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ABSTRACT 

Segarra, J., Jeger, M. J., and van den Bosch, F. 2001. Epidemic dynamics 
and patterns of plant diseases. Phytopathology 91:1001-1010.  

The general Kermack and McKendrick epidemic model (K&M) is 
derived with an appropriate terminology for plant diseases. The epidemic 
dynamics and patterns of special cases of the K&M model, such as the 
Vanderplank differential-delay equation; the compartmental healthy (H), 
latent (L), infectious (S), and postinfectious (R) model; and the K&M 
model with a delay-gamma-distributed sporulation curve were compared. 
The characteristics of the disease cycle are summarized by the basic re-
productive number, R0, and the normalized sporulation curve, i(τ). We show 

how R0 and the normalized sporulation curve can be calculated from data 
in the literature. There are equivalences in the values of the basic repro-
ductive number, R0, the epidemic threshold, and the final disease level 
across the different models. However, they differ in expressions for the 
initial disease rate, r, and the initial infection, Q, because the values de-
pend on the sporulation curve. Expressions for r and Q were obtained for 
each model and can be used to approximate the epidemic curve by the 
logistic equation.  

Additional keywords: epidemiology, mathematical models. 

 
Many different models and modeling approaches have been 

used in botanical epidemiology. These include descriptive growth 
curves (23,36), followed by epidemic simulators (31,37), to re-
cently, models more in line with those developed in population 
ecology and theoretical epidemiology (32–34) for airborne and 
soilborne (38), fungal and viral (6) diseases. 

The growth curve most widely used to describe and compare 
epidemic progress is the logistic model, 
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where Y represents the quantity of disease, r is a disease rate 
parameter, and K is the maximum quantity of disease or “carrying 
capacity.” When Y is measured as a proportion in disease assess-
ments, K = 1. 

From a disease dynamics perspective, it is preferable to repre-
sent disease as the amount of infectious tissue, e.g., plant surface 
bearing sporulating colonies of a fungal pathogen, because this is 
what contributes to the progress of the disease. When disease is 
measured as a proportion, Vanderplank (35) adapted the logistic 
equation to an epidemiologically more realistic model by the in-
corporation of latent (p) and infectious (i) periods 

( )( )tiptpt
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in which yt is the proportion of disease at time (t) including di-
seased tissue that is latent (preinfectious), infectious, and removed 
(postinfectious), and R is a disease transmission rate that relates 
the increase in disease to the amount of infectious (yt–p – yt–p–i) and 
healthy (1 – yt) tissue. In this, we deviate from Berger (3) who ex-
cludes latent tissue from his definition of disease. Equation 2 has 
been used in many simulation models as the basis for predicting 
epidemic development. 

In theoretical epidemiology, compartmental models are often 
used with individuals classified as healthy (H), latent (L), infec-
tious (S), and postinfectious (R). This corresponds to the more 
usual terminology of susceptible (S), exposed (E), infectious (I), 
and removed (R) used in human and animal epidemiology. These 
models are formulated as systems of linked differential equations 
(6,13,28). An H-L-S-R epidemic model of a polycyclic plant di-
sease in a closed population can be formulated as the system: 
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where β is a per capita disease transmission rate, and θ and α are 
constant rates of progress from the latent to infectious and from 
the infectious to postinfectious compartments, respectively. 

Equations 2 and 3 fit into the same mathematical framework. In 
fact, if N = 1 and R = β, the only difference lies in the distribu-
tions assumed for the latent and the infectious periods. In equation 
2, latent and infectious periods are constant and equal for all 
individuals, whereas in equation 3 the duration of both periods is 
assumed to be distributed exponentially, with rate θ the inverse of 
the mean length of latent (p) and rate α the inverse of the mean 
length of the infectious (i) period. The rates θ and α are constants 
in equation 3. For both models, we can introduce a source func-
tion g(t) describing spores arising from a primary infection. 

An early contribution on mathematical theory of epidemics was 
made by Kermack and McKendrick (19) in the context of human 
disease. From this pioneering work, key epidemiological parame-
ters were derived, such as the invasion criterion for disease to es-
tablish itself and the final size of the epidemic. The Kermack and 
McKendrick (K&M) epidemic model has been extensively ana-
lyzed and reviewed in the mathematical literature (10). Although, 
applied first in animal and human epidemiology, it is of general 
nature and has been adapted to spatial spread of plant diseases 
(32–34). However, it has not been developed in its own right from 
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first principles in relation to key characteristics of plant disease 
epidemics. 

The aims of this paper are to (i) derive the general K&M model 
with an appropriate terminology for plant diseases, (ii) discuss the 
Vanderplank (equation 2) and the H-L-S-R (equation 3) models as 
special cases of the general K&M model, (iii) compare their 
qualitative dynamics, and (iv) derive an approximation to the 
disease rate in equation 1.  

THEORY AND APPROACHES 

Model. In this section, the K&M model is derived with terminol-
ogy appropriate to a foliar fungal disease that multiplies through 
the production and airborne dispersal of spores as the infectious 
propagules. The model will be based on the knowledge of the 
underlying mechanisms of the infection cycle. A problem in plant 
pathology is to specify precisely what is the individual or unit of 
assessment. The proper choice of unit depends on the nature of the 
disease. Standard measures of disease include number of diseased 
plants or plant organs (leafs, stalks, and buds), proportion of tissue 
diseased, and number or density of lesions. In what follows, we 
will consider the unit of disease to be a lesion and for the host a 
site, being the characteristic area occupied by a lesion. It is 
assumed that the growth of the host population and of individual 
lesions is insignificant and that spore dispersal is homogeneous 
throughout a population of healthy and diseased plants. The effect 
of primary inoculum is represented through setting initial condi-
tions for the disease. The variables and parameters introduced are 
listed in Table 1. 

Life-history characteristics. The disease is transmitted from 
infectious to healthy sites by a sequence of infection cycles. Each 
cycle consists of four phases: infection, latency, sporulation, and 
dispersion. When a viable spore, arriving from an external source, 
deposits on a healthy site, an epidemic may be initiated. If the host 
is susceptible and the environmental conditions favorable, the pro-
pagule will germinate, penetrate the plant surface, and establish an 
infection. Once an infection is established there is a latent period 
during which the colonization of the plant tissue takes place inter-
nally without producing spores. After this period of latency, spore 
production external to the plant will gradually increase, reach a 
peak, decrease, and eventually cease once plant resources at that 
site are exhausted. The rate of sporulation depends on lesion age 
since the time of infection (τ). Once the period of infectiousness 
has passed, the lesion no longer produces spores. 

From the spores produced during a lesion’s lifetime, only a pro-
portion will infect a new site and start a new lesion. Spores may 
be deposited on the ground or escape from the canopy boundary 
layer. Secondly, though deposited on a healthy site, they may fail 
to germinate or penetrate. Once a spore successfully infects a site, 
another infection cycle is initiated. 

The basic life-history parameters underlying the epidemic process 
are (i) the sporulation curve, I(τ)[NspT–1Nle

–1] (this is the number of 
spores produced per unit of time by an infected site of age (τ) and 
it includes both the latent period, during which I(τ) = 0, and the 
infectious period), (ii) the probability that a spore is deposited on 
a particular host site, ξ(Nst

–1), and (iii) the probability that a spore 
landing on a healthy site initiates a new infection, ψ(NleNsp

–1). 
To derive parameters with a clear biological interpretation, we 

introduce the basic reproductive number, R0. The biological defi-
nition of R0 is the average number of new lesions produced by a 
lesion during its period of infectiousness in the early stages of the 
epidemic, when essentially all plants are not diseased and suscep-
tible (24). By definition, for any sporulation curve, 
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where H0 is the total number of healthy sites at t = 0. It is worth 
noting that the expression for R0 (equation 4) includes all the three 

lesion life-history parameters and takes into account the total 
number of spores. A related quantity that varies throughout the 
epidemic is the effective reproductive ratio (1) or again number 
(Re), equivalent to the total number of lesions produced by a 
lesion at any stage of the epidemic; for the K&M model, and its 
special cases, Re decreases linearly with the proportion of healthy 
sites. The timing of spore production is described by the nor-
malized sporulation curve, i(τ), 
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Therefore, R0 and i(τ) summarize the quantitative characteristics 
of the infection cycle, have a clear biological interpretation, and 
are the key components of temporal epidemic development. 

Development of the model. In accordance with the previous 
assumptions and life-history characteristics, we will model the dy-
namics of a population of lesions. The rate of change of healthy 
sites, H(t), in a population is given by 
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dt

dH
ψξ−=  (6) 

where A(t) is the number of spores produced by the entire popu-
lation of lesions per unit of time, and ψξH(t) represents the infec-
tion probability per spore. For the purposes of this paper, we con-
sider the term A(t) to be the sum of two categories of spores: those 
that result from the initial infection g(t), and the spores produced 
by secondary infection cycles A1(t). In this, we follow the pro-
cedure outlined by Kermack and McKendrick (19) and several 
other authors (8,26). 

Thus, 

)()()( 1 tgtAtA +=  (7) 

to calculate the total spore production, A1(t), we need to add the 
spore production of all lesions present at time, t. Because the 
population is closed, –dH(t)/dt is the number of new infections per 
unit time, t, therefore –dH(t – τ)/dt is the number of lesions arising 
per unit of time, that at t have infection age, τ. Therefore, 
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The spore production of the initial infection, g(t), can take various 
special forms. If the epidemic is started internally at t = 0 by T 
lesions of age τ = 0, g(t) has the form 

)()( τ= TItg  (9) 

It could also be the case that spores from an external source area 
are deposited on the plant population. Let h(t) be the number of 
spores deposited per unit of time and per site. In that case, the 
initial condition takes the form 
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Combining equations 6, 7, and 8 together, the K&M model (19) is 
given by 

( ) ( ) ( )







−ττ

τ−
ψξ= ∫

t

tgdI
dt

tdH
tH

dt

tdH

0

)(
)(

 (11) 

This integro-differential equation describes the disease progress 
for any sporulation curve, I(τ). 

Special cases of the K&M model. May (24) emphasized that 
the compartmental and Vanderplank models are limiting cases of a 
more general framework in which individuals move out of the 
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infected compartment at a rate that explicitly depends on the 
elapsed time since the infection took place. We now discuss the 
Vanderplank (equation 2) and H-L-S-R (equation 3) models as 
special cases of the general K&M model (equation 11) in which 
specific assumptions are incorporated into the life history of one 
lesion. 

Vanderplank model (equation 2). That model assumes that 
during an infectious period of fixed duration, a lesion produces a 
constant number of spores per unit of time, γ. So, the sporulation 
curve of one lesion is represented by the block-function (Fig. 1) 









+>τ
+<<γ

<τ
=τ

ip

ipp

p

I

if0

if

if0

)(  (12) 

and the normalized sporulation curve is 
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When equation 12 is substituted into equation 11 and the number 
of healthy sites is replaced by the number of diseased sites Y(t) = 
H0 – H(t), this gives the unscaled Vanderplank equation including a 
more general function to describe how an epidemic is initiated, g(t), 
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where R = ψξH0γ. 
The parameter R is the number of lesions produced per infec-

tious lesion per day in a completely susceptible crop. As a lesion 

sporulates for exactly i days in the Vanderplank model (equation 
2), the basic reproductive number thus is 

RiR =0  (15) 

equivalent to the “progeny-parent ratio” as defined by 
Vanderplank (35). 

H-L-S-R model (equation 3). In the compartmental model, it 
is assumed that any lesion in its latent stage becomes infectious 
with a constant probability per unit of time (θ). Once infectious, the 
lesion produces a constant number of spores per unit of time (γ) 
and has a probability per unit of time (α) to cease spore production. 

Following Diekmann and Heesterbeek (9), we can derive the 
expression for the sporulation curve I(τ) from the H-L-S-R model 
(equation 3). If it is assumed that at t = 0 one infection takes place 
and that there are no new infections after t = 0, then equation 3 
becomes 
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When the two-equation system (equation 16) is solved, we obtain 
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Because the mean sporulation rate is γ during the infectious 
period, the following sporulation curve is obtained as a special 
case of the K&M model (equation 11): 
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TABLE 1. Summary of principal variables and parameters 

 Description Dimensiona 

Variables   
H Number of healthy sites  Nst 
L Number of latent infections  Nle 
S Number of infectious lesions  Nle 
R Number of removed lesions Nle 
Y Total number of infections (Y = L + S + R) Nle 
y Proportion of infected sites Nle Nst

–1 
Functions   
I(τ) Sporulation curve: Number of spores produced per unit of time by a lesion of age τ Nsp T–1 Nle

–1 
i(τ) Normalized sporulation curve T–1 Nle

–1 
g(t) Number of spores produced due to the initial infection per unit of time Nsp T–1 

Parameters   
R Transmission rate of disease in the Vanderplank model T–1 
β Per capita transmission rate of disease in the H-L-S-R model T–1 Nst

–1 
θ Rate of transition from L to S (=1/p) T–1 
α Rate of transition from S to R (=1/i) T–1 
p Length of latent period T 
i Length of infectious period T 
µ Mean of the entire i(τ) curve T 
σ2 Variance of the entire i(τ) curve T2 
τ Lesion infection age  T 
ξ Probability that a liberated spore lands on a particular host site Nst

–1 
ψ Probability that a spore landing on healthy site initiates a new infection Nle Nsp

–1 
γ Mean number of produced spores by a lesion per unit of time Nsp T–1 Nle

–1 
Ω Mean number of produced spores by a lesion during its period of infectiousness Nsp Nle

–1 
R0 Basic reproductive number 1 
r  Initial infection rate T–1 
N Number of host sites (N = H + L + S + R) Nst 
Q Initial infection Nle 
Y∞ End number of lesions Nle 
H∞ End number of healthy sites Nst 
H0 Initial number of healthy sites Nst 
g∞ Total number of spores produced due to the initial infection Nsp 
λ Shape parameter of the gamma-distribution 1 
n Shape parameter of the gamma-distribution 1 

a 1 = no dimension, Nst = number of sites, Nle = number of lesions, Nsp = number of spores, and T = time.  
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Equation 18 is substituted into equation 5 to give the normalized 
sporulation curve (Fig. 1), 
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The basic reproductive number for the H-L-S-R model (equation 3) 
is obtained by substituting equation 18 into equation 4 and 
integrating to provide 
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where β = ψξγ. 
It is worth noting that equations 15 and 20 are identical, be-

cause R = βH0. Therefore, both the Vanderplank (equation 2) and 
H-L-S-R (equation 3) models lead to the same R0 expression. 

Delayed-gamma distribution. A more realistic description of 
the sporulation curve is obtained by the use of the delayed-gamma 
distribution (Fig. 1): 
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where Ω is equivalent to γi in the Vanderplank model, p is the 
latent period, and λ and n are shape parameters of the gamma 
distribution. This form of I(τ) has been useful to describe the 
sporulation curve of plant diseases such as stripe rust of wheat and 
downy mildew of spinach (32). The disadvantage of this descrip-
tion is that it is only possible to rewrite the K&M model (equation 
11) as a set of (delay) differential equations when n is an integer, 
but it can be integrated numerically, when n is not an integer.  

RESULTS 

Epidemic development. Two key aspects of the disease develop-
ment are the epidemic threshold and the final size of the epidemic. 
Both are directly related with the basic reproductive number, R0, 
but are independent of the shape of the sporulation curve, i(τ). 

Epidemic threshold. According to the threshold phenomenon, 
the basic reproductive number, R0, determines whether an epi-
demic will occur from an initial infection. For early exponential 
increase of the disease, it is necessary that R0 > 1. If R0 > 1, each 
lesion results in more than one lesion, but if R0 < 1, each lesion 

does not replace itself with another lesion and an epidemic does 
not occur (17). 

This result can readily be derived for the H-L-S-R model (equa-
tion 3). When the second and third equation of the model (equa-
tion 3) are added, this gives d(L + S)/dt = βSH – αS. At the start of 
epidemic, H = H0, thus d(L + S)/dt = (βH0 – α)S. Therefore, if 
βH0(1/α) < 1, there is a progressive decrease in the number of 
latent plus infectious sites and only a small and limited increase in 
removed sites results, but if βH0(1/α) > 1, an epidemic occurs. 
This inequality corresponds to the same expression of epidemic 
threshold Ri >1 obtained by Vanderplank for equation 2 (35). 

Final size of the epidemic, Y∞. In the course of the epidemic, 
because there is no influx of new healthy sites and all lesions 
eventually cease to produce spores, the development of the di-
sease eventually ceases. The dynamics of equations 2, 3, and 11 
tend asymptotically to an equilibrium, at which point all disease is 
“removed” or postinfectious (Fig. 2). 

The general final size equation can be obtained from the K&M 
epidemic model (equation 11). We follow the derivation given by 
Metz (25). Division of both sides of equation 11 by H(t) gives 
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Integration of both sides with respect to t gives 
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Now, 
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When equation 24 is substituted into equation 23 and replacing t 
for t1, we arrive at 
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Finally, we take the limit as t→∞ and insert the R0 expression 
from equation 4 to give the final value equation: 
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H∞ is the final number of healthy sites, and g∞ is the total number 
of spores produced due to the initial infection. The final number of 
sites that have been infected during the course of the epidemic is 
Y∞ = H0 – H∞. 

We also rewrite equation 26 in terms of the fraction of sites 
infected. Suppose as in equation 9, that the epidemic is started 
internally at t = 0 by T infected sites, then y0 = T/N and y∞ = Y∞/N, 
where N = H0 + T is the total number of sites. For T<<H0, sub-
stituting these terms into equation 26 and rearranging gives 
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If we make assumptions on the particular form of the initial spore 
production, g(t), and on whether or not to incorporate the initial 

 

Fig. 1. Normalized sporulation curves, i(τ). Parameters values are p = 6 and
i = 10. Shape parameters of the delayed-gamma distribution are (i) n = 2 and
λ = 2/i, and (ii) n = 4 and λ = 4/i. The average duration of the infection cycle 
is p + i in all four distributions.  
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number of lesions in the total population, we arrive at various 
forms of the final size equation. 

The asymptotic result for the Vanderplank model (equation 2) 
was given by Vanderplank (36) and has been derived formally by 
Jeger and van den Bosch (17) and Swinton and Anderson (30): 
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where y∞ is the asymptotic proportion of disease, and y0 is the 
initial proportion of disease.  

In the case of the H-L-S-R model (equation 3), when the first 
equation is divided by the fourth equation, this gives 
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Separation of variables and integration, assuming the initial con-
ditions (H0, 0, S0, and 0) and asymptotic values as t→∞ (H∞, 0, 0, 
and R∞) yields the same implicit expression in equation 28, where 
y∞ (=R∞/N) represents the fraction of the population that becomes 
diseased during the course of the epidemic, and y0 (=S0/N) is the 
initial proportion of disease arising from the primary infection.  

These results for the final size of the epidemic (equations 27 
and 28) can be simplified to the same expression, and thus the 
same value shown in Figure 2. For small initial levels of disease 
(S0<<N and H0 ≈ N), the final size equation is given by Swinton 
and Anderson (30): 

∞−
∞ −= yRey 01  (30) 

where y∞ = 1 – H∞/N.  
The disease progress curve and the initial disease rate, r. In 

the initial phase of the epidemic, when the number of lesions is 
very small, disease eventually grows exponentially due to the 
absence of density dependence (no limitation on sites available for 
infection). In this exponential phase, the number of infected sites 
is given by 

rtQetY =)(  (31) 

where r is the so-called rate of natural increase, and Q is a 
measure of the initial level of infection. 

For a small number of lesions, the K&M model (equation 11) 
can be approximated by a linearized equation in which the number 
of healthy sites, H(t), is replaced by the number of healthy 
individuals at the start of the epidemic, H0. When equation 31 is 
substituted into the linearized K&M model, we obtain 

( ) ( )( ) ( ) ττψξ= ∫
∞

τ− dIQe
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d
HQe

dt

d trrt

0
0  (32) 

We then integrate equation 32 with respect to t and divide both 
sides by Qert to give 

ττ= ∫
∞

τ− dieR r

0
0 )(1  (33) 

the so-called characteristic equation from which r can be calcu-
lated. If the disease life-history characteristics R0 and i(τ) are 
known, we can calculate r from equation 33. 

To compare the initial disease rate (r) across the different 
models, we equate mean latent (p) and mean infectious (i) period 
in each of the models. In this way, for the Vanderplank model 
(equation 2) equations 13 and 15 are substituted into equation 33 
and the integral is evaluated to obtain the following implicit ex-
pression for r in terms of the parameters: 

( ))(0 iprrp ee
i

R
r +−− −=  (34) 

An equivalent expression was already obtained by Vanderplank 
(35) for the initial phase of the epidemic. When the life-history 
characteristics (equations 19 and 20) are substituted into equation 
33, an explicit expression for the initial disease rate of the H-L-S-R 
model (equation 3) is obtained 
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1
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where we used the relations p = 1/θ and i = 1/α, as explained 
previously. 

We calculate r for the delayed-gamma distribution (equation 21) 
using the examples of n = 2 and n = 4 for which the i(τ) distri-
butions are shown in Figure 1. The mean infectious period of 
equation 21 is i = n/λ and accordingly we take λ = n/i. The initial 
disease rate (r) of a delayed-gamma-distributed sporulation curve 
with n = 2 and λ = 2/i is given by 
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and with n = 4 and λ = 4/i, it is given by 
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To illustrate more clearly the relationships among R0, p, i, and 
the initial disease rate (r), a large number of solutions of the 
equations 34 to 37 are shown in Figure 3. The initial disease rate 
is rescaled to r* = rp so that time is measured in latent periods. 
Figure 3 can be used to obtain an approximation of the initial 
disease rate (r*) in relation to R0 and i/p values and to compare 
these rates between the different models. 

For values of R0 and i/p giving low r* values, the Vanderplank 
model (equation 2) (Fig. 3A) has a faster disease progression, 
whereas at high r* values, the H-L-S-R model (equation 3) (Fig. 
3B) has a faster disease progression. In the compartmental model 
(equation 3), lesions become infectious faster than in the 
Vanderplank model (equation 2); however, fewer spores are 
liberated soon after the start of the sporulation. Both effects are 

Fig. 2. Proportion of hosts that are healthy or infectious in the phase plane. 
Parameter values are R = 0.3, β = 0.3/N, Ω = 3, p = 6, and i = 10. Initial 
conditions are as follows: H0/N = 0.999, S0/N = 0.001. Parameters are 
explained in Table 1.  
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present and which one prevails depends on the specific parameter 
values. At low disease rates, the effect of the fast liberation of all 
spores in the Vanderplank model is more important, whereas at 
high disease rates, the effect of some lesions becoming infectious 
immediately in the compartmental model is more important. 

The delayed-gamma-distributed sporulation curve leads to a re-
duced initial disease rate in relation to both the Vanderplank (equa-
tion 2) and H-L-S-R (equation 3) models (Fig. 3). This is because 
the delayed-gamma-distributed sporulation curve delays the start 
of sporulation of the lesions by comparison with the H-L-S-R 
(equation 3) model or reduces the rate at which lesions become 
infectious by comparison with the Vanderplank (equation 2) 
model (Fig. 1). In the same way, the gamma distribution with n = 
4 (Fig. 3C) gives a smaller r* than the gamma distribution with  
n = 2 (Fig. 3D). 

A model for the normalized sporulation curve, i(τ), of downy 
mildew (Peronospora farinosa (Fr.) Fr. f. sp. spinaciae Byford) on 
spinach (Spinacia oleracea L.) was fitted to experimental data by 

van den Bosch et al. (32). The best fit to sporulation data was 
given by a delayed-gamma distribution with p = 7.0 days, n = 3.1, 
and λ = 0.9. The basic reproductive number, R0, measured directly 
in field plots, was as estimated R0 = 3.2. 

When these parameter values are substituted into equation 33, 
the initial disease rate is calculated as r = 0.113 day–1. If we 
assume the same mean infectious period (i = 3.44 days) for the 
different sporulation curves, we obtain for (i) the block-function,  
r = 0.134 day–1 (equation 34); (ii) the compartmental model, r = 
0.155 day–1 (equation 35); (iii) the delayed-gamma distribution 
with n = 2, r = 0.115 day–1 (equation 36); and (iv) the delayed-
gamma distribution with n = 4, r = 0.113 day–1 (equation 37). The 
value of the initial disease rate clearly depends on the shape of the 
sporulation curve, i(τ), even when latent period and mean infec-
tious period are numerically the same. 

Where the basic reproductive number, R0, cannot be obtained 
directly, equations 33 to 37 can be used to estimate R0, provided r 
is known. Van den Bosch et al. (32) characterized the normalized 

Fig. 3. Relationships of values of R0 (basic reproductive number) and i/p (infectious period/latent period) to r* (the initial disease rate, r, is rescaled so that r* = 
rp implies time measured in latent periods). A, Vanderplank model; and B, compartmental H-L-S-R model. C, Delayed-gamma-distributed sporulation curve 
with shape parameters n = 2 and λ = 2/i. D, Delayed-gamma-distributed sporulation curve with shape parameters n = 4 and λ = 4/i. For any combination of 
parameter values (p, i, and R0), the approximated r* value can be obtained for each model and compared among them.  



Vol. 91, No. 10, 2001 1007 

sporulation curve, i(τ), of stripe rust (Puccinia striiformis West.) 
on wheat (Triticum aestivum L.) with a delayed-gamma distribu-
tion with parameter values p = 10 days, n = 3.0, and λ = 0.2. An 
initial disease rate was determined experimentally as r = 0.20 day–1. 
Estimates of R0 are then obtained with (i) equation 33, R0 = 59; 
(ii) equation 34, R0 = 23; (iii) equation 35, R0 = 12; (iv)  equation 
36, R0 = 46; and (v) equation 37, R0 = 69. These differences again 
reinforce the major influence of the shape of i(τ) on values of R0 
estimated from the initial disease rate. 

An approximation formula for r. Any particular disease epi-
demic can be modeled if R0 and the appropriate form of i(τ) are 
known. However, measurements on sporulation curves are laborious 
and are often only possible with low accuracy. In such situations, 
it would be useful to have an approximation for r in terms of the 
global characteristics of i(τ), such that arbitrary judgements on the 
precise description of i(τ) are unnecessary. Metz and Diekmann 
(26) developed a useful approximation formula. We take loga-
rithms in both sides of equation 33 to give 

ττ+= ∫
∞

τ− dieR r )(lnln0
0

0  (38) 

The second term on the right side is the so-called cumulant 
generating function of i(τ). We use the Taylor expansion of the 
cumulant generating function and the relation between cumulant 
and moments as given by Kendall and Stuart (18) to give 
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1
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where µ and σ are the mean and the standard deviation of the 
sporulation curve. 

We already know that r = 0 for lnR0 < 0. Therefore, we expand 
r as a power series in lnR0. To this end, we substitute r = a1lnR0 + 
a2(lnR0)2 + … in equation 39 to arrive at 
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Because lnR0 is not equal to zero, the terms in brackets with the 
coefficients ai must be zero. Therefore, a1 = 1/µ and a2 = 
(1/2)(1/µ)(σ2/µ) and when these terms are substituted in the power 
expansion, stopping at i = 2, we obtain the following approxi-
mation formula: 
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The µ and σ values can be calculated from measurements of i(τ) to 
obtain an approximate r value. Figure 4 shows the accuracy of the 
approximation formula (equation 41) to predict the r value of the 
Vanderplank model (equation 34). For the more realistic forms of 
i(τ), the approximation formula performs better than the block-
function of the Vanderplank model. If µ, σ, and R0 are calculated 
from experimental measurements of sporulation, Figure 4 can be 
used to judge the accuracy of the approximation. If data fall below 
the 5% line, the approximation formula will give us r values that 
deviate maximally 5% from the true value. 

Initial level of infection, Q. To calculate the initial exponential 
increase in the number of lesions, it is necessary to determine the 
initial level of infection (Q). Usually, this would be determined by 
fitting the model to the epidemic data. If, however, we have infor-
mation on the initial number of lesions, what Q value provides the 
right approximation to match the initial rate of increase of the 
epidemic? 

If the epidemic, for example, is initiated with T lesions of age 
zero, we are tempted to use Q = T, but this is not the correct 
choice. Sporulation is not instantaneous because it starts only after 
the latent period and continues only for a limited period. The co-

horts (lesions of the same age class) are, to some extent, separated 
during the first few generations. In the course of time, the gener-
ations increasingly overlap until the epidemic settles into steady 
exponential growth. 

The important analytic contributions to this situation were made 
by Caole (5) and by Keyfitz (20,21), who showed that Q depends 
on the initial number of lesions (T) and on the normalized sporu-
lation curve, i(τ). Using the notation introduced in this paper, 
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Assume, for example, that the epidemic is started with T freshly 
established lesions, so g(t) = TI(τ). Then, for Vanderplank model 
(equation 2), when the block function I(τ) (equation 12) is substi-
tuted into equation 42 and the integral is evaluated, we find 
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The initial condition for the H-L-S-R model (3) is found by substi-
tuting equation 18 into equation 42 to give 
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For the delayed-gamma distribution with n = 2 and λ = 2/i, we 
substitute equation 21 into equation 42 to give 
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and with n = 4 and λ = 4/I, 
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In Figure 5, we see that both the Vanderplank (equation 43) and 
H-L-S-R (equation 44) expressions for Q are good descriptors of 
the average initial increase in the number of diseased sites, at least 
for this particular initial condition. 

If, as in Figure 5, we assume T = 1, then equations 43 to 46 can 
be used to obtain estimates of Q from field data. For example, for 

Fig. 4. Accuracy of the approximation formula (equation 41) to predict the 
disease rate (r). Parameters are explained in Table 1. For values that fall 
below a given percent error level, the approximation formula gives r values 
that deviate maximally at this level from the true value.  
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the potato blight epidemic depicted by Vanderplank (Fig. 4.1, 
curve B for literature citation 35), we calculate Q = 0.49, 1.04, 
0.45, and 0.44 for equations 43 to 46, respectively. The H-L-S-R 
model (equation 44) is the one in which Q is closest to T as would 
be expected from the shape of the sporulation curve. 

Relation with the logistic equation. If the epidemic is described 
by the logistic model (equation 1), the value of the parameter R in 
equation 2 varies with time and its evolution depends on the value 
of the parameters (14,35). However, at constant values of R 
together with certain combinations of parameters, trajectories very 
close to the logistic curve are obtained. Metz (25) showed that the 
logistic equation, suitably parametized, is an approximation to the 
K&M model (equation 11). For this, we must include the param-
eter values that are directly related to the epidemic models. The 
logistic equation based on the parameters of the K&M model is 

[ ] QYYYrY
dt

dY
=−= ∞ )0(and)/(1  (47) 

where Y∞ corresponds to the final disease in an uninterrupted 
epidemic. 

From the disease life-history characteristics R0 and i(τ), we can 
obtain values for the parameters r, Q, and Y∞. When these values 
are substituted into equation 47, we obtain an approximation to 
the epidemic curve by the logistic equation. Epidemic curves of 
the Vanderplank model (equation 2) can be approximated by the 
logistic equation (equation 47) using the equations 34, 43, and 26 
for r, Q, and Y∞, respectively (Fig. 6A). An approximation of the 
epidemic curves of the H-L-S-R model (equation 3) is obtained by 
substituting r (equation 35), Q (equation 44), and Y∞ (equation 26) 
into equation 47 (Fig. 6B). In the same way, an approximation to 
the K&M model (equation 11) with a delay-gamma-distributed 
sporulation curve can be obtained. These logistic curves have the 
same initial rates and final disease levels, though there is some 
deviation in disease trajectories during the mid-epidemic phase.  

DISCUSSION 

The K&M model (equation 11) provides a framework to 
analyze the dynamics of a plant disease within a season. For a 
sporulating lesion with an approximately uniform sporulation per 
day during a lesion’s infectious period, a block function can be 

Fig. 5. Initial exponential phase of A, Vanderplank model (equation 2) 
compared with the exponential curve using the disease rate (r) value
(equation 34) with the initial infection either Q = T or corrected as calculated 
from equation 43; and B, H-L-S-R model (equation 3) compared with the 
exponential curve using the disease rate (r) value (equation 35) with the 
initial infection either Q = T or corrected as calculated from equation 44. 
Parameters values are N = 1,000, T = 1, R = 1.2, β = 1.2/N, p = 6, and i = 10. 

Fig. 6. Comparison of disease progress for A, the Vanderplank (equation 2) 
and logistic (equation 47) models with parameter values of r, Q, and Y∞
calculated from the Vanderplank model; and B, the H-L-S-R (equation 3) and 
logistic (equation 47) models with parameter values of r, Q, and Y∞
calculated from the H-L-S-R model. Parameters values are N = 1,000, T = 1, 
R = 1.2, β = 1.2/N, p = 6, and i = 10. 
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used as in the Vanderplank model (equation 2). For diseases that 
have a single peak in spore production per day, epidemic develop-
ment can be modeled by the K&M model with a delayed-gamma-
distributed sporulation curve (equation 21) or by the compart-
mental model with an exponentially distributed latent period 
(equation 3). Other forms for the spore production curves can be 
useful. For example, in an even simpler representation, several 
common diseases have been shown to follow an approximately 
triangular pattern used by Leonard and Mundt (22) to calculate the 
initial disease rate. 

The key epidemiological (composite) parameter is the basic 
reproductive number, R0, which predicts most qualitative charac-
teristics of the host-pathogen system dynamics (17) and can be 
used to devise and assess the efficacy of disease control measures 
(24). Disease management is concerned with a reduction in R0 
because this value is closely related with the final disease level in 
long-term dynamics (1). Other advantages of using R0 to charac-
terize an epidemic is that it has a clear biological significance, its 
value is independent of the form of the model used, and it is 
dimensionless and thus directly comparable across pathosystems 
(27). One of the problems in fitting growth curves to epidemic 
data is that the values of the estimated parameters for different 
functions are not directly comparable (4). The use of R0 to charac-
terize a pathosystem or an epidemic avoids this problem. 

For some fungal diseases, the parameter R0 can be directly 
measured. Data on sporulation per lesion per day, duration of la-
tent and infectious periods, and infection efficiency are relatively 
easy to obtain in controlled experiments (22,29,32). It is more 
difficult to quantify the deposition probability for a healthy site. In 
this case, R0 can be estimated indirectly by means of (i) the initial 
disease rate (r), provided the correct form of the sporulation curve 
is known, (ii) the final disease level, or (iii) the adjusting of the 
model to the empirical disease progress data (12). 

The parameter R0 also determines how fast disease will spread 
in a population previously unexposed to that pathogen. The order-
ing of R0 and r is not always identical. For example, a disease may 
have a large R0 but a small r if the disease has a long latent period. 
In that sense, an epidemiological parameter used extensively by 
plant pathologists to summarize the epidemic curve and to evalu-
ate management options is the initial disease rate, r (35). This 
parameter becomes crucial to determine the speed of epidemic 
development and severity when transient disease progress is inter-
rupted by, for example, crop harvest. As we have shown, the value 
of r could be determined from the appropriate sporulation curve, 
I(τ), or at least approximated from the mean (µ) and the standard 
deviation (σ) of the sporulation curve. However, measurements of 
the sporulation curve are laborious and are often not obtained and, 
in such cases, r is estimated by fitting the model to epidemic data. 

The models discussed above represent a more realistic descrip-
tion of the progress of disease than do growth functions. From the 
life-history characteristics I(τ), ξ, and ψ, an infinite number of 
epidemic curves can be generated. However, none of those curves 
approaches the pattern of the Gompertz function, that is displace-
ment of the epidemic peak toward the left. Nevertheless, it seems 
that a large number of plant epidemics are fitted better by the 
Gompertz equation than the logistic (2,11). In this sense, other 
mechanisms are necessary to explain the Gompertz-type curve, 
such as heterogeneity in disease transmission, the growth of the 
crop, and variation in the susceptibility of the host population with 
time. 

Nevertheless, the models can be used to generate disease 
development that approximates very closely to the form of the 
logistic curve. Similarly, if exact logistic growth is assumed, the 
value of R of the Vanderplank model (equation 2) decreases to a 
minimum value before increasing indefinitely at the end of the 
epidemic (14). From a practical point of view, the parameter R can 
be estimated throughout the epidemic period (7) whether the 
restrictions on the combinations of the parameters determined by 

Jeger (14) are met or not. In fact, these restrictions only indicate 
whether the minimum value of R corresponds to the beginning of 
the epidemic or occurs at a point during the evolution of the di-
sease. The Vanderplank model (equation 2) has been much used in 
developing computer simulations of plant disease epidemics (3). 
Recently, the use of linked differential equation systems to model 
epidemics and to evaluate control strategies has increased (6,16, 
38). Use of these more flexible models allows linkages with 
theoretical developments in human and animal epidemiology and 
readily allows the introduction of new biological details. The chal-
lenge for plant epidemiology is to combine these theoretical de-
velopments with experimental approaches (15).  
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