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To the Editorial Board of Geoderma,

Please consider the attached manuscript entitled “Relating soil C and organic matter fractions to 
structural stability” by Jensen et al. for review and publication in Geoderma. It describes original 
research not published elsewhere and not submitted for publication in other journals.

Soil organic matter (SOM) is important for maintaining soil structural stability (SSS).The current study 
relates a number of SOM components to various SSS tests using contrasting treatments from the 
Highfield Ley-Arable Long-Term Experiment at Rothamsted Research (UK). This was done without 
confounding effects of soil type, soil texture, and climate. The results showed that the relationships 
between SOM components and SSS followed a broken-stick regression with a change point coinciding 
with a change from the tilled treatments to the grass treatment. The effect of increasing SOM 
components on SSS was greater below the change point, i.e. at low contents. The grass treatment had a 
very stable structure indicating that changing management from arable rotation to permanent grass is an 
effective tool for improving SSS.    

If you have any further questions regarding our manuscript submission, please do not hesitate to 
contact me. 

Sincerely,
Johannes Lund Jensen 
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 Soil structural stability increased with an increase in SOM components

 The effect of increasing SOM components was greater at low contents
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18 ABSTRACT

19 Soil organic matter (SOM) is important for maintaining soil structural stability (SSS). The 

20 influence of soil organic carbon (SOC) and different organic matter components on various SSS 

21 measures were quantified. We used a silt loam soil with a wide range of SOC (0.0080-0.0427 kg kg-

22 1 minerals) sampled in spring 2015 from the Highfield Ley-Arable Long-Term Experiment at 

23 Rothamsted Research. Four treatments were sampled: Bare fallow, continuous arable rotation, ley-

24 arable rotation, and grass. Soils were tested for clay dispersibility (DispClay), clay-SOM 

25 disintegration (DI, the ratio between clay content without and with SOM removal) and dispersion of 

26 particles <20 µm. The SSS tests were related to SOC, permanganate oxidizable carbon (POXC), hot 

27 water-extractable carbon (HWC), mid-infrared photoacoustic spectroscopy (FTIR-PAS) and 

28 mineral fines/SOC ratio. SSS increased with increasing content of SOM components. The 

29 relationships between SOM components and SSS followed a broken-stick regression with a change 

30 point at ~0.0230 kg SOC kg-1 minerals (clay/SOC~10) coinciding with a change from the tilled 

31 treatments to the grass treatment. We found a greater influence of SOC, POXC and HWC on SSS at 

32 contents below the change point than above. A stronger linear relation between POXC and 

33 DispClay compared to SOC and HWC suggests that POXC was a better predictor of the variation in 

34 DispClay. POXC and HWC were less related to DI than SOC. The grass treatment had a very stable 

35 structure, shown in all SSS tests, probably due to the absence of tillage and large annual inputs of 

36 stabilizing agents. This suggests that a change in management from arable rotation to permanent 

37 grass is an effective tool for improving SSS.   

38

39 Keywords: soil structural stability; soil organic carbon; permanganate oxidizable carbon; hot water-

40 extractable carbon; soil management
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41 Abbreviation: A, Continuous arable rotation; BF, Bare fallow; CEC, Cation exchange capacity; DI, 

42 Clay-SOM disintegration; DispClay, Clay dispersibility; DispFines20, Dispersion of particles <20 

43 µm; Fines20, Mineral particles <20 µm; FTIR-PAS, Mid-infrared photoacoustic spectroscopy; G, 

44 Grass; HWC, Hot water-extractable carbon; LA, Ley-arable rotation; LF-free-SOC, Light fraction-

45 free-SOC; LFSOC, Light fraction organic carbon; NTU, Nephelometric turbidity unit; PCA, 

46 Principal component analysis; POXC, Permanganate oxidizable carbon; SSA, Specific surface area; 

47 SSS, Soil structural stability. 
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48 1. Introduction

49 The importance of soil organic matter (SOM) on key soil properties and functions is well-

50 known (e.g., Johnston et al., 2009), and as a consequence loss of SOM is considered as a major 

51 threat to sustained soil functions (Amundson et al., 2015). One soil property affecting key soil 

52 functions is soil structure. Soil structure is the relative arrangement of particles and pores (Dexter, 

53 1988), and the ability of soil structure to resist external stresses both mechanical and or from water 

54 is soil structural stability (SSS). Greater SSS is essential for minimizing the risk of downward 

55 transport of fine particles carrying pollutants to the water environment (de Jonge et al., 2004), soil 

56 erosion (Le Bissonnais, 1996), soil cementing and seedbeds with hard and non-friable aggregates 

57 (Kay and Munkholm, 2004). SOM content is an important factor affecting SSS (Bronick and Lal, 

58 2005), and a range of studies have shown that an increase in SOM content increases SSS (e.g.,  

59 Jensen et al., 2017a; Watts and Dexter, 1997). 

60 Soil organic carbon (SOC) is the main constituent of SOM and since an increase in SOC 

61 content generally increases SSS it may serve as a proxy for SSS. Labile organic compounds are 

62 considered readily decomposable, and are potentially better indicators for soil functions (Haynes, 

63 2005). For example, permanganate oxidizable carbon (POXC) is considered a processed labile 

64 component of SOM and has been found to be more sensitive to differences in management than 

65 total SOC (Culman et al., 2012). POXC is easy and cheap to measure, and has been suggested as the 

66 best single predictor of soil health (Fine et al., 2017) and as a better predictor of crop productivity 

67 than total SOC (Hurisso et al., 2016). Similarly, hot water-extractable carbon (HWC) has been 

68 highlighted as a soil quality indicator more sensitive to management changes than total SOC (Ghani 

69 et al., 2003). HWC is considered a labile component of SOM consisting of microbial and plant 

70 derived material (Hirsch et al., 2017; Villada et al., 2016). Another measure, which potentially 

71 could better explain changes in SSS than total SOC could be to subtract light fraction organic 
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72 carbon (LFSOC) from total SOC since LFSOC is a fraction not closely associated to mineral 

73 particles (Gregorich et al., 2006). Mid-infrared photoacoustic spectroscopy (FTIR-PAS) can be used 

74 to assess differences in SOM quality (Peltre et al., 2014; Peltre et al., 2017), which potentially could 

75 improve the explanatory power in predicting SSS. 

76 Increasing evidence suggest that soils exhibit a capacity factor for carbon sequestration also 

77 known as saturation state (Hassink, 1997; McNally et al., 2017). The saturation state of the soil has 

78 been found to influence the SSS measure, clay dispersibility, rather than SOC per se (Dexter et al., 

79 2008). The saturation state has been assessed through the clay/SOC ratio, and a critical value close 

80 to 10 corresponding to a soil where the mineral particles are saturated with SOC has been found in 

81 several studies (Dexter et al., 2008; Getahun et al., 2016; Jensen et al., 2017a; Schjønning et al., 

82 2012). Soils with clay/SOC>10 may thus be considered SOC-unsaturated, and for such soils SSS 

83 may be reduced. A similar threshold has been found for mineral particles <20 µm (Fines20) where 

84 the ratio of Fines20/SOC>20 indicates less SSS. Consequently, these mineral fines to SOC ratios 

85 may serve as soil type independent threshold values for SSS. 

86 Previous studies often rely on samples retrieved from contrasting sites with different soil 

87 types and textures making quantification of the effect of SOM components on SSS dubious. This 

88 because the effects on SSS can be affected by other aggregate forming factors. More knowledge on 

89 the quantitative importance of SOM components on SSS using different pretreatments and energy 

90 input in the tests are needed.    

91 The objective of this study was to quantify the influence of SOC on soil structural stability 

92 parameters determined in different ways and to test if knowledge about SOM characteristics could 

93 improve the predictive ability. A wide range of measures for the determination of SSS exists 

94 ranging in sample preparation, pretreatment, degree of disturbance and quantification (Le 

95 Bissonnais, 1996; Pojasok and Kay, 1990; Pulido Moncada et al., 2015). In this study, we applied 
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96 stability tests varying in pretreatment and ranging from low to very high degree of disturbance for a 

97 comprehensive evaluation of SOC effects on SSS. Soil was retrieved from the Highfield Ley-Arable 

98 Long-Term Experiment at Rothamsted Research (Highfield-LTE), a silt loam with a relatively 

99 homogeneous topsoil texture and a large gradient in SOC that has developed during at least 56 years 

100 of contrasting management practices without the confounding effects of soil type, soil texture and 

101 climate. Treatments were selected to obtain the widest possible gradient in SOC content, and thus 

102 ensuring major differences in SOM components. 

103

104 2. Materials and methods

105 2.1 The Highfield-LTE and treatments

106 The Highfield-LTE was established in 1949 on a silt loam soil (Table 1) at Rothamsted 

107 Research, Harpenden, UK (51°80’N, 00°36’W) in a field that had been under permanent grass for 

108 centuries. The soil belongs to the Batcombe series, and the parent material include a relatively silty 

109 (loess-containing) superficial deposit overlying and mixed with clay-with-flints (Avery and Catt, 

110 1995). The soil is classified as an Aquic Paludalf (USDA Soil Taxonomy System) and Chromic 

111 Luvisol (WRB) (Watts and Dexter, 1997). Average annual temperature and precipitation are 10.2ºC 

112 (mean of 1992-2014) and 718 mm (mean of 1981-2010), respectively (Scott et al., 2014). 

113 We selected three treatments in the ley-arable experiment: 

114 Continuous arable rotation (A), winter cereals (winter wheat, Triticum aestivum L. and winter oats, 

115 Avena sativa L.) fertilized with 220 kg N ha-1 y-1 and maintained under standard Rothamsted farm 

116 practice with straw removed. Ley-arable rotation (LA), three-year grass/clover ley (meadow fescue, 

117 Festuca pratensis L.; timothy-grass, Phleum pratense L.; white clover, Trifolium repens L.) 

118 followed by three years arable (managed as A). The grass/clover ley received no N and was cut and 
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119 removed in early summer. The small amount of regrowth was topped in early autumn and left on 

120 the plots. Two of the sampled plots were drilled with winter cereals following three years of 

121 grass/clover, whereas the other two were drilled with grass/clover following three years of winter 

122 cereals. Grass (G), ploughed and reseeded to grass (predominantly rye grass, Lolium perenne L.) 

123 when the experiment was established (1949). The grass was managed as the grass/clover ley in LA. 

124 We also selected the bare fallow (BF) treatment, which is not part of the original ley-arable 

125 experiment and located adjacent to the ley-arable experiment (denoted Highfield bare fallow and 

126 Geescroft bare fallow). The BF treatment has been maintained free of plants by regular tillage 

127 (ploughed or rotavated two to four times a year) since 1959. The ploughing depth in BF, A and LA 

128 was 0.23 m. The A, LA and G plots were fertilized with 65 kg P ha-1 and 250 kg K ha-1 every three 

129 years. 

130 The A, LA and G treatments were part of a randomized block design with four field 

131 replicates, whereas the four BF plots were located at one end of the experiment (Fig. 1). The 

132 dimensions of the LA plots were 50 m x 7 m, whereas it was 10 m x 6 m for the other plots. The A, 

133 LA and G plots were smaller since they were part of a reversion experiment initiated in 2008. For 

134 more details see Johnston (1972) and the electronic Rothamsted Archive 

135 (www.era.rothamsted.ac.uk). 

136 2.2 Soil sampling

137 Soil was sampled in March 2015 at field capacity water conditions (corresponding 

138 approximately to a soil water potential of -100 hPa). Soil blocks (2750 cm3) were sampled from the 

139 6-15-cm soil layer by careful use of a spade. Three sampling sites in each experimental plot were 

140 randomly chosen and labeled subplot. One of these blocks was extracted from each subplot adding 

141 up to three blocks per plot. The soil was kept in rigid containers to prevent soil disturbance during 

142 transport and stored in a field-moist condition at 2ºC until required. Soil from the blocks at subplot 

http://www.era.rothamsted.ac.uk
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143 level were spread out in steel trays at room temperature, carefully fragmented by hand in several 

144 sittings along natural planes of weakness and finally left to air-dry.     

145 2.3 Basic chemical and physical analysis

146 Soil texture of air-dried bulk soil (crushed and passed through a 2-mm sieve) was determined 

147 by the hydrometer method for clay (<2 μm) and silt (2-20 μm) content and the sieve method for 

148 mineral particles >63 μm (Gee and Or, 2002). The soil was tested for CaCO3 by adding a few 

149 droplets of 10% HCl, but none was found. SOM was removed by H2O2 before estimation of clay 

150 and silt as described in Jensen et al. (2017b). The SOC content was determined on ball-milled 

151 subsamples using dry combustion (Thermo Flash 2000 NC Soil Analyzer, Thermo Fisher Scientific, 

152 Waltham Massachusetts, USA). Specific surface area (SSA) was determined by the ethylene glycol 

153 monoethyl ether method (Petersen et al., 1996), and cation exchange capacity (CEC) was 

154 determined after Kalra and Maynard (1991). Soil pH was determined in 0.01 M calcium chloride 

155 (CaCl2) solution (1:2.5, w/w). Clay, silt and SOC content were determined at subplot level, whereas 

156 the other properties were determined at plot level. 

157 2.4 Soil organic matter characteristics

158 Permanganate oxidizable carbon (POXC) was determined at subplot level following Culman 

159 et al. (2012). Air-dry 2-mm sieved soil equivalent to 2.5 g oven-dry weight was weighed into a 50 

160 ml falcon tube, and was shaken in 18.0 ml of distilled water and 2.0 ml 0.2 M potassium 

161 permanganate (KMnO4) with pH 7.2 at 33 rpm for 2 min. After shaking, the soil was allowed to 

162 settle for 10 min after which 0.5 ml of the supernatant was transferred to falcon tubes containing 

163 49.5 ml of water. The absorbance of the diluted solution was measured at 550 nm using a 

164 spectrophotometer (Thermo Electron Spectronic Helios Alpha Beta UV-visible). Absorbance of 
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165 four standard stock KMnO4 solutions were measured to create a standard curve, and the absorbance 

166 of the samples were converted to POXC using the equation of Weil et al. (2003). 

167 Hot water-extractable carbon (HWC) was determined at subplot level following Ghani et al. 

168 (2003). Briefly, air-dry 2-mm sieved soil equivalent to 3 g oven-dry weight was weighed into a 50 

169 ml falcon tube, and was shaken in 30 ml distilled water at 33 rpm for 30 min, at 20ºC. After 

170 centrifugation (3500 rpm, 20 min) the supernatant was decanted, soil resuspended and shaken for 16 

171 h at 200 rpm, at 80ºC. After centrifugation, the supernatant was transferred to 50 ml maxi-spin filter 

172 tubes equipped with a cellulose acetate membrane filter (0.45 µm pore size), filtered by 

173 centrifugation for 10 min at 3000 rpm and carbon determined by wet oxidation using a Shimadzu 

174 TOC-V analyzer. 

175 Fractionation based on density was determined at subplot level using a modification of the 

176 method described by Sohi et al. (2001). Briefly, 10 g of air-dried 2-mm sieved soil was weighed 

177 into a 50 ml falcon tube, 35 mL of NaI solution with a density of 1.8 g cm-3 was added, and the 

178 solution was shaken at 33 rpm for 2 h. The suspension was centrifuged for 30 min after which 

179 floating particles was transferred to a glass fiber filter (type GF/A, 110 mm diam., 1.6 µm retention, 

180 Whatman International, Kent, UK), and filtered under suction in a vacuum filtration unit (Büchner 

181 funnel). The light fraction organic matter (LFOM) retained on the filter was washed carefully and 

182 transferred to a crucible. To ensure a quantitative removal of LFOM the procedure was repeated. 

183 The remaining heavy fraction (HF) was washed three times and transferred to a large crucible. The 

184 oven-dry weight of the LF and HF were estimated by drying (105 °C for 24 h). The amount of OM 

185 recovered was estimated by loss-on-ignition (LOI; 500 °C for 4 h) both for the LFOM and HF. A 5 

186 g air-dry bulk soil sample was dried to allow expressing results on an oven-dry basis after which 

187 LOI was determined. The LOI of bulk soil was used to make a model to predict the SOC of the HF 
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188 based on a multiple regression of SOC against LOI and clay (Model H2.1, Table 2 in Jensen et al., 

189 2018):

190 SOC = 0.515 LOI (P<0.001) - 0.043 Clay (P<0.001), (n=48, R2= 0.990) (1)

191 Ten tests without soil (blind tests) were performed. The blind test estimate was subtracted 

192 from the LFOM estimate. The LFOM was converted to LFSOC by multiplying with 0.515 (Eq. 1), 

193 expressed as percentage of the sum of LFSOC and HFSOC, and normalized to the measured SOC 

194 content. Light fraction-free-SOC (LF-free-SOC) was calculated by subtracting LFSOC from SOC.  

195 Fourier transform mid-infrared photoacoustic spectroscopy (FTIR-PAS) was determined at 

196 plot level following Peltre et al. (2014). Air-dry 2-mm sieved soil samples were ball-milled and 

197 packed in 10-mm diameter cups and functional groups of soil components were investigated using a 

198 Nicolet 6700 FTIR spectrometer (Thermo Scientific) equipped with a PA301 photoacoustic detector 

199 (Gasera Ltd. Turku, Finland). Spectra were recorded with an average of 32 scans within the range 

200 4000-600 cm-1 and with 2 cm-1 intervals. A flow of helium was used as purge gas to remove noise 

201 produced by ambient moisture and CO2 as well as moisture from the sample after insertion of the 

202 cup in the photoacoustic detector chamber. We focused on the 1700-1300 cm-1 region to reduce 

203 overlapping from bands arising from soil minerals. The spectral peak area between 3000 and 2800 

204 cm-1  were integrated as described in Peltre et al. (2017), and reflects the amount of aliphatics in the 

205 soil (Leifeld, 2006).

206 2.5 Soil structural stability 

207 Clay dispersibility (DispClay) was determined at subplot level on 1-2 mm aggregates 

208 extracted from the air-dry 2-mm sieved soil. The aggregates were adjusted to a matric water 

209 potential of -100 hPa as described in Schjønning et al. (2012). In short, the aggregates were put on a 
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210 tension table at -100 hPa, gradually exposed to reduced suctions until -3 hPa, and finally 

211 equilibrated at -100 hPa by gradually increased suctions. The rewetting was done with great caution 

212 to avoid air explosion (slaking). Artificial rainwater was added to cylindrical plastic bottles 

213 containing 10 g of aggregates in order to obtain a soil:water ratio of 1:8 by weight. After end-over-

214 end rotation (33 rpm, 23-cm diameter rotation) for 2 min, the bottles were left to stand for 230 min, 

215 after which the upper 50 mm (60 ml) containing particles ≤2 µm was siphoned off. The weight of 

216 dispersed clay was determined after oven-drying (105 °C for 24 h) and corrected for particles >250 

217 µm isolated by chemical dispersion.

218 Dispersion of particles <20 µm (DispFines20) was measured at different time steps at plot 

219 level on field-moist soil. Soil was retrieved from the minimally-disturbed soil cubes using a small 

220 corer (22-mm diameter) and gently crumbled by hand to pass an 8-mm sieve. Artificial rainwater 

221 was added to a cylindrical bottle containing soil equivalent to 1 g oven-dry weight to obtain a 

222 soil:water ratio of 1:100 by weight. The bottle was end-over-end rotated (33 rpm, 23-cm diameter 

223 rotation) for 2, 4, 8, 16, 32, 64 and 128 min. At each time step the bottle was left to stand for 67 sec, 

224 after which the upper 30 ml containing particles <20 µm was siphoned off and turbidity of the 

225 suspension was measured on a Hach 2100AN turbidimeter (Hach, Loveland, CO). After the 

226 turbidity measurements taken at time steps 2-64 min the soil suspension was transferred back to the 

227 bottle. Thus, the measurements at the different time steps was done on the same sample. After the 

228 final measurement, the 30 ml was transferred to a beaker and bulked at treatment level. For each 

229 treatment, correlations between nephelometric turbidity unit (NTU) and particle concentration were 

230 made by doing dilution series. The calibration curves can be seen in Fig. S1 in Supplementary 

231 material. The results were corrected for particles > 250 μm isolated by chemical dispersion. 
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232 Soil samples at subplot level were analyzed without H2O2-removal of SOM before estimation 

233 of clay as described in Jensen et al. (2017b), and clay-SOM disintegration (DI) was calculated as 

234 the ratio between clay content estimated without SOM removal and with removal. Soil with DI 

235 values <1 kg kg-1 can be interpreted as extremely stable since they have resisted disintegration after 

236 end-over-end rotation for 18 h in sodium pyrophosphate.

237 2.6 Calculations and statistics

238 The soil components measured in the paper are given as fractions of oven-dry weight (105ºC 

239 for 24 h) of the SOM-free mineral fraction. This includes mineral particle size fractions, SOC, 

240 POXC, HWC, LF-free-SOC, SSA, CEC and DispClay. DispFines20 is given as a fraction of SOM-

241 free mineral fraction <20 µm. 

242 The statistical analysis and processing of spectral data applied the R-project software package 

243 Version 3.4.0 (R Foundation for Statistical Computing). Treatment effects for the comparison of A, 

244 LA and G were analyzed with a linear mixed model including block as a random effect. The 

245 criterion used for statistical significance of treatment effects was P<0.05. When the treatment effect 

246 was significant, further analyses were made to isolate differences between treatments (pairwise 

247 comparisons) using the general linear hypotheses (glht) function implemented in the R multcomp 

248 package and the Kenward-Roger method to calculate degrees of freedom (Kenward and Roger, 

249 2009). Treatment differences for the comparison of BF and the other treatments were calculated 

250 based on a pairwise t-test, acknowledging that this is a less robust test, and that the treatment 

251 differences could be due to soil variation since the BF treatment is not a part of the ley-arable 

252 experiment. Inverse transformation was performed on DispFines20 to stabilize the variance. The 

253 broken-stick model was fitted using the segmented package in R. A piece-wise linear model was 

254 used: 



13

255 y = β0 + β1(x) + β2(x-c)+ + e (2)

256 where y is the dependent variable, x is the independent variable, c is the change point and e is the 

257 residual standard error (Toms and Lesperance, 2003). The + sign indicates that the last term only is 

258 valid when x>c.  

259 Spectral data processing included baseline correction, smoothing using a Savitzky-Golay filter 

260 calculated on three data points on each side with a zero-order polynomial, and normalization by the 

261 average absorbance on the whole spectra. Principal component analysis (PCA) on the FTIR-PAS 

262 spectra was performed using the ade4 package in R. 

263

264 3. Results

265 3.1 Basic soil characteristics

266 Differences in the contents of clay, silt and sand were in general not significant between 

267 treatments (Table 1) and the effect of the contrasting management practices could be investigated 

268 without confounding effects related to soil texture. SSA differed significantly following the same 

269 pattern as SOC. CEC was significantly higher for G compared to the BF treatment, and the amount 

270 of exchangeable Ca2+ was significantly higher for G compared to the other treatments. Soil pH was 

271 not affected by the contrasting management practices.  

272 3.2 Soil organic matter characteristics

273 Concentration of SOC differed significantly in the order G>LA=A>BF (Table 2). POXC, 

274 HWC, LFSOC, and the aliphatic C-H peak area (3000-2800 cm-1) followed the treatment 

275 differences in SOC. The full spectral range as well as the SOM fingerprint region (1700-1300 cm-1) 

276 at plot level can be seen in Supplementary material, Figs. S2 and S3, respectively. 
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277 The aliphatic peak area normalized by the SOC content was higher in the BF than the G 

278 treatment indicating that SOM in G soil was more depleted in aliphatics. The POXC contributed to 

279 1.7, 2.6, 2.8 and 2.5 % of total SOC, respectively, and the HWC in BF, A, LA and G contributed to 

280 4.6, 4.5, 5.0 and 4.9 % of total SOC, respectively. The increase in POXC with an increase in SOC 

281 was different for the G treatment compared to A and LA (Fig. 2a). The narrow range in SOC 

282 content for BF did not allow an evaluation of the POXC-SOC relation within the SOC-depleted BF 

283 soil, but the first slope of the broken-stick model was similar to a linear regression with only A and 

284 LA (35.4 compared to 33.9 g kg-1 SOC). This indicates that the level of POXC for BF was in line 

285 with the trend of the other tilled treatments (A and LA). The x-intercept of the broken-stick model 

286 in Fig. 2a was 0.00458 kg SOC kg-1 minerals, and suggests that no POXC was oxidized at and 

287 below this SOC content. For the wide range in SOC in this study, HWC correlated linearly to SOC 

288 with an intercept value close to zero (Fig. 2b). Our data thus point to a concentration of ~0.05 kg 

289 HWC per kg SOC (~5%) irrespective of SOC level. 

290 The PCA analysis based on the 1700-1300 cm-1 region clearly separated the treatments on the 

291 first principal component (PC1) explaining 84.6% of the spectral variance (Fig. 3a). Field plots 

292 from the G and BF treatment were located on the left and right side of the PCA plane, respectively. 

293 Field plots from the A and LA treatments were in the center of the PCA plane and did not differ 

294 much. Examination of the loading of PC1 indicated that BF soils were relatively enriched in organic 

295 compounds vibrating in the range between 1700 and 1580 cm-1 with a peak at 1625 cm-1 (Fig. 3b). 

296 Absorption in this region is attributed to vibration of aromatics and carboxylate at 1600-1570 cm-1, 

297 amine at 1610 cm-1, clay-bound water at 1640 cm-1, aromatics at 1660-1600 cm-1 and amides at 

298 1670-1640 cm-1 (Table 1 in Peltre et al., 2017). In contrast, G soils were relatively enriched in 

299 organic compounds vibrating in the range between 1580-1495 cm-1 and 1475-1325 cm-1 with peaks 

300 at 1550, 1510 and 1385 cm-1 (Fig. 3b). These regions are attributed to vibration of nitrate at 1380 
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301 cm-1, carboxylate at 1390 cm-1, amide III at 1420 cm-1, carbonates at 1430 cm-1, aliphatic methyls at 

302 1445-1350 cm-1, lignin rings at 1505-1515 cm-1 and amide II at 1570-1540 cm-1 (Table 1 in Peltre et 

303 al., 2017). 

304 3.3 Soil structural stability

305 The amount of dispersible clay differed significantly in the order BF>A>LA>G, and the 

306 disintegration of soil without SOM removal was significantly lower for the G treatment compared 

307 to the other treatments (Table 2). Linear, semi-logarithmic and broken-stick models were employed 

308 to describe the correlations of SOC, POXC and HWC to DispClay and DI (Table 3). The coefficient 

309 of determination (R2) was highest when DispClay and DI were related to SOC with a broken-stick 

310 model (see relation on Fig. 4a). Similar relationships were found when relating POXC and HWC to 

311 DispClay and DI (Figs. 4b and 4c). 

312 Relating changes in DispClay to LF-free-SOC did not improve R2 compared to SOC (Fig. 5a), 

313 whereas LF-free-SOC increased the explained variation in DI by 1 %-unit (Fig. 5b).   

314 DispFines20 was significantly lower for the G treatment compared to the other treatments at 

315 all time steps (Fig. 6a), and the release-curve had a contrasting shape compared to the other 

316 treatments. DispFines20 was significantly lower for the LA than the A treatment after both 64 and 

317 128 min. The release rate was markedly higher in the beginning for BF, A and LA compared to G 

318 (Fig. 6b). From approx. 24 min onwards, G had a higher release rate compared to the other 

319 treatments. At all time steps, DispFines20 was virtually constant across the four G treatment plots 

320 despite a range in SOC, while considerable variation was observed for the narrower SOC ranges of 

321 the other three treatments (Fig. S4 in Supplementary material). 

322

323 4. Discussion
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324 4.1 Linking soil organic matter components to soil structural stability

325 POXC has been promoted as a relatively processed or stabilized pool of active SOC (Culman 

326 et al., 2012), and as organic material to support biological functions (Idowu et al., 2008), while 

327 HWC has been promoted as an indicator of soil biochemical quality (Ghani et al., 2003). Both SOM 

328 fractions are considered labile and sensitive indicators for assessing management-induced changes 

329 (Culman et al., 2012; Ghani et al., 2003). Labile organic compounds are known to bond mineral 

330 particles together and thus stabilize them against mechanical damage (Degens, 1997). However, this 

331 mechanism would not be expected to play any role for the clay-SOM disintegration (DI) test that 

332 involves a rather extreme disruptive energy to soil structural units (end-over-end shaking for 18 h in 

333 sodium pyrophosphate solution). In accordance with this, we note a higher coefficient of 

334 determination in the broken-stick regression relating DI to SOC (R2=0.88) than for POXC and 

335 HWC (R2=0.82 and R2=0.79, respectively). One may speculate that stable organo-mineral 

336 associations (i.e. at submicro-aggregate and primary particle scale) are causing the extreme stability 

337 at high SOC contents. The similar pattern observed for POXC and HWC (broken-stick) then relates 

338 to the near linear relations observed between total SOC and these two fractions (Fig. 2).

339 For the DispClay SSS measure, we observe nearly identical coefficients of determination in 

340 the broken-stick models describing the data: R2 equals 0.94, 0.93 and 0.91 with SOC, POXC and 

341 HWC as predictor (Table 3). We further note that the broken-stick is “less broken” especially when 

342 using POXC as predictor of trends in data (slope ratios, Table 3). This observation is supported by a 

343 higher ability of POXC to describe data in a linear model (R2=0.91) compared to HWC and SOC 

344 (R2=0.82 and R2=0.84, respectively). Overall, this may indicate that POXC is superior to SOC and 

345 HWC in describing the variation in DispClay.  

346 Our study does not allow a definite clarification regarding which mechanisms are in play in 

347 SSS. The indication that POXC is superior in describing the variation in DispClay may be related to 
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348 a link to bonding agents such as polysaccharides, which are assumed predominantly active at micro-

349 aggregate scale (Tisdall and Oades, 1982). However, the composition of POXC is unknown, which 

350 is related to the destruction of the fraction by oxidization. The lower predictive ability of HWC to 

351 explain SSS data and its close correlation to SOC may indicate that it is a too simplistic quality 

352 characteristic of SOC. Other studies have emphasized the need to focus on the carbohydrate-C 

353 contents in the hot water-extracts (e.g., Haynes, 2005), and studies have shown that hot water-

354 extractable carbohydrate-C was a better predictor of SSS than SOC (Haynes and Swift, 1990). 

355 Changes in DispClay and DI may be better explained by LF-free-SOC than total SOC. 

356 However, the difference in using LF-free-SOC compared to SOC was marginal (Fig. 5). The 

357 decrease in DispClay and DI when going from BF to G could be related to a general enrichment in 

358 aliphatics and lignin, and a decrease in carboxylic groups and amides (Table 2, Fig. 3). The higher 

359 amount of carboxyl-rich and amide-rich SOM suggest that the SOM in the BF soils were more 

360 oxidized being in agreement with the findings of Barré et al. (2016). Such compounds have been 

361 related to microbial processed and stable SOM in organo-mineral associations (Kleber et al., 2015). 

362 A higher proportion of aliphatics in SOM from the BF soils also support the presence of a more 

363 decomposed SOM. The results indicate that plant residues were decomposed rapidly in the BF soils 

364 leaving behind SOM enriched in microbial processed OM. In contrast, less oxidized and continually 

365 renewed compounds accumulated in the G soils. 

366 4.2 Management system effects on soil structural stability

367 The four treatments can be seen as three management systems comprising the BF treatment 

368 with intensive tillage, no plants or carbon input, the A and LA treatments with plants and tillage, 

369 and the G treatment with plants and absence of tillage. The G treatment differed from the other 

370 treatments by having a very stable structure and a better ability to resist increasing degrees of 
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371 disturbance. Consequently, the potential maximum SSS was only fully achieved for the long-term G 

372 treatment. This was reflected in the DispClay and DI tests where the change point of the broken-

373 stick model for SOC content was confounded with treatment, and represented a change from the LA 

374 to G treatment (Fig. 4a). Also the results on DispFines20 support a change in stability between the 

375 G treatment and the other treatments illustrated by the contrasting curve, release rate and higher 

376 stability at all time steps (Fig. 6). Permanent grass stands out from the other treatments by having a 

377 greater input of above- and belowground plant residues. Hirsch et al. (2009, 2017) found a 

378 markedly greater number of roots and mesofauna in G compared to BF and A, and a larger 

379 abundance of fungi. Roots and fungal hyphae can act as binding agents, enmesh aggregates 

380 (Elmholt et al., 2008; Tisdall and Oades, 1982), and potentially increase SSS, and mesofauna can 

381 contribute to stability via stabilizing decomposition products (Oades, 1993). In addition, the effect 

382 of these stabilizing agents are persistent since they are continuously replaced, and remain 

383 undisturbed due to the absence of tillage. The limited effect of SOC on DispFines20 within the G 

384 treatment at all time steps (Fig. S4 in Supplementary material) may be related to the larger scale 

385 applied in the test, i.e. whole-soil samples not broken down to more than 8 mm. At a larger scale, 

386 management system drivers such as macro-aggregate stabilizing agents seemed to be more distinct, 

387 while SOC played a minor role. The greater stability of the G treatment may also be related to the 

388 absence of tillage shown to be detrimental to the preservation of stabilizing agents. 

389 The higher amount of soluble Ca2+ ions in the G treatment increases the tendency of clay 

390 particles to flocculate (Le Bissonnais, 1996), and may also contribute to the higher stability. 

391 However, the importance of cations for aggregate stability is considered less important in soil high 

392 in clay or SOC (Bronick and Lal, 2005). Matthews et al. (2008) found a decrease in wettability for 
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393 G, whereas wettability was similar for BF, A and LA treatments. Thus, the very stable structure of 

394 the G soil may also be partially related to decreased wettability. 

395 4.3 Critical carbon levels

396 Our SSS measures DI and DispClay showed a change in the relation to SOC at around 0.0230 

397 kg kg-1 minerals for this soil (broken-stick change point; Fig. 4a). The carbon saturation concept 

398 (Six et al., 2002; Stewart et al., 2007) implies the existence of a SOC concentration that for a given 

399 soil provides a full “coverage” of the surface of soil minerals with SOC. This potential carbon 

400 storage capacity (Ingram and Fernandes, 2001) was verified for a range of grassland soils assumed 

401 saturated with organic carbon (Hassink, 1997). A SOC concentration of ~0.0230 kg kg-1 minerals 

402 found in this study may thus be hypothesized to reflect the potential storage capacity for this soil. 

403 The broken-stick pattern for DispClay indicates that SOC influences SSS more for soils with SOC 

404 below the change point than above (Fig. 4a). DispClay increases more with reduction in SOC when 

405 the soil is unsaturated with carbon (below the change point) than when it is saturated. This is in line 

406 with Jensen et al. (2017a), who found SOC to be important for SSS for SOM-depleted soil. 

407 Interestingly, the DI test with extreme energy input showed that all unsaturated soil samples 

408 behaved similarly and fully disintegrate (slope not significantly different from zero; Fig. 4a).  

409 The SOC threshold for a change in SOC effects on SSS differ from soil to soil, e.g. around 

410 0.0110 kg SOC kg-1 minerals for a sandy loam in Denmark (Jensen et al., 2017a). Thus, SOC 

411 critical to SSS seems soil type dependent. Dexter et al. (2008) and Jensen et al. (2017a) found an 

412 increasingly compromised SSS when the clay/SOC ratio was above 10. Schjønning et al. (2012) 

413 and Jensen et al. (2017a) found that a Fines20/SOC ratio of 20 serve as a similar critical threshold 

414 value. The clay/SOC and Fines20/SOC ratios for a change in DispClay and DI were calculated by 

415 dividing the average clay or Fines20 content with the change point giving values of 11 and 23, 
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416 respectively. Thus, our results support the soil clay/SOC~10 or Fines20/SOC~20 as defining factors 

417 for SSS. 

418 In this study the thresholds for changes in SOC (as well as POXC and HWC) effects on SSS 

419 is confounded with management (Fig. 4). Thus the calculated soil mineral fines/SOC thresholds 

420 may relate to a quantity of SOC as well as management system (as discussed in section 4.2). This 

421 was unavoidable since systems with a wide range in SOC often will require contrasting 

422 management. However, confounding effects derived from differences in soil type, soil texture and 

423 climate were eliminated.    

424

425 5. Conclusions

426 We exploited the unique range in SOM within Highfield, which has developed due to 

427 contrasting long-term management practices. Soil structural stability (SSS) increased with an 

428 increase in SOM components. However, the relationships followed a broken-stick regression with 

429 the greater effect occurring when SOM components were less. The SOM fractions permanganate 

430 oxidizable carbon (POXC) and hot water-extractable carbon (HWC) were less related to clay-SOM 

431 disintegration than SOC. However, POXC seemed superior in describing the variation in clay 

432 dispersibility compared to SOC and HWC. The permanent grass had a very stable structure - even 

433 when exposed to high degree of disturbance. This may be ascribed to the management system, 

434 which result in higher amount of stabilizing agents due to greater and annually renewed inputs of 

435 above- and belowground plant residues as well as absence of tillage. Both aspects promote a high 

436 abundance of soil microbiota and mesofauna. For this soil, management changes promoting SOM 

437 content increased SSS up to a specific threshold coinciding with a change to permanent grass. 

438 Consequently, increasing the SOC content at low contents or changing management from arable 
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439 rotation to permanent grass seem promising tools for improving SSS. Further, this study supports 

440 the existence of critical soil mineral fines/SOC ratios for SSS with change points at clay/SOC~10 

441 and Fines20/SOC~20.   

442
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589 Figure captions

590 Fig. 1. Distribution of plots in Highfield showing the arable (A), ley-arable (LA) and grass (G) 

591 treatments in blocks 1-4 of the ley-arable experiment, and the bare fallow (BF) treatment in blocks 

592 1-3 of the bare fallow experiments. 

593 Fig. 2. (a) Permanganate oxidizable carbon (POXC) as a function of SOC and (b) hot water-

594 extractable carbon (HWC) as a function of SOC for the four treatments at subplot level. The 

595 broken-stick and linear regression models are indicated. 

596 Fig. 3. Principal component analysis (PCA) based on FTIR-PAS spectra for the different 

597 treatments. The dots indicate the four plots of each treatment. For treatment abbreviations, see Fig. 

598 1. (a) Scores plot in the plane defined by principal component 1 (PC1, explaining 84.6% of the 

599 variance) and principal component 2 (PC2, explaining 7.5% of the variance) of the PCA. (b) 

600 Loadings of the PCA for PC1 and PC2. 

601 Fig. 4. Clay dispersibility of 1-2 mm aggregates rewetted to -100 hPa (solid lines) and 

602 disintegration (the ratio between clay content estimated without SOM removal and with removal) 

603 (dashed lines) as a function of (a) soil organic carbon (SOC), (b) permanganate oxidizable carbon 

604 (POXC), and (c) hot water-extractable carbon (HWC) for the four treatments at subplot level. The 

605 broken-stick models (Table 3) are indicated. See Table 3 for equations and R2-values. 

606 Fig. 5. (a) Clay dispersibility and (b) Clay-SOM disintegration as a function of soil organic carbon 

607 (SOC; black symbols) and LF-free-SOC (Light fraction-free-SOC; white symbols). The broken-

608 stick models and R2-values are indicated. 

609 Fig. 6. (a) The ratio between dispersed particles <20 µm and the total content of particles <20 µm as 

610 a function of Log10(min) at treatment level. The standard error of the mean is indicated (n=4). The 
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611 polynomials are fitted to the four replicates time’s seven data points per treatment. Letters denote 

612 statistical significance at P<0.05 for the comparison of A, LA and G. An asterisk (*) indicates if BF 

613 is significantly different from A, LA and G based on a pairwise t-test. (b) Release rate (kg kg-1 

614 minerals dispersed min-1) as a function of Log10(min) at treatment level. A stepwise, simple 

615 calculation of slope from time step to time step was employed to calculate the release rate, and a 

616 smoothed spline curve was added.   

617
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618 Table 1 Soil characteristics. Within rows, letters denote statistical significance at P<0.05 for the 

619 comparison of A, LA and G. An asterisk (*) indicates if BF is significantly different from A, LA 

620 and G based on a pairwise t-test. For treatment abbreviations, see Fig. 1.  

BF A LA G
Texturea

  Clay <2 μm 0.270 0.264 0.255 0.261
  Silt 2-20 μm 0.249 0.263 0.261 0.272*

  Silt 20-63 μm 0.335 0.318 0.324 0.319
  Sand 63-2000 μm 0.146 0.155 0.160 0.148
Specific surface area (m2 g-1 minerals)b 56.7 67.9a* 68.4a* 78.4b*

Exchangeable cations and CEC
  Na+ (mmolc kg-1 minerals) 0.4 0.5a 0.4a 0.7b*

  K+ (mmolc kg-1 minerals) 3.3 6.3 17.7 5.8
  Ca2+ (mmolc kg-1 minerals) 93.7 113.3a 128.7a 155.6b*

  Mg2+ (mmolc kg-1 minerals) 5.4 4.0 4.1 4.6
  Sum of bases (mmolc kg-1 minerals) 102.9 107.1a 120.7ab 142.0b*

  CEC (mmolc kg-1 minerals) 145.8 173.8 171.3 209.9*

  Base saturation (%) 72.8 65.5 74.8 74.4
pH (CaCl2) 5.7 5.1 5.1 5.4

621 akg kg-1 of mineral fraction and based on oven-dry weight. 

622 bClay is included as a co-variable since it is significant in itself and makes the treatment effect 

623 significant. 

624
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625 Table 2 Soil organic matter characteristics, clay dispersibility of 1-2 mm aggregates rewetted to -

626 100 hPa and clay-SOM disintegration (the ratio between clay content estimated without SOM 

627 removal and with removal). Within rows, letters denote statistical significance at P<0.05 for the 

628 comparison of A, LA and G.  An asterisk (*) indicates if BF is significantly different from A, LA 

629 and G based on a pairwise t-test. For treatment abbreviations, see Fig. 1.  

BF A LA G
Soil organic matter characteristics
  Soil organic carbon (SOC, kg kg-1 minerals) 0.0090 0.0173a* 0.0216a* 0.0329b*

  Permanganate oxidizable carbon (POXC, g kg-1 minerals) 0.161 0.458a* 0.600b* 0.818c*

  % of SOC 1.7 2.6ab* 2.8b* 2.5a*

  Hot water-extractable carbon (HWC, g kg-1 minerals) 0.437 0.777a* 1.082b* 1.611c*

  % of SOC 4.6 4.5a 5.0b 4.9ab

  Light fraction carbon (LFSOC, g kg-1 minerals) 0.167 1.285a* 1.732a* 2.579b*

  % of SOC 1.9 7.4* 8.0* 7.8*

  Aliphatic peak area 58 99a* 121a* 159b*

  Aliphatic peak area/SOC 65 57 56 49*

Soil structural stability
  Clay dispersibility (DispClay, kg kg-1 minerals) 0.0115 0.0074c* 0.0051b* 0.0034a*

  Clay-SOM disintegration (DI, kg kg-1 minerals) 1.02 0.96b 1.00b 0.74a*

630

631
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632 Table 3 Parameters of the linear, semi-logarithmic and broken-stick models for clay dispersibility (DispClay; kg kg-1 minerals) and clay-

633 SOM disintegration (DI; kg kg-1 minerals) as a function of soil organic carbon (SOC; kg kg-1 minerals), permanganate oxidizable carbon 

634 (POXC; g kg-1 minerals), and hot water-extractable carbon (HWC; g kg-1 minerals). The change point of the broken-stick model and the 

635 corresponding 95% confidence interval is indicated. The relation between the first and second slope estimate of the broken-stick model 

636 (Slope1/Slope2) was calculated if both slopes were significant. The coefficient of determination (R2) is indicated. 

Predictor Model Equation Change point Slope1/Slope2 R2

SOC Linear DispClay 0.0134***-0.32*** SOC 0.839 
DI 1.16***-11.6*** SOC 0.723 

Semi-log DispClay -0.0189*** -0.0148*** log(SOC) 0.930
DI 0.16*** -0.442*** log(SOC) 0.555

Broken-stick DispClay 0.0160***-0.49*** SOC + 0.39*** (SOC-0.0235)+ 0.0235*** [0.0209:0.0260] 4.6 0.940
DI 1.03***-2.9NS SOC – 18.0*** (SOC-0.0225)+ 0.0225*** [0.0199:0.0251] 0.880

POXC Linear DispClay 0.0131***-0.0122*** POXC 0.907
Di 1.11***-0.366*** POXC 0.550

Semi-log DispClay 0.0029*** -0.011*** log(POXC) 0.891
DI 0.83*** -0.261*** log(POXC) 0.364

Broken-stick DispClay 0.0136***-0.0138*** POXC + 0.0084* (POXC-0.694)+ 0.694* [0.564:0.824] 2.6 0.927
DI 1.02***-0.087NS POXC - 1.00*** (POXC-0.628)+ 0.628*** [0.573:0.683] 0.819

HWC Linear DispClay 0.0128***-0.0061*** HWC 0.815
DI 1.13***-0.21*** HWC 0.648

Semi-log DispClay 0.0059*** -0.0133*** log(HWC) 0.900
DI 0.90***-0.378*** log(HWC) 0.490

Broken-stick DispClay 0.0156***-0.0105*** HWC + 0.00760*** (HWC-0.970)+ 0.970*** [0.833:1.107] 3.6 0.913
DI 1.02***-0.049NS HWC – 0.341*** (HWC-1.104)+ 1.104*** [0.921:1.288] 0.788
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637 * and *** indicate significance level at P<0.05 and P<0.001, respectively. 

638 NS: Not significant. 

639 +: Indicates that the last term is valid only when the content of SOC, POXC or HWC are larger than the change point. 
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640

641 Fig. 1. Distribution of plots in Highfield showing the arable (A), ley-arable (LA) and grass (G) 

642 treatments in blocks 1-4 of the ley-arable experiment, and the bare fallow (BF) treatment in blocks 

643 1-3 of the bare fallow experiments. 

644



35

645

646 Fig. 2. (a) Permanganate oxidizable carbon (POXC) as a function of SOC and (b) hot water-

647 extractable carbon (HWC) as a function of SOC for the four treatments at subplot level. The 

648 broken-stick and linear regression models are indicated. 

649
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650

651 Fig. 3. Principal component analysis (PCA) based on FTIR-PAS spectra for the different 

652 treatments. The dots indicate the four plots of each treatment. For treatment abbreviations, see Fig. 

653 1. (a) Scores plot in the plane defined by principal component 1 (PC1, explaining 84.6% of the 

654 variance) and principal component 2 (PC2, explaining 7.5% of the variance) of the PCA. (b) 

655 Loadings of the PCA for PC1 and PC2. 

656
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657

658
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659 Fig. 4. Clay dispersibility of 1-2 mm aggregates rewetted to -100 hPa (solid lines) and clay-SOM 

660 disintegration (the ratio between clay content estimated without SOM removal and with removal) 

661 (dashed lines) as a function of (a) soil organic carbon (SOC), (b) permanganate oxidizable carbon 

662 (POXC), and (c) hot water-extractable carbon (HWC) for the four treatments at subplot level. The 

663 broken-stick models (Table 3) are indicated. See Table 3 for equations and R2-values. 

664
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665

666 Fig. 5. (a) Clay dispersibility of 1-2 mm aggregates rewetted to -100 hPa and (b) Clay-SOM 

667 disintegration (the ratio between clay content estimated without SOM removal and with removal) as 

668 a function of soil organic carbon (SOC; black symbols) and LF-free-SOC (Light fraction-free-SOC; 

669 white symbols). The broken-stick models and R2-values are indicated. 

670
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671

672 Fig. 6. (a) The ratio between dispersed particles <20 µm and the total content of particles <20 µm as 

673 a function of Log10(min) at treatment level. The standard error of the mean is indicated (n=4). The 

674 polynomials are fitted to the four replicates time’s seven data points per treatment. Letters denote 

675 statistical significance at P<0.05 for the comparison of A, LA and G. An asterisk (*) indicates if BF 

676 is significantly different from A, LA and G based on a pairwise t-test. (b) Release rate (kg kg-1 

677 minerals dispersed min-1) as a function of Log10(min) at treatment level. A stepwise, simple 

678 calculation of slope from time step to time step was employed to calculate the release rate, and a 

679 smoothed spline curve was added.  



Supplementary material for the article entitled: ”Relating soil C and organic 
matter fractions to structural stability” by Jensen et al. 

Fig. S1. The correlation between nephelometric turbidity (NTU) and dispersed particles <20 µm (kg 

kg-1 soil) for the four different treatments. 



Fig. S2. Spectra of the different treatments from Highfield over the selected FTIR region 4000-600 

cm-1. The spectra are presented as the average of the spectra from the four field plots. BF, Bare 

fallow; A, Arable; LA, Ley-arable; G, Grass.  



Fig. S3. Spectra of the different treatments from Highfield over the selected FTIR region 1700-1300 

cm-1. The spectra are presented as the average of the spectra from the four field plots. BF, Bare 

fallow; A, Arable; LA, Ley-arable; G, Grass.  



Fig. S4. The ratio between dispersed particles <20 µm and the total content of particles <20 µm as a 

function of soil organic carbon at plot level for the seven time steps.


