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Abstract

We characterised the spatial structure of soil microbial communities in an unimproved grazed upland grassland in the Scottish

Borders. A range of soil chemical parameters, cultivable microbes, protozoa, nematodes, phospholipid fatty acid (PLFA) profiles,

community-level physiological profiles (CLPP), intra-radical arbuscular mycorrhizal community structure, and eubacterial, actino-

mycete, pseudomonad and ammonia-oxidiser 16S rRNA gene profiles, assessed by denaturing gradient gel electrophoresis (DGGE)

were quantified. The botanical composition of the vegetation associated with each soil sample was also determined. Geostatistical

analysis of the data revealed a gamut of spatial dependency with diverse semivariograms being apparent, ranging from pure nugget,

linear and non-linear forms. Spatial autocorrelation generally accounted for 40–60% of the total variance of those properties where

such autocorrelation was apparent, but accounted for 97% in the case of nitrate-N. Geostatistical ranges extending from approxi-

mately 0.6–6 m were detected, dispersed throughout both chemical and biological properties. CLPP data tended to be associated with

ranges greater than 4.5 m. There was no relationship between physical distance in the field and genetic similarity based on DGGE

profiles. However, analysis of samples taken as close as 1 cm apart within a subset of cores suggested some spatial dependency in

community DNA-DGGE parameters below an 8 cm scale. Spatial correlation between the properties was generally weak, with some

exceptions such as between microbial biomass C and total N and C. There was evidence for scale-dependence in the relationships

between properties. PLFA and CLPP profiling showed some association with vegetation composition, but DGGE profiling did not.

There was considerably stronger association between notional sheep urine patches, denoted by soil nutrient status, and many of the

properties. These data demonstrate extreme spatial variation in community-level microbiological properties in upland grasslands, and

that despite considerable numeric ranges in the majority of properties, overarching controlling factors were not apparent.
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1. Introduction

Specific instances of plant:microbe interactions are

well known and thoroughly studied, but community-
level associations between vegetation and microbial as-

semblages are less well understood. There is increasing

evidence that plant community structure affects the
. Published by Elsevier B.V. All rights reserved.
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density and composition of soil communities [1–7], and

stronger evidence that there may be characteristic mi-

crobial communities associated with particular plant

species, particularly in experimental circumstances

where plants are grown in isolation [8–12]. The mecha-
nisms by which such associations are generated are hy-

pothesised to be related to the quality and nature of

substrate deposited below ground by plants, which is

known to regulate microbial community structure [13].

Implicit in such hypotheses is the notion that there will

be a degree of spatial coupling between plant and mi-

crobial communities, but this aspect has been rarely

studied. The concept of ‘rhizosphere’ essentially denotes
a spatial relationship between plants and microbes fo-

cussed on the interface between root and soil, and

studies indicate that there may be conditioning of mi-

crobial communities in the rhizosphere of specific plants

[14,15]. At larger spatial scales, in ecosystems where

plants tend to be sparse, there is evidence that soil or-

ganisms are also affected by proximity to individual

plants [16,17]. In grasslands, however, plant density is
very high and the spatial organisation of microbes rel-

ative to plant types is virtually unknown. Previous

temporal studies on temperate upland grasslands have

shown some evidence for community-level coupling

[3,5,18]. However such relationships were obscured by

high levels of spatial variation as the genetic composi-

tion of communities a few metres apart within a grass-

land can be as different as those separated by hundreds
of kilometres [19]. Vegetation composition over these

distances is less variable, and hence in the field other

factors may be governing microbial community struc-

ture. One approach to exploring such drivers is to de-

termine statistically natural variation associated with a

wide range of potential factors, and analyse associations

or trends in such data. The advantage of this approach

is that multiple interactions may also be identified.
In the present study the spatial properties of genetic,

phenotypic and functional aspects of microbial com-

munity structure, and associated vegetation, were rig-

orously measured in an area of unimproved upland

grassland. A key aim was to determine the spatial scales

over which various microbiological and chemical prop-

erties were structured. We chose this site since we knew

from previous work that the microbial diversity was
particularly high [20], and since the grassland was un-

improved, plant growth would be entirely reliant upon

natural processes of nutrient cycling. Since the under-

lying soil type and micrometeorology were effectively

constant between samples, such factors would not con-

found the detection of any vegetation: microbe associ-

ations that may occur in multiple-site studies. It was also

reasoned that at these scales, soil chemistry would vary
significantly because this was grazed grassland and,

therefore, subjected to patchy urine and dung deposi-

tion. We therefore hypothesised that there would be
coupling between vegetation composition and soil mi-

crobial assemblages, and between soil chemical proper-

ties and microbial community structure.
2. Materials and methods

2.1. Site and soil

The study was carried out on Fasset Hill, Sourhope

(55�2803000 N; 2�140 W) in the Scottish Borders. The site

is a permanent Festuca ovina – Agrostis capillaris – Ga-

lium saxatile grassland, (unimproved grassland, Na-
tional Vegetation Classification – U4a [21], at 370 m

above sea level. The grassland has been freely grazed by

sheep for at least 30 years. The underlying soil is a

brown ranker (Haplumbrept; FAO/UNESCO, 1994)

derived from old red sandstone [22]. The average rainfall

for the site is 975 mmy�1 and the minimum and maxi-

mum temperatures are )10 and 27 �C, respectively.

2.2. Spatial sampling

A 12� 12 m area of ostensibly uniform grassland was

arbitrarily selected within the field site, avoiding any

obvious major topological variation (emergent rock,

erosion points, etc.). Within this region, nine origins

were marked to form a uniform grid with 4 m between

each origin; the overall grid was centred within the 144
m2 region. These origins formed the foci of nine inde-

pendent random-walk transects, each with nine sub-

sequent steps (total n ¼ 90). The steps in the walks,

equating to sampling points, were defined by moving

prescribed distances at a random angle, from each suc-

cessive step (Fig. 1). The distances were defined as an

incrementally increasing series starting at 0.1 m and

increasing by a factor of 1.625 with each step; the order
in which these distances were selected was also random.

This design ensured that the frequency distribution of

the entire set of inter-point distances was optimised, i.e.

it guaranteed at least 10 instances of the closest distance

and provided a comprehensive representation of inter-

sample distances up to 12 m. The regular grid ensured

that the entire area was covered, and the randomisation

within each transect ensured unbiased sampling from
each of the origins. At each sampling point, an intact

sample of soil and associated vegetation (8 cm diameter,

8 cm deep) was taken using a core auger. The vegetation

associated with each core was removed for analysis, and

remaining soil sieved <2 mm and assayed as below. For

the first two samples within each transect, an additional

set of three 1 cm diameter sub-cores were taken from the

8 cm main cores. These were positioned centrally, 1 cm
away from the centre, and at the periphery of the core

(i.e. 3.5 cm from the centre) along a radial line.

Field sampling was carried out on 2nd November 1999.
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Fig. 1. Sampling design showing location of sampling points; filled

circles represent origins of random-walk transects.
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Time-sensitive parameters (e.g. microbial properties,

mineral N) were determined within 72 h of sampling.

2.3. Vegetation analysis

Vegetation was removed from each core, the plants

present identified to species level and scored on the basis

of their presence or absence within individual cores.

2.4. Soil chemical properties

Organic matter was determined using loss on ignition.

Soil samples were dried at 105 �C, then ashed at 900 �C.
The total C and N content of the samples was deter-

mined by an automated Dumas combustion procedure

[23] using a Carlo Erba NA1500 Elemental Analyser,
(Carlo Erba Instruments, Milan, Italy). Total P was

measured colorimetrically using the molybdate method

[24], after extraction using NaOH. Soil pH was first

measured in deionised water (1:3, soil:water) followed

by CaCl2, using a pH electrode. Extractable NO�
2 -N and

NO�
3 -N (Perstorp Application Note AN 65/84, 65-31/84,

62/83), NHþ
4 -N (Perstorp Application Note AN 65/84,

ASN 65-32/84), and PO4 [24] were measured colori-
metrically using TRAACS segmented flow analysis, af-

ter extraction with 1 M KCl for 1 h, followed by

filtration. Exchangeable cations (Ca2þ, Naþ, Kþ, Mg2þ)
were extracted using 1 M ammonium acetate and the

extracts analysed using inductively coupled plasma op-

tical emission spectroscopy (ICP-OES). Gravimetric soil

moisture content was measured after drying at 80 �C
overnight.
2.5. Soil microbial properties

2.5.1. Microbial biomass C

Microbial biomass C was measured by the fumiga-

tion-extraction technique [25,26] using 10 g d.w. equiv-
alent of soil, fumigation for 24 h at 25 �C, extraction
with 0.5 M K2SO4 (50 ml per sample for 30 min), and

organic C estimated by the acid dichromate oxidation

method [27]. A conversion factor (kEC) of 0.35 was used

to convert C-flush into biomass-C [28].

2.5.2. Bacterial 16S rRNA gene profiles

Total soil DNA was extracted from subsets of the 8
and 1 cm core samples using a bead beating method [29].

Purified DNA (10 ng per reaction) was used as the

template in PCR amplifications using three sets of

primers targeting 16S rRNA gene sequences. Amplifi-

cations for analysis of the total bacterial population

were carried out using the general eubacterial primers p3

and p2 [30] incorporating a 40 bp GC-clamp at the 50

end of amplified DNA to facilitate analysis by dena-
turing gradient gel electrophoresis (DGGE). The group-

specific primer sets F243 and R1492 [31] and Ps-for and

Ps-rev [32] and CTO189f and CTO654r [33] were used to

amplify 16S rDNA gene fragments from actinomycetes,

pseudomonads and ammonia oxidising bacteria (AOB),

respectively. Group-specific amplification products were

used as template DNA in a second round of reactions

using the eubacterial DGGE primers described above in
order to generate products of a suitable size for DGGE.

Quantitative comparison of samples using DGGE is

limited by the number of lanes available on a single gel

and inevitable differences between different gels run on

different occasions. Analyses were, therefore, carried out

on two subsets of approximately 30 samples. Set 1

comprised the first three cores in each of the 10 transects

(tantamount to a random subset of the samples which
covered the plot area); this was analysed using eubac-

terial primers only. Set 2 comprised all cores which

contained one or more ‘rare’ plant species, defined as

where the frequency of occurrence was seven or less out

of the 90 cores, amounting to 25 cores, plus a random

selection of five of the remaining cores; this was analy-

sed using eubacterial, actinomycete and pseudomonad

primers. In the case of the sub-core samples, a subset of
10 ‘parent’ cores based on the first two cores from each

of five randomly selected transects were analysed. The

30 subcore samples were analysed using eubacterial,

actinomycete, pseudomonad and AOB primers. DGGE

analyses were carried out using 100 ng of amplicons per

lane, with denaturing gradients of 30–55% (total bacte-

rial), 40–60% (actinomycetes and AOB) and 20–60%

(pseudomonad), where 100% denaturant comprised 7 M
urea and 40% (v/v) formamide, and 8% acrylamide gel.

After electrophoresis, gels were fixed and silver-stained.

For image analysis, gels were scanned on an Epson
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GT-9600 scanner. The relative position of each band,

compared to a composite lane of all sample lanes gen-

erated by the software, was determined using Phoretix

1D gel analysis software, Version 4.00 (Phoretix Inter-

national, Newcastle-upon-Tyne, UK). Data were cor-
rected for slight variations in the DNA loading between

lanes and a simple binary matrix describing the presence

or absence at each position in all lanes was produced for

use in statistical analyses.

2.5.3. Phospholipid fatty acid profiling

Lipids were extracted from 1.5 g subsamples of soils

using the procedure described previously [34]. The sep-
arated fatty acid methyl-esters were identified and

quantified by chromatographic retention time and mass

spectral comparison on a Hewlett Packard 5890 II gas

chromatograph equipped with a 5972A mass selective

detector (MSD II), using standard qualitative bacterial

acid methyl ester mix (Supelco; Supelco UK, Poole,

Dorset, UK) that ranged from C11 to C20. For each

sample the abundance of individual fatty acid methyl-
esters was expressed as lg PLFA g�1 dry soil. Fatty acid

nomenclature used was that described by Frosteg�ard
et al. [35].

2.5.4. Community level physiological profiling

Community level physiological profiles (CLPP) were

constructed using Biolog� GN microplates (Biolog Inc.,

Hayward, CA, USA), together with exudate profile
microplates, prepared using Biolog� MT plates, con-

taining an additional 30 ecologically relevant carbon

sources identified mainly as plant root exudates [36]. Soil

dilutions were adjusted to a similar inoculum density of

approximately 104 CFU ml�1 (based on growth on 1/

10th strength Oxoid tryptone-soy agar) and 150 ll in-
oculated into each of the microplate wells. The micro-

plates were incubated at 15 �C for five days and colour
development (carbon utilisation) was measured as ab-

sorbance at 590 nm (A590) every 24 h using a microplate

reader (Emax, Molecular Devices, Oxford, UK). Aver-

age well-colour development (AWCD) was calculated

for aggregations of data relating to chemically similar C

sources, viz. sugars, oligosugars, alcohols, carboxylic

acids, acidic amino acids, basic amino acids, neutral

amino acids, N heterocycles, amides/amines, phenolics,
and aliphatics. Subsamples of soil from all main cores

were analysed.

2.6. Statistical analyses

All statistical analyses were performed using Genstat

[37] or Isatis (Geovariances, Fontainbleau, France),

with appropriate transformations to normalise data
where necessary. The dimensionality of the multivariate

measurements (vegetation, DGGE, PLFA and CLPP)

was reduced by multivariate analyses appropriate to the
form of the data. Vegetation data were analysed by

principal co-ordinate (PCO) analysis, deriving the PCO

scores for the samples using simple matching among the

plant species. PLFA profiles were analysed by principal

component analysis (PCA) using correlative matching.
DGGE profiles were analysed by PCO analysis of the

presence/absence matrices for the banding profiles using

the Jaccard coefficient of similarity, where a coefficient

of 1 equates to identical profiles. CLPP profiles were

analysed by PCA after first dividing by the value for the

blank plate, log transforming, subtracting all means and

finally subtracting means for each variable [3]. Plant

species (presence/absence) data was analysed using in-
dicator semivariograms. After checking for stationarity

in the data, semivariograms were computed and plotted

to a maximum distance of 6.5 m for all soil chemical

parameters, individual PLFA concentrations plus scores

from the first 10 principal components, AWCD of

CLPP data and that grouped according to the different

substrate groups, and scores from the first five principal

components. Where robust semivariograms were ap-
parent, chemical and microbiological parameters were

estimated at unsampled locations by punctual kriging

using the semivariograms and a weighted linear combi-

nation of 10 surrounding data points. Crossvariograms

were used to determine whether two properties had

common microscale variance, i.e. common variance

below the minimum scale of measurement [38]. Where

samples were categorised according to vegetation or
urine-patch classes (see Section 4), one-way ANOVA

was used to test the significance of differences between

associated means of all basic parameters, PCAs and

PCOs. All properties and multivariate summary

parameters (first four PCAs, PCOs) were also cross-

correlated.
3. Results

3.1. Characterisation of vegetation

Twelve species of plants were detected in the cores

(Table 1(a)). Two grass species typical of upland grass-

lands, Agrostis capillaris and Festuca rubra were pre-

dominant, and a third graminaceous species, Poa

pratensis, occurred in half the cores. The bryophyte

Rhytidiadelphus squarrosus was also present in half the

cores. The remaining eight species were relatively infre-

quent amongst the cores. Two cores contained mono-

cultures of a single species (A. capillaris and P.

pratensis); no core contained more than five species

(Table 1(b)). PCO analysis of the vegetation profiles

resulted in a very distinct separation of the cores into
four categories, based on the combinatorial presence or

absence of P. pratensis and R. squarrosus (Fig. 2).

Hence, each core was strongly associated with one of



Table 1

Occurrence of plant species in sampled cores (based on presence only)

(a) Frequency of occurrence of species in cores

Species Frequency of occurrence

(% of 90 cores)

Agrostis capillaris L. 96

Festuca rubra L. 92

Poa pratensis L. 57

Rhytidiadelphus squarrosus (Hedw.)

Warnst.

54

Nardus stricta L. 8

Galium saxatile L. 8

Cerastium holosteoides Fries. 6

Hypnum cupressiforme Hedw. (Moss) 3

Anthoxanthum odoratum L. 2

Deschampsia flexuosa L. Trin. 2

Luzula campestris (L.) DC. 1

Acrocladium cuspidatum (Hedw.) Lindb. 1

(b) Number of plant species co-occurring in cores

Number of species Proportion

(% of 90 cores)

1 2

2 13

3 47

4 28

5 10

Fig. 2. Principal co-ordinate scores of vegetation community data,

labelled according to the combinatorial presence or absence of the

plants Poa pratensis (Pp) and Rhytidiadelphus squarrosus (Rs). (s)

neither species present; (M) Pp present; Rs absent; (O) Pp absent; Rs

present; ( ) both species present.
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these four vegetation categories; 15 cores contained

neither species, with an approximately equal division of

the other 75 cores among the other three classes. It was

meaningless to test for spatial structure in the distribu-

tions of the two plant species that were ubiquitous, and

the eight that were infrequent, because more than 90%

of the samples had the same presence/absence score. Of
Table 2

Basic statistical summary data for soil properties across all soil cores

Property Mean

(a) Chemical properties

Moisture loss (%) 32.0

pHH2O
4.29

pHCaCl2
3.74

Extractable NO�
3 -N (lg g�1 dw) 70.2

Extractable NO�
2 -N (lg g�1 dw) 0.23

Extractable NHþ
4 -N (lg g�1 dw) 36.3

Extractable PO4-P (lg g�1 dw) 4.87

Total C (%) 11.4

Total N (%) 0.91

Total P (mg g�1 dw) 2.73

Exchangeable Ca2þ (meq 100 g�1 dw) 2.8

Exchangeable Naþ (meq 100 g�1 dw) 0.18

Exchangeable Kþ (meq 100 g�1 dw) 1.37

Exchangeable Mg2þ (meq 100 g�1 dw) 2.1

(b) Microbiological properties

Microbial biomass (mgC g�1 dw) 2.13

Total PLFA (mg g�1 dw) 0.12

Cultivable bacteria (cfu g�1 dw) 4.92� 107

CLPPa (average well colour development) 0.098
aCommunity-level physiological profiling see text.
the two remaining species, weak spatial structure was

detected only for R. squarrosus, with a range of spatial

autocorrelation of 2.56 m, with 26% of the total variance

spatially autocorrelated.

3.2. Soil chemical properties

The basic statistical summary data for the soil

chemical properties are shown in Table 2(a). All prop-

erties showed a wide range in magnitude, for example

pH varied across 1.8 units, and extractable PO2�
4 -P over
Median Minimum Maximum c.v.

32.6 17.0 47.0 22

4.26 3.85 5.28 6

3.69 3.32 5.15 8

59.5 13.3 338 71

0.20 0.20 0.63 40

29.2 0.89 155 82

1.93 0.17 179 385

11.1 6.7 21.8 23

0.88 0.61 1.54 21

2.64 1.84 4.01 15

2.3 0.7 11.1 70

0.17 0.04 0.34 27

1.30 0.12 3.36 33

1.9 0.3 10.3 62

2.07 1.07 3.99 28

0.12 0.065 0.20 122

2.33� 107 1.69� 106 6.85� 108 178

0.088 0.018 0.25 44

eriodicals Assistant - Library user on 17 January 2020
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tensive variation between cores, with 25-fold and 175-

fold variation in NO�
3 -N and NHþ

4 -N respectively.

There was no evidence for spatial structure in pHH2O
,

Kþ, PO4-P and NO�
2 -N, with the semivariance showing

no correlation with distance. Correlated semivariograms

were obtained for the remaining nine properties (Table

3(a); Fig. 3). In general, in excess of 50% of the total

model variance was autocorrelated, the exceptions being

Mg2þ, NHþ
4 -N and moisture content. Geostatistical

ranges were always shorter than the 6.5 m maximum lag,

and varied between the properties (Table 3(a)).

3.3. Compositional and spatial characterisation of soil

microbial communities

Microbial biomass properties showed an approxi-

mately 3-fold variation, whilst cultivable bacteria and
Table 3

Semivariance analysis of spatial structure in soil properties where this was a

Property Parameter

Range (m) Total model varia

(a) Chemical properties

Moisture loss 1.07 37.4

pHCaCl2
a 1.56 0.061

NO�
3 -N 0.61 0.30

NHþ
4 -N 4.09 5.60

Total C 3.21 0.15

Total N 5.48 0.04

Total P 3.83 0.015

Ca2þ a 1.37 0.27

Mg2þ b 1.08 0.157

(b) Microbiological propertiesc

Microbial biomass C 3.10 38.3

PLFA

C14:0i 4.71 0.53

C16:0 0.73 0.044

C16:1x8 0.68 0.15

C17:0br 1.19 0.11

C17:0cy 1.64 0.096

C17:0(10Me) 1.72 0.10

C18:1x9 0.73 16.4

C19:0cy 1.36 25.6

C19:1b 5.74 0.56

Phthalate 0.87 0.88

PC6d 5.61 1.01

Community-level physiological profiling

Acidic amino acid 5.92 0.0045

Basic amino acid 6.20 0.011

PC1 4.43 18.6

PC2 4.98 13.9

PC5 2.12 2.99
a Two outliers (same sample) were removed prior to computation of semiv
b Two other outliers removed.
c Properties showing a linear increase in semivariance (viz. PLFAs C12:0, C

profiles and the average well colour development for neutral and basic am

phenolics) are not presented.
d PC ¼ principal component of combined PLFA data; 6 ¼ sixth PC (sam
CLPP data showed greater ranges in value between

samples (Table 3(b)). Spatial structure was detected in

many of the microbial properties (Table 3(b); Fig. 4).

The semivariograms were varied, with linear and non-

linear models being apparent. Model parameters
showed extensive variation; geostatistical ranges from

0.7 to 6 m were apparent for PLFA data, but for CLPP

data, ranges tended to be greater than 4 m (Table 3).

Banding patterns in the PCR-DGGE gels were gen-

erally complex, with 98 distinct bands apparent in the

eubacterial profiles from the Set 1 cores and 124, 106

and 127 distinct bands in Set 2 cores for eubacterial,

actinomycete and pseudomonad profiles respectively.
For the sub-cores, there were 82, 146, 155 and 121 dis-

tinct bands for eubacterial, actinomycete, pseudomonad

and AOB profiles respectively. There was no relation-

ship between physical distance in the field between cores

and the associated coefficient of similarity in community
pparent

nce Nugget effect Structural variance (%) Model

25.1 33 Spherical

0.027 56 Exponential

0.01 97 Spherical

3.00 46 Spherical

0.05 67 Exponential

0.01 75 Exponential

0.005 67 Spherical

0.10 63 Spherical

0.081 48 Spherical

19.5 49 Spherical

0.21 61 Spherical

0.016 64 Spherical

0.050 66 Spherical

0.054 49 Spherical

0.060 38 Spherical

0.04 60 Exponential

5.44 67 Spherical

17.11 33 Spherical

0.14 75 Spherical

0.39 56 Spherical

0.32 68 Spherical

0.0018 60 Spherical

0.0041 62 Spherical

4.10 78 Spherical

2.10 85 Exponential

1.01 66 Spherical

ariograms.

13:0, C15:0, C15:0ai, C20:0 and C20:4x6, the fourth PC of the PLFA

ino acids, amides, sugars, oligosugars, alcohols, carboxylic acids and

e notation used for community-level physiological profiling data).
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Fig. 3. Example semivariograms for soil chemical properties, with

fitted models. (a) pHðCaCl2 Þ, (b) ln(total N) and (c) sqrt(biomass C), (d)

ln(C17:0cy), (e) ln(C19:1b) and (f) sqrt(CLPP acidic amino acids).
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Fig. 4. Scatter plot of physical distance in the field between soil cores

and genetic similarity based on principal co-ordinate analysis of PCR-

DGGE profiles using eubacterial specific primers.
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structure either for eubacteria in Set 1 (Fig. 4), or for

eubacteria, actinomycete or pseudomonad DGGE pro-

files in Set 2 (data not shown). Profiles relating to sub-

cores 1 cm apart showed similar ranges in similarity to

those 3.5 cm apart for eubacteria, actinomycete and
pseudomonad profiles (Table 4). However, for ammonia

oxidiser profiles, cores 3.5 cm apart were generally less

similar than those 1 cm apart (Table 4). Eubacterial

DGGE profiles derived from sub-cores showed notably

narrower ranges in similarity within cores than the

overall range across all sub-cores (Table 4).

3.4. Kriged estimates of spatial distribution of properties

Kriged maps revealed a great variety in spatial pat-

terns across the range of properties measured. There was

no consistent or universal pattern, with some maps

showing great heterogeneity (e.g. pHCaCl2
, Fig. 5(a)),

features such as lobes of high or low data values ema-

nating from corners of the region (e.g. total N, biomass

C, PLFA C17:0cy and C19:1b, Figs. 5(b)–(e)) and a
general gradient across the area (e.g. CLPP for acidic

amino acids, Fig. 5(f)). There were also examples of

small-scale (e.g. pHCaCl2
, Fig. 5(a)) and larger scale (e.g.

PLFA C19:1b, Fig. 5(e)) patchiness.

3.5. Correlation between properties

A large number of properties were statistically sig-
nificantly correlated with each other (df ¼ 88; P <
0:001 if r2 > 0:1057), however scatter diagrams showed

that in the majority of such cases the data were in fact

highly dispersed. Correlation tended to be stronger

within the different classes of measurements (i.e. soil

chemical properties, PLFA, CLPP, etc.) than between

them. For example, many individual PLFAs and CLPP

groups were strongly correlated. Exchangeable cations
tended to show strong positive correlation with each

other and with pH (r2 up to 0.79). Total C and N were

highly correlated (r2 ¼ 0:90). Biomass C correlated sig-

nificantly with total C (r2 ¼ 0:59), total N (r2 ¼ 0:52),
and total PLFA (r2 ¼ 0:37). Between classes of
Table 4

Range in similarity of PCR-DGGE profiles derived from 1 cm diam-

eter subcores taken 1 or 3.5 cm from a central subcore, within 8 cm

diameter soil cores. Data are based on 10 instances of such larger

cores. A similarity value of 1 equates to identical profiles

Primers Separation distance within

main cores

Entire set of

subcores

1 cm 3.5 cm

Eubacteria 0.31–0.49 0.31–0.45 0.11–0.59

Actinomycetes 0.11–0.48 0.15–0.46 0.09–0.58

Pseudomonads 0.23–0.47 0.23–0.48 0.09–0.49

Ammonia oxidisers 0.23–0.50 0.07–0.34 0.03–0.59

r on 17 January 2020



Fig. 5. Kriged maps for (a) pHCaCl2
, (b) ln(total N), (c) sqrt(biomass

C), (d) ln(C17:0cy), (e) ln(C19:1b) and (f) sqrt(CLPP acidic amino

acids).

Fig. 6. Crossvariograms involving (a) biomass C vs. total N, (b) bio-

mass C vs. total P, (c) biomass C vs. PLFA C14:0, (d) total N vs.

PLFA C17:0, (e) CLPP acidic amino acids vs. PLFA C19:1b and

(f) PLFA C17:0cy vs. pHCaCl2
.
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measurements, a number of properties had similar

geostatistical ranges as well as being significantly cor-
related. Visual comparison of kriged maps suggests that

there were similarities in the spatial distribution of these

properties despite the dispersed nature of the scatter

diagrams for these properties. For example, the kriged

maps for pHCaCl2
and PLFA C17:0cy (Figs. 5(a) and

(d)); for total N and biomass C (Figs. 5(b) and (c)); and

for PLFA C19:1b and CLPP acidic amino acids (Figs.

5(e) and (f)) indicated common causes of spatial vari-
ance between variables despite the relatively dispersed

nature of the respective scatter diagrams (r2 ¼ 0:54 for

pHCaCl2
vs. PLFA C17:0cy; r2 ¼ 0:52 for biomass C vs.

total N; r2 ¼ 0:32 for PLFA C19:1b vs. CLPP acidic

amino acids). Crossvariograms (Fig. 6) showed a range

of behaviours, from a relatively large nugget effect with

increasing crossvariance as the lag distance increases

(Fig. 6(a)), to a large nugget effect with decreasing
crossvariance as the lag distance increases (Fig. 6(c)),

through a more random fluctuation of the crossvariance

with lag distance (Figs. 6(d) and (f)). Crossvariograms

with small nugget effects and increasing crossvariance

with lag distance were also observed (Figs. 6(b) and (e)).
4. Discussion

4.1. Spatial variation and structure in soil properties

A consistent feature of many of the soil properties

measured in this study was a large range in the magni-

tude of the parameters, both primary and derived,

demonstrating high levels of soil chemical and biological

spatial heterogeneity in this grassland. There was no

indication of general spatial trends across the sampled

area, meaning that the data were ‘stationary’ in geo-
statistical terms. The most formal way to analyse spatial

variation statistically is by means of semivariance anal-

ysis and here it revealed the presence of spatial structure

in variance for many of the parameters measured. The

ranges of spatial autocorrelation of the soil chemical

properties were of the same order of magnitude with

observations made in studies carried out at a similar

scale in a mid-late successional field [39], and in a
sagebrush steppe [16]. Other studies, carried out at a

larger scale (i.e. field scale) in tillage fields, have reported

ranges of spatial dependence one to two orders of

magnitude greater for many soil properties than those
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reported here [40,41]. Soil ecological variables are likely

to be characterised by more than one scale of variability

as factors influencing variability operate at different

scales [42]. For example, the shorter range in spatial

dependence observed here might be due to local factors
such as the influence of vegetation, while the longer

ranges observed in other studies might be due to agri-

cultural practices or topography.

A number of microbial properties showed a linear

increase in semivariance, with no indication of a sill;

hence the geostatistical range for these properties re-

mains unknown, but is in excess of 6.5 m. However, for

the most part the degree and range of spatial depen-
dence found here for microbial properties were consis-

tent with results from other studies carried out at similar

scales to the one we report here. In a Swedish forest soil,

20 (out of 32) PLFAs showed strongly correlated

semivariograms, with ranges from 1 to 11.3 m and the

first and second principal components showed structure

at 4.6 and 1.5 m respectively [43]. Ranges of between 0.3

and 4.3 m were found for a variety of biological and
chemical properties in Californian chaparral [17], where

spatially structured properties included root biomass,

cultivable bacteria and fungi, microbial biomass, nem-

atodes and mites. Some of this variation was related to

distances to specific shrubs or concentrations of rocks.

In an arable soil supporting maize, spatial structure in

many components of fatty acid methyl ester (FAME)

profiles were found at scales of 4–30 cm [44], although
these semivariograms contain few points.

Despite the relatively small sampling scale of the cur-

rent study, a significant portion of the variance was

present as nugget variance, suggesting the presence of

microscale variability. The evidence from the DGGE

analyses of the sub-cores supports this. The DGGE

profiling of community DNA could not be analysed by

means of robust semivariograms, but more basic analyses
of this data also revealed extreme spatial variation in the

genetic structure of the microbial communities. The

maximum similarity between community structures in

samples taken 1 cm apart was 60%, and the lowest sim-

ilarity between any two samples was only 3% (Table 4).

Samples 10 cm apart could be as similar or as dissimilar

as those 12 m distant (Fig. 4). Analysis of eubacterial

community structure by T-RFLP in a Wyoming grass-
land revealed weak spatial structure between 10 and 50

cm, expressed as an increase in dissimilarity as a function

of distance. However, such structure was very weak with

only of the order 6% of the variability accounted for [45].

The smallest sampling scale adopted in our study at the

inter-core scale was 10 cm, which was operationally de-

fined by the requirement for an adequate mass of soil to

permit the range of analyses. Using a combination of
DGGEand oligonucleotide hybridisation high degrees of

heterogeneity in the ammonia oxidiser community has

been detected within replicate 0.5 g sub-samples of ho-
mogenised unimproved Sourhope soil [46]; this was also

reflected in heterogeneity in both ammonium concen-

tration and pH. Studies on extremely small volumes of

soil have also detected substantial genetic variation in

ammonium and nitrite oxidiser community structure in
arable soils at the mm and sub-mm scale [47,48]. Col-

lectively these studies suggest that more pronounced

spatial structure tends to be apparent as biological

specificity is increased. However, the datasets available to

date are too limited to generalise.

A distinct non-linear relationship between genetic

distance, determined by PCR-RAPD analysis, and

physical separation distance has been detected in an el-
evation gradient sampled across a salt-marsh sediment

[49], which also showed directional dependence. Here,

ranges of 0.35 and 0.17 m were apparent, depending on

direction [49]. This clearer relationship than we observed

in the pasture may have been manifest because there was

a distinct elevation gradient away from a creek along the

transect, whereas in the pasture studied here there was

an absence of any distinct environmental gradients.

4.2. Coupling between vegetation and soil microbial

community structure

The vegetation composition of the cores in this study

was not particularly diverse, with 12 species represented,

while approximately 120 plant species are recorded as

occurring in UK upland grasslands [21]. We did not
know a priori how the vegetation would vary between

the samples. However, PCO analysis revealed a group-

ing of four distinct categories with sufficiently even

representation to enable statistically robust testing of

relationships between vegetation category and locally

associated soil properties. Data categorised according to

these classes that showed significant differences are

summarised in Table 5. Such analyses showed that pH,
total P, Caþ and Mg2þ were significantly lower where R.

squarrosus occurred in the absence of P. pratensis. Eight

specific PLFA compounds were significantly different

between vegetation classes. For example, cy17:0 (char-

acteristic of Gram negative bacteria) was found in

lowest concentrations where R. squarrosus was present,

and in highest concentrations where neither R.

squarrosus nor P. pratensis was present, whilst 18:2x6
(characteristic of fungi) was present in significantly

higher concentrations where R. squarrosus was present.

The second principal component of the PLFA profiles

showed highly significant differences between these

vegetation classes. The PC loadings showed that this

discrimination was based on a complex combination of

PLFAs, with no clear dominance by particular types.

The presence of P. pratensis alone was associated with
lower utilisation of sugar and N-heterocycles in the

CLPP assay. For CLPP, PC2 was significantly discrim-

inated when neither R. squarrosus nor P. pratensis were



Table 5

Mean values for properties categorised according to vegetation class, where significant differences were apparent

Property Vegetation categorya Residual m.s. F PF b

Neither (n ¼ 15) Pp (n ¼ 26) Rs (n ¼ 24) PpRs (n ¼ 25)

(a) Chemical properties

pHH2O
4.33 4.35 4.15 4.33 0.068 3.13 *

pHCaCl2
3.80 3.82 3.55 3.79 0.085 4.68 **

Total P (mg g�1 dw) 2.85 2.87 2.56 2.66 0.17 3.15 *

Exchangeable Ca (meq 100 g�1 dw) 2.96 3.67 1.65 2.78 3.28 5.29 **

Exchangeable Mg (meq 100 g�1 dw) 2.31 2.58 1.5 2.17 1.60 3.21 *

(b) Microbiological properties

PLFA: (lg g�1 dw)

c12:0 0.022 0.039 0.0075 0.0112 0.0014 3.64 *

c13:0 0.15 0.23 0.11 0.14 0.015 5.44 **

c16:1w7c 5.68 5.35 6.56 6.58 3.39 2.75 *

c17:0cy 3.72 3.47 2.7 3.28 1.36 2.89 *

c18:2w6 2.32 2.02 2.89 2.65 1.56 2.23 *

c18:1w9 13.0 11.3 14.0 14.2 15.2 3.02 *

c18:w1 1.64 1.69 1.79 2.19 0.49 2.90 *

c20:4w6 0.32 0.41 0.22 0.29 0.031 4.66 **

PC2c )0.44 )1.48 1.13 0.72 5.17 6.67 ***

CLPP (WCD)

Combined sugars 0.109 0.070 0.106 0.094 0.0026 2.84 *

Combined n-heterocycles 0.115 0.064 0.105 0.095 0.0034 3.23 *

PC2c 2.31 )1.39 0.39 )1.05 11.0 4.67 **
aVegetation category according to combinatorial presence or absence of Poa pratensis (Pp) and Rhytidiadelphus squarrosus (Rs). Values are

means, n as shown in table.
b *P < 0:05; **P < 0:01; ***P < 0:001.
c PC ¼ principal component of combined PLFA data; 2¼ second PC (same notation used for community-level physiological profiling data).
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present in the soil cores. There were no significant dif-

ferences between any of the PCO scores of DGGE

profiles based on eubacterial, actinomycete or pseudo-

monad primers applied to Set 2 between the four vege-

tation categories (P > 0:05 in all cases).

The plant community descriptions here were based on

the presence/absence of plant species, and do not relate

to the abundance or biomass of each component; casual
observation suggested that the frequent grass species

(Table 1) tended to dominate when present. Overall,

there was evidence for vegetation-based associations in

relation to both chemical and microbiological parame-

ters. All four vegetation classes were discriminated by

the multivariate syntheses of both PLFA and CLPP

profiles. However, the bases of such associations were

complex in relation to the components of the profiles
and could not be ascribed to simple combinations of

particular phospholipids or C substrates. These results,

therefore, suggest a community-level coupling between

vegetation and microbes, albeit in rather complex terms.

This is in agreement with previous studies on temperate

upland grasslands [3–5,50].

4.3. Impact of notional urine patches upon soil microbial

community structure

Given that the grassland in this study was grazed by

sheep, the very wide range of mineral nutrient concen-
trations in the soil samples are likely to be associated

with urine patches. At any one time such patches will be

of variable relative ages, with recent deposition most

likely associated with relatively high concentrations of N

and P. Consequently, the samples were categorised ac-

cording to three notional urine classes by summing

NO�
3 -N, NHþ

4 -N and PO�
4 -P concentrations, ranking

the samples according to these values and calculating
the cumulative distribution of concentration. The 33-

percentiles were then taken to denote notionally high,

medium and low urine classes. Much of the data cate-

gorised according to these classes showed significant

differences, as summarised in Table 6. Significant dif-

ferences were apparent between mineral-N and PO4-P,

which would be expected by the definition of the urine

classes. However, the majority of other soil chemical
properties were also significantly different between the

classes, with the consistent trend of greater values for

the high urine categories, for example for microbial

biomass and concentrations of PLFAs characteristic of

bacteria and actinomycetes (18:0 10Me16), and there

was a consistent and significant trajectory in PC1 (Table

6). AWCD showed a significant negative trend, and a

consistent and significant trajectory in PC2 with in-
creasing urine category. PCO data relating to DGGE

profiles based on eubacterial, actinomycete or pseudo-

monad primers applied to Set 2 showed no significant

difference between urine categories (P > 0:05; data not



Table 6

Mean values for properties categorised according to notional urine-patch classes, where significant differences were apparent

Property Urine-patch categorya Residual m.s. F PF b

Low (n ¼ 52) Medium (n ¼ 25) High (n ¼ 13)

(a) Chemical properties

pHH2O
4.19 4.43 4.42 0.06 10.6 ***

pHCaCl2
3.63 3.87 3.88 0.08 7.89 ***

Extractable NO3-N (lg g�1 dw) 52.5 80.8 120.7 1942 13.5 ***

Extractable NO2-N (lg g�1 dw) 0.21 0.24 0.28 0.0081 3.27 *

Extractable NHþ
4 -N (lg g�1 dw) 18.0 46.6 89.5 259 109 ***

Extractable PO4-P (lg g�1 dw) 1.7 4.5 18.1 328 4.25 *

Total C (mg g�1 dw) 10.5 11.6 14.9 4.93 20.3 ***

Total N (mgg�1 dw) 0.83 0.94 1.17 0.022 28.3 ***

Total P (mg g�1 dw) 2.60 2.80 3.11 0.15 10.1 ***

Exchangeable Ca (meq 100 g�1 dw) 2.06 3.78 3.63 3.14 9.7 ***

Exchangeable Na (meq 100 g�1 dw) 0.16 0.18 0.22 0.0019 10.2 ***

Exchangeable K (meq 100 g�1 dw) 1.24 1.43 1.76 0.17 8.4 ***

Exchangeable Mg (meq 100 g�1 dw) 1.76 2.50 2.88 1.55 5.7 **

(b) Microbiological properties

Microbial biomass C (mg g�1 dw) 1.95 2.28 2.72 289 8.9 ***

PLFA: (lg g�1 dw)

c15:0i 7.33 8.01 10.4 5.92 8.2 ***

c15:0ai 2.45 2.93 3.72 1.18 7.5 ***

c15:0 0.67 0.74 0.96 0.059 7.4 ***

c16:0i 6.18 6.5 8.29 5.14 4.5 *

c16:0 14.8 15.8 19.6 12.5 9.6 ***

c17:0br 0.33 0.43 0.54 0.016 15.4 ***

c17:0i 1.67 1.91 2.44 0.22 14.5 ***

c17:0ai 1.19 1.46 1.76 0.22 8.9 ***

c17:1w8 0.47 0.57 0.73 0.032 11.7 ***

c17:0cy 2.85 3.49 4.43 1.16 12.1 ***

c17:0 1.37 1.56 1.89 0.10 14.3 ***

c18:0br 0.02 0.10 0.09 0.0083 7.0 ***

c17:0(10) 2.86 3.00 3.74 0.93 4.3 *

c18:0(10) 3.07 3.56 4.14 1.44 4.6 *

c19:0cy 15.5 16.1 20.1 21.3 6.4 **

c20:5 0.28 0.43 0.50 0.049 7.0 ***

Total PLFA 115 123 148 770 7.3 ***

PC1c 1.44 )0.76 )4.32 13.9 13.1 ***

CLPP

AWCD 0.109 0.083 0.075 0.0017 5.6 **

PC2d 0.78 )0.71 )1.77 12.5 3.4 *

DGGE

Ammonia-oxidiser PCO1e 0.21 (n ¼ 13)f )0.21 (n ¼ 8) )0.34 (n ¼ 3) 0.031 19.9 ***

Values are means; n as in the table.
a See text for details of urine categorisation.
b *P < 0:05; **P < 0:01; ***P < 0:001.
c First principal component of combined PLFA data.
d Second principal component of combined CLPP (individual substrates) data.
e First principal co-ordinate of DGGE data.
fData not available for all cores due to restriction of number of samples that can be fitted on one gel, hence n is as stated in this sub-body of the

table).
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shown). Ammonia oxidiser DGGE profiles derived from

sub-cores showed highly significant discrimination be-

tween low urine category soils and medium or high, via

PCO1 (Table 6).

Urine deposition directly elevates N in soils, in the

form of urea which is rapidly transformed to ammonia

and thence nitrate. Urine contains some C but little P

[51], but in organic soils such as the one studied here, it
induces a change in soil pH that results in the rapid
release of large quantities of organic P into the soil so-

lution which may then be mineralised [52]. In this study

it appears such effects were largely confined to the bio-

mass, PLFA and CLPP descriptors of the community;

the ‘background’ genetic structure of the community did

not appear to be affected. However, the genetic com-

munity structure of a subgroup of the microbial com-

munity associated with mineral-N transformations, the
ammonia oxidisers, was significantly affected in high
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urine-class regions. An increase in biomass is explained

by the increase in substrate that must ensue following

urine deposition. PLFA and CLPP profiles are essen-

tially phenotypic and functional measures respectively,

and as such are likely to be more responsive to changing
environmental conditions. The elevation of nutrients

following urine deposition is a transient event and over

time concentrations decline; the evidence here is that the

associated effects on microbes also decline concomi-

tantly, in that the high urine class generally had a greater

impact on microbial properties than the medium and

low classes. In another study at the same site addition of

urine stimulated bacterial and pseudomonad numbers
immediately, but decreased overall carbon utilisation

(though stimulated basic amino acid utilisation) by the

microbial communities for the first week after urine

addition. Thereafter, there was a stimulation of C util-

isation from 2–5 weeks after urine addition [53]. This

correlates with our findings and strongly suggests our

‘high urine class’ categories are sites of recent urination

events. CLPP measures potential utilisation, albeit in
vitro [54], and this suggests that the potential activity of

the bacteria is lower immediately after a urine event, but

then increases. Urine deposition will be spatially patchy

in grasslands, but the scale of any patterning in depo-

sition has not been explicitly measured before. The size

of individual patches will depend upon the volume of

urine deposited, and the location of patches will be re-

lated to the grazing behaviour of the sheep. We were
unable to consider the potential impact of faecal de-

posits upon soil microbial properties in this study, but

these are also likely to have an influence due to the high

concentrations of potential microbial substrate, as well

as the indigenous microbial communities in faeces. N

fertilisation of grasslands has also been shown to influ-

ence genetic structure of eubacterial and actinomycete

communities, and PLFA profiles [55]. Previous studies
have shown that pH can have a strong influence on soil

microbial communities, for example as measured by

CLPP [56] or PLFA [57]. Whilst the pH varied in the

sampled region across 1.8 log units, no such relationship

was observed here.

4.4. Spatial coupling between soil chemical and microbi-

ological properties

The degree and ranges of spatial dependence of a

number of the microbiological measurements were

similar to those of chemical soil properties, suggesting

an association in the variance of these properties at the

scale of measurement. The maps of kriged estimates

confirmed this for a number of the properties measured.

However, the linear correlation between properties was
generally weak suggesting that other factors or, as is

more likely, combinations of factors influence the vari-

ability of microbial measurements.
The semivariograms of the properties measured all

displayed nugget variance of varying magnitude. Nugget

variance is attributed to autocorrelated variance at

scales below the scale of measurement (in this study the

minimum reliable lag distance was 20 cm), and to
measurement error. The nugget variance in crossvario-

grams is attributed to covariance between variables at

scales below the shortest sampling interval and to co-

variance of measurement error. It can be assumed that

the error associated with the measurement of two dif-

ferent variables (i.e. a chemical and a microbiological

variable or two independently measured microbiological

variables) are independent and that the measurement
error covariance is therefore equal to zero [38]. Thus, the

crossvariogram ‘filters out’ the uncorrelated part of the

nugget variance and this property can be used to dis-

tinguish between experimental error and microscale

autocorrelated variance [38]. A crossvariogram with a

large nugget effect suggests the presence of microscale

variation common to both variables (relatively large

covariance), whilst a small nugget effect suggests little
common variance between variables at smaller scales.

Because this procedure assumes that experimental errors

are independent, it cannot be used to explore common

microscale variability of properties that might have

common experimental errors (e.g. different PLFAs or

different CLPPs).

The range of behaviours of the crossvariograms sug-

gests that the effects of scale on relationships between
variables is very variable. The nugget effects in the

crossvariograms involving biomass C and total N and

biomass C and total P suggest common origins of mi-

croscale variability for biomass C and total N (Fig. 6(a))

but less common microscale variability for biomass C

and total P (Fig. 6(b)). The crossvariograms involving

PLFAs and biomass C, total C and total N also suggest a

common cause of microscale variability for these prop-
erties (e.g. Figs. 6(c) and (d)) even though the correlation

between the PLFAs and biomass C, total C and total N

was often weak at the scale of measurement (e.g.

Fig. 6(c)). PLFAs also appeared to have common mi-

croscale variability with other soil properties such as pH

(Fig. 6(f)). Microscale variability in the CLPPs did not

appear to be associated with any of the other properties

(microbial or otherwise), as the small nugget effects in all
the cross-semivariograms would suggest. This was even

true for the lipid C19:1b and the physiological response

to acidic amino acids (Fig. 6(e)), despite the fact that

these properties were correlated at the scale of measure-

ment and displayed similarities in the spatial patterns at

the scale of measurement (Figs. 5(e) and (f)). These data

suggest some scale dependence in the relationships be-

tween microbial and chemical properties, and between
microbial properties in soil. Because microbial commu-

nities respond simultaneously to multiple factors oper-

ating at different spatial scales and with subcomponents
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of the communities displaying differential responses to a

given factor, it is hardly surprising that microbial prop-

erties display such a complex set of interdependences

amongst themselves and with other variables.
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4.5. Comparison of methods in terms of their resolving

power

In this study PLFA and CLPP were the most sensitive

measures of microbially related effects of urine deposi-

tion and association with vegetation composition.

DGGE profiling of DNA was insensitive in general, but

there were indications that the more specifically targeted
the primer sets were, in taxonomic or functional

terms, the greater the apparent sensitivity. This may be

due to the increased resolution of DGGE that is affor-

ded when analysing less abundant groups. It is known

that in these grasslands actinomycetes constitute about

8% of clones in 16S rDNA libraries from unimproved

grasslands, pseudomonads were at 2% in improved, but

not detected in unimproved, and AOB are likely to be
�1% of the population [20]. This is intuitively reason-

able; DNA composition is exceptionally diverse in soils

[58,59] and hence lower resolution methods would only

be expected to detect relatively large differences in

overall composition.
/2/191/481728 by Periodicals Assistant - Library user on 17 January 2020
5. Conclusions

This work has demonstrated the high levels of spatial

complexity that prevail in unimproved upland pastures,

and suggests that a complex set of interactions impact

upon given soil microbial properties. Despite there being

extensive numeric ranges in virtually all properties (i.e.

the data were well-spread), there were no particularly

clear associations between them, which could be used to
infer governing factors. At the scale of one to a few

metres, plant community composition had a weak but

detectable effect on microbial assemblages. Nutrient

status, principally mediated by urine deposition in this

system, had a considerably stronger influence on mi-

crobial communities, but there was evidence that such

effects are transient. Thus the mechanisms which have

resulted in the spatial organisation of the pasture which
have been mapped in this study do not appear to have

been dominated by a few drivers but a complex accu-

mulation of factors integrated over time. Given the ev-

idence for plant community composition effects, future

studies could focus on whether such associations are

stronger at the rhizosphere scale. This study also fo-

cused on spatial variation at one time, outside of the

primary growing season for the pasture. It is possible
that spatial properties may also show a strong temporal

dynamic, which would also warrant further study.
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