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Summary

 

• Relationships between weather, agronomic factors and wheat disease abundance
were examined to determine possible causes of variability on century time scales.
• In archived samples of wheat grain and leaves obtained from the Rothamsted
Broadbalk experiment archive (1844–2003), amounts of wheat, 

 

Phaeosphaeria
nodorum

 

 and 

 

Mycosphaerella graminicola

 

 DNA were determined by quantitative
polymerase chain reaction (PCR). Relationships between amounts of pathogens and
environmental and agronomic factors were examined by multiple regression.
• Wheat DNA decayed at approx. 1% yr

 

–1

 

 in stored grain. No 

 

M. graminicola

 

 DNA
was detected in grain samples. Fluctuations in amounts of 

 

P. nodorum

 

 in grain were
related to changes in spring rainfall, summer temperature and national SO

 

2

 

 emission.
Differences in amounts of 

 

P. nodorum

 

 between grain and leaf were related to
summer temperature and spring rainfall. In leaves, annual variation in spring rainfall
affected both pathogens similarly, but SO

 

2

 

 had opposite effects. Previous summer
temperature had a highly significant effect on 

 

M. graminicola.

 

 Cultivar effects were
significant only at 

 

P

 

 

 

=

 

 0.1.
• Long-term variation in 

 

P. nodorum

 

 and 

 

M. graminicola

 

 DNA in leaf and grain over
the period 1844–2003 was dominated by factors related to national SO

 

2

 

 emissions.
Annual variability was dominated by weather factors occurring over a period longer
than the growing season.
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Introduction

 

Man-made emissions of CO

 

2

 

 and SO

 

2

 

 are affecting plant–
pathogen interactions in both natural and agricultural ecosystems
worldwide, through climate change and pollution (Fitt 

 

et al

 

.,
2006; Garrett 

 

et al

 

., 2006). It is often difficult to distinguish
the long-term effects of climate change and pollution on
disease epidemics in agricultural crops from short-term effects

of seasonal changes in weather (e.g. temperature, rainfall)
and agronomic practices. Such distinctions can be made only
where long-term sets of data exist for both biological (e.g.
pathogen DNA) and environmental (e.g. weather, pollutant)
factors, as with the Rothamsted long-term experiment on
wheat fertilization (Broadbalk) (Bearchell 

 

et al

 

., 2005). These
data have been used to propose a new hypothesis to explain
the unexpected change in the 1980s in the relative importance
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of the two septoria diseases on leaves of winter wheat in the
UK, which had been observed in national disease surveys
(King, 1977, Polley & Thomas, 1991, Hardwick 

 

et al

 

., 2001).
These two septoria diseases of wheat, caused by 

 

Phaeosphaeria
nodorum

 

 and 

 

Mycosphaerella graminicola

 

, are important con-
straints to production worldwide. Both cause yield loss when
they decrease the green leaf area of upper leaves that fill grain
before harvest (Eyal, 1999). Both diseases are greatly influ-
enced by weather factors such as rainfall and temperature.
For example, both pathogens are spread within crops by
rainsplash-dispersed asexual spores (conidia), and require
moisture to infect leaves. 

 

Mycosphaerella graminicola

 

 also
reproduces sexually, and its wind-dispersed ascospores are
produced throughout the year (Eriksen & Munk, 2003).
However, in Europe their major role is to disperse the pathogen
to new fields from the debris of old crops at the start of the
winter wheat-growing season in autumn (Eriksen 

 

et al

 

., 2001).

 

Phaeosphaeria nodorum

 

 also produces ascospores, but these
appear to be less universally important in its epidemiology
(Cunfer, 1998); the pathogen is spread efficiently to new
crops because seed infection is common (Cunfer, 1978,
Bennett 

 

et al

 

., 2005). It is not clear how climatic factors affect
the long-term pattern in amounts of 

 

P. nodorum

 

 on wheat
grain, in relation to the interaction between 

 

P. nodorum

 

 and

 

M. graminicola

 

 on leaves.
Polymerase chain reaction (PCR) testing of Broadbalk

archive samples in a previous study showed that the long-term
pattern in the ratio of 

 

P. nodorum

 

 to 

 

M. graminicola

 

 DNA,
with 

 

M. graminicola

 

 predominant in the mid-19th century
and after 1985, and 

 

P. nodorum

 

 predominant in the mid-20th
century, could not be explained by fluctuations in weather
and agronomic factors (Bearchell 

 

et al

 

., 2005). Hypotheses
about the change in relative importance of the two pathogens
in the 1980s, relating it to factors such as changes in cultivar
(from long-strawed to short-strawed), introduction of fungi-
cides, May–June rainfall or November–December tempera-
ture did not explain the long-term pattern in the data over the
160-yr period. By contrast, there was an unexpected but
excellent correlation between the ratio of DNA of the two
pathogens at Broadbalk and UK SO

 

2

 

 emission over the period,
which we hypothesize to be causal. In further work, we have
obtained a similar PCR series for amount of 

 

P. nodorum

 

 in
grain and, as a reference, a series for the survival of amplifiable
wheat DNA in grain over the 160-yr period.

The aim of the work reported here was to analyse relation-
ships over this period between abundance of the pathogens
and environmental variables, and to compare relationships for
DNA series from grain samples with those from leaf/stem
(vegetative) samples.

 

Materials and Methods

 

The methods for DNA extraction and quantitative real-time
PCR detection of each target template DNA using fluorescent

minor groove binder-conjugated TaqMan probes were described
by Bearchell 

 

et al

 

. (2005). For the grain series, 8 g harvested
grain from each season were ground to a powder within two
sealed polyethylene bags, then decanted into a 50-ml centrifuge
tube for extraction. The total amount of DNA extracted from
each sample was measured with the fluorescent dye thiazole
orange (Fraaije 

 

et al

 

., 2005). Quantitative PCR was carried
out with each sample using 50 ng total DNA, and the
amplification cycle at which the increase of fluorescence
exceeded the background (Ct) was determined. Separate
reactions were carried out for each DNA target sequence.
Regression equations for each target were estimated using the
Ct values obtained from known amounts of DNA prepared
from fresh extractions of each target species. These regression
equations were used to convert Ct values to equivalent DNA
concentrations. Thus six basic 160-yr series of DNA abundance
data were obtained, one for each of the two pathogens, and
wheat from both grain and leaf/stem samples.

No septoria disease severity data were collected from the
Broadbalk experiment over most of the 160-yr period. Both
Broadbalk DNA measurements and national wheat disease
survey severity measurements (King, 1977, Polley & Thomas,
1991, Hardwick 

 

et al

 

., 2001) must contain large random
components, making regression an unreliable guide to the
slope of this relationship. To relate the amount of Broadbalk
DNA to national visual disease severity (assessed on leaves at
GS72, milky-ripe) over the period 1970–2003, we therefore
calculated the first principal component of national visual
severity on Broadbalk DNA measurements (Kendall, 1975).
The significance of this relationship was judged from the
correlation coefficient between the two series after log

 

e

 

-
transformation of the data. We did this for 

 

P. nodorum

 

 and

 

M. graminicola

 

 separately, and for the ratio of national visual
severities of the two septoria diseases against the ratio of the
Broadbalk DNA measurements for the two pathogens.

The Broadbalk winter wheat experiment was sown in
autumn (generally October) and harvested the following
summer (August). For the analyses, the following environ-
mental and host factors were considered. Average July–August
(summer) temperature (for the year of harvest and the previous
year) and average December–February (winter) temperature
were obtained from Rothamsted data from 1879 onwards,
and from the Central England Temperature (CET) series
from 1844–99. When both Rothamsted and CET data were
available (1879–99) they were very well correlated (

 

r

 

 

 

=

 

 0.98),
but Rothamsted data differed systematically from the CET
series by –1.8

 

°

 

C for December–February and by 

 

+

 

0.3

 

°

 

C for
July–August temperatures. These differences were used to
produce a single combined temperature series from 1844
onwards. Total rainfall in May and June (spring) from 1853
onwards and wind-run in April and May from 1947 onwards
were obtained from Rothamsted records. Cultivar information
was available from Rothamsted records. Approximate height
of cultivar was estimated from crops of these cultivars or



 

© The Authors (2007). Journal compilation © 

 

New Phytologist

 

 (2007)

 

www.newphytologist.org

 

New Phytologist

 

 (2008) 

 

177

 

: 229–238

 

Research 231

 

closely related ones grown at the University of Reading in each
of the 1998, 1999 and 2000 seasons. The area of land sown
to wheat in England from 1866 onwards was obtained from
UK government statistics. Data on harvest method (hand-
cutting, stooking and carting or plot combine), seed fungicide
treatment, sowing date and foliar fungicide use on Broadbalk
were available from the experimental records; changes on the
Broadbalk plots broadly coincided with changes in general
farming practices. Annual UK emissions of SO

 

2

 

 were obtained
by third-order polynomial interpolation of 10-yr averages
published in government reports (United Kingdom Review
Group on Acid Rain, 1983, National Expert Group on Trans-
boundary Air Pollution, 2001) using 

 

MATHEMATICA

 

 (Wolfram
Research, Champaign, IL, USA).

Relationships were examined by multiple regression of the
logarithms of the various pathogen DNA abundance series on
the environmental and agronomic factors. The best models
were selected by examining all subsets of the possible inde-
pendent variables for which data were available during a given
time period. The residuals from models including all variables
selected were tested for autocorrelations or cyclical changes by
standard time-series methods.

 

Results

 

DNA preservation during storage

 

The amount of amplifiable wheat DNA in the stored leaf/stem
samples was a very small fraction of the total DNA quantified
by thiazole orange binding, and showed no obvious time trend
(Bearchell 

 

et al

 

., 2005; Fig. 1). In comparison with vegetative
samples, much larger amounts of amplifiable wheat DNA
were detected in the grain samples. This is not surprising as,
at the end of the growing season, vegetative samples were
taken from senesced tissues, whereas the grain samples were
fresh. Interestingly, recent studies have shown that 

 

M. graminicola

 

can cause degradation of wheat DNA during infection of
leaves (Keon 

 

et al

 

., 2007). By contrast with vegetative samples,
the amount of amplifiable wheat DNA in grain samples
declined regularly with time from an amount similar to that

in green wheat leaves freshly sampled in 2003 (Fig. 1). These
data were fitted well by an exponential decay curve with a
decay rate of 0.0097 yr

 

–1

 

 (

 

±

 

2 SE 0.0010 yr

 

–1

 

). The DNA
series for the individual pathogens must have been affected by
damage to the DNA during storage accumulating with time.
We assumed that this degradation occurred at a rate similar to
that incurred by wheat DNA in grain, and used this wheat
DNA decay rate to calculate corrected 160-yr series of DNA
abundances for each pathogen in leaf/stem and grain samples.
None of the environmental associations observed depends
qualitatively on the correction.

 

Mycosphaerella graminicola

 

No 

 

M. graminicola

 

 DNA was detected in grain samples. The
correlation between the national septoria tritici blotch severity
estimates and the Broadbalk 

 

M. graminicola

 

 DNA abundance
over the period 1970–2003 was 0.59 (

 

P

 

 

 

<

 

 0.001, 33 df;
Fig. 2b), with the relative change in disease severity being
proportional to the 0.28 power of the change in DNA, as

Fig. 2 Relationships between pathogen DNA 
abundance (corrected) in harvest leaf/stem 
samples from the Broadbalk experiment and 
septoria national disease severity 
measurements at GS72 (grain milky ripe) on 
leaf 2 of wheat crops in England and Wales in 
each year from 1970 to 2003 (including crops 
with different cultivars, agronomic regimes 
and geographical variation in soil types and 
weather). (a) Phaeosphaeria nodorum 
(correlation coefficient 0.59, P < 0.001, 33 
df). (b) Mycosphaerella graminicola 
(correlation coefficient 0.79, P < 0.001, 33 
df). Both variates were loge-transformed.

Fig. 1 Abundance of amplifiable wheat target DNA (y) 
(loge-transformed) extracted from grain of different ages sampled 
from the Broadbalk archive plotted against age of sample (x). Dashed 
line, amount of target wheat DNA amplified from 50 ng total DNA 
extracted from fresh leaves (determined fluorimetrically). The linear 
regression of loge (y) on x explained 52% of the variance.
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estimated by principal components analysis. Because relationships
between amount of 

 

M. graminicola

 

 DNA (Fig. 3a) and all
environmental and agronomic factors were quantitatively
similar for the corrected and uncorrected DNA data series,
only relationships obtained for corrected data series are
presented (Table 1). UK SO

 

2

 

 emissions explained 42% of the
interannual variation in the data series. Cultivar, spring rainfall

and previous summer temperature (for the period before the
start of the growing season in autumn) were then significantly
related to the remaining variation and were not mutually
confounded. Wind-run data were available only for 57 yr;
there was no significant relationship with the DNA abundance
data either before or after fitting SO

 

2

 

 emissions. If rain and
previous summer temperature were fitted, the introduction

 
 

 
 

 
 

  
 

 

Fig. 3 Time-series data for corrected 
pathogen abundance in the Broadbalk 
experiment from 1844 to 2003. Panels 
show amplifiable DNA of Mycosphaerella 
graminicola in 50 ng total DNA extracted 
from harvest leaf/stem samples (a); 
Phaeosphaeria nodorum in leaf/stem (b) and 
grain (c) samples; and the main cultivars 
grown (d, cultivars grown within these runs 
for periods of 1 or 2 yr are omitted for clarity). 
Cappelle Desprez had straw approx. 40 cm 
shorter than cultivars that preceded it and 
approx. 20 cm taller than cultivars that 
followed it. Seed treatments were introduced 
in 1923 and foliar fungicides in 1979. Crops 
were harvested by hand (1844–1900), self-
binder (1901–56) and combine harvester 
(1959–2003). Error bars are 1 SEM, based 
on the variance between five independent 
resamplings of archival material from each of 
1852, 1872, 1900, 1925, 1950, 1975 and 
2000.
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of foliar fungicide in the late 1970s explained a significant,
though very small, proportion of the remaining variation;
however, fungicide was associated with increased amounts of

 

M. graminicola DNA. Cultivar (Fig. 3d) explained a somewhat
larger proportion of the variation, but with less significance
because of the large number of associated degrees of freedom.
Assuming that cultivar is more likely to be causally connected
to M. graminicola DNA abundance, almost all its effect is
caused by Brimstone (grown 1985–90 inclusive), which appears
to have been especially susceptible to M. graminicola or grown
in a period of severe epidemics for some other reason;
differences among other cultivars were not significant
(Table 1). Other factors were unrelated to the DNA measurements.
No temporal autocorrelation or cyclical change patterns were
found in the residuals from the final model.

Phaeosphaeria nodorum

Corrected series of leaf/stem and grain P. nodorum DNA data
were calculated (Fig. 3b,c). The correlation between the
national septoria nodorum blotch severity estimates and
the Broadbalk P. nodorum leaf/stem DNA abundance over
the period 1970–2003 was 0.79 (P < 0.001, 33 df; Fig. 2a).
Corrected DNA abundance (loge-transformed) was approximately
proportional to national disease severity (loge-transformed),
with the slope based on the first principal component between

them being 1.02 (Fig. 2a). UK SO2 emissions explained 15%
of the interannual variation in these data. Spring rainfall
explained 22% of the variance. These figures were almost
unchanged in whichever order the fitting was done. Together,
the two variates explained 39% of the variance. Winter
temperature then explained a further 3.6% of the variance.
The best model also included cultivar and explained 47% of
the variance (Table 2). As with M. graminicola, the relationships
were qualitatively similar for the corrected and uncorrected
data series. No temporal autocorrelation or cyclical change
patterns were found in the residuals from the final model.
There was no effect of other variates tested.

With the exceptions of 1936 and 1941, when relatively
large amounts of P. nodorum DNA were measured, the pattern
of changes in P. nodorum DNA in grain was similar to the
pattern in the DNA in leaf/stem samples (Fig. 3), but the
absolute amounts of DNA were less. The smaller amounts of
pathogen DNA detected in grains in comparison with leaf/
stem material can be explained by increased preservation of
host plant DNA. The pattern during the period for which leaf
DNA data are missing (most of 1860–90) is consistent with
that before and afterwards. Temperature in July and August of
the harvest year was the single variable that explained the
greatest proportion (21%) of the variance in abundance of
P. nodorum DNA in grain, followed by rainfall in May and
June (19% of variance explained). UK SO2 emissions

Table 1 Relationships between Mycosphaerella graminicola abundance (Broadbalk, DNA) (corrected, loge-transformed) in leaf/stem samples 
at harvest and environmental and agronomic factors examined by multiple regression

Variate or factor level Cultivar replication* Change in SS Marginal P Parameter† SE

SO2 454.7 < 0.001 –1.12 SO2 0.26
Rainfall in May and June§ 53.1 < 0.001 +0.017 Rain 0.005
Temperature previous Jul–Aug¶ 43.9  0.002 +0.29 Tprev 0.10
Cultivar** 76.2  0.097

Giant Red 1 > 0.1‡ –2.4 2.1
Apollo 5 – 0.35 0.96
Stand Up 1 > 0.1 0.37 2.1
Cappelle Desprez 11 > 0.1 1.0 0.85
Hereward 7 > 0.1 1.1 1.0
Red Club 17 > 0.1 1.3 0.82
Squarehead Masters 63 > 0.1 1.3 0.30
Browick Red 1 > 0.1 1.6 2.0
Red Rostock 29 > 0.1 1.9 0.93
Flanders 6 > 0.1 2.3 0.87
Brimstone 6  0.008 3.9 0.84
Little Joss 2  0.09 4.3 2.1

The model including all factors shown explained 53% of the variance (121 df).
*Number of growing seasons for which the cultivar was grown.
†Regression coefficients for the continuous variables; for each cultivar the value shown is at the mean of all the continuous variables (SO2, 3.91; 
rain, 110; Tprev, 10.6).
‡Only Brimstone was significantly different from the reference cultivar, Apollo. SED for comparisons between two cultivars varied between 0.9 
and 2.9, depending on replication and details of fit.
§Total rainfall in May and June of harvest year (may affect secondary disease spread).
¶Average temperature July–August before start of winter wheat-growing season in autumn (may affect production of primary inoculum).
**Cultivars are ordered by increasing value of the regression coefficient.
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explained 10% of the variance. Once these three variates were
fitted, no other variate or factor, including cultivar, had any
significant relationship with the amount of P. nodorum DNA
in grain. There was a good correlation between the amount of
P. nodorum DNA in grain and leaf/stem samples in the same
year (r = 0.7, P < 0.001; Fig. 4). Since infection of wheat
grain by P. nodorum must arise from disease already present on
leaves and stems, we fitted a model including leaf P. nodorum
DNA abundance as an independent variable. UK SO2 emis-
sions did not explain a significant proportion of the remaining
variance (P = 0.8), but summer temperatures explained a
further 6% of the variance. Rainfall in May and June had an
additional effect on the amount of P. nodorum in grain
(P = 0.009), beyond the effect mediated through the amounts
in leaf samples (Table 3). There was no relationship between
the amounts in leaves in a given year and the amount in grain
in the previous year. No temporal autocorrelation or cyclical
change patterns were found in the residuals from the final
models for either leaf/stem or grain samples. There was no
effect of other factors tested.

Ratio between P. nodorum and M. graminicola

The ratio of the amounts of DNA of the two pathogens
should not be influenced by factors equally affecting the
preservation of DNA of both, and is therefore the series in

Table 2 Relationships between Phaeosphaeria nodorum abundance (Broadbalk DNA) (corrected, loge-transformed) in leaf/stem samples at 
harvest and environmental and agronomic factors, examined by multiple regression

Variate or factor level Cultivar replication* Change in SS Marginal P Parameter† SE

Rainfall in May and June§ 110 < 0.001 +0.021 Rain 0.0036
SO2 82 < 0.001 +0.89 SO2 0.19
Temperature previous Dec–Feb¶ 19  0.003 –0.10 Twin 0.036
Cultivar** 42  0.06

Red Rostock 29 – ‡ 8.1 0.70
Little Joss 2 > 0.1 7.9 1.5
Hereward 7 > 0.1 7.5 0.72
Apollo 5 > 0.1 7.2 0.68
Stand Up 1 > 0.1 7.0 1.5
Browick Red 1 > 0.1 7.0 1.5
Red Club 17 > 0.1 6.4 0.58
Brimstone 6  0.03 6.1 0.60
Cappelle Desprez 11  0.09 6.2 0.61
Flanders 6  0.03 5.9 0.62
Squarehead Masters 63  0.002 5.6 0.21
Giant Red 1  0.1 5.5 1.5

The model including all factors shown explained 47% of the variance (121 df).
*Number of growing seasons for which the cultivar was grown.
†Regression coefficients for the continuous variables; for each cultivar the mean value shown is at the mean of all the continuous 
variables (SO2, 3.91; rain, 110; Twin, 10.6).
‡Significance value refers to difference between the cultivar and the reference cultivar, Red Rostock. SED for comparisons between 
two cultivars varied between 0.6 and 2.1, depending on replication and details of fit.
§Total rainfall in May and June of harvest year (may affect secondary disease spread).
¶Average temperature during December–February of winter wheat-growing season (may affect latent periods of pathogens).
**Cultivars are ordered by decreasing value of the regression coefficient.

Fig. 4 Relationship between the abundance of Phaeosphaeria 
nodorum DNA in wheat grain and the abundance in wheat leaf/stem 
samples at harvest of the Broadbalk experiment, for years between 
1844 and 2003 where both samples are available, examined by linear 
regression (data corrected then loge-transformed). Axes refer to 
amplifiable P. nodorum DNA in 50 ng total DNA.
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which we can have the most confidence. UK SO2 emissions
explained nearly 60% of the total interannual variation in this
series (Bearchell et al., 2005), more than any other factor. High
concentrations of SO2 were strongly correlated with increased
relative amounts of P. nodorum DNA. This correlation
remained very significant over the period during which the
cultivar grown was mainly Squarehead Masters (1900–67).

Once SO2 emission was fitted, winter temperature and then
cultivar explained a significant proportion of the remaining
variation, each improving the fit of the other alone. If both
winter temperature and cultivar were fitted, the influence of
previous summer temperature was nearly significant without
altering parameter estimates for other factors (Table 4). Thus
warmer winters tended to increase the proportion of M.

Table 3 Relationships between the Phaeosphaeria nodorum abundance (DNA; corrected, loge-transformed) in grain harvested from the 
Broadbalk experiment and explanatory factors, examined by multiple regression

Variate Change in SS Marginal P Parameter SE

Model with environmental variables only*
SO2 94 < 0.001 +0.45 SO2 0.091
Rainfall in May and June 153 < 0.001 +0.020 Rain 0.0037
Temperature in July and August (harvest year) 77 < 0.001 –0.36 Tsumm 0.072

Model including leaf disease†
Corrected leaf DNA abundance 305 < 0.001 +0.60 0.083
Temperature in July and August (harvest year)‡ 38 < 0.001 –0.26 Tsumm 0.071
Rainfall in May and June§ 17  0.009 0.011 Rain 0.040

*Model including all variates explained 40% of the variance (149 df).
†Model including all variates explained 55% of the variance (121 df).
‡Average temperature in July–August of harvest year (may affect pathogen spread to grain).
§Total rainfall in May–June of harvest year (may affect secondary disease spread).

Table 4 Relationships between the ratio of Phaeosphaeria nodorum DNA abundance to Mycosphaerella graminicola DNA abundance (in 
Broadbalk leaf/stem samples) and environmental and agronomic factors examined by multiple regression

Variate or factor level Change in SS Marginal P Parameter* SE
Resistance 
to P. nodorum†

Resistance 
to M. graminicola†

SO2 894.6 < 0.001 +2.04 SO2 0.19
Temperature Dec–Feb§ 34.4  0.03 –0.12 Twin 0.054
Temperature previous Jul–Aug¶ 15.0  0.08 –0.18 Tprev 0.10
Cultivar** 103.5  0.07

Giant Red > 0.1 1.9 2.3
Apollo > 0.1 0.9 1.2 5 7
Stand Up > 0.1 0.5 2.5
Red Rostock > 0.1 0.46 0.63
Hereward > 0.1 0.3 0.91 6 6
Browick Red > 0.1 –0.3 2.4
Red Club > 0.1 –0.8 1.0
Cappelle Desprez > 0.1 –0.9 1.6 4
Old Red Lammas > 0.1 –1.4 1.1
Squarehead Masters  0.03‡ –1.6 1.0
Flanders  0.03 –2.3 1.4 6
Little Joss > 0.1 –2.8 2.4
Brimstone  0.001 –3.7 1.3 6 5

The model including all factors shown explained 60% of the variance (121 df).
*Regression coefficients for the continuous variables; for each cultivar the value shown is at the mean of all the temperature variables and an 
SO2 emission of 1 Mt yr–1.
†Published cultivar resistance rating (Anonymous., 1965–98); for older cultivars these were estimated at a time when only ratings for resistance 
to P. nodorum were published.
‡P value refers to a comparison with the reference cultivar, Apollo.
§Average temperature during December–February of winter wheat-growing season (may affect latent periods of pathogens).
¶Average temperature before start of winter wheat-growing season in autumn (may affect production of primary inoculum).
**Cultivars are ordered by decreasing value of the regression coefficient.
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graminicola; Brimstone, Flanders and Squarehead Masters
tended to have more M. graminicola than other cultivars, and
Apollo or Giant Red appeared to have the least M. graminicola.
These results are supported by the published cultivar resistance-
rating data (Table 4). No temporal autocorrelation or cyclical
change patterns were found in the residuals from the final
model. There was no effect of other variates tested.

Discussion

Over the period 1844–2003, annual weather conditions
(spring rainfall and summer temperature) were the most
important factors affecting short-term variation in the
amount of P. nodorum DNA in wheat tissues. Spring rainfall
was much the more important, and affected M. graminicola in
the same way. Long-term variation in each pathogen, after
correction for DNA decay, remained well but oppositely
correlated to atmospheric SO2 emission. The ratio of P. nodorum
to M. graminicola DNA in vegetative tissues (Bearchell et al.,
2005) was therefore less sensitive to short-term weather
variation and correspondingly better correlated to long-term
SO2 emission. A positive relationship between spring rainfall
and disease severity was expected from much other data
(Tyldesley & Thompson, 1981, Coakley et al., 1985, Daamen
& Stol, 1992, Gladders et al., 2001; Shah & Bergstrom,
2002) and presumably arises because rain during the stem-
extension period transports asexual spores onto new tissues
(Shaw, 1987, Shaw & Royle, 1993) and provides wetness for
infection and, for P. nodorum, sporulation (Shearer & Zadoks,
1972, Eyal et al., 1977, Shaw, 1991). The absence of correlation
between spring rainfall and the ratio of the DNA of the two
pathogens in leaf/stem tissues suggests that both diseases are
affected similarly by rain in spring. The positive effect of
rainfall in May–June on P. nodorum abundance in grain, after
allowing for the effect on abundance in leaf/stem tissues, may
have occurred because air humidity near the ear is less than
that lower in the canopy, so that the ear dries more quickly
after rain, making infection and fungal growth in ears more
sensitive to rainfall.

There was a negative relationship between amount of
P. nodorum DNA in grain and July/August temperature,
suggesting that hot weather (also likely to be dry) in July and
August impedes the growth of P. nodorum in grain. While
there were no long-term trends in spring rainfall and summer
temperature observed over the 160-yr period 1844–2003, it is
predicted that climate change will decrease UK spring rainfall
and increase both summer and winter temperatures over the
next 50 yr (Hulme et al., 2002). The effect of climate change
on these two diseases will depend on the balance of the
changes in these factors.

The amount of P. nodorum DNA in grain was much less
than in leaf/stem material, and varied more (interquartile
range between years, 3.7 in grain, 2.5 in leaf/stem, in natural
logarithms) but in approximately the same pattern. A very

large proportion of the variation in amount of P. nodorum
DNA in grain was accounted for by variation in the amount
in leaf/stem material. This is to be expected, as the disease is
polycyclic and ear infection is initiated by conidia produced
lower in the crop (King et al., 1983). Although the grain
P. nodorum series was correlated with SO2 emission, this was
entirely accounted for by its relationship to the leaf/stem
series; no independent relationship remains after regression
on leaf/stem abundance.

If P. nodorum is mainly seedborne, one might predict a
relationship between the amount of P. nodorum in grain in
1 yr and the amount in the following summer. No such
relationship was found. This presumably means that there is
density-dependent compensation in the multiplication within
a growing season sufficient to disguise any year-to-year
correlation.

This work confirms the association of P. nodorum and
M. graminicola DNA abundances with SO2 emission over
the period 1844–2003 (Bearchell et al., 2005). Changes in
UK SO2 emission have been directly related to changes in the
ratio of stable sulphur isotopes (δ34S) in Broadbalk grain and
straw over the 160-yr period, suggesting that national and
local SO2 values are correlated (Zhao et al., 2003). Effects of
SO2 on P. nodorum in grain presumably reflect the more closely
correlated effects on vegetative tissues. The data reinforce the
unexpected correlation between SO2 and the ratio of the two
pathogens in leaf/stem tissues (Bearchell et al., 2005). The
influence of SO2 on M. graminicola appears to be larger than
that on P. nodorum, and opposite to it. The much closer asso-
ciation of SO2 with the ratio of the two pathogens than with
either individually is accounted for by the opposite sign of the
two correlations, which makes the change in the ratio larger
than the change in either pathogen individually, and the
similar relationship of both series to May–June rainfall, which
therefore does not contribute to variation in the ratio (Table 4).
Assuming the link is not coincidental, the biological explana-
tion could be either that the two pathogens are, oppositely,
directly or indirectly (phytotoxicity or host resistance) affected
by SO2 pollution. At low SO2 concentration, M. graminicola
may be competitively superior to P. nodorum, with the apparent
beneficial effect of increased SO2 concentration on P. nodo-
rum caused by release from this competition.

There was evidence that cultivar affected the amounts of
P. nodorum and M. graminicola DNA and the ratio between
these two amounts in the vegetative tissue, but not the
amount of P. nodorum DNA in the grain. In the few cases
where there are published data on the susceptibility of cultivars
grown on Broadbalk to both pathogens, they are consistent
with the directions of effects fitted to the data (Table 4). In
view of the dependence of M. graminicola on dispersal of
ascospores from previous crops, it could be argued that what
matters is not the cultivar grown in the Broadbalk field, but
the cultivars grown regionally. Exact data are unavailable, but
Bersee was grown widely in the 1930s to 1950s and has good
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adult plant resistance to M. graminicola (Brown et al., 2001;
Arraiano & Brown, 2006), as has Cappelle Desprez, which
was grown on most of the wheat area during the 1960s.
Dwarfing genes were introduced into UK wheat cultivars in
the 1970s along with susceptibility to M. graminicola (Brown
et al., 2001); of the recent cultivars, Apollo, which appears
relatively resistant to P. nodorum in our data, is unusual in
having no specific dwarfing genes.

An alternative hypothesis to the influence of SO2 to
account for the long-term pattern is therefore that the initial
decline in M. graminicola abundance occurred because the
reduced area of wheat in the agricultural depression of the
later part of the 19th century decreased the production of
ascospores, disadvantaging M. graminicola but not P. nodorum,
which is spread on seed. The very high ratio of P. nodorum to
M. graminicola in the mid-20th century then reflected the
further (accidental) introduction of resistance to M. graminicola
in cultivars Bersee and Cappelle Desprez. As the wheat area
increased with increased profitability in the 1970s and there-
after, the use of susceptible cultivars caused a large increase in
amount of M. graminicola inoculum arriving in the Broadbalk
field. A feedback mechanism, in which early infection by
M. graminicola because of severe epidemics in source crops
leads to severe epidemics in the subsequent growing season,
could then explain why it has remained the dominant pathogen,
although more recent cultivars are more resistant than those
of the mid-1980s. This scenario is not impossible, and can
be modelled (Shaw, in press), but it depends crucially on the
amount of summer disease caused by M. graminicola being
regulated by the density of initial ascospore infections the
previous autumn. However, the changes in DNA abundance
in successive years cover several orders of magnitude (Fig. 2a),
so initial autumn inoculum levels do not appear to limit the
severity of epidemics in growing seasons with favourable
weather, which does not support the hypothesis that changes
in wheat area could explain the observed changes in pathogen
abundance.

It is surprising at first that height of cultivar was not related
to the measurements (Fig. 3d), in view of the postulated
role of height as an escape mechanism from infection by
M. graminicola (Shaw & Royle, 1993, Lovell et al., 1997).
However, the Broadbalk data come from the entire plant, and it
is quite possible that in the 1840s M. graminicola did not spread
to the uppermost leaves of the taller cultivars grown at the time.

It is not clear why there was an effect of temperature the
previous summer (before the start of the winter wheat-
growing season in autumn) on the amount of M. graminicola
DNA in vegetative tissues. However, the data confirm the
positive correlation observed between sunshine hours in the
previous August (immediately postharvest) and the abundance
of M. graminicola on wheat in the Netherlands (Daamen &
Stol, 1992). This relationship may occur because saprotrophic
organisms multiply slowly in years with long August sunshine
hours and high temperatures, leaving more nutrients in the

straw to support M. graminicola ascospore production. How-
ever, if this explanation is correct, one might have expected a
correlation between the amount of M. graminicola in one
season and the amount of M. graminicola the previous
summer, which was not observed.

Pietravalle et al. (2003) found a correlation between wind-
run in the spring and M. graminicola severity. This was
entirely absent in this data set, even after correcting for SO2,
which suggests that the original correlation may have been
coincidental.

The combined models here account for up to about half of
the variation in log amount of M. graminicola DNA on wheat
in these data, and rather more of the variation in the ratio of
the amounts of DNA of the two pathogens. Such information
cannot easily be used predictively to provide guidance to
growers because it is based on DNA measurements that
are well, but not perfectly, correlated with disease severity;
the best of the correlations refers to events known only after the
optimal time for intervention with fungicides; and the
asymmetry of loss between applying an unnecessary fungicide
and the potential loss from unexpected epidemic requires
nearly 100% confidence in predictions. On the other hand,
the work reported here also shows that we should always be
cautious of forecasts of plant disease severity based on
mechanistic models, as short-term observations or experiments
on variation between years could not have revealed SO2 as a
driving variable in this system.
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