to be independent of the number of partitions
or processes created to achieve a higher degree of effi-
ciency. Experiments conducted on different standard
and Big Data datasets show the quality of the proposed
design and implementation.

Keywords: Big Data, Imbalanced classification, Pre-
processing, SMOTE, Spark

1 Introduction

In Machine Learning, imbalanced data classification
occurs when the classes in a problem show a skewed
distribution [1, 2]. Canonical classifiers are designed
to optimize overall accuracy not taking into account
the relative class distribution. Hence, these classifiers

tend to ignore small classes while concentrating on
classifying the large ones accurately. This topic is very
significant due to the large amount of real applications,
where the minority class represents the key concept
(e.g., many biological problems) [3].

A strategy to deal with imbalanced datasets consists
of applying a preprocessing step to resampling the
training data. To do so, the most popular technique is
known as SMOTE (“Synthetic Minority Oversampling
TEchnique") [4, 5], which forms new minority class
examples by interpolating between several neighbour
minority class examples.

Preprocessing methods were initially designed for
standard size datasets [6]. As such, they cannot be
applied directly when it comes to Big Data, due to
scalability issues [7]. To overcome this, those tech-
niques must be adapted and/or reimplemented to be
executed in a distributed way, using frameworks such
as Apache Spark [8, 9].

However, the translation from the original prepro-
cessing method towards a distributed approach is not
straightforward. First, the programming framework
may imply a complete redesign of the procedure to be
adapted to a divide-and-conquer strategy, e.g., MapRe-
duce. Second, the data division required to address
Big Data problems may lead to lack of data when pro-
cessing local models. For these reasons, there is still
few research on the topic [10].

These facts imply the need to develop a new re-
search line on the generation of minority instances for
Big Data. It is important to point out that current tech-
nologies to work with Big Data present two different
approaches with respect to how partial models from
the Map stage are aggregated [11]. On the one hand,
there are “local” strategies which produce an approxi-
mate model by applying a direct aggregation on partial
models. On the other hand, there are “global” methods,
which distribute both data and models to iteratively
build a final result. It is straightforward to notice that
the first type of approaches are preferred when seeking
for an exact solution.
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In this work, we propose SMOTE-BD, an exact so-
lution for the implementation of SMOTE in Big Data.
To do so, our methodology focuses on the calcula-
tion of the neighborhood based on a recent k nearest
neighbors (kNN) approach [12]. Additionally, it incor-
porates a thorough design based on the use of scalable
data structures and functions. Specifically, it is imple-
mented under Scala for the Spark framework [9].

A brief experimental study is carried out in order to
show the quality of the proposed oversampling imple-
mentation. First, a comparison between SMOTE-BD
and the standard sequential methodology is shown for
small datasets. Then, we contrast the algorithm’s per-
formance and scalability in the scenario of Big datasets
using different numbers of partitions.

The remainder of this paper is organized as follows.
Section 2 introduces the current state of the art in
imbalanced Big Data classification. Section 3 details
the proposed model of a fully scalable SMOTE in
Spark framework. Then, in Section 4 the experimental
study carried out. Finally, in Section 5 the conclusions
and future works are described.

2 Imbalanced Big Data Classification

The problem of imbalanced classification appeared at
the same time that researchers realized that traditional
classification algorithms could not model well the un-
derrepresented classes [1, 2]. When it comes to the
Big Data context, this problem is accentuated.

In [10], authors presented an exhaustive study with
the objective of evaluating the performance of the tra-
ditional solutions for class imbalanced in the Big Data
context. To this end, several preprocessing techniques
were adapted and embedded in a MapReduce work-
flow. Specifically, in this research the random oversam-
pling (ROS-BigData), random undersampling (RUS-
BigData) and SMOTE MapReduce version for Hadoop
(SMOTE-H) were employed.

Following the Hadoop MapReduce philosophy, each
Map process was responsible for adjusting the class
distribution for its data partition, either by random
replication of minority class instances (ROS-BigData),
random elimination of majority class instances (RUS-
BigData) or the generation of synthetic data carried
out by SMOTE technique (SMOTE-H). Subsequently,
a single Reduce process was responsible for collecting
the results generated by each mapper and assigning
them randomly to form the balanced dataset.

All those preprocessing methods worked locally
within each Map, thus limiting the potential of these
algorithms. As remarks of the aforementioned work,
they observed random oversampling to be more robust
than the other techniques when the number of data
partitions increased.

The MapReduce solutions, which are based on the
“divide-and-conquer” approach implies a partitioning
of the data that can lead to two serious consequences

[1]. One of them is the extreme lack of positive data
in each partition data, which represents a partial repre-
sentation of the dataset information, particularly with
regard to the real neighborhood of the instances. The
other consequence of the partitioning, and very re-
lated to the previous one, is the presence of very local
data with low density called “small-disjuncts” which
represents the concepts of interest. Creating minority
instances from small-disjuncts can lead to noise or an
over-generalization, and they would enter the “safe”
zones of the majority class.

Figure 1 depicts the lack of data situation for the
training data of the yeast5 imbalanced problem from
KEEL dataset repository [13]. It can be noticed the
low concentration of minority instances that they can
be considered as noise or rare data.

Figure 1: Lack of density on the yeast5 dataset

3 SMOTE-BD: An exact oversampling
solution in Spark

In this section, an exact SMOTE fully scalable method-
ology in Spark for Big Data is presented.

Figure 2 depicts the general scheme of this proposal.
First, the algorithm performs a filtering over the train-
ing set (stored in the HDFS) to get the minority and
majority subsets of instances. Then, the minority data,
which is partitioned according to an algorithm param-
eter, is normalized taking into account the statistics of
the full training set and is cached to be reused in the
following steps.

Later, nearest neighbors for each positive instance
is obtained using an exact implementation of kNN in
Spark (kNN-IS) [12] which splits the training dataset
in a user-defined number of partitions, calculates for
each instances in a chunk its neighbors and finally,
in a reduction phase, makes a final list of k nearest
neighbors.

After that, the generation of artificial minority class
instances is begun. All the nearest neighbors obtained
in the previous step are broadcasted to the main mem-
ory of the all nodes in the cluster. The broadcast
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operation allows to keep a read-only variable cached
on each node rather than shipping a copy to each task,
and it performs this action in an efficient manner.

Then, for each positive instance in a data partition
and using the broadcasted variable, the algorithm gen-
erates the corresponding number of synthetic examples
by interpolating between each minority instance and
its k nearest neighbors. Figure 3 depict how to create
synthetic data points in the SMOTE algorithm.

Finally, the algorithm performs a denormalization
process over the artificial dataset and joins the original
positive and negative instances with the artificial ones
in order to conform the balanced dataset, and saves it
in the HDFS.

Figure 2: SMOTE-BD flowchart

Algorithms 1 and 2 show a pseudocode of the se-
quence of actions described above . The former covers
the main program and the latter the function to create
each artificial instance. This function invokes another
function called interpolation which is in charge of do-
ing the interpolation between two points. There is no
pseudocode of this due to its simplicity.

4 Experimental Study: Analysis of the
behavior of SMOTE-BD

In this section, the performance achieved by classi-
fication algorithms in synergy with SMOTE-BD im-
plementation is presented. In order to compare the

Figure 3: Interpolation between a minority instance
and its k nearest neighbors.

performance of SMOTE, eight imbalanced datasets
were selected and divided into two categories based on
the number of examples which each dataset contains.
Table 1 shows the datasets summary, where the num-
ber of examples (#Ex.), number of attributes (#Atts.),
class name of each class (majority and minority), num-
ber of instances for each class, class distribution and
imbalance ratio (IR) are included.

The behavior of the resultant preprocessed datasets
was tested using the Decision Trees classifier (DT),
implemented in the Spark’s MLlib library [14]. Table
2 shows the parameters used for the methods according
to their authors’ specification.

Regarding the infraestructure used to perform the ex-
periments, the Hadoop cluster at University of Granada
was used, which consists of fourteen nodes connected
via a Gigabit Ethernet network. Each node has a Intel
Core i7-4930K microprocessor at 3.40GHz, 6 cores
(12 threads) and 64 GB of main memory working un-
der Linux CentOS 6.9. The cluster works with Hadoop
2.6.0 (Cloudera CDH5.8.0), where the head node is
configured as NameNode and ResourceManager, and
the rest are DataNodes and NodeManagers. Moreover,
the cluster is configured with Spark 2.2.0.

The quality measures of classification are built from
a confusion matrix (shown in Table 3), which orga-
nizes the samples of each class according to their cor-
rect or incorrect identification. From this matrix four
metrics that describe both classes independently are
obtained:

True Positive Rate T PR =
T P

T P+FN
is the per-

centage of positive instances correctly classified.

True Negative Rate T NR =
T N

FP+T N
is the per-

centage of negative instances correctly classified.

False Positive Rate FPR =
FP

FP+T N
is the per-

centage of negative instances misclassified.

False Negative Rate FNR =
FN

T P+FN
is the

percentage of positive instances misclassified.

None of these rates alone are adequate indepen-
dently, therefore more robust metrics exist to evaluate

VI Jornadas de Cloud Computing & Big Data   (JCC&BD 2018)

25



Algorithm 1 SMOTE-BD algorithm

Require: Tr, Ts, ratio, k, nP, nR, nIt, minClassLabel
1: origData← textFile(Tr)
2: minData← origData. f ilter(labels == minClassLabel)
3: minData← minData.map(normalize).repartition(nP)
4: neighbors← kNNIS.setup(Tr,Tr,k,nR,nI).calculatekNeighbours()
5: crFactor← (nMa j−nMin)/nMin
6: neighbors← broadcast(neighbors)
7: balancedData = null
8: synData = null
9: for i < nIt do

10: synT mp←minData.mapPartitionsWithIndex(createSynthData(index, partData,neighbors,crFactor,k))
11: if synData == null then
12: synData← synT mp
13: else
14: synData← synData.union(synT mp)
15: end if
16: end for
17: synData← synData.map(denormalize)
18: balancedData← synData.union(origData)

Algorithm 2 Function to create synthetic instances between the minority class examples and their neighbors

1: procedure CREATESYNTHDATA(index, partData,neighbors,crFactor,k)
2: arti f icialData = null
3: for f irstInstance← partitionData;nc = 0 to crFactor do
4: selNeighbor← newRandom().nextInt(k)
5: secondInstance← neighbors(selNeighbor)
6: newIntance← interpolation( f irstInstance,secondInstance)
7: arti f icialData.add(newInstance)
8: end for
9: return arti f icialData

10: end procedure

Table 1: Datasets summary

Big datasets #Ex. #Atts. Class (maj;min) #Class(maj; min) %Class(maj; min) IR
covtype7 464677 54 (negative; positive) (448421; 16256) (96.5; 3.5) 27.58
poker0_vs_2 450022 10 (negative; positive) (410960; 39062) (91.32; 8.68) 10.52
poker0_vs_5 412600 10 (negative; positive) (410960; 1640) (99.60; 0.4) 250.58
susy_ir4 2712175 18 (negative; positive) (2169740; 542435) (80; 20) 4
Small datasets #Ex. #Atts. Class (maj;min) #Class(maj; min) %Class(maj; min) IR
page-blocks0 5472 10 (negative; positive) (4913; 559) (89.78; 10.22) 8.78
segment0 2308 19 (negative; positive) (1979; 329) (85.75; 14.25) 6.02
shuttle-c0-vs-c4 1829 9 (negative; positive) (1706; 123) (93.28; 6.72) 13.88
yeast5 1484 8 (negative; positive) (1440; 44) (97.04; 2.96) 32.78

performance in classification scenarios. One of the
most widely used metric in imbalanced classification
is called Geometric Mean (GM) [15] which is defined
in equation 1. The GM attempts to maximize the accu-
racy of each one of the two classes at the same time.

GM =
√

T PR∗T NR (1)

The results to apply SMOTE sequential implemen-
tation (available in KEEL Software Tool [13]) and
SMOTE-BD on small datasets are shown in Table 4

and depicted in Figure 4. For SMOTE-BD implemen-
tation, tests with different number of data partitions (1
to 4) have been performed.

Table 5 shows the average GM results in training
and testing sets for the Spark SMOTE implementation
using 1, 8 and 32 partitions over the four Big Data
cases of study.
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Figure 4: Average results of the sequential SMOTE and the SMOTE-BD version, combined with the Spark version
of Decision Trees over the small datasets using the GM measure.

Table 2: Algorithms and parameters

Algorithms Parameters

SMOTE Seq
k Nearest Neighbors: 5
Distance function: Euclidean
Desired IR: 1

SMOTE-BigData

k Nearest Neighbors: 5
Distance function: Euclidean
Desired IR: 1
Number of partitions: 1
Number of reducers: 1

Table 3: Confusion matrix for performance evaluation
of a binary classification problem

Actual
Predicted

Positive Negative

Positive True positive (TP) False negative (FN)

Negative False positive (FP) True negative (TN)

5 Conclusions and future works

In this work, we have developed SMOTE-BD, a fully
scalable oversampling technique for imbalanced clas-
sification in Big Data Analytics. Two main reasons
have motivated the design of this new methodology.
On the one hand, the lack of current solutions for such
a significant area of study. On the other hand, to con-
sider a global procedure that takes into account the
whole neighborhood of each minority class instance.

The advantages of this novel approach are clear.
The most significant one is consolidating a cluster
of new synthetic instances, thus avoiding the over-
generalization due to data locality for traditional
MapReduce procedures. Furthermore, the number of
data partitions considered to add more efficiency to the
process is independent of the algorithm’s procedure,
so that there are no constraints regarding the lack of
data.

The novelty of this area of research implies many

topics for future study. Among them, we may stress
three important points. First, to consider novel data
structures to avoid the limitation of “broadcast” vari-
ables for very large dataset sizes. Second, to analyze
the quality of the new preprocessed data regarding dif-
ferent parametrization, especially the percentage of
oversampling. Finally, to study new scalable designs
of SMOTE-based algorithms in Big Data, in particu-
lar considering the data redundancy that is present in
current datasets.
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