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Abstract

After estimation of e3ects from a linear mixed model, it is often useful to form predicted
values for certain factor/variate combinations. This process has been well-de5ned for linear
models, but the introduction of random e3ects means that a decision has to be made about
the inclusion or exclusion of random model terms from the predictions, including the residual
error. For spatially correlated data, kriging then becomes prediction from the 5tted model. In
many cases, the size of the matrices required to calculate predictions and their covariance matrix
directly can be prohibitive. An e$cient computational strategy for calculating predictions and
their standard errors is given, which includes the ability to detect the invariance of predictions
to the parameterisation used in the model.
c© 2002 Elsevier B.V. All rights reserved.
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1. Introduction

Linear mixed models are a rich and Aexible tool for the analysis of data aris-
ing in many applications. Recent developments have extended the range of variance
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models available in many common statistical packages including GenStat (Welham
and Thompson, 2000), S-PLUS (Pinheiro and Bates, 2000) and SAS (Littell et al.,
1996), as well as specialist packages such as ASReml (Gilmour et al., 1999). It is
often desirable to construct predicted values from the e3ects 5tted to explore the
relationships established in the analysis. Such predictions may be 5tted values from
a multiple regression, or summaries such as treatment means in the analysis of
designed experiments, 5tted curves from the analysis of longitudinal data using
cubic smoothing splines (Verbyla et al., 1999) or factor means from a series of tri-
als using factor analysis (Smith et al., 2001). Residual maximum likelihood (REML)
estimation of variance parameters in these models is assumed throughout this
paper.
Lane and Nelder (1982) describe a general approach for forming predictions in gen-

eral(ised) linear models. BrieAy, their approach involves forming the 5tted values for
all combinations of the variables in the model, then taking marginal means across the
variables not relevant to the current prediction. Their approach has been implemented
in GenStat. Some computational limitations with the calculation of the standard er-
rors of predicted values have been recently removed (Lane, 1998). This algorithm
however is not generally suitable for use in linear mixed models. An alternative ap-
proach suited to the class of balanced linear mixed models with several random terms
which can be analysed by ANOVA, is to replace predictions by treatment means. This
approach may not be suitable for unbalanced or non-orthogonal data sets. Where ran-
dom e3ects are present in the model, a decision must be made about how to treat
these terms in prediction, which may di3er according to the purpose of a particular
prediction. For correlated random e3ects, information on e3ects present in the data may
be used to predict e3ects not present in the data set, with prediction standard errors
allowing for the extra uncertainty associated with the e3ect not being observed. The
application of this principle to the residual error gives the kriging predictions used in
geostatistics.
Welham et al. (2002) is a companion to this paper, in which we outline the principles

of prediction in mixed linear models, using four examples which illustrate the need for
some Aexibility in a prediction algorithm. This paper details the functionality required
with an e$cient algorithm for the calculation of predictions and their covariance matrix
from a linear mixed model.
The paper is arranged as follows. In Section 2 we brieAy present some basic

results for the linear mixed model and set up the notation for subsequent develop-
ments. In particular we consider the mixed model equations and their role in
the average information algorithm (Gilmour et al., 1995), as these are used
in the prediction calculations. In Section 3 we formally de5ne the prediction process,
describe the prediction algorithm and present an outline of the implementation
in mixed models software. The issue of estimability and prediction invariance
is discussed in Section 4. Di3erent approaches to averaging are addressed
in Section 5 and the details of prediction for new observations are given in
Section 6. The 5nal section assesses the e$ciency of the proposed
algorithm.

https://www.researchgate.net/publication/227623257_The_Analysis_of_Designed_Experiments_and_Longitudinal_Data_by_Using_Smoothing_Splines?el=1_x_8&enrichId=rgreq-df8cf20a-3663-48ec-8167-c40f3a1889d6&enrichSource=Y292ZXJQYWdlOzQ4OTgzMTU7QVM6MTA2NTY5ODUzMzA4OTI4QDE0MDI0MTk2NDEzODc=
https://www.researchgate.net/publication/227734924_The_Analysis_of_Crop_Variety_Evaluation_Data_in_Australia?el=1_x_8&enrichId=rgreq-df8cf20a-3663-48ec-8167-c40f3a1889d6&enrichSource=Y292ZXJQYWdlOzQ4OTgzMTU7QVM6MTA2NTY5ODUzMzA4OTI4QDE0MDI0MTk2NDEzODc=
https://www.researchgate.net/publication/208033930_Mixed-Effect_Models_in_S_and_S-plus?el=1_x_8&enrichId=rgreq-df8cf20a-3663-48ec-8167-c40f3a1889d6&enrichSource=Y292ZXJQYWdlOzQ4OTgzMTU7QVM6MTA2NTY5ODUzMzA4OTI4QDE0MDI0MTk2NDEzODc=
https://www.researchgate.net/publication/262912717_Predicting_from_unbalanced_linear_or_generalized_linear_models?el=1_x_8&enrichId=rgreq-df8cf20a-3663-48ec-8167-c40f3a1889d6&enrichSource=Y292ZXJQYWdlOzQ4OTgzMTU7QVM6MTA2NTY5ODUzMzA4OTI4QDE0MDI0MTk2NDEzODc=
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2. Preliminaries

2.1. Linear mixed model

If y denotes the n× 1 vector of observations, the linear mixed model can be written
as

y= X� + Zu + e; (1)

where � is the t×1 vector of 5xed e3ects, X is an n× t design matrix which associates
observations with the appropriate combination of 5xed e3ects, u is the q× 1 vector of
random e3ects, Z is the n × q design matrix which associates observations with the
appropriate combination of random e3ects, and e is the n× 1 vector of residual errors.
The model (1) is called a linear mixed model or linear mixed-e3ects model. It is

assumed[
u

e

]
∼ N

([
0

0

]
;

[
G(�) 0

0 R(
)

])
; (2)

where the covariance matrices G and R for the random e3ects and residual are functions
of parameters � and 
, respectively. We can then de5ne

H = var(y) = ZGZ ′ + R:

2.2. REML estimation

Gilmour et al. (1995) describe an algorithm for obtaining REML estimates of the
variance parameters in (2), namely (�′;
′), by maximising the residual log-likelihood
(Patterson and Thompson, 1971). The residual log-likelihood is the log-likelihood of
L′
2y, where L2 is an n × [n − rank(X)] matrix of rank n − rank(X) with L′

2X = 0
(Verbyla, 1990). Empirical best linear unbiased predictors of random e3ects and gen-
eralised least squares estimates of 5xed e3ects are obtained as the solution to the
mixed model equations (evaluated at the REML estimate of the variance parameters).
The mixed model equations are given by[

X ′R−1X X ′R−1Z

Z ′R−1X Z ′R−1Z + G−1

][
�̂

ũ

]
=

[
X ′R−1y

Z ′R−1y

]
: (3)

These can be written as

C�̃ =W ′R−1y; (4)

where C =W ′R−1W + G∗; W = [X Z ]; �̃ = [�̂′ ũ′]′ is of length p= t + q and

G∗ =

[
0 0

0 G−1

]
:

For the moment we assume that C is of full rank, i.e. X is of full column rank. Estima-
tion and estimability for the case when X is not full rank will be discussed in Section 4.

https://www.researchgate.net/publication/230269218_A_conditional_derivation_of_residual_maximum_likelihood?el=1_x_8&enrichId=rgreq-df8cf20a-3663-48ec-8167-c40f3a1889d6&enrichSource=Y292ZXJQYWdlOzQ4OTgzMTU7QVM6MTA2NTY5ODUzMzA4OTI4QDE0MDI0MTk2NDEzODc=
https://www.researchgate.net/publication/224840043_Recovery_of_Inter-Block_Information_When_Block_Sizes_are_Unequal?el=1_x_8&enrichId=rgreq-df8cf20a-3663-48ec-8167-c40f3a1889d6&enrichSource=Y292ZXJQYWdlOzQ4OTgzMTU7QVM6MTA2NTY5ODUzMzA4OTI4QDE0MDI0MTk2NDEzODc=
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The mixed model equations can be solved by absorption and back-substitution of the
mixed model matrix[

y′R−1y y′R−1W

W ′R−1y C

]
:

The algorithm presented by Gilmour et al. (1995) is known as an average information
(AI) algorithm, so-called as it replaces the expected information in the updating formula
for the variance parameters by a matrix which is approximately the average of the
observed and expected information matrices. Its convergence properties are similar to
the Fisher scoring algorithm but the elements of the AI matrix are much easier, and
hence faster, to compute than the corresponding elements of either the observed or
expected information matrices.
The AI algorithm (in common with other derivative-based algorithms) is built around

the e$cient solution of the mixed model equations. For each iteration (3) is solved
using the current values for � and 
. Gilmour et al. (1995) describes how this is
achieved using sparse matrix methods and a modi5ed absorption and backsubstitution
routine which avoids calculation of unnecessary terms in C (and C−1).

3. The prediction model

We de5ne a prediction to be a linear function of the best linear unbiased predictor
of random e3ects with the best linear unbiased estimate of 5xed e3ects in the model.
A prediction is typically formed as the predicted response from an experiment for a
subset of explanatory variables at given values, with the remaining explanatory vari-
ables in the model being either averaged over, ignored, or taking a speci5ed value.
Welham et al. (2002) consider the possible roles of 5xed and random model terms in
prediction and conclude that while 5xed model terms can never be ignored, random
terms may be either included (for a conditional prediction) or ignored (to obtain a
marginal prediction). In addition, they show that there must also be Aexibility in the
averaging process which allows for di3erent weighting schemes over factors, or com-
binations of factors. The algorithm must also be able to recognise aliasing and nesting,
and to check for predictions a3ected by aliasing, i.e. to check whether the predicted
value is invariant to the parameterisation used.

3.1. Steps in the prediction process

Before presenting the algorithm it is useful to consider the conceptual steps involved
in the prediction process. The four main steps are

(1) Choosing the explanatory variable(s) and their respective values for which predic-
tive margins are required; the variables involved will be referred to as the classify
set.

(2) Determine which variables should be averaged over to form predictions. The values
to be averaged over must also be de5ned for each variable; the variables involved
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will be referred to as the averaging set. The combination of the classify set with
these averaging variables de5nes a multiway hyper-table. Formally, variables to be
evaluated at a single speci5ed value within the prediction, eg. a covariate evaluated
at its mean value, can be equivalently included as a member of either the classify
or averaging sets.
At this point, there may be some explanatory variables in the model that do not

classify the hyper-table. These variables will normally only occur in random terms
that are ignored when forming the 5tted values.

(3) Determine which terms from the linear mixed model are to be used in forming
predictions for each cell in the multiway hyper-table.

(4) Choose the weighting for forming means over each dimension (or combination of
dimensions) of the hyper-table.

3.2. Prediction process

Prediction involves forming a linear function of �̃. If we denote the vector of pre-
dictive margins of interest by �̃, then

�̃=D�̃ (5)

say, for some d× p matrix D. It follows that

D(�̃ − �) =D

[
�̂ − �

ũ − u

]
∼ N

([
0

0

]
; DC−1D′

)
: (6)

Consideration of the values required for forming con5dence intervals make it clear
that it is the prediction error variance, i.e. var(�̃ − �), rather than the variance of the
estimator, var(�̃), that is usually of interest.
The matrices D and C are often prohibitively large, so that it is not practical to ex-

plicitly compute the matrix products involved in the evaluation of �̃ and the prediction
error variance of �̃. It is however instructive to decompose D into its component matri-
ces, where each component matrix relates to a step in the prediction process described
in the previous section. We can write D as

D = AWMMS ; (7)

where

• S (r rows×p columns) is a binary matrix which selects the elements of � which are
used to form the predictions for each cell of the hyper-table—this relates to step 3.
Note that p is the dimension of � and r6p, the number of e3ects used in forming
the 5tted values, is in general less than p.

• M (c× r) is a ‘design’ matrix which forms (a portion of) the multiway hyper-table
for the speci5ed combinations of the classify set plus the averaging set—this relates
to step 2. Note that c is the number of values in the hyper-table, (usually) equal to
the product of the number of combinations in the classify set with the number of
combinations in the averaging set.

• WM (c × c) is a diagonal matrix of weights—this relates to step 4.
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• A (d× c) is a matrix which when combined with WM averages the multiway table
to produce the predictive margins—this relates to steps 1 and 4. Note that d is
the number of predicted values, equal to the number of combinations of factor and
covariate values in the classify set.

Operationally, the matrices A and WM may be combined, however it is helpful to
keep them separate here to reAect our intention to control the type of averaging of
the multiway hyper-table. This will be particularly important for problems in which
aliasing has occurred. Lane (1998) discusses this issue and indicates that aliasing may
occur either as a result of linear dependencies in the explanatory variables or because
of non-representation of some combinations of factor levels in the dataset. The latter
may occur by chance or through the intrinsic structure of the data, for example, where
locations are nested within regions. Care must be taken in this case to ensure sensible
averaging occurs.
At this level, the major di3erence between our algorithm and the algorithm proposed

by Lane and Nelder (1982) is the presence of the matrix S in D.

3.3. Computing strategy

One of the major obstacles with the implementation of the Lane and Nelder (1982)
algorithm in GenStat has been limits on the size of the model and or dataset for
which predictions and associated standard errors can be readily obtained. The following
strategy attempts to minimise the computational load by use of sparse matrix methods
and judicious formation of D and the matrix of prediction error variances. The strategy
has been designed to 5t in with the algorithm already used in ASReml but could easily
be adapted for other packages.

3.3.1. Initialisation of the component matrices
For full Aexibility, the user must be able to specify factor/covariate combinations

for which predictions are required (the classify set), combinations of factors/covariates
to be averaged over (the averaging set), methods of averaging for each factor (or
combination of factors) in the averaging set and model terms to be used when form-
ing predictions. However, given the basic information, sensible default values can be
determined to minimise user input. For example, in the terms which de5ne the full
multiway hyper-table, sensible default values would be the mean value for covariates,
all levels for factors and knot points for spline terms. Note that where a single variable
de5nes several derived terms (e.g. linear and quadratic trend) care must be taken to
maintain the link with the underlying variable.

3.3.2. Forming D
While we have de5ned D as the product AWMMS to highlight the operations

involved, we propose forming D directly, one row at a time.
Recall that each row of D relates to a unique combination of the levels of the

factors and values of the covariates in the classify set. These rows are successively
formed using a modi5ed version of the subroutine which generates the design matrix
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for the linear mixed model (see 4), W . Each row of the prediction design matrix
generates one predicted value. Columns corresponding to the predicted combination will
be set to the appropriate value (1 for a factor level, speci5ed value for a covariate).
Columns corresponding to averaging factors will contain weights dependent on the
averaging process (although a slightly di3erent procedure is used for weights depending
on data presence, see Section 5). Columns corresponding to model terms ignored in
the prediction process will be set to zero and the matrix D is stored in a linklist sparse
form.

3.3.3. Calculation of predictions and prediction error variances
The major computational issue is the formation of the prediction error variance

matrix. In the following we present an approach for simultaneously computing both
�̃ and the prediction error variance matrix of �̃. The approach involves forming an
augmented set of mixed model equations, which can be manipulated during the 5nal
iteration of the AI algorithm. That is, let Q be the augmented mixed model matrix,
given by

Q =




y′R−1y 0 y′R−1W

0 0 D

W ′R−1y D′ C


 :

Absorption of C gives

Q∗ =

[
y′Py −�̃′

−�̃ −DC−1D′

]
;

where P=R−1−R−1WC−1W ′R−1=H−1−H−1X(X ′H−1X)−1X ′H−1. The absorp-
tion is performed using a reordering of the mixed model matrix designed to retain a
high degree of sparsity (Gilmour et al., 1995).
It is advantageous to have control over the formation of the elements of DC−1D′

since this will be a very large matrix (d(d+1)=2 elements) if there are many predicted
values (d). For example, where standard errors of di3erences (SEDs) are required, the
full matrix must be calculated. However an ‘average’ SED can be calculated by in-
serting an extra column (prediction) in D, being the sum of the original columns
(predictions) of D, and then calculating only the diagonal elements of DC−1D. The
variance of the extra prediction with the variances of the original predictions can be
used to calculate an average covariance. This leads to an SED based on the aver-
age variance of di3erences, which for unbalanced situations is not identical to the
average of the individual SEDs. Thus, individual SEs and an average SED can be
calculated without forming the full covariance matrix. In addition, we allow D to be
de5ned in sections, i.e. as several separate sets of predictions. We do not form the
covariance terms in DC−1D between sections and can form average SEDs within
sections.
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4. Prediction in models not of full rank

There are often situations in which the 5xed e3ects design matrix, X , is not of full
column rank. These can be classi5ed according to the cause of aliasing:

(1) linear dependencies between explanatory variables due to over parameterisation of
factor terms,

(2) no data present for some factor combinations, so that the corresponding e3ects
cannot be estimated,

(3) linear dependencies due to other, usually unexpected, structure in the data.

The 5rst type of aliasing is imposed by the parameterisation chosen and can be de-
termined from the model. The second type of aliasing can be detected when setting
up the design matrix for parameter estimation (which may require revision of imposed
constraints). The third type can then be detected during absorption of the mixed model
matrix. Dependencies (aliasing) can be dealt with in several ways and we wish to
check that predictions are invariant to the method used. This can be ensured by check-
ing that the function of parameters being predicted is estimable in the sense de5ned
by Searle (1971, pp. 160,180).

4.1. Parameter estimation

After absorption of the rows of the mixed model matrix associated with the random
e3ects, the 5xed e3ects are estimated as

X ′H−1X�̂ = X ′H−1y: (8)

If X is not full rank, then there is no unique solution to (8). To obtain a solution, say
�̂0, we compute

�̂0 = (X ′H−1X)−X ′H−1y

for some generalised inverse (X ′H−1X)− of X ′H−1X . We note that �̂0 is not an
unbiased estimator of �, since

E(�̂0) = (X ′H−1X)−X ′H−1X�

which in general is not identical to �, depending on the generalised inverse used.
Since X ′H−1X is symmetric, there exists an orthogonal permutation matrix L such

that

L′X ′H−1XL=

[
A11 A12

A′
12 A22

]
;

where A22 is a square matrix of full rank, equal to the rank of X ′H−1X . Further, we
de5ne

X∗ = [X∗
1 X∗

2 ] = XL;

�∗ =

[
�∗1
�∗2

]
= L′�
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and note

X∗�∗ = X�:

Hence a convenient choice for (X ′H−1X)− is given by

L

[
0 0

0 A−1
22

]
L′ (9)

giving

�̂0 = L

[
0

�̂∗2

]
;

where

�̂∗2 = A−1
22 X∗′

2 H−1y:

This is exactly the procedure followed by ASReml to estimate 5xed e3ects: aliased
e3ects are Aagged and reordered to the top of the set of equations, so that the 5xed
e3ects estimate produced is �̂∗2 .

4.2. Estimability

We 5rst consider the case of estimability of functions of 5xed e3ects, as this corre-
sponds to the case considered by Searle (1971). The linear function D�� is de5ned to
be estimable (Searle, 1971) if

E(D��̂0) =D��: (10)

Note that estimability in this context implies that the value of D��̂0 is invariant to
the parameterisation (i.e. the generalised inverse of X ′H−1X) chosen, and also that
expectation is taken over the random e3ects. We have

E(D��̂0) =D�L

[
0 0

0 A−1
22

]
L′X ′H−1X�

and we de5ne

D∗
� = [D∗

�1 D∗
�2] =D�L

so that D�� =D∗
� �

∗. Then

E(D��̂0) =D�L

[
0 0

0 A−1
22

]
L′X ′H−1XLL′�

= [D∗
�1 D∗

�2]

[
0 0

0 A−1
22

][
A11 A12

A′
12 A22

]
�∗
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= [D∗
�1 D∗

�2]

[
0 0

A−1
22 A′

12 I

]
�∗

= [D∗
�2A

−1
22 A′

12 D∗
�2]

[
�∗1

�∗2

]
: (11)

For D�� to be estimable (11) must equal

D�� =D∗
� �

∗ =D∗
�1�

∗
1 +D∗

�2�
∗
2

and so

D∗
�1 −D∗

�2A
−1
22 A′

12 = 0: (12)

The other case to consider is of estimability of a linear function of random e3ects Duũ.
It can be shown that E(Duũ) is zero, taking expectation over u, essentially because the
subset of equations corresponding to ũ in (3) are full rank and X�̂ is estimable (Searle,
1971). If D��̂ and Duũ are estimable, it follows that the linear function D��̂ +Duũ is
also estimable.

4.3. Computing strategy for determining estimability

A convenient strategy for computing the estimability criteria (12) is now presented.
This strategy has been developed so that it can be easily implemented within the
framework devised within Section 3.3. Consider the augmented mixed model matrix
Q, after reordering and absorption of the random e3ects, which is given by

Q1 =




y′H−1y 0 y′H−1X∗
1 y′H−1X∗

2

0 0 D∗
�1 D∗

�2

X∗′
1 H−1y D∗′

�1 A11 A12

X∗′
2 H−1y D∗′

�2 A′
12 A22


 :

Absorption of the last row pertaining to the �∗2 leaves the symmetric matrix

Qa
1 =




y′Py −�̂∗
′

2 D∗′
�2 y′H−1X∗

1 − �̂∗
′

2 A′
12

−D∗
�2�̂

∗
2 D∗

�2A
−1
22 D∗′

�2 D∗
�1 −D∗

�2A
−1
22 A′

12

X∗′
1 H−1y− A12�̂∗2 D∗′

�1 − A12A−1
22 D∗′

�2 A11 − A12A−1
22 A′

12


 :

Since the reordering of the vector � into the partition (�∗
′

1 �∗
′

2 )′ has been established
and implemented during the 5rst iteration, then the criteria for determining estimability
(invariance to parameterisation) can be assessed during the same absorption process
that determines the vector of predictions and the matrix of prediction variances, i.e.
invariant predictions are characterised by elements of D∗′

�1−A12A−1
22 D∗′

�2 in Qa
1 becoming

zero during the absorption process.
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5. Issues of averaging

Di3erent averaging schemes may be required when forming the marginal table of
predictions from the multiway hyper-table. In many examples, averaging over all cells
using equal weights will be desirable. In other cases, speci5c user-supplied weights
will be required for some factors, with equal weighting over others. In either case the
weight matrix is de5ned by multiplying together the 5xed weights associated with each
margin being averaged. A special case, which deserves attention because it requires a
slightly modi5ed algorithm, is the case of averaging only over factor combinations that
are present in the data. In this case, the prediction matrix D can be written as

D = ADWMDAFWMFMS ;

where the averaging step is split into averaging over factors with weighting 5xed
(without reference to the data, subscript F) and factors with weighting determined by
data presence, denoted by subscript D. The 5rst step of averaging over factors with
5xed weights (AF) is done to reduce the size of the matrices, before checking data
presence on the reduced hyper-table.
A general algorithm for prediction should allow speci5cation of the type of weighting

(equal, population, data present, user-supplied) on each of the averaging factors, or on
any combination of the averaging factors.

6. Prediction of new observations

In some circumstances, it is desirable to predict new observations. This may include
the predicted mean for a new experiment or prediction at new points within the data
set and requires an extension to the algorithm. Using the model (1), we can write our
predicted value as

yp = Xp� + Zp1u + Zp2up + ep; (13)

where the subscript p denotes design matrices associated with the predicted values.
The vectors up and ep denote random e3ects not present in the observed data set, but
drawn from the same population as u and e with

var

(
u

up

)
= Ga =

(
G Gop

Gpo Gpp

)
(14)

and

var

(
e

ep

)
= Ra =

(
R Rop

Rpo Rpp

)
: (15)

Note that G and R are the variance matrices from the observed random e3ects. We
do not include residual errors from the current experiment or a general design matrix
for the new residual errors ep here, but the extension is straightforward. It is shown
in Appendix A that the best linear unbiased predictor of yp is

ỹp = Xp�̂ + Zp1ũ + Zp2ũp + ẽp; (16)
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where �̂; ũ are estimated as in Section 4, ẽ=y−X�̂−Zũ are the residuals and ũp; ẽp
are the BLUPs of up and ep, namely

ũp = E(up|L′
2 y) = GpoG−1ũ

and

ẽp = E(ep|L′
2 y) = RpoR−1ẽ;

where L2 is the matrix used in de5ning the residual log-likelihood (see Section 2.2).
Thus predictions of future values can be written in terms of the original BLUPs as

ỹp = Xp�̂ + (Zp1 + Zp2GpoG−1)ũ + RpoR−1ẽ; (17)

where Zp2 is non-zero, these estimates of ũp can be obtained by simply augmenting the
original set of random e3ects. The same approach may be used for the residual term,
by augmenting the data set with extra observations as in Appendix A. The e$ciency
of this approach will depend on the structure of the data: it may be particularly inef-
5cient where the observed data set can be treated as a direct product structure but the
augmented data set cannot, although in some cases data augmentation may be used to
improve the structure (Verbyla and Cullis, 1992). Alternatively, the predict absorption
step can be extended to include the residual term, as shown in the next section.
The application of this technique to predict the value and variance of new observa-

tions gives the usual kriging results. Note that this is di3erent to interpolation of the
surface, which does not take account of uncertainty at the new data points.

6.1. Computation for new observations

After incorporating any new random e3ects into the original model, we can write
the predicted observations as

ỹp =Xp�̂ + Zpũ + RpoR−1ẽ

=Wp�̃ + RpoR−1ẽ

= (Wp − RpoR−1W)�̃ + RpoR−1y; (18)

where Zp=(Zp1 Zp2), up now represents the full set of observed and predicted random
e3ects, and Wp = (Xp Zp). Note that since(

R Rop

Rpo Rpp

)−1

=

(
R−1 + R−1Rop(Rpp)RpoR−1 −R−1RopRpp

−RppRpoR−1 Rpp

)

=

(
Roo Rop

Rpo Rpp

)
;

where Rpp = (Rpp − RpoR−1Rop)−1, the predicted observations can be written as

ỹp = (Wp + (Rpp)−1RpoW)�̃ − (Rpp)−1Rpoy:
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The predicted observations yp then have prediction error variance

var(ỹp − yp) = var(Wp(�̃ − �) + RpoR−1ẽ − ep)

= var((Wp − RpoR−1W)(�̃ − �) + RpoR−1e − ep)

= (Wp − RpoR−1W)C−1(Wp − RpoR−1W)′ + (Rpp)−1

= (Wp + (Rpp)−1RpoW)C−1(Wp + (Rpp)−1RpoW)′ + (Rpp)−1

since cov(�̃ − �;RpoR−1e − ep) = 0. The predictions are now written in terms of
the parameters � and the data y, and in the spirit of Section 3.3, we can extend the
mixed model matrix and calculate predictions and prediction error variances through
an absorption step. The augmented mixed model matrix now becomes


y′R−1y y′Rop(Rpp)−1 y′R−1W

(Rpp)−1Rpoy −(Rpp)−1 Dp

W ′R−1y D′
p C


 ;

where Dp =Wp + (Rpp)−1RpoW . Absorption of C gives(
y′Py −ỹ′p

−ỹp −var(ỹp − yp)

)
:

One advantage of this strategy is that the check for prediction invariance given in
Section 4 can still be carried out during the absorption process.

7. Assessment of the proposed algorithm

There are several numerical advantages of this algorithm compared to previous algo-
rithms, such as that implemented in Genstat for prediction in generalised linear models
as described by Lane and Nelder (1982) and Lane (1998). The 5rst advantage relates
to the memory requirement which is at most 2× the size of D, which is held in sparse
form as a linked list, plus the size of the variance matrix for the predicted values (or
its diagonal if covariances are not required). If memory limitations cause a problem,
the prediction can be split into several runs, at the cost of losing some SEDs. Previous
algorithms have formed predictions (and variances) for the full hyper-table, which is
in general much larger than the number of predicted values, and then derived predicted
values from the hyper-table. The second advantage of our algorithm is in the number
of computations required to form the predictions, which again is related more to the
number of predictions than to the size of the hyper-table. The third advantage is that
the algorithm does not explicitly calculate the variance matrix C−1, this reduces both
the memory requirement and number of computations.
Roughly, for our algorithm, the number of operations required to form the variance

matrix of the predictions is

s1p3=6 + s22d(d+ 1)=2× s1p2; (19)
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where p is the total number of e3ects in the model, d is the number of predictions
formed, s1 is a scaling factor (¡ 1) depending on the sparsity of the matrix C and
s2 is a scaling factor (¡ 1) depending on the sparsity of the matrix D. The sparsity
factor s1 is typically order 1=l, where l is the largest number of levels for a factor
term in the model. The sparsity factor s2 depends on the structure of the prediction.
The 5rst term in (19) is (roughly) the number of operations required to form C−1

and the second term is the number of operations required to form DC−1D′. Previous
algorithms using the full hyper-table would use approximately p3=3 + c(c+ 1)=2× p2

operations, where c is the number of cells in the hyper-table.
In general, predictions will be required after the model has been determined. Since

calculation of the predictions takes place during estimation of the 5xed and random
e3ects, this requires a single additional absorption of the augmented mixed model
matrix, which includes re-estimation of the model e3ects. This slight ine$ciency is
outweighed by the overall advantage of the algorithm.
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Appendix A. Estimation of new observations

Consider the augmented model

ya = F +Wa�a + ea; (A.1)

where np is the number of new observations, and the augmented structures are de5ned
as

ya =

(
y

0np

)
; Wa =

(
X Z 0

Xp Zp1 Zp2

)
; �a =




�

u

up


=

(
�

ua

)
;

ea =

(
e

ep

)
and F =

(
0n

Inp

)
;

with var(ua) = Ga and var(ea) = Ra de5ned in Section 6 and  is a vector of length
np of 5xed e3ects, with a separate e3ect for each new observation.

The augmented model can be re-written as

y=W� + e;

0=  + yp:
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As this is still a linear mixed model, then the predictor ỹp will be the BLUP of yp
from this model. The second line also shows that ỹp=− ̂ . If it can be shown that the
augmented model in Eq. (A.1) is equivalent to the original model, then it follows that
ỹp =− ̂ is the BLUP for yp based on the original data and model.

The expanded mixed model matrix for the augmented data and model becomes


y′aR
−1
a ya y′aR

−1
a Wa y′aR

−1
a F

W ′
aR

−1
a ya W ′

aR
−1
a Wa + G∗

a W ′
aR

−1
a F

F ′R−1
a ya F ′R−1

a Wa F ′R−1
a F




=




y′aR
−1
a ya y′aR

−1
a Wa y′Rop

W ′
aR

−1
a ya W ′

aR
−1
a Wa + G∗

a W ′Rop +W ′
pR

pp

Rpoy RpoW + RppWp Rpp


 ;

where

G∗
a =

(
0 0

0 G−1
a

)
:

Absorbing the last section leaves the matrix(
y′aPFya y′aPFWa

W ′
aPFya W ′

aPFWa + G∗
a

)
;

where

PF =R−1
a − R−1

a F(F ′R−1
a F)−1F ′R−1

a

=

(
R−1 0

0 0

)

so that the absorbed mixed model matrix becomes


y′R−1y y′R−1X y′R−1Z 0

X ′R−1y X ′R−1X X ′R−1Z 0

Z ′R−1y Z ′R−1X Z ′R−1Z + G oo G op

0 0 Gpo G pp


 ;

where

G−1
a =

(
G oo G op

Gpo G pp

)
:

The 5nal rows give the required solution ũp =−(G pp)−1Gpoũ=GpoG−1ũ. Absorbing
the last section corresponding to up leaves(

y′R−1y y′R−1W

W ′R−1y W ′R−1W + G∗

)
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i.e. the original mixed model matrix. So, the augmented data approach gives the re-
quired estimates of model parameters.
The estimate of  is found (by back-substitution) from the last line of the expanded

mixed model matrix:

Rpoy= (RpoW + RppWp)�a + Rpp 

which gives as required

− ̂ =−(Rpp)−1[Rpoy− (RpoW + RppWp)�̂a]

=−(Rpp)−1[Rpo(y− X�̂ − Zũ)− Rpp(Xp�̂ + Zp1ũ + Zp2ũp)]

=−(Rpp)−1Rpoẽ + Xp�̂ + Zp1ũ + Zp2ũp

=Xp�̂ + (Zp1 + Zp2GpoG−1)ũ + (Rpo)R−1ẽ:
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