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The durability of azole fungicides in controlling agriculturally important pathogenic fungi is unique amongst modern

single site fungicides. Today, azoles are still relied on to control pathogens of many crops including cereals, fruits and

vegetables, canola and soybeans. Significantly, this widespread use continues despite many reports of azole-resistant

fungal strains. In this review, recent reports of azole resistance and the mechanisms associated with resistant pheno-

types are discussed. The example of the complex evolution of the azole target sterol 14a-demethylase (CYP51) enzyme

in modern European populations of the wheat pathogen Mycosphaerella graminicola is used to describe the quantita-

tive and epistatic effects on fungicide sensitivity and enzyme function of target site mutations, and to explore the

hypothesis that constraints on CYP51 evolution have ensured the longevity of azoles. In addition, the threats posed by

alternative resistance mechanisms causing cross-resistance to all azoles or even unrelated fungicides are discussed, and

postulations are made on how using new genomic technologies to gain a greater understanding of azole resistance evo-

lution should enhance the ability to control azole-resistant strains of plant pathogenic fungi in the future.
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Introduction

Azoles (imidazoles and triazoles) are the largest group of
sterol 14a-demethylation inhibiting (DMI) fungicides and
the most widely used class of antifungal agents for the
control of pathogenic fungi of humans and plants, domi-
nating the agricultural fungicide market since their intro-
duction in the 1970s. In contrast to other single site
fungicides, and despite their widespread long-term use,
control failures with azoles are rare. When resistance
occurs, resistance levels are often low and cross-resis-
tance between members of the azole class incomplete.
Therefore, disease control can be maintained by the use
of more active compounds of the same class. Recently,
more studies of azole resistance in plant pathogenic fungi
have started to define the molecular mechanisms underly-
ing less sensitive or resistant (here defined as reductions
in sensitivity that may cause control failures in the field)
phenotypes. Together with studies of human pathogens,
these investigations have defined three primary mecha-
nisms of azole resistance. These are (i) mutations in the
target-encoding CYP51 gene resulting in decreased affin-
ity of the protein for inhibitors, (ii) over-expression of
the target CYP51 gene most frequently caused by inser-
tions in the predicted promoter regions, and (iii) increased
efflux caused by the over-expression of genes encoding
membrane transporters. These mechanisms can combine,
and resistance levels are often determined by combinations
of CYP51 amino acid alterations, CYP51 gene over-
expression and/or increased efflux (Cools & Fraaije,

2013). Furthermore, increasing genome sequence informa-
tion has revealed that many filamentous fungi, particularly
filamentous Ascomycetes (subphylum Pezizomycotina),
possess two or more paralogous CYP51 genes (Becher
et al., 2011). Species with multiple CYP51s are intrinsi-
cally less sensitive to some azoles, and mutations confer-
ring acquired resistance to effective azoles are usually
restricted to one paralogue, most often CYP51A (Becher
&Wirsel, 2012).
The most recent studies describing the impact of

genetic changes conferring azole resistance on fungicide
sensitivity and the efficacy of azole sprays in the field will
be discussed. Based on these data, the proposition that
the longevity of azole fungicides in agriculture is a prod-
uct of the costs and trade-offs associated with the genetic
alterations conferring a less sensitive phenotype will be
explored, with the hypothesis that these preclude the
development of widespread resistance to all azoles, and
should ensure this group of fungicides, if they are avail-
able to growers, remain an important class of antifungal
agent in the future.

Cost and trade-offs associated with azole
resistance mechanisms

CYP51 alteration

Azoles inhibit sterol 14a-demethylase (CYP51). This
P450 enzyme is essential for the biosynthesis of sterols,
critical components of cell membranes that are consid-
ered prerequisite for the evolution of eukaryotes. There-
fore, CYP51 activity is widely viewed as the ancestral*E-mail: hans.cools@rothamsted.ac.uk
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P450 activity (Kelly & Kelly, 2013). Many CYP51
mutations associated with altered azole fungicide sensi-
tivity phenotypes have been reported in fungi, some at
the equivalent positions in both human and plant patho-
gens, and others unique to one species or genus (Becher
& Wirsel, 2012). Unlike target site mutations causing
resistance to other single site fungicides, CYP51 muta-
tions often specifically affect individual, or a subset of
azole compounds, with cross-resistance across the whole
class generally incomplete. For example, substitutions at
the equivalent residue to Y136 are the most frequently
reported CYP51 alterations in azole-resistant isolates of
human and plant pathogenic fungi (Becher & Wirsel,
2012). In agriculture, Y136F was first reported in grape
and cereal powdery mildews resistant to triadimenol
and propiconazole (Table 1; D�elye et al., 1997, 1998;
Wyand & Brown, 2005). However, isolates of other
fungi carrying substitutions at the equivalent residue, for
example the septoria leaf blotch pathogen Mycosphae-
rella graminicola (Y137F; Leroux et al., 2007; Cools
et al., 2011) and Puccinia triticina (Y134F; Stammler
et al., 2009), the wheat brown rust pathogen, although
resistant to triadimenol, can be controlled by newer az-
oles such as epoxiconazole. Modelling of the M. gra-
minicola CYP51 confirms this differential effect, as the
exchange to F137 pushes this residue into an obstructive
position specifically prohibiting the binding of triadime-
nol (Mullins et al., 2011). In Europe, cereal powdery
mildews are generally controlled by mildewicides and
host resistance. However, in Australia, where azoles are
the only systemic fungicide class registered for use on
cereals, incomplete cross-resistance between azoles is
now relied on for powdery mildew control (M. Tucker
and R. Oliver, Curtin University, Australia, personal
communication).
Other CYP51 mutations confer contrasting effects on

azole sensitivity. For example, M. graminicola isolates
carrying the substitution V136A are less sensitive to the
imidazole prochloraz, but sensitive to tebuconazole,
whereas isolates with I381V have lower sensitivities to
most triazoles, particularly tebuconazole, but remain sen-
sitive to prochloraz (Fraaije et al., 2007; Leroux et al.,
2007). Furthermore, until recently V136A and I381V
had not been found in combination. Consequently, it
was proposed this trade-off could be exploited to prevent
the further evolution of azole resistance by using mix-
tures or alternations of azoles that are differentially
affected by V136A and I381V (Cools & Fraaije, 2008).
However, in modern M. graminicola populations the
sequential accumulation of CYP51 mutations has gener-
ated CYP51 variants with both V136A and I381V, often
combined with the more recently emerged substitutions
D134G and/or S524T (Leroux & Walker, 2011; Cools
& Fraaije, 2013). Isolates carrying these CYP51 variants
are becoming more common as they are less sensitive
to the most widely used azoles epoxiconazole and
prothioconazole, and also prochloraz, although the
presence of V136A seems to maintain isolate sensitivity
to tebuconazole.

In fact, the accumulation of CYP51 mutations seems
to be critical for the stepwise evolution of new resistant
phenotypes of M. graminicola in response to the intro-
duction of progressively more active azoles. However,
the sequence and frequency by which CYP51 mutations
emerge, driven by azole selection, is constrained by
effects on enzyme activity. For example, western Euro-
pean populations of M. graminicola are dominated by
isolates with CYP51 variants carrying V136A and/or
I381V, combined with changes at residues Y459–Y461
(Stammler et al., 2008), and different combinations of
these mutations can confer decreased sensitivity to all
azoles currently registered for septoria leaf blotch con-
trol (Cools et al., 2011; Cools & Fraaije, 2013). Heter-
ologous expression in Saccharomyces cerevisiae showed
that when introduced as single amino acid substitu-
tions, V136A and I381V destroy the capacity of the
M. graminicola CYP51 protein to complement yeast
CYP51, indicating a loss of sterol 14a-demethylase
activity. However, this impairment of function can be
restored by combining V136A and I381V with changes
at Y459–Y461 (Cools et al., 2010). Therefore, the rise
of mutations encoding alterations at residues Y459–
Y461 in the mid- to late 1990s (Cools & Fraaije,
2013) was a precondition to the diversity of CYP51
variants and azole resistance phenotypes observed in
modern M. graminicola populations. The most recent
M. graminicola CYP51 variants, for example, have up
to eight amino acid alterations compared to the wild
type. The identification of the equivalent mutations in
isolates of the banana pathogen Mycosphaerella fijiensis
(Y461–Y463, Table 1; Ca~nas-Guti�errez et al., 2009)
may suggest a propensity for alterations in this region
in fungi related to M. graminicola. However, although
rare in plant pathogenic fungi, amino acid changes in
this region have been found in azole-resistant isolates
of human pathogenic fungi not closely related to
M. graminicola, including Candida albicans and Asper-
gillus fumigatus.

CYP51 over-expression

As a mechanism of acquired resistance to fungicides,
increased expression of the target-encoding gene is
unique to the azoles. In plant pathogens it is quite com-
mon, with CYP51 over-expression contributing to azole-
resistant phenotypes in Venturia inaequalis (Table 1;
Schnabel & Jones, 2001), Penicillium digitatum (Sun
et al., 2013), Cercospora beticola (Bolton et al., 2012),
Monilinia fructicola (Luo & Schnabel, 2008), Blumeriel-
la jaapii (Ma et al., 2006), P. triticina (Stammler et al.,
2009) and M. graminicola (Cools et al., 2012). Increases
in expression are most often constitutive and are fre-
quently caused by alterations in the predicted regulatory
regions. For example, higher CYP51 expression was
associated with insertions in the predicted promoter
regions of V. inaequalis (Schnabel & Jones, 2001),
M. fructicola (Luo & Schnabel, 2008), M. graminicola
(Cools et al., 2012) and P. digitatum (Sun et al., 2013).
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Table 1 Examples of azole-resistant field isolates of plant pathogenic fungi

Organism Crop Azole sensitivity phenotype Mechanism(s) Commentsa
Selected

reference(s)

Blumeria

graminis f.sp.

hordei

Barley Varying levels of resistance to

triadimenol and propiconazole.

Positive cross-resistance to

other azoles

CYP51 alterations (Y136F,

K147Q)

CYP51 alterations accumulate

to confer highest levels of

resistance. In Europe

B. graminis f.sp. hordei is

currently controlled by

mildewicides and host

resistance

D�elye et al.

(1998);

Wyand &

Brown (2005)

Blumeria

graminis

f.sp. tritici

Wheat Varying levels of resistance to

triadimenol and propiconazole.

Positive cross-resistance to

other azoles

CYP51 alteration (Y136F) In Europe B. graminis f.sp.

tritici is currently controlled

by mildewicides and host

resistance

Kuck & Mehl

(2004);

Wyand &

Brown (2005)

Botrytis cinerea Various fruit

and

vegetables

Reduced azole sensitivity and

cross-resistance to unrelated

fungicides (multiple drug

resistance (MDR))

Increased efflux (MfsM2

and Mrr1 alteration)

Resistance levels low. Azoles

not currently relied on

Kretschmer

et al. (2009)

Cercospora

beticola

Sugar beet Cross-resistant to

epoxiconazole and flutriafol.

Reduced tetraconazole,

prothioconazole and

difenoconazole sensitivity

Constitutive CYP51 over-

expression (CbCYP51)

Azoles used to control

C. beticola

Nikou et al.

(2009);

Bolton et al.

(2012)

Erysiphe necator Grapevine Varying levels of resistance to

triadimenol. Restricted cross-

resistance to mycobutanil and

fenarimol

CYP51 alteration (Y136F) Isolates carrying Y136F are

least sensitive to triadimenol.

Most azoles still effective

although highly resistant

isolates in the USA do not

have a CYP51 mutation

D�elye et al.

(1997);

Gadoury

et al. (2012)

Monilinia

fructicola

Stone fruit Resistant to propiconazole.

Reduced sensitivity to

tebuconazole and

fenbuconazole

Constitutive CYP51 over-

expression (MfCYP51

promoter insert ‘Mona’)

Isolates resistant to

propiconazole can be

controlled by higher doses

or azoles with greater

intrinsic activity

Holb &

Schnabel

(2007);

Chen et al.

(2012)

Mycosphaerella

fijiensis

Banana Varying levels of resistance to

propiconazole. Cross-

resistance between

propiconazole and

cyproconazole, but not imazalil

CYP51 alterations (Y136F,

A313G, A381G, Y461D,

G462A, Y463D, Y463H

and Y463N). Inserts in

the predicted MfCYP51

promoter also found

Most resistant isolates found

in areas with highest

numbers of sprays. Newer

azoles (e.g. epoxiconazole)

remain very effective

Ca~nas-

Guti�errez

et al. (2009);

Chong et al.

(2011)

Mycosphaerella

graminicola

Wheat Varying levels of resistance to

all azoles registered for

M. graminciola control

CYP51 alterations (>30

reported, e.g. D134G,

V136A, Y137F, A379G,

I381V, Y459D, Y461H,

DY459/G460, S524T).

Constitutive MgCYP51

over-expression.

Increased efflux

suggested

Although some recent isolates

are less sensitive to

epoxiconazole and

prothioconazole, these

compounds remain an

important component of

disease control

Leroux &

Walker (2011);

Cools &

Fraaije (2013)

Oculimacula

acuformis

Wheat Intrinsically resistant to some

triazoles. Acquired resistance

to the imidazole prochloraz.

Sensitive to prothioconazole

Mechanism on intrinsic or

acquired resistance

unknown, although

CYP51 sequence variation

suggested

Prothioconazole remains

effective

Leroux et al.

(2013)

Oculimacula

yallundae

Wheat Acquired resistance to some

azoles. Sensitive to

prothioconazole

Mechanism of acquired

resistance unknown,

although efflux pump

activity suggested

Prothioconazole remains

effective

Leroux et al.

(2013)

Penicillium

digitatum

Citrus Resistant to imazalil. Cross-

resistant to prochloraz,

Constitutive CYP51 over-

expression (PdCYP51A

or PdCYP51B promoter

Imazalil widely used. High

doses control resistant

isolates

Nakaune et al.

(1998);

Ghosoph

(continued)
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These inserts vary in size, often have the signatures of
transposable elements, and contain powerful promoter
sequences (Sun et al., 2013). For some fungi, including
C. beticola (Bolton et al., 2012) and P. triticina (Stamm-
ler et al., 2009), the genetic changes responsible for over-
expression are currently unknown.
CYP51 over-expression may offer some selective

advantages in comparison to other resistance mecha-
nisms. Unlike alterations of CYP51 primary sequence,
changes in sensitivity of individuals over-expressing
CYP51 are not compound-specific, with complete cross-
resistance between the azoles common (Table 1). How-
ever, resistance levels are generally lower than those
caused by target site alteration, and therefore higher
doses or more active compounds can be effective against
isolates over-expressing CYP51 (Table 1). Recently,
M. graminicola isolates over-expressing azole-resistant
forms of the CYP51 gene have been identified. This com-
bination of target site mutation and over-expression
causes a pan-azole-resistant phenotype, with high levels
of resistance to compounds specifically affected by muta-
tions (Cools et al., 2012), leading to the concern that
over-expression of the most resistant CYP51 variants

could confer a phenotype that may affect the field perfor-
mance of all azoles in the future.

Enhanced fungicide efflux

Enhanced fungicide efflux, leading to resistance to multiple
unrelated drugs, a so-called multidrug-resistant (MDR)
phenotype, is viewed as a major threat to the control
of fungal pathogens of humans (Gulshan & Moye-
Rowley, 2007). Indeed in pathogenic yeasts, for exam-
ple Candida glabrata, Candida krusei and C. albicans,
the impact of over-expression of ATP binding cassette
(ABC) or major facilitator superfamily (MFS) trans-
porter genes on intrinsic and acquired resistance to
multiple antifungals is well established (Thakur et al.,
2008; Morschh€auser, 2010). However, in filamentous
fungi, particularly pathogens of plants, the importance
of efflux pump activity is less clear. For example, genes
encoding ABC or MFS transporters have been identified
in plant pathogenic fungi, and their capacity to
export azoles by heterologous expression and targeted
knockout studies has been demonstrated (de Waard
et al., 2006). Genome-wide transcriptional studies have

Table 1 (continued)

Organism Crop Azole sensitivity phenotype Mechanism(s) Commentsa
Selected

reference(s)

myclobutanil and

propiconazole

insert, transposable

element). ABC transporter

PMR1 over-expression

et al.

(2007); Sun

et al. (2013)

Podosphaera

fusca

Cucumber Lower sensitivities to

triadimenol and fenarimol.

Cross-resistance between

triadimenol and myclobutanil.

No cross-resistance between

fenarimol and triadimenol or

myclobutanil

No CYP51 over-expression.

CYP51 alteration

suggested

Azole fungicides, in mixture

with alternative modes of

action, still recommended

for P. fusca control

L�opez-Ruiz

et al. (2010,

2011)

Puccinia triticina Wheat Varying sensitivity of European

isolates to epoxiconazole

CYP51 alteration (Y134F)

and CYP51 over-

expression identified in

sensitive and less

sensitive isolates

Deceased sensitivity

phenotypes are still rare.

Azoles remain very

effective

Stammler

et al. (2009)

Rhynchosporium

commune

Barley Positive cross-resistance

between propiconazole,

tebuconazole, epoxiconazole.

Incomplete cross-resistance

to prothioconazole

Presence of a second

CYP51 paralogue

(RcCYP51A). Mechanism

responsible for more

recent shifts unknown

Prothioconazole remains

very effective

Hawkins et al.

(2011)

Sclerotinia

homoeocarpa

Turf grass Reduced sensitivities to

propiconazole. Sensitivities

between azoles as well as to

plant growth regulators highly

correlated

Induced CYP51 over-

expression. Constitutive

and induced efflux pump

(ShatrD) over-expression

Azoles still relied on for

S. homoeocarpa control,

resistance to unrelated

fungicides a possibility

Ok et al.

(2011);

Hulvey et al.

(2012)

Venturia

inaequalis

Apple Resistance to myclobutanil and

reduced sensitivity to

fenbuconazole and

difenoconazole reported. Cross-

resistance between azoles.

Some local variation

Constitutive CYP51

(CYP51A1) over-

expression caused by a

promoter insert

Azoles still used although

other modes of action

are available

Schnabel &

Jones (2001);

Pfeufer &

Ngugi (2012)

aCurrent control strategies.
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identified ABC transporter genes responsive to azole
treatment (Becher et al., 2011), and the use of putative
chemical efflux antagonists has shifted resistant pheno-
types, as well as sensitizing wildtype isolates (Roohpar-
var et al., 2002; Leroux & Walker, 2011). Yet,
although MDR phenotypes of plant pathogens, includ-
ing M. graminicola and Oculimacula yallundae, have
been proposed to impact on fungicide performance
(Table 1; Leroux & Walker, 2011; Leroux et al.,
2013), to date, only in Botrytis cinerea has a genetic
mechanism conferring enhanced efflux to multiple fun-
gicides been characterized and shown to impact on the
performance of fungicides in the field (Table 1; Kretsch-
mer et al., 2009). The factors suggested as responsible
for the limited occurrence of MDR in the field, includ-
ing large population size, the restricted number of
sprays per season and the occurrence of refugia, rely
on fitness costs in the absence of fungicide selection (de
Waard et al., 2006). However, as shown in experimen-
tally evolved populations of C. albicans (Cowen et al.,
2001), the biological potential to compensate for fitness
costs associated with an MDR phenotype exists.

Multiple CYP51s

As more genomes of plant pathogenic fungi become avail-
able, the influence of multiple target site-encoding genes
on intrinsic and acquired fungicide resistance is becoming
more apparent (Cools & Hammond-Kosack, 2013). Mul-
tiple CYP51 paralogues have been identified in a number
of plant pathogens including species of Aspergillus, Fusa-
rium, Penicillium and Rhynchosporium (Becher et al.,
2011; Hawkins et al., 2011; Liu et al., 2011). In Fusari-
um graminearum, heterologous expression and gene
knockout studies have shown two of the three CYP51
paralogues, CYP51A and CYP51B, to be functionally
redundant, both encoding sterol 14a-demethylases, but
CYP51A is rapidly induced upon ergosterol depletion
caused by azole treatment, and is thus responsible for the
intrinsically low sensitivity of F. graminearum to some
azole fungicides (Fan et al., 2013). Although tebuconaz-
ole resistance in four isolates of F. graminearum and
Fusarium asiaticum was not associated with CYP51
changes (Yin et al., 2009), numerous studies in A. fumig-
atus (Becher & Wirsel, 2012) and P. digitatum (Sun
et al., 2013) have shown acquired resistance to effective
azoles is caused largely by mutations and/or over-expres-
sion of the CYP51A paralogue. This implies that carrying
additional CYP51s may offer an advantage under selec-
tion by azoles, as any costs or trade-offs associated with
changes in protein structure or gene over-expression of
one paralogue are circumvented by the presence of an
unchanged enzyme with paralogous wildtype activity.

Conclusions and perspectives

Early studies seeking to predict the risk of resistance to
azoles using experimentally evolved fungal populations
of, for example, Cladosporium cucumerinum (Fuchs &

Drandarevski, 1976), concluded that resistance under
practical conditions was unlikely as spore formation,
mycelial growth rate and germination were all retarded in
resistant isolates. Although the conclusions ultimately
proved incorrect, these studies identified a possible cost to
azole resistance. With the molecular tools now available,
it is known that target site changes contributing to an
azole-resistant phenotype have interacting effects, and
mutations that alone may be deleterious can be main-
tained in populations in the presence of compensatory
mutations. The evolution of CYP51 in European M. gra-
minicola populations under selection by azoles is an ele-
gant demonstration of these epistatic effects, where the
phenotypic consequences of individual mutations are
dependent on the genetic background in which they occur
(Poelwijk et al., 2007). In addition, as target site resis-
tance is generally compound-specific, the occurrence of
particular mutations reflects the history of azole use.
Therefore, a requirement for multiple mutations to confer
resistance, and the diversity of azoles available to grow-
ers, have extended the effective life of this chemistry and
have ensured that newly developed compounds, for exam-
ple the recently introduced prothioconazole, can still have
a profitable share of the market, despite the existence of
azole-resistant strains of target pathogens. A current
example is the potential use of prothioconazole to control
azole-resistant strains of Asian soybean rust, Phakopsora
pachyrhizi (Koga et al., 2011; Schmitz et al., 2013).
In the future, it may be that mechanisms that can pro-

vide cross-resistance across the azole class, for example
CYP51 over-expression and enhanced fungicide efflux
activity, will become more common, although the infre-
quency of these mechanisms in azole-resistant field isolates
in current populations of plant pathogens suggests fitness
costs (Leroux et al., 2013). Whether additional mutations
will alleviate these costs in the future is unknown. How-
ever, as genome-wide analysis of different plant pathogens
becomes increasing feasible (Cools & Hammond-Kosack,
2013), and we are able to identify genetic changes in
azole-resistant strains and gain a greater understanding of
the interactions between them, it may be possible to poten-
tiate the activity of azoles or alternative fungicides in the
future by inhibiting compensatory mechanisms.
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