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Margaret A. Oliver and 
R. Webster 

Combining Nested and Linear Sampling for Determining 
the Scale and Form of Spatial Variation 
of Regionalized Variables 

The scale and pattern of variation of continuous spatial variables are often 
difficult to identify. The semi-variogram of regionalized variable theory provides a 
precise solution once the approximate scale of spatial variation is known. The latter 
can be determined economically over several orders of magnitude by a nested 
analysis of variance where stages incorporate spatial scale. The method can become 
cumbersome i f  many stages are required, and an unbalanced design is described 
that enables many stages to be examined with a reasonable number of sampling 
points. The methods are illustrated with examples fim a soil survey in the 
Midlands of England. 

INTRODUCTION 

The description and analysis of the variation over the land surface of phenomena, 
both natural and man-made, are central to geography. Geographers have devoted 
much attention to defining regional patterns and to relationships in space among 
regions, towns, people, and other features. A characteristic of many of the examples 
in the geographical literature is that the features studied are discrete and visible, 
such as distinct parcels of land or towns that are bounded or for which a centroid 
can be defined (Cliff and Ord 1981). The patterns and spatial interrelationships of 
such phenomena often can be seen, and the purpose of analysis is one of measuring 
what is visible. In many instances the variation must be regarded at least partly as 
stochastic, so that a joincount statistic (Moran 1948) or a spatial autocorrelation 
coefficient (Moran 1950, Geary 1954) is appropriate for describing it. 

Many other geographical properties, especially natural ones, vary continuously 
and randomly in space, but the pattern and scale of their variation is not readily 
apparent. These include rainfall, air and ground temperatures, atmospheric 
pollutants, particle size distribution of soil and other superficial materials, and crop 
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yields. Similar types of properties are the concern of geologists, geophysicists, 
mineral prospectors, hydrologists, and soil scientists. These groups of scientists have 
to sample their medium, make measurements on the samples or at the sampling 
sites, and then analyze their data, taking account of the spatial positions of the 
sampling sites. Much of the early development was done in isolation with individual 
disciplines using a particular set of analytical procedures. Geographical analysts 
(e.g., Nieuwenhuis and Van Den Berg 1971, Thomes 1973) have favored the 
correlogram. The French school of geostatistics, led by Matheron (1965) and 
working in the context of mining, has been especially influential. The school has 
developed methods to determine the scale and pattern of variation of continuous 
spatial variables such as ore grades and to estimate or interpolate values optimally 
at unvisited locations. David (1977) and Journel and Huijbregts (1978), formerly of 
the school, have produced two widely acclaimed texts that describe both the theory 
and practice of spatial analysis. 

Modem geostatistics is largely the application of Matheron’s regionalized variable 
theory, the central tool of which is the semi-variogram. The semi-variogram can 
provide a concise and unbiased description of the scale and pattern of spatial 
Variation. It can be estimated simply from a sample, and once a suitable 
mathematical model has been fitted to the values of the experimental semi-variogram 
(Oliver and Webster 1986, McBratney and Webster 1986), its parameters can be 
used for local estimation by kriging, i.e., optimal interpolation (Matheron 1965, 
Journel and Huijbregts 1978), and for optimizing sampling (McBratney, Webster, 
and Burgess 1981). The general form of the semi-variogram and the value of the 
scale parameter might suggest a possible underlying process responsible for the 
spatial pattern of the variation. Regionalized variable theory has been applied 
widely in mining-see, for example, Verly et al. (1984). The methods have also 
been applied in irrigation studies (Hajrasuliha et al. 1980, Russo 1984), soil science 
(Burgess and Webster 1980, Campbell 1978, McBratney et al. 1982), and rainfall 
monitoring (McCullagh 1975), and are applicable in principle to other 
geographically distributed phenomena. 

The Problem of Scale 
Spatial variation can occur on scales that differ by several orders of magnitude 

simultaneously. This is because the physical processes that create the pattern of 
variation operate and interact at different spatial scales. Thus in any region there 
may be several sources and scales of variability present. For example, Haining 
(1978) noticed this for the spatial pattern of wheat yields in the Great Plains of 
North America, and Griffith (1979) recorded influences within cities at three 
distinct scales. Burrough (1983) postulated variation in soil arising from effects of 
geology, relief, and earthworms, to which one could add those of tree-throw, moles, 
and man-made divisions into fields and farms. The result in each instance is a 
nested structure of variation. 

Conventionally the semi-variogram is estimated at regular intervals of spatial lag, 
preferably from a regular systematic sample (see equation [S]). This procedure, 
however, limits the range of spatial variation that the semi-variogram can reveal or 
express to little more than a single order of magnitude. It is unsuited for exploring 
nested variation in the first instance, and unless an investigator already knows 
roughly the spatial scale of the major source of variation he may sample either too 
sparsely to identify it if its range is short, or unnecessarily intensively if only 
long-range variation is present. Clearly, a surer means of determining the structure 
and scale of variation in a region is needed. 

Youden and Mehlich (1937) devised a means of determining the spatial scale(s) 
of variation in soil over several orders of magnitude almost fifty years ago. This 



Margaret A.  Oliver and R .  Webster / 229 

involved nested sampling and hierarchical analysis to estimate the components of 
variance associated with different scales. Other soil scientists, Jacob and Klute 
(1956) and Hammond, Pritchett, and Chew (1958), and geologists, Olson and 
Potter (1954) and Krumbein and Slack (1956), experimented with the technique in 
the 1950s, but it is only fairly recently that its true potential seems to have been 
realized (Moellering and Tobler 1972, Webster and Butler 1976, Tidball and 
Severson 1976, Nortcliff 1978, Garrett 1983). It also links neatly with regionalized 
variable theory (Miesch 1975). The procedure is especially useful for investigating 
spatial variation in regions that have not been surveyed previously and for 
exploring in greater detail spatially unresolved variation from earlier surveys. In its 
original formulation, however, it could still require excessive resources to cover 
several orders of magnitude, and some modification may be needed to make it 
economically feasible. 

Recently we made such a modification and applied the technique to investigate 
the distribution of soil in a little-understood region of forest (Oliver 1984, Webster 
and Oliver 1985). We then used the results to plan a linear sampling and model the 
semi-variograms of several soil properties. Our purpose in this paper is to draw the 
attention of geographical analysts to the way in which nested survey and analysis 
overlaps with, and can be used in conjunction with, regionalized variable theory, 
and to demonstrate the economy achieved by simple modification to extend its 
range. We illustrate it with examples from the above-mentioned survey of soil in 
the Wyre Forest in the Enghsh Midlands. 

FORMALISM 

A regionalized variable Z ( x )  can be any attribute that varies from place to place, 
though the term is usually restricted to ones in which the variation is to some 
extent at least stochastic. The variable is assumed to be continuous in space, and to 
take values z ( x i )  at places x i ,  i = 1,2,. . . , 00, where x denotes the spatial 
coordinates in one, two, or three dimensions, according to context. In this section 
we specify the models of variation and summarize the underlying formalism on 
which the later analyses are based. 
Spatial Autocorrelation 

The model of autocorrelation in its general form is 
n 

z ( x >  = c akfk(x) + c ( x )  * 
k = O  

This states that the value of the variable Z at any place x is the sum of two terms. 
In the first term on the right-hand side of the equation the a k ,  k = 1,2,. . . , n, are 
unknown coefficients and the f k ( x )  are known functions of x .  This term therefore 
represents the deterministic element of variation. The global trend of a trend 
surface analysis is of this kind, as are the local drifts of universal kriging (Matheron 
1969). The quantity c(x)  is a random term, which we define below. 

It is often found in practice that the first term can be ignored and that the 
regionalized variable can be regarded as the realization of a wholly random process. 
Equation (1) then simplifies to 

z(x) = p + + ) ,  (2) 
where p is the mean or expected value of Z :  

E [ Z ( x ) l  = P ,  

where E denotes the expectation. 
( 3 )  
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The random component has the following properties. Its expectation is zero: 

E[c(x)l = 0 ,  (4) 

and its variance is such that for any two places x and x + h separated by a lag 
vector h 

var[c(x) - E(X + h)] = E [  { E(X) - E(X + h)j2] 

= 2y(h). (5 )  

In other words, the variance of Z is structured in a way that depends on the 
separation in space of any two sites and not on their absolute positions. With a 
constant mean equations (4) and (5) are equivalent to 

E[Z(x) - Z(X + h)] = 0 (6) 

and 

var[Z(x) - Z(x + h)] = E [  {Z(X) - Z(X + h)j2] 

= 2y(h). (7) 

This latter combination constitutes Matheron's (1965) intrinsic hypothesis, which 
forms the basis of much practical geostatistics. The quantity y is known as the 
semi-variance: it is half the variance of the difference between values at two sites. 
The function y(h) that relates y to the lag is the semi-uariogram. 

As an aside we note that the semi-variance and the structure that it represents 
are related to the more familiar spatial covariance, autocorrelation coefficient, and 
correlogram. The covariance at lag h is defined as 

and the autocorrelation coefficient is then 

The quantity C(O), the covariance at zero lag, is the variance of the process, and 
known to geostatisticians as the a prim' uariance. Provided it is finite, equations (7) 
and (8) can be rearranged to give 

y(h) = c(0) - W), (10) 

and therefore 

Many regionalized variables, however, seem to have an infinite capacity to vary: 
their variance appears to increase indefinitely as the region encompassed increases. 
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They have no finite a priori variance and so the autocorrelation coefficient cannot 
be defined. Since the semi-variance is not so restricted, it is the more versatile 
measure of spatial correlation. 

Semi-variances can be estimated readily without bias from data, preferably by 
sampling at regular intervals along transects or on a regular grid. With only a little 
more trouble irregularly scattered data can be used, however (Webster 1985). 
Sample estimates are obtained from the computing formula: 

where M(h) is the number of comparisons available at lag h. The ordered series 
T(h) for a particular set of values of h is the sample semi-variogram, and this 
estimates the population function. 
Nested Variation 

The model for nested variation is based on the notion that the population of 
interest can be divided into distinct stages. Classes created by an initial division of 
the population can be subdivided at a second stage into subclasses, which can in 
turn be further subdivided, and so on in a hierarchical fashion. Each stage 
constitutes a category, and any one sampling unit belongs to one class and only one 
class in each category. The underlying idea is that an individual observation 
embodies a contribution from each stage, including an unresolved variance in the 
smallest subdivision. Sampling designs based on the model are often used in 
agriculture, medicine, and manufacturing. In agriculture, for example, the categories 
might be farms, fields, and plots; in forestry they might be trees, branches, and 
leaves. 

Since we regard the actual soil as just one realization of a random process and 
are not interested in contrasts between particular sites, the appropriate model is 
the random effects model (model 11) of the analysis of variance (Marcuse 1949). 
For m stages 

where Z i j k , , , m  is the value of the mth unit in . . . the kth class at stage 3 in the 
j th  class at stage 2 and in the ith class at stage 1. The general mean is p; A i  is the 
difference between p and the mean of class i in the first category; B i j  is 
the difference between the mean of the jth subclass in class i and the mean of 
class i, and so on. The final quantity c i j k , . , m  represents the deviation of the 
observed value from its class mean at the last stage of subdivision. The quantities 
A i, Bi j ,  Ci j k ,  . . . , c j k , ,  , m  are assumed to be independent random variables with 
means of zero and variances a:, u:, u:, . . . , u:, respectively. They are components 
of the total variance; thus 

The components of variance can be estimated by designing a sampling scheme 
in which at any one stage all the classes are divided into the same number of 
subdivisions, say n, at the rth stage. The design is thus balanced, and the variance 
and degrees of freedom are partitioned as in Table 1. Analysis proceeds by 
computing the sums of squares in the usual way and dividing them by the degrees 
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TABLE 1 
Deriviation of the Components of Variance for a Balanced Design 
- 
Source Degrees of Freedom Parameters Estimated by Mean Squares 

Stage 1 

Stage 2 
Stage 3 

Stage rn -'I n , t ~ . p ~ . . . ( n , , - ~  - 1) 0: + nma:m2-1 
Stage rn (residual) n,n2n3..  . n,-,(n, - 1) 4 
Total n,n2n3. . . n,-ln, - 1 

NOTE: For each stage ni, nm is the number of subdivisions within each class of stage m - 1, and 0: is the component of 
variance. 

of freedom to obtain the mean squares. It is easy to see then that by starting at the 
bottom of the table the estimates of the components, u,$ am-,, . . . , uI, are 
computed. 

Youden and Mehlich's (1937) inspired contribution was to see that for an 
attribute distributed in space, the stages could be represented by different distances, 
and provided these were suitably nested in pairs, the hierarchical model would be 
valid. They adapted the nested sampling procedure with four stages for soil survey 
by selecting widely spaced primary stations from which they selected two 
substations 305 m from one another. Each substation was represented by two 
further subdivisions 30.5 m apart in each of which were two sampling points 
3.05 m apart where the soil was measured. In terms of the analysis in Table 1, 
rn = 4, n1 = 9, and n, = n3 = n4 = 2. The components then estimated the con- 
tributions to the total variance as u: at 3.05 m, u: at 30.5 m, u i  at 305 m, and u; 
at an average distance somewhat more than 1.6 km. 

Finally, the link between the spatial autocorrelation and the results of nested 
survey was pointed out by Miesch (1975). Where the stages represent distances the 
accumulated components are semi-variances as defined in equation (7). If we have 
a nested scheme with rn stages of bifurcation and distances d,, d,, . . . , d, 
between the sampling centers, then 

2 2 

and so on. 

INCREASING ECONOMY 

It will be clear from the above that to achieve good spatial resolution over a wide 
span of ranges demands a large number of stages. Since the sample size at least 
doubles for each additional stage in a balanced design, nested sampling could 
readily become prohibitively expensive. Youden and Mehlich's design with only 
four stages had 9 X 2 x 2 x 2 = 72 sampling points. A fifth and sixth stage would 
have required 144 and 288 points, respectively. As it happens, however, full 
replication is unnecessary. With this number of data, the mean squares for the 
lower stages are estimated much more precisely than those for the higher stages. 

Economy can be achieved by replicating at only a proportion of the sampling 
centers at one or more stages once sufficient degrees of freedom have been 
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7 

i I 
Sampling design for 
each centre in example 
with 5 stages 

---------- 

Projected sampling 
design for additional 
stages 

FIG. 1. The Unbalanced Hierarchical Sampling Scheme Used in the Nested Survey and a Projected 
Extension of the Number of Stages to Show the Economy Possible in Such a Design 

reached. We introduced this innovation in our survey of the Wyre Forest, where 
with five stages we replicated at only half of the fourth stage units (see below and 
down to the dashed line in Fig. 1). The main purpose of Figure 1, however, is to 
show how a hierarchy can be constructed so that at each stage beyond, say, the 
fourth only half of the sampling centers at the previous stage are replicated. In this 
way the sampling effort increases only linearly with the number of stages of spatial 
resolution, rather than geometrically. Figure 2 shows the comparison graphically. 

There is a small penalty to pay for this lack of balance. The coefficients of the 
components of variance contributing to the mean squares are no longer simply the 
sample sizes in each mean. Nor are they the same for a given component in every 
mean square, and this complicates inferential testing. Gower (1962) and Gates and 
Shiue (1962) have provided the computational procedure for calculating them, and 
as it is now in standard texts such as Snedecor and Cocbran (1980), we merely 
summarize it here. Table 2 shows the coefficients that are required to estimate the 
components. The computational formula appears complex, but if care is taken to 
follow the indexing then the procedure is straightforward. 

Suppose that there are Ci groups at the ith level and that within the kth group 
at the ith level there are c , k  subgroups at level j ,  each containing npk, p = 
1,2 , .  . . , c j k ,  where i < j .  Then the coefficient uij is given by 

where d ,  is the number of degrees of freedom at level i. The formula holds for 
i = 1 by denoting the whole sample in one group as level 0. At the other extreme, 
in the design that we describe with m levels the coefficients of u: are all unity 
because the numerators in the right-hand side of equation (16) equal the degrees of 
freedom. 
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Balanced / d e s i g n  4c 

_ -  
I 

3 5 7 9 

Stages 

FIG. 2. Comparison of the Number of Samples Required for Balanced and Unbalanced Nested 
Sampling Designs 

TABLE 2 
Denvation of Components of Variance for an Unbalanced Design 

~ - _ _  
Source Degrees of Freedom Parameters Estimated by Mean Squares 

Stage 1 fl 

Stage 2 fi -f, 
u; + ul,,-p;-l + ' ' ' +u,,,u: + ul,2u; + ul,lul" 
fl; + tl,,,-p;-l + ' . '  +u,,,u; + u2,2u; 

Stage 3 A - f i  u; + U3.*-p:-] + . ' '  +u3,,u: 

Stage m - 1 L,-l - f , -2  u; + ~m-l ,m- l f l : - l  
Stage m N -fm-l 4 
Total N - 1  

~ ~~~~ -~ 
N = Sample size 

f; = Number of classes at the ith stage. 
u , ,  = j th coefficient of the variance component at the ith stage. 
a,! = Component of variance at the ith stage. 

EXAMPLE 

Nested Survey 

We applied the above principles, including the economy of omitting some of the 
replication at the lowest level, in a survey of the soil in the Wyre Forest. An earlier 
survey (Oliver 1984) had suggested that all the spatial variation occurred within 
distances of 165 m, but because there were few sampling sites closer to one another 
than this it provided too little information for smaller distances. The semi-variograms 
of these data show very little change with increasing lag. Figure 3 illustrates this 
effect for four soil properties: the contents of sand, clay and stones, and mottle 
percentage at three depths in the profile. There is no spatial autocorrelation at this 
scale; in geostatistical terms these semi-variograms are pure nugget. The aim of our 
nested sampling was to confirm this result, and more importantly to discover the 
structure and measure the scale of the spatial variation at spacings less than 
165 m. 
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FIG. 3. Sample and Model Semi-variograms from the First Survey of the Soil of the Wyre Forest, 
sampled at an average spacing of 167 m, for ( a )  stone content, (b )  sand content, (c )  clay content, and 
(d)  percentage mottling. 

Depths: o 0-5 cm 0 15-20 cm A 40-45 cm 

A sampling interval of 6 m was chosen for the lowest stage of the design (Table 
3) as we expected this to encompass almost all of the variation. The other intervals 
were based on a geometrical progression of approximately threefold increments at 
each stage to incorporate the average spacing of 45 m to 50 m between lithological 
units, the average sampling interval of the first survey, and a much larger sampling 
interval in the event of the presence of larger structures. The five-stage sampling 
design spanned the range from 6 m to 600 m, as described below and illustrated in 
Figure 4. 

A 600 m grid, with nodes at the grid intersections, was randomly placed over a 
map of the region to establish the locations of the nine centers for stage 1. From 
each grid node another point was chosen 190 m away in a random direction to give 
the second stage. From each of the now 18 points we chose another point 60 m 

TABLE 3 
Nested Sampling Design for Determining the Scale of Spatial Variation in the Soil of the 
Wyre Forest 

Stage Sampling Interval (meters) Number of Sampling Points 

800 
190 
60 
19 
6 

9 
18 
36 
72 
108 



236 / Geographical Analysis 

FIG. 4. Spatial Configuration of a Set of Sampling Points from One Center in the Nested Survey 

away in a random direction, and repeated the procedure at 19 m to give the fourth 
stage. From half of the fourth-stage points we chose random points 6 m away (Figs. 
1 and 4). A fully balanced survey with 9 first-stage centers would have had 
9 x 2 x 2 x 2 x 2 = 144 sampling points. By choosing pairs at only half of the 
fourth stage units, however, we contained our sample to 108 (Table 3), resulting in 
a 25 percent saving of effort. The partitioning of the degrees of freedom and 
variance was as shown in Table 2. The soil properties were then recorded at four 
fixed depths in the soil profile: 0 to 5 cm (l), 10 to 15 cm (2), 25 to 30 cm (3), and 
50 to 55 cm (4). 

Each variate was analyzed following the scheme outlined in Table 2. The 
estimated components of variance for four of the variates at the four depths are 
listed in Table 4. 

The accumulated components of variance are plotted against distance on a 
logarithmic scale as semi-variograms (Fig. 5). These graphs and Table 4 indicate 
that the components of variance for the three lowest stages together account for at 
least 80 percent of the variation, i.e., a very large proportion of the variation occurs 
over distances less than 60 m. This pattern of spatial variation is similar for the 
other properties examined. Stages 1 and 2, i.e., distances between 190 m and 
600 m, and 60 m and 190 m, respectively, account for less than 20 percent of the 
total variation. The estimated component of variance at stage 2 is negative for most 
of the soil properties. This suggests that variation at this spacing, 190 m, is less than 
one would expect given the variation at the closer spacings, perhaps because soil 
features repeat to some extent at that scale. Alternatively, the computed components 
may estimate zeros in the population, and there is no contribution to the variance 
at that scale. The confidence limits are wide, and therefore one cannot be sure how 
to interpret the negative values. There is also considerable residual variation, which 
represents the variation occurring over distances less than 6 m plus any purely 
random variation and variation due to measurement error. The spatial variation 
that remained unresolved at the lowest stage could have been investigated further 
by adding more stages. This is discussed later. 

Transect Sumey 

Having established roughly the scale of spatial variation we planned a transect 
survey to determine more precisely the semi-variogram over the range in which 
most of the variation occurred, namely, between 6 m and 60 m. Ten transects each 
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FIG. 5. Accumulated Components of Variance Plotted against Distance on a Logarithmic Scale for 
the Soil of the Wyre Forest: (a)  stone content, ( b )  sand content, ( c )  clay content, and ( d )  percentage 
mottling. 

Depths: 0-5 cm _ _ _ _ _  10-15 cm 
25-30 cm 50-55 cm . . . . . .  

100 m long and one of 500 m were sampled at 5 m intervals and the same soil 
properties measured as before. The semi-variances were then estimated by equation 
(12) for integer multiples of the sampling interval from 5 m to 70 m. The results for 
the contents of sand, clay and stones, and for the percentage of mottling are shown 
in Figure 6. 

Following geostatistical practice we have fitted models of smooth curves to the 
sample estimates. We did this by least squares approximation using Ross’s (1980) 
maximum likelihood program. Of the authorized models (Journel and Huijbregts 
1978, Oliver and Webster 1986) exponential fimctions provided the best fit, in a 
least squares sense, for sand, clay and stones, and the spherical model fitted the 
mottling best. The equations of the models, assuming isotropy, are as follows: 

( i  ) Exponential: 

C, + c (1  - exp(- h/T)} for h > 0 
(:[:)to, 



Margaret A. Oliver and R .  Webster / 239 

'1 S t o n e s A  A 

300 y [  C l a y  A A  

S a n d  

600 r A A  

1 M o t t l i n g  
A 

0 10 30 50 70 50 70 0 10 30 

L a g  I rn  

FIG. 6. Sample and Model Semi-variograms from the Linear Survey of the Soil of the Wyre Forest: 
( a )  stone content, ( b )  sand content, (c)  clay content, and ( d )  percentage mottling. 

Depths: 0-0 0-5 cm 0----0 10-15 cm 
A- . -A 25-30 cm A . . . .  A 50-55 cm 

(ii) Spherical: 

y ( h )  = c,, + c 
y (0 )  = 0 .  

for h > a 

In these equations h = lhl, the lag distance, T and a are distance parameters, and 
c,, and c are variances. 

The parameter a of the spherical model represents a finite limit to the range of 
spatial dependence, at which the semi-variogram reaches its maximum. Beyond this 
limit there is no spatial autocorrelation. In these examples the limit occurs at about 
30 m (Table 5), which is well within the 60 m indicated by the nested sampling. 
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TABLE 5 
Parameters of the Models Fitted to the Experimental Semi-variograms of Stone, Sand and Clay Content, 
and Percentage Mottling at Four Depths in the Soil of the Wyre Forest. 
~- 

Vanable 

Distance parameter 
Nugget Sill Range a (meters) r (meters) for Working Range 

Variance Variance for Spherical Model Exponential Model a = 3 r  (meters) 

Stones (1) 
Stones (2) 
Stones (3) 
Stones (4) 
Mottling (1) 
Mottling (2) 
Mottling (3) 
Mottling (4) 
Sand (1) 
Sand (2) 
Sand (3) 
Sand (4) 
Clay (1) 
Clay (2) 
Clay (3) 
Clay (4) 

0.38 
0.57 
1.08 
1.12 
0.45 
0.44 
0.50 
0.39 

60.2 
55.5 

123.3 
139.1 
14.3 
24.9 
59.5 
36.9 

0.99 
1.60 
2.14 
3.01 
0.71 
0.73 
1.30 
2.03 

221.2 
246.3 
414.3 
527.7 
66.1 
75.6 

171.0 
279.5 

16.4 
21.9 
18.4 

31.6 
31.5 
24.6 
29.2 

19.1 
24.4 
14.2 
24.2 
13.9 
21.9 
17.2 
18.3 
11.4 

49.2 
65.7 
55.2 

57.2 
73.2 
42.6 
72.6 
41.7 
65.7 
51.5 
54.9 
34.2 

The exponential semi-variograms approach their maxima asymptotically. 
Nevertheless for practical purposes their ranges are often taken as 3r. An average 
for the exponential semi-variograms in Table 5 is 55.3 m, which is still within the 
initially estimated maximum of 60 m. 

The quantity c,, known in mining as the nugget variance, is in a sense 
anomalous. The semi-variance at lag zero is, by definition, itself zero. Yet any 
reasonable smooth curve fitted through the observed semi-variances in Figure 6 has 
a positive intercept on the ordinate. The nugget variance appears as the limiting 
value as h --* 0. In most instances the nugget variance represents spatially 
dependent variation that occurs over distances smaller than the sampling interval. 
As Figure 6 and Table 5 show, this variance present within 5 m is still a moderate 
proportion of the total, c, + c. 

DISCUSSION AND CONCLUSION 

The results from the nested sampling show that almost all of the variance in the 
soil properties measured occurs within 60 m. They explain why the semi-variograms 
from the earlier survey appeared as pure nugget variance. The interval between 
neighboring sample points at about 165 m was too large. Only by shortening it 
could the spatial structure concealed in the nugget variance be exposed. If, as here, 
nothing is known of that structure then a nested sampling spanning several orders 
of magnitude in distance should provide a rough semi-variogram of that structure, 
and in particular indicate its spatial scale. 

The results of the transect sampling confirmed this and defined the spatial scale 
more precisely. They also show the merits of a twephase approach to estimating 
the semi-variogram as McBratney, Webster, and Burgess (1981) stated. 

Fitting smooth curves to the sample semi-variograms showed that even by 
sampling at 5 m intervals there remained a moderate amount of unresolved 
variation. As with variation within 165 m after the first survey, nothing is known of 
its spatial structure. If it were deemed important, further nested sampling would be 
the next most economical step. 
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Using the unbalanced design for nested sampling, the nugget variance can be 
explored in increasing detail without incurring a huge sampling effort. Stages can 
be added with only a proportionate rather than geometric increase in effort. In this 
survey with five stages a 25 percent saving in effort was possible using the 
unbalanced design, and with more stages the economy would be much greater. If a 
rough estimate of the scale of spatial variation is all that is required, the nested 
survey and analysis will suffice. 
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