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Summary

 

•

 

Several fern species can hyperaccumulate arsenic, although the mechanisms are
not fully understood. Here we investigate the roles of root absorption, translocation
and tolerance in As hyperaccumulation by comparing the hyperaccumulator 

 

Pteris
vittata

 

 and the nonhyperaccumulator 

 

Pteris tremula

 

.
• The two species were grown in a pot experiment with 0–500 mg As kg

 

−

 

1

 

 added
as arsenate, and in a short-term (8 h) uptake experiment with 5 µM arsenate under
phosphorus-sufficient conditions.
• In the pot experiment, 

 

P. vittata

 

 accumulated up to 2500 mg As kg

 

−

 

1

 

 frond d. wt
and suffered no phytotoxicity. 

 

P. tremula

 

 accumulated < 100 mg As kg

 

−

 

1

 

 frond d. wt
and suffered severe phytotoxicity with additions of 

 

≥ 

 

25 mg As kg

 

−

 

1

 

. In the short-term
uptake experiment, 

 

P. vittata

 

 had a 2.2-fold higher rate of arsenate uptake than 

 

P. tremula

 

,
and distributed more As taken up to the fronds (76%) than did 

 

P. tremula

 

 (9%).
• Our results show that enhanced root uptake, efficient root-to-shoot translocation,
and a much elevated tolerance through internal detoxification all contribute to As
hyperaccumulation in 

 

P. vittata

 

.
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Introduction

 

Arsenic is highly phytotoxic, with toxicity threshold
concentrations in plant tissues normally varying from 5 to
100 mg kg

 

−

 

1

 

 d. wt (Kabata-Pendias & Pendias, 1992). However,
some plant species are able to grow on As-contaminated
soils, because of either low bioavailability of As and/or increased
resistance by plants. A common mechanism of As resistance
is decreased uptake of arsenate as a result of the suppression
of the high-affinity phosphate-uptake systems (Meharg &
Hartley-Whitaker, 2002). Furthermore, most plant species
transport a very limited amount of As from roots to shoots,
resulting in a small shoot-to-root As concentration ratio, for
example < 0.02 in tomato (

 

Lycopersicon esculentum

 

; Burló

 

et al

 

., 1999); < 0.1 in 

 

Brassica juncea

 

 (Pickering 

 

et al

 

., 2000);
and < 0.2 in rice (

 

Oryza sativa

 

; Marin 

 

et al

 

., 1992). For the above

reasons, As is not usually accumulated to high concentrations
in plant shoots.

Accumulation of > 1000 mg As kg

 

−

 

1

 

 d. wt in shoots, without
symptoms of phytotoxicity, is unusual in terrestrial plants and
can be considered as hyperaccumulation. Other common
traits associated with metal-hyperaccumulating plants include
a bioaccumulation factor (the ratio of metal concentration in
shoots to that in soil) of > 1, and a shoot-to-root concentration
ratio of > 1 (McGrath & Zhao, 2003). The first As hyperaccu-
mulator described recently was the fern 

 

Pteris vittata

 

, which
accumulated up to 7500 mg As kg

 

−

 

1

 

 in its fronds at an
As-contaminated site containing 18–1600 mg kg

 

−

 

1

 

 total As
in the soil, and up to 22 630 mg As kg

 

−

 

1

 

 in the fronds in a
pot experiment when 1500 mg As kg

 

−

 

1

 

 was added to a soil
(Ma 

 

et al

 

., 2001). The As bioaccumulation factor was > 10.

 

P. vittata

 

 is also highly tolerant to As, with a threshold
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concentration for phytotoxicity of between 7000 and
10 000 mg As kg

 

−

 

1

 

 in frond d. wt (Lombi 

 

et al

 

., 2002; Tu &
Ma, 2002; Wang 

 

et al

 

., 2002).
In addition to 

 

P. vittata

 

, several other As-hyperaccumulating
fern species belonging to the order Pteridales have recently
been identified, including 

 

Pteris cretica

 

, 

 

Pteris longifolia

 

 and

 

Pteris umbrosa

 

 (Zhao 

 

et al

 

., 2002) and 

 

Pityrogramma calamelanos

 

(Visoottiviseth 

 

et al

 

., 2002). Interestingly, not all species
within the 

 

Pteris

 

 genus are As hyperaccumulators. Meharg
(2003) reported that 

 

Pteris straminea

 

 (probably 

 

Pteris dentata

 

Straminea) and 

 

Pteris tremula

 

 did not hyperaccumulate As in
their fronds. It is not clear from the study of Meharg (2003)
whether the lack of As-hyperaccumulating ability in 

 

P. dentata

 

and 

 

P. tremula

 

 is caused by a lack of internal tolerance, a lower
rate of As uptake, and/or lower root-to-frond transport of
As compared with other As hyperaccumulators. Comparison of
the As-hyperaccumulating and nonhyperaccumulating 

 

Pteris

 

species should provide further insight into the mechanisms of
As hyperaccumulation. Similar comparative physiological studies
have been carried out on other metal hyperaccumulators.
For example, Krämer 

 

et al

 

. (1997) showed that the nickel
hyperaccumulator 

 

Thlaspi goesingense

 

 and the nonhyperaccu-
mulator 

 

Thlaspi arvense

 

 took up Ni at a similar rate under
nontoxic conditions, and that internal Ni tolerance alone is
sufficient to explain the Ni hyperaccumulator phenotype
observed in the former when compared with the latter species.
By contrast, zinc hyperaccumulation in 

 

Thlaspi caerulescens

 

involves a much larger uptake rate, as well as greater root-
to-shoot transport, when compared with the nonhyperaccu-
mulator 

 

T. arvense

 

 (Lasat 

 

et al

 

., 1996).
In the present study we compared As uptake and tolerance

in the As hyperaccumulator 

 

P. vittata

 

 and the nonhyperaccu-
mulator 

 

P. tremula

 

. Our objective was to evaluate the roles
in As hyperaccumulation of root absorption, root-to-shoot
translocation and tolerance.

 

Materials and Methods

 

Pot experiment

 

A pot experiment was carried out to compare two 

 

Pteris

 

species, 

 

P. vittata

 

 and 

 

P. tremula

 

, in terms of As accumulation
and tolerance. Spores of 

 

P. vittata

 

 and 

 

P. tremula

 

 were germinated
on a general-purpose compost. At the three- to four-frond stage
sporelings were transferred to plastic pots, each containing
1 kg air-dried compost. One plant was grown in each pot.
The compost was amended with arsenate (Na

 

2

 

HAsO

 

4

 

) at
concentrations of 0, 12.5, 25, 50, 100, 250 and 500 mg As kg

 

−

 

1

 

.
Each treatment was replicated four times. Pots were arranged
randomly on a bench inside a glasshouse with day/night
temperatures of 25/20

 

°

 

C (16/8 h), and a minimum light
intensity of 350 µmol m

 

−

 

2

 

 s

 

−

 

1

 

. Fronds were harvested on day 35
after transplanting. In some of the treatments with As additions,
some of the frond tissues of 

 

P. tremula

 

 died during the

experiment. Dead tissues were excluded from biomass deter-
mination and chemical analysis. Plant samples were washed
thoroughly with deionized water, and dried at 60

 

°

 

C for 24 h.
Additional pots without plants were set up for the extraction

of pore water samples from the compost. The As treatments
were the same as described above, and each was replicated four
times. Pots were covered with black plastic sheeting and placed
inside the glasshouse. A porous plastic soil-moisture sampler
(Eijekelkamp, Agrisearch Equipment, the Netherlands) was
inserted into the middle of the compost inside each pot. Pore
water was extracted weekly after the addition of As for 4 wk. Each
extraction was done at 16 h after the compost had been watered
to 80% of its water-holding capacity (Knight 

 

et al

 

., 1998).

 

Short-term arsenate-uptake experiment

 

A hydroponic experiment was carried out to compare the rate
of arsenate uptake by 

 

P. vittata

 

 and 

 

P. tremula

 

. Plants of the
two species were transferred to hydroponic culture at the four-
frond stage. Plant roots were washed carefully with deionized
water to remove adhering compost, and transferred to 350 ml
pots (one plant per pot) containing a nutrient solution which
was a modified Hoagland solution with half-strength major
nutrients and full-strength micronutrients (except that
iron was supplied as Fe-EDDHA (ethylenediamine-di(o-
hydroxyphenylacetic acid) at 100 µM) (Hewitt, 1966). The
nutrient solution was aerated continuously and renewed
weekly. The experiment was conducted inside a controlled-
environment growth chamber with the following conditions:
16 h light period with a light intensity of 350 µmole m

 

−

 

2

 

 s

 

−

 

1

 

,
25/20

 

°

 

C day/night temperatures, and 70% relative humidity.
After 3 wk preculture, roots of intact plants were rinsed with
deionized water and transferred to a pretreatment solution
containing 0.5 mM CaCl

 

2

 

 and 5 mM MES (2-morpholino-
ethanesulphonic acid) with pH adjusted to 6.0. Eight replicate
plants were included for each species. After 12 h, when the light
period had already started for 2 h, the pretreatment solution
was replaced with 320 ml uptake solution containing 5 µM
arsenate (Na

 

2

 

HAsO

 

4

 

) together with 0.5 mM CaCl

 

2

 

 and 5 mM
MES with pH adjusted to 6.0. The uptake solution was aerated
vigorously and continuously. At 0, 15 and 30 min and thereafter
every 30 min at intervals up to 8 h, 0.3 ml uptake solution was
removed for determination of As concentration, and replaced
with 0.3 ml deionized water. Water losses through transpiration
were compensated by addition of deionized water at hourly
intervals. The temperature during the uptake experiment was
maintained at 25 

 

±

 

 0.5

 

°

 

C. After 8 h, roots were separated
from shoots, rinsed with deionized water, blotted dry and
weighed. Plant materials were dried at 60

 

°

 

C for 24 h.

 

Chemical analysis

 

Concentrations of As in the pore water and uptake solution
samples were determined using atomic absorption spectroscopy



 

© 

 

New Phytologist

 

 (2005)

 

www.newphytologist.org

 

New Phytologist

 

 (2005) 

 

165

 

: 755–761

 

Research 757

 

(4100ZL, Perkin-Elmer, Wellesley, MA, USA) equipped with
a flow-injection hydride-generation unit (FIAS 400, Perkin-
Elmer) following a prereduction step using KI and ascorbic
acid. The instrument has a detection limit for As in solution
of 0.1 µg l

 

−

 

1

 

, equivalent to 0.05 µM As in the uptake solution
after dilution. Dried plant samples were ground to < 0.5 mm
and digested with a mixture of HNO

 

3

 

 and HClO

 

4

 

 (85/15 v/
v). Arsenic and other elements in the digests were determined
using inductively coupled plasma atomic emission spectros-
copy (ICP-AES; Fisons-ARL Accuris, Ecublens, Switzerland).
Blanks and internal standards were included for quality
assurance.

Statistics

ANOVA was performed using  5 (Numerical
Algorithms Group, 1998).

Results

Pot experiment

Arsenic concentrations in pore water increased with the
amount of As added to the compost, varying from 19 µM
in the 12.5 mg As kg−1 treatment to 126 µM in the 500 mg
As kg−1 treatment in the samples extracted 1 wk after As
addition. Pore water As decreased linearly with incubation
time (Fig. 1), and by week 4 after addition the concentrations
had decreased by 12–41%.

In the absence of As addition, P. tremula produced 73%
larger frond biomass than P. vittata (Fig. 2). However, frond
biomass of P. tremula was affected markedly by the additions
of As, with 77–92% reduction in the treatments of 12.5–
50 mg As kg−1. Only one out of the four replicate plants
survived the 100 mg As kg−1 treatment, and no plants survived

in the 250 and 500 mg As kg−1 treatments. Phytotoxicity
symptoms, including leaf chlorosis and necrosis around the
edges of the pinnae, appeared in the treatments with As addi-
tions of 25 mg kg−1 or more. By contrast, frond biomass of
P. vittata was not significantly affected by the additions of As
in any of the treatments (Fig. 2). No phytotoxicity symptoms
were observed in P. vittata.

Frond As concentration in P. vittata increased linearly with
the increasing amount of As added to the growth medium,
reaching 2500 mg kg−1 d. wt in the 500 mg As kg−1 treat-
ment (Fig. 3a). By contrast, frond As concentrations in
P. tremula were < 100 mg kg−1 d. wt in all treatments that did
not kill the plants. In P. tremula, frond As concentration was
similar only to that in P. vittata with the lowest dose of As
addition (12.5 mg As kg−1). Above this level of As addition,

Fig. 1 Arsenic concentration in the pore 
waters extracted from bare pots amended 
with different levels of arsenate. Bars, ± SE 
(n = 4).

Fig. 2 Effect of arsenic additions on frond dry weights of Pteris 
vittata and Pteris tremula in the pot experiment. Results are 
means + SE (n = 4, except that only one P. tremula plant survived in 
the 100 mg As kg−1 treatment).
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however, P. tremula accumulated much less As in the fronds
than did P. vittata. Also, the increase of frond As concentra-
tion in P. tremula was not significant beyond the first dose of
As addition.

In the 0–50 mg As kg−1 treatments, the average P concen-
tration in the fronds of P. vittata was 15% higher than that of
P. tremula (P < 0.05; Fig. 3b). Frond P concentrations in both
species were not significantly affected by the As treatments.

Short-term arsenate-uptake experiment

Depletion of arsenate in the uptake solution was monitored
over 8 h, which reflects the net uptake of As by roots. Average
root fresh weights were comparable in P. tremula (3.68 ± 0.51 g)
and P. vittata (3.73 ± 0.49 g), whereas frond fresh weight was
higher for P. tremula (4.2 ± 1.1 g) than for P. vittata (2.8 ± 0.5 g).
Over the 8 h period, the arsenate concentration in the
uptake solution decreased from 5 to 2.2 µM in the presence

of P. vittata, but only to 3.9 µM in the presence of P. tremula
(Fig. 4a). Because the rate of depletion also depends on root
weight, cumulative As uptake was calculated from the depletion
data and expressed on the basis of root fresh weight. The
cumulative As uptake was approximately linear in the first 7 h
for both plant species (Fig. 4b). During this linear phase, the
slope was 36.2 and 16.4 nmol g−1 root f. wt h−1 for P. vittata
and P. tremula, respectively, indicating a 2.2-fold higher As
accumulation in the former than in the latter.

At the end of the short-term uptake experiment, As con-
centrations in roots and fronds were determined. In P. vittata
the As concentrations in fronds were similar to those in the
roots (Fig. 5). By contrast, frond As concentration in P. tremula
was only 3% of that in the roots. On average, 76% of the As
taken up by P. vittata was distributed to the fronds, whereas in
P. tremula the percentage was only 9%.

Phosphorus concentrations in fronds and roots were
also determined. Frond and root P concentrations of P. vittata

Fig. 3 Effect of arsenic additions on concentrations of (a) As and 
(b) phosphorus in fronds of Pteris vittata and Pteris tremula in the 
pot experiment. Results are means ± SE (n = 4, except that only 
one P. tremula plant survived in the 100 mg As kg−1 treatment).

Fig. 4  (a) Depletion curves of arsenate (µM) in the uptake solution 
by Pteris vittata and Pteris tremula, and (b) cumulative uptake of 
arsenate by P. vittata and P. tremula, expressed on a fresh root 
weight basis. Results are means ± SE (n = 8).
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(3280 ± 155 and 12 170 ± 901 mg kg−1 d. wt, respectively)
were significantly higher than those of P. tremula (2544 ± 223
and 7693 ± 982 mg kg−1 d. wt, respectively). Both species had
a much larger concentration of P in roots than in fronds.

Discussion

In the present study we compared As uptake and tolerance in
two closely related fern species, P. vittata and P. tremula, the
former being an As hyperaccumulator (Ma et al., 2001) and
the latter a nonhyperaccumulator (Meharg, 2003). In the pot
experiment, P. vittata accumulated up to 2500 mg As kg−1

in the fronds, whereas As concentrations in the fronds of
P. tremula were smaller than 100 mg kg−1. The two species
also differed markedly in As tolerance. Pteris vittata was highly
tolerant to As, showing no sign of phytotoxicity or reduction
in frond biomass with As additions up to 500 mg kg−1

(corresponding As concentrations in the pore water were
112–126 µM). By contrast, P. tremula was very sensitive to
the exposure to As. Frond biomass was decreased markedly
at the lowest level of As addition at only 12.5 mg kg−1

(corresponding As concentrations in the pore water: 11–
19 µM). Furthermore, P. tremula showed clear phytotoxic
symptoms at As additions of 25 mg kg−1 or above, and did
not survive the 250 and 500 mg As kg−1 treatments. The
threshold concentration of As phytotoxicity in P. tremula
(< 100 mg As kg−1 frond d. wt) is similar to the threshold
values of 5–100 mg As kg−1 d. wt reported in a range of
nonaccumulator plants (Kabata-Pendias & Pendias, 1992).
Clearly, a greatly elevated tolerance allows P. vittata to grow
on high-As substrates and realize its potential of As hyper-
accumulation. On the contrary, a lack of As tolerance in
P. tremula prevents it from growing on the substrate with even
moderate amounts of As. Arsenic phytotoxicity possibly also
led to a depression of As accumulation in P. tremula, because

frond As accumulation in this species did not increase beyond
the first dose of As addition (Fig. 3). Therefore As tolerance
can be regarded as one of the important reasons for (or,
more precisely, a prerequisite of ) As hyperaccumulation in
P. vittata.

Given that As hyperaccumulators such as P. vittata can
accumulate and tolerate As up to the percent level in frond dry
matter (Tu & Ma, 2002; Wang et al., 2002), the main mech-
anism of As tolerance must be through internal detoxification.
This strategy is clearly different from the exclusion mecha-
nism employed by many tolerant plant species growing on
As-contaminated sites, which suppress As uptake through a
suppression of high-affinity phosphate-transport pathway
(Meharg & Macnair, 1991, 1992; Bleeker et al., 2003). In
P. vittata internal detoxification probably involves a reduction
of arsenate to arsenite (Wang et al., 2002; Zhang et al., 2002;
Webb et al., 2003) and a subsequent sequestration in the
vacuoles (Lombi et al., 2002). Phytochelatins, which have been
shown to play a key role in both constitutive and adaptive
tolerance to As in nonhyperaccumulating plant species
(Ha et al., 1999; Hartley-Whitaker et al., 2001; Schat et al.,
2002; Bleeker et al., 2003), appear to have a limited role
in As tolerance in P. vittata (Zhao et al., 2003). A recent study
showed that < 1% of the As in fronds of the hyperaccumulator
P. cretica was complexed with phytochelatins (Raab et al.,
2004).

Is a strong internal detoxification mechanism alone suffi-
cient to explain the phenomenon of As hyperaccumulation
in P. vittata, as has been suggested for Ni hyperaccumulation
in the hyperaccumulator Thlaspi goegingense (Krämer et al.,
1997)? Results from the pot experiment appear to support
this hypothesis, because frond As concentrations were similar
between P. vittata and P. tremula (≈ 55 mg As kg−1) in the
lowest As treatment (Fig. 3). However, in this treatment frond
biomass of P. tremula was already significantly smaller than
that in the control treatment, and also smaller than that of
P. vittata in the same treatment (Fig. 2). Consequently, the
total amount of As accumulated in the fronds was 3.4-fold
higher in P. vittata than in P. tremula.

To address whether P. vittata possesses an enhanced ability
of As uptake compared with P. tremula in addition to an
enhanced internal tolerance, we compared arsenate uptake by
the two species in the short term (8 h) and at a relatively low
arsenate concentration (5 µM). This experiment was designed
to avoid potential side-effects of As toxicity on root uptake.
During the linear uptake phase, arsenate uptake was 2.2-
fold faster in P. vittata than in P. tremula. The difference was
already noticeable in the first 30 min of uptake (Fig. 4). Sim-
ilarly, a recent study by Huang et al. (2004), which evaluated
the potential of As-hyperaccumulating ferns for removing As
from drinking water, showed that P. vittata was much more
efficient in arsenate uptake than the nonhyperaccumulating
fern species Nephrolepis exaltata. In our study the kinetic
parameters for arsenate influx could not be calculated from

Fig. 5 Arsenic concentration in fronds and roots of Pteris vittata and 
Pteris tremula at the end of the depletion experiment. Results are 
means ± SE (n = 8).
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the As depletion data in this experiment, because a near-
complete depletion in the uptake solution is required for an
accurate calculation (Claassen & Barber, 1974), which was not
achieved for both species. Nevertheless, the large difference
between the two species observed during the initial phase
of the depletion experiment indicates a large difference in
their maximum influx velocity (Vmax), which suggests a higher
density of transporters for arsenate uptake on the plasma
membranes of root cells in P. vittata than in P. tremula.
Similarly, it has been shown that the Zn hyperaccumulator
T. caerulescens has a fourfold higher Vmax for Zn influx than
the nonaccumulator T. arvense (Lasat et al. (1996). The
affinity (Km) of the transporters to arsenate could not be
ascertained in the present study. It should be pointed out that
a 2.2-fold difference in arsenate influx rate, observed under
hydroponic conditions, would make a significant difference
to As uptake only when plants are grown on soils with a high
As supply (e.g. in all +As treatments of the pot experiment,
which contained much higher concentrations of As in the
pore waters than the initial As concentration used in the
hydroponic experiment). In soils with a low As supply, root
uptake of arsenate, like phosphate, is likely to be limited by
the diffusion process of the ions to the root surface. Using
a nutrient uptake-simulation model, Silberbush & Barber
(1983) showed that the predicted P uptake by soybean grow-
ing on a soil with a relatively low P status was more sensitive
to changes in soil P supply than to root uptake kinetics.

Arsenate is a chemical analogue of phosphate, and there is
ample evidence that plants take up arsenate via the phosphate-
transport systems (Meharg & Hartley-Whitaker, 2002). We
found that phosphate competed with arsenate uptake in
P. vittata, whereas P starvation enhanced arsenate uptake
(Wang et al., 2002). In both pot and hydroponic experiments
of the present study, both plant species were supplied with
sufficient levels of P, which is expected to decrease arsenate
influx. Whether the two Pteris species respond differently
to P starvation in terms of arsenate uptake kinetics remains
unknown.

Apart from an enhanced root uptake, P. vittata also trans-
ported As from roots to fronds much more efficiently than
P. tremula. This difference is clearly demonstrated by the dis-
tribution of As at the end of the short-term uptake experiment
(Fig. 5), with 76 and 9% of the As taken up being distributed
to the fronds in P. vittata and P. tremula, respectively. Efficient
root-to-shoot translocation is a typical character of metal
hyperaccumulators, although the mechanisms responsible for
this trait are still poorly understood (McGrath & Zhao, 2003).
Possible explanations include decreased vacuolar sequestration
in the root cells, or an enhanced xylem loading.

In conclusion, our results show that P. vittata possesses
three common traits associated with metal /metalloid hyper-
accumulators: enhanced root uptake; efficient root-to-shoot
translocation; and a greatly elevated tolerance through inter-
nal detoxification. All three traits contribute to the phenotype

of As hyperaccumulation in P. vittata when compared with
the nonaccumulator P. tremula.
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