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ABSTRACT 

Demon, I., Cunniffe, N. J., Marchant, B. P., Gilligan, C. A., and van den 
Bosch, F. 2011. Spatial sampling to detect an invasive pathogen outside of 
an eradication zone. Phytopathology 101:725-731. 

Invasive pathogens are known to cause major damage to the environ-
ments they invade. Effective control of such invasive pathogens depends 
on early detection. In this paper we focus on sampling with the aim of 
detecting an invasive pathogen. To that end, we introduce the concept of 
optimized spatial sampling, using spatial simulated annealing, to plant 
pathology. It has been mathematically proven (15) that this optimization 
method converges to the optimum allocation of sampling points that give 
the largest detection probability. We show the benefits of the method to 
plant pathology by (i) first illustrating that optimized spatial sampling can 

easily be applied for disease detection, and then we show that (ii) com-
bining it with a spatially explicit epidemic model, we can develop opti-
mum sample schemes, i.e., optimum locations to sample that maximize 
the probability of detecting an invasive pathogen. This method is then 
used as baseline against which other sampling methods can be tested for 
their accuracy. For the specific example case of this paper, we test (i) 
random sampling, (ii) stratified sampling as well as (iii) sampling based 
on the output of the simulation model (using the most frequently infected 
hosts as sample points), and (iv) sampling the hosts closest to the 
outbreak point. 

Additional keywords: dispersal kernel, objective function, SEIR model. 

 
As a result of international free trade, there is an increased risk 

of introduction of invasive and nonindigenous pathogens (13). 
There have been numerous invasions that caused major ecological 
and economic damage. Pimentel et al. (25) estimate that approxi-
mately $21 billion in crop losses per year are attributable to 
nonindigenous plant pathogens in the United States, in addition to 
control costs of approximately $500 billion per year. In the UK, 
Jones and Baker (14) showed that more than 234 pathogens were 
introduced between 1970 and 2004. Important recent examples 
include Dutch elm disease caused by the fungal pathogen 
Ophiostoma novo ulmi, rhizomania of sugar beet caused by Beet 
necrotic yellow vein virus (BNYVV), and sudden oak death 
caused by Phytophthora ramorum (2,4,5,9). The nursery trade is 
one of the possible routes of entry for invasive plant pathogens 
via the inadvertent import of infected plant stock (4,14). This 
paper deals with a pathogen that has entered through this route. 
The pathogen can subsequently disperse into the surrounding 
natural environment, where there is potential for significant eco-
logical damage. Consequently, a major challenge for regulatory 
agencies is the early detection of the pathogen to prevent its 
spread into the surrounding area. 

Quarantine measures as well as eradication or containment 
plans are applied or are being developed for potential invader 
pathogens. It is well known that eradication or containment can 
only be successful when the invader is detected at an early stage 
of the epidemic it causes (11,23,24,29). Therefore it is of key 

importance for those pathogens entering through the trade 
network that a plan is in place to sample the area around a nursery 
or retail park when the pathogen is detected there. Although 
sampling with the aim of detection has been a key focus in studies 
of rare animal and plant species (7), it has received little attention 
in the field of plant disease epidemiology, where interest has been 
directed towards estimating disease incidence of pathogens that 
are known to be present (12,17–20,21). 

In this paper, we focus on sampling to detect a pathogen that 
may have escaped from a zone of eradication. We consider the 
scenario where a pathogen has been locally eradicated from a 
known site of introduction (e.g., within a nursery or garden 
centre) and we want to determine whether it has escaped to the 
surrounding environment. We focus specifically on the invasive 
pathogen P. ramorum in the UK to motivate the problem. P. 
ramorum is currently of statutory concern (through EU regu-
lations on its spread in the EU) in the UK, as it poses a threat to 
woodlands (1,10). Arguably, most outbreaks in the UK started 
within nurseries and garden centers, where host species of P. 
ramorum, including Rhododendron ponticum and Viburnum spp., 
are cultivated (1,27). It has been detected in some woodlands, 
where Britain’s two native (susceptible) oak tree species, Quercus 
robur and Q. petraea occur, are interspersed with R. ponticum in 
some locations (1,6). In an effort to minimize the ecological 
damage caused by P. ramorum, the woodlands are continuously 
surveyed and rhododendron is removed from woodlands on 
detection (8). We introduce spatial optimization using simulated 
annealing techniques to plant pathology and use it to generate 
sampling plans that maximize the probability to detect the 
pathogen (15). It is a technique widely used in geostatistics and 
has been mathematically proven to yield the sampling plan that 
maximizes the probability to detect (15). We will describe the 
logic behind the method in the section entitled optimized spatial 
sampling using simulated annealing. 
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The use of the optimization method can only be shown by way 
of an example. Therefore, we develop a spatially explicit SEIR 
stochastic simulation model and use it to generate multiple 
epidemic realizations. As discussed, the method guarantees the 
sampling scheme that maximizes the probability to detect the 
disease. It has the disadvantage, however, that it requires the 
development of an epidemic model, multiple simulation runs, and 
the application of the optimization technique for it to be applied 
on a case by case basis. What we will do as a next step is to use 
the optimum sampling plan to test how accurate other, simpler to 
use, sampling designs are compared to the optimum solution. If a 
simple method to develop a sampling plan performs close to that 
of the optimum solution, it can be a useful candidate for appli-
cation in routine field-based sampling plans. We will compare 
optimal sampling plans with methods such as (i) sampling schemes 
based directly on the probability of disease occurrence from 
simulated epidemics without formal optimization (hereafter re-
ferred to as probability map sampling), (ii) distance-based samp-
ling, which entails sampling the n hosts closest to the eradication 
zone, (iii) simple random sampling, and (iv) stratified random 
sampling. 

THEORY AND APPROACHES 

In the following sections we describe (i) the epidemic model, 
(ii) the optimized spatial sampling method, (iii) and the other 
sampling methods of which we assess the effectiveness, and (iv) 
we consider the effect of the epidemiological parameters and time 
elapsed since initial infection on the detection probability. 

The epidemic model. We consider a spatially explicit sto-
chastic model with hosts that are classified according to their 
disease status as susceptible (S), exposed but not yet infectious 
(E), infectious (I), and no longer infectious (removed) (R). The 
epidemic process depends on the epidemiological parameters and 
is defined by the transition probabilities between the disease 
classes (Table 1). 

The epidemic model uses a kernel function, K, that describes 
the dispersal of inoculum about a source in two dimensions. This 
function is a probability distribution function, which has a dimen-
sion of inverse area. To calculate the probability of infection on a 
target plant this function is integrated over the area of the target 
host plant, Ai. It is a reasonable approximation, in most cases, to 
assume K to be constant over the small area of a host plant. The 
transition probability, per time unit, for a healthy host to become 
infected, βΛi, or host i to become infected thus is given by  
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is termed the infection pressure, where j is the subset of infectious 
plants, Ni is the total number of infectious hosts, and dij is the 
distance between susceptible host i and infectious host j. This 
distance is calculated from  
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where (xi, yi) are the Cartesian coordinates of host i. 
To explore the effect of the shape of the dispersal kernel, we 

use two contrasting examples namely the thin tailed Gaussian 
kernel, 
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(Fig. 1A). We characterize these two dimensional, one parameter 
distributions by the mean distance, dmean, a spore is deposited 
from the source. This mean distance is dmean = 2πσ  and dmean = 
20/ψ2, respectively. 

The probability per time unit that an exposed host plant 
becomes infectious is given by θ; therefore, the mean duration of 
the latent period equals 1/θ. An infectious host recovers with 
probability per unit time γ, with mean duration of the infectious 
period 1/γ. Using these transition probabilities, Ptransition, we draw 
for each host the time until this host would transit to the next 
stage, Ttransit, (26) from 

)ln(
1

transition
transit Rand

P
T ⋅−=  (1) 

where Rand is a uniformly distributed random number between 0 
and 1. The host plant with the smallest Ttransit is selected and the 
corresponding transition event is performed. 

Using the model, epidemics are simulated using biologically 
plausible values for the transmission rate, latent and infectious 
periods for the pathogen P. ramorum (A. R. Cook, C. A. Gilligan, 
R. K. Meentemeyer, R. C. Cobb, and D. M. Rizzo, personal 
communication). The parameter values used in each simulation 
are given in the figure subscripts. The dispersal parameters were 
arbitrarily selected to mimic dispersal in the range 0 to 10 km 
from the initial site of infestation. The host distribution con-
sidered here is a hypothetical distribution based on likely loca-
tions that reflect local topographical and soil conditions, for 
example clustering on edge of moors, in an area in the South West 
of the UK (Fig. 1B), where outbreaks have been reported (4,6). 
We generate numerous runs of the epidemic model and for each 
run the epidemic is initiated in a cluster of 60 hosts mimicking a 
nursery/garden center (Fig. 1C). The sampling methods are 
applied to these realizations, which contain the status of each host 
within the host distribution at the end of the run time which is set 
at 100 days. Note that the location of the nursery or garden center 
is hypothetical and is for illustration only; it does not represent a 
real occurrence. Similarly, the distribution of susceptible hosts, 
while biologically plausible, is to illustrate the methods. 

We assume that the sampling methods, described in the 
following sections, are implemented after detection and local 
eradication in the nursery/garden center. Therefore, only the host 
plants outside the eradication zone are sampled, for sample size  
n = 5, 10, 20, and 40. The number of simulated epidemic reali-
zations for which at least one infected host plant is detected using 
the sampling schemes is divided by the total number of realiza-
tions evaluated to give the detection probability. This value is 
used as a comparative measure of the performance of the different 
sampling methods. 

Optimized spatial sampling using simulated annealing. The 
sample of n hosts that maximizes the detection probability of the 

TABLE 1. Summary of epidemiological parameters, variables, transition events,
and the corresponding transition rates for the SEIR epidemic model 

Variables                         Description 

S Susceptible hosts 
E Exposed, latently infected hosts 
I Infectious hosts 
R Removed, noninfectious hosts 

Parameters  
β The per capita transmission rate of disease 
Λi The infection pressure for susceptible host i 
1/θ The mean latent period 
1/γ The mean infectious period 

Transition event Rate 
S ⇒ E βΛi 
E ⇒ I θE 
I ⇒ R γI 
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pathogen can simply be found by calculating the detection 
probability obtained with all possible combinations of n hosts and 
selecting the combination that maximizes the probability. How-
ever, this method is very time consuming due to the large number 
of possible combinations of n host plants. We therefore use simu-
lated annealing, an algorithm for global optimization problems 
originally developed in physics (15). The algorithm maximizes an 

objective function, Φ, which in our case is the probability to 
detect an infected host. 

The optimization method is an iterative process, proceeding in 
steps which will be denoted by the subscript k, that starts (k = 0) 
from a random sampling design by randomly selecting n hosts 
from the host distribution. For this sample the probability to 
detect the host, Φ0, is calculated. Next (k = 1) we take one of the 
hosts in the sample and replace it with another host. The question 
then is whether this new set of n hosts is a better sampling plan. 
To this end we calculate the probability to detect the epidemic for 
the new sample plan, Φ1. If Φ1 > Φ0, then obviously the new 
sampling plan is better than the previous one and we retain this 
one. If Φ1 ≤ Φ0, the new sampling plan is not better than the old 
sampling plan. In this case the new sampling plan is still retained 
with probability P, where P is given by 

⎟⎟
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This process is repeated. Every step where Φk+1 > Φk, the new 
sampling plan is retained and every time Φk+1 ≤ Φk, the new 
sampling plan is retained with probability P defined by Barr and 
Asher (2). It has been mathematically proven (15) that retaining 
inferior sampling plans with probability P guaranties that the 
process converges to the global optimal sampling design (Fig. 2). 
The parameter ck decreases with k as ck+1 = α⋅ck, α ∈ [0,1] (28). 
The parameter c (called the cooling parameter) is crucial to the 
annealing process and its initial value is determined empirically 
through a series of simulations to ensure that the optimization 
process occurs gradually. The number of iterations required to 
reach the global maximum is determined empirically from several 
runs of the optimization process. 

Here, the global maximum is the largest achievable probability 
for detection of disease across the epidemic realizations and the 
corresponding sample scheme is hereafter referred to as the 
optimum sample scheme. These optimum sample schemes are 
then applied to a new set of epidemic realizations (developed as 
described in the previous section) to test their efficiency in 
detecting the pathogen outside the eradication zone and in doing 
so we preclude any bias in the detection probability obtained with 
the optimum sampling schemes. 

Fig. 1. A, The two pathogen dispersal kernels, K(d), used in the simulation
model, with the graph inset showing a logarithmic transformation. B, Map of 
Devon, in the UK, on which the host distribution is based. C, Simulated host 
distribution. The small gray dots represent susceptible hosts and the large
black dot is the hypothetical location of a nursery/garden center, the source of
initial inoculum. The location of the nursery is randomly assigned and does 
not correspond with any known enterprise. 

Fig. 2. The numerical value of the objective function, here the probability to 
detect the pathogen, Φk, as a function of the number of iterations, k for a 
typical run of the process. 
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Alternative sampling methods. We assess the performance of 
four other sampling methods. By doing so, we hope to find a 
sampling method that is easy to use in the field and at the same 
time approximates the detection probability of the optimum samp-
ling scheme. We consider (i) probability map sampling based 
upon repeated simulations of the epidemic model, (ii) distance-
based sampling, (iii) simple random sampling, and (iv) stratified 
random sampling. Note that the latter three sampling methods 
require only a map of susceptible hosts. They do not require an 
epidemic model from which to derive the sample scheme and can 
therefore be applied more readily. 

The first sampling method involves sampling the n hosts that 
have the largest probability of being infected across the entire set 
of simulated epidemics. This method is an obvious candidate to 
yield a sample scheme with a large detection probability. Dis-
tance-based sampling involves calculating the distance to the 
source of infection for all hosts outside the eradication zone and 
selecting the n hosts closest to the source. Simple random 
sampling involves random selection of n host plants to form a 
sampling scheme. For stratified sampling, the host distribution is 
divided into different strata according to increasing distance from 

the source of initial inoculum. We use the minimum distance at 
which host plants are located from the source of initial inoculum 
as the starting distance for stratification. Furthermore, we con-
sider proportional allocation of the sample scheme within strata. 
Whereby for sample size of n, the contribution of each stratum to 
the sample scheme equals  

n
N

Ni ⋅
ˆ

 
where iN̂  is the number of plants in the ith stratum and N is the 
total number of plants, with all sample elements chosen at 
random. 

Effect of the epidemiological parameters and time on the 
detection probability. We also determine the dependence of the 
detection probability on the numeric value of the epidemiological 
parameters, the dispersal kernel, and the time elapsed since first 
introduction of the disease in the nursery for distance-based 
sampling. We apply sample schemes consisting of the n hosts 
closest to the source of infection to sets of realizations of the epi-
demic developed with different values of the epidemiological 
parameters. This allows us to establish which epidemiological 
parameters are essential in determining the efficiency of the 
sampling method in detecting disease. We also apply the distance-
based sampling schemes to realizations for which the disease had 
been present for either T = 50, 100, 150, and 200 days before 
sampling was applied. 

RESULTS 

As default, we applied the sampling methods to realizations of 
the epidemic at T = 100 days unless otherwise stated. The 
Gaussian kernel gives rise to more localized dispersal than the 
square root kernel (Fig. 3). We find that the optimized sample 
scheme results in high detection probabilities of disease outside 
the eradication zone. The detection probabilities obtained with 
distance-based sampling were usually close to those obtained 
with optimized sampling. The detection probabilities obtained 
with sampling based on the probability maps were somewhat 
lower than those obtained for the above sampling methods (Fig. 
4). We only show the results of the detection probability obtained 
for the epidemic generated with the Gaussian kernel (Fig. 4), but 
the results are qualitatively similar when the square root dispersal 
kernel is assumed. The three sampling methods (simulated 
annealing, probability map sampling, and distance-based samp-
ling) above result in a larger detection probability when compared 
with random sampling and stratified random sampling (Fig. 4). 
Stratified sampling gives the lowest detection probability overall 
compared with the other methods. We find that the locations of 
sampling sites allocated within the optimum sample scheme 
overlap with most locations within the sample schemes for dis-
tance-based sampling and probability map-based sampling, which 
explains why the detection probability obtained for these three 
sampling methods differs so little from each other (Fig. 5). Other 
sets of parameter values (in the range as used in Fig. 6) result in 
very similar correspondence between the sampled hosts in the 
three sampling methods (data not shown). If the nursery/garden 
center is placed at different locations within the host distribution 
than shown here, similar results as those described above are 
obtained (data not shown). 

Since our results show that the probability of detection of 
distance-based sampling is close to the maximum detection prob-
ability as resulting from the optimization method, we show here 
only the effect of the epidemiological parameters on the 
efficiency obtained with distance-based method. The efficiency of 
disease detection outside the eradication zone obtained with dis-
tance-based sampling decreases considerably as the latent period 
increases. For example, for a sample scheme of size n = 20, when 

Fig. 3. Maps showing the probability of being infected for each host, across
1,500 epidemic realizations for A, the Gaussian dispersal kernel and B, the 
square root dispersal kernel. The white dots are hosts that have not become
infected. The darkness of the other hosts increase with the probability of being
infected. The intensity of the points increases from gray to black with an 
increase in the probability. The initial number of exposed hosts equals 10,
with epidemiological parameters β = 0.0007, γ = 0.0005, and θ = 0.083. 
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the latent period is double the default value of 12 days, we find a 
16% decrease in the detection probability. When the latent period 
is increased four times the effect is greater, as we find a 68% 
decrease in the detection probability (Fig. 6A). The detection 
probability is influenced to a lesser extent by the value of the 
transmission rate than the latent period, but an increase in the 
transmission rate also leads to an increase in the detection prob-
ability (Fig. 6C). Decreasing the infectious period, 1/γ, hardly 
influences the value obtained for the detection probability with 
distance-based sampling (Fig. 6D), whereas an increase in the 
time that the disease is present before it is detected and locally 
eradicated in the nursery greatly influences the obtained detection 
probability of disease (Fig. 6B).  

DISCUSSION 

Some plant pathogens invade new areas by escaping from trade 
networks. P. ramorum, causing sudden oak death, is a recent ex-
ample. In such cases early detection is essential in reducing their 
potential damage to the environment as well as the investment re-
quired for effective control. We showed how optimized sampling 
can be used to derive the optimal sampling scheme for early 
detection of invasive pathogens using a general numerical optimi-
zation method. Although simulated annealing is new to plant 
pathology, it is widely used in geostatistics (22,28). For a more 
detailed description of its use in that context we refer to Lark 
(16). Applying the numerical method to the example of P. 
ramorum combined with the specified host distribution, we have 
shown that (i) optimized sampling can be applied to detect inva-
sive pathogens, and (ii) we can derive optimum sample schemes 
for disease detection by combining the method with an epi-
demiological model. The optimum sample scheme derived using 
simulated annealing guarantees the highest probability of disease 
detection outside an eradication zone (15). It does however 
require an epidemic simulation model as well as the optimization 

routine to be available to the researcher. Furthermore, maps of the 
host distribution and the values of the model parameters (trans-
mission rate, latent period, infectious period, and spore dispersal 
distance) are needed. These are available in some cases and not in 

Fig. 4. The probability of detecting the pathogen for the optimized sampling 
method compared with the sample scheme based on the probability maps
(plotted in figure 3), distance-based sampling, simple random sampling, and 
stratified sampling, applied to realizations of the epidemic at T = 100 days 
with the Gaussian dispersal kernel. As the difference in the values of the 
detection probabilities obtained with the different methods is very small, the
graphs for three are almost not distinguishable. Parameters are β = 0.0007, γ = 
0.0005, and θ = 0.083. 

Fig. 5. The sample scheme, i.e., the set of hosts sampled, obtained for a 
putative epidemic generated with the Gaussian dispersal kernel for A, sample 
size n = 5 and B, sample size n = 10. The large black dot is the location where 
the epidemic is initiated and the small gray dots are the unsampled hosts. The 
white dots, white triangles, and small black dots are the elements within the 
optimum sampling scheme, the distance-based sampling scheme, and the 
probability map sampling scheme, respectively. The epidemiological param-
eters are β = 0.0007, γ = 0.0005, and θ = 0.083. 
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others. We used the optimal sample plan found by simulated 
annealing to assess the performance of other, simpler to use, 
methods to design sampling plans. This allows to derive “rules of 
thumb’’ that can be applied in practical field situations. We have 
shown that in the case investigated in this paper the performance 
of probability map-based sampling and distance-based sampling 
is very close to that of the optimal sampling plan. Simple random 
sampling and stratified sampling give the lowest detection 
probabilities overall (Fig. 5). 

Sampling for detection of invasive plant pathogens has received 
little attention compared with the extensive work done on samp-
ling to detect rare or invasive animals and plants (7). In an 
empirical study on detection of invasive plants, Huebner (11) 
tested four sampling strategies: systematic-plot sampling, strati-
fied-random plot sampling, the modified Whittaker method, and 
the timed-meander method. Timed-meander sampling out-
performed the other strategies considered, with stratified sampling 
performing second best. The timed-meander method involves 
thoroughly walking through smaller sites within the larger study 
area for one hour noting the time every 10 min as new species 

were counted. The method sampled 100% of each site. The timed-
meander method shows similarities with the optimization method 
we applied. Both methods take into consideration the complete 
sampling area, but optimized sampling allows us to input prior 
knowledge, i.e., epidemiological information, and gives us a set 
of optimum locations to sample for maximum detection. In a 
theoretical study into sampling for detection, Been and Schomaker 
(3) developed a simulation model to generate population densities 
for potato cyst nematodes on which they tested several grid-based 
sampling methods. They found that increasing the grid length and 
width, consequently increasing the sampled area, led to an 
increase in the average detection probability. Additionally, they 
showed that the detection probability obtained with the computer 
program SAMPLE, which derives sampling recommendations 
based on characteristics of the infestation foci, e.g., its size and 
population density, was much higher than that obtained with the 
statutory soil sampling methods. Clearly, devising sampling stra-
tegies based on some knowledge of the dynamics of the species to 
be sampled increased the detection probability. We reach the same 
conclusion for detection of invasive disease. 

 

Fig. 6. Effects of the parameter values on the relationship of detection probability and sample size, when distance-based sampling is applied. Note however that 
using simulated annealing the resulting sampling plan is marginally better than the distance-based sampling plan. The difference between the two methods is 
similar as in Figure 4, which is the reason we did not include the results in this figure. A, Latent period, 1/θ, B, time elapsed since the start of the outbreak T, C,
transmission rate, β, and D, infectious period, 1/γ. 
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Specifically, we have shown that our optimum spatial sampling 
method can be used to develop sampling schemes that maximize 
the detection probability. We have also shown the use of these 
optimized sampling schemes in assessing the effectiveness of 
other types of sampling methods with the aim of developing rule-
of-thumb sampling methods that are easily implemented in prac-
tice. In doing this, we have shown that if the location of the 
source of infection is known, distance-based sampling is a simple 
and efficient method with a probability to detect disease that is 
close to the maximum as given by optimized spatial sampling. 
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