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A Covariance Function for Feed Intake, Live weight, and Milk Yield

Estimated Using a Random Regression

ABSTRACT

To enable investigation of genetic variation during
early lactation in heifers, multitrait covariance func-
tions were used to describe genetic covariances among
feed intake, live weight, and milk yield during the
first 15 wk of lactation (n = 628). Random regression
models were used to estimate covariance functions for
the additive genetic and permanent environmental
effects. Fixed effects were date of the week that
records were collected, a group effect, and week of
lactation. Second or third order polynomials were
sufficient to describe the additive genetic variation for
milk yield, dry matter intake, and live weight during
the first 15 wk of lactation. Estimates for the genetic
covariance function demonstrated that a high milk
yield is only moderately correlated with high feed
intake (0.21) but is very strongly correlated to an
increase of intake and a loss of live weight during the
first 15 wk of lactation. Levels of weight and intake
were correlated strongly (0.81). The reduced fit
covariance function was used to estimate genetic
correlations between traits at different lactation
stages. Estimates for the genetic correlations between
wk 1 and 15 were 0.62, 0.24, and 0.79 for milk yield,
dry matter intake, and live weight, respectively. Feed
intake during early lactation was negatively cor-
related with milk yield, but feed intake during the
later weeks was positively correlated with milk yield.
The implication is that when selection is for a linear
combination of milk yield, feed intake, and live
weight (i.e., energy balance or efficiency), it is impor-
tant to consider when each trait is measured during
lactation.

(Key words: random regression, genetic correla-
tions, feed intake, live weight)

Abbreviation key: CF = covariance function, LW =
live weight, MY = milk yield.
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INTRODUCTION

Energy balance seems to have an implicit economic
value because negative energy balance is generally
related to poorer health and fertility (1, 5), and the
magnitude of the energy deficit during the first 2 to 3
wk after calving is closely correlated with the interval
to first estrus (14). Also, considerable genetic varia-
tion is apparent in energy balance. The genetic corre-
lation with milk yield (MY) is such that selection for
MY alone results in a more negative energy balance
during early lactation (19), which might explain the
importance of energy balance for dairy cattle breed-
ing.

Heritabilities are moderately high, and genetic
correlations are also moderate among DMI, MY, and
live weight (LW). Hence, genetic improvement of
energy balance should be straightforward. However,
several complications arise when deciding which trait
to measure at what time during lactation. For exam-
ple, both duration and magnitude of energy deficit
might be important for energy balance. Also, DMI
during early lactation might be a different trait from
DMI during later lactation; Koenen and Veerkamp
(10) found genetic correlations below zero between
DMI during early and late lactation. Furthermore,
the effects of body tissue mobilization during early
lactation lead to further complications. For example,
correlations between MY and LW vary depending
upon when LW is measured (18), probably because of
the genetic association of body condition score with
both LW and MY (20). Hence, these complications
seem to suggest that genetic variation for traits
related to energy balance should be investigated as a
function of lactation stage (e.g., the genetic correla-
tion between MY and DMI at different lactation
stages), and use of means over time might not reflect
all genetic (co)variation accurately.

A common approach to investigate genetic associa-
tions between traits varying over time is to consider
every trait at each time period as a separate trait and
then to estimate the genetic correlations between
these traits. Disadvantages of this method are 1) the

1565



1566

large number of possible traits, 2) no account is taken
of the ordering and spacing of records in time, and 3)
biological interpretation of a large number of correla-
tions is often difficult. Furthermore, correlations are
often high between measures with short time inter-
vals and, therefore, models are often overparameter-
ized. The use of covariance functions (CF) (8, 9)
overcome some of these disadvantages because the
functions provide a more parsimonious description of
the full covariance matrix. For dairy cattle, Veerkamp
and Goddard (22) applied CF methodology to the
(co)variance matrix for MY and fat and protein
yields across two trajectories: lactation stage and
herd yield level. However, these authors were not
able to estimate the CF directly from the data as
suggested by Meyer and Hill (12). Others (10) were
able to apply this method (12) to estimate CF for
DMI, LW, and condition score in first lactation heif-
ers. However, records were still treated as if different
lactation stages were different traits (albeit account-
ing for the spacing and ordering of records while
reducing the order of the full matrix). The disadvan-
tages were that computational limitations did not
allow all lactation stages to be included in the analy-
sis and that estimates for the fixed effect levels were
different for each lactation stage. Random regression
models (16) can overcome these disadvantages and
are further equivalent to the CF methodology (17).

To investigate potential strategies to use genetic
selection for the improvement of the negative energy
balance during early lactation, genetic parameters
are required for MY, LW, and DMI during early lacta-
tion. Hence, the objective of this study was to esti-
mate genetic (co)variances between these traits over
the first 15 wk of lactation for first lactation heifers.
Because only a limited data set was available, the
second objective was to find a parsimonious CF to
describe these (co)variances, estimated using a ran-
dom regression model.

MATERIAL AND METHODS

Data

Weekly records for MY, LW, and DMI were availa-
ble on Holstein heifers for the first 15 wk of lactation.
Heifers calved between October 1991 and 1997 and
were fed ad libitum a total mixed ration of artificially
dried grass, corn silage, and concentrates (6:5:10).
Heifers that were of high genetic merit were from the
Delta testing program (Holland Genetics, Arnhem,
The Netherlands), and those of medium genetic merit
originated from the experimental farm of the Insti-
tute for Animal Science and Health (ID-DLO;
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Lelystad, The Netherlands). For MY, DMI, and LW;
8946, 9004, and 8611 weekly records were available,
respectively. The smaller number of records for LW
was due to only a few heifers being weighed in the
first lactation week. In total, 628 heifers had records,
and the pedigree contained 1540 unique animals and
traced back at least three generations.

Analyses

Estimates of variance components were obtained
using ASREML software (3). Two different types of
analyses were performed. First, a conventional analy-
sis was performed wherein each week of lactation for
MY, DMI, and LW was treated as a different trait to
obtain indicative values for the variance components.
Second, records at different lactation stages were
treated as if they were on a continuous scale, and
random regressions models were used to estimate a
parsimonious CF (8, 9, 16).

Multitrait analysis. Additive genetic and
residual variances were estimated in 45 single-trait
analyses (15 wk x 3 traits). Next, 990 bivariate
analyses were performed to estimate the genetic
(co)variances between these traits. The model in-
cluded a random animal effect and the additive
genetic relationship matrix plus fixed effects for year-
season of calving (each year contained four seasons)
and genetic group (heifers from Delta or ID-DLO).

CF. The second type of analysis treated repeated
records for the same trait as if they were on a con-
tinuous scale (i.e., lactation stage). To estimate such
a CF, random regression models were used: first for
MY, DMI, or LW separately and then for a combina-
tion of the three traits simultaneously. For each trait,
the mean lactation curve was fitted as a week of
lactation effect, and additive genetic or permanent
environmental deviations from this curve were esti-
mated using the random regression coefficients. The
(co)variance matrix for the random regression coeffi-
cients represents the CF (17). The model fitted was
as follows:

Yijkq = n + group; + season; + wky + Faj(wky) +
Fpy(wky) + kg

where
Yijxq = observation for milk, LW, or DMI on
animal q at lactation stage Kk,
p = mean for all observations,
group; = genetic group (Delta or ID-DLO),
season; = date of week that measurement was
taken (n = 345),
wki = mean lactation effect (n = 15 wk),
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Faq(wkk) = function for the random additive
genetic effect for animal q (described
later),

Fpy(wky) = function for the random permanent
environmental effect, and

€ijkq = random residual term.

Rather than fitting a function with a predefined
shape, orthogonal polynomials (9) were used for both
the additive genetic and permanent environmental
CF:

Fag(wky) = pg + bg 1 Ni(wky) + ....
d + by 1 No(wky)
Bq = leveLi effect of animal q
Ni(wky) ... = coefficients of orthogonal polynomi-
Nu(wky) als of wky of order n
by 1 ... bgn = random regression coefficients for

animal q

To find the most parsimonious CF, the order of fit
for both the additive genetic and permanent environ-
mental effects was increased from level only (denoted
as L1) to polynomials of order 4 (denoted as L4).
Models are named as LnLn, giving the order of fit for
the genetic and permanent environmental CF, respec-
tively. Different orders of fit were compared using the
standard error of the variance components (test
statistic = component/SE; when test statistic >2, the
hypothesis that the component = 0 is rejected) and
the likelihood of nested models.

To investigate how genetic correlations between
MY, DMI, and LW varied with lactation stage, a CF
was estimated for all three traits simultaneously. The
same model was used as described for the univariate
analysis, but covariances between the function
parameters for different traits were included. Order of
fit for the additive genetic and permanent environ-
mental effects were determined from the univariate

CF.

RESULTS

The means for MY, DMI, and LW were 29.9 kg/d,
18.5 kg/d, and 520 kg, respectively, and mean lacta-
tion curves for MY, DMI, and LW are given in Figure
1. Estimates for variance components at different
weeks of lactation are erratic (Table 1) because of
large standard errors.

Estimates of the variance components for different
order CF are given in Table 2. When level only was
fitted (assuming a constant (co)variance for all lacta-
tion stages) genetic variances were estimated to be
3.6, 2.1, and 837 for MY, DMI, and LW, respectively.
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Figure 1. Mean lactation curves for DMI (m), live weight (LW;
A), and milk yield (MY; o) during the first 15 wk of lactation of
628 first lactation cows.

When models were extended to the fourth order for
both the permanent environmental effect and the ad-
ditive genetic effect, the log likelihood improved sig-
nificantly. However, this phenomenon was primarily
due to the permanent environmental effects. For the
additive genetic effects, lower orders were sufficient:
second or third order for MY and DMI and third order
for LW. Fit of the permanent environmental effect of
order four during a fit of a second order function to
the genetic effect seemed inappropriate because some
of the genetic variance was then partitioned to the
permanent environmental effect. For example, for MY
the variance component for level (L 1) is reduced from
around 4.0 to 2.7.

These CF could be used to estimate (co)variances
for all 15 wk of lactation. This method was applied to
the first four models for each trait presented in Table
2. Genetic variances for the first 15 wk of lactation
are compared in Figure 2 with the additive genetic
variances estimated in the univariate analysis.
Genetic variances seemed to approximate the univari-
ate estimates reasonably well, especially for the
higher order fits. The DMI estimates of the variances
of the CF were slightly higher than the univariate
estimates, especially during late lactation. Further-
more, genetic correlations between different lactation
stages were calculated using the third order CF (Ta-
ble 3). These correlations approximate the genetic
correlations from the bivariate analyses closely,
although only a three by three symmetric matrix is
estimated to describe the full 15 by 15 symmetric
matrix. The correlation for DMI measured 14 wk
apart is only 0.24, but estimates for MY and LW are
0.62 and 0.79, respectively.

The multitrait CF for MY, DMI, and LW is given in
Table 4. Only a second order of fit for both random
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TABLE 1. Univariate estimates for the additive genetic variance (A), residual variance (E), and
heritability (h2) for milk yield (MY), DMI, and live weight (LW) at each lactation week.

MY DMI Lw

wk A E h2 A E h2 A E h2

1 3.3 11.8 022 16 3.4 032 ... C S
2 2.2 17.9 011 14 3.9 0.27 648 1185 0.35
3 3.9 18.1 018 1.1 3.8 0.23 695 1089 0.39
4 5.9 16.3 0.27 06 3.9 0.13 651 1047 0.38
5 4.5 18.6 020 1.3 3.0 0.31 652 1001 0.39
6 3.7 20.9 0.15 1.5 2.4 0.39 693 1001 0.41
7 4.1 18.5 0.18 15 2.3 0.40 476 1145 0.29
8 5.5 17.6 024 14 2.7 0.33 568 1100 0.34
9 6.8 15.2 031 2.3 1.9 0.54 793 906 0.47
10 5.9 15.6 0.27 09 3.1 0.23 690 1051 0.40
11 6.0 15.0 029 1.7 2.1 0.44 677 1043 0.39
12 7.6 14.4 035 0.9 3.2 0.22 803 1020 0.44
13 5.4 14.8 027 14 2.9 0.33 775 1039 0.43
14 4.0 16.9 0.19 1.0 3.4 0.23 719 1134 0.39
15 4.0 16.6 019 1.0 3.5 0.23 715 1063 0.40

effects converged. High MY are associated with cows
that have a high level of intake (rg = 0.21), that
increase their intake (ry = 0.97), and that lose weight
(rg = —0.46) during the first 15 wk of lactation. A
high weight is correlated with a high level of intake

during the measured period (0.81) but not with level
or persistency of MY.

Similar to the univariate CF, (co)variances can be
calculated within and between the traits for each
lactation week. Variances and correlations within

TABLE 2. Log likelihood (L), residual variance (E), and variance components! for models with

different orders of fit2 for milk yield (MY), DMI,

and live weight (LW).

Additive genetic Permanent

components environmental components
Model L E L1 L2 L3 14 L1 L2 L3 L4
MY
L1 L1 13,386 5.6 3.6 13
L2 L2 12,734 4.2 4.0 0.52 12 2.2
L3 L3 12,466 3.6 4.1 0.46 0.25 13 2.4 0.70
L4 14 12,356 3.3 4.3 0.49 0.28 0.01 12 2.5 0.84 0.35
L3 L4 12,357 3.3 4.1 0.51 0.21 13 2.5 0.91 0.36
L2 14 12,362 3.3 2.7 0.48 14 2.5 11 0.40
TST 2.4 1.8 2.1 0.6 7.7 8.7 6.1 7.0
DMI
L1 L1 8,492 1.9 2.1 1.0
L2 L2 7,681 1.3 1.8 0.51 0.81 0.54
L3 L3 17,420 1.2 1.8 0.56 0.06 0.79 0.54 0.22
L4 14 7315 1.1 1.7 0.51 0.06 0.02 0.84 0.58 0.24 0.11
L3 14 7,319 1.1 1.6 0.55 0.05 0.90 0.56 0.25 0.12
L2 14 7,327 1.1 15 0.39 1.0 0.67 0.30 0.12
TST 4.6 3.8 2.0 14 3.2 54 7.1 6.2
LW
L1 L1 26,827 147 837 866
L2 L2 25,620 91 683 50 930 68
L3 L3 25,276 76 688 64 11 936 74 17
L4 14 NC
L3 14 25,181 71 685 59 8 943 78 28 10
L2 14 25,198 71 697 28 929 106 37 10
TST 3.6 3.7 2.9 6.2 6.0 8.1 8.0

1Covariances between the additive genetic and between the permanent environmental components

were estimated but are not presented here.

2Test statistics (TST) are the estimate divided by the standard error for highest order model.
Different random regression models are indicated by order of fit for additive genetic and permanent
environmental effects respectively (i.e., L2L2 fits level and slope for both effects). NC = No conver-

gence.
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TABLE 3. Comparison of genetic correlation estimated by separate bivariate analysis for each correlation or by single trait covariance
functions (third order polynomial for both the additive genetic and permanent environmental effects) for milk yield (MY), DMI, and live
weight (LW).

Bivariate analyses Covariance function
MY 1 3 5 7 9 11 13 1 3 5 7 9 11 13
3 0.89 0.92
5 094 0.99 0.83 0.98
7 099 094 1.00 0.77 0.95 0.99
9 0.78 0.96 1.00 0.93 0.73 0.93 0.98 1.00
11 0.75 0.88 1.00 0.97 1.00 0.70 0.90 0.96 0.98 0.99
13 0.55 0.90 0.96 0.85 1.00 1.00 0.67 0.85 0.91 0.94 0.96 0.99
15 0.55 0.82 0.88 0.74 0.97 0.96 0.98 0.62 0.75 0.79 0.82 0.86 0.91 0.97
DMI 1 3 5 7 9 11 13 1 3 5 7 9 11 13
3 0.95 0.93
5 049 0.88 0.74 0.94
7 043 0.83 0.99 0.55 0.82 0.97
9 0.37 0.82 1.00 0.99 041 0.72 0.92 0.99
11 0.20 0.80 0.98 1.00 0.93 0.32 0.65 0.87 0.97 0.99
13 0.22 0.80 0.95 0.93 0.89 0.93 0.26 0.60 0.84 0.95 0.99 1.00
15 -0.24 0.66 0.87 0.87 1.00 0.95 0.87 0.24 0.59 0.82 0.94 0.98 0.99 1.00
Lw 1 3 5 7 9 11 13 1 3 5 7 9 11 13
3 0.98
5 0.98 0.93 0.98
7 0.97 1.00 0.85 0.94 0.99
9 0.90 0.99 1.00 0.80 0.90 0.97 0.99
11 0.88 0.97 0.98 0.99 0.76 0.87 0.95 0.99 1.00
13 0.92 0.99 1.00 1.00 1.00 0.76 0.87 0.95 0.99 1.00 1.00
15 0.89 0.99 0.99 0.99 0.99 1.00 0.79 0.89 0.96 0.99 1.00 1.00 1.00

traits matched those of the univariate CF; therefore,
genetic correlations between the traits only are given
(Table 5). With the exception of correlations between
MY and LW, estimates of the CF approximated the

TABLE 4. Estimates for the additive genetic (A), permanent environmental (PE), and residual
variance (E) components using the second order covariance function for milk yield (MY), DMI, and
live weight (LW) (variance on the diagonal; correlations on the off-diagonals).

Level Slope
MY DMI LW MY DMI LW
A
Level MY 6.86
DMI 0.21 1.54
LW 0.08 0.81 733
Slope MY 0.32 0.05 0.04 0.59
DMI 0.97 0.34 0.18 0.32 0.53
LW —0.46 0.35 0.19 0.17 -0.39 48.5
PE
Level MY 10.5
DMI 0.57 0.98
LW 0.00 0.25 902
Slope MY 0.00 -0.16 -0.10 2.11
DMI -0.09 -0.21 -0.23 0.68 0.55
LW -0.52 -0.03 0.03 0.17 0.41 69.4
E
Level MY 4.18
DMI 0.31 1.35
LW 0.10 0.21 91.2

genetic correlation from the bivariate analysis, albeit
correlations from the function are smoother as these
are less affected by sampling errors. For example, the
genetic correlation between DMI in wk 1 and MY in
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TABLE 5. Genetic correlations between milk yield (MY), DMI, and live weight (LW) measured at different stages of lactation (weeks)
and estimated using bivariate analysis and a multitrait covariance function (CF).

Bivariate analysis

Multitrait CF

MY 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15
DMI 1 -0.77 -0.51 -1.00 -0.53 -0.32 -1.00 -0.85 -0.62 -0.44 -046 -047 048 -048 -048 -0.47 -0.46
3 -0.46 -0.58 -0.68 -0.33 -0.40 -0.14 -0.15 -0.37 -0.27 -028 -0.29 -0.30 -0.30 -0.30 -0.30 -0.29
5 0.50 -0.24 -0.20 0.06 0.01 0.03 0.20 0.02 -0.08 -0.08 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09
7 0.67 038 038 024 029 030 044 0.32 0.12 012 012 012 012 011 011 0.11
9 043 021 031 026 035 042 042 047 028 029 029 030 029 029 028 0.28
11 043 044 021 035 0.17 021 031 0.18 042 043 044 044 044 044 043 042
13 060 056 041 044 045 043 037 0.35 052 054 055 056 056 055 054 0.53
15 026 018 028 039 039 052 030 0.39 0.60 062 063 064 064 063 062 061
MY 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15
Lw 1 024 024 024 023 022 021 020 0.19
3 -0.32 -0.06 0.03 -0.04 -0.24 -0.03 -0.04 0.11 020 020 019 019 018 018 0.17 0.16
5 -0.58 -0.20 -0.08 -0.10 -0.26 -0.04 0.04 0.16 0.15 0.15 015 0.15 0.14 0.14 013 0.13
7 -0.59 -0.29 -0.16 -0.13 -0.24 -0.01 -0.07 0.07 0.09 0.0 010 0.0 010 0.10 0.10 0.10
9 -0.59 -0.25 -0.23 -0.28 -0.24 -0.12 -0.04 0.00 0.04 0.05 0.05 0.06 0.06 0.06 0.06 0.07
11 -0.61 -0.29 -0.10 -0.16 -0.24 -0.01 0.04 0.08 0.00 0.00 0.01 0.02 0.02 0.03 0.03 0.03
13 -047 -0.23 -0.12 -0.09 -0.18 0.01 0.06 0.12 -0.05 -0.04 -0.03 -0.03 -0.02 -0.01 0.00 0.00
15 -0.64 -0.18 -0.09 -0.16 -0.24 0.00 0.01 0.02 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02
DMI 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15
Lw 1 048 058 0.65 0.70 0.71 0.70 0.68 0.66
3 056 082 0.75 047 059 049 0.67 0.54 054 063 0.70 0.74 0.74 0.73 0.70 0.66
5 0.70 083 084 055 0.68 057 0.73 0.64 0.60 0.69 0.75 0.78 0.77 0.74 0.71 0.67
7 0.61 088 085 065 079 063 084 0.71 065 0.73 079 080 0.79 0.76 0.71 0.67
9 061 089 089 066 082 063 074 0.71 069 077 082 083 080 0.76 0.71 0.66
11 058 0.83 087 063 082 0.72 082 0.70 0.73 080 084 084 081 0.76 0.70 0.65
13 052 087 088 063 079 070 081 0.71 076 083 086 085 081 0.75 0.69 0.63
15 054 086 088 062 0.78 0.74 0.61 0.66 079 084 087 085 081 0.74 0.68 0.62

wk 11 is estimated to be —1.0 in the bivariate analy-
sis, but the CF gives an estimate of —0.48. Addition-
ally, the (co)variance matrix resulting from all bivar-
iate analysis is not positive definite, which would
require a form of smoothing to obtain a workable
matrix. The CF gives a smoothed and positive definite
matrix and accounts for the ordering and spacing of
records. Correlations between different traits at
different lactation stages are not symmetric. For ex-
ample, DMI during early lactation is negatively cor-
related with MY during the whole period, but DMI

during later weeks is positively correlated. The corre-
lation between DMI and LW appears to be less af-
fected by lactation stage.

Genetic correlations between LW and MY differ
more between the two analyses methods (i.e., multi-
trait vs. CF) not only in magnitude but also in sign,
which suggests that the CF is too simple. However, a
third order CF did not converge when all three traits
were included. Therefore, a set of bivariate CF analy-
sis was attempted, and only the analysis between
yield and LW converged with the third order function.

TABLE 6. Genetic correlations between milk yield (MY) and live weight (LW) measured at different
stages of lactation and estimated using bivariate covariance function of the third order for both MY and

LW.
MY
1 3 5 7 9 11 13 15
LW 1 0.37 0.28 0.21 0.18 0.18 0.19 0.23 0.27
3 0.26 0.14 0.08 0.06 0.06 0.08 0.12 0.20
5 0.14 0.02 —-0.04 —-0.06 -0.06 —-0.03 0.03 0.12
7 0.04 —-0.08 -0.14 -0.15 -0.14 -0.11 —-0.05 0.05
9 —-0.02 -0.14 -0.19 —-0.20 -0.19 -0.15 —-0.09 0.02
11 -0.04 -0.16 -0.21 -0.22 —-0.20 -0.17 -0.11 0.00
13 -0.03 —-0.15 —-0.20 —-0.20 -0.19 -0.16 —-0.09 0.01
15 0.01 -0.11 —-0.15 -0.16 -0.15 -0.12 —-0.06 0.04

Journal of Dairy Science Vol. 82, No. 7, 1999
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The correlations calculated from this function (Table
6) agreed more closely with the bivariate analysis,
although there is still an apparent conflict in the first
few weeks, which was probably due to sampling er-
rors in the bivariate analysis; correlations between
MY in wk 2 and LW in wk 2, 3, and 4 were 0.07, 0.23,
and —0.05, respectively.

DISCUSSION

To investigate potential strategies to use genetic
selection for the improvement of the negative energy
balance during early lactation, genetic parameters
are required for MY, LW, and DMI during early lacta-
tion. However, because of the high cost of recording
DMI only, limited data are available to estimate
these parameters. The consequence is large sampling
errors when traits are treated as if each lactation
stage is a different trait. Use of the parameters with
large sampling errors, either in a selection index or
multitrait breeding value estimation, results in bias
(6) in several practical animal breeding circum-
stances (4, 21, 23). Therefore, apart from the reasons
described previously, it is important to estimate
(co)variances with a function with fewer parameters
than the full (co)variance matrix.

A second or third order polynomial for the additive
genetic effect adequately described variation around
the mean lactation curve for MY, DMI, and LW when
using likelihood to test whether variance components
were significantly different from zero. However, com-
parison of estimated variances at different lactation
stages suggest that the genetic variance for DMI is
estimated to be higher with the CF approach than
with individual estimates of the univariate analyses,
especially at the end of the 15-wk period (Figure 2).
There is no obvious explanation for this result. The
three main differences between the two methods are
that 1) random regression models allow adjustment
for measurement week rather than year-season of
calving, 2) random regression models take into ac-
count all records simultaneously rather than records
in 1 wk only, and 3) the random regression models
used here assume a normally distributed and uncor-
related error term unaffected by lactation stage
(apart from the permanent environmental effect).
Ptak and Scheaffer (13) suggested that error vari-
ance for MY decreased by 24% as a consequence of
adjusting for date of measurement rather than herd-
year-season; however, it is unlikely that this adjust-
ment, or taking all records into account simultane-
ously, could explain the difference in variance be-
tween the two methods used. Therefore, it is more
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Figure 2. Additive genetic variance at different stages of lacta-
tion for milk yield (MY), DMI, and live weight (LW) calculated
from first to fourth order covariance functions: L1L1 (-), L2L2
(A), L3L3 (0), and L4L4 (*), respectively. Estimates for the
variances from univariate analysis for each week of lactation ( ¢)
are given with their standard error bars.

likely that the error term is modeled too simply and
that covariances exist that are partially confounded
with sire or animal effects, which will affect estimates
of the other variance components. For instance, Jam-
rozik and Schaeffer (7) used a random regression
model and demonstrated how modeling the perma-
nent environmental effect affects estimated genetic
(co)variances at different stages of lactation (15).
Improvements to the current model might be, for
example, to model heterogeneous variances (2, 11) at
different measurement weeks or to include covari-
ances between measurement week or between differ-
ent weeks of lactation. An autoregressive model
might be sufficient (24). Hence, further investigation
of different structures for the residual variation
should be part of a study, preferably on a larger data
set.
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Although functions of a higher order than three
were not significantly different from 0 for the genetic
effect, for the permanent environmental effect, more
extensive polynomials were still significant. However,
fitting a higher order polynomial for the permanent
environmental effect rather than for the additive
genetic effect seemed inappropriate as the genetic
variation became unrealistically small. The most
likely explanation is that due to the small data set,
these two effects might have been partially con-
founded and, therefore, addition of more permanent
environmental components seemed unjustified. Inclu-
sion of more appropriate error structures might also
reduce the need for a high order of fit for the perma-
nent environmental effects.

Extension of the single-trait CF to the multitrait
CF resulted in more convergence problems. The
primary reason was that correlations between the
components across traits were at the boundary of the
parameter space. For example, correlations between
levels for intake and LW and between level for yield
and slope for intake were both estimated at unity,
which suggests that either not enough data was avail-
able to separate these components or that a simpler
model is sufficient to explain the data. In both situa-
tions, it seems appropriate to present the second-
order function, albeit better fit models will exist. An
improvement of the current functions might be possi-
ble by fitting some common parameters to all three
traits (after scaling). Veerkamp and Goddard (22)
applied this improvement to milk, fat, and protein
yields and found that one common function describing
the change in genetic (co)variance across the full
lactation and one matrix describing the correlations
between the yield traits gave a sufficient description
of the full (co)variance matrix between these traits
across the full lactation. Such a simple model unlikely
would be sufficient here given the correlation struc-
ture in Table 5, but the high correlations between
components across traits suggest that further investi-
gation is needed.

Estimates of the genetic correlations between wk 1
and 15 confirm the results from another dataset (10);
genetic correlations between DMI in early and late
lactation were low. These authors found a correlation
of —0.14 between wk 3 and 25. Correlations between
components of the multitrait CF also confirm the
importance of LW change for increasing the level of
MY. Several authors (19) reported a negative corre-
lation between MY and LW change (-0.37 to —0.65).
The magnitude of the effect of lactation stage on the
correlation between traits is large. From this data, it
is suggested that heifers that eat less than average
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during the first wk of lactation but then manage to
increase their intakes to above average give the
highest yield during the 15 wk. These cows are likely
to rely heavily on body tissue mobilization or to ex-
perience the most negative energy balance during
early lactation, which in terms of LW is illustrated by
the genetic correlations between LW and MY. If
weight is measured later than MY (i.e., below the
diagonal in Table 6), the genetic correlation between
yield and weight becomes more negative. Thus, LW
lags behind MY.

Implications of the genetic correlations in this
study are that stage of lactation influences measure-
ment of DMI and LW for genetic selection. Correla-
tions within trait (with the possible exception of
DMI) seem to be less affected than do correlations
across traits. These results are particularly important
when the interest is in selection for a linear combina-
tion of the traits analyzed in this study such as
energy balance. The random regression model can be
used to estimate breeding values for level and slope
directly or to estimate breeding values for each trait
at each lactation stage. However, it seems important
that CF and genetic parameters in this study are
confirmed with a larger data set.
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