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Abstract 

Whitefly (Hemiptera: Sternorrhyncha: Aleyrodidae) pests are economically important in agriculture, 

including the tobacco whitefly, Bemisia tabaci, and the greenhouse whitefly, Trialeurodes 

vaporariorum. Whiteflies are mainly controlled by synthetic insecticides but resistance to these 
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insecticides is rapidly evolving. A semiochemical-based management strategy could provide an 

alternative to the use of insecticides, by exploiting natural volatile signalling processes to manipulate 

insect behaviour. Whitefly behaviour is affected by differences in plant odour blends. Selected 

compounds have been suggested as putative semiochemicals, but in only a few studies, potential 

volatiles were eventually characterised by electrophysiology or olfactometry. The application of 

antennal preparation methods from the closely related families, the aphids (Hemiptera: Aphididae) 

and psyllids (Hemiptera: Psyllidae), may help to facilitate whitefly electroantennography. 

Behavioural bioassays are essential to identify the repellent or attractant effect of each 

semiochemical. The relevance of the semiochemicals in whitefly management needs to be evaluated 

in the respective cultivation system. Although the value of semiochemicals has not been 

demonstrated in the field against whiteflies, there is an emerging range of possible field applications 

and some promising prospects. Overall, the olfactory system of whiteflies needs to be elucidated in 

more detail. 

 

Keywords: whitefly, semiochemicals, volatile organic compounds, repellents, olfaction, pest control 

 

1 INTRODUCTION 

Whiteflies (Hemiptera: Sternorrhyncha: Aleyrodidae), including the tobacco whitefly, Bemisia tabaci, 

and the greenhouse whitefly, Trialeurodes vaporariorum, are common agricultural pests that 

damage a wide range of economically important crop plants, such as tomato (Solanum 

lycopersicum), cucumber (Cucumis sativus) and watermelon (Citrullus lanatus), especially by acting 
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as vectors of devastating plant viruses.1 Management of whitefly populations relies predominantly 

on the deployment of broad-spectrum synthetic insecticides, but because of rapid evolution of 

insecticide resistance,2 new interventions are urgently needed. Semiochemical-based approaches 

are considered as environmentally benign alternatives to the use of insecticides, because 

semiochemicals act only as signals and are not toxic at the levels deployed. Semiochemicals also 

have an essential evolutionary role and, although their use in pest management could cause 

selection for resistance, other related semiochemicals would need to evolve in order to fulfil the 

crucial signalling role targeted originally. The newly evolved chemicals could be readily identified and 

used rationally to replace the semiochemicals to which resistance had earlier evolved.3 

Semiochemicals are perceived by the olfactory organs of the insect that are mostly located on the 

antennae. Olfaction was not thought to play a significant role in whitefly host plant selection until 

the beginning of the 21st century, with research focussing mainly prior to that on whitefly vision. 

However, an increasing number of studies shows that whitefly behaviour is affected by plant-

emitted volatile organic compounds (VOCs). In behavioural bioassays, whitefly preference varies 

between potential host plants and even between host plant varieties,4-6 cultivars,4 and accessions.7 

Furthermore, whiteflies can discriminate between different qualitative conditions of host plants, for 

example differences in nitrogen fertilization,8 leaf position,9 aphid colonisation and virus infection.10-

12 Moreover, the ultrastructure of certain antennal sensilla of B. tabaci, T. vaporariorum and 

Aleyrodes proletella indicates olfactory function.13-15 Odorant binding proteins and chemosensory 

proteins have been detected in B. tabaci by transcript analysis,16 and certain volatile compounds 

have been shown to bind to chemosensory proteins of B. tabaci.17 The whitefly olfactory system is so 

highly developed that it can even differentiate between stereoisomers of VOCs.18 
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In this review, we focus on plant-produced, volatile semiochemicals and their potential for 

application in whitefly management. The aim is to identify gaps in whitefly olfaction research and to 

encourage work on this topic. The literature focuses exclusively on the economically important 

whitefly species and biotypes of B. tabaci and T. vaporariorum, but they will be compared with other 

hemipterous pests in the suborder of the Sternorrhyncha, the aphids (Hemiptera: Aphididae) and 

psyllids (Hemiptera: Psyllidae). All adults of these families are phloem-feeders on host plants and are 

vectors of plant pathogens. 

 

2 IDENTIFICATION AND EVALUATION OF PLANT-EMITTED WHITEFLY SEMIOCHEMICALS 

2.1 Isolation of putative semiochemicals 

Bemisia tabaci and T. vaporariorum are extreme generalists and thus must be able to detect the 

different volatiles specific to many host plants.19,20 An expedient approach to identify whitefly 

semiochemicals is to compare the volatile collections from different physiological conditions of the 

host plant evoking different behavioural responses from the whiteflies. For example, VOCs released 

from less attractive plants might be repellent compounds. Furthermore, it is important to include 

compounds that differ in their proportions because the ratio of the compounds can be crucial.21,22 A 

principal component analysis of the volatile collections can be helpful to identify putative 

semiochemicals within the mixture.4,23 There are various techniques available for collecting plant 

volatiles, such as solvent extraction, steam distillation or air entrainment.5 The latter is preferred 

because headspace collections represent the actual released quantities of the naturally occurring 

compounds. In addition, this non-destructive sampling method does not risk extracting compounds 

formed from damaged plant tissue. For instance, green leaf volatiles are only detected in headspace 
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collections from tomato plants after mechanical wounding.7 The technical set up of the sampling 

method, e.g. the choice of adsorbent material, needs to be investigated to achieve the best possible 

outcome.24 

 

2.2 Whitefly electrophysiology towards semiochemicals 

Usually an extract of collected plant volatiles includes a complex and diverse range of compounds, 

but only a subset of them is likely to have a semiochemical role.22 High resolution gas 

chromatography (GC) coupled with electroantennography (GC-EAG) and a detector (e.g. flame 

ionization detector) is a powerful tool for the identification of semiochemicals within a blend of 

compounds (Fig. 1). Here, the ability of a compound to be perceived at the olfactory level is 

indicated by a measured voltage deflection caused by olfactory receptor neurones localized in 

sensilla on the antennae.25 The bioactive compounds are then further identified by GC-coupled mass 

spectrometry and/or nuclear magnetic resonance spectroscopy after purification by preparative GC. 

However, no GC-EAG study with whiteflies has so far been published. Apparently, EAG is not a 

favoured technique for whiteflies. Among all studies on whitefly olfaction, only two include EAG 

measurements.7,18 In these studies, excised antenna of B. tabaci adults were mounted on a custom-

made holder and volatile terpenoids emitted from less-preferred accessions of the wild tomato 

plants Solanum pennellii, S. habrochaites, and S. peruvianum were puffed individually over the 

antenna. The excised whitefly antennae did not remain viable for the duration of a GC-EAG 

experiment using a collected plant volatile extract.18 Thus, the method is not yet adapted sufficiently 

for whiteflies to identify active compounds by GC-EAG. Whitefly electrophysiology might learn from 

the longer ongoing research on aphid olfaction where GC-EAG and EAG are widely used for detecting 
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semiochemicals.26 The longevity of the EAG preparation might be increased by a different antennal 

preparation technique, for example a whole insect preparation. An EAG study on the black bean 

aphid Aphis fabae lasted longer with a whole insect preparation compared to the excised 

antennae.27 Here, the aphid is immobilized with a copper wire restraint. A different and successful 

approach comprising fixing insects within pipette tips was used for psyllids, where whole insect 

preparations were used for GC-EAG and EAG.28 The whole insect preparation reduces the risk of 

drying antennae with the resistance increasing to a level too high for measurements. Another 

advantage of the longer usable life of the antennal preparation is the option for an extended 

recovery time between the single stimulations. The antennal responsiveness of A. fabae was higher 

with a longer recovery time by using the whole insect preparation technique.27 

A different technique for investigating the olfactory response of insects towards semiochemicals 

utilises single sensillum recordings. Here, the electrical activity of one sensillum is measured instead 

of all sensilla on the antennal flagellum.29 This method, also in combination with GC, has been used 

for decades in aphid olfaction research and, more recently, successfully applied in psyllid olfaction 

research.23 This technique can help to receive antennal responses when there is a low number of 

sensilla, shown in the carrot psyllid Trioza apicalis.30 No absolute number of antennal sensilla was 

presented in B. tabaci biotypes but the study indicates a similar sparse sensillar setup compared to 

T. apicalis.13,30,31 

Overall, the research on whitefly olfaction would benefit from more electrophysiological studies. GC-

EAG analysis of a volatile collection can greatly facilitate the search for semiochemicals. EAG-active 

VOCs are detected by insect antennae and are most likely affecting whitefly behaviour. The EAG 

method can also be used for dose-response tests comparing the antennal responses between 
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different doses of the same semiochemical. This investigation can help to identify the most efficient 

dose in whitefly management. 

 

2.3 Evaluation of whitefly behaviour towards semiochemicals 

EAG studies do not reveal the behavioural activity of an identified plant-emitted semiochemical, i.e. 

whether it is a repellent or an attractant. For this, insect behaviour towards olfactory cues needs to 

be evaluated, for example in an olfactometer assay. Olfactometers are sealed devices with a system 

of channels with or without directed airstreams providing different odour sources. The insect is 

released into the system where it can move freely and decide between the channels permeated with 

the test odour and with the solvent or air only. A solvent is often needed to apply semiochemicals on 

the release device (usually filter paper) and it serves as a control. The evaluation of the insect 

behaviour can be based on the choice of channel or on the time spend in the respective channel. It is 

expected that the insect will respond positively to channels containing an attractant stimulus 

compared with the solvent/air and positively with the solvent/air compared with a repellent 

stimulus. There is a wide variation in the procedure for measuring whitefly responses towards 

semiochemicals (e.g. the number of released whiteflies at a time, dimensions of the olfactometer or 

the evaluation method), thus making it difficult to compare different studies. However, dual-choice 

olfactometers (Fig. 2), where the insect chooses between two channels (one containing the stimulus 

and the other only the solvent or air), have been used in all tests with whiteflies responding to 

individual VOCs (Table 1). The tubular olfactometer is a linear device where the whiteflies are 

released into the middle of the tube and they can move directly to either side (Fig. 2A). The 

behavioural bioassay is conducted without airflow. The tested airborne semiochemicals have been 
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considered as repellents using the avoidance index as evaluation method (Table 1). This index is the 

number of whiteflies counted in the zone of the repellent subtracted from the number of whiteflies 

counted in the zone of the control divided by the total number of counted whiteflies. The bioassays 

in the T-shaped olfactometer are conducted without airstream (Fig. 2B). The whiteflies are released 

at the base of the device and need to move via the junction into one of both branches. Their choice 

is evaluated by the number of individuals counted in the decision chambers. The Y-shaped 

olfactometer bioassay is performed with a directed, charcoal-filtered and humidified airstream (Fig. 

2C). Here, the whiteflies are also released at the base of the olfactometer. They need to walk into 

the junction and make a choice. The preference of the whiteflies is evaluated by counting the 

number of individuals which entered the respective channel in a defined way (e.g. moving at least 

one third into the respective channel). Repellency olfactometer tests predominate due to the 

greater interest in preventing the settlement of viruliferous whiteflies on crop plants (Table 1). Two 

types of olfactory-mediated repellents have been defined depending on their effect on insect 

behaviour.35 So-called true repellents cause insects actively to move away from the odour source, 

whilst odour-masking repellents either reduce or disrupt the attractiveness of the host plant. The Y-

shaped olfactometer might be difficult for investigation of true repellents because the whitefly will 

not go into the choice region.35 This might be resolved by including the response rate of all tested 

whiteflies (responders vs. non-responders) or excluding responses below a set minimum in the 

evaluation.36,37 However, none of the studies has addressed the behaviour of the whitefly towards a 

true repellent by evaluating an oriented movement away from the odour source. Overall, the 

evaluation of whitefly repellents or attractants is rated based on the proportion of responding 

whiteflies in relation to the used solvent or clean air. The degree of the semiochemical effect on 
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whitefly behaviour is also dose-dependent.5,6 The terms repellency and attractancy should be used 

with caution and always in context. 

The four-arm olfactometer (Fig. 3) is a different device in insect olfactometry and a standard 

bioassay in aphid studies used for either repellents and attractants.38,39 In this experimental setup, 

the insect can move freely in an arena divided into four areas with respective airstreams. Two four-

arm olfactometer tests have been so far published with B. tabaci. These studies investigate the 

effect of odour masking of non-host plants or aphid-induced plant volatiles instead of selected 

semiochemicals.40,10 The four-arm olfactometer might receive little consideration for whitefly 

bioassays because the design of this device needs insects actively exploring all arms. Whiteflies are 

known to be flyers also for short distances. For example, they fly up the host plant when being 

disturbed. However, they can walk actively in a four-arm and Y-shaped olfactometer (Schlaeger S, 

2016, pers. obv.).  

In contrast to the evaluation of a true repellent, experimental setups for host odour-masking 

repellents should include the emitted volatiles of the host plant. Beyond that, the crop plant has 

visual cues that could also interfere with the effect of the semiochemical on whitefly behaviour. For 

instance, the visual attractiveness of the crop plant might override the effect of a host odour 

masking repellent. In general, all potential semiochemicals must be tested in the respective 

cultivation system for its relevance in whitefly control. Under field conditions, whitefly 

semiochemicals are exposed to all kinds of odorants from the environment. The effect of the 

whitefly semiochemical could be diminished in this mixture of VOCs. 

An indirect but important approach to control whiteflies is to identify plant-mediated 

semiochemicals that attract natural enemies. For example, (Z)-3-hexen-1ol, (E)-4,8-dimethyl-1,3,7-
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nonatriene (DMNT) and 3-octanone are emitted in higher quantities from T. vaporariorum-infested 

bean plants, Phaseolus vulgaris, than from uninfested plants.41 The synthetic versions of these VOCs, 

when presented individually or in a blend, increased the attractancy of the whitefly parasitoid, 

Encarsia formosa, in wind tunnel bioassays. Arabidopsis thaliana plants emit myrcene when attacked 

by B. tabaci.42 In a Y-shaped olfactometer, applying synthetic myrcene to the odour of uninfested A. 

thaliana plants attracted more E. formosa parasitoids compared to the odour of plants that were not 

treated with the semiochemical.42 

 

3 POSSIBLE APPLICATIONS OF SEMIOCHEMICALS TO WHITEFLY MANAGEMENT 

Keeping whitefly infestation on crop plants below an economic threshold level is a part of an 

integrated pest management strategy. The settlement and feeding of one individual on a crop plant 

is enough for virus transmission as the vectored virus diseases are systemic, affecting the whole 

plant. Thus, the economic threshold is very low. Consequently, the odour-masking effect of a 

repellent appears not to be sufficient, because members of the whitefly population may still land on 

the crop plant. For control of whitefly virus vectors, a true repellent that prevents almost complete 

whitefly colonisation is the preferable choice.  

Semiochemicals are an important component of push-pull technology which combines repellents 

and attractants in the same cropping system. The pest is deterred from the crop plant (push) and 

lured to a more attractive source (pull) at the same time.43 This strategy is especially suited for the 

control of greenhouse pests, such as T. vaporariorum, because of the confined area.43 
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Semiochemicals can be integrated into the cropping system by cultural practices, e.g. intercropping 

with semiochemical-emitting plants. Adult B. tabaci infestation of tomato plants was reduced by 

intercropping with either coriander (Coriandrum sativum) or Greek basil (Ocimum minimum) plants, 

or a citronella grass (Cymbopogon spec.) mulch.44 Where economically viable, another possibility for 

field application of active semiochemicals is deployment of synthesized VOCs via sprays or slow-

release dispensers.43 There have been no field studies reported with selected whitefly 

semiochemicals. However, B. tabaci settlement on tomato plants was reduced in a greenhouse 

experiment using bottles with a 1 % mixture (R)-limonene, citral and, as a slow release agent and 

antioxidant, olive oil (in a ratio of 63:7:30), as a ‘push’ treatment and yellow sticky traps as the pull.45 

The application of the sesquiterpene hydrocarbon and aphid alarm pheromone (E)-β-farnesene or 

methyl salicylate in a paraffin oil-formulation released from a rubber septum in a wheat (Triticum 

aestivum) field centered in a wheat-pea (T. aestivum-Pisum sativum) strip intercropping system 

reduced aphid infestation and increased the number of parasitized aphids.46 The potential of using a 

push-pull strategy for management of the Asian citrus psyllid Diaphorina citri, which is the vector of 

Candidatus Liberibacter asiaticus, the causative agent for citrus greening disease, has been 

reviewed.47 It has been stated that more knowledge about psyllid-host interactions needs to be 

generated before more applied studies can be performed. However, potential psyllid 

semiochemicals have been identified, such as the homoterpenes DMNT and (E,E)-4,8,12-

trimethyltrideca-1,3,7,11-tetraene (TMTT). A synthetic mixture of DMNT and TMTT reduced the 

attractiveness of the hosts orange jasmine, Murraya paniculata, and sweet orange Pera D6, Citrus 

sinensis, in a four-arm-olfactometer bioassay.48 In y-shaped and four-arm olfactometer assays, 

dimethyl disulphide, identified from the non-host guava, Psidium guajava, reduced the 

attractiveness of volatiles from C. sinensis.49 Furthermore, dimethyl disulphide released from 
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polyethylene vials reduced the infestation of D. citri in an orchard of Valencia oranges, C. sinensis, 

for up to four weeks. 

A different approach to the deployment of semiochemicals is to modify the emitted VOCs of the 

crop plant by genetic engineering, such that the plant either is not attractive for pest insects (odour 

masking) or becomes repellent.50 This mode of direct pest management can be supplemented with 

attraction of beneficial natural enemies for conservation biological control.51 The most prominent 

example of this strategy to date for pest management is the engineering of elite wheat to release 

(E)-β-farnesene, which was confirmed in laboratory bioassays.52 However, the repellent effect on 

aphids could not be confirmed in field studies. The missing effect in the field might be due to bad 

weather conditions during the trial. Another explanation might be the difference in the release of 

(E)-β-farnesene from the plant (emitted continuously) in comparison with release from the aphid 

(sudden burst release). Plant glandular trichomes are sources of semiochemicals, thus making them 

targets for genetic engineering in pest resistance.53 A promising attempt for the modification of the 

semiochemical biosynthesis in trichomes for whitefly management was shown in the cultivated 

tomato.54 The wild tomato S. habrochaites accession PI127826 is naturally less attractive towards B. 

tabaci and releases distinct quantities of the sesquiterpene hydrocarbon 7-epizingiberene.7,18 The 

application of 7-epizingiberene to the cultivated tomato reduced the settlement of B. tabaci adults 

in a free-choice bioassay.18 The introduction of the biosynthetic pathway of 7-epizingiberene into the 

glandular trichomes of the cultivated tomato with trichome specific promotors led to the production 

of this whitefly semiochemical.54 The repellent property against B. tabaci was not investigated with 

the transgenic lines in this study. 
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Semiochemicals can be expensive to synthesise and chemically unstable, which is unfavourable for 

field application. A possible approach to overcome these challenges is the rational design of 

analogues of the semiochemicals by chemoenzymatic synthesis. In this method, the acceptance of 

unnatural substrate by the specifically responsible biosynthesis enzyme leads to analogues of the 

natural product which might have superior properties. This synthetic biology approach has recently 

been successfully demonstrated for the aphid sesquiterpene semiochemical (S)-germacrene D and 

has led to the rational discovery of novel semiochemicals.55 This approach is also now being tested 

with the whitefly semiochemical 7-epizingiberene and its biosynthesis enzyme, epizingiberene 

synthase. The biosynthetic pathways to the production of the new analogues have the potential of 

being engineered into crop plants and therefore the library of semiochemical tools for whitefly 

management widened. The availability of a wide range of tools provides an opportunity to mitigate 

the evolution of whitefly resistance to semiochemicals.3 

 

4 CONCLUSION 

Plant-produced VOCs can alter whitefly behaviour, but few studies have investigated the effects of 

the actual putative semiochemicals through electrophysiology and behavioural work with whiteflies. 

More information about the olfactory system of whiteflies is needed, for example which sensilla are 

responsible for olfaction. This knowledge is necessary to identify semiochemicals for subsequent use 

in whitefly management. 

For a better general understanding, it might be useful to broaden the research on whitefly olfaction 

to other species with economic importance in addition to B. tabaci. Only few studies deal with T. 

vaporariorum or A. proletella. A. proletella is of particular interest, because it is a specialist in 
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comparison with the generalists B. tabaci and T. vaporariorum, feeding primarily on cruciferous 

plant species. In addition, semiochemical interventions against Trialeurodes species could be more 

advantageous because of the higher value of glasshouse products in comparison to arable 

production. 
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Table 1 Overview of olfactometer tests evaluating the behavioural response of Bemisia tabaci towards 

plant-produced, individual volatile organic compounds 

Type of 
olfactometer Compound Stated effect Evaluation method Reference 

T-shaped (R)-Limonene Attractancy Preference 5 

T-shaped (E)-Caryophyllene Attractancy Preference 5 

Tubular (R)-Limonene Repellency Avoidance index 6 

Tubular Myrcene Repellency Avoidance index 6 

Tubular (E)-Ocimene Repellency Avoidance index 6 

Tubular (R)-Limonene Repellency Avoidance index 45 

Tubular Limonene† Repellency Avoidance index 45 

Tubular Citronellal Repellency Avoidance index 45 

Tubular Citral Repellency Avoidance index 45 

Tubular α-Pinene† Repellency Avoidance index 45 

Tubular Geranyl nitrile Repellency Avoidance index 45 

Y-tube 2-Ethyl-1-hexanol† Attractancy Preference 32 
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Y-tube o-Xylene Repellency Preference 32 

Y-tube Phenol Attractancy Preference 32 

Y-tube α-Pinene† Repellency Preference 32 

Y-tube Salicylic acid Repellency Preference 33 

Y-tube Limonene† Repellency Preference 33 

Y-tube 1,8-Cineole Repellency Residence time 34 

Y-tube Linalool† Attractancy Residence time 34 

Y-tube (E)-2-Hexenal Attractancy Response/attraction rate 36 

Y-tube 3-Hexen-1-ol† Attractancy Response/attraction rate 36 

Y-tube Limonene† Repellency Response/attraction rate 36 

Y-tube (R)-Limonene Repellency Response 37 

Y-tube Geranyl nitrile Repellency Response 37 

†Isomeric composition not given. 

 

Figure 1 Overview of the technical set up of a gas chromatography – flame ionization detection 
coupled with electroantennography.  

Figure 2 Designs of different dual-choice olfactometers. The directions for the whitefly’s choices and 
the locations of the stimuli/control are illustrated. 

Figure 3 Design of a four-arm olfactometer. The 4 areas of the arena for the whitefly’s choices and 
the locations of the stimuli/control are illustrated. 

 

This article is protected by copyright. All rights reserved.



Figure 1.jpg

This article is protected by copyright. All rights reserved.



Figure 2.jpg

This article is protected by copyright. All rights reserved.



Figure 3.jpg

This article is protected by copyright. All rights reserved.




