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Summary

 

• To examine whether root exudates of the Zn/Cd hyperaccumulator 

 

Thlaspi
caerulescens

 

 play a role in metal hyperaccumulation, we compared the metal
mobilization capacity of root exudates collected from two ecotypes of 

 

T. caerulescens

 

,
and from the nonaccumulators wheat (

 

Triticum aestivum

 

) and canola (

 

Brassica napus

 

).
• Plants were grown hydroponically and three treatments (control, –Fe and –Zn)
were later imposed for 2 wk before collection of root exudates.
• On a basis of root d. wt, the total soluble organic C in the root exudates of

 

T. caerulescens

 

 was similar to that of wheat, and significantly higher than that of
canola. In all treatment, the root exudates of 

 

T. caerulescens

 

 and canola mobilized
little Cu and Zn from Cu- or Zn-loaded resins, and little Zn, Cd, Cu or Fe from a
contaminated calcareous soil. By contrast, the root exudates of wheat generally
mobilized more metals from both resin and soil. In particular, the –Fe treatment, and
to a lesser extent the –Zn treatment, elicited large increases in the metal mobilization
capacity of the root exudates from wheat.
• We conclude that root exudates from 

 

T. caerulescens

 

 do not significantly enhance
mobilization of Zn and Cd, and therefore are not involved in Zn and Cd hyperaccu-
mulation.
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Introduction

 

Plants that can hyperaccumulate heavy metals in the shoots
have received increased attention in recent years, due to the
potential of using these plants for phytoremediation or
phytomining (Brooks, 1998). Metal hyperaccumulator plants
also provide important germplasm resources for comparative
studies on the mechanisms of uptake, accumulation, and
tolerance of trace elements.

So far, 11 species have been reported as Zn hyperaccu-
mulators, which are defined as being able to accumulate
> 10 000 mg kg

 

−

 

1

 

 Zn in the shoot dry matter (Baker 

 

et al.

 

,
2000). 

 

Thlaspi caerulescens

 

 is the best known example of
a Zn hyperaccumulator. This plant can tolerate up to
30 000 mg kg

 

−

 

1

 

 Zn in the shoot dry matter without suffering
from Zn toxicity (Baker 

 

et al.

 

, 1994; Brown 

 

et al.

 

, 1995; Shen

 

et al.

 

, 1997). The extraordinary internal tolerance to Zn is
achieved through cellular compartmentation and vacuolar
sequestration (Vázquez 

 

et al.

 

, 1994; Küpper 

 

et al.

 

, 1999).
Organic acids, particularly citric acid, may play a role in
Zn sequestration in vacuoles (Salt 

 

et al.

 

, 1999). Tolerance to
Zn and Zn hyperaccumulation are, however, independent
genetic traits (Macnair 

 

et al.

 

, 1999). Tolerance alone is not
enough to explain Zn hyperaccumulation in 

 

T. caerulescens

 

.
Lasat 

 

et al

 

. (1996) showed that Zn influx into the root cells of

 

T. caerulescens

 

 was at a much higher rate than that of the non-
accumulator 

 

Thlaspi arvense

 

. Furthermore, the gene encoding
a Zn transporter, 

 

ZNT1

 

, was highly expressed in the roots of

 

T. caerulescens

 

 even when the plants had been supplied with
relatively high concentrations of Zn, whereas 

 

ZNT1

 

 was
expressed in 

 

T. arvense

 

 roots only when Zn was deficient
(Pence 

 

et al.

 

, 2000).
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T. caerulescens

 

 is also a Cd hyperaccumulator. However, the
ability to accumulate Cd was found to vary greatly among
different ecotypes (Lombi 

 

et al.

 

, 2000). In a recent study,
Lombi 

 

et al

 

. (2001) showed that the 

 

V

 

max

 

 for Cd influx was
fivefold higher in the high Cd ecotype from Ganges in
southern France than in the low Cd ecotype from Prayon in
Belgium. In addition, the concentration of Cd in the xylem
sap was at least fivefold higher in the Ganges than in the
Prayon ecotypes. These differences in the Cd uptake were not
related to the characteristics of Zn uptake, because both
ecotypes exhibited similar Zn influx kinetics and hyperaccu-
mulation ability.

Plants can modify the rhizosphere to enhance acquisition
of nutrients, particularly ions for which diffusion is important
for transport to the root surface (e.g. Fe, Zn and P) and under
nutrient limiting conditions (Marschner, 1995). Rhizosphere
acidification and release of root exudates are two common
mechanisms employed. However, it is not clear whether metal
hyperaccumulators employ rhizosphere related processes to
enhance metal accumulation. If so, then understanding the
traits involved could lead to development of strategies to
enhance both phytoremediation and Zn uptake efficiency
by crops growing in Zn limiting soils. Previous studies using

 

T. caerulescens

 

 have ruled out the role of rhizosphere acidifica-
tion in metal accumulation (Knight 

 

et al.

 

, 1997; McGrath

 

et al.

 

, 1997). One possibility is that hyperaccumulators such
as 

 

T. caerulescens

 

 may release chelating compounds to the
rhizosphere to mobilize heavy metals. In the nonhyperaccu-
mulators 

 

Nicotiana tabacum

 

, 

 

Nicotiana rustica

 

 and 

 

Zea mays

 

,
Mench & Martin (1991) observed that uptake of Cd from
soils by these species followed the same order as the extent of
Cd extraction by their root exudates. These authors suggest
that root exudates of the 

 

Nicotiana

 

 spp. may play an import-
ant role in Cd accumulation. In wheat, genotypic variation in
Zn efficiency may also be related to the release of phyto-
siderophores (Cakmak 

 

et al.

 

, 1996b; Rengel 

 

et al.

 

, 1998).
However, the role of root exudates in metal hyperaccumula-
tion has been little researched. The objective of this study
was to investigate if root exudates play a role in Zn/Cd
hyperaccumulation by 

 

T. caerulescens

 

. To answer this ques-
tion, we compared metal mobilization capacity of root
exudates collected from two contrasting ecotypes (Ganges
and Prayon) of 

 

T. caerulescens

 

, and from the nonaccumulating
crop species wheat (

 

Triticum

 

 

 

aestivum

 

) and canola (

 

Brassica
napus

 

).

 

Materials and Methods

 

Plant culture

 

Seeds of the Prayon (Belgium) and Ganges (southern France)
ecotypes of 

 

T. caerulescens

 

 J. & C. Presl (Brassicaceae) were
sown in trays containing a mixture of vermiculite and perlite,
which was moistened with deionized water. After germination

in the dark (

 

c

 

. 1 wk), seedlings were given full nutrient
solution with the following composition: 3.55 mM
Ca(NO

 

3

 

)

 

2

 

, 1.2 mM KNO

 

3

 

, 0.075 mM K

 

2

 

HPO

 

4

 

, 1.45 mM
MgSO

 

4

 

, 75 µM Fe-HBED (di-(hydroxybenzoyl)-
ethylenediamine-diacetic acid), 5 µM ZnSO

 

4

 

, 10 µM
MnCl

 

2

 

, 0.2 µM CuSO

 

4

 

, 10 µM HBO

 

3

 

, 0.2 µM Na

 

2

 

MoO

 

4

 

,
0.5 µM NiCl

 

2

 

 and 10 µM NaCl. Solution pH was buffered
at 6.0 

 

±

 

 0.2 with 2 mM MES (2-morpholinoethanesulphonic
acid). After germination (3 wk), vermiculite and perlite were
washed from the roots, and three seedlings were transferred to
a 250-ml pot wrapped with aluminium foil. Twelve pots were
prepared for each ecotype. The nutrient solution was topped
up every day, completely renewed every week, and aerated
continuously.

Wheat (

 

Triticum

 

 

 

aestivum

 

, cv Frame) and canola (

 

Brassica
napus

 

, cv Karoo) were germinated in the dark on filter paper
moistened with saturated CaSO

 

4

 

. After germination (5 d),
three seedlings were transferred to each 250-ml pot filled with
nutrient solutions. The composition of nutrient solutions was
the same as above, except that K

 

2

 

HPO

 

4

 

 was 0.15 mM and
ZnSO

 

4

 

 1 µM for both plant species. Iron was supplied as
Fe-EDTA at 10 µM for wheat and as Fe-HBED at 25 µM
for canola. These differences were introduced because 

 

T. caeru-
lescens

 

 has a higher requirement for Zn (Shen 

 

et al.

 

, 1997) and
Fe (McLaughlin & Henderson, 1999) than normal crop
species, whereas P was given to wheat and canola at a higher
concentration to compensate for their higher growth rates.
Fe(III)-HBED was prepared as described by Chaney (1988),
such that all HBED is saturated with Fe. Fe(III)-EDTA was
prepared from an analytical reagent (BDH, Poole, England).
All four plant species/ecotypes showed normal growth with-
out any signs of nutrient deficiency or toxicity.

The plants were grown in a controlled environment growth
cabinet (day/night period 14/10 h, day/night temperatures
22

 

°

 

C/16

 

°

 

C, and a light intensity of 300 µmol m

 

−

 

2

 

 s

 

−

 

1

 

).

 

Collection of root exudates

 

Three treatments were imposed 40 d after seedlings were
transferred to nutrient solution for 

 

T. caerulescens

 

, and 16 d
for wheat and canola, respectively. The treatments were
control (full nutrient composition as above), –Fe or –Zn. In
the –Fe and –Zn treatments, Fe (and the associated chelates)
or Zn was left out of the nutrient solution, respectively. Each
treatment was replicated four times. Before the treatments
were imposed, roots were rinsed thoroughly with deionized
water. The treatments were imposed for 2 wk, during which
period nutrient solution was renewed twice weekly.

The procedure for the collection and preparation of root
exudates was modified from that described by Cakmak 

 

et al

 

.
(1996b). Roots were washed thoroughly with deionized
water, and placed in 220 ml autoclaved 0.1 mM CaCl

 

2

 

 solu-
tion 3 h after the onset of the light period. The solution was
aerated continuously during the 3-h period of exudate
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collection. To remove microorganisms, the exudate solutions
were filtered immediately after collection through a sterile
0.2 µm filter into an autoclaved glass bottle. The filtration was
carried out inside a laminar flow cabinet using standard axenic
techniques. The filtered solutions were later plated onto nutri-
ent agar plates and incubated at 25

 

°

 

C for 3 d. No micro-
organisms were observed on any plates. The exudate solutions
were concentrated at 50

 

°

 

C, under vacuum, to 10 ml using
a rotary evaporator. Further plating onto nutrient agar plates
confirmed that sterility was maintained in the concentrated
exudate solutions. The exudate solutions were stored at 

 

−

 

19

 

°

 

C
until use.

After collection of exudates, plants were washed thor-
oughly with deionized water, separated into roots and shoots,
and dried at 60

 

°

 

C for 48 h before the dry weights (d. wt) were
determined.

 

Metal mobilization tests

 

Mobilization of Cu and Zn from Cu-and Zn-loaded resins
by root exudates was quantified according to Cakmak 

 

et al

 

.
(1996b). Five g of the Chelex 100 resin (100–200 mesh, Na
form, Bio-Rad Laboratories, Richmond, CA, USA) were
equilibrated with 500 ml of either 50 mM CuSO

 

4

 

 or 50 mM
ZnSO

 

4

 

 for 30 min. Excess Cu and Zn were leached with
deionized water until Cu or Zn in the leachates was below
detection limits. The Cu- and Zn-loaded resins were
suspended in 500 ml 10 mM MES (pH 5.0). To determine
Cu or Zn mobilization, 2 ml resin suspension, 2 ml concen-
trated root exudates and 3 ml deionized water were shaken
in an end-over-end shaker for 45 mins, and then filtered
through a 0.45-µm filter. The concentrations of Cu, Zn
and Ca were determined by inductively coupled plasma
atomic emission spectrometry (ICP-AES; Spectro Instruments).
Because the concentrated root exudates contained 

 

c

 

. 1–2 mM
Ca and this could also exchange Cu or Zn from the resin, a
series of CaCl

 

2

 

 solutions with increasing concentrations
were prepared, and their capacities to mobilize Cu and Zn
from the resins were determined as above. Within the
concentration range of Ca found in the concentrated root
exudate samples, increasing Ca did not increase mobilization
of Cu from the Cu-loaded resin. By contrast, because the
selectivity of Chelex 100 for Zn over Ca is lower than that for
Cu over Ca, increasing Ca concentration resulted in increased
Zn mobilization from the resin. The effect of Ca on Zn
mobilization followed a well-defined pattern (slightly cur-
vilinear), and this was corrected for in the mobilization results
presented.

Mobilization of metals was also determined using a calcar-
eous soil contaminated with Cd and Zn. The soil contained
6.3% (w/w) CaCO

 

3

 

, 8% (w/w) clay, 1.6% (w/w) organic C,
5.5 mg kg

 

−

 

1

 

 total Cd, 1228 mg kg

 

−

 

1

 

 total Zn, 49 mg kg

 

−

 

1

 

 total
Cu, 10 684 mg kg

 

−

 

1

 

 total Fe, and had a pH of 8.2. The soil was
finely ground and shaken (1 g) with 2 ml concentrated root

exudates and 3 ml deionized water for 1 h. The suspension
was then centrifuged at 1820 

 

g

 

 for 10 min and filtered
through a 0.45-µm filter. The concentrations of metals
mobilized were determined by ICP-AES. The soil was also
extracted with 1 mM CaCl

 

2

 

 in the same way, and this extrac-
tion served as the blank that was subtracted from the mobil-
ization results of the root exudates.

 

Plant and exudate analyses

 

Plant samples were ground to < 0.5 mm, and digested with
hot concentrated HNO

 

3

 

. Elemental concentrations in the
digests were determined by ICP-AES.

The concentration of dissolved organic C in root exudates
was determined by a Shimadzu TOC analyser (model 5000A).

 

Statistical analysis

 

ANOVA was performed on all data sets, and Tukey’s range
test was used to compare treatment means. The data for
metal mobilization differed by more than 100-fold between
the plant species. To stabilize variance, these data were log
transformed before ANOVA. In some cases subtraction of the
blanks (see above) returned a small negative value of metal
mobilization by root exudates. These were taken to indicate
zero mobilization of metals by the root exudates. A small
positive value (one tenth of the observed minimum) was
added to the zero values in order to perform log trans-
formations and ANOVA.

 

Results

 

Plant growth and nutrient concentrations

 

All plants appeared normal and healthy when grown in the
full nutrient solutions. In the –Fe treatment, young leaves of
all three plant species were chlorotic, showing clear symptoms
of Fe deficiency. By contrast, there were no visible symptoms
in the –Zn treatment. This is not surprising, because previous
studies have shown that it is not easy to induce Zn deficiency
in hydroponically grown plants without using a chelate
buffering system to control free Zn

 

2+

 

 activity (Parker 

 

et al.

 

,
1995).

Shoot and root d. wt of wheat and canola were significantly
higher than those of the 

 

T. caerulescens

 

 plants (Table 1),
despite a longer pretreatment growing period for the latter.
This reflects the slower growth rate of 

 

T. caerulescens

 

 than the
domesticated wheat or canola. The other interesting differ-
ence is a much smaller root to shoot ratio in 

 

T. caerulescens

 

(0.23 for both ecotypes) than in wheat (0.49) or canola
(0.32). This suggests that metal hyperaccumulation in the
shoots of 

 

T. caerulescens

 

 is not a result of a large root : shoot
ratio, at least under hydroponic conditions. Withholding Fe
supply for 2 wk decreased shoot and root d. wt significantly
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in all plants, whereas the –Zn treatment had no significant
effect (Table 1). One exception is the smaller shoot and root
weights in the –Zn treated Ganges ecotype of 

 

T. caerulescens

 

compared with the control treatment. However, the reduced
growth may not be a true effect of the –Zn treatment, because
the plants did not show any Zn deficiency symptoms and two of
the four replicates produced similar plant d. wt to the control.

The concentrations of Zn and Fe in plants are shown in
Table 1. The necessity to supply different concentrations of
Zn, and different concentrations and chelate forms of Fe to
the three plant species makes direct comparisons between
species difficult. However, both –Zn and –Fe treatments led
to significantly decreased concentrations of the respective
nutrients in shoots and roots. The concentrations of Zn in the
shoots of the –Zn treated wheat and canola were in the bor-
derline range of Zn deficiency (Marschner, 1995). Although
the shoot Zn concentrations in the –Zn treated 

 

T. caerulescens

 

were much higher than in wheat and canola, it is likely that
the critical concentration of Zn deficiency in 

 

T. caerulescens

 

 is
also much higher than in the nonaccumulating crop species
(Shen 

 

et al.

 

, 1997).

Dissolved organic C (DOC) in the root exudates

When expressed on a root d. wt basis, the mean DOC in the
root exudates collected over the 3-h period were similar between
the Prayon and Ganges ecotype of T. caerulescens and wheat, and
significantly (P < 0.05) higher than canola (Fig. 1). The –Fe
treatment led to an increase in DOC released by wheat, but not
by other plant species. The –Zn treatment had no significant
effect on the amount of DOC released by any species.

Mobilization of metals from resin by root exudates

Root exudates from the two ecotypes of T. caerulescens and
canola mobilized negligible amounts of Cu from the Cu-
loaded resins (Fig. 2a). Furthermore, the –Fe or –Zn
treatments had little effect on the Cu mobilization by the
exudates collected from these two species. In the control
treatment, Cu mobilization by the root exudates from wheat
was significantly (P < 0.05) higher than the other two species.
However, the most striking difference between wheat and
T. caerulescens or canola was the response to the –Fe and –Zn
treatments. The –Fe treatment elicited a 23-fold increase

Table 1 Effects of –Fe and –Zn treatments on d. wt and Zn and Fe concentrations of shoots and roots of Thlaspi caerulescens, wheat and canola

Plant species/ecotype Treatment

D. wt (g pot−1) Zn concentration Fe concentration

Shoot Root
Shoot 
(mg kg−1)

Root 
(mg kg−1)

Shoot 
(mg kg−1)

Root 
(mg kg−1)

Thlaspi caerulescens 
Prayon

Control 1.55 0.39 381.4 124.5 73.8 941.4
–Fe 1.15 0.28 440.6 212.3 31.6 453.8
–Zn 1.41 0.35 191.8 49.8 87.9 608.0

Thlaspi caerulescens 
Ganges

Control 1.32 0.33 485.0 246.0 68.7 722.6
–Fe 1.03 0.25 476.8 555.3 42.6 619.3
–Zn 0.95 0.21 291.9 107.1 71.4 683.4

Wheat Control 1.93 0.87 43.6 38.6 60.5 139.9
–Fe 1.39 0.75 65.3 38.0 28.7 58.3
–Zn 2.05 0.99 12.4 13.1 59.8 159.6

Canola Control 2.85 0.90 29.2 37.1 41.5 113.2
–Fe 1.73 0.54 47.4 59.5 15.3 61.9
–Zn 2.76 0.94 8.8 16.7 40.8 85.7

ANOVA Species *** *** *** *** *** ***
Treatment *** *** *** *** *** ***
Species × treatment * * NS *** NS ***

***, P < 0.001; **, P < 0.01; *, P < 0.05; NS, not significant.

Fig. 1 Amounts of dissolved organic C in the root exudates collected 
from Thlaspi caerulescens, wheat and canola. Error bars indicate SEs. 
Control, open columns; –Fe, hatched columns; –Zn, dotted columns.
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(P < 0.01) in Cu mobilization by the root exudates collected
from wheat, and the –Zn treatment produced a sevenfold
increase (P < 0.01). The pattern of Zn mobilization from the
Zn-loaded resin (Fig. 2b) was similar to that of Cu mobil-
ization. Again, the –Fe and –Zn treatments resulted in much
higher mobilization capacity for Zn in the wheat exudates,
whereas the root exudates from T. caerulescens and canola in
all three treatments showed little mobilization of Zn.

Mobilization of metals by root exudates from 
a contaminated soil

The amounts of Zn, Cd, Cu and Fe mobilized by different
root exudates are shown in Fig. 3. In general, wheat exudates
mobilized more metals from soil than T. caerulescens and
canola. In particular, metal mobilization capacity of wheat
exudates was greatly enhanced by the –Fe treatment, and
to a smaller extent, by the –Zn treatment. By contrast,
the exudates of T. caerulescens and canola mobilized either
negligible or very small amounts of Zn, Cd, Cu and Fe, and
the mobilization showed little or inconsistent response to
the –Fe and –Zn treatments. The Ganges ecotype of

T. caerulescens has been shown to accumulate much more Cd
in the shoots than the Prayon ecotype, although the two
ecotypes accumulate Zn similarly (Lombi et al., 2000; Lombi
et al., 2001). However, there was no significant difference
between the two ecotypes in the amounts of Cd mobilized
from the soil (Fig. 3b).

The results of metal mobilization presented in Figs 2 and
3 are expressed on a basis of root d. wt. A similar pattern is
apparent when results are expressed on the basis of the
DOC in root exudates (data not shown), except that the
difference in metal mobilization between the root exudates
collected from the –Zn and –Fe treated wheat was smaller
(soil Zn and Fe) or nonsignificant (resin Cu and Zn, and soil
Cd and Cu).

Discussion

The question addressed in this study was whether the Zn/Cd
hyperaccumulator T. caerulescens employs a root exudate
related mechanism to enhance Zn and Cd availability in
soils, as a part of the metal hyperaccumulation strategy. For
comparison, we chose canola (Brassica napus), which is in
the same Brassicaceae family as T. caerulescens, and wheat,
which adopts a different mechanism of Fe acquisition to
dicotyledonous species. Based on the results obtained from
this study, the answer to the question is negative. The two
ecotypes of T. caerulescens did not release significantly greater
quantities of exudates (in terms of DOC) than the other
species. Also, the exudates released by both T. caerulescens and
canola mobilized little Cu and Zn from the metal-loaded
resin, and little Zn, Cd, Cu and Fe from a contaminated soil.
This was true regardless of whether the results were expressed
on a basis of root d. wt or of the DOC produced. By contrast,
the exudates released by wheat were more effective at
mobilizing the metals. Furthermore, withdrawing the supply
of Fe or Zn from the nutrient solution for 2 wk did not
enhance the metal mobilization capacity of the root exudates
from either T. caerulescens or canola. The results indicate
that the root exudates of the Zn/Cd hyperaccumulator
T. caerulescens contained no significant amounts of chelating
compounds with a high affinity for metals. These results are
consistent with the findings of Zhang et al. (1991), who
studied nonhyperaccumulator species. They showed that
although Zn deficiency increased root exudation of amino
acids, sugars and phenolics by several dicotyledonous species,
including apple, bean, cotton, sunflower and tomato, the root
exudates did not enhance Zn mobilization from a synthetic
resin or from a calcareous soil. In a study with the Ni
hyperaccumulator Thlaspi goesingense, Salt et al. (2000) found
no evidence of the presence of any high-affinity Ni-chelating
compounds in the root exudates.

By contrast to T. caerulescens and canola, Fe deficiency in
wheat led to an increase in the total amount of dissolved
organic C released by the roots, compared with the control,

Fig. 2 Mobilization of Cu (a) and Zn (b) from Cu- or Zn-loaded resin 
by root exudates collected from Thlaspi caerulescens, wheat and 
canola. Error bars indicate SEs. Control, open columns; –Fe, hatched 
columns; –Zn, dotted columns.

NPH213.fm  Page 617  Wednesday, August 1, 2001  9:17 AM



www.newphytologist.com © New Phytologist (2001) 151: 613–620

Research618

indicating that a larger proportion of C was diverted to root
exudates under the Fe deficiency conditions. Further, –Fe
treatment dramatically increased the capacity of the root
exudates collected from wheat to mobilize Cu and Zn from
the metal loaded resin, and of Fe, Cu, Zn and Cd from a
calcareous soil. Even when Fe was sufficient (the control
treatment), metal mobilization capacity of the root exudates
from wheat was generally higher than that of the exudates of
T. caerulescens and canola. It is well-known that graminace-
ous plants respond to Fe deficiency by increasing markedly
the release to the rhizosphere of phytosiderophores, pre-
dominantly 2′-deoxymugineic acid in the case of wheat
(Marschner, 1995; Ma & Nomoto, 1996). Phytosiderophores
are capable of chelating not only Fe, but also Cu, Zn and Mn,
thus mobilizing these metals from soils (Treeby et al., 1989).
Because the stability constants of mugineic acid for Fe(III)
(logK = 18.1) and Cu (logK = 18.3) are very similar (Ma &
Nomoto, 1996), mobilization of Cu from a Cu-loaded resin
has often been used as an indirect method to estimate the
quantity of phytosiderophores in root exudates (Cakmak
et al., 1996b). The root exudates of wheat mobilized more Cu
than Zn from the Cu or Zn loaded resin, probably because
mugineic acid has a much higher affinity for Cu (logK = 18.3)
than for Zn (logK = 10.7). The order of metal mobilization
from the soil by the root exudates from the –Fe treated wheat
was Fe > Zn > Cu > Cd; but this order probably reflects more
the concentrations of these metals in the soil than the affinity
of the exudates for the metals.

Whether Zn deficiency enhances the release of phytosi-
derophores in wheat appears to be controversial. Zhang et al.
(1989) and Cakmak et al. (1996a) found that Zn deficiency
increased substantially the release of phytosiderophores in
wheat and in three other wild grass species. It has been

suggested that, in wheat, genotypic differences in Zn effi-
ciency are causally related to phytosiderophore release
(Cakmak et al., 1996b; Rengel et al., 1998). By contrast,
Gries et al. (1995) and Pedler et al. (2000) found that the
effect of Zn deficiency on the release of phytosiderophores in
barley and wheat was small and inconsistent. It has been
suggested that the observed effect of Zn deficiency may be
due to an impaired translocation of Fe from roots to shoots
(Walter et al., 1994). Our experiment was not designed to
address these issues. Nevertheless, our results clearly show
that, despite there being no increase in the total amount of
carbon released by wheat as exudates, the –Zn treatment
significantly increased the mobilization by the exudates of
metals from both the metal loaded resin and the contaminated
soil, compared with the control. The results are consistent with
the previous finding that Zn deficiency in wheat enhances the
release of phytosiderophores, even though no visible symp-
toms or growth reduction were observed at the time of the
exudate collection. The –Zn treatment also did not affect the
concentrations of Fe in the roots and shoots of wheat.

Returning to the question of the mechanisms of Zn and Cd
hyperaccumulation by T. caerulescens, evidence so far points to
two most likely possibilities. First, the plasma membranes of
root cells of T. caerulescens have a higher density of the Zn
transporters. This is shown by a 4.5-fold higher Vmax for Zn
influx in T. caerulescens than in the nonaccumulator T. arvense
(Lasat et al., 1996), and by a higher expression of the Zn
transporter gene, ZNT1, in the roots of T. caerulescens (Pence
et al., 2000). In the case of Cd, a fivefold higher Vmax for
Cd influx was found in the high Cd accumulating ecotype
(Ganges) than in the low Cd accumulating ecotype (Prayon)
(Lombi et al., 2001). Second, roots of T. caerulescens appear to
be able to forage actively Zn and Cd in soil by proliferating

Fig. 3 Mobilization of Zn (a), Cd (b), Cu (c) 
and Fe (d) from a contaminated calcareous 
soil by root exudates collected from Thlaspi 
caerulescens, wheat and canola. Error bars 
indicate SEs. Control, open columns; –Fe, 
hatched columns; –Zn, dotted columns.
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root branches in the Zn/Cd rich patches (Schwartz et al.,
1999; Whiting et al., 2000). These two mechanisms can be
seen as a powerful and complementary combination, the first
increasing the root uptake and the second locating the micro-
zones of high metal supply in soil. This combination would
offset the constraint of diffusional limitation of Zn and Cd in
the rhizosphere created by the enhanced uptake. The lack of
a direct involvement of root exudates in metal hyperaccumu-
lation by T. caerulescens, as shown in this study, agrees with the
observation that T. caerulescens and several nonaccumulator
plants accessed a similar pool of metals in soils (Hamon &
McLaughlin, 1999; Gérard et al., 2000; Hutchinson et al.,
2000). It also implies that hyperaccumulators are no more
efficient in extracting metals from the nonlabile pools in soils
than nonaccumulator plants.
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