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Abstract 

Insecticide resistance is an important aspect of pest control on both crop pests and vectors 

of animal diseases.  Resistance can be caused by a number of mechanisms, one of which is 

enhanced detoxification of the insecticide by metabolic enzymes.  Synergists may be used in 

insecticide formulations to inhibit metabolic defences in the insect, allowing the insecticide 

to reach its target site and kill the insect, thus enhancing the effect of the insecticide.    

 

This PhD project investigated the use of the synergist piperonyl butoxide (PBO) in 

combination with natural pyrethrins (tank mix) and as a pre-treatment prior to application of 

pyrethrins, as methods of enhancing the efficacy of the insecticide.  The insects studied were 

Myzus persicae, Bemisia tabaci and Musca domestica.  Results showed that the combination 

treatment (tank mix) was at least as good as, and sometimes better than, the pre-treatment. 

This is unlike the situation for synthetic pyrethroids where pre-treatments have been shown 

to be more effective than tank mixes.  It is proposed that for natural pyrethrins, PBO aids 

the penetration of the pyrethrins into the insect, and this enhancement effect is greater than 

full inhibition of the metabolic enzymes.  In some cases, the tank mix enabled less insecticide 

to be used to achieve 50 % mortality in resistant insects, compared to a susceptible 

population treated with pyrethrins alone.  

 

A novel laboratory assay was developed to enable the screening of botanical extracts for their 

ability to inhibit esterase enzymes.  This was used to test a range of compounds and those 

showing esterase inhibition were also screened for their ability to inhibit cytochrome P450 

activity.  The competency of some of these compounds as synergists was also tested in vivo 

with some showing potential activity both in vitro and in vivo.   
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1 CHAPTER ONE:  INTRODUCTION AND LITERATURE REVIEW  

Insects become pests in agriculture when they destroy crops and reduce yields thus becoming 

a nuisance to humans.  Some act as disease vectors, often with devastating consequences for 

crop performance.  In animal- and public-health, an insect is considered a pest when it 

carries disease, is an irritation, or makes living environments unsanitary.  Insecticides are used 

in agricultural farming and animal/public-health to keep the damage and disease caused by 

insect pests to a minimum.  The pyrethrins, the subject of this project, are a naturally 

occurring insecticide that is obtained from processing the Chrysanthemum flower.  Due to 

its high cost per unit dose and low environmental stability, cheaper and more stable 

synthetically derived pyrethroid insecticides have been developed using the natural pyrethrins 

as a template.  However, intensive use has meant that resistance to the synthetic pyrethroids 

is increasing and causing problems for pest-control.  This PhD project looks at refocusing on 

the natural pyrethrins for insect control and examines different methods and approaches to 

improve their efficacy.  

 

Resistance can be caused by a number of mechanisms which are discussed later in this 

chapter.  One of these mechanisms is enhanced detoxification of the insecticide by metabolic 

enzymes.  In this situation, synergists may be used in insecticide formulations to inhibit the 

metabolic defences in the insect, allowing the insecticide to reach its target site and kill the 

insect, thus enhancing the effect of the insecticide.   It is upon this principle that this PhD 

project is based.  The study first looks at the use of a well known synergist, Piperonyl 

Butoxide (PBO), and then moves on to testing other compounds for their ability to synergise 

natural pyrethrins and increase their efficacy. 

 

Since pyrethrins work by acting on the sodium channel in the nervous system of insects, this 

chapter begins with a brief overview of insecticide mode of action (section 1.1 and Table 1.1) 

and a description of the nervous system and how a normal nerve protein functions (section 

1.1.1).  Resistance is a growing problem in pest control (section 1.2) so the chapter then 

moves on to describe the different mechanisms that can cause resistance (section 1.2.1 and 

1.2.2), focussing on the enzymes capable of detoxifying insecticides (esterases, section 

1.2.1.1; cytochrome P450 monooxygenases, section 1.2.1.2; and glutathione S-transferases, 

section 0), and then a description of different target-site based resistance 

(acetylcholinesterase, section 1.2.2.1; and knock-down resistance (kdr)/super kdr, section 
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1.2.2.2).  There is then a brief description of cross and multiple resistance which, as explained 

in section 1.2.3, can increase resistance even further than resistance caused by a single factor.   

 

Over the years there has been much research performed to investigate the use of synergists 

to increase the efficacy of insecticides.  A synergist is a compound that if applied alone, 

would not exert a noticeable effect on the insect, but when applied with the insecticide, it 

enhances the effect of the insecticide.  Hence the introduction then moves on to describe the 

use of synergists for enhancing the efficacy of insecticides (section 1.3) and a relatively novel 

concept which uses a time delay between the application of the synergist and the insecticide 

(temporal synergism) (section 1.3.1).  With this section there is also a description of how the 

effect of a synergist on an insecticide can be measured (section 1.3.2).  The next section 

focuses on giving an overview of the pyrethrins, the main topic of this study, (section 1.4), 

looking at their chemistry (section 1.4.1), mode of action (section 1.4.2), residues, persistence 

and toxicity (section 1.4.3) and then a few examples of when synergists have been used with 

pyrethrins (section 1.4.4).  Since pyrethrins were used as the template for the synthetic 

pyrethroids, it is important to have an understanding of how the natural pyrethrins were 

improved upon to create synthetic pyrethroids (section 1.5).  The chapter finishes with the 

aims and objectives of this PhD project (section 1.6). 

 

1.1 Insecticide mode of action 

Insecticides are frequently classified by their mode of action.  Most affect one of five 

biological systems in insects: the nervous system; energy production; cuticle production; the 

endocrine system (insect growth regulators) and water balance.  There are several groups of 

insecticides that act on, and adversely affect, the nervous system and a brief description of 

each is given in Table 1.1.  This project focused on one of those groups of insecticides, the 

pyrethrins, which affect the sodium channel.   

1.1.1 Nervous systems and nerve proteins  

The nervous system consists of neurons (single nerve cells) connected to other neurons or 

muscle fibres through synapses (gaps) at the end of each neuron.  Incoming electrical signals 

are transformed by neurons into an electrical charge that travels the length of the neuron via 

the movement of ions in/out of the neuron through channels in the membrane of the 

neurons creating an action potential.  There are four main channels that enable different ions 

to move in and out of the neuron: sodium; potassium; calcium and chloride channels.  The 
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sodium channel has gates which allow the channel to open (to cause stimulation of the 

nerve) or close (to terminate a nerve signal) in response to a stimulus.   

 

When an electrical charge reaches the end of a neuron, a neurotransmitter (chemical 

transmitter) is released.  It crosses the synapse and binds to a receptor on the post-synaptic 

membrane of the next neuron.  The signal is then converted back into an electrical charge in 

the second neuron and is transmitted along the length of that neuron.  After transmitting its 

message across the synapse, the neurotransmitter is broken down and reabsorbed back into 

its originating neuron which is then left in this resting stage until the next signal is received, 

e.g. the neurotransmitter acetylcholine, is broken down and the choline is reabsorbed. 

 

Table 1.1  Summary of insecticides acting on the nervous system: their modes of 
action and effects 

Primary target site 
of action 

Chemical subgroup/ 
exemplifying active ingredient 

E.g. Active ingredients Mode of action Effect 

Acetylcholine 
esterase 

Carbamates 
Aldicarb, 
Methiocarb Synaptic poisons: bind to 

and inhibit the 
acetylcholinesterase enzyme 
that is normally responsible 
for breaking down the ACh 

ACh is not broken down and 
the neurotransmitter 
continues to cause the 
neuron to send the electric 
charge hence preventing 
termination of the nerve 
impulse. Continuous 
stimulation of the nerve leads 
to tremors, uncoordinated 
movement and death. 

Organophosphates 
Chlorpyrifos, 
Dimethoate, 
Malathion 

GABA-gated 
chloride channel 
receptor  

Cyclodiene 
organochlorines 

Endosulfan, 
Lindane 

Inhibit GABA-receptor 

Neurotransmitter is not able 
to close the chloride channel, 
thus electrical charge 
continues down the neuron 
leading to overstimulation of 
the nervous system and 
death. 

Phenylpyrazoles Fipronil 

Sodium channel 
Pyrethroids 

Allethrin, 
Cypermethrin, 
Deltamethrin, 
Fenvalerate, 
Permethrin  
 

Axonic poisons: bind to 
voltage-gated sodium 
channel,  

Prevent normal closure of 
the channel, thus continuous 
nerve firing leading to 
tremors and uncoordinated 
movement and death. 

Pyrethrins 
Pyrethrins 
(pyrethrum) 

Nicotinic 
acetylcholine 
receptor 

Neonicotinoids 
Acetamiprid, 
Imidacloprid, 
Thiamethoxam 

Antagonists of acetylcholine 
receptor (mimic action of 
ACh) 

Cholinesterase itself is not affected 
but nerve is continuously stimulated 
by the neonicotinoid itself which 
cannot terminate it.  Nervous system 
is overexcited leading to tremors and 
uncoordinated movement and death. 

Chloride channel 
Avermectins,  
Milbemycins 

Abamectin 
Stimulate GABA receptor 
thus activating the chloride 
channel to close 

Causes an inhibitory effect, nerve 
impulses are unable to travel down 
the chloride channel.  Leads to 
paralysis, insect stops feeding and 
consequently dies. 

 

1.1.2 Voltage-gated Sodium Channels 

The voltage-gated sodium channel, the point of the nervous system where the pyrethrins act, 

is a large transmembrane protein that regulates the flow of sodium ions across axonal 
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membranes mediating the rising phase of action potentials.  The name of the „para‟ voltage-

gated sodium channel (Nav) was derived from the location of the channel within the paralysis 

(para) locus on the Drosophila X chromosome, from which the channel was first cloned by 

Loughney et al. (1989).  The para channel has been found to be structurally and functionally 

homologous with the α-subunit of mammalian Nav channels (reviewed by Catterall, 2000).  

The structure of the channel can be seen in Figure 1.1. 

 

 
 

extracellular 

intracellular 

The voltage dependence of channel activation 

is considered to result from the movement of 
the 4 positively charged S4 segments 

Intracellular linkers 

connect domains 

S1-S4 helices assemble 

to form 4 independent 
voltage sensing domains 
(VSD) (only 2 are shown 

in this figure) 

Central aqueous pore is 
lined by the S5, S6 helices 

and S5, S6 linkers (P-
loops) 

P-loop: re-entrant 
hairpin loops form 

the narrow ion-
selective filter (at 

extracellular end of 

pore) 

 

Figure 1.1  The transmembrane structure of the voltage-gated sodium channel 

Adapted from Davies et al. (2007) 

 
The pore-forming α-subunit consists of a single polypeptide chain with 4 internally homologous domains (I-IV).  Each domain has 6 
membrane-spanning segments (transmembrane helices) (S1-S6).  The 4 domains assemble to form a central aqueous pore (PD).  In 
response to depolarisation the channel undergoes a conformational change which allows a selective influx of sodium ions (Na+) through the 
pore.  The S1-S4 helices are responsible for the voltage sensitivity of the channel – they assemble to form 4 independent voltage sensing 
domains (VSD).  

 

1.2 Insecticide resistance 

The World Health Organisation (WHO) defines insecticide-resistance as “the inherited 

ability of a strain or an organism to survive doses of toxicant that would kill the majority of 

individuals in a normal population of the same species” (WHO, 1957).  The extent to which 

insecticide resistance develops, and the rate at which it occurs, is dependent on a 

combination of chemical, genetic and biological factors.  These include the rate and 

frequency of application of insecticides used; the mode of action of the applied insecticide; 

whether resistance is monogenic or polygenic; the frequency of resistant genotypes and the 

strength (intensity) of resistance associated with each genotype; levels of inherent genetic 
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variation and the life-cycle and ecology of the insect species in question (Brown, 1990, Roush 

& Tabashnik, 1990, Hemingway & Ranson, 2000).  Short life cycles and production of 

abundant progeny enable insecticide resistance to evolve and the strong selection pressure of 

insecticide use results in rapid spread of resistance alleles through pest populations 

(Hemingway & Ranson, 2000). 

 

There are three main mechanisms by which insects can develop resistance to insecticides.  

There can be a change in the insects‟ cuticle which no longer allows the insecticide to 

penetrate (not discussed), detoxification of the insecticide by metabolic enzymes (section 

1.2.1) or target site resistance (section 1.2.2).  The most important mechanisms of resistance 

in insects are metabolic detoxification and target site resistance which can both occur in the 

same insect.  For example, Anopheles gambiae (Giles) (Diptera: Culicidae), Anopheles culicifacies 

(Diptera: Culicidae) and Anopheles subpictus (Grassi) (Diptera: Culicidae) have all been found 

with both elevated P450s (section 1.2.1.2) and kdr (section 1.2.2) (Karunaratne et al., 2007, 

Chen et al., 2008). 

 

1.2.1 Metabolic detoxification 

All xenobiotics, including naturally occurring plant allelochemicals as well as insecticides and 

their synergists, are at risk of detoxification (Bernard & Philogene, 1993) involving the 

transformation of the compound which ultimately reduces its capacity to interact with its 

target molecule (Figure 1.2).  At a biochemical level, detoxification involves three major 

groups of enzymes: esterases (section 1.2.1.1), cytochrome P-450 monooxygenases (section 

1.2.1.2), and glutathione S-transferases (GSTs) (section 0), which can metabolise many 

pesticides for example organochlorines, organophosphates (OPs), carbamates and 

pyrethroids.    In most, but not all cases, metabolic resistance can be detected in individual 

insects through increased quantities of enzyme compared to their susceptible counterpart 

(Brown & Brogdon, 1987, Hemingway, 1989, Hemingway et al., 1995) . 
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Figure 1.2  The general transformation pathway for most insecticides 

(after Hodgson, 1985) 
The rate of these metabolic reactions converting a toxic compound into a non-toxic compound involves two 

steps and is a critical factor in the development of resistance in pest populations. 

 

1.2.1.1 Esterase-based resistance 

Esterases are a group of phase I metabolic enzymes that are capable of hydrolysing 

compounds that contain ester bonds.  The increased esterase activity involved in insecticide 

resistance may be due to an altered enzyme with a higher catalytic rate, or from the esterases 

being present in elevated levels, through the process of gene amplification (Field et al., 1988, 

Devonshire et al., 1998, Hemingway et al., 1998, Hemingway, 2000), a spontaneous event 

which results in an increase in the copy number of one (or more) gene(s) in a genome.  This 

increase in activity was correlated by Field et al. (1988) to the level of resistance in Myzus 

persicae (Sulzer) (Hemiptera: Aphididae) and OP resistance in Culex species has been 

associated with increased esterase activity resulting from the amplification of the 

corresponding structural gene (Mouches et al., 1990, DeSilva et al., 1997). 

 

The esterases involved in insecticide metabolism include carboxylesterases, 

phosphorotriester hydrolases, carboxylamidases and epoxide hydrolases (Oppenoorth, 1985).  

Insect carboxylesterases are a large family of enzymes that work by hydrolysis and/or 

sequestration and have a significant role in insect resistance to many insecticides including 

OPs, carbamates and pyrethroids (Gupta & Dettbarn, 1993, Devonshire et al., 1998, Casida 

Insecticide 
(lipophilic) 

Metabolite 
(more 
hydrophilic) 

Phase I 

Final 
metabolite 

Phase II 

Involves a polar group being 
added onto the substrate 

Involves the addition of sugars, amino 
acids, sulfates or phosphate groups 
which increase the polarity 

Excreted 

Excreted 
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& Quistad, 2004, Stok et al., 2004).  Esterases hydrolyse ester bonds (on the insecticide) 

forming a carboxylic acid and an alcohol (Figure 1.3) with the rate of hydrolysis being 

dependent on the chemical structure of the insecticide (Devonshire & Moores, 1989). 

 

 

Figure 1.3  Esterase enzymes cleave esters by hydrolysis, forming a carboxylic acid 
and an alcohol 

 

In the peach-potato aphid, M. persicae, detoxification was first characterised biochemically by 

Devonshire (1977), who carried out enzyme purification studies and demonstrated that a 

single esterase isozyme (called E4) was highly over expressed in OP resistant clones.  E4 can 

account for as much as 1% of the total proteins in the aphid and confer broad spectrum 

resistance to OPs, carbamates, and pyrethroid insecticides by ester hydrolysis and 

sequestration (Devonshire & Moores, 1982).  When analysing insecticide-resistant M. persicae 

populations from Italian peach orchards, Mazzoni and Cravedi (2002) found that the over 

production of E4 and a variant, FE4, was common.  

 

Although many of the esterase studies have focussed on M. persicae, high levels of resistance-

associated esterases have been reported in other species, including Culex pipiens (Linnaeus) 

(Diptera: Culicidae) (Ben Cheikh et al., 2008, Yan et al., 2008) and Musca domestica (Linnaeus) 

(Diptera: Muscidae) (Zhang et al., 2007).  

 

Changes in the activity of esterases are caused by mutations in the esterase genes. For 

example OP resistance can occur in M. domestica when a single point mutation in an esterase 

gene confers a single amino acid substitution which results in a reduction in carboxylesterase 

hydrolysis, but increase in OP hydrolysis, so forming the mutant ali-esterase theory 

(Oppenoorth & Vanasperen, 1960).  Mutations in esterase genes and corresponding changes 

in the enzymes  have also been reported for other insect species, including OP resistant Culex 

tarsalis (Diptera: Culicidae) (Whyard et al., 1995), M. domestica (Claudianos et al., 1999) and the 

sheep blow fly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae) (Campbell et al., 1998).   
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1.2.1.2 Cytochrome P450-based resistance 

Detoxification of insecticides has been frequently correlated to the action of mixed-function 

oxidases (MFOs) that catalyse a reaction that ends with the reduction of molecular oxygen 

(Casida, 1970).  Insects have a complex family of MFOs that are involved in the metabolism 

of xenobiotics and in endogenous metabolism of insect hormones, pheromones and fatty 

acids, where they are usually the rate limiting step in the chain (Terriere, 1984, Hodgson et al., 

1993).  

 

One group of MFOs are the cytochrome P450s (from here on termed P450s) which are 

haem-(iron) containing enzymes found in the endoplasmic reticulum of cells and with the 

ability to carry protons/electrons, thus having oxidative/reductive abilities (Feyereisen, 

1999).  P450s are phase I metabolic enzymes and are capable of oxidising both endogenous 

and exogenous compounds (Figure 1.2) and produce a pigment at 450nm which is formed 

by the absorbance of light at wavelengths near 450nm when the haem-iron is reduced and 

complexed to form carbon monoxide (Omura & Sato, 1964). 

 

P450s and P450-associated reductases are very diverse and have broad substrate specificity 

and catalytic versatility enabling them to give some level of resistance to all classes of 

insecticide (Feyereisen, 2005); metabolising pyrethroids, activating/detoxifying OPs and to a 

lesser extent, carbamates.  There are 25 P450 genes from 4 different gene families which 

have been found to be overproduced by the up-regulation of genes (reviewed by Li et al., 

2007).  Up-regulation is a genomic change that increases the production of an enzyme or 

protein without increasing the number of copies of the gene responsible for producing it. 

 

There are many reports of resistance due to P450s, for example: P450-mediated permethrin 

resistance that confers limited and larval-specific resistance in Culex pipiens quinquefasciatus 

(Say) (Diptera: Culicidae) (Hardstone et al., 2007) and increased levels of P450s in An. gambiae 

populations in an area of Kenya where permethrin-impregnated bed nets were used (Vulule 

et al., 1999).  In the latter the authors speculated that the use of the impregnated nets selected 

for higher oxidase and esterase levels.  Anopheles funestus (Giles) (Diptera: Culicidae), a major 

vector of malaria in Africa also has P450-based resistance to pyrethroid insecticides.  Amenya 

et al. (2008) identified a gene from the P450 CYP6 family, that is highly over-expressed in a 

pyrethroid-resistant strain of An. funestus and is genetically linked to a major locus associated 

with pyrethroid resistance in the population studied.  Later, Wondji et al.(2009) identified two 
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duplicated P450 genes (CYP6P9 and CYP6P4) which are associated with pyrethroid 

resistance in An. funestus. 

1.2.1.3 Glutathione-S-transferase based resistance 

Glutathione-S-transferases (GSTs) comprise a family of phase II metabolic dimeric 

multifunctional enzymes that play a role in the detoxification of a wide range of xenobiotics 

(reviewed by Li et al., 2007).  Generally, GSTs catalyse the conjugation of pesticides or their 

primary metabolites.  This conjugation neutralises the electrophilic sites of the lipophilic 

substrate (e.g. the insecticide) and protects the components of the cell, in particular, the 

nucleophilic oxygen and nitrogen of DNA from the electrophilic attack of nucleophiles.  The 

conjugation also causes GSTs to increase the water solubility of the conjugation product 

which then becomes more easily excreted from the cell (Clark, 1989, Enayati et al., 2005). 

 

Although elevated GST activity has been associated with resistance, in many cases the 

individual GST enzyme(s) involved have not been identified and the role of GSTs has only 

been established using model substrates (Enayati et al., 2005).  Where resistance can be linked 

to increases in the levels of specific GSTs, it was previously thought to be mainly due to gene 

amplification or increases in transcription, rather than changes in the enzymes (Grant & 

Hammock, 1992, Ranson et al., 2001).  Amplification or over-expression, have been reported 

in various insect species including OP-resistant M. domestica (Wang et al., 1991, Syvanen et al., 

1994); OP-resistant Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae) (Huang et al., 1998) 

and DDT-resistant An. gambiae (Prapanthadara et al., 1995, Ranson et al., 1997, Ranson et al., 

2001).  However, more recent studies have suggested the existence of at least one specific 

GST in conferring resistance.  Ding et al.(2003) performed expression profiling of the 

Epsilon class of GSTs which showed that this class is important in conferring insecticide 

resistance to DDT in An. gambiae. 

 

As a phase II metabolic enzyme, elevated GST activity has not been linked to the direct 

metabolism of pyrethroids but Vontas et al. (2001) suggest that they may play a role in 

conferring resistance to pyrethroids by detoxifying the lipid peroxidation products induced 

by pyrethoids and Kostaropoulous et al. (2001) suggest that GSTs may protect insects against 

the toxicity of pyrethoids by sequestering the insecticide. 
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1.2.2 Target-site resistance 

A change in an insecticidal target-site protein can lead to a reduction in sensitivity to the 

inhibiting action of the insecticide.  Target-site resistance gives specific resistance profiles, 

only conferring resistance to insecticides which attack that specific protein. Examples of 

altered target sites are modified acetylcholinesterase (MACE) and insensitive sodium 

channels (knock down resistance – kdr) (Oppenoorth, 1985, Devonshire et al., 1998).  The 

efficacy of pyrethrins and pyrethroids is decreased by the presence of kdr (section 1.2.2.2).  

 

1.2.2.1 Acetylcholinesterase (AChE) 

AChE is the target site for OP and carbamate insecticides (Aldridge, 1971).  At cholinergic 

nerve synapses and neuromuscular junctions, the neurotransmitter acetylcholine (ACh) is 

hydrolysed by AChE following transmission of the impulse so preventing the repeated firing 

of the postsynaptic nerve. When AChE is inhibited, repeated firing occurs resulting in 

uncoordinated movements and the eventual death of the insect (Toutant, 1989).  

 

Mutations that result in alterations in the primary structure of AChE reduce the level of 

inhibition by OPs and carbamates and confer resistance in insects and other arthropod 

species (Oppenoorth, 1985).  It was first found in the M. persicae - M. nicotianae complex in 

1990 (Moores et al., 1994) and in the UK, aphids with MACE were first identified in 1995 

from samples collected in suction traps.  In the following year aphids with insecticide-

insensitive AChE were found in eastern England, with the insensitivity being specifically to 

dimethylcarbamates, pirimicarb and triazamate (Foster et al., 1998).  Molecular studies have 

since shown that the reduced sensitivity of AChE is due to one or more point-mutations in 

the gene which lead to structural changes in the enzyme (Andrews et al., 2004). 

 

1.2.2.2 Knock-down resistance (kdr) and super-kdr 

First recognised by Busvine (1951), kdr has been found to be the most common form of 

resistance to DDT and pyrethroids.  Kdr results from modifications in the axonal sodium 

channel and is now known to be caused by a recessive allele conferring cross-resistance to 

both pyrethroids and pyrethrins, as well as DDT (and its analogues).  Kdr, which has been 

reported in many insect species, is often accompanied by a second resistance mutation (also 

recessive) termed super-kdr which confers much greater levels of resistance to pyrethroids 

(Farnham et al., 1987).   
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Various point mutations in sodium channel genes altering the amino acid sequence of the 

sodium channel protein have been shown to be responsible for causing DDT and pyrethroid 

resistance in a wide range of agricultural pests and disease vectors (Davies et al., 2007).  In a 

normal sodium channel, DDT and pyrethroid insecticides bind to sites in the channel, 

causing it to stay partially open and the nerve to fire continuously, but when kdr is present, 

there is a loss of insecticide binding, resulting in insecticide-insensitvity (Soderlund & 

Knipple, 2003).  Two amino acid substitutions, L1014F (in domain IIS6) and M918T (in 

domain IIS4-S5 channel linker) were originally identified in pyrethroid resistant housefly 

strains and were associated with high levels of resistance (Williamson et al., 1996).  This kdr 

mechanism involves a mutation in the sodium channel para-type gene which causes the 

replacement of a leucine by a phenylalanine.  The L1014F mutation was also identified 

cockroaches (Miyazaki et al., 1996) and several other insect species including M. persicae 

(Martinez-Torres et al., 1997).  For other kdr and super-kdr mutations, refer to Davies et al. 

(2007). 

 

 

Figure 1.4  Predicted binding sites for pyrethroids in the voltage-gated sodium 
channel 

The O‟Reilly model (O'Reilly et al., 2006) shows a hydrophobic cavity formed between the IIS4-S5 linker, the 
IIS5 helix and the IIIS6 helix.  There are several residues, thought to be involved in pyrethroid resistance, which 
face into this cavity.  The acid group is thought to be positioned „upwards‟ towards the inner side chains of IIS5 
and IIS6.  The central ester group is thought to be positioned close to hydrophilic residue T929, and the alcohol 
groups close to residues of the IIS5 and IIS4-S5 linker (e.g. L925 and M918).  The T929 residue on IIS5 helix 
appears to be a common binding determinant for all pyrethroids, regardless of their structure (O'Reilly et al., 
2006). 

 
 

Williamson et al., (1996) identified the mutations in the voltage-gated sodium channel 

associated with kdr to pyrethroids in houseflies and kdr has been found to be a major 
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mechanism for pyrethroid resistance in field populations of M. domestica (Huang et al., 2004). 

It is now thought that the esterase-based resistance of some M. persicae to pyrethroids is of 

secondary importance  to a kdr-type mechanism.  It is also thought that the modification of 

the sodium channel which causes kdr may not occur at the site at which the insecticide binds, 

but more likely in a region elsewhere, where the modification affects the conformation of the 

protein and where ion conductance of the sodium channel is modified (Davies et al., 2007).  

By contrast modifications of the sodium channel causing super-kdr are predicted to be at the 

actual binding site for pyrethroid insecticides (Figure 1.4) and the  change is thought to cause 

a rejection of the large cyclic side chains in the alcohol component of the pyrethroid 

molecules (Davies et al., 2007).  In normal circumstances, the alcohol component would bind 

strongly by electrostatic attraction and a number of van der Waals forces (O'Reilly et al., 

2006). 

 

1.2.3 Cross-resistance and multiple resistance 

Unlike target-site resistance, enzymatic detoxification has the potential to confer cross-

resistance to more than one toxin independent of their target site.   The occurrence of two or 

more resistance mechanisms in the same population (multiple resistance) has the potential to 

produce very high levels of resistance. 

 

The interaction of different mechanisms of resistance can be demonstrated using M. persicae 

where elevated E4 alone can give widespread resistance.  However, the combination of 

enhanced E4 and kdr gives an additional resistance to pyrethroids (Devonshire et al., 1998).  

The combination of enhanced E4 and an insensitive AChE target site gives widespread 

resistance plus additional high resistance to the insecticide pirimicarb (Moores et al., 1994, 

Devonshire et al., 1998).  The insensitive AChE target site in M. persicae is very specific: 

conferring resistance only to pirimicarb and triazamate.  It does not confer resistance to 

many OP and carbamates (Moores et al., 1994). 

 

Cross-resistance has also been found in M. domestica, for example by Sawicki et al. (1984) who 

demonstrated that very strong pyrethroid resistance could be achieved through the use of 

non-pyrethroid insecticides.  Sawicki reported that the sequential use of two different groups 

of insecticides (DDT and organophosphates) contributed to a rapid failure of pyrethroid 

insecticides by the selection for common resistance mechanisms.  This work was confirmed 
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with the production of a pyrethroid-resistant laboratory strain of housefly, by selection with 

only DDT and trichlophon (Sawicki et al., 1984). 

1.3 Synergists and synergism 

Metcalf (1967) defined insecticide synergists as non-toxic chemicals that are added to 

insecticides to increase the insecticidal lethality, or more generally, their effectiveness, against 

insect pests.  When used on its own, a synergist will not produce a notable effect on the 

insect.  However, when it is applied in combination with an insecticide, the synergist 

enhances the effect of the insecticide.  Synergists have been used commercially for over 60 

years and have contributed significantly to improve the efficacy of insecticides, especially 

those to which resistance has occurred (Metcalf, 1967, Bernard & Philogene, 1993).  The 

most efficient synergists are the ones that can interfere with the in vivo detoxification of the 

insecticide (Wilkinson & Hicks, 1969, Raffa & Priester, 1985, Scott, 1990) and the role of a 

synergist is usually related to its enzyme-inhibiting activity.   

 

 

a 

 

b 

 

Figure 1.5  Structures of a) sesamin and b) sesamolin 
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Figure 1.6  Synthesis of PBO from Safrole 

(after Casida & Quistad, 1995a) 

PBO is synthesised by the hydrogenation of safrole (which is extracted from the root-bark or fruits of sassafras 
plants, in the form of sassafras oil) chloromethylation, and the addition of the butylcarbityl side chains (Wachs 

1947). 

 

Hedenburg investigated the use of compounds containing the methylenedioxyphenyl (MDP) 

group as insecticides and although it was found that the insecticidal properties were poor, 

they gave encouraging results when used with pyrethrins.  One such compound was 

piperonyl cycloene. The synergistic activity of sesame oil was due to the sesamin and 

sesamolin components was also found to be due to the MDP ring (Casida & Quistad, 1995a) 

(Figure 1.5) and the investigations which followed led to the discovery and production of 

piperonyl butoxide (PBO).  A collaboration between Hendenburg and Wachs found PBO 

(Figure 1.6) to be the first truly effective and commercially viable synergist with advantages 

over piperonyl cycloene including complete miscibility with petroleum solvents (Wachs, 

1947).  It was originally, and still is, regarded as a potent P450 inhibitor (Hodgson & Levi, 

1998, Scott et al., 2000).  However, PBO has more recently been shown to inhibit resistance-

associated esterases in a wide range of agriculturally important pests (Moores et al., 1998a, 

Moores et al., 1998b, Young et al., 2005, 2006), therefore giving the possibility of enhancing 

insecticide efficacy in insects where either/both esterase and/or P450-based resistance 

mechanisms are present. 
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The mode of action of PBO in the inhibition of P450s is proposed to result from the 

formation of a stable metabolite (carbene) to form a P450 complex (Philpot & Hodgson, 

1972).  This is formed between the haem-iron of the P450 and the carbene that is formed 

when water is cleaved from the hydroxylated methylene carbon of the MDP compound 

(Dahl & Hodgson, 1979) (Figure 1.7). Little is known about the way in which PBO interacts 

with esterase enzymes. 

 

 

Figure 1.7  Oxidation of MDP compounds by cytochrome P450 

(after Hodgson & Levi, 1998) 

 

The ability of PBO to synergise the action of insecticides and overcome resistance has been 

demonstrated in many systems. For example Vulule et al. (1999) found significantly higher 

mortality rates in a permethrin-tolerant An. Gambiae colony in Kenya when the permethrin 

was synergised with PBO.  The colony of mosquitoes studied had increased esterase and 

oxidase levels and thus the authors speculated the synergism by PBO was due to the 

suppression of oxidases responsible for permethrin resistance. However it is likely that the 

PBO was also suppressing the esterases.   
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PBO has also been found to inhibit AChE and carboxylesterases in Bemisia tabaci 

(Gennadius) (Homoptera: Aleyrodidae) (Kang et al., 2006) and it is speculated that the high 

levels of synergism seen when PBO is used in combination with various insecticides, is due 

to PBO‟s multiple effects on esterases and AChE.  Gunning (2006) has also found PBO 

inhibited AChE in the cotton boll worm, Helicoverpa armigera (Hübner) (Lepidoptera: 

Noctuidae) and Wu et al. (2007) proposed that there is more than one target for PBO as 

indicated by its high levels of synergism being correlated to its multiple attack on the AChE 

or detoxification enzymes in various insect species. 

 

Cakir et al. (2008) studied the use of PBO as a synergist, with and without tetramethrin as a 

knock down agent, in combination with synthetic pyrethroids against different housefly 

populations.  They found that PBO promoted the ratio of knockdown to kill with the time 

taken for the knock down effect decreasing with the addition of tetramethrin, compared to 

PBO and insecticide, or insecticide only treatment. Synergism studies using PBO and 

synthetic pyrethroids along with tetramethrin as a knock down agent, have shown PBO to be 

very beneficial for the biological efficacy of the synthetic pyrethroids, with the PBO and 

tetramethrin combinations potentially giving a new option for household pest control. 

 

Synergists have also been used to identify the resistance mechanisms present in an insect 

population.  A recent study by Moores et al. (2009) investigated the use of a PBO analogue 

(16/5) to confirm resistance mechanisms.  As previously discussed, PBO is known to inhibit 

both microsomal oxidases and resistance-associated esterases thus making it an ideal 

synergist.  However, it‟s ability to diagnose resistance mechanisms is limited as it does not 

clarify which enzyme group is conferring resistance.  PBO analogue 16/5 is able to inhibit 

esterases but due to it‟s structure it is unable to inhibit microsomal oxidases.  By comparing 

the effect of PBO and the analogue, Moores et al. (2009) were able to confirm the 

identification of the metabolic mechanisms conferring pyrethroid resistance in a clone of M. 

persicae and strain of B. tabaci. 

 

When using synergists it is important to note that single inhibitors may not block the activity 

of all of the toxicologically relevant enzymes, so even if a synergist is applied, the resistance 

of the insect to a particular insecticide may not be overcome.  This is because resistance-

associated enzymes may be present but not inhibited by the synergist (Brown & Brogdon, 

1987) and a synergist that inhibits a specific metabolic enzyme in one species may not 

necessarily inhibit the enzymes in another species. For example DEF is commonly used to 
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inhibit resistance-associated esterases, but does not inhibit those present in Aphis gossypii 

(Glover) (Hemiptera: Aphididae) (Moores pers. comm.). 

 

1.3.1 Temporal synergism 

PBO is believed to work by binding to the insects‟ metabolic enzymes that would ordinarily 

detoxify the insecticide, before the insecticide can act on its target site.  With the metabolic 

enzymes bound to the synergist, the insecticide can act on its target site without being 

stopped by the enzymes. However, the inactivation of the metabolic enzymes may take time, 

for example, the topical application of PBO and biochemical analysis has shown that in B. 

tabaci and H. armigera PBO-esterase binding is relatively slow (in vivo) and a non-permanent 

process (Young et al., 2005).  Temporal synergism (Moores et al., 2005) is the application of a 

synergist prior to the application of the active insecticide several hours later and it has been 

shown to enhance the effectiveness of pyrethroids in B. tabaci, H. armigera, M. persicae, and A. 

gossypii (Young et al., 2005, 2006, Bingham et al., 2007) and carbamates and neonicotinoids in 

M. persicae, B. tabaci and A. gossyppi (Bingham et al., 2008). The work on temporal synergism 

has led to the development of microencapsulated formulations that deliver an initial burst of 

PBO followed several hours later by the active insecticide (Bingham et al., 2007).   

 

This idea forms part of the present study, whereby it is determined if the pre-application of a 

synergist to pyrethrin-resistant insect pests will enable the pyrethrin insecticide, applied 

several hours later, to act as it would in a susceptible insect and kill the insect rapidly.   

1.3.2 Calculating the effect of using a synergist 

The synergistsic factor (SF), also known as the synergistic ratio (SR) and the factor of 

synergism (FOS) can be calculated from the LC50 values, where the LC50 is the concentration 

of insecticide required to kill 50% of an insect population. 

SF  = LC50 insecticide  

LC50 synergised insecticide 

 

The SF evaluates the significance of the specific enzymes which are inhibited by the synergist 

for the detoxification of the insecticide, within a given strain of insects (Bernard & 

Philogene, 1993).  It is helpful to know the SF of a synergist to evaluate its efficacy when 

used in conjunction with a particular insecticide on a particular insect population.  It is 

important to note however that in calculating the SF certain aspects of the potential activity 



Chapter One Introduction and Literature Review 

 

18 

of the synergist is overlooked, for example, the insects‟ behavioural responses (Bernard & 

Philogene, 1993).  The SF, measured in vivo, is dependent firstly on the synergist‟s ability to 

survive detoxification itself, enabling it to reach its target enzymes, and secondly, upon its 

inhibitory effect on the detoxifying enzymes which is measurable in vitro.   

 

The efficacy of the insecticide normally increases with the relative amount of synergist in the 

synergist/insecticide mixture (Bingham et al., 2007).  As sites on the detoxification protein 

are occupied by the synergist, the SF reaches a plateau (Brindley & Selim, 1984).  At such 

concentrations the synergist itself becomes toxic, which can interfere with the interpretation 

of the SFs.   

 

Resistance factors (RF), sometimes known as resistance ratios (RR) (with and without a 

synergist) can be used to identify the effects of the synergist on the levels of resistance when 

both a resistant and susceptible strain/clone are treated with the same compounds (Scott, 

1990): 

 

RF = LC50 resistant strain 

LC50 susceptible strain 

 

Another method of calculating the effect of a synergist, and the one which is used in the 

present study, is by use of the effective synergism ratio (ESR): 

 

ESR (effective synergism 
ratio) 

= LC50 for any given treatment and clone 

LC50 susceptible clone, insecticide only 

 

 

Calculating the RFs can establish the effect of certain treatments on populations of insects 

but has a major drawback in that it is only calculable if the treatment is tested against both a 

resistant and a susceptible clone/strain.  Not only is this not always practical but the effect of 

synergism may not be clear if the synergist also acts on the susceptible clone/strain.  

However, it does give an indication of how a population is responding to a certain treatment 

and hence is included in some analyses.  The RF describes how many times more insecticide 

is required on one strain/clone compared to another -normally, a resistant strain/clone 

compared to a susceptible strain/clone. 
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The ESR is a useful analysis tool alongside the RF as it gives a better representation of how a 

population responds to a treatment in relation to how a susceptible population responds to 

an insecticide only treatment.  This means that analysis can show how a treatment responds 

in relation to field control with a susceptible population.  An ESR of 1 means the treatment 

gives the resistant population of interest the same LC50 as the susceptible population after the 

resistant population has had a given treatment (e.g. synergist plus insecticide).  An ESR of 

less than 1 means the given treatment gives the population of interest a lower LC50 than the 

susceptible treated with insecticide alone and hence comparatively less insecticide is required 

to kill the resistant population (in the presence of the synergist) than the susceptible 

population.  An ESR greater than 1 means the treatment does not give an LC50 as low as the 

susceptible, ie more/different control would be needed in the field (Moores et al., 2009).  

 

Clearly, neither of the calculations overcome the difficulties where an LC50 has not been 

found in the dose ranges used in the experiments.   

 

1.4 Pyrethrum 

Pyrethrum is the generic name for the plant-based insecticide that is derived from the 

powdered, dried flower heads of the pyrethrum daisy, primarily Tanacetum cinerariaefolium, 

(formerly Chrysanthemum cinerariaefolium, of the family Asteracae) but also Chyrsanthemum 

coccineum and C. marshalli.  Pyrethrum daisies are native to South West Asia with the leading 

producers being Australia and Kenya (Casida & Quistad, 1995b).  The flower is dried and 

made into pellets and then the pyrethins are extracted using hexane.  The solvent is removed 

to leave a crude oleoresin with a pyrethrin content typically greater than 35 % (Carlson, 

1995).  The oleoresin is then refined to remove some of the impurities such as vegetable 

waxes and resins and produce a high quality product. 

 

Pyrethrum is a broad spectrum insecticide consisting of a group of insecticidal compounds 

with activity against a wide spectrum of insect species which work together to both repel and 

kill insects.  Pyrethrum is made up of six naturally occurring chemical esters, collectively 

termed pyrethrins (Crombie & Elliot, 1961) and these pyrethrins work as powerful insect 

nerve agents although they are low in toxicity to humans and other warm blooded animals 

(Tomlin, 2000), hence making them favourable over other insecticides when human and 

animal exposure is likely.   
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Of the hundreds of plants containing chemicals known to be toxic to insects, the pyrethrum 

daisy is one of the few which has been exploited commercially.  Natural pyrethrins have been 

very important because their chemical constitutions have been used as a template for the 

development of more cost effective and photostable synthetic pyrethroids (see section 1.5).  

A major problem with the use of pyrethrins is the high cost per unit dose.  Thus, over the 

years there have been attempts to extend the efficacy of natural pyrethrins and hence provide 

more economic feasibility, by use of synergists, namely PBO. 

1.4.1 Chemistry of pyrethrins 

Pyrethrum extract contains three naturally occurring closely related insecticidal esters of 

chrysanthemic acid (Pyrethrins I) which have a CH3 group on the acid moiety and three 

corresponding esters of pyrethric acid (Pyrethrins II) which have a CH3OC(O) on the acid 

moiety.  The alcohol constituent of the ester has three natural variations: pyrethrolone (in 

pyrethrin I and II), cinerolone (in cinerin I and II) and jasmolone (in jasmolin I and II) 

(Elliot & Janes, 1973).  All six structures can be seen in Figure 1.8.  Collectively, Pyrethrins I 

and II constitute 45-55% of pyrethrum extract with the remainder of the extract usually 

being comprised of sterols, triterpenols, alkanes, fatty acids from triglycerides and 

carotenoids (Maciver, 1995) (Table 1.2).  It is known that pyrethrins are altered by heat and 

light with heat inducing rearrangement and the formation of less active isopyrethrins and 

light inducing severe degradative changes (Maciver, 1995). 

 

Table 1.2  Chemical formulae and relative proportions of the six naturally occurring 
pyrethrin esters in a typical 50% extract of pyrethrum  

(Casida, 1973) 

 Constituent Chemical 
formula 

Proportion of ester in a typical 50 
% extract (%) 

Molecular weight 

Pyrethrins I 
(24.7%) 

Pyrethrin I C21H28O3 19.0 328.4 

Cinerin I C20H28O3   3.7 316.4 

Jasmolin I C21H30O3   2.0 330.4 

Pyrethrins II 
(25.3%) 

Pyrethrin II C22H28O5 17.5 372.4 

Cinerin II C21H28O5   5.8 360.4 

Jasmolin II C22H30O5   2.0 374.4 
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Figure 1.8  Individual pyrethrin esters that together make up „pyrethrum‟ 

(Casida & Quistad, 1995b) 

 

1.4.2 Mode of action 

Pyrethrins are fast acting contact nerve poisons that „knock down‟ susceptible insects leaving 

them paralysed (Klaassen et al., 1996, Tomlin, 2000).  The insecticide stimulates repetitive 

nerve discharges leading to paralysis although some insects can recover from the initial 

knock down effects if the dose is too low. 

 

The observed effects of the pyrethrins is mediated by binding to the sodium channel (see 

section 1.1.1).  Pyrethrins cause multiple action potentials in the nerve cells by delaying the 

closure of an ion channel (Costa, 1997). This disruption of the sodium channel leads to 

repetitive discharges by the nerve cell which causes paralysis and death (Crosby, 1995).  

Pyrethrins have also been shown to cause female mosquitoes to lose the ability to orientate 
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themselves thus preventing coordination for feeding by acting as blockers of neurosensing 

food searching mechanisms in female adult mosquitoes (Maciver, 1963, Maciver, 1964). 

 

1.4.3 Residues, persistence and toxicity  

Storage 

The storage conditions of pyrethrins are very important.  Atkinson et al., (2004) found that 

prolonged storage of harvested pyrethrum crops in storage sheds results in substantial (ca. 

65%) losses of pyrethrin esters (mainly pyrethrin-I and II esters).  After an initial rapid loss, 

pyrethrin content stabilised and it was reported that high temperatures increased the rate of 

degradation with moisture, oxygen and microbial activity playing minor roles (Atkinson et al., 

2004).  The authors suggested that in vivo the plant structure provides chemical or physical 

protection to the pyrethrins.  This is supported by the findings by Morris et al. (2006) that 

pyrethrins in planta do not degrade as rapidly as extracted pyrethrins.   

 

Environmental 

The loss of activity of extracted pyrethrins is a disadvantage for their use as an insecticide. 

They are rapidly degraded in sunlight (Ray, 1991, Crosby, 1995) although use of UV-

inhibiting agents can prolong activity. However, the benefits of protecting from pest re-

infestation must be weighed up against the concern over impact on beneficial species.  

Antonious et al. (2001) investigated the residues of pyrethrin-I and pyrethrin-II and PBO in 

soil for a PBO and pyrethrin sprayed potato crop grown in the field.  They compared 

different soil treatments and found that the residues in soil were higher in compost 

treatments than in no mulch treatments.   

 

Pyrethrin compounds are broken down in water and although their solubility is low they are 

highly toxic to fish and tadpoles - affecting their skin touch receptors and balance organs 

(Tomlin, 2000).  Pyrethrins are also moderately toxic to birds, including water birds such as 

ducks and can be toxic to beneficial insects (e.g. honeybees) and many aquatic invertebrates 

(Tomlin, 2000). Studies by Taiwo and Oso (1997) have shown that treatment of agricultural 

soils with pyrethrins caused an increase in the abundance of soil bacteria and a decrease in 

abundance of soil fungi.  The number of species present was less in the treated soils than in 

the untreated soils, with the end result being a reduction in the amount of important soil 

nitrogen.  Another study, conducted by the Central Rice Institute in India, showed that 
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pyrethrin treatment of rice fields reduced nitrogen fixation in the soil by up to 80% (Nayak et 

al., 1980). 

 

Animal/Human exposure 

After use, commercial preparations of pyrethrins can remain in the air and be deposited onto 

surfaces giving possible exposure of humans by inhalation or absorbance through the skin 

(Class & Kintrup, 1991).  However,  pyrethrin-I can be readily attacked in biological systems 

and thus, while pyrethrins are highly fat soluble, they are easily metabolised (Ray & Forshaw, 

2000) and seem therefore unlikely to accumulate in the body or food chain.  Antonious 

(2004) investigated the half-life of pyrethrins on field-grown peppers and tomatoes and 

reported that residues were generally higher on the leaves than on the fruits, and that the 

half-life values on the pepper and tomato fruits did not exceed 2 hours.  Thus where concern 

exists over synthetic pesticide residues on crops intended for human consumption, 

pyrethrins may be a suitable alternative, reducing the risk of human exposure to synthetic 

pesticide residues. 

 

1.4.4 Pyrethrins and synergists 

Most known synergists of pyrethrins contain an MDP ring (Casida, 1970).  Sesame oil was 

found to increase the activity of pyrethrins and was patented as a synergist by Eagleson 

(1940).  Further studies have shown that it is only the sesamin and sesamolin components 

that are synergistically active (Figure 1.5) (Haller et al., 1942a, Haller et al., 1942b, Beroza, 

1954) with sesamolin being found to be more potent than sesamin (Gersdorff et al., 1954).  

Limited studies have been performed on these compounds since the 1950s.  Sesamex (Figure 

1.9), with a structure analogous to sesamolin has been reported to possess very good 

synergistic activity (Mitchell, 1959). 

 

 

 

Figure 1.9  Structure of sesamex 

 

The idea that PBO could be used to synergise pyrethrins for the control of pests in stored 

products was introduced by Dove (1947).  Page and Blackith (1950) found that the 
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insecticidal activity of the pyrethrins, and their stability, could be increased by the addition of 

PBO.  Over the years there has been much research into the synergism of pyrethrins by 

PBO, some of which was reviewed by Casida and Quistad (1995b).  A wide range of 

PBO/pyrethrin-based insecticidal products have been developed, many of which are licensed 

for household use including fly sprays and mosquito coils.  

 

1.5 Synthetic pyrethroids 

For many decades, scientists have worked on improving the properties of natural pyrethrins 

by making analogs that are more potent, more stable and less expensive.  „Pyrethroids‟ is a 

generic term for the pyrethrins and their synthetic analogs.  Many synthetic pyrethroids have 

been made and the structures of some of those in common use are shown in Figure 1.10.  

The mode of action of pyrethroids is the same as that of the natural pyrethrins, acting on the 

sodium channel of the nervous system and causing overstimulation of the nerves and thus a 

loss of nervous control.  Pyrethroids are used against a range of insect pests of ornamentals, 

fruits, vegetables and other crops, also for household use and control of public health pests 

as well as being used in animal houses and as an animal ectoparasiticide.  Like natural 

pyrethrins, pyrethroids are generally toxic to birds, fish and bees.   

 

Synthetic pyrethroids are classified into type I or II pyrethroids depending on the presence 

or absence of a cyano moiety (-CN) at the α-position (Soderlund, 1995), with type II having 

this group (e.g. cypermethrin, deltamethrin) and type I being without the group (eg 

permethrin).  Type I pyrethroids cause poisoning of the peripheral nerves, seen as 

hyperexcitation/hyperactivity, loss of muscle coordination and whole body tremors.  Type II 

pyrethroids affect the central nervous system, causing uncontrolled movements and tremors.  

These have a more prolonged effect and produce higher levels of knock down.  Nasuti et al. 

(2003) noted that basic action of the two types of pyrethroids on the sodium channel is 

similar, although the degree of modification of the sodium currents is different, with single 

sodium currents being prolonged to a greater extent with type II‟s than type I‟s. 

 

A range of synthetic pyrethroids is shown in Figure 1.10 and the modifications for improved 

performance have been (reviewed by Khambay, 2002).  Briefly, some of the key 

modifications to the alcohol moiety are a benzyl group to replace the cyclopentenone, or an 

oxygen as a bridge instead of CH2, or in the acid moiety, dichlorovinyl to replace 

dimethylvinyl.  These are reported to give improved stability in terms of both metabolism 
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and photodegradation.  The volatility of pyrethroids has been improved by the use of 

polyfluorinated alcohol groups which gives greater control over flying insects.  Some 

synthetic pyrethroids show more persistence and a greater stability in the environment as a 

result of halides replacing the methyl group of the natural pyrethrins. 

 

Type I Type II 

 

 

Allethrin 

 

 

Cypermethrin 

 

 

 

Bifenthrin 

 

 

 

Alpha- cypermethrin 

 

 

 

Permethrin 

 

 

 

Deltamethrin 

 

Figure 1.10  Structures of some common synthetic pyrethroids 

(Tomlin, 2000) 
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1.6 Aims and objectives of the project 

 

The overall aim of this PhD project was to explore the use of the synergist Piperonyl 

Butoxide (PBO), and/or alternative botanical synergists, to increase the efficacy of natural 

pyrethrins against insect-pests. 

 

Specific objectives: 

a. To determine if adding PBO as a pre-treatment prior to the application of pyrethrins 

(Chapter Three) can increase the efficacy of natural pyrethrins against Myzus persicae, 

Bemisia tabaci and Musca domestica; compared to the more conventional method of using a 

tank mix treatment (Chapter Three); 

b. To optimise the pre-treatment time for PBO on Myzus persicae (Chapter Three); 

c. To investigate if microencapsulated PBO and pyrethrins enhances the efficacy of natural 

pyrethrins against Myzus persicae (Chapter Three); 

d. To develop a new biochemical assay to screen potential synergists in vitro for their ability 

to inhibit esterase activity and to validate this assay by revealing the inhibition of 

esterases by PBO in vitro (Chapter Four); 

e. To identify a potential new synergist(s) by first screening different compounds in vitro to 

investigate the putative synergist‟s ability to inhibit esterases (Chapter Five) and P450s 

(Chapter Five) and by in vivo studies looking at the putative synergists ability to penetrate 

the insect cuticle and then inhibit resistance associated esterases/P450s thus increasing 

the efficacy of natural pyrethrins against Myzus persicae (Chapter Five) and Musca domestica 

(Chapter Five). 
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2 CHAPTER TWO:  GENERAL MATERIALS AND METHODS 

This chapter describes the insects used in the study and their rearing conditions (section 2.1), 

the details about the insecticide and synergist formulations used (section 2.2) as well as a list 

of different chemicals used in experiments (section 2.3).  Standard experimental methods are 

described in detail (section 2.4), with specific methods being described in the relevant 

chapters.  Methods of data analysis are also described in this chapter (section 2.5). 

2.1 Insects  

This section describes the rearing methods for the insects used in the experiments for this 

PhD project.  The insect species used in each experiment were chosen based on the ease of 

rearing and availability, as well as suitability for the experimental methods used.  Myzus 

persicae (section 2.1.1) were chosen because they are easy to rear in large numbers and suitable 

for both leaf dip (section 2.4.7.1) and topical application bioassays (section 2.4.7.2); Bemisia 

tabaci (section 2.1.2) are easy to rear and suitable for leaf dip bioassay experiments, and Musca 

domestica (section 2.1.3) are relatively straight forward to rear and suitable for topical 

application bioassays.  Where synergist/insecticide solutions were dissolved in acetone, a 

topical application technique was used, whereas for water soluble formulations, a leaf-dip 

assay was used. 

2.1.1 Myzus persicae 

A resistant clone (794jz) was originally collected in Worcestershire (UK) in 1982 from a 

glasshouse.  It contains R3 levels of the resistance-associated esterase (E4) that catalogue it as 

being extremely resistant. This was determined by immunoassay (Devonshire et al., 1986).  It 

is also RR for kdr, based on direct DNA sequencing of PCR-amplified sodium channel gene 

fragments from aphid genomic DNA i.e. homozygous for the single base change causing an 

amino acid substitution from a leucine to a phenylalanine in the IIS4-IIS6 region, (mutation: 

L1014F) (Martinez-Torres et al., 1999).  A standard susceptible clone (4106a) was collected in 

2000 from a potato crop (determined using the methods described above). 

 

Parthenogenetic stock cultures of the two aphid clones (4106a and 794jz) were reared as 

described previously (Moores et al., 1994).  Briefly, clones were bred without insecticidal 

selection, and maintained on approximately 2-week-old Chinese Cabbage seedlings (Brassica 

rapa L. var. campestris cv. Wong-Bok) (Brassicaceae) in white fine-netted cages with a plastic 

base.  Cultures were reared in controlled environment rooms at 18 ± 2 C, 16 h : 8 h L : D 
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cycle.  The seedlings were planted 3 per pot, and 3 pots were used in each cage, watered 

from a tray below.  New cages were set up at approximately 10 day intervals by removing 

three leaves from infested plants and placing them onto the new seedlings.  Clones were then 

left for 2-3 weeks before the aphids were harvested and frozen at -20 C for use in the 

purification of E4 (section  2.4.2).  The frequent replacement of plants avoided aphid-

overcrowding and the production of winged morphs.   

 

The aphids used for bioassay were reared, without insecticidal selection, in Blackman boxes 

(Blackman, 1971) as described by Sawicki et al. (1980).  Two adults were placed in each box 

and their esterase levels tested four days later, with the nymphs being left to mature.  With 

respect to the resistant clone, boxes containing any nymphs from revertant aphids (Sawicki et 

al., 1980, Ffrenchconstant et al., 1988, Field et al., 1999) (based on results from esterase tests) 

were discarded.  The aphids were used for bioassay 11-15 days after boxes were set up.   

2.1.2 Bemisia tabaci 

Fours strains of B. tabaci were used in this study, with populations being set up from those 

that had been reared (without insecticidal selection) at Rothamsted Research.  Chloraka is a 

Q-type pyrethroid resistant strain that was collected from cucumber plants in Cyprus in 2003 

(Bingham et al., 2007).  Pirgos is a B-type pyrethroid resistant strain originally collected in 

Cyprus in 2003 (Bingham et al., 2007), and Mex-2-GRB is a laboratory cross between a B-

type Mexican and a B-type American strain.  Sud-S is the standard susceptible strain that was 

originally collected from the Sudan in 1978 (Bingham et al., 2007). 

 

Stock cultures of three pyrethroid-resistant and one susceptible whitefly strains (Chloraka, 

Pirgos, Mex2-GRB and Sud-S respectively) were reared on cotton plants (Gossypium hirsutum 

cv. Deltapine 16) (Malvaceae).  Strains were bred without insecticidal selection, and 

maintained on approximately four-week-old cotton seedlings in white fine-netted cages with 

a plastic base.  Cultures were reared in controlled environment rooms at 26 ± 2 C, 16 h : 8 

h, light:dark cycle.  The seedlings were planted 1 per pot, and 2 pots were used in each cage, 

watered from a tray below.  New cages were set up at approximately 28 day intervals by 

collecting a number of individuals from infested plants and placing them onto the new 

seedlings.  Strains were then left to lay eggs on the new plants and the subsequent adults 

collected approximately 4 weeks later for use in bioassays.  To ensure good insect quality, 

only adults less than 10 days old were used for in vitro and in vivo studies. 
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2.1.3 Musca domestica  

WHO is a susceptible standard reference strain developed and maintained at the WHO 

Collaborating Laboratory at the Department of Animal Biology, University of Pavia, Italy. 

The house flies used in the present investigation were progeny of a batch of pupae received 

at the Danish Pest Infestation Laboratory in 1988 (Kristensen, pers. comm.). 

 

The strain 381zb was collected in Denmark in 1978. It is an organophosphate-, carbamate- 

and pyrethroid-, multiresistant strain. The strain is submitted to periodic selection with 

topically applied permethrin and topically applied dimethoate. It is postulated that 

glutathione S-transferase and P450 monooxygenase activities, which are a part of the general 

detoxification system, are elevated in this strain and that this strain also contains the super-kdr 

mutation of the Na-channel gene causing resistance to pyrethroids (Kristensen, pers. comm.).  

This strain has been reported previously to be 1800-fold resistant to permethrin (Kristensen 

et al., 2004). 

 

Musca domestica were reared generally following Kristensen et al. (2006). Briefly, at all stages 

the flies were reared at 27 ± 1 C in a 16:8 h, light:dark cycle.  The adults (400-500) were 

kept in cages with an aluminium frame with a rectangular base (13.5 x 30 cm) and circular 

ends (24 cm diameter), covered with a clear polythene bag (perforated) (50 cm x 90 cm), 

closed with an elastic band.  On emergence from pupae, flies were fed on water, lump sugar, 

and a 1:1 mixture of dried milk powder and icing sugar (w/w).  Ten days after the pupae 

were collected (approximately 7 days after emergence as adults), flies were given a milk feed 

for 24 h with a concertinaed paper towel (surface for egg laying) in the dish containing whole 

milk.   After 24 h the milk was removed and the paper towel placed into a bucket containing 

larval medium. 

 

Larval medium was prepared in the larvae containers (5 L buckets) and was designed to 

mimic horse/cow dung.  The medium contained fresh yeast (10 g) and malted extract (15 g) 

mixed with approximately 50 ml warm water before diluting further with 1.25 L warm water.  

This was mixed into bran (400 g) and lucerne meal (200 g).  The buckets containing larvae 

and medium were covered with a breathable paper sheet and stored at 27 C.  For the first 

two days they were not touched, after 3 days, the medium was stirred daily with the stirring 

ceasing when the larvae began to pupate (after approximately 7 days). 

 



Chapter Two General Materials and Methods 

 

30 

Flies reared for bioassay were given only water and cube sugar for the first 4 days post 

emergence.  The milk/icing sugar mixture was supplied after 5 days so that the flies were all 

at the same stage of sexual development for bioassays.  Flies were used for bioassay 9-11 

days post-emergence. 

 

2.2 Insecticides and synergists 

Three pyrethrum extracts were supplied by Botanical Resources Australia (BRA; Devonport, 

Tasmania), one of approximately 50 % (w/v) pyrethrins (technical), one of approximately 1 

% (w/v) pyrethrins in an emulsifiable concentrate (EC) (dissolvable in water), and the third 

also an EC formulation of approximately 1 % pyrethrins and 4 % PBO (w/v).  A 90 % 

(w/v) PBO technical grade synergist was purchased from Sigma-Aldrich UK.  A separate 4 

% PBO EC (w/v) was made up according to a confidential BRA formulation using 

components provided by BRA with the exception of the PBO which was purchased from 

Sigma.  Two samples of microencapsulated pyrethrins were provided by CNR Istituto di 

Chimica Biomolecolare (Italy).  One sample consisted of ~12.5 % pyrethrins in a γ-

cyclodextrin complex, the other consisted of ~10% pyrethrins in a β-cyclodextrin complex. 

2.3 Chemicals 

All chemicals were stored at room temperature and purchased from Sigma-Aldrich (UK) 

unless otherwise stated: 

 Di-sodium hydrogen orthophosphate dodecahydrate (Na2HPO4.12H2O) 

 Anhydrous potassium phosphate monobasic (KH2PO4) 

 Sodium dihydrogen orthophosphate (dihydrate) (NaH2PO4.2H2O) 

 Ethylenediaminetetracetic acid (EDTA) ((HO2CCH2)2NCH2CH2N(CH2CO2H)2) 

 Dithiothreitol (DTT) (stored at 4 C) (HSCH2CH(OH)CH(OH)CH2SH) 

 Phenylthiourea (PTU) (C6H5NHCSNH2) 

 Phenylmethanesulfonyl fluoride (PMSF) (C7H7FO2S) 

 Sucrose (C12H22O11) 

 7-ethoxycoumarin (C11H10O3) 

 Dihydronicotinamide adenine dinucleotide phosphate tetrasodium salt (NADPH) (stored 

at -20 C) (C21H30N7O17P3.4C6H13N) 

 Fast Blue RR salt (stored at 4 C) (C15H14ClN3O3) 

 1-naphthyl-acetate (stored at -20 C) (CH3CO2C10H7) 

 acetylthiocholine iodide (ATChI) (stored at -20 C) ((CH3)3N(I)CH2CH2OCOCH3) 

 5,5‟-dithiobis(2-nitrobenzoic acid)   (DTNB) ([-SC6H3(NO2)CO2H]2) 

 Paraoxon (stored at 4 C) (O2NC6H4OP(O)(OC2H5)2) 

 Eserine (stored at 4 C) (C15H21N3O2) (> 98 %) 



Chapter Two General Materials and Methods 

 

31 

 Azamethiphos (Stored at 4 C) (C9H10ClN2O5PS) (analytical standard)  

 Triton X-100 (especially purified for membrane research) (purchased from Roche 
Diagnostics GmbH) 

 

2.4 Experimental methods 

See Appendix 1 for preparation of buffers and substrates. 

This sections describes the experimental methods used throughout the PhD project, and are 

specifically referred to in the relevant chapters of the thesis. 

2.4.1 Insect homogenisation 

Insects were homogenised in 0.02 M phosphate buffer (pH 7.0) in a tube (1.5 ml) using a 

plastic pestle.  Myzus persicae (25), approximately 50 B. tabaci, and 10 M. domestica heads were 

homogenised, each in a total of 1.5 ml of buffer.  

2.4.2 Purification of carboxylesterase E4 

Purification of E4 generally followed the protocol described by Devonshire(1977).  Briefly, 

frozen (-20 C) M. persicae (5.8g) were homogenised in 20 ml 0.02 M phosphate buffer (pH 

7.0) in a glass homogeniser using a motorised pestle.  The homogenate was cooled on ice and 

centrifuged at 10,000 g for 2 minutes (Eppendorf centrifuge 5810R: in Beckman centrifuge 

tubes).  The supernatant was loaded onto a Sephadex™ G-25 Fine column (Amersham 

Biosciences) (d:4 x h:15 cm).  Protein was eluted from the column using 0.02 M Tris/HCl 

buffer (pH 8.5) and collected in a conical flask.  The elute was then loaded onto an anion 

exchange column containing a pre-swollen micro-granular anion exchanger (DEAE-

Sepharose™ Fast Flow, Amersham Biosciences) (d:3 x h:10 cm) and eluted at 1 ml / min 

with a linear salt gradient of 0.02 M Tris/HCl (pH 8.5) to 0.02 M Tris/HCl (pH 8.5) plus 

0.35 M NaCl (total volume of 400 ml).  Fractions (5 ml) were collected and assayed for 

esterase activity (section 2.4.3), and the fractions with the highest activity were pooled then 

de-salted and buffer exchanged with 0.02 M phosphate buffer (pH 7.0) and concentrated to 

approximately 20 ml in a filtration concentrator (Amicon, Hertfordshire UK).  The purified 

E4 was then stored at -20 C in aliquots until required. 

2.4.3 Kinetic assay of esterase activity using 1-naphthyl acetate 

Measurement of total esterase activity 

Total esterase activity was measured in 96-well NUNC microplates (Fisher Scientific) using a 

colourimetric assay modified from Grant et al. (1989).  Esterase activity was determined by 
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measuring the rate of hydrolysis of the model substrate, 1-naphthyl acetate to 1-naphthol and 

acetic acid (Figure 2.1) as described by Gunning et al. (1998).   

 

A microplate was prepared with 25 µl of 0.02 M phosphate buffer (pH 7.0) in each well, 25 

µl insect homogenate and 200 µl substrate.  The plate was read on a Tmax kinetic Microplate 

Spectrophotometer (Molecular Devices Corporation; Menlo Park, California) at 450 nm at 

10 second intervals for 10 minutes.  Softmax Pro version 4.6 (Molecular Devices 

Corporation) was used to provide kinetic plots, the slopes of which were fitted by linear 

regression.  Controls consisting of substrate only were also performed and values achieved 

were subtracted from those of the samples. 

 

 

 

Figure 2.1  The hydrolysis of 1-naphthyl acetate to 1-naphthol and acetate by esterase 
enzymes 

1-naphthol reacts with FBRR (a diazonium salt) to produce a complex.  The faster the rate of production of the complex, the higher the 
level of esterase activity. 

 

 

The resistance status of aphids reared in Blackman boxes was checked by placing one aphid 

per well in a microplate and homogenising in 50 µl phosphate buffer using a multi-

homogeniser.  The homogenate (25 µl / well) was then transferred to a new microplate when 

the above protocol was then followed. 

 

2.4.4 Assay to measure AChE activity 

Kinetic reactions to measure the activity of acetylcholinesterase (AChE) in insect 

homogenates were performed according to Devonshire and Moores (1984) using a method 

developed initially by Ellman et al. (1961).  Acetylthiocholine iodide (ATChI), a synthetic 

substrate for AChE, is broken down to thiocholine and acetate by AChE (Figure 2.2).  The 

liberated thiocholine then reacts with dithiobisnitrobenzoate (DTNB), to give 2-
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nitrobenzoate-5-mercaptothiocholine and 2-nitro-5-thiobenzoate (Figure 2.3).  The 

enzymatic hydrolysis of the ATChI is determined colourimetrically by the characteristic 

absorbance of 2-nitro-5-thiobenzoate at 405nm for 10 minutes. 

 

 

 

Figure 2.2 The reaction whereby ATChI is broken down by AChE into thiocholine 
and acetate  

 

 

 

Figure 2.3  The reaction of dithionitrobenzoate (DTNB) with the liberated 
thiocholine.   

 

To measure AChE activity, a microplate was prepared with 25 µl insect homogenate, 75 µl 

0.02M phosphate buffer (pH 7.0), 100 µl DTNB (1.5 mM) and 100 µl ATChI (1.5 mM), 

unless otherwise stated in the relevant experimental sections, and read on a Tmax kinetic 

Microplate Spectrophotometer at 405nm at 10 second intervals for 10 minutes.   

2.4.5 „Esterase interference‟ assay 

Purified E4 was incubated with either PBO in acetone (3 mM final concentration, from a 0.3 

M stock) or acetone only (to give E4 + 1% acetone), overnight at 4 C.  A 96-well microplate 

CH3COSCH2CH2N
+
(CH3)3 I

- 

 

(CH3)3N
+
CH2CH2SH + CH3CO2

-
 

Acetylthiocholine iodide 

AChE 

thiocholine acetate 
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was prepared as follows: 25 µl 0.02 M phosphate buffer (pH 7.0) was pipetted into every well 

and 3 µl 10-6 M azamethiphos pipetted into the first well, which contained an additional 22 µl 

of buffer.  A 2-fold serial dilution of azamethiphos was performed by pipetting 25 µl from 

the first column to the next up to the penultimate column, from which the 25 µl was 

discarded.  The last column contained an additional 25 µl buffer only to act as a control.  To 

the wells of row A: 50 µl buffer was added to each well, to row B: 15 µl E4 and 35 µl 

phosphate buffer were added, and to row C: 15 µl E4 + 3 mM PBO and 35µl phosphate 

buffer.  The E4 was left to stand in the wells for 1 h at room temperature.  The resulting 

azamethiphos concentrations in the wells were (in nM): 20, 10, 5, 2.5, 1.25, 0.62, 0.31, 0.16, 

0.78, 0.039, and 0.020.  Musca domestica homogenate was prepared according to section 2.4.1 

with 0.1 % Triton X-100.  Homogenate (25 µl) was added to each column and left to stand 

for 15 minutes at room temperature, followed by 80 µl 1.5 mM DTNB (see appendix 1) and 

80 µl 1.5 mM ATChI (see appendix 1).  The plates were read as described in Section 2.4.4. 

 

Note: Housefly heads were used, rather than whole bodies, and were homogenised in Triton 

X-100 to release the enzyme (AChE) from the membrane.  In the presence of Triton X-100, 

AChE behaves kinetically as a single homogeneous enzyme (Devonshire, 1975). 

2.4.6 Assay to measure cytochrome P450 activity 

This assay involves two different steps: first the P450s from lamb‟s liver are prepared 

(section 2.4.6.1), then the assay to measure the activity of the P450s is performed (section 

2.4.6.2). 

2.4.6.1 Preparation of P450s from lamb‟s liver 

For the screening of putative synergists in chapter five, mixed function oxidases from lamb‟s 

liver were used.  A 1 g section of fresh lamb‟s liver was diced and wash in ice-cold buffer (0.1 

M sodium phosphate buffer (pH 7.6) containing 1 mM EDTA, 1 mM DTT, 1 mM PTU, 1 

mM PMSF, 1.46 M sucrose).  The liver was then homogenised in 1 ml of the above buffer 

(on ice) in a Teflon/glass homogeniser.  An aliquot of buffer was then diluted to three-fifths 

of its original concentration and used to dilute the homogenate to a 10 ml volume.  This 

homogenate was then centrifuged at 10,000 g for 15 minutes.  The supernatant was then 

centrifuged in a Beckman ultracentrifuge at 105,000 g for 1 hour.  The supernatant from the 

ultracentrifugation step was then discarded and the pellet resuspended in 1 ml of the three-

fifths diluted sodium phosphate buffer (described above) by using a syringe.  This MFO 

preparation was then stored at -80 C in 100 µl aliquots until required. 
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2.4.6.2  Activity assay: O-deethylase toward 7-ethoxycoumarin (ECOD) 

Substrate (20 mM 7-ethoxycoumarin, Figure 2.4) was prepared by dissolving 7-

ethoxycoumarin in 1 ml 100 % ethanol.  This was then diluted in 0.1 M sodium phosphate 

buffer (pH 7.8) to make 0.5 mM 7-ethoxycoumarin.  NADPH (dihydronicotinamide adenine 

dinucleotide phosphate tetrasodium salt, Mr = 833.35) (9.6 mM) was prepared in 0.1 M 

sodium phosphate buffer (pH 7.8). 

 

Figure 2.4  7-Ethoxycoumarin 

(Mr = 190.20) 

 

To determine the volume of liver homogenate to use in the assay, various volumes of 

enzyme and diluted sodium phosphate buffer (section 2.4.6.1) were aliquoted onto a white 

96-well microplate with three replicates, each giving a final volume of 50 µl.  Control wells 

contained 50 µl diluted sodium phosphate buffer (pH 7.6) only.  To each well, 80 µl 0.5 mM 

7-ethoxycoumarin was added and the plate was incubated at 30 C for 3 minutes.  To each 

well, 10 µl 9.6 mM NADPH was then added and the plate read at an excitation wavelength 

380 nm, emission wavelength 460 nm using a Victor2 1420 multilabel counter (Wallac, 

Milton Keynes, UK) every five minutes, for one hour.  The volume of homogenate to use in 

further assays was chosen based on its ability to give a linear response throughout the assay. 

 

2.4.7 Biological assays 

Biological assays were performed by two different methods, either a leaf-dip method (section 

2.4.7.1), or a topical application method (section 2.4.7.2).  The approach used was dependent 

upon the insect studied and the compounds being tested.  Where compounds were water 

soluble a leaf-dip approach was performed whereas compounds dissolved in acetone were 

applied by a topical application technique.  For both methods, at least five concentrations of 

insecticide were tested, plus a control (no insecticide), and each one was replicated three 

times. 
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2.4.7.1 Leaf-dip 

Myzus persicae – EC formulations and microencapsulations  

Chinese cabbage leaf discs (38mm diameter) were treated with dilutions of pyrethrins 

dissolved in distilled water from an emulsifiable concentrate (EC) (v/v) or a 

microencapsulated formulation (w/v).  Both were dissolved in distilled water and serial 

dilutions were made using distilled water (v/v).  For the EC formulations, a control of the 

EC formulation minus the active insecticide was also tested at the equivalent of the highest 

concentration.  

 

The discs were transferred onto 17 ml 1 % agar (made up with boiling tap water) in 30 ml 

pots (3 cm x 4.5 cm diameter) where they were laid, adaxial surface down to dry in a fume 

hood.  Each treatment was replicated three times.  Fluon was applied around the top inner 

surface of the pots using a cotton bud.  Ten aphids were placed onto each leaf disc and the 

pot was covered with a plastic lid with a hole in the top covered by a fine wire mesh for 

ventilation.  Bioassay dishes were placed in a room with conditions matching those for the 

insect rearing.  Mortality was scored after 72 h and moribund insects were counted as dead.  

 

For a PBO pre-treatment, the aphids were first placed on leaf discs that had been treated 

with PBO EC (from a stock of 4 %) at a pre-determined concentration (4 times that of the 

insecticide) for the pre-determined length of time before being transferred to pyrethrin-

treated leaf discs.   

 

For a tank mix treatment the PBO and pyrethrins (Py) were premixed by BRA in a ratio of 

4:1 (PBO:Py) and applied using the same approaches as for the pyrethrins that were 

described previously.  

 

Bemisia tabaci – EC formulations 

Cotton leaf discs (38 mm diameter) from the same species of plants used for rearing, were 

treated with pyrethrins from an emulsifiable concentrate (EC) dissolved in distilled water 

(v/v) and serial dilutions were made using distilled water (v/v).  A control of the EC 

formulation minus the active insecticide was also tested at the equivalent of the highest 

concentration.  

 



Chapter Two General Materials and Methods 

 

37 

The discs were transferred onto 7.5 ml 1 % agar (made up with boiling tap water) that filled 

the base of a Petri-dish (0.6 cm x 4 cm diameter) where they were laid, adaxial surface down 

to dry in a fume hood.  Each treatment was replicated three times.  Whiteflies were collected 

by battery operated pooter, briefly anaesthetised with CO2 and placed onto a freezer block 

covered by a cloth.  Females were collected by mouth pooter and briefly anaesthetised with 

CO2.  Approximately 10-20 female whiteflies were then distributed onto each leaf disc. The 

discs were covered with a close fitting lid (0.8 cm x 4 cm diameter) that had 4 small net 

covered air vents (0.4 cm diameter circles) and the dishes were then placed upside down.  

Bioassay dishes were placed in a room with conditions matching those for the insect rearing.  

Mortality was scored after 48 h (moribund insects were also counted as dead). 

 

For a PBO pre-treatment, a four week old cotton plant was sprayed with 500 ppm PBO EC 

(v/v) (prepared using distilled water) and left to dry in a fume hood for an hour.  Female 

whiteflies were collected as described above and then released onto the plant in a cage for 9 

h.  The whiteflies were then collected and distributed onto pyrethrin treated leaf discs as 

described above. 

 

For a tank mix treatment the PBO and pyrethrins were premixed by BRA in a ratio of 4:1 

(PBO:Py) and applied using the same approaches as for the pyrethrins that were described 

previously.  

 

2.4.7.2 Topical application 

Myzus persicae 

Leaf discs (38 mm diameter) were cut from Chinese Cabbage cv Wong Bok and placed, 

untreated, onto 17 ml 1 % agar and the pots set up as described above. Ten aphids were 

placed onto each leaf disc and left to „settle‟ for at least 30 min.  The aphids were then dosed 

individually with 0.25 µl of treatment (uncalibrated volume), in acetone, using a Burkard 

micro-applicator (Burkard Scientific; Uxbridge, Middlesex) and 1 ml glass syringe with a 25 g 

stainless steel needle.  Mortality was scored after 72 h (moribund insects were counted as 

dead). 

Musca domestica 

Male and female M. domestica were collected and separated for bioassays. Musca domestica were 

collected from rearing cages by battery operated pooter.  The flies were then briefly 
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anaethetised using CO2 and sexed with males/females being separated for bioassay.  Flies 

(15-25) were put into bioassay dishes which comprised a round, clear plastic tub (10 cm 

diameter x 3 cm) with a cylinder of paper acting as breathable sides (286 mm x 85 mm, rolled 

and stapled to fit inside plastic dish).  Half of a 10 cm Petri-dish was used as a lid.  The flies 

were given a milk soaked cotton wool pad for 24 h prior to bioassay, and water and cube 

sugar for the duration of their time in the bioassay pot.  Prior to dosing, the flies were chilled 

at 4 C for 30 min – 1 h and then briefly anaethetised with CO2 for dosing.  Individual flies 

were dosed topically with 1 µl compound in acetone (uncalibrated volume) on the dorsal 

thorax (avoiding the wings), using a Burkard micro-applicator and 1 ml glass syringe with a 

25 g stainless steel needle.  The control flies were weighed before they were dosed with 

acetone only.  All flies were kept in normal rearing conditions for the bioassay period.  The 

number of dead flies was recorded after 24 h and the LC50 in ppm / 20 mg fly calculated 

from the LC50 results achieved using PoloPlus and the weight of the control flies.  Mortality 

was scored after 24 h (moribund insects were counted as dead). 

 

2.5 Analysis of data 

Depending upon the experiment performed, different methods were used to analyse the 

data, as described below. 

2.5.1 Novel esterase assay data 

Data were analysed using Grafit (Leatherbarrow, R.J., Version 3.09b, Erithacus Software, 

Horley) to draw graphs of the data, fit curves (4-parameter logistic) and ultimately calculate 

the IC50 for the novel esterase assay (chapter 4).  Confidence limits for the novel esterase 

assay were calculated using the formula shown in Appendix II.  Methodology for processing 

data from the novel esterase assay was developed in accordance with advice from Salvador 

Gezan (Rothamsted Research, Harpenden, UK). 

2.5.2 Cytochrome P450 assay data 

The rate of increase in P450 activity over time for each replicate within each compound was 

calculated using Microsoft Excel (Office XP Edition). Then, the mean and SE of the mean 

of the rates were calculated for each putative synergist. Methodology for processing data 

from the P450 assay was developed in accordance with advice from Stephen Powers 

(Rothamsted Research, Harpenden, UK).  Briefly, data were loaded into Excel, and each 

replicate was plotted, to check for linearity over time. Linear regression was then applied to 
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estimate the rate of increase for each replicate. The mean rate of the replicates for each 

putative synergist was calculated, and the efficacy of each one was demonstrated by 

expressing the mean rate as a percentage of the control (P450 + acetone).  The standard 

errors shown for these values were calculated using the formula for the variance of a ratio 

(see Appendix III.) 

 

2.5.3 Bioassay data 

Raw bioassay data was inputted into PoloPlus (v 1.0, LeOra Software) which converts doses 

into logarithms and calculates the LC10, 50 and 90, the slope, chi squared and degrees of 

freedom.  Only the LC50 and subsequently calculated resistance factors and effective 

synergism ratios are displayed in data tables in this thesis but the data from the PoloPlus 

outputs can be found in the tables in the appendices.  PoloPlus estimates natural response 

when control mortality occurs in the bioassays.  If no mortality is observed among the 

controls then the natural response is assumed to be zero (Robertson et al., 2007).  The slope 

gives an indication of the heterogeneity, with steeper slopes being more homogeneous, and 

also gives an indication of the potency of the insecticide (a more potent insecticide can be 

seen by a steeper slope).  PoloPlus was also used to compare data sets derived from different 

treatments on the same insect strain/clone.  The equality test determines whether the slopes 

and intercepts of the regression lines are the same.  If they are, the treatment effects are 

deemed not to be significantly different.  If the hypothesis of equality is rejected, the 

treatment response lines are significantly different.  Summaries of LC50 values (derived from 

PoloPlus) and corresponding resistance ratios, effective synergism ratios and synergistic 

factors can be found in relevant sections in relevant experimental chapters.  A summary of 

the PoloPlus outputs can be found in the appendices (Appendix IV for Chapter Three, and 

Appendix V for Chapter Five). 

 

Resistance factors (RF) and effective synergism ratios (ESR) were calculated using the 

equations shown below: 

 

RF (resistance factor) = LC50 (for x treatment) resistant clone 

LC50 (for x treatment) susceptible clone 
 
 

ESR (effective synergism 
ratio) 

= LC50 for any given treatment and clone 

LC50 susceptible clone, insecticide only 
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Because the size of adult M. domestica varies, a lethal dose was calculated rather than a lethal 

concentration.  This was calculated for a standard 20 mg fly using the following formula:  

LC50 (ppm) 
(for a standard 

20 mg fly) 

= LC50 (ppm) x 20** 

Ave. weight (mg)* 

 

*Ave. weight = average weight of one fly based on weight of control flies used in test (mg) 
** x20:  for a 20 mg standard fly 

 

This calculation was performed as there is a size difference of approximately 25 % between 

male and female flies, (with females being larger).  This is thought to create a similar dilution 

factor of any chemical substance entering the fly (M. Kristensen pers. comm.).  Observations in 

this study, and by Kristensen (pers. comm.) indicate that taking the weight of the flies into 

account usually gives similar LD50 values for males and females. 
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3 CHAPTER THREE:  ENHANCING THE EFFICACY OF NATURAL 

PYRETHRINS USING PIPERONYL BUTOXIDE  

3.1 Introduction 

Biological assays are important for establishing the in vivo effect of a synergist and insecticide 

on an insect species.  Although piperonyl butoxide (PBO) (or an alternative synergist) may 

give promising results in vitro, it is not until these compounds are tested on live insects that 

their ability to successfully penetrate the insects‟ cuticle and thus act on their target metabolic 

enzymes, can be determined.   

 

The bioassay technique using a suitable dose range is very important for establishing the 

concentration of insecticide required to give 50% mortality in a population of insects (LC50).  

For each insect species, preliminary experiments were performed to identify the optimal 

parameters for pyrethrins and PBO/pyrethrin treatments.  Various bioassay techniques were 

tested and the final methods chosen were described in section 2.4.7.  The insects studied in 

this chapter are M. persicae, B. tabaci and M. domestica.   

 

As discussed in Chapter One, PBO is now known to inhibit non-specific esterases and 

insecticide action can be enhanced by a mixture of insecticide and synergist.  However, 

studies have shown that it is only by allowing sufficient time for the synergist to penetrate 

the insect and inhibit the metabolic enzymes, prior to exposure to insecticide (temporal 

synergism), that maximum control is obtained.  This has been demonstrated with various 

agricultural pests (Young et al., 2005, 2006, Bingham et al., 2007, Bingham et al., 2008).  In 

this chapter the use of PBO, in a combination treatment (tank mix) with pyrethrins, and as a 

pre-treatment, prior to treatment with pyrethrins are compared.  

 

This chapter describes: 

 the determination of the LC50 for pyrethrins against M. persicae, B. tabaci and M. 

domestica to give base-line data for comparisons; 

 the testing of the efficacy of a tank mix of PBO and pyrethrins against M. persicae, B. 

tabaci and M. domestica to assess if a tank mix increases the efficacy of natural 

pyrethrins; 
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 the testing of the effect of a PBO pre-treatment prior to treatment with pyrethrins 

on M. persicae, B. tabaci and M. domestica to assess if a pre-treatment increases the 

efficacy of natural pyrethrins, compared to a tank mix; 

 the use of PBO/pyrethrin microencapsulations on M. persicae to assess their effect on 

the efficacy of natural pyrethrins; 

 bioassays using a synthetic pyrethroid (alpha-cypermethrin) to act as a comparison to 

natural pyrethrins. 

 

The bioassays on M. domestica were performed at the Danish Pest Infestation Laboratories 

(DPIL) in Denmark under the supervision of Michael Kristensen.  All other experiments 

were performed at Rothamsted Research. 

 

3.2 Materials and Methods 

3.2.1 Bioassays 

Bioassays (pyrethrins only, PBO/pyrethrins tank mix and PBO pre-treatment) were 

performed on adult insects according to methods described in sections 2.4.7.1 and 2.4.7.2.  

Important specific details for bioassays, or unique experiments not already described in 

Chapter Two are described below.  

3.2.2 Determining the optimum pre-treatment time for PBO, followed by 

pyrethrins, for Myzus persicae 

Bioassays were performed according to section 2.4.7.2.  Adult M. persicae (794jz clone) were 

dosed topically with 480 ppm PBO in acetone at intervals to give different pre-treatment 

times ranging from 30 minutes to 10 hours.  All M. persicae were then dosed with 120 ppm 

pyrethrins in acetone after their allotted pre-treatment time.  Mortality was scored 72 hours 

after the pyrethrins treatment.  A tank mix treatment (480:120 ppm PBO:pyrethrins) was 

used as a comparison. 

3.2.3 Assessing the effect of a pre-treatment of PBO on the efficacy of natural 

pyrethrins 

Bioassays were performed according to methods described in sections 2.4.7.1 and 2.4.7.2.  

The pre-treatment times used were 5 hours for M. persicae, 9 hours for B. tabaci and 3 hours 
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for M. domestica.  The ratio of PBO to pyrethrins was 4:1 for all M. persicae and B. tabaci 

experiments and 5:1 for M. domestica. 

3.2.4 Assessing the effect of pyrethrin microencapsulations 

Beta- and gamma-microencapsulated pyrethrins were tested on M. persicae in a leaf dip 

bioassay according to methods described in section 2.4.7.1.  Where PBO was used, the ratio 

of PBO to microencapsulated pyrethrins was 4:1. 

3.2.5 Bioassays with alpha-cypermethrin 

Bioassays were performed on M. persicae according to methods described in section 2.4.7.2.  

The pre-treatment time was 5 hours and for all experiments involving PBO, the ratio of 

PBO to alpha-cypermethrin was 4:1. 

 

3.3 Results and discussion 

Ratios of PBO:pyrethrins of 4:1 for M. persicae and B. tabaci were chosen based on cost 

benefits and results of previous studies (Young et al., 2006).  A ratio of 5:1 was used for M. 

domestica as this had been used at the Danish Pest Infestation Laboratories and enabled direct 

comparisons of these experiments with previous work (whilst working in the laboratory in 

Denmark).  Results for M. domestica (for a pyrethrins only treatment, and a PBO/pyrethrins 

tank mix treatment) concurred with those found previously by Kristensen et al. (pers. comm.) 

indicating that the insect strains were unchanged. 

 

When pyrethrins were applied at a high concentration, each insect species showed a similar 

response.  Generally, insects were unable to move in a coordinated manner and often lost the 

ability to feed.  

 

The data shown in Table 3.1 (a-d) are the summaries of LC50 values for each insect species 

studied, and the corresponding RFs and ESRs were calculated using the equations shown in 

section 2.5.3.  The LC50 data are derived from the raw data inputted into PoloPlus.  The 

summary of the PoloPlus output can be found in Appendix IV.  The data is first discussed in 

terms of the base-line data (pyrethrins only treatments), then the effect of a tank mix of PBO 

and pyrethrins on the efficacy of pyrethrins (section 3.3.1), and following that, a discussion 

of the effect of a PBO pre-treatment in comparison to both pyrethrins alone, and to a tank 

mix (section 3.3.2).  Where a P-value is given, it denotes the result of a test for the hypothesis 
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of equality based upon the slopes and intercepts of the bioassay data, as explained in section 

2.5.3. 

 

Table 3.1  Lethal concentration for 50 % mortality (LC50), resistance factors (RF) and 
effective synergism ratios (ESR) for a) Myzus persicae using a topical application 
technique; bi) male Musca domestica using a topical application technique; bii) 

female Musca domestica using a topical application technique; c) Myzus persicae 
using a leaf-dip technique; d) Bemisia tabaci using a leaf-dip technique.   

For M. domestica, rather than a LC50, the LD50 for a 20mg standard fly is given. The corresponding appendix 
table number is given next to the table sub-headings in brackets. S: susceptible; R: resistant.  Clone/strain 
names are given underneath each sub-table. 
 
a) Myzus persicae, topical application bioassay (Table A-IV-Ia) 

Treatment LC50 (ppm) RF ESR 

S R S R S R 

Pyrethrins only 37.2 1630.7 1.0 43.8 1.0 43.8 
PBO/pyrethrins tank mix (4:1) 6.8 121.7 1.0 17.9 0.2 3.3 
PBO pre-treatment / Pyrethrins (4:1) 46.3 192.7 1.0 4.2 1.2 5.2 
S: 4106a clone; R: 794jz clone 

bi) Musca domestica (male), topical application bioassay (Table A-IV-Ib) 

Treatment LD50 (ppm) RF ESR 

S R S R S R 

Pyrethrins only 659.4 8513.8 1.0 12.9 1.0 12.9 
PBO/pyrethrins tank mix (5:1) 46.2 365.3 1.0 7.9 0.07 0.55 
PBO pre-treatment / pyrethrins (5:1) 81.3 404.5 1.0 5.0 0.12 0.62 
S: WHOij2; R: 381zb 

bii) Musca domestica (female), topical application bioassay (Table A-IV-Ib) 

Treatment LD50 (ppm) RF ESR 

S R S R S R 

Pyrethrins only 755.7 11251.9 1.0 14.9 1.0 14.9 
PBO/pyrethrins tank mix (5:1) 48.6 589.3 1.0 12.1 0.06 0.78 
PBO pre-treatment / pyrethrins (5:1) 71.2 570.7 1.0 8.0 0.09 0.76 
S: WHOij2; R: 381zb;  

c) Myzus persicae, leaf-dip bioassay (Table A-IV-Ic) 

Treatment LC50 (ppm) RF ESR 

S R S R S R 

Pyrethrins only 22.7 365.6 1.0 16.1 1.0 16.1 
PBO/pyrethrins tank mix (4:1) - 64.1 - NC - 2.8 
PBO pre-treatment / pyrethrins (4:1) - 46.1 - NC - 2.1 
S: 4106a clone; R: 794jz clone; NC: not calculable 

d) Bemisia tabaci (female), leaf-dip bioassay (Table A-IV-Id) 

Treatment 
LC50 (ppm) RF ESR 

S R1 R2 S R1 R2 S R1 R2 

Pyrethrins only 10.1 629.5 >1000 1.0 62.3 NC 1.0 62.3 NC 
PBO/pyrethrins tank mix (4:1) 11.1 173.8 37.4 1.0 15.7 3.4 1.1 17.2 3.7 
PBO pre-treatment / pyrethrins 
(4:1) 

10.5 199.8 95.1 1.0 19.0 9.1 1.0 19.8 9.4 

S: Sud-S; R1: Mex2-GRB; R2: Pirgos; NC: not calculable 
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Results of the topical application technique of pyrethrins on M. persicae can be seen in Table 

3.1a.  These results show that the susceptible clone (4106a) has a LC50 of 37.2 ppm and the 

resistant clone (794jz) has a LC50 of 1630.7 ppm, with a difference of 1593.5 ppm between 

these two clones.  The RF and ESR for the resistant clone are both 43.8 which means that 

the resistant clone requires 43.8 times more pyrethrins than the susceptible clone for the 

same level of mortality (50 %). 

 

Results of the topical application of pyrethrins on M. domestica can be seen in Table 3.1bi and 

bii.  These results show that the susceptible strain (WHOij2) has a LC50 of 659.4 ppm (males) 

and 755.7 ppm (females).  The resistant strain (381zb) has a LC50 of 8513.8 ppm (males) and 

11251.9 ppm (females).  The RF and ESR values are 12.9 for males and 14.9 for females 

indicating that the LC50 for resistant males is 12.9 times greater than for the susceptible 

males, and for females it is 14.9 times greater. 

 

Results of the leaf dip bioassays on M. persicae can be seen in Table 3.1c.  The susceptible 

clone (4106a) has a LC50 of 22.7 ppm and the resistant clone has a LC50 of 365.6 ppm which 

is 342.9 ppm greater than the susceptible clone.  The RF and ESR for the 794jz clone are 

16.1 thus 16.1 times more pyrethrins are required to kill the resistant clone than the 

susceptible clone using the leaf dip technique.  The LC50 of the resistant clone using the leaf 

dip technique is lower than that of the topical application technique.  

 

Results of the leaf dip bioassays on B. tabaci can be seen in Table 3.1d.  The susceptible strain 

(Sud-S) has a LC50 of 10.1 ppm.  One resistant strain (Mex2-GRB) has a LC50 of 629.5 ppm 

which makes it 619.5 ppm greater than the susceptible strain, and with an RF and ESR of 

62.3.  The other resistant strain (Pirgos) was not killed in the dose range tested and hence the 

LC50 is known to be >1000 ppm and the RF and ESR are not calculable. 

3.3.1 The effect of a tank mix of PBO and pyrethrins 

The summary of data from bioassays investigating the effect of a tank mix of PBO and 

pyrethrins can be seen in Table 3.1a-d.   

 

Results for a topical application of a PBO/pyrethrins tank mix to M. persicae can be seen in 

Table 3.1a.  Treatment of the susceptible clone (4106a) with the tank mix saw a reduction in 

LC50 from 37.2 ppm to 6.8 ppm which is a 30.4 ppm difference.  This indicates that in the 

apparently susceptible clone, the background metabolic defences are knocked out by the 



Chapter Three Enhancing the Efficacy of Natural Pyrethrins using Piperonyl Butoxide 

 

46 

presence of the PBO.  There is a significant difference between the results for the pyrethrins 

only treatment and the tank mix treatment.   The resistant clone (794jz) saw a decrease in 

LC50 from 1630.7 ppm to 121.7 ppm which is a difference of 1509 ppm.  This saw a 

corresponding fall in the RF which was reduced from 43.8 to 17.9, and a decrease in the ESR 

from 43.8 to 3.3.  The pyrethrin only treatment and tank mix treatment results are 

significantly different (P<0.05) (see section 2.5.3) and show a large decrease in LC50 when 

PBO is present.  Although this decrease in LC50 has occurred, the ESR is greater than 1.0 

and this shows that the resistant clone has a higher LC50 when treated with the 

PBO/pyrethrin tank mix, than the susceptible clone treated with pyrethrins alone. 

 

For M. domestica, the bioassay data, which can be seen in Table 3.1bi and bii, shows no 

significant differences between the LC50 values for males and females, for either pyrethrins 

alone or for tank mix treatments, regardless of the strain studied, shown by the overlapping 

confidence limits.  The exception to this was in the resistant strain tank mix treatment which 

showed a significant difference between males and females (P<0.05).  Separating flies into 

sexes before bioassay therefore may not be essential, although it is common practice and the 

preferred method.   

 

As can be seen in Table 3.1bi and bii, the decrease in LC50 comparing pyrethrins alone and 

the tank mix, was significant for both male and female M. domestica, and for both the resistant 

(381zb) and susceptible (WHOij2) strains (P<0.05), indicating that metabolism of pyrethrins 

was occurring in susceptible M. domestica.  The resistant strain saw a decrease in LC50 from 

8513.8 ppm to 365.3 ppm for males, and 11251.9 ppm to 589.3 ppm for females.  The 

decreases in RF were from 12.9 to 7.9 for males and 14.9 to 12.1 for females.  These had 

corresponding decreases in ESR values from 12.9 to 0.55 for males and 14.9 to 0.78 for 

females which show that with a PBO/pyrethrin tank mix the resistant strain has a lower LC50 

than the susceptible strain treated with pyrethrins alone. 

 

The susceptible strain of M. domestica also saw a decrease in LC50 values for both males and 

females, and corresponding decreases in ESR values so indicating that background metabolic 

defences were disabled by the presence of PBO in the tank mix treatment, thus enhancing 

the effect of the pyrethrins. 

 

Results for a tank mix leaf dip treatment on M. persicae can be seen in Table 3.1c.  Results 

show a significant reduction (P<0.05) in LC50 for the resistant clone (794jz) from 365 ppm 
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with a pyrethrins only treatment to 64 ppm with a tank mix.  This had a corresponding ESR 

decrease from 16.1 to 2.8 which means that the resistant clone still has a higher LC50 than the 

susceptible clone treated with pyrethrins EC only. 

 

The resistant clone of M. persicae, treated with pyrethrins EC as a leaf dip application, had a 

RF of 16.1, which is low compared to 43.8 for technical pyrethrins in a topical application.  

The susceptible clone also had a lower LC50 using the leaf dip of pyrethrins EC compared to 

technical pyrethrins.  The LC50 values for topical and leaf dip of pyrethrins EC were very 

different, 1630 ppm and 365 ppm respectively.  Thus it appears that components of the EC 

formulation reduced the LC50 either by inhibiting resistance-associated enzymes and/or 

aiding penetration of pyrethrins across the cuticle.  This is discussed further in Chapter 5. 

 

Results for tank mix treatments as leaf dip bioassays on B. tabaci can be seen in Table 3.1d.  

Results show that for the susceptible B. tabaci (Sud-S) a tank mix of PBO and pyrethrins had 

no significant effect on the LC50 (P>0.05) when compared with pyrethrins alone.  However, 

there was a clear difference in LC50 values for the Mex2-GRB strain which can be seen as a 

decrease from 629.5 ppm to 173.8 ppm.  This had a corresponding decrease in RF from 62.3 

to 15.7, and a decrease in ESR from 62.3 to 17.2.   

 

Unfortunately it was not possible to achieve an LC50 for pyrethrins alone for the Pirgos strain 

of B. tabaci using the dose range of these experiments, and higher concentrations could not 

be used because the pyrethrins EC left the leaf disc with a sticky residue.  The Pirgos strain 

had an ESR of 3.7 when a tank mix was used so although an LC50 was not achievable for a 

pyrethrin only treatment, it is clear that the tank mix has a beneficial effect on the efficacy of 

the pyrethrins since with the presence of PBO, pyrethrins were able to kill this resistant 

strain.  Thus overall, these results show the benefit of a tank mix on the efficacy of natural 

pyrethins against both resistant strains of B. tabaci tested but the tank mix treatment on the 

resistant strain does not reduce the LC50 values to less than those for the pyrethrin only 

treatment on the susceptible strain. 

 

Overall the results for all 3 insect species show that for resistant insects a tank mix of PBO 

and pyrethrins gave a significant reduction in LC50 values compared to pyrethrins alone, 

suggesting that in all cases the tank mix would be a better for field use than pyrethrins only, 

but this was only better than the susceptible strain treated with pyrethrins only, for M. 

domestica.  
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3.3.2 The effect of a pre-treatment of PBO prior to treatment with pyrethrins 

(compared to a tank mix of PBO and pyrethrins) 

Bioassays using a range of PBO pre-treatment times showed that for M. persicae PBO applied 

5 hours prior to treatment with pyrethrins was the most effective at increasing mortality 

(Figure 3.1).  Thus, 5 hours was used as the pre-treatment time for subsequent M. persicae 

experiments.  For B. tabaci a pre-treatment time of 9 hours was chosen for practical reasons 

and it is close to the 11 hours found to be the most effective by Young et al. (2006).  For M. 

domestica a 3 hour pre-treatment time was chosen based on the time available to complete the 

experiments whilst visiting DPIL in Denmark. 

 

 

Figure 3.1  The effect of a PBO pre-treatment (prior to application of natural 
pyrethrins) on the mortality of resistant adult Myzus persicae (794jz clone), 72 hours 

after dosing with pyrethrins 

Error bars show the standard deviation from the mean. 

 

Considering both the resistant and susceptible clones of M. persicae, the reduction in the LC50 

using a tank mix was greater than that using a pre-treatment.  This was unexpected since 

previous work had demonstrated that a PBO pre-treatment was more effective for synthetic 

pyrethroids.  It appears that for natural pyrethrins PBO could be enhancing the penetration 

of the pyrethrins through the insect cuticle and this effect is greatly diminished in the 5hr 

pre-treatment, i.e., although the optimum time for the inhibition of esterases by PBO is 5 
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hours, the effect of enhanced penetration through the cuticle is greater than the effect of 

inhibiting the esterases.  The results indicate that the enhanced penetration effect declines 

rapidly (mortality is reduced by more than 50 % after a 1 hour PBO pre-treatment).  The 

subsequent rise in mortality, to a peak at 5 hours could be due to the inhibitory binding 

effect that PBO has on the esterases (Figure 3.1). 

 

Results for M. persicae with a topical application of technical PBO and pyrethrins can be seen 

in Table 3.1a.  The susceptible clone saw an increase in LC50 from 37.2 ppm without a pre-

treatment, to 46.3 ppm with a PBO pre-treatment (discussed below).  The resistant clone 

(794jz) showed a decrease in LC50 of 1438 ppm, from 1630 ppm to 192.7 ppm with the pre-

treatment of PBO followed by application of pyrethrins.  The RF decreased from 43.8 to 4.2, 

and the ESR decreased from 43.8 to 5.2.  From the RF, it appears that the pre-treatment was 

more effective than the tank mix.  However, the ESR value for a tank mix is 3.27 thus there 

is an 8.4-fold difference in the ESR for a pre-treatment compared to pyrethrins alone, and a 

13.3-fold difference in the ESR for a tank mix compared to pyrethrins alone, indicating 

strongly that the tank mix is more effective.  However, the ESR is above 1.0 for both tank 

mix and pre-treatment thus control in the field would require more insecticide than the 

susceptible clone.   

 

Analysis using PoloPlus revealed a significant difference between the pre-treatment and tank 

mix on the resistant clone (P<0.05) for the topical application treatment.  The discrepancy 

between the RF suggesting that the pre-treatment is more effective, and the ESR showing 

the tank mix to be more effective, is due to the higher LC50 for the susceptible clone after a 5 

h pre-treatment with PBO.  This is because the RF is calculated using comparable treatments 

of the resistant and susceptible clones (see section 2.5.3) whereas the ESR looks at the 

difference between any given treatment and clone compared with the susceptible clone 

treated only with insecticide (see section 2.5.3).   

 

The higher LC50 seen in the susceptible clone of M. persicae (4106a) after a 5 hour PBO pre-

treatment compared with pyrethrins alone (Table 3.1a) could be due to the recovery of 

background enzymes, or possibly, an induction of more enzymes due to the PBO pre-

treatment.  However, statistical analysis showed the difference between the pyrethrins only 

treatment and a PBO pre-treatment followed by pyrethrins on the susceptible clone to be 

significant (P<0.05).  
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Induction of P450 activity by PBO has been found in mammals and insects (Skrinjar.M et al., 

1971, Yu & Terriere, 1974, Kinsler et al., 1990) but since Myzus persicae resistance is 

established to be due to over-expressed esterases it is felt this is unlikely to be an issue in this 

case. Similarly, Willoughby et al. (2007) found PBO induced expression of glutathione S-

transferase genes in Drosophila melanogaster, but this was only at the gene level and no evidence 

of increased levels of proteins were given.  Nevertheless, the possibility that PBO is inducing 

one or more detoxification enzymes in the current study cannot be discounted and would 

require further investigation.   

 

The results of the susceptible clone demonstrate the importance of calculating the ESR 

rather than RF, as discussed in Chapter Two.  For the susceptible clone there are very low 

levels of metabolic enzymes and therefore the enhanced penetration effect of PBO is more 

important than its ability to inhibit the enzymes.  As a result, the LC50 of the susceptible 

clone is not reduced as much as it is for the resistant clone.  Therefore in the susceptible 

clone with a pre-treatment of PBO prior to application of pyrethrins, the RF decreases but 

the ESR increases. 

 

Results for pre-treating resistant M. domestica (strain 381zb) with PBO prior to application of 

pyrethrins can be seen in Table 3.1bi and bii. For males there was a decrease in LC50 from 

8513.8 ppm to 404.5 ppm, and for females the reduction in LC50 was from 11251.9 ppm to 

570.7 ppm.  These LC50 values had corresponding reductions in RF, from 12.9 for the 

pyrethrins only treatment to 5.0 for the PBO pre-treatment followed by pyrethrins for males, 

and from 14.9 for the pyrethrins only treatment to 8.0 for the PBO pre-treatment followed 

by pyrethrins for females.  Both had corresponding reductions in ESR of over 19-fold.  

Statistical analysis of the results showed that a pre-treatment reduced the LC50 significantly, 

compared with a pyrethrins only treatment (P<0.05).   

 

Results for the susceptible strain of M. domestica show that a pre-treatment of PBO decreased 

the LC50 by 578.1 ppm, from 659.4 ppm for pyrethrins only treatment, to 81.3 ppm for a 

pre-treatment on males (Table 3.1bi).  A decrease of 684.5 ppm, from 755.7 ppm for 

pyrethrins only, to 71.2 ppm for a pre-treatment (Table 3.1bii) was seen for females.  When 

compared to a tank mix, the results showed that in susceptible M. domestica the tank mix 

worked more effectively than the pre-treatment (P<0.05).   
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In the resistant strain of M. domestica (381zb), the tank mix and pre-treatment gave similar 

results with overlapping confidence limits for the LC50 values.  The pre-treatment time for 

M. domestica was not optimised and if optimised, may improve the pre-treatment result 

further.  However, the results do correspond to those results found in the M. persicae 

bioassays whereby the tank mix was more effective than the pre-treatment at enhancing the 

efficacy of pyrethrins. 

 

Results for the leaf dip bioassay using a pre-treatment of PBO EC five hours prior to 

treatment with pyrethrins EC on M. persicae, can be seen in Table 3.1c.  With a pre-treatment, 

the LC50 was reduced from 365 ppm to 46.7 ppm.  Although the RF is not calculable for this 

experiment (as the susceptible clone was not given a pre-treatment) the ESR showed a 

reduction from 16.1 to 2.1 which means that although there was nearly an 8-fold decrease in 

the amount of insecticide required for 50 % mortality, this isn‟t as low as is required by the 

susceptible clone with a pyrethrins only treatment.  There was no significant difference 

between results for the tank mix and the PBO pre-treatment.   

 

Results for leaf-dip bioassays on B. tabaci can be seen in Table 3.1d.  Results show that a pre-

treatment of PBO gave no significant effect on Sud-S, the susceptible strain.  However, there 

was a significant difference in LC50 values between a pyrethrin only treatment and PBO pre-

treatment for the Mex2GRB strain (P<0.05) whereby the LC50 was reduced by 429.7 ppm, 

from 629.5 ppm to 199.8 ppm.  For this strain, the RF was reduced from 62.3 to 19 and the 

ESR was reduced more than 3-fold from 62.3 to 19.8.  The pre-treatment did therefore 

improve the efficacy of the pyrethrins, but not to the same extent that the pyrethrin only 

treatment has on the susceptible strain.  The LC50 for the Pirgos strain was reduced from 

>1000 ppm to 95 ppm.  For the pyrethrins only treatment the RF and ESR were not 

calculable but the ESR was reduced from „uncalculable‟ down to 9.4 with a pre-treatment.  

This means that the pre-treatment on the Pirgos strain was more effective than then pre-

treatment on the Mex2-GRB strain, perhaps due to different metabolic defences occurring in 

each strain, and more being eliminated in Pirgos by the pre-treatment than in Mex2-GRB.  

For both strains, the tank mix was more effective than the pre-treatment. 

 

Overall, the results show that although a PBO pre-treatment can significantly enhance the 

effect of natural pyrethrins, the effect is either less than, or not significantly different from 

the effect of a PBO and pyrethrin tank mix.  This was in contrast to the results found 

previously for PBO with synthetic pyrethroids (Young et al., 2006, Bingham et al., 2007). 
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3.3.3 The effect of pyrethrin microencapsulations 

The effect of pyrethrin microencapsulations was tested on resistant M. persicae and the results 

can be seen in Table 3.2.  When pyrethrins were incorporated into microencapsulations with 

either β-cyclodextrin or γ-cyclodextrin formulations, neither could kill the resistant clone of 

M. persicae using the dose range tested.  At the highest concentrations tested there was a white 

chalky residue of the formulation left on the leaf discs.  It is highly likely that the actual 

concentration of pyrethrins on the leaf disc was less than the calculated concentration as the 

solubility of the compounds is very low.  Solubility of the β-cyclodextrin formulation is 0.4 

mg/ml but the highest concentration used was 250 times greater than what is realistically 

soluble.  Likewise, solubility of the γ-cyclodextrin formulation is 0.2 mg/ml and the highest 

concentration used was 625 times greater.  As a consequence, the results achieved can only 

be considered as indicators of the effect of microencapsulated pyrethrins.  It would be 

interesting to look at formulations with improved solubility in the future.  

 

Table 3.2  Lethal concentration for 50 % mortality (LC50), resistance factors (RF) and 
effective synergism ratios (ESR) for a) Myzus persicae treated with β-cyclodextrin 

microencapsulated pyrethrins (leaf dip bioassay); and b) Myzus persicae treated with 
γ-cyclodextrin microencapsulated pyrethrins (leaf dip bioassay) 

The corresponding appendix table number is given next to the table sub-headings in brackets. S: susceptible; R: 
resistant.  Clone/strain names are given underneath each sub-table. 
 
a) Myzus persicae treated with β-cyclodextrin microencapsulated pyrethrins (leaf dip bioassay) (Table 
A-IV-II) 

Treatment LC50 (ppm) RF ESR 

S R S R S R 

Pyrethrins only 583.4 >10000 1.0 NC 1.0 NC 
PBO (EC) / pyrethrins tank mix (4:1) - 50.2 - NC - 0.086 
PBO (top app) / Pyrethrins (4:1) - 137.9 - NC - 0.236 
S: 4106a clone; R: 794jz clone; NC: not calculable 

b) Myzus persicae treated with γ-cyclodextrin microencapsulated pyrethrins (leaf dip bioassay) (Table 
A-IV-II) 

Treatment LC50 (ppm) RF ESR 

S R S R S R 

Pyrethrins only >1000 >10000 NC NC NC NC 
PBO (EC) / pyrethrins tank mix (4:1) - 64.9 - NC - NC 
PBO (top app) / Pyrethrins (4:1) - 261.4 - NC - NC 
S: 4106a clone; R: 794jz clone; NC: not calculable 

 

The susceptible clone of M. persicae had a LC50 of 583 ppm using β-cyclodextrin (Table 3.2a), 

however with the γ-cyclodextrin formulation, 50 % mortality could not be achieved within 

the dose range tested (Table 3.2b).  The LC50 for the susceptible clone using a β-cyclodextrin 

formulation was 25 times greater than when using BRA recipe pyrethrins in an emulsifiable 

concentrate and 1.5 times greater than the LC50 for the resistant clone (also treated with a 
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leaf dip of pyrethrins EC) (Table 3.2a).  It appears that the pyrethrins are more effectively 

released from the β-cyclodextrin complex since the susceptible clone survived a γ-

cyclodextrin formulation but not the β-cyclodextrin formulation.  Likewise, with the addition 

of PBO (both EC and topical application), the resistant clone had a lower LC50 when the β-

cyclodextrin formulation was used than with the γ-cyclodextrin formulation.   

 

The addition of PBO (both PBO EC and topical application of technical PBO) to the 

microencapsulated pyrethrins reduced the LC50 for the resistant clone to less than the LC50 

for the susceptible clone treated with microencapsulated pyrethrins alone.  The decrease in 

the ESR was only calculable for the β-cyclodextrin formulations (as the γ-cyclodextrin 

formulation did not kill the susceptible clone in the dose range tested) and this gave a 

dramatic effect for both PBO EC and topical application.  Where the LC50 was reduced from 

>10000 ppm down to 50.2 ppm for a PBO EC and microencapsulated treatment, and 137.9 

ppm for a topically applied technical PBO treatment with microencapsulated pyrethrins as a 

leaf dip, the ESR values were reduced from 1.0 to 0.086 and 0.236 respectively.  This means 

that the addition of PBO to a microencapsulated formulation has the ability to make the 

resistant clone more susceptible than the susceptible clone treated with pyrethrins alone.   

 

Although an ESR was not calculable for the γ-cyclodextrin results (because there was no 

LC50 value for the susceptible clone with γ-cyclodextrin), it was clear that the LC50 for the 

resistant clone was reduced to less than that for the susceptible clone, showing that both 

formulations have the ability to make the resistant clone of M. persicae more susceptible than 

the laboratory standard susceptible clone.  This is probably due to a physical effect whereby 

the microencapsulations are not releasing the pyrethrins from the complex and into solution, 

but the addition of PBO can alter the structure of the encapsulation, possibly by breaking up 

the cyclodextrin complexes.  The very low ESR seen for the PBO and β-cyclodextrin 

complex is not because the LC50 values are particularly low, but because the LC50 for the 

susceptible clone with pyrethrins only microencapsulation is high compared to the other 

results. 

 

Thus, these results suggest that for microencapsulated pyrethrins PBO can help the 

pyrethrins to be released from the microencapsulation complexes.  The LC50 values are lower 

for the PBO EC and microencapsulated pyrethrins treatment (both β- and γ-) compared to a 

topical application of PBO and microencapsulated pyrethrin treatment, but both methods 

showed a large reduction in the LC50 compared to microencapsulated pyrethrins alone.  It is 
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not possible to give a numerical value to this decrease in LC50 since it was not possible to 

achieve an LC50 without PBO.  With the PBO EC, the PBO was physically mixed into the 

microencapsulated formulations, whereas with the topical application of PBO, the PBO was 

applied directly onto the aphid.  For both a leaf dip and a topically applied treatment, PBO 

may also be acting as a synergist by inhibiting the metabolic defences in the insects but the 

higher LC50 for the topically applied treatment suggests that the main effect is that of a 

physiochemical reaction upon the encapsulation matrix. 

 

The LC50 values obtained in the microencapsulated pyrethrin experiments were very similar 

to those seen in PBO/pyrethrins EC leaf dip bioassays.  Taking into account the enhanced 

synergism using PBO EC with microencapsulated pyrethrins, the lower LC50 values and RFs 

using pyrethrin EC, as opposed to technical pyrethrins, and the greater levels of synergism 

when using PBO EC compared to technical, it appears that the components of the EC 

formulation enhanced the effects of the pyrethrins.  This is further discussed in Chapter Five 

where the components of the EC formulation were tested for their ability to inhibit 

resistance-associated esterases and P450s, and evaluated as synergists in vivo in bioassays. 

 

3.3.4 The effect of a PBO pre-treatment or tank mix with alpha-cypermethrin 

The results reported here have shown that a PBO pre-treatment followed by natural 

pyrethrins was no more effective than a tank mix.  This was in contrast to previous studies 

that involved either a PBO pre-treatment followed by treatment with a synthetic pyrethroid 

(Young et al., 2006, Bingham et al., 2007), or a microencapsulation of PBO and a synthetic 

pyrethroid (Bingham et al., 2007).  Bioassays using a topical application of PBO and alpha-

cypermethrin were therefore performed to confirm the integrity of the technical PBO and 

can be seen in Table 3.3.  These were similar experiments to those reported by Bingham et al. 

(2007) with the same insect species, Myzus persicae, and the same resistant clone, where a pre-

treatment of PBO reduced the LC50 for alpha-cypermethrin more than the tank mix.   
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Table 3.3  Lethal concentration for 50 % mortality (LC50), resistance factors (RF) and 
effective synergism ratios (ESR) for Myzus persicae treated with α-cypermethrin 

(topical application bioassay). 

(see appendix IV, Table A-IV-III) 

Treatment LC50 (ppm) RF ESR 

S R S R S R 

α-cypermethrin 0.495 3230.2 1.0 6525.7 1.0 6525.7 

PBO/α-cypermethrin tank mix (4:1) - 810.8 - NC - 1637.9 

PBO pre-treatment/α-cypermethrin  
(4:1) 

- 169.9 - NC - 343.2 

S: 4106a clone; R: 794jz clone; NC: not calculable 

 

Using a leaf dip approach, Bingham et al. (2007) reported that to achieve 50 % mortality the 

794jz clone needed 3460 ppm of alpha-cypermethrin when it was applied alone; 62.3 ppm 

for a tank mix with PBO; and 10.9 ppm for a pre-treatment with PBO.  As can be seen in 

Table 3.3, using a topical application the LC50 values were very different to those reported by 

Bingham et al., (2007) but in both cases there was a similar trend, with the pre-treatment 

being significantly more effective than a tank mix (P<0.05). 

 

These experiments have shown that there are differences in the effect of PBO either as a 

tank mix with pyrethrins or as a pre-treatment prior to pyrethrins, compared with a PBO 

tank mix or pre-treatment with the synthetic pyrethroid alpha-cypermethrin.  This may be 

due to PBO giving a greater penetration enhancement with pyrethrins than with the synthetic 

compound. 

 

3.4 General discussion 

General observations from all bioassays correspond with previous findings that pyrethrins 

have a rapid action whereby insects are knocked down and paralysis occurs, leading to death 

when the dose is sufficiently high (Stevenson, 1959).  This is because pyrethrins have an 

almost immediate effect of blocking nerve transmission.  It has been reported, and was 

observed in the experiments reported here, that at sub-lethal doses pyrethrins can also cause 

paralysis but the insect is able to recover, normally within a few hours, and the length of time 

of the paralysis may reflect the time required for the detoxification of the pyrethrins 

(Stevenson, 1959).   

 

In the present studies it was shown that with the addition of PBO, the effect of pyrethrins 

was enhanced for both resistant and susceptible insects.  The action on the susceptible 
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insects is probably due to the background esterases and/or P450s being blocked by PBO.  In 

resistant insects the esterases/P450s which are present in elevated levels are also blocked by 

PBO.  Thus, in the absence of the synergist, the pyrethrins are quickly detoxified and 

therefore the treatment with the synergist must be made either at the same time, or in 

advance of the pyrethrins treatment. 

 

The same paralysis effect on the insect was seen for both the pyrethrins and the 

PBO/pyrethrins mixes, which indicates that PBO is functioning by inhibiting the 

detoxification of the pyrethrins rather than by forming a complex with the pyrethrins.   

 

The results in this chapter have indicated that there are different levels of synergism 

occurring in the different insect species.  This may be because the level of detoxification 

mechanisms (esterases/P450s) are different in each species or it may be related to the 

potency of the pyrethrins in different species. 

 

This work used both topical application and leaf-dip bioassay techniques.  It is important to 

remember that a topical application, where the insecticide is absorbed directly through the 

insects‟ cuticle, bypasses any detoxification that would normally take place in the insects‟ 

digestive tract.  Therefore bioassay results from experiments using a leaf-dip technique 

cannot be compared directly with those using topical application and vice versa. 

 

Although PBO enhanced the effect of pyrethrins in all insects species studied, of the 3 insect 

species tested, M. domestica was the only one where using PBO as a tank mix or pre-treatment 

reduced the ESR to less than 1, showing that for this strain and species, less insecticide 

would be required to kill resistant insects than would be required to kill the susceptible strain. 

 

This work has tested the effect of PBO and pyrethrins compared with PBO and a synthetic 

pyrethroid.  Previous results have indicated that target-site insensitivity or knockdown 

resistance (kdr) and super-kdr do not affect pyrethrins in the same way, or to the same level, 

as they affect synthetic pyrethroids (Farnham et al., 1987).  Results in this chapter exemplify 

this by a lower LC50 for natural pyrethrins than for synthetic pyrethroids on insects with kdr.   

 

Davies et al. (2007) suggest kdr is caused by a change in the conformation of the target 

protein, the voltage-gated sodium channel rather than a mutation on the binding site itself.  

This conformational change, caused by an amino acid substitution (induced at the L1014 
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residue on domain II, S6) (Davies et al., 2007) means that the protein changes shape and as a 

result the insecticide may not fit/bind to the protein as well as it would in an unmutated one.  

The change in the protein caused by kdr is more apparent for synthetic pyrethroids than for 

natural pyrethrins.  This is thought to be because many synthetic pyrethroids tend to be 

much larger molecules, due to the phenoxybenzoyl moiety in the alcohol part, whereas the 

smaller and less bulky pyrethrins can still fit into the channel (albeit not as well as they might 

without the mutation) and thus are still able to act on the nervous system.  Therefore, in light 

of results found here, in the absence of target site resistance synthetic pyrethroids would be 

the insecticides of choice.  In the absence of resistance mechanisms, a synthetic pyrethroid 

will usually be more potent than natural pyrethrins.  However, if kdr or super-kdr are present, 

there is potential for the pyrethrins to be the more potent xenobiotic.  Therefore, if target-

site resistance is present, pyrethrins would be a good choice accompanied by PBO if 

metabolic resistance mechanisms are also present. 

 

This chapter has discussed the use of PBO as a synergist with pyrethrins.  On the whole 

results have shown that a tank mix of PBO and pyrethrins is as effective/more effective than 

a pre-treatment of PBO followed by treatment with pyrethrins.  

 



Chapter Four Development of a New Biochemical Assay to Demonstrate the Inhibition of Esterases 
by PBO in vitro 

 

58 

4 CHAPTER FOUR: DEVELOPMENT OF A NEW BIOCHEMICAL 

ASSAY TO DEMONSTRATE THE INHIBITION OF ESTERASES BY 

PBO IN VITRO 

4.1 Introduction 

Both bioassays and field work have already shown that piperonyl butoxide (PBO) is an 

effective inhibitor of insect esterases in vivo (Young et al., 2005, 2006, Bingham et al., 2007, 

Bingham et al., 2008).  Biochemical assays provide fast and efficient methods of detecting 

esterase activity in single insects and can, in theory, determine whether or not the esterases 

can be inhibited by PBO.      

 

Such assays can reduce the need for extensive, time consuming and laborious biological 

assays by providing an alternative initial screening technique to identify resistance associated 

with elevated esterases.  This chapter considers the robustness of a standard 

spectrophotometric assay for detecting esterase activity (and the effect of PBO on the 

esterases), and the subsequent development of a new „esterase interference assay‟ better able 

to demonstrate the inhibition of resistance-associated esterases.  The principle behind the 

new assay is described in Figure 4.1.  Esterase activity is measured indirectly: The insecticide 

acts on the target site and is detected as low AChE activity.  With the addition of esterases, 

they will sequester the insecticide before it is able to act on the target site and this will be 

indicated by high AChE activity.  Incubation of a synergist with the esterases will block their 

activities, enabling the insecticide to act on its target site.  This will be indicated by low 

AChE activity.  The developmental stages of the assay are discussed in section 4.2. 

 

In contrast to this new assay, the standard spectrophotometric assay measures directly how 

esterase activity is affected by a serial dilution of PBO across a microplate but this is 

sometimes unable to detect PBO activity (Figure 4.2).  
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Figure 4.1  The interactions between the insecticide, target site, synergist and 
esterase enzymes, used as the basis for the „esterase interference assay‟. 

In this assay esterase activity is detected indirectly by measuring AChE activity.  A negative symbol denotes an inhibitory action. 
* measured by activity on a model substrate (ATChI) 

 

In this assay the AChE was supplied as a homogenate of M. domestica with Triton X-100 

(0.1%) added to solubilise the membrane-bound AChE.  The Triton X-100 was only added 

to the housefly homogenate and was not incubated with any esterases from other sources 

(e.g. E4) because experiments to investigate the use of 0.1 % Triton X-100 in the phosphate 

homogenisation buffer (to aid the release of the esterases into solution), had indicated that 

the Triton X-100 interfered with the binding of PBO to the esterase (p59 Bingham, 2007).   

 

4.1.1 Materials and methods 

Unless otherwise stated, the phosphate buffer referred to in the following methods was 0.02 

M phosphate buffer (pH 7.0). 

4.1.1.1 Standard spectrophotometric assay 

A 96-well microplate was prepared as follows: 50 µl phosphate buffer was added to each 

well, with an additional 22 µl buffer and 3 µl 0.3 M PBO (in acetone) added to the wells of 

the first column.  A three fold serial dilution of PBO was made across the plate by pipetting 

25 µl from the first column to the next, up to the penultimate column, from which the 25 µl 

was discarded.  The last column contained an additional 25 µl buffer only to act as a control 

Insecticide 

e.g. azamethiphos 

Target site 

e.g. AChE* 

Synergist 

e.g. PBO 

Esterase 

enzymes 

e.g. E4 

- - 

- 
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(no PBO).  A row containing a serial dilution of acetone was used as the acetone control.  

Insect homogenate (25 µl) was added to each well and the plate left to stand for 15 minutes 

at room temperature.  The resulting concentrations of PBO in the wells were 9000, 3000, 

1000, 333.3, 111.1, 37.04, 12.35, 4.115, 1.372, 0.457 and 0.152 µM.  After this time, the 

esterase substrate (200 µl 1 mM 1-naphthyl-acetate: see appendix I) was added to each well.  

The control well was used to calculate the inhibition of the esterases by PBO.    The plates 

were read as described in section 2.4.3.  In addition, pure E4 (see section 2.4.2) was 

incubated with PBO overnight as described above and the plate was read following the same 

protocol.   

 

4.1.1.2 Development of the new „esterase interference assay‟ 

Various initial experiments were performed in the development of this assay.  Firstly, the 

ATChI and DTNB, were examined both together and separately for any absorption at 405 

nm without any AChE present and neither showed any activity.   A serial dilution of acetone 

showed that acetone does not affect the level of AChE activity detected and an experiment 

using three different concentrations of housefly homogenate, diluted with phosphate buffer 

plus 0.1 % Triton X-100, (undiluted homogenate, 2-fold diluted homogenate, 5-fold diluted 

homogenate) showed that inhibition of AChE is not affected by the concentration of the 

housefly homogenate.  Acetone was incubated with E4 overnight but did not show any 

inhibitory effect on the E4.  Following these initial experiments, each step in the assay was 

optimised as follows: 

 

Step 1: Selecting the AChE inhibitor 

A 96-well microplate was prepared as follows: 50 µl phosphate buffer was pipetted into every 

well with a three-fold serial dilution of each AChE inhibitor to be tested across the plate 

starting with 3 µl in the first well, which contained an additional 22 µl of buffer.  A three-fold 

serial dilution of each inhibitor was then made by pipetting 25 µl from the first column to the 

next up to the penultimate column, from which the 25 µl was discarded.  The last column 

contained an additional 25 µl buffer only to act as a control (no AChE inhibitor).  A further 

25 µl phosphate buffer was added to each column.  A M. domestica homogenate was prepared 

as described in section 2.4.1 with 0.1% Triton X-100 and 25 µl was added to each column 

and left to stand for 15 minutes at room temperature and then 100 µl 1.5 mM DTNB and 

100 µl 1.5 mM ATChI were added (appendix I).  The plates were read as described in Section 
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2.4.4.  The AChE inhibitors tested were azamethiphos (10-5 M), eserine (10-2 M and 10-5M) 

and paraoxon (10-2 M and 10-5 M).  

 

Step 2: Assessing the effect of E4 on AChE inhibition 

A 96-well microplate was prepared as follows: 50 µl phosphate buffer was pipetted into every 

well with a three-fold serial dilution of azamethiphos in acetone (10-5 M) starting with 3 µl in 

the first well, which contained an additional 22 µl of buffer.  A three-fold serial dilution of 

azamethiphos was made by pipetting 25 µl from the first column to the next up to the 

penultimate column, from which the 25 µl was discarded.  The last column contained an 

additional 25 µl buffer only to act as a control (no azamethiphos).  To each row varying 

volumes of purified E4 (50, 40, 30, 20, 10, and 0 µl) and phosphate buffer (0, 10, 20, 30, 40, 

50 µl respectively) were added to give a combined final volume of 50 µl E4+phosphate 

buffer in each well.  The plate was left to stand at room temperature for 15 minutes.  A M. 

domestica homogenate was prepared according to section 2.4.1 with 0.1% Triton X-100 and 

this AChE source was added to each well (25µl) and left to stand for 10 minutes at room 

temperature, followed by the addition of 100 µl 1.5 mM DTNB and 100 µl 1.5 mM ATChI 

to each well (appendix I).  The plates were read as described in Section 2.4.4.  The 

experiment was repeated with a 2 hour incubation of the E4 and azamethiphos. 

 

Step 3: Assessing the effect of PBO on the E4 

Purified E4 was incubated with 3 mM PBO overnight at 4 C.  A 96-well microplate was 

prepared as described in step 2 above but with a row containing 50 µl E4 in each well, and a 

row containing 50 µl phosphate buffer, with an additional row on the microplate where each 

well contained 50 µl E4 + 3 mM PBO and 35 µl phosphate buffer. 

 

Step 4: Optimisation of the assay 

From the results of steps 1-3, the whole assay was optimised to use as little E4 as possible.  

The final protocol was: 

 

Purified E4 was incubated with either PBO in acetone (3 mM final concentration, from a 0.3 

M stock) or acetone only (to give E4 + 1% acetone), overnight at 4 C.  A 96-well microplate 

was prepared as follows: 25 µl 0.02 M phosphate buffer (pH 7.0) was pipetted into every well 

and 3 µl 10-6 M azamethiphos pipetted into the first well, which contained an additional 22 µl 

of buffer.  A 2-fold serial dilution of azamethiphos was performed by pipetting 25 µl from 

the first column to the next up to the penultimate column, from which the 25 µl was 
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discarded.  The last column contained an additional 25 µl buffer only to act as a control.  To 

the wells of row A: 50 µl buffer was added to each well, to row B: 15 µl E4 and 35 µl 

phosphate buffer were added, and to row C: 15 µl E4 + 3 mM PBO and 35µl phosphate 

buffer.  The E4 was left to stand in the wells for 1 h at room temperature.  The resulting 

azamethiphos concentrations in the wells were (in nM): 20, 10, 5, 2.5, 1.25, 0.62, 0.31, 0.16, 

0.78, 0.039, and 0.020.  Musca domestica homogenate was prepared according to section 2.4.1 

with 0.1 % Triton X-100.  Homogenate (25 µl) was added to each column and left to stand 

for 15 minutes at room temperature, followed by 80 µl 1.5 mM DTNB (see appendix 1) and 

80 µl 1.5 mM ATChI (see appendix 1).  The plates were read as described in Section 2.4.4.  

The assay was repeated starting with 0.03 M and 0.003 M stock PBO. 

 

4.2 Results and Discussion 

It has been reported that the sensitivity of resistant M. persicae, B. tabaci and H. armigera to 

insecticides as diverse as pyrethroids, carbamates and neonicotinoids can be increased by a 

pre-treatment of PBO (Young et al., 2005, 2006, Bingham et al., 2007, Bingham et al., 2008)  

This suggests that the synergist was blocking the enhanced metabolic activity, although in 

vitro assays have failed to show its effect (Gunning et al., 1998).  This was re-tested and the 

results of a standard spectrophotometric assay are shown in Figure 4.2.  There was no 

appreciable inhibition of esterase activity for either M. domestica or M. persicae, although the 

blockade of esterases from both B- and Q-type B. tabaci was seen.  This corresponded to 

previous in vivo studies of B-type B. tabaci but disagrees with in vivo studies on M. persicae 

(Young et al., 2005, 2006, Bingham et al., 2007).  Furthermore, an overnight incubation of 

pure E4 with PBO also failed to show inhibition of the enzyme (results not shown). 

 

Figure 4.2  Inhibition of esterases from 
different insect species, by PBO.  (Substrate: 

1-naphthyl acetate)   

Open circle: M. domestica, closed circle: M. persicae, open square: B-type B. 
tabaci, closed square: Q-type B. tabaci. 

 
Error bars shown illustrate the standard deviation derived from three 

replicates 
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Thus, the standard spectrophotometric assay is not always suitable for demonstrating PBO-

mediated inhibition of esterases since such inhibition cannot always be detected in vitro even 

when inferred from in vivo results (see Chapter Three). 

 

One conclusion from this could be that when PBO binds to the esterases of some insects, it 

does not do so at the hydrolytic active site of the esterase, and the inhibition cannot always 

be revealed by a conventional in vitro spectrophotometric assay (Figure 4.2) (Khot et al., 

2008).  It may be that different insects have slightly different sized/shaped esterases.  It is 

hypothesised, as illustrated in the conceptual model, (Figure 4.3) that in some insects the 

spatial distance between the two binding sites allows both the PBO and the substrate to bind 

(Figure 4.3a) e.g. M. persicae and M. domestica.  In others the spatial distance between the two 

binding sites is small so that when the PBO is bound, binding of the substrate is blocked 

(Figure 4.3b) e.g. B. tabaci.  Only in the latter case would the PBO inhibition be measurable 

by use of a model substrate.  This could explain why a standard esterase assay will reveal 

PBO-mediated inhibition of esterases from some insects but not others.  However, since the 

esterase/PBO „complex‟ has always been found to prevent the insecticide binding (Figure 

4.3c) PBO is acting as a synergist in vivo regardless of the spatial positions of the two binding 

sites. 

 

Figure 4.3  Diagrammatic representation of the binding of the substrate, PBO and 
insecticide to esterase enzymes 

a: PBO binds to the esterase but does not cover the active site for the substrate; b: PBO binds to the esterase: 
substrate is unable to bind; c: the binding of the insecticide covers both binding sites. 

 

This chapter focussed on the development of an assay to demonstrate the inhibition of 

esterases by PBO in vitro using the approach shown in Figure 4.1 where AChE activity is 

measured to indirectly detect the level of esterase activity.  It had been reported that the 

 
esterase PBO 

a. b. c. 

insecticide substrate 
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resistance-associated esterase from M. persicae (E4) had the ability to both hydrolyse and 

sequester xenobiotic compounds (Devonshire et al., 1983) hence this was chosen as the 

esterase for the assay.  Initial experiments tested various AChE inhibitors: eserine, paraoxon 

and azamethiphos (Figure 4.4).  They showed that paraoxon was not a suitable candidate for 

the assay as the concentration required was too high relative to the volume of E4 that would 

be required to sequester the AChE inhibitor.  Eserine showed potential to act as the AChE 

inhibitor in the assay but on the addition of E4 it was evident that E4 was not able to 

sequester the eserine (results not shown).  Azamethiphos did inhibit the AChE and E4 had 

the ability to sequester azamethiphos in volumes suitable for use in the assay. 
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Figure 4.4  Inhibition of AChE by 
eserine, paraoxon and azamethiphos.   

Grey square and open square: eserine from stock concentration 
of 10-2 M and 10-5 M respectively, grey triangle and open 
triangle: paraoxon from stock concentration of 10-2 M and 10-5 

M respectively; open circle: azamethiphos from stock 
concentration 10-6 M. 
 
 

Thus azamethiphos was selected as the AChE inhibitor.  The next stage was to test different 

volumes of E4 to identify how much would be required to sequester the azamethiphos 

(rendering it unable to act on the AChE).  Five dilutions of pure E4 were tested (Figure 4.5 

and Table 4.1)  The results showed that the greater the molar proportion of esterase to 

azamethiphos, the higher the concentration of azamethiphos required to inhibit the AChE, 

demonstrating directly that E4 sequesters the azamethiphos. 
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Figure 4.5  E4 protection of the 
inhibition of M. domestica AChE 

activity by azamethiphos. 

Open circle: No E4.  Closed circle through to light grey circle 
(five shades): 50, 40, 30, 20, and 10 µl E4 used in the assay. 
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Table 4.1  Concentration of azamethiphos required for 50 % inhibition of AChE 
activity  (IC50) in the presence and absence of E4. 

Volume of E4 per well (µl) IC50 (nM) SE 

0 1.12 0.02 

50 37.89 0.71 

40 18.27 1.41 

30 8.41 0.48 

20 4.27 0.25 

10 3.64 0.20 
SE refers to the standard error of the IC50 value derived from the fitted curve. 

 
 

The assay was then tested using E4 incubated with different concentrations of PBO (3 mM, 

0.3 mM and 0.03 mM) to see how much was needed to get complete inhibition of the E4 

(Figure 4.6).  Both 0.3 mM and 3 mM PBO gave similar results, whilst with 0.03 mM there 

was little esterase blockade. Since the primary purpose of the assay was to explain the lack of 

esterase inhibition seen in a conventional assay it was decided that E4 + 3 mM PBO would 

provide the optimum concentration to use.  Although this may seem high, it is equivalent to 

0.1% PBO which is the concentration that has been used for previous in vivo experiments 

and trials (Young et al., 2005, 2006).  This part of the assay showed that the addition of PBO 

to the E4 prevented the esterase from binding to the azamethiphos, so enabling the inhibitor 

to act on the target site (Figure 4.6). 
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Figure 4.6 Inhibition of Musca 
domestica AChE activity with E4 and 

E4 plus PBO. 

Open circle: no E4 (AChE only); closed circle: E4; open square: 
E4 + 3 mM PBO; light grey square: E4 + 0.3 mM PBO; dark grey 

square: E4 + 0.03 mM PBO. 
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Table 4.2  Concentration of azamethiphos required for 50% inhibition of AChE 
activity (IC50) in the presence and absence of E4, and in the presence of E4 + PBO. 

Corresponds to Figure 4.6.  Percentages relate to Figure 4.7. 

 
Sample IC50 (nM) SE 

AChE only (No E4) 0.19 0.01 

E4 7.92 0.44 

E4+3mM PBO 0.46 0.02 

E4+0.3mM PBO 0.55 0.06 

E4+0.03mM PBO 3.40 0.25 
SE refers to the standard error of the IC50 value derived from the fitted curve. 

 

The molarities of the azamethiphos and E4 present in the reactions were calculated to 

compare the relative quantities required for the inhibition.  Calculating the molar amounts of 

azamethiphos and E4 at the point at which AChE activity is just inhibited, i.e. the point at 

which azamethiphos has overcome the sequestering effects of the esterase, gave a result of 

around 5 pmoles of E4 and 1.5 pmoles azamethiphos. This suggests a near-stoichiometric 

binding between E4 and azamethiphos. The molar amount of PBO present is appreciably 

higher (4 nmoles). The assay curve and hence blockade of E4 was not significantly different 

when the assay was repeated with an incubation of E4 + 0.3 mM PBO, but blockade was 

almost absent using an incubation of 0.03 mM PBO (Figure 4.6). However, to be certain of 

this inhibitory effect, 3 mM PBO in the incubation was judged to be the most robust 

concentration to use as it gave an excess of PBO. 

 

Theoretically, a high-throughput method could be created by using a „diagnostic window‟ i.e. 

the concentration at which AChE activity is at a maximum when E4 is present and at a 

minimum with no E4 or E4 + PBO.  This would enable fast screening of potential synergists 

and reduce the volume of E4 required for the assay by comparing the E4, and E4 + synergist 

against only one concentration of azamethiphos.  The concentration of azamethiphos to be 

used would be based on the point just before the sigmoid curve approaches zero AChE 

activity (%) displaying the protection that the E4 gives to the AChE (illustrated by the box in 

Figure 4.7).  Thus, providing the diagnostic window is known (i.e. the concentration of 

azamethiphos to use) only the three wells highlighted by the box would need to be run in the 

assay.  The AChE activity of the three points highlighted in Figure 4.7 are shown in Figure 

4.8.  These show that a diagnostic window can be used confidently to accurately determine 

the efficacy of an unknown synergist.  
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Figure 4.7  The diagnostic window for 
creating a higher throughput method 
in order to select a potential synergist.   

Open circle: no E4; closed circle: E4; grey circle: E4 + 3 mM 
PBO.  Error bars shown illustrate the standard deviation 
derived from three replicates. 
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Figure 4.8  AChE activity of the three 
points from the diagnostic window 

highlighted in Figure 4.7. 

Error bars shown illustrate the standard deviation derived from 

three replicates. 

  

The development of the novel assay described in this section is used in the next chapter, 

Chapter Five, to screen a range of putative synergists for their ability to inhibit resistance-

associated esterases.  In order to use the assay to screen putative synergists, the IC50 results 

must be converted into a percentage (from here on termed the „Index‟ value - I) so that 

synergists could be screened on different days or with different stocks of E4 and still be 

comparable.  This is because although the protocol is standardised, the IC50 values achieved 

will always vary slightly depending on the stock of the E4 and the exact time of the 

incubation of the E4 with the azamethiphos on the microplate.  Comparing results as I 

values (percentages) (Table 4.3) allows for these variations.  The lower the I value for the 

putative synergist, the better esterase inhibitor it is in vitro. 

Table 4.3  Concentration of azamethiphos required for 50% inhibition of AChE 
activity (IC50) in the presence and absence of E4, and in the presence of E4 + 3 mM 

PBO, with Index values shown, calculated as described in the text. 

Corresponds to Figure 4.6.  Percentages relate to Figure 4.7. 

Sample IC50 (nM) SE % 

AChE only (No E4) 0.19 0.01 0 

E4 7.92 0.44 100 

E4+3mM PBO 0.46 0.02 3.49 
SE refers to the standard error of the IC50 value derived from the fitted curve. 
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5 CHAPTER FIVE: SCREENING PUTATIVE SYNERGISTS  

5.1 Introduction 

Using the „esterase interference‟ assay developed and optimised in Chapter 4, a range of 

compounds were screened as potential esterase inhibitors.  The compounds were chosen 

based on their structure or previous reports of insect control properties.  This work was 

carried out in collaboration with Botanical Resources Australia (BRA) who provided the 

essential oils, and the Chemistry Division at the University of Tasmania, who provided 

extracts of a number of Tasmanian plants. 

 

As the 3D structure of resistance-associated esterases is unknown, it is not easy to predict the 

structure of any putative inhibitors/synergists, other than to surmise that it would be 

beneficial for there to be an ester bond present which the esterase can attack.  Most of the 

putative synergists tested here were essential oils and plant extracts that were selected by 

BRA (with some suggestions from Rothamsted) based on biological activity and the 

structures of active components (where known).  Some were chosen because they were 

known for their insecticidal properties (e.g. neem seed oil) and some because they were 

plants native to Tasmania. 

 

Compounds that inhibited esterases at the same or an equivalent efficacy as PBO were 

further screened for their ability to inhibit P450 activity. Samples that inhibited both esterase 

and P450 activity were further tested in vivo to assess their effect as a synergist in 

combination with pyrethrins.  

 

PBO has been used as a synergist for pyrethrins for many years and the aim of these 

experiments was to find a novel alternative.  Most of the compounds tested were of a natural 

or organic nature to comply with the growing consumer demand for these types of products.  

 

This chapter describes the screening of compounds: 

 In vitro for their ability to inhibit resistance associated esterases (section 5.3.1) using 

the assay developed and described previously in Chapter Four; 

 In vitro for their ability to inhibit cytochrome P450s (section 5.3.2); 

 In vivo for their ability to penetrate the insect cuticle and inhibit metabolic defences.  

These experiments assess the effect the putative synergists have on the natural 
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pyrethrins and thus whether the efficacy of the pyrethrins can be enhanced in Myzus 

persicae (section 5.3.3) and Musca domestica (section 5.3.4). 

5.2 Materials and Methods 

5.2.1 Measuring a putative synergist‟s ability to inhibit esterases: „Esterase 

interference assay‟ 

Purified E4 was incubated with 0.1 % putative synergist (in acetone) overnight at 4 C.  A 

96-well microplate was prepared as described in section 4.1.1.2, step 4.  

 

5.2.2 Measuring a putative synergist‟s ability to inhibit P450s 

Lamb‟s liver P450 preparation (section 2.4.6.1) (7.5 µl) plus 41.5 µl diluted sodium phosphate 

buffer (pH 7.6) prepared as described in section 2.4.6.1 and 1 µl of 10 % synergist in acetone 

were added to the wells of a 96-well white microplate.  The plate was incubated at room 

temperature for 15 minutes before the addition of 80 µl of 0.5 mM 7-ethoxycoumarin.  The 

plate was incubated at 30 C for a further 3 minutes before the addition of 10 µl of 9.6 mM 

NADPH.  The plate was read using an excitation wavelength of 380 nm and an emission 

wavelength of 460 nm (in a PerkinElmer microfluorometric reader) every 5 minutes for one 

hour. 

 

Each synergist was tested in triplicate together with controls of buffer only and homogenate 

plus 1 µl acetone. 

 

5.2.3 Investigating the effect of putative synergists in vivo 

Putative synergists that performed well as esterase and P450 inhibitors were selected for trial 

in vivo against M. persicae and M. domestica.  These two insect species were selected because the 

compounds used were dissolved in acetone and thus a topical application technique was 

required, and both M. persicae and M. domestica bioassay well using the topical application 

technique. 

 

Myzus persicae 

Bioassays were performed as described in section 2.4.7.2.  Briefly, adult insects (794jz clone) 

were placed onto untreated leaf discs (Chinese cabbage) and dosed by topical application 

with 0.25 µl compounds in acetone.  Mortality was scored after 72 hours.  The ratio of 
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synergist:pyrethrins was 4:1.  These experiments were also performed using the putative 

synergist and alpha-cypermethrin in a ratio of 4:1, and putative synergist, PBO and pyrethrins 

in a ratio of 4:4:1. 

 

Musca domestica 

Bioassays were performed on female flies (381zb strain) as described in section 2.4.7.2.  

Briefly, insects were dosed (by topical application) with 1 µl treatment in acetone.  Mortality 

was scored after 24 hours.  The ratio of synergist:pyrethrins was 5:1.  These experiments 

were also performed using a tank mix of putative synergist, PBO and pyrethrins in a ratio of 

5:5:1. 

 

5.2.4 The putative synergists 

Table 5.1 shows the properties of the putative synergists used in the experiments described 

in this chapter.  The chemical structures of active components (where known) of the oils and 

plant extracts tested for synergism of pyrethrins are shown in Figure 5.1. 
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Table 5.1  Details of oils and plant extracts tested for synergistic potential.  Relates to 
structures in Figure 5.1 

(Table continues onto 3 pages and is arranged alphabetically by common name) 
Information from (Harbourne, 1996) 

Common 
name (used 
throughout 
chapter)   

Description of sample  
(source) 

Speculated inhibitors of 
interest (if known) 
Chemical formula 
(molecular weight) 

Type of chemical 

 Extracts of Correa alba var alba 
(Rutaceae) 
(BRA/UTas) 

  

 Extracts of Acradenia frankliniae 
(Rutaceae) 
(BRA/UTas) 

  

 Extracts of Correa stackhousiana 
(BRA/UTas) 

  

Angelica Essential oil of roots of Angelica 
archangelica, Heracleum spp. and 
Selinum vaginatum (Umbelliferae) 
(Auroma) 

Angelicin  
C11H6O3  

(186.17) 
(also known as Isopsoralen) 
 
 

Furanocoumarin 

Aniseed Essential oil of seeds of Japanese 
star anise, Illicium anisatum 
(Illiciaceae) 
(Bronson and Jacobs) 

Anisatin 
C15H20O8 
(328.32) 
 

Sesquiterpenoid 
lactone 

Azadirachtin Purified, powder form 
(Bhupinder Khambay, Rothamsted 
Research) 

C35H44O 
(720.72) 

Nortriterpenoid 
(Limonane) 

Bergamot Essential oil, Citrus bergamia 
(Rutaceae) 
(Auroma) 

Bergamottin  
C21H22O4 
(338.40) 
(also known as Bergaptol 
geranyl ether; 5-
Geranyloxypsoralen; Bergaptin) 
 

Furocoumarin 

Citronella java (Bronson and Jacobs) Citronellal  
C10H8O 
(154.25) 
(also known as 3,7-dimethyloct-
6-enal; Rhodinal) 

Monoterpenoid 

Cypress (Auroma)   

Dill Essential oil, Anethum graveolens 
(Umbelliferae) 
(Essential Oils of Tasmania Pty.Ltd.) 

Dillapiole  
C12H14O4 
(222.24) 
(also known as Dill apiole; 
Dillapiol) 
 

Phenylpropanoid 

Ethoxylated 
castor oil* 

(BRA)   

Eucalyptus Essential oil, distilled from fresh 
leaves of Eucalyptus globulus and 
some other Eucalyptus spp. 
(Myrtaceae) 
(Banalasta Lavender Farm) 

1,8-Cineole  
C10H18O 
(154.25) 
(also known as Eucalyptol; 
Cajeputol; 1,8-Epoxy-p-
menthane) 
 

Monoterpenoid 

Fennel Essential oil 
(Essential Oils of Tasmania Pty.Ltd.) 
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Common 
name (used 
throughout 
chapter)   

Description of sample  
(source) 

Speculated inhibitors of 
interest (if known) 
Chemical formula 
(molecular weight) 

Type of chemical 

Garlic Essential oil, Allium sativum 
(Alliaceae) 
(Auroma) 

Diallyl disulfide  
C6H10S2 
(146.28) 
(also known as Allyl disulfide; 
Di-2-propenyl disulfide) 
 
 
 

Sulphur 
compound 

Lavender Essential oil 
(Bronson and Jacobs) 

  

Lemon-scented 
Boronia 

Extracts of Boronia citriodora 
(Rutaceae) 
(BRA/UTas) 

  

Linoleic acid Sigma-Aldrich UK C18H32O2 

(280.45) 
Unsaturated 
omega-6 fatty acid 

Manuka (BRA)   

Mountain 
Correa 

Extracts of Correa lawrenciana 
(Rutaceae) 
(BRA/UTas) 

  

Myristicin >97% pure 
(Sigma-Aldrich UK) 

Myristicin 
C11H12O3 
(192.21) 
 

Phenylpropanoid 

Neem (seed 
oil) 

Oil from seeds of neem tree, 
Azadirachta indica (Meliaceae) 
(Auroma) 

Azadirachtin  
C35H44O 
(720.72) (see, azadirachtin) 
 

Nortriterpenoid 
(Limonane) 

Nutmeg Essential oil, Myristica fragrans 
(Myristicaeae) 
(Auroma) 

Myristicin 
C11H12O3 
(192.21) 
 

Phenylpropanoid 

Oleic acid* 2 pure samples:  
(BRA and Sigma-Aldrich UK) 

Oleic acid  
(282.46 ) 
(also known as cis-9-
Octadecenoic acid; Elainic acid) 
 

Fatty acid 

Parsley (53% 
and 86% 
myristicin) 

Essential oil from seeds of parsley 
Petroselinum crispum (Umbelliferae) 
(Essential Oils of Tasmania Pty.Ltd.) 

Apiole  
C12H14O4 
(222.24) 
(also known as Apiol; apioline; 
Parsley camphor) 
and myristicin (see nutmeg) 
 

Phenylpropanoid 

Parsley Extracts of Petroselinum crispum  
(BRA/UTas) 

As above  

Pepper Essential oil from unripe fruit of 
wild pepper, Piper cubeba 
(Piperaceae) and roots and shoots 
of Aristolochia triangularis 
(Aristolochiaceae) 
(Auroma) 

Cubebin 
C20H20O6 
(356.38) 
 

lignan 

Peppermint  Essential peppermint oil, Mentha 
piperita 
(Essential Oils of Tasmania Pty.Ltd.) 

Menthol  
C10H20O 
(156.27) 
(also known as Mentol; 
peppermint camphor; 
menthacamphor) 
 

monoterpenoid 
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Common 
name (used 
throughout 
chapter)   

Description of sample  
(source) 

Speculated inhibitors of 
interest (if known) 
Chemical formula 
(molecular weight) 

Type of chemical 

Peppermint 
eucalyptus 

 See peppermint and eucalyptus  

Piperonyl 
butoxide 
(PBO) 

Synthetic, 96% pure 
(Endura SpA, Italy) 

PBO 
C19H30O5 

(338.4) 

 

Rose blossom Boronia pilosa 
(Rutaceae) 
(BRA/UTas) 

  

Rosemary Essential oil from leaves of 
Rosemary (sp. unknown) (Bronson 
and Jacobs) 

Palustrol  
C15H26O 
(222.37) 
(also known as 1-
aromadendranol) 
 

Sesquiterpenoid 

Sesame 
vegetable oil 

(Auroma) Composed of the following 
fatty acids: 
Palmitic (7-12 %) C16H32O2 

(256.42) 
 

Fatty acid 

palmitoleic (trace – 0.5 %) 
C16H30O2 

(254.41) 
 

Fatty acid 

stearic (3.5 – 6.0 %) C18H36O2 

(284.48) 
 

Fatty acid 

oleic (35 – 50 %) 
(see above) 

Fatty acid 

linoleic (35 – 50 %) 
(see above) 

Fatty acid 

linolenic (trace – 1 %) 
 

Fatty acid 

eicosensoic (trace – 1 %) Fatty acid 

Stinkwood Zieria arborescens (Rutaceae) 
(BRA/UTas) 

  

 
Sources of samples: Auroma (Victoria, Australia); Bronson & Jacobs (NSW, Australia); Essential oils of Tasmania (Tasmania, Australia); 
Banalasta lavender farm (Tamworth, Australia); BRA/UTas – provided by Adrian Blackman (University of Tasmania, Hobart, Tasmania, 
Australia) 
* denotes that the compound named is a component of the BRA  emulsifiable concentrate formulation. 
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In the following results and discussion section, the University of Tasmania extractions are 

referred to using the following abbreviations; 

 

for the sample names: 

Af Acradenia frankliniae 
Bc Boronia citriodora  
Bp Boronia pilosa 
Ca Correa alba var alba 
Cl Correa lawrenciana 
Cs Correa stackhousiana 
Py Petroselinum crispum  
Za Zieria arborescens 

 

for the method of extraction of the sample: 

A steam distilled essential oil 
B1 solvent extract – petroleum spirits fraction 
B2 solvent extract – dichloromethane fraction 
B3 solvent extract – aqueous methanol fraction 

 

For certain samples that were further fractionated to possibly identify which ones gave 

extracts with highest synergistic activity, „fr‟ is used to denote the fraction number. 

 

Figure 5.1 Structure of speculated inhibitors of interest for putative synergists listed 
in Table 5.1 

(Arranged alphabetically, continues on 3 pages) 

1,8-cineole 

 

Angelicin 
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Anisatin 

 

Apiole 

 

Azadirachtin 

 

Bergamottin 

 

 

Citronellal 
 

 

Cubebin 
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Diallyl disulfide 
 

 

 

Dillapiole 

 

Linoleic acid 
  

 

Menthol 

 

Myristicin 

 

Oleic acid 
 

 

Palmitic acid 
 

 

Palmitoleic acid 
 

 

PBO 

 

Stearic acid 
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5.2.5 Calculations 

Following bioassays, the “synergistic factors” were calculated using the following equation: 

 

SF (synergistic factor) = LC50 insecticide only (for x clone or strain) 

LC50 synergised insecticide (for x clone or strain) 
 

 

Using the SF enabled a direct comparison of the compounds tested and also had the 

advantage that studies performed only on a resistant population could be compared. 

5.3 Results and discussion 

This section is divided into four parts, with a general discussion at the end.  The four 

sections cover the efficacy of the putative synergists: as esterase inhibitors in vitro (section 

5.3.1); as P450 inhibitors in vitro (section 5.3.2); in vivo against M. persicae (section 5.3.3), and in 

vivo against M. domestica (section 5.3.4).  A summary of the findings is given before the 

individual experimental results sections to aid the understanding of the decisions made about 

which samples should be tried in each of the experiments.  Table 5.2 is a summary of all of 

the putative synergists tested in chapter five.  Where a sample performed within the 

confidence limits of PBO in the esterase interference assay (section 5.3.1), they were selected 

for their in vitro ability to inhibit P450s from lambs liver.  Some samples were selected for the 

P450 assay (and subsequent bioassays) despite not performing as well as PBO because 

Botanical Resources requested that certain samples be further investigated.  
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Table 5.2  Summary of the performance of each of the putative synergists tested in 
chapter five.   

 indicates that a sample was in the same range as/more potent than PBO; * indicates that a sample 

was not as effective as PBO; (B) indicates that Botanical Resources requested the sample be looked at 

further. 

 

In vitro 
Esterase Interference assay 

(section 5.3.1) 

In vitro 
P450 
assay 

 

In vivo 
Myzus Persicae 
(4:1 synergist: 

pyrethrins) 

In vivo 
Myzus 

Persicae 
(4:1 

synergist:a
lpha-

cypermeth
rin) 

In vivo 
Myzus 

Persicae 
(4:4:1 

synergist:P
BO: 

pyrethrins) 

In vivo 
Musca 

domestica 
(4:1 synergist: 

pyrethrins) 

In vivo 
Musca 

domestica 
(4:4:1 

synergist:PB
O:pyrethrins) 

(section 5.3.1) (section 
5.3.2) 

(section  
5.3.3.1) 

(section 
5.3.3.2) 

(section 
5.3.3.3) 

(section 
5.3.4.1) 

(section 
5.3.4.2) 

Af-A       

Af-B1       

Af-B2       

Af-B3       

Angelica       

Aniseed       

Azadirachtin       

Bc-A       

Bc-B1  *     

Bc-B2       

Bc-B3       

Bergamot organic  (B) *     

Bp-A       

Bp-B1       

Bp-B2       

Bp-B3       

Ca-A       

Ca-B1       

Ca-B2       

Ca-B2-fr1       

Ca-B2-fr10       

Ca-B2-fr2       

Ca-B2-fr3       

Ca-B2-fr4       

Ca-B2-fr5       

Ca-B2-fr6       

Ca-B2-fr7       

Ca-B2-fr8       

Ca-B2-fr9       

Ca-B2-frB2       

Ca-B3       

citronella       

Cl-A       

Cl-B1  *     

Cl-B2       

Cl-B3       
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In vitro 
Esterase Interference assay 

(section 5.3.1) 

In vitro 
P450 
assay 

 

In vivo 
Myzus Persicae 
(4:1 synergist: 

pyrethrins) 

In vivo 
Myzus 

Persicae 
(4:1 

synergist:a
lpha-

cypermeth
rin) 

In vivo 
Myzus 

Persicae 
(4:4:1 

synergist:P
BO: 

pyrethrins) 

In vivo 
Musca 

domestica 
(4:1 synergist: 

pyrethrins) 

In vivo 
Musca 

domestica 
(4:4:1 

synergist:PB
O:pyrethrins) 

(section 5.3.1) (section 
5.3.2) 

(section  
5.3.3.1) 

(section 
5.3.3.2) 

(section 
5.3.3.3) 

(section 
5.3.4.1) 

(section 
5.3.4.2) 

Cs-A       

Cs-B1       

Cs-B2       

Cs-B3       

Cypress       

Dill       

Eth. Castor Oil * *     

Eucalyptus radiata       

Fennel       

Garlic       

Lavender       

Linoleic acid  *   *  

Manuka       

Methyl methoxy butanol       

Myristicin       

Neem seed oil  *   *  

Nutmeg       

Oleic acid  *     

parsley (53% myristicin)  (B) *     

Parsley (86% myristicin)       

Pepper (black)       

Peppermint       

Peppermint Eucalyptus       

Py-A       

Py-B1       

Py-B2       

Py-B3       

Rosemary       

Sesame       

Za-A       

Za-B1       

Za-B2  *     

Za-B2-fr1       

Za-B2-fr2       

Za-B2-fr3       

Za-B2-fr4       

Za-B2-fr5       

Za-B2-fr6       

Za-B2-fr7       

Za-B2-fr8       

Za-B2-fr9       

Za-B3 *      
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5.3.1 Esterase inhibition (in vitro) 

The esterase interference assay was used to indirectly determine how well a sample can 

inhibit esterase activity (E4) by measuring AChE activity (refer to Chapter 4, Figure 4.1).  

Results of this assay are shown in Table 5.3, which displays the index value, standard error, 

lower limits and upper limits for each sample. The index (I) values shown in Table 5.3  

represent the samples‟ potential as an esterase inhibitor (see end of section 4.2).  I equates to 

the percentage AChE activity remaining, with values closest to zero showing the most potent 

esterase inhibiting action.  It is obtained by calculating the IC50 values (see end of section 4.2) 

for each compound (using Grafit) and the putative synergists activity is calculated as a 

percentage of E4 activity (where the IC50 value for E4 = 100 % and for no E4 = 0%).  The 

lower the I value, the better the sample is as an esterase inhibitor in vitro. 

 

The results reveal that all except two (methyl methoxy butanol and Bp-B3) of the putative 

synergists show potential for esteratic synergistic activity (Table 5.3).  It is not surprising that 

methyl methoxy butanol did not perform well as it is an alcohol.  It was tested because it is a 

component of the BRA EC formulation present dissolve the other components. 

 

Many of the samples screened were prepared by the University of Tasmania, and some 

fractions from each plant used for extractions were as good as/better than PBO apart from 

those fractionated from extracts of Boronia pilosa.  Of the University of Tasmania samples, the 

more potent E4 inhibitors were those in the petroleum spirits fractions (B1) and the 

dichloromethane fractions (B2).  The B2 fractions from Zieria arborescens and Correa alba were 

further fractionated by the University of Tasmania into 10 fractions.  In the case of Zieria 

arborescens, 7 out of 10 were comparable to PBO at inhibiting esterases in vitro.  For the Correa 

alba further fractionated B2 samples, 4 out of 10 were comparable to PBO.  These are shown 

in performance order in Figure 5.2.  

 

Each solvent used in the extractions will have extracted chemicals of a certain lipophilicity 

from the plant samples.  Generally, the petroleum spirits fractions (B1) fractions contained 

an E4 inhibitor(s) regardless of the plant used and this may be an important factor for 

consideration in the future if further extractions are to be made.  It is important to note that 

the samples extracted from Tasmanian plants (provided by BRA/UTas) were extracted from 

individual plants.  Therefore the samples that look promising would need further evaluation 

to ensure that extracts from other plants of the same species have the same enzyme 

inhibiting potential. 
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Table 5.3  Index value (I) and corresponding standard errors for AChE activity of 
E4+putative synergists.   

I is the IC50 value obtained from Grafit, shown as a percentage of E4 and No E4, where E4 = 100% activity 
and No E4 = 0% activity. (I equates to % AChE activity remaining).  SE: standard error of the fit of the curve 
(calculated by Grafit, then corrected into a percentage thus in the same format as the Index value); LL/UL95%: 
95% confidence limits (lower limits/upper limits). Samples with I values or errors less than 4.26 % (the upper 
limit for PBO) are shown in Figure 5.2.  PBO is indicated in bold. 
 

Putative synergist I (%) SE (%) LL95% UL95% 
Cl-B2 0.01 0.48 -0.99 1.02 

Za-B2-fr3 0.39 0.16 0.06 0.71 

Neem 0.41 1.22 -2.14 2.95 

Za-B2 0.88 0.35 0.16 1.60 

Bc-B2 1.04 0.79 -0.61 2.69 

Za-B2-fr9 1.14 0.17 0.79 1.50 

Za-B3 1.28 0.35 0.55 2.02 

Oleic acid* 1.43 0.32 0.76 2.11 

Linoleic acid 1.53 0.36 0.78 2.29 

Bc-B1 1.92 1.16 -0.49 4.32 

Za-B2-fr1 2.31 0.18 1.94 2.68 

Ca-B2-fr3 2.34 0.22 1.89 2.79 

Ca-B2-fr2 2.41 0.22 1.95 2.87 

Cl-B1 2.50 0.36 1.75 3.24 

Za-B2-fr2 2.56 0.28 1.98 3.13 

Ca-B2 2.62 0.77 1.02 4.22 

Bp-A 2.71 0.24 2.21 3.21 

Za-B2-fr6 3.01 0.34 2.30 3.73 

Ca-B2-fr10 3.11 0.28 2.52 3.69 

Za-B1 3.33 0.45 2.39 4.26 

PBO 3.40 0.25 2.89 3.92 

Eth. Castor Oil* 3.42 0.32 2.76 4.08 

Za-B2-fr8 3.54 0.16 3.22 3.86 

Za-B2-fr7 3.76 0.30 3.13 4.38 

Ca-B2-fr6 3.96 0.38 3.18 4.74 

Ca-B2-fr9 4.74 0.31 4.10 5.38 

Ca-B2-fr5 4.76 0.26 4.23 5.30 

Ca-B2-fr7 4.93 0.27 4.37 5.50 

Cs-B1 4.98 0.94 3.03 6.94 

Ca-B2-frB2 5.01 0.29 4.40 5.62 

Za-B2-fr4 5.07 0.36 4.31 5.83 

Pyrethrins (from 50% extract) 5.29 0.62 4.01 6.57 

Py-B1 5.55 0.73 4.02 7.07 

Ca-B2-fr8 6.11 0.35 5.38 6.85 

Af-B2 6.22 2.02 2.01 10.42 

Bp-B1 6.28 0.43 5.38 7.17 

Myristicin 6.63 0.36 5.88 7.38 

Za-B2-fr5 6.75 0.38 5.95 7.54 

Azadirachtin 7.01 0.74 5.48 8.55 

Peppermint 7.03 0.92 5.12 8.94 

Bc-B3 7.29 0.86 5.50 9.07 

Bp-B2 7.31 0.74 5.77 8.86 

Cs-B2 7.62 0.97 5.61 9.63 
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Putative synergist I (%) SE (%) LL95% UL95% 

Py-B2 8.74 1.05 6.56 10.92 

Af-B1 9.01 0.56 7.85 10.17 

Pyrethrins II 9.02 1.49 5.92 12.12 

Ca-B1 9.11 1.04 6.96 11.27 

Lavender 9.83 1.17 7.40 12.26 

Cs-A 9.86 1.09 7.59 12.12 

Py-A 10.19 1.39 7.30 13.08 

parsley (53% myristicin) 10.41 1.37 7.56 13.27 

Ca-B2-fr4 11.41 1.26 8.78 14.04 

Cl-B3 11.49 1.16 9.08 13.90 

Nutmeg 11.57 1.09 9.30 13.84 

Sesame 11.87 1.47 8.81 14.93 

Aniseed 11.98 1.61 8.63 15.34 

Cypress 12.49 1.45 9.47 15.51 

Pyrethrins I 12.69 2.07 8.37 17.00 

Manuka 13.43 1.23 10.87 16.00 

Garlic 14.44 1.20 11.94 16.95 

Parsley (86% myristicin) 14.97 1.24 12.39 17.54 

Peppermint Eucalyptus 15.38 1.58 12.09 18.68 

Za-A 15.84 1.46 12.80 18.88 

citronella 16.60 1.54 13.39 19.81 

Ca-B3 17.20 1.63 13.82 20.59 

Bergamot organic 21.14 1.65 17.71 24.56 

Ca-A 21.21 2.20 16.64 25.79 

Af-A 22.42 1.15 20.04 24.80 

Fennel 22.43 1.15 20.04 24.83 

Bc-A 22.56 1.41 19.64 25.49 

Py-B3 27.30 3.12 20.81 33.79 

Pepper (black) 31.23 4.26 22.37 40.09 

Angelica 31.68 2.12 27.26 36.10 

Cs-B3 35.06 2.39 30.08 40.03 

Alpha-cypermethrin 35.69 2.52 30.44 40.93 

Dill 35.81 2.44 30.74 40.89 

Ca-B2-fr1 36.44 2.61 31.01 41.87 

Cl-A 37.59 2.88 31.60 43.58 

Rosemary 40.83 4.96 30.51 51.15 

Af-B3 47.05 2.61 41.62 52.48 

Eucalyptus radiata 51.62 3.89 43.54 59.70 

Methyl methoxy butanol* 94.18 5.28 83.20 105.15 

Bp-B3 98.92 14.58 68.59 129.25 
Af is from Acradenia frankliniae; Bc is from Boronia citriodora; Bp is from Boronia pilosa; Ca is from Correa alba var alba; Cl is 
from Correa lawrenciana; Cs is from Correa stackhousiana; Py is from Petroselinum crispum; Za is from Zieria arborescens; A: steam 
distilled essential oil; B1: solvent extract – petroleum spirits fraction; B2: solvent extract – dichloromethane fraction; B3: 
solvent extract – aqueous methanol fraction;  fr denotes a further fractionated sample.  * denotes that the compound named 
is a component of the BRA  emulsifiable concentrate formulation. 

 

Samples that showed potent esterase inhibition in vitro that were not extracts from 

Tasmanian plants were neem seed oil, oleic acid, linoleic acid and ethoxylated castor oil.  All 

of these samples were comparable to PBO in vitro (Figure 5.2).  Oleic acid and ethoxylated 

castor oil are both components of the BRA EC formulations and their performance in this in 

vitro test, with both samples showing potential for inhibiting esterases, offers an explanation 
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for the lower LC50 values found in Chapter Three when comparing leaf dip bioassays using 

EC formulations, compared to topical application of technical pyrethrins for M. persicae. 

 

 

Figure 5.2  Graphical representation of I values (refer toTable 5.3) for esterase 
inhibition of samples selected for trial in P450 assay. 

I is the IC50 value obtained from Grafit, shown as a percentage of E4 and No E4, where E4 = 100% activity and No E4 = 0% activity. (I  
equates to % AChE activity remaining).  Error bars indicate the error of the fit of the curve (calculated by Grafit and reformatted to fit the 

percentage representation of the I value). 

Interestingly, azadirachtin (the main component of neem) was not as effective as the neem 

seed oil.  It is possible that there are components, other than azadirachtin, in the neem seed 

oil that also inhibit esterase activity or work synergistically with azadirachtin. 

 

Generally if the lower confidence limit of a sample was less than or equal to PBO‟s upper 

limit (I = 3.92 %) then it was selected for the P450 assay.  Samples were also selected if their 

upper confidence limit was less than or equal to PBO‟s upper confidence limit.  In addition, 

it was decided that some of the less potent esterase inhibitors would be tested in vivo, 

regardless of in vitro results, (for example, nutmeg, parsley and bergamot) (see 5.3.2) 

 

As well as screening putative synergists, the esterase interference assay was also useful to 

evaluate the esterase inhibiting action of pyrethrins and alpha-cypermethrin.  This was of 

interest because as discussed in Chapter 3, resistance to pyrethrins was less than expected 

considering resistance factors of the synthetic pyrethroids reported previously (Bingham et 

al., 2007, Bingham, 2007).  Pyrethrins showed a better ability to inhibit esterases than the 

Pyrethrins I and II extracts.  This may be due to the presence of the other components in the 

combined extract.  Collectively, Pyrethrins I and II constitute 45-55% of pyrethrum extract 

with the remainder usually being comprised of sterols, triterpenols, alkanes, fatty acids from 
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triglycerides and carotenoids (Maciver, 1995).  From these results it can be concluded that 

esterases bind to pyrethrins, thus confirming esterases as a resistance mechanism for 

pyrethrins. This also means that pyrethrins, or perhaps more accurately, the constituents of 

the pyrethrin extract, have the potential to act as their own synergist since the in vitro 

synergism of the pyrethrin extract with E4 is greater than the individual pyrethrin I or II 

extracts.  The synergism between the pyrethrin extract and E4 may contribute to the lower 

resistance factors compared with synthetic pyrethroids, as well as the difference in response 

to kdr mutations discussed Chapter Three.  Alpha-cypermethrin showed some esterase 

inhibiting potential but this was not in the same range as the pyrethrin samples. Although 

esterases are a resistance mechanism for alpha-cypermethrin, and this, together with the fact 

that synthetic pyrethroids are affected by kdr mutations helps explain the higher resistance 

factors for synthetic pyrethroids. 

5.3.2 P450 inhibition (in vitro) 

Compounds were screened for their P450 inhibiting potential by incubating them with P450s 

from lamb‟s liver and measuring their activity compared to an uninhibited control.  The 

following samples showed complete inhibition of P450 activity: Bc-B2; Bp-A; Ca-B2; Ca-B2-

fr3; Cl-B1; Za-B1; Za-B2; Za-B2-fr1; Za-B2-fr2; Za-B2-fr3; Za-B2-fr6; Za-B2-fr7; Za-B2-

fr8.  Alpha-cypermethrin did not show any P450 inhibiting potential.  Other samples gave 

intermediate levels of inhibition and results for these samples are shown in Table 5.4 and 

Figure 5.3.  The lower the percentage activity of the control, the better the sample at 

inhibiting P450 activity and thus the greater potential for being a useful synergist. 

 

The finding that some samples from Boronia citriodora, Boronia pilosa, Correa alba var alba, Correa 

lawrenciana, and Zieria arborescens gave complete inhibition of P450s suggest that extracts from 

these plants, and linoleic acid, oleic acid and neem seed oil may be very useful as insecticide 

synergists, especially where an insects‟ resistance mechanism is P450-based.  Results from 

these experiments again confirm that components of the BRA EC formulation may be acting 

as synergists, thus enhancing the efficacy of the pyrethrins in the EC formulations and thus 

when insects are bioassayed using a leaf dip of pyrethrins EC, the LC50 achieved is lower than 

expected. 

 

The low inhibition of P450 activity by PBO is perhaps surprising, although it has been noted 

previously that PBO is a more potent esterase inhibitor than oxidase inhibitor (Moores 

pers.comm.). 
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Table 5.4  Ability of selected putative synergists to inhibit P450s from lamb‟s liver. 

For full list, see text. 

Putative synergist 
% activity of 

the control 
Standard 

error 
Bc-B1 1.9 0.38 

Ca-B2-fr2 3.1 0.30 

Za-B2-fr9 12.5 2.56 

Cl-B2 14.7 3.75 

Ca-B2-fr10 17.0 5.13 

Linoleic acid 19.1 12.46 

Oleic acid 25.5 8.59 

Neem seed oil 29.0 6.56 

Ca-B2-fr6 30.9 3.19 

Af-B2 31.0 6.18 

Bergamot 36.9 0.39 

Parsley (53% myristicin) 47.0 5.59 

Cs-B1 54.3 7.87 

Pyrethrins II 59.8 7.98 

Pyrethrins (from 50 % 
extract) 61.3 8.71 

PBO 63.7 3.85 

Eth. Cast. Oil 68.6 3.38 

Pyrethrins I 77.7 9.89 

Za-B3 93.0 10.98 
Bc is from Boronia citriodora; Ca is from Correa alba var alba; Cl is from Correa lawrenciana; Cs is from Correa stackhousiana; Za is from Zieria 
arborescens; B1: solvent extract – petroleum spirits fraction; B2: solvent extract – dichloromethane fraction; fr denotes a further fractionated 
sample 

 

 

Figure 5.3 Level of inhibition of standard P450 sample (from lamb‟s liver) by various 
putative synergists, shown as a percentage activity of P450 sample only 

Relates to Table 5.4 
Error bars show the standard error 

 
Bc is from Boronia citriodora; Ca is from Correa alba var alba; Cl is from Correa lawrenciana; Cs is from Correa 

stackhousiana; Za is from Zieria arborescens; B1: solvent extract – petroleum spirits fraction; B2: solvent extract – 
dichloromethane fraction; fr denotes a further fractionated sample.  „Pyrethrins‟ sample is from a 50% extract. 
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5.3.3 The effect of putative synergists against Myzus persicae (794jz clone) in 

vivo 

As for chapter three, the raw bioassay data was inputted into PoloPlus and a summary of the 

outputted data is shown here.  PoloPlus was used to derive the LC50 values in order to 

calculate ESRs and SFs.  The rest of the data from the Polo outputs is shown in Appendix V. 

5.3.3.1 Putative synergist:pyrethrins tank mix (4:1) 

Following in vitro screening of putative synergists for their ability to inhibit esterases and 

P450s (sections 5.3.1 and 5.3.2), samples were screened in vivo against Myzus persicae (794jz 

clone) which have an esterase-based metabolic resistance to pyrethroids/pyrethrins, for their 

ability to increase the efficacy of pyrethrins.  The samples selected for in vivo bioassay were 

those which showed some ability to inhibit esterases and P450s in vitro (sections 5.3.1 and 

5.3.2) and taking into account Botanical Resources‟ request for a compound that would not 

require new licensing, e.g. food products that are already accepted as safe for human 

exposure. 

 

The in vivo assays used a tank mix of putative synergist and pyrethrins (rather than a pre-

treatment) because previous results (Chapter 3) showed a tank mix to be at least as effective 

as a pre-treatment, if not better.  Also, it is possible that each compound will have a different 

pre-treatment time thus using a tank mix treatment oversees the need to optimise this for 

preliminary testing. 

 

Samples tested in a tank mix with pyrethrins were bergamot essential oil, citronella, 

ethoxylated castor oil, linoleic acid, neem seed oil, oleic acid, parsley seed oil (53 % 

myristicin), peppermint oil, and BRA/UTas samples: Bc-B1, Cl-B1, Za-B2.  Peppermint and 

citronella were two of the samples selected for in vivo trials as representatives of samples 

which showed some ability to inhibit esterases in vitro, but not in the SE limits of PBO.  

These in vivo trials were performed to demonstrate that any synergism found would not 

match that of PBO as neither of these compounds was as good as PBO at inhibiting 

esterases in vitro.  In both cases tank mixes with pyrethrins did not cause mortality at levels 

greater than those seen with pyrethrins alone (data not shown) showing that the novel in vitro 

assay described in chapter four is a reliable indicator of a samples‟ ability to inhibit esterases 

in vivo.  
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Table 5.5  Lethal concentration for 50 % mortality (LC50), effective synergism ratio 
(ESR) and synergistic factor (SF) for putative synergists against Myzus persicae 

(794jz clone) as a tank mix with pyrethrins (4:1) 

See appendix V, Table A-V-I 

Treatment 
LC50 

(ppm) 
ESR  SF 

Pyrethrins only* 1630.7 43.8 - 
PBO* 121.7 3.3 13.4 

Ethoxylated castor 
oil 

342.6 9.2 4.8 

Za-B2 350.5 9.4 4.7 
Linoleic acid 413.0 11.1 3.9 
Neem seed oil 463.0 12.4 3.5 
Oleic acid 541.0 14.5 3.0 
Cl-B1 611.5 16.4 2.7 
Parsley seed oil (53) 802.9 21.6 2.0 
Bc-B1 822.5 22.1 2.0 
Bergamot 1068.2 28.7 1.5 

* for reference (data from Chapter Three) 

 

As shown in Table 5.5, none of the compounds tested reduced the LC50 to below that 

achieved with PBO meaning that PBO was still the better synergist with pyrethrins.  

Ethoxylated castor oil and Za-B2, were the most effective of all the samples tested in vivo, 

with LC50 values of 342.6 ppm and 350.5 ppm respectively.  However, these both gave an 

ESR 3-times that for a PBO/pyrethrins tank mix, and a SF 3-times less than a 

PBO/pyrethrins tank mix.  The higher the SF, the higher the synergism thus with the most 

promising samples having a SF 3-times less than that of PBO, there was still opportunity to 

increase the efficacy of the pyrethrins. 

 

The finding that some of the putative synergists were not as effective in vivo as they were in 

vitro suggests that the in vivo activity is not the result of esterase inhibition alone.  Thus these 

results agree with the hypothesis proposed in Chapter Three, that pyrethrins do not 

penetrate the insect cuticle as readily as many other insecticides. It seems that PBO therefore 

has a more marked effect than the putative synergists screened here because of its ability to 

enhance penetration, rather than just inhibit metabolic defences. This hypothesis assumes 

that the putative synergists do not have the „penetration enhancement‟ ability, or that if they 

do, it is less effective than for PBO. 

5.3.3.2 Putative synergist:alpha-cypermethrin tank mix (4:1) 

Following the initial studies looking at the effect of the putative synergist with pyrethrins in a 

tank mix, experiments were repeated using a tank mix of synergist and alpha-cypermethrin 
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(Table 5.6) to compare both penetration qualities and esterase inhibition qualities of the 

synergists.  Previous results (Chapter Three) indicated that with alpha-cypermethrin, PBO 

acts by inhibiting metabolic defences (seen by increased synergism with a PBO-pre-treatment 

compared to a tank mix treatment) rather than by enhanced penetration.  It was therefore 

decided to test the putative synergists with alpha-cypermethrin and thus obtain information 

about the putative synergists ability to metabolise the esterases.  The results are shown in 

Table 5.6.   

 

Samples tested in a tank mix with alpha-cypermethrin were bergamot, ethoxylated castor oil, 

linoleic acid, neem seed oil,  oleic acid, parsley seed oil (53 % myristicin), peppermint oil and 

the following BRA/UTas samples: Bc-B1, Cl-B1 and Za-B2.  Tank mixes of alpha-

cypermethrin with either Bc-B1, Za-B2, bergamot or peppermint oil did not give mortality 

sufficient for a LC50 to be calculated for the dose range used.  These results were surprising 

because the initial in vivo trials with pyrethrins had suggested that Za-B2 would give greater 

synergism with alpha-cypermethrin at the dose range chosen.  The reason that it did not 

perform well in vitro is not known. 

 

Table 5.6  Lethal concentration for 50 % mortality (LC50), effective synergism ratio 
(ESR) and synergistic factor (SF) for putative synergists against Myzus persicae 

(794jz clone) as a tank mix with alpha-cypermethrin (4:1) 

See appendix V, Table A-V-II 

Treatment 
LC50 

(ppm) 
ESR SF 

Alpha-cypermethrin 
only* 

3230.2 6525.2 - 

PBO* 810.8 1638.0 4.0 

Neem seed oil 177.6 358.8 18.2 
Linoleic acid 247.7 500.4 13.0 
Parsley seed oil (53) 282.1 569.9 11.5 
Ethoxylated castor oil 282.9 571.5 11.4 
Cl-B1 386.8 781.4 8.4 
Oleic acid 400.2 808.5 8.1 

* for reference (data from Chapter Three) 

 

The LC50 for alpha-cypermethrin alone was 3230.2 ppm.  With PBO in a tank mix, the LC50 

was reduced to 810.8 ppm.  As can be seen from the results displayed in Table 5.6, neem 

seed oil, linoleic acid, parsley seed oil (53 % myristicin), ethoxylated castor oil, Cl-B1 and 

oleic acid all synergised alpha-cypermethrin more effectively than PBO, with LC50 results 

ranging from 177.6 ppm to 400.2 ppm.  These samples had SFs at least twice as good as 
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PBO (oleic acid), and up to 4.5-times better than PBO (neem seed oil).  Thus these samples 

all showed the ability to enhance the effect of alpha-cypermethrin when used in a tank mix. 

 

The results of the experiments using a tank mix of putative synergist and alpha-cypermethrin 

agree with the hypothesis stated previously that the pyrethrins benefit from the ability of 

PBO to enhance penetration of pyrethrins through the insect cuticle.  Compounds that did 

not show synergism to the same extent as PBO in vivo with pyrethrins, show increased levels 

of synergism when applied as a tank mix with alpha-cypermethrin.  This indicates that these 

compounds are inhibiting esterase activity in the insect, as predicted by the in vitro testing.   

 

5.3.3.3 Putative synergist:PBO:pyrethrin tank mix (4:4:1) 

Following experiments using putative synergists in tank mixes with pyrethrins and alpha-

cypermethrin (independently), the next logical step was to test a mixture of PBO with a 

putative synergist and pyrethrins to determine if the presence of PBO would help the 

penetration of the pyrethrins through the cuticle, then the combined synergism from PBO 

and the other compound would inhibit metabolic defences.  Three samples were tested in 

this way: neem seed oil; linoleic acid; and ethoxylated castor oil.  These were chosen because 

they were each one of the most effective for both the synergist:pyrethrin treatments and the 

synergist:α-cypermethrin treatments.   

 

Table 5.7  Lethal concentration for 50 % mortality (LC50), effective synergism ratio 
(ESR) and synergistic factor (SF) for putative synergists against Myzus persicae 

(794jz clone) as a tank mix with PBO and pyrethrins (4:4:1) 

See appendix V, Table A-V-III 

Treatment 
LC50 

(ppm) 
ESR SF 

Pyrethrins only* 1630.7 43.8 - 
PBO* 121.7 3.3 3.3 

Neem seed oil 65.4 1.8 24.9 
Linoleic acid 86.0 2.3 18.9 
Ethoxylated castor 
oil 

113.9 3.1 14.3 

* for reference (data from Chapter Three) 

 

Results from the multiple combination bioassay treatments (putative synergist, plus PBO, 

plus pyrethrins) are shown in Table 5.7.  These results reveal a dramatic increase in the level 

of synergism after a synergist:PBO:pyrethrins (4:4:1) treatment for all samples tested, 

compared to the synergist:pyrethrins (4:1) treatment (Table 5.5) for the same samples.   
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The LC50 for pyrethrins alone was 1630.7 ppm, with an ESR of 43.8 meaning that 43.8-times 

more insecticide was required to give 50 % mortality in the resistant clone of M. persicae 

compared to the susceptible clone (4106a) (see Chapter Three, Table 3.1a).  The tank mix 

treatment of PBO and pyrethrins reduced the LC50 to 121.7, the ESR to 3.3 and gave a SF of 

3.3.  Where a tank mix of putative synergist was combined with PBO and pyrethrins in a 

4:4:1 ratio, all three samples showed a decreased ESR compared to a PBO/pyrethrins tank 

mix.  Neem seed oil gave the highest level of synergism, reducing the LC50 to 65.4 ppm 

which is approximately 50 % of that of a PBO:pyrethrin (4:1) treatment.  This had an ESR of 

1.8 and a SF of 24.9.  This shows that a mixture of neem seed oil, PBO and pyrethrins gives 

a much higher SF than a PBO/pyrethrins tank mix and thus improves synergism and 

increases the efficacy of the natural pyrethrins  The next most effective putative synergist 

was linoleic acid which gave a SF of 18.9, and then ethoxylated castor oil which gave a SF of 

14.3.  In summary, all three samples when combined in a mixture with PBO and pyrethrins 

show great potential for increasing the efficacy of natural pyrethrins.  Further testing to 

establish financial viability of such mixtures would need to be performed in order to take this 

result further. 

 

5.3.4 The effect of putative synergists against Musca domestica (381zb strain) 

in vivo 

Following in vitro screening of putative synergists (sections 5.2.2 and 5.3.2), samples were 

tested against Musca domestica with a mixed metabolic resistance to pyrethroids/pyrethrins 

(see section 2.1.3), for their ability to increase the efficacy of pyrethrins in vivo.  Samples were 

selected for in vivo trial based on results from sections 5.3.1 and 5.3.2.  Two of the more 

effective P450 inhibitors from in vitro assays, neem seed oil and linoleic acid, were selected 

for screening in vivo.  

 

5.3.4.1 Putative synergist:pyrethrins tank mix (5:1) 

The results of bioassays using a tank mix of synergist:pyrethrins (5:1) on M. domestica are 

shown in Table 5.8.  Results indicate that PBO enhances penetration of pyrethrins through 

the cuticle corresponding to results found for M. persicae (section 5.3.3) as although both 

neem seed oil and linoleic acid reduced the LC50 for pyrethrins, from 11251.9 ppm to 4635.1 

ppm and 5657.7 ppm respectively, the reduction of ESR was only 6.1 and 7.5 respectively.  
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For both compounds the SF was at least 7.9-times less than for PBO thus showing PBO to 

be more effective at enhancing the efficacy of natural pyrethrins than either of the two 

putative synergists tested.   

 

Table 5.8  Lethal concentration for 50 % mortality (LC50), effective synergism ratio 
(ESR) and synergistic factor (SF) for putative synergists against female Musca 

domestica (381zb strain) as a tank mix with pyrethrins (5:1) 

See appendix V, Table A-V-IV 

Treatment 
LC50 (ppm/20mg 

fly) 
ESR SF 

Pyrethrins only* 11251.9 14.9 - 

PBO* 589.3 0.78 19.1 

Neem seed oil 4635.1 6.1 2.4 
Linoleic acid 5657.7 7.5 2.0 

* for reference (data from Chapter Three) 

 

5.3.4.2 Putative synergist:PBO:pyrethrins tank mix (5:5:1) 

The results for these experiments can be seen in Table 5.9.  With the addition of PBO to the 

mixture (synergist:PBO:pyrethrins, 5:5:1) the LC50 for each putative synergist was 

approximately 10-fold less than it was for the synergist:pyrethrin mixture with a LC50 of 

425.6 ppm for neem seed oil, and 526.5 ppm for linoleic acid.  Both of these LC50 values 

were lower than that for PBO:pyrethrin tank mix.  However, neither of these mixtures gave 

an LC50 that was significantly different from PBO:pyrethrins alone.  Although these results 

suggest that PBO aids the penetration of neem seed oil, linoleic acid and the pyrethrins, the 

efficacy of the pyrethrins, compared to a PBO:pyrethrins tank mix, is not increased.  

 

Table 5.9  Lethal concentration for 50 % mortality (LC50), effective synergism ratio 
(ESR) and synergistic factor (SF) for putative synergists against female Musca 

domestica (381zb strain) as a tank mix with PBO and pyrethrins (5:5:1) 

See appendix V, Table A-V-V 

Treatment 
LC50 (ppm/20mg 

fly) 
ESR SF 

Pyrethrins only* 11251.9 14.9 - 

PBO* 589.3 0.78 19.1 

Neem seed oil 425.6 0.56 26.4 
Linoleic acid 526.5 0.70 21.4 

* for reference (data from Chapter Three) 
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5.4 General Discussion for Chapter Five 

Methylenedioxyphenyl (MDP) compounds are widespread among plant species (Newman, 

1962); and their presence coincides with many classes of secondary compounds that are 

known to have insecticidal properties and also reported to have the ability to synergise 

synthetic organic insecticides (Casida, 1970, Lichtenstein et al., 1974, Fuhremann & 

Lichtenstein, 1979).  Berenbaum and Neal (1985) proposed that when insects ingest some 

plants, MDPs act as natural synergists which interfere with P450 function after ingestion thus 

leaving the insect more susceptible to the toxic activity of other secondary substances in the 

plant.  Krieger et al. (1971) postulated that this mechanism was present in Chrysanthemum 

cinerariaefolium (Compositae) where sesamin (an MDP synergist) co-exists with the insecticidal 

pyrethrins in the flowerheads.  Janzen (1973) proposed that the presence of these synergists 

may occur to allow plants to reduce the quantity of secondary substances produced without 

reducing the overall toxicity. 

 

PBO contains an MDP ring (Figure 5.1) which is reported to be responsible for P450 

inhibition although it is not thought to play a part in esterase inhibition.  It has been shown 

that the two oxygens on the MDP ring are required for P450 inhibition and the removal of 

one oxygen (PBO analogue 16-5) affects the ability of the compound to inhibit P450s but 

not esterases (Moores et al., 2009).  If the MDP ring did inhibit esterase activity it would be 

expected that myristicin (in nutmeg and parsley) and bergamot would be potent esterase 

inhibitors, although in this study they were less effective than PBO. 

 

a)  

 

b) 

 

Figure 5.4  Structure of a) PBO; b) PBO analogue 16-5 

 

PBO is a known esterase and P450 inhibitor.  This study has shown that PBO inhibits 

esterases leaving approximately 4 % esterase (E4) activity (ie inhibition of 96 %), but only 

inhibits P450 activity by approximately 35 % at that same concentration.  Other effective 

esterase inhibitors are oleic acid, ethoxylated castor oil and neem.  Oleic acid, ethoxylated 
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castor oil and PBO all have a long carbon chain that contains oxygens (C-O) or unsaturated 

oxygens (C=O).  Oleic acid and ethoxylated castor oil both have a long carbon chain with an 

unsaturated portion (C=C).  Since neither oleic acid, nor ethoxylated castor oil have an MDP 

ring it could therefore be postulated that the ethoxy-chain on PBO (and the other structures) 

is responsible for esterase inhibition. 

 

The bioassay results for M. persicae (794jz clone), which has an esterase-based resistance, 

show that a treatment of PBO plus neem or linoleic acid and pyrethrins, show neem and 

linoleic acid to be more potent esterase inhibitors in vivo than PBO, but without PBO they 

cannot penetrate with the pyrethrins to exert their potent effect.  However, M. domestica 

(381zb strain) are thought to have a more GST- and P450-based resistance profile and from 

the bioassay results it appears that both neem seed oil and linoleic acid are better P450 

inhibitors in vitro than in vivo. The in vivo result is unexpected given the success of the 

compounds in vitro as P450 inhibitors.  This may be because the pre-treatment time needs 

optimising for better metabolic defence inhibition in vivo, and investigations into the 

resistance mechanism would also be beneficial. 

  

Essential oil samples from BRA were originally chosen for synergist screening based on their 

chemical structures because many contained an MDP ring or a similar group (e.g. bergamot, 

anise, sage, tea tree, geranium, mint, thyme and rosemary) predicted to give esterase 

inhibition.  Angelica and bergamot were not predicted to be potent P450 inhibitors, as their 

structures, a single oxygen in the MDP ring, are similar to the PBO analogue which Moores 

et al. (2009) showed to have only esterase activity remaining (no P450 activity). 

 

Most of the samples from BRA/University of Tasmania, including Cl-B1 which performed 

well in the alpha-cypermethrin bioassay, were extracts produced from single plants and 

further experiments would be needed to establish if other plants of the same species would 

give the same results.  However, it is encouraging that Cl-B1 has shown synergistic potential 

as it is an extract from a common Tasmanian garden plant. 

 

Parsley seed oil (53 % myristicin) was selected for trial in vivo because BRA were hoping to 

find a food-based synergist and it had performed well in vitro in the esterase inhibition assay 

and reasonably well in the P450 assay.  In vivo, parsley showed potential as a synergist for 

pyrethrins and α-cypermethrin.  Apart from being comprised of 53 % myristicin, the other 

components of the oil are unknown.  The sample containing 86 % myristicin did not 
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perform as well in the esterase inhibition assay as the 53 % sample, perhaps suggesting that 

the myristicin is not the only component of the oil responsible for esterase inhibition.  

However, neither parsley sample was as potent as the pure myristicin sample suggesting that 

pure myristicin is best but in the two parley oil samples there are other compounds present 

that may be important e.g. apiole.  It would be interesting to identify each of the components 

in the two parsley seed oils, and to evaluate them and myristicin in vivo against an insect with 

a resistance mechanism known to be due to the presence of P450s.  Berenbaum and Neal 

(1985) investigated the synergism between myristicin and xanthotoxin (a furanocoumarin) 

and suggested that the action of myristicin is via MDP competitive inhibition of P450s.  

They found myristicin to increase the rate and extent of Heliothis zea (Boddie) 

(Lepidoptera:Noctuidae) mortality at a given xanthotoxin concentration. 

 

Neem seed oil performed well in vitro as both an esterase and P450 inhibitor, and also 

performed well in vivo as a synergist with pyrethrins against Myzus persicae.  This concurs with 

the findings by Lowery et al. (1993) who studied the use of neem for aphid control.  They 

tested pyrethrum because at the time of their study it was the current botanical insecticide of 

choice by producers of organic crops.  The authors used formulated neem seed (expeller) oil 

(NSO) and ethanolic neem seed extracts (NSE), both with known quantities of azadirachtin 

and the authors‟ general conclusions were that the neem-based products were effective 

against several species of aphids both in the laboratory and in the field, but mixtures of NSO 

or NSE and pyrethrum did not increase the efficacy of neem.  Considering their data from 

another perspective (i.e. whether neem increases the efficacy of pyrethrum), it can be seen 

that there was a significant (P < 0.05) reduction in the number of strawberry aphids 

(Fimbriaphis fimbriata (Richards) (Homoptera: Aphididae) and Chaetosiphon fragaefolii (Cockerell) 

(Homoptera: Aphididae) present on plants in one of two trials when a NSO and pyrethrum 

mixture was applied, compared with a pyrethrum treatment alone.  The authors hypothesise 

that the difference in the results between the first and second trials was due to plant size and 

application rate of the treatment, as well as whether both the top and bottom of the leaf 

surfaces were covered.  Experiments investigating the numbers of M. persicae and A. gossypii 

showed a significant (P < 0.05) reduction in aphid numbers when a mixture of NSE and 

pyrethrum was used, compared with pyrethrum alone.  Thus the findings of Lowery et al., 

(1993) although not the focus of their study, confirm those of the present study: that neem 

has synergistic properties when used in conjunction with pyrethrum. 
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It is known that neem oil is rich in pre-formed secondary metabolites, e.g. azadirachtin, 

phenolics and glycosides etc (Singh et al., 2005). These occur constitutively in entire parts of 

the neem plant and it is thought that they act within the plant as in-built chemical defences to 

pathogen infection and may protect plants against various insect pests.  Properties attributed 

to neem include insect anti-feedant properties (Govindachari et al., 2000); antibacterial and 

anti-inflammatory properties (Kraus, 1995).  Phenolics have been found to have antifungal 

properties (Ravn et al., 1989, Osbourn, 1996, Sarma & Singh, 2003), and antifeedant and 

antibacterial properties (Ravn et al., 1989). 

 

Azadirachtin has an ester bond on the periphery of the molecule which is clearly available for 

attack by esterases.  It is surprising that it was not more potent as an esterase inhibitor in vitro.  

Neem seed oil performed well as an esterase inhibitor both in vitro and in vivo.  As a seed oil it 

has many components, but there is insufficient data available to conclude which of the 

components of neem are the active esterase inhibitors.   

 

Singh et al. (2005) performed High Performance Liquid Chromotography (HPLC) on 

different parts of the neem plant and found the seeds to be rich in phenolic acids.  Both 

“raw” and “ripe” seeds were studied and the same four phenolic acids were detected in each, 

although the level of the acids was greater in “raw” fruit seeds compared with ripe seeds.  In 

order of abundance, the 4 acids identified were Gallic, Chlorogenic, Tannic and Ferulic 

(Figure 5.5).   

 

Tannic acid is a water soluble polyphenol that is present throughout neem plant and is 

reported to have anticarcinogenic, antimutagenic and antioxidant properties (Chung et al., 

1998).  Gallic acid has been reported to have similar properties as tannic acid (Shahrzad & 

Bitsch, 1998) and ferulic acid is thought to have antifungal  (Sarma & Singh, 2003) and 

antioxidant properties (Graf, 1992).  From the results in this study it would be expected that 

gallic, chlorogenic, tannic and ferulic acids might explain the higher synergism seen when 

using neem seed oil compared to azadirachtin.  In the current experiments, azadirachtin was 

not tested in vivo, however it would be interesting to assess the difference in activity between 

the purified azadirachtin and the crude neem seed oil in vivo.  Unfortunately it is not known 

whether the neem seed oil used in this study was produced from “raw” or “ripe” seeds.  

HPLC assay of the neem seed oil would determine the relative abundance of the 4 phenolic 

acids and may provide information as to which are acting as the synergist with pyrethrins. 
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Gallic acid 

 

Chlorogenic acid 

 

Tannic acid 

 

Ferulic acid 

 

Figure 5.5  The structure of the four phenolic acids (gallic acid; chlorogenic acid; 
tannic acid and ferulic acid) identified by HPLC by Singh et al. (2005) present in 

“raw” and “ripe” neem seed oil.  

 

Both linoleic acid and oleic acid performed well in vitro and in vivo in these studies.  Although 

little is known about these compounds, there is a US Patent (5047424) (Puritch & Salloum, 

1991) which includes the use of oleic and linoleic acids as part of “an environmentally safe, 

broad spectrum insecticide”.  The concentrated formulation proposed comprises a 

pyrethroid component (0.2-2 % by weight) plus a mixture of monocarboxylic acids (50 % by 

weight) and the alkali metal salts of the acids.  The acids include oleic acid as a major 
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component and linoleic acid as a minor component (at least 70 % and 6 % by weight of the 

monocarboxylic acids, respectively).  A more recent patent (WO/2007/065026) (Hailu & 

Anderson, 2007) is for an invention whereby “certain solvent blends of mixtures of fatty 

acids alkyl esters advantageously possess synergistic solvency and provide improved solubility 

and uniformity to a pesticide composition”.  The invention describes a pesticide composition 

containing a preferred 25-55 % by weight of a blend of C12-C18 alkyl esters corresponding 

to a formula R1CO-OR2, where R1CO is an aliphatic acyl group (containing 12-18 carbon 

atoms) and R2 is a linear or branched alkyl group containing 1-4 carbon atoms, and a 

biologically active ingredient (the insecticide).  The examples given for solvent blends include 

mixtures of alkyl esters of fatty acids such as lauric, myristic, palmitic, palmitoleic, oleic, 

stearic, linoleic and linolenic acids, with mixtures of methyl esters of fatty acids containing 

12-18 carbon atoms being preferred.  Both of these patents are consistent with this study 

showing that oleic acid and linoleic acid have potential for synergism. 

 

The work discussed in this chapter has highlighted that some plant extracts show promise 

for use as a synergist with natural pyrethrins.  Further experiments are needed to extend 

these findings.  It would be interesting to look at the effect of putative synergists, especially 

neem seed oil and linoleic acid, on house fly strains that have a different resistance 

mechanism in addition to testing them on a wider range of insect species. 
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6 CHAPTER SIX: SUMMARY, DISCUSSION, LIMITATIONS AND 

RECOMMENDATIONS  

 

6.1 Enhancing the efficacy of pyrethrins using Piperonyl Butoxide 

(PBO) 

 Overall, PBO was found to increase the efficacy of natural pyrethrins against the 

resistant strains/clones of all insect species studied.  It was also found to increase efficacy 

against the susceptible strains/clones of some species and is it is thought this is because 

it is blocking the background esterases and/or P450s. 

 A tank mix of PBO and pyrethrins, or a pre-treatment of PBO prior to treatment 

with pyrethrins, significantly reduced the LC50 in resistant M. persicae, M. domestica and 

B. tabaci compared to a pyrethrins only treatment. 

 The optimum pre-treatment time for M. persicae was indicated to be 5 hours. 

 The increased efficacy of natural pyrethrins due to a tank mix of PBO and pyrethrins 

was generally superior to a pre-treatment. 

 The same paralysis effect on the insect was seen for both the pyrethrins and the 

PBO/pyrethrins mixes. 

 Many of the results obtained in this study have indicated that there are different levels of 

synergism occurring in the different insect species. This may be due to qualitative or 

quantitative differences in detoxification mechanisms (esterases/P450s).  

 Microencapsulations of pyrethrins plus PBO showed potential for increasing the efficacy 

of pyrethrins.  Although the use of microencapsulated formulations requires much more 

investigation this study did show that there is some potential for increasing the efficacy 

of pyrethrins, especially if the solubility issues could be overcome.  The principle of a 

modified release formulation, with the addition of compounds capable of stabilising 

pyrethrins in UV light, would greatly enhance the potential of pyrethrins being used in 

agriculture. 

 Results from these studies have shown that the efficacy of natural pyrethrins can be 

increased significantly using PBO as a tank mix, but unlike results with synthetic 

pyrethroids, a pre-treatment of PBO does not improve results further.  It appears that 

for natural pyrethrins PBO could be enhancing the penetration of the pyrethrins through 

the insect cuticle.  Experiments on M. persicae (with an esterase-based resistance 



Chapter Six Summary, Discussion and Recommendations 

 

99 

mechanism) indicated that the effect of enhanced penetration through the cuticle is 

greater than the effect of inhibiting the esterases totally, and that the enhanced 

penetration effect declines rapidly.  The rise in mortality (observed over time) with a 

PBO pre-treatment could be due to the enhanced inhibitory binding effect that PBO has 

on the esterases. 

 Even without a synergist, if kdr or super-kdr is present, pyrethrins may be more potent 

than synthetic pyrethroids.  Experiments testing the effect of PBO and pyrethrins 

compared with PBO and a synthetic pyrethroid have supported previous reports that kdr 

does not confer resistance against pyrethrins in the same way, or to the same level, as it 

does against synthetic pyrethroids.  This is shown by a lower LC50 for natural pyrethrins 

than for synthetic pyrethroids on insects with kdr.  If kdr is present in a pest population, 

pyrethrins could be a good choice for insect control accompanied by PBO if metabolic 

resistance mechanisms are also present. 

 

6.2 Development and use of a new biochemical assay 

 Standard spectrophotometric assays do not always reveal the inhibition of esterases by 

PBO in vitro and the success of the assay to identify the inhibition of esterases in vitro by 

PBO was hypothesised to be dependent upon the spatial distance between the binding 

sites on the esterase for the PBO and the artificial substrates used in the assays. 

 A new assay was successfully developed to test the hypothesis above, and esterase 

inhibition was detected indirectly by measuring AChE activity in an „esterase interference 

assay‟. 

 The „esterase interference assay‟ was used to screen putative synergists in vitro for their 

ability to inhibit esterases.  The new assay is a high throughput method of screening 

compounds for their ability to blockade esterase sequestration.  It enables large numbers 

of compounds to be tested quickly and easily, saving time and effort on in vivo testing as 

only compounds showing potential in vitro need be tested in vivo. 

 

6.3 Screening putative synergists for use with pyrethrins 

 Following bioassays using an emulsifiable concentrate of pyrethrins, oleic acid and 

ethoxylated castor oil, the two main components of the EC formulations, appeared to 

enhance the effect of pyrethrins in vivo and were found to inhibit esterases and P450s in 

vitro; 
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 Using the „esterase interference assay‟ the following compounds were found to inhibit 

esterases, in vitro, to the same or greater extent than PBO: neem seed oil, oleic acid, 

linoleic acid, ethoxylated castor oil and extracts of Correa lawrenciana, Correa stackhousiana, 

Correa alba var alba, Zieria arborescens, Boronia citriodora, Boronia pilosa, Acradenia frankliniae. 

 Ideally each compound should be tested on purified esterases from the target insect as 

although the use of E4 gives a good indication about how well the synergist may 

perform, it was found in Chapter four that esterases can vary and the spatial positions of 

the binding sites for the synergist and insecticide are important.  With some optimisation 

the esterase interference assay should work with esterases from other insects. 

 The following compounds were found to inhibit P450s, in vitro, to the same or greater 

extent than PBO: neem seed oil, oleic acid, linoleic acid, bergamot, parsley and some 

extracts of Correa lawrenciana, Correa stackhousiana, Correa alba var alba, Zieria arborescens, 

Boronia citriodora, Boronia pilosa, Acradenia frankliniae. 

 A limitation of the P450 assay was the use of lamb‟s liver.  During this study P450s were 

extracted from M. domestica (not described) and although some activity was found, it was 

insufficient to see the differences between in the presence and absence of the synergists.  

Also, insect P450s do not seem to survive well at -20 C and it is not realistic to try to 

extract P450s and screen putative synergists all in one day.  Although the use of 

mammalian P450s and the choice of substrate give a more generalised assay, not 

involving P450s specific to resistance, it was decided that for the purpose of screening 

putative synergists the use of lamb‟s liver was acceptable since PBO and other MDP 

compounds are known to be general P450 inhibitors, effecting insect, vertebrate and 

plant isoforms by forming a metabolic intermediate with the haem moiety (Scott et al., 

2000).  Ideally the P450s should have been extracted and used from the insect being 

studied as variations do occur and future experiments could look at improving the insect 

P450 extraction process and storage. 

 Extracts were chosen on the basis of their structure, or those containing a bioactive 

compound and many contained an MDP ring.  Although the MDP ring is not thought to 

be important in esterase interactions, those which did prove to be effective against 

esterases were certain to be P450 inhibitors because of the presence of this moiety.  

 As a tank mix with pyrethrins, none of the putative synergists tested in vivo performed as 

well as PBO in a tank mix treatment on resistant M. persicae. However, as a tank mix with 

alpha-cypermethrin, most compounds tested gave better synergism than PBO in 

treatment on M. persicae. 
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 As a tank mix with PBO and pyrethrins, neem seed oil, linoleic acid and oleic acid all 

showed the same or better synergism than a PBO and pyrethrins tank mix when used on 

resistant M. persicae. 

 As a tank mix with pyrethrins in treatments on resistant M. domestica, the efficacy of 

pyrethrins was improved but not to the same extent as a tank mix of PBO and pyrethrins 

when using linoleic acid or neem seed oil as the synergist.  However, when incorporated 

into a tank mix with PBO and pyrethrins on M. domestica, the putative synergists 

enhanced the efficacy of pyrethrins to the same extent as a tank mix containing only 

PBO and pyrethrins. 

 In the search for an alternative synergist to use with pyrethrins, various compounds 

showed potential for inhibiting esterase and P450s in vitro.  Like PBO, oleic acid, linoleic 

acid and ethoxylated castor oil all have long carbon chains and it is postulated that their 

success as synergists results from the presence of the ethoxy-chain, which is perhaps 

responsible for esterase inhibition.  Further investigations would enable a clearer picture 

of the potential of the more successful synergists in vivo: linoleic acid, oleic acid, 

ethoxylated castor oil and neem seed oil, as synergists for use with pyrethrins or as 

mixtures with PBO and pyrethrins.  The cost of using these compounds would also 

require consideration.  

 Many of the plant extracts produced by Botanical Resources and the University of 

Tasmania showed, from these preliminary studies, that they have the ability to increase 

the efficacy of natural pyrethrins.  It would be very interesting to extend these studies to 

see if combinations of putative synergists either with each other, or with PBO, could 

further enhance pyrethrin activity.   

 In addition to the theory proposed in chapter five that the putative synergists may be 

enhancing the penetration of pyrethrins through the insect cuticle, future work should 

include bioassays to assess the effects of the synergists alone in bioassays.  Some are 

already known to have insecticidal properties, for example neem (Lowery et al., 1993, 

Govindachari et al., 2000, Mordue (Luntz) & Nisbet, 2000)and thus may in fact be acting 

by a joint effort with pyrethrins by means of insecticidal action rather than inhibition of 

metabolic defences. 

 Future work would include purifying the putative synergists which look to have potential 

and identifying the active components.  This would enable a study to be made using 

molarities rather than percentages (which were used in this study) as the use of 

percentages for calculating the concentration of insecticide is not ideal.  For this study 

the bioassays had to be performed using percentages as a majority of the compounds to 
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be tested were plant extracts/essential oils and therefore not pure.  If the molecular 

weight of the compound being tested was known then molarities could be used to ensure 

that for each synergist being compared, the same number of molecules was being used 

and would therefore make the study a more fair comparison.  Although some 

compounds were pure and therefore could be calculated in molarities, in order to be 

consistent throught the study, all compounds were tested by percentage. 

 

 

6.4 General Limitations 

 Although it was decided the most practical approach for the experiments in this project, 

there are problems associated with keeping a constant ratio of of synergist:insecticide. 

Despite these problems, it was decided to keep a constant ratio as not only was it more 

practical but previous studies had shown different ratios to have very different effects on 

mortality of bioassayed insects (Bingham et al., 2007). The inhibition of metabolic 

systems may be unequal across the range of doses used in the experiments and the effect 

of these may become critical if comparisons are made between strains/clones of insects 

with significantly different dose responses (e.g. resistant and susceptible).  As was the 

case in these experiments, when the susceptible strain/clone was treated, due to the 

lower level of insecticide required, it would receive a far lower amount of synergist 

compared to the resistant strain/clone due to the fixed ratio.  In the resistant 

strain/clone the synergist was applied at comparatively high levels compared to the 

susceptible, and may have been toxic itself at the levels tested.  Ideally each putative 

synergist should have been tested alone in a dose response bioassay to ensure that the 

effects of the synergist were not overestimated as the synergist dose should be high 

enough to cause maximal inhibition of the metabolic systems without causing mortality 

on its own.  It is arguable as to whether synergists should be applied at an equal dose to 

the susceptible and resistant insects since this would change the ratio of 

synergist:insecticide and as mentioned previously, this has been shown to be important. 

 The bioassays used in this study have limitations in how well they represent field use.  In 

the field a plant would be sprayed form above and the inderside of the leaf would not be 

exposed to much of the treatment.  Translaminar flow of insecticide may increase the 

amount of insecticide that reaches the insects on the undersides of the leaves where 

insects naturally prefer to live and feed.  Given that the insects in this study were either 

placed onto leaf dics where the both surfaces had been treated with insectide/synergist, 
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or the treatment was applied directly onto the insects, the result in the field would be 

different as the insects would receive less treatment than they were exposed to in the 

bioassays. 

 

 

6.5 Recommendations 

 To increase the efficacy of natural pyrethrins, a tank mix with PBO is recommended over 

a pre-treatment as efficacy using a tank mix is generally superior, and less labour 

intensive; 

 Improved solubility of pyrethrin microencapsulations with UV stabilisers may enable 

pyrethrins to be used in agriculture (outdoors) and thus should be investigated, although 

efficacy testing for comparison to a tank mix would need to be performed. 

 The „esterase interference assay‟ is a novel and efficient method of screening putative 

synergists for their ability to inhibit esterases in vitro and the P450 assay is an efficient 

method of screening putative synergists for their ability to inhibit P450s in vitro.  Used in 

sequence, these two assays enable a fast and reliable method of screening putative 

synergists before more time and labour intensive in vivo testing. 

 Linoleic acid, ethoxylated castor oil and neem seed oil all performed well in vivo with 

pyrethrins and PBO, and thus investigations into the potential of these on different 

insect species should be continued on insects with different resistance mechanisms and 

different levels of resistance. 

 More detailed investigations using the Tasmanian plant extracts as synergists, in 

combinations with each other and/or with PBO, would be interesting and may give rise 

to a novel organic synergist for use with pyrethrins. 

 Further experimental work to identify the binding sites on the metabolic enzymes 

(esterases/P450s) of each of the putative synergists would enable a greater understanding 

of the synergists‟ mode of action and thus how to maximise their potential for use in 

insect control. 

 It would be beneficial to identify the 3-dimensional structure of esterases, particularly E4 

which is fairly easy to purify, in order to establish the precise characteristics an ideal 

esterase inhibitor would possess.  

 Future work could include identifying the stage of the target insects‟ life cycle at which it 

would be most effective to apply the synergist/pyrethrin mixture. 
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 Overall, this PhD project has found that various compounds have shown potential to 

increase the efficacy of natural pyrethrins.  Further studies may offer improvements in 

crop protection and public-health by the use of natural pyrethrins in combination with a 

novel botanical compound as a synergist which may appeal to the organic farming 

industry.  
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Appendix I – Buffers and substrates 

0.02M pH7.0 phosphate buffer 

3.58g di-sodium hydrogen orthophosphate dodecahydrate 

1.36g potassium dihydrogen orthophosphate 

made up to one litre with distilled water. 

 

Phosphate buffer plus Triton 

0.1% Triton X-100 dissolved in 0.02M pH 7.0 phosphate buffer. 

 

Fast blue RR (FBRR) 

0.015g FBRR made up to 25ml with 0.02M pH 7.0 phosphate buffer, then filtered. 

 

1-naphthyl-acetate 

0.5ml 30mM 1-naphthyl acetate in 15ml FBRR to give a final concentration of 1mM. 

 

ATChI 

0.022g ATChI in 50ml 0.02M pH 7.0 phosphate buffer to give a final concentration of 

1.5mM. 

 

DTNB 

0.015g DTNB in 25ml 0.02M pH7.0 phosphate buffer to give a final concentration of 

1.5mM.  The DTNB is then diluted 20-fold to give a final concentration of 75µM. 

 

0.1 M sodium phosphate buffer (pH 7.6) containing 1 mM EDTA, 1 mM DTT, 1 mM 

PTU, 1 mM PMSF, 1.46 M sucrose 

6.230 g di-sodium hydrogen orthophosphate dodecahydrate, 0.406 g sodium di-hydrogen 

orthophosphate, 0.074 g EDTA, 0.030 g DTT, 0.030 g PThU, 0.034 g PMSF and 100 g 

sucrose were dissolved in distilled water to make a final volume of 200 ml.  The PThU and 

PMSF were dissolved first in 1ml pure ethanol. 

 

0.1 M sodium phosphate buffer (pH 7.8) 

3.277 g di-sodium hydrogen orthophosphate dodecahydrate and 0.133 g sodium di-hydrogen 

orthophosphate were dissolved in a total of 100 ml distilled water. 
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Appendix II – Processing novel esterase assay data  

The IC50 value found using Grafit was converted into a percentage and given a new 
terminology: I (for “Index value”) 
 
The IC50 for „E4‟ was taken as 100 % activity, and for „no E4‟ taken as 0% activity.   
 
The IC50 of the putative synergist sample (now termed I) was converted into a percentage 
by the following formula: 
 
I =  I (synergist) – I (no E4)   ×   100 = y – x1   ×   100 

      I (E4) – I (no E4)    x2 – x1 

 
 
Variance of the index (I) was approximated using the following expression: 
 
var (I) =    1002  [var(y) + var(x1)] 
    (x2-x1)

2 

 

It is important to note that this calculation often gives an underestimated value for the 
variance because the denominator is taken as a fixed quantity in the formula. 
 
Here, var(y) = (se(y))2 where se(y) is the standard error for the IC50 (for the synergist) as 
given by the fit provided using Grafit; and similarly for x1 („no E4‟). 
 
Following this, 
 
se (I)  =  √[var(I)]   
 
        ____   __ 

= √    1002      .  [var(y) + var(x1)]  
       (x2-x1)

2 

 
The 95% Confidence Interval, denoted CI (95%), is given by 

 
I ± t0.05, 21 × se(I) 

 
where t0.05, 21  is the t-value at the p = 0.05 level of significance on 21 degrees of freedom (df). 
These are 21 because there are 33 data points (11 data points for each curve and 3 curves (no 
E4, E4, E4+synergist), less 12 parameters for fitting the 3 logistic curves. 
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Appendix III – Processing cytochrome P450 assay data 

Given the means and standard errors for all the compounds, the ratio of putative synergists 
to the control were calculated. The formula for the variance of this ratio is: 
 
var(a/b) = (a2/b2)[(var(a)/a2)+(var(b)/b2)] 
 
where a is the mean and var(a) is the square of the standard error of the mean for a putative 
synergist, and where b is the mean and var(b) is the square of the standard error of the mean 
for the control. 
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Appendix IV – Bioassay data for Chapter Three 

Data derived from PoloPlus. TM: Tank mix; PT: pre-treatment; Nc: not calculable; R: resistant; S: susceptible; n: number of insects tested; LC50 : insecticide 

concentration required for 50 % mortality in studied population; CL: confidence limits; ppm: parts per million; SE: standard error; 2: chi squared value; df: 
degrees of freedom; RF: resistance factor; ESR: effective synergism ratio. 
 

The number of insects tested is shown in the column marked „n‟ and this refers to the number of insects tested in the doses for which results were inputted 
into PoloPlus. The column labelled „controls‟ indicates the number of insects treated with a control solution only (e.g. water or acetone as appropriate).  The 
LC50 and LC90 are both shown with their corresponding confidence limits (95%).  The slope indicates the heterogeneity of the population.  The Chi square 
value indicates the goodness of fit i.e. how well the data fits the underlying probit model. 
 
Table A-IV-I The effect of a tank mix and pre-treatment of PBO on the efficacy of natural pyrethrins against: a)Myzus persicae (topical 
application technique); b)Musca domestica (topical application technique); c) Myzus persicae (leaf-dip technique); d) Bemisia tabaci (leaf-dip 
technique).   
a)Myzus persicae (topical application technique) 

 Strain/     LC50 (95% CL) LC90 (95% CL)       

Treatment Clone S/R Sex n controls (ppm) (ppm) Slope (+/-SE) 2 df RF ESR 

Pyrethrins only  
(topical application) 

4106a S - 208 60 37.2 (23.0-55.2) 150.8 (93.0-396.6) 2.108  0.317 32.5 19 1.0 1.0 

794jz R - 480 90 1630.7 (1253.9-2061.1) 6086.7 (4407.7-10092.4) 2.240  0.229 80.8 46 43.8 43.8 

PBO/pyrethrins TM (4:1) 
(topical application) 

4106a S - 298 60 6.8 (3.6-10.8) 27.2 (16.5-69.7) 2.127 0.264 79.5 28 1 0.2 

794jz R - 330 70 121.7 (94.3-156.7) 419.1 (300.4-693.8) 2.387  0.220 57.7 31 17.9 3.3 

PBO PT / pyrethrins (4:1) 
(topical application) 

4106a S - 150 30 46.3 (35.602-58.332) 86.2 (66.682-146.989) 4.753  1.084 11.6 13 1.0 1.2 

794jz R - 400 90 192.7 (129.4-271.3) 750.3 (496.6-1484.5) 2.171  0.188 132.4 38 4.2 5.2 
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b)Musca domestica (topical application technique) 

 Strain/     LC50 (95% CL) LC90 (95% CL)       

Treatment Clone S/R Sex n controls (ppm) (ppm) Slope (+/-SE) 2 df RF ESR 

Pyrethrins only  
(topical application) 

WHOij2 S 
M 361 40 659.4 (524.4-834.8) 1851.9 (1372.2-2902.4) 2.86 (0.28) 23.4 16 1.0 1.0 

F 340 40 755.7 (659.4-868.3) 1399.3 (1173.6-1815.4) 4.79 (0.61) 4.6 15 1.0 1.0 

381zb R 
M 200 40 8513.8 (7104.2-9977.6) 17158.5 (14142.4-23121.6) 4.21 (0.62) 6.2 8 12.9 12.9 

F 200 40 11251.9 (9838.2-12685.5) 16342.7 (14189.4-21740.8) 7.91 (1.69) 3.4 8 14.9 14.9  

PBO/pyrethrins TM (5:1)  
(topical application) 

WHOij2  S 
M 360 40 46.2 (41.2-51.0) 76.2 (67.8-90.4) 5.90 (0.78) 9.3 16 1.0 0.07 

F 340 40 48.6 (44.3-53.2) 73.4 (65.3-87.5) 7.17 (0.86) 16.5 15 1.0 0.06 

381zb R 
M 240 40 365.3 (319.2-418.3) 663.9 (558.4-865.1) 4.94 (0.67) 3.3 10 7.9 0.55 

F 242 40 589.3 (509.9-695.1) 1077.7 (846.9-2176.5) 6.30 (1.66) 15.5 10 12.1 0.78 

PBO PT / pyrethrins (5:1) 
(topical application) 

WHOij2 S 
M 278 40 81.3 (73.7-88.8) 115.2 (103.5-136.6) 8.47 (1.15) 13.2 12 1.0 0.12 

F 360 40 71.2 (61.8-78.7) 96.2 (86.0-121.3) 9.81 (1.70) 25.2 16 1.0 0.09 

381zb R 
M 360 40 404.5 (358.0-453.6) 552.6 (489.0-665.9) 9.46 (1.55) 8.2 16 5.0 0.62 

F 360 40 570.7 (442.9-756.8) 1220.2 (879.4-2724.5) 3.884 (0.80) 19.2 16 8.0 0.76 

 

c) Myzus persicae (leaf-dip technique) 

 Strain/     LC50 (95% CL) LC90 (95% CL)       

Treatment Clone S/R Sex n controls (ppm) (ppm) Slope (+/-SE) 2 df RF ESR 

Pyrethrins EC  
(leaf dip) 

4106a S - 150 30 22.7 (10.7-32.5) 74.2 (51.9-157.5) 2.495 0.637 9.4 13 1.0 1.0 

794jz R - 150 30 365.6 (259.5-556.9) 1933.4 (1096.7-5194.7) 1.772 0.276 10.5 13 16.1 16.1 

PBO EC/pyrethrins EC 
TM (4:1)  
(leaf dip) 

794jz R - 150 30 64.1 (44.7-92.5) 211.1 (136.6-456.0) 2.474 0.349 16.9 13 Nc 2.8 

PBO EC PT / pyrethrins 
EC (4:1) 
(leaf dip) 

794jz R F 150 30 46.7 (35.1-59.8) 107.5 (80.5-179.0) 3.538 0.663 7.4 13 Nc 2.1 
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d) Bemisia tabaci (leaf-dip technique) 

 Strain/     LC50 (95% CL) LC90 (95% CL)       

Treatment Clone S/R Sex n controls (ppm) (ppm) Slope (+/-SE) 2 df RF ESR 

Pyrethrins EC  
(leaf dip) 

Sud-S S F 482 73 10.1 (7.0-13.4) 28.1 (20.3-47.8) 2.868  0.273 87.7 28 1.0 1.0 

Mex2-

GRB 
R F 493 81 629.5 (326.5-1581.3) 4780.4 (1817.4-47871.4) 1.455 0.126 142.1 22 62.3 62.3 

Pirgos R F 214 31 >1000        Nc Nc 

PBO EC/pyrethrins EC 
TM (4:1)  
(leaf dip) 
 

Sud-S S F 207 40 11.1 (8.4-14.9) 27.8 (19.5-53.5) 3.215 0.360 29.7 13 1.0 1.1 

Mex2-

GRB 
R F 195 25 173.8 (111.2-316.4) 752.4 (385.9-4038.3) 2.014 0.266 36.2 13 15.7 17.2 

Pirgos R F 265 54 37.4 (30.5 – 46.2) 65.2 (51.6 – 103.2) 5.314 0.703 33.8 16 3.4 3.7 

PBO PT / pyrethrins (4:1) 
(leaf dip) 

Sud-S S F 175 49 10.5 (7.7-14.6) 29.4 (20.0-59.6) 2.874 0.342 25.5 13 1.0 1.0 

Mex2-

GRB 
R F 193 28 199.8 (141.1-343.5) 882.2 (464.9-3573.7) 1.987 0.291 20.8 13 19.0 19.8 

Pirgos R F 289 70 95.1 (72.9-118.9) 171.1 (134.8-261.3) 5.027 0.586 33.4 13 9.1 9.4 

 

Table A-IV-II The effect of microencapsulated pyrethrins (plus/minus PBO) on a resistant and susceptible clone of Myzus persicae 

 Formul
ation 

    LC50 (95% CL) LC90 (95% CL)       

Treatment Clone R/S n controls (ppm) (ppm) Slope (+/- SE) 2 df RF ESR 

Microencapsulated pyrethrins  

β-cyc 
4106a S 180 30 583.4 436.7-871.1 1924.2 1182.3-5151.7 2.473 0.388 20.1 16 1 1 

794jz R 90 30 > 10000       Nc Nc 

γ-cyc 
4106a S 150 30 > 1000        Nc Nc 

794jz R 90 30 > 10000       Nc Nc 

PBO (EC) + microencapsulated 
pyrethrins  

β-cyc 794jz R 150 30 50.2 33.7-65.9 103.8 77.4-193.3 4.066 0.759 19.1 13 Nc 0.086 

γ-cyc 794jz R 150 30 64.9 47.4-88.7 197.7 135.4-374.7 2.648 0.386 13.8 13 Nc Nc 

PBO (tech.) (top. app.) + 
microencapsulated pyrethrins  

β-cyc 794jz R 298 60 137.9 95.1-184.5 375.0 266.4-720.8 2.950  0.424 52.8 28 Nc 0.236 

γ-cyc 794jz R 150 30 261.4 184.9-371.8 720.1 478.5-1666.6 2.912 0.391 26.8 13 Nc Nc 
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 Table A-IV-III Bioassay results for Myzus persicae (72 hours after dosing) using a topical application of technical alpha-cypermethrin 

     LC50 (95% CL) LC90 (95% CL)       

Treatment Clone R/S n controls (ppm) (ppm) Slope (+/-SE) 2 df RF ESR 

α-cypermethrin 

4106A S 180 30 0.495 0.320-0.729 1.473 0.952-3.540 2.71 0.34 41 16 1 - 

794jz R 240 30 3230.2 3017.3-3369.9 3769.4 3591.8-4158.1 19.11 3.27 34.3 22 6525.7 6525.7 

PBO + α-cypermethrin (tank mix) 794jz R 150 30 810.8 486.3-1331.7 8309.5 3522.9-100754.9 1.27 0.33 7.1 13 - 1637.9 

PBO (5 hour pre-treatment) + α-cypermethrin 794jz R 180 30 169.9 122.0-257.5 966.3 536.6-2816.2 1.698 0.243 17.8 16 - 343.2 
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Appendix V – Bioassay data for Chapter Five 

Data derived from PoloPlus. TM: Tank mix; PT: pre-treatment; Nc: not calculable; R: resistant; S: susceptible; n: number of insects tested; LC50 : insecticide 

concentration required for 50 % mortality in studied population; CL: confidence limits; ppm: parts per million; SE: standard error; 2: chi squared value; df: 
degrees of freedom; RF: resistance factor; ESR: effective synergism ratio. 

 

Table A-V-I Bioassays to test putative synergists against Myzus persicae (794jz clone) as a tank mix with pyrethrins (4:1) 

   LC50 (95% FL) LC90 (95% FL)       

Treatment n controls (ppm) (ppm) Slope (+/- SE) 2 df ESR  SF 

Pyrethrins only* 480 90 1630.7 (1253.9-2061.1) 6086.7 (4407.7-10092.4) 2.240  (0.229) 80.8 46 43.8 - 

PBO* 330 70 121.7 (94.3-156.7) 419.1 (300.4-693.8) 2.387  (0.220) 57.7 31 3.3 13.4 

Ethoxylated castor oil 140 20 342.6 (272.3-434.8) 802.5 (601.5-1279.7) 3.466 (0.532) 9.3 12 9.2 4.8 

Za-B2 140 20 350.5 (219.6-583.1) 1334.8 (753.4-4463.8) 2.207 (0.313) 22.9 12 9.4 4.7 

Linoleic acid 140 20 413.0 (287.3-625.3) 1350.8 (833.7-3495.4) 2.490 (0.373) 16.8 12 11.1 3.9 

Neem seed oil 80 20 463.0 (387.0-552.4) 733.4 (604.0-1073.4) 6.416 (1.353) 2.7 6 12.4 3.5 

Oleic acid 140 20 541.0 (336.1-1019.9) 1926.6 (1021.5-9464.4) 2.323 (0.360) 25.2 12 14.5 3.0 

Cl-B1 80 20 611.5 (492.1-763.5) 1257.4 (963.8-2042.4) 4.093 (0.751) 3.1 6 16.4 2.7 

Parsley seed oil (53) 60 20 802.9 (521.9-990.4) 1340.0 (1073.3-2620.4) 5.761 (1.848) 1.3 4 21.6 2.0 

Bc-B1 80 20 822.5 (615.6-1218.0) 2624.7 (1620.5-7774.1) 2.543 (0.547) 3.6 6 22.1 2.0 

Bergamot 100 20 1068.2 (784.5-1761.5) 3499.5 (2024.0-12102.9) 2.487 (0.530) 4.0 8 28.7 1.5 

* for reference: data from Chapter Three 
 

 



    Appendix V 

 

121 

Table A-V-II  Bioassays to test putative synergists against Myzus persicae (794jz clone) as a tank mix with alpha-cypermethrin (4:1) 

   LC50 (95% FL) LC90 (95% FL)       

Treatment n controls (ppm) (ppm) Slope (+/- SE) 2 df ESR SF 

Alpha-cypermethrin 
only* 

240 30 3230.2 3017.3-3369.9 3769.4 3591.8-4158.1 19.11 3.27 34.3 22 6525.2 - 

PBO* 150 30 810.8 486.3-1331.7 8309.5 3522.9-100754.9 1.27 0.33 7.1 13 1638.0 4.0 

Neem seed oil 180 30 177.6 120.1-297.9 986.2 508.3-3719.4 1.722 0.239 25.0 16 358.8 18.2 

Linoleic acid 180 30 247.7 190.8-345.1 1012.3 635.3-2261.8 2.096 0.315 11.5 16 500.4 13.0 

Parsley seed oil (53) 180 30 282.1 212.7-414.5 1223.7 729.1-3037.0 2.011 0.307 14.5 16 569.9 11.5 

Ethoxylated castor oil 180 30 282.9 198.6-475.9 1070.9 594.2-3833.6 2.217 0.332 25.9 16 571.5 11.4 

Cl-B1 120 20 386.8 268.4 – 735.4 1603.8 813.6 – 7657.3 2.075 0.444 7.4 10 781.4 8.4 

Oleic acid 90 30 400.2 296.3-726.0 878.0 556.7-5560.1 3.756 0.805 11.2 7 808.5 8.1 

* for reference: data from Chapter Three 
 

 

Table A-V-III Bioassays to test putative synergists against Myzus persicae (794jz clone) as a tank mix with PBO and pyrethrins (4:4:1) 

   LC50 (95% FL) LC90 (95% FL)       

Treatment n controls (ppm) (ppm) Slope (+/- SE) 2 df ESR SF 

Pyrethrins only* 480 90 1630.7 (1253.9-2061.1) 6086.7 (4407.7-10092.4) 2.240  0.229 80.8 46 43.8 - 

PBO* 330 70 121.7 (94.3-156.7) 419.1 (300.4-693.8) 2.387  0.220 57.7 31 3.3 3.3 

Neem seed oil 100 20 65.4 (52.0-82.0) 144.2 (109.5-232.7) 3.732 (0.648) 7.0 8 1.8 24.9 

Linoleic acid 140 20 86.0 (65.4-114.1) 173.6 (127.9-314.7) 4.200 (0.700) 15.1 12 2.3 18.9 

Ethoxylated castor oil 140 20 113.9 (80.0-147.9) 263.5 (196.7-455.0) 3.519 (0.743) 8.2 12 3.1 14.3 

* for reference: data from Chapter Three 
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Table A-V-IV Bioassays to test putative synergists against female Musca domestica (381zb strain) as a tank mix with pyrethrins (5:1) 

   LC50 (95% FL) LC90 (95% FL)       

Treatment n controls (ppm/20mg fly) (ppm/20mg fly) Slope (+/- SE) 2 df ESR SF 

Pyrethrins only* 200 40 11251.9 (9838.2-12685.5) 16342.7 (14189.4-21740.8) 7.91 (1.69) 3.4 8 14.9 - 

PBO* 242 40 589.3 (509.9-695.1) 1077.7 (846.9-2176.5) 6.30 (1.66) 15.5 10 0.78 19.1 

Neem seed oil 89 21 4635.1 (3335.6-7056.5) 14354.8 (8922.3-34597.4) 2.61 (0.46) 4.2 6 6.1 2.4 

Linoleic acid 89 28 5657.7 (3879.0-8146.0) 13832.4 (9312.5-33265.2) 3.30 (0.78) 3.1 6 7.5 2.0 

* for reference: data from Chapter Three 
 

 

Table A-V-V  Bioassays to test putative synergists against female Musca domestica (381zb strain) as a tank mix with PBO and pyrethrins (5:5:1) 

   LC50 (95% FL) LC90 (95% FL)       

Treatment n controls (ppm/20mg fly) (ppm/20mg fly) Slope (+/- SE) 2 df ESR SF 

Pyrethrins only* 200 40 11251.9 (9838.2-12685.5) 16342.7 (14189.4-21740.8) 7.91 (1.69) 3.4 8 14.9 - 

PBO* 242 40 589.3 (509.9-695.1) 1077.7 (846.9-2176.5) 6.30 (1.66) 15.5 10 0.78 19.1 

Neem seed oil 304 28 425.6 (270.9-741.1) 849.5 (544.8-3257.0) 4.27 (0.59) 97.7 22 0.56 26.4 

Linoleic acid 273 28 526.5 (441.5-630.7) 982.3 (792.0-1630.7) 4.73 (0.74) 14.6 21 0.70 21.4 

* for reference: data from Chapter Three 
 
 

 



    Appendix VI 

 

123 

Appendix VI – Khot et al. (2008) 
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