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The relationship between cereal plants and soil bacteria has 
evolved over 60 million years, the time at which the first firm 
evidence for grass pollens exists.1 This long period of co-evolution 
has resulted in a wide-range of cereal-biotic interactions, rang-
ing from beneficial to pathogenic. Selected beneficial strains of 
non-pathogenic soil bacteria can promote plant growth. This 
interaction has attracted a great deal of interest as it provides 
opportunities for exploitation in sustainable food production 
by cereals. Pseudomonas spp., particularly P. fluorescens2 and P. 
putida,3,4 have been extensively studied for their ability to pro-
mote plant growth. Plant growth-promotion by rhizobacteria has 
been ascribed to various mechanisms, including nitrogen fixation, 
solubilization of essential plant nutrients, production of plant-
like growth hormones, inhibition of growth-repressing ethylene 
production and direct antagonism of growth-suppressing plant 
pathogens in the rhizosphere.5 Recently, ref. 6 proposed an alter-
native mechanism: rhizobacteria induce growth promotion in 
Arabidopsis by inducing a starvation-like response. The authors 
proposed that the resulting increase in soluble carbohydrates in 
the plant not only benefits bacteria on the rhizoplane, but may 
also contribute to growth promotion.

In addition to the mechanisms noted above, some growth-pro-
moting bacteria are capable of improving plant health via elicit-
ing an induced systemic resistance (ISR) response. In this case, 
colonization by rhizobacteria results in long-lasting resistance 
against a broad range of pathogens.7 The plant signaling mecha-
nisms mediating ISR have been studied extensively in Arabidopsis 

Exudation of benzoxazinoid metabolites from roots of young maize seedlings recruits the rhizobacterial strain 
Pseudomonas putida Kt2440 from the soil to the rhizosphere. in this study, we have investigated whether these 
rhizobacteria are beneficial for maize by eliciting systemic defense priming. root colonization of the maize hybrid cultivar 
Delprim by P. putida primed wound- and jasmonic acid (Ja)-inducible emission of aromatic and terpenoid volatiles, but 
not the emission of the green leaf volatile (Z)-3-hexenyl acetate. Furthermore, root colonization by P. putida primed 
stress-inducible transcription of the Ja-dependent gene SerPIN, whereas Ja-dependent induction of the MPI gene was 
unaffected. Systemic priming of SerPIN by P. putida only occurred in benzoxazinoid-producing plants, and was absent in 
benzoxazinoid-deficient plants. the results from this study suggest that root colonization by P. putida primes a selection 
of Ja-dependent defenses in maize, which is reliant on benzoxazinoid exudation from the roots.
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following root colonization by P. fluorescens WCS417r.8,9 In this 
model system, ISR is based on systemic priming of the plant 
immune system, resulting in a quicker and more potent accumu-
lation of ethylene- and JA-dependent gene transcripts and cal-
lose-rich papillae after pathogen attack.10-12 Pseudomonas-elicited 
ISR has also been reported in a variety of crop-pathogen part-
nerships, including Cotton-Fusarium oxysporum,13 Cucumber-
Colletotrichum orbiculare14 and Rice-Magnoporthe oryzae.15 In the 
latter, ISR is associated with an augmented capacity for pathogen-
induced callose deposition and functional responsiveness to the 
plant hormone JA.

We recently reported attraction of the soil bacterium P. putida 
KT2440 cells to the Maize rhizoplane in response to exudation of 
the benzoxazinoid metabolite 2,4-dihydroxy-7-methoxy-2H-1,4-
benzoxazin-3(4H)-one (DIMBOA).16 DIMBOA is exuded in 
relatively high concentrations from the roots of young Maize 
plants,16 and is known for its insecticidal and phytotoxic activi-
ties.17,18 In addition, DIMBOA plays a signaling role in above-
ground defenses against aphids and fungi, where it functions as an 
apoplastic signal for induction of cell wall defense.19 Despite these 
defense activities, roots of benzoxazinoid-producing Maize lines 
are subject to higher levels of P. putida KT2440 root colonization 
than benzoxazinoid-deficient Maize lines carrying a mutation in 
the ZmBX1 gene. In vitro experiments revealed that this differ-
ence is based on enhanced tolerance of P. putida KT2440 to high 
concentrations of DIMBOA, combined with a positive chemo-
tactic response to the compound. However, it remained untested 
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volatiles. This suggests a similar mechanism between P. putida-
induced defense priming and priming following exposure to 
herbivore-induced volatiles from neighboring plants.

To characterize defense priming in Maize in relation to benzox-
azinoid-dependent root colonization by P. putida, we quantified 
stress-inducible gene transcription in control- and P. putida-treated 
plants of the benzoxazinoid-producing BX1 igl line and the 
BX-deficient bx1 igl line. Similar to stress-induced emission of aro-
matic and terpenoid volatiles (Fig. 1), basal levels of transcription 
of JA-dependent MPI and SerPIN were not directly influenced by 
the presence of P. putida (Fig. 2). Leaf wounding in combination 
with JA application resulted in transcriptional induction of both 
MPI and SerPIN, and was of similar intensity in both genotypes 
tested, suggesting that benzoxazinoids do not play a direct role in 
transcriptional activation of JA-dependent genes. Furthermore, 
stress-inducible MPI expression in both Maize genotypes was not 
influenced by P. putida root colonization. Hence, systemic defense 
priming by P. putida has no influence on the transcriptional 
responsiveness of MPI gene. This also resembles the response 
to herbivore-induced volatiles in Maize, where the MPI gene 
remained unresponsive to priming treatment.21 In contrast, stress-
inducible transcription of the SerPIN gene was strongly augmented 
in P. putida treated BX1 igl plants, while there was no evidence for 
such transcriptional gene priming in bx1 igl plants. Hence, the host 
plant’s ability to synthesize benzoxazinoids determines P. putida-
induced defense priming in the leaves.

Considering that root exudation of benzoxazinoids recruits 
P. putida to the rhizosphere,16 our results suggest that benzoxa-
zinoid-dependent root colonization by P. putida is important for 
aboveground defense priming in the host plant. It is, however, also 
possible that root-exuded benzoxazinoids exert an additional influ-
ence on P. putida physiology than simply stimulating chemotaxis 
and root colonization. For instance, benzoxazinoids may induce 
bacterial production of ISR-eliciting determinants in the rhizobac-
teria. A third explanation for benzoxazinoid-dependent defense 
priming by P. putida could arise from differences in defense 

whether Maize plants benefit from root colonization by P. putida 
and to what extent such beneficial host effects rely on benzoxa-
zinoid-dependent recruitment of bacteria. In this study, we have 
investigated whether P. putida bacteria prime JA-dependent 
defense mechanisms in Maize, and whether these responses rely 
on the host plant’s ability to produce benzoxazinoids.

Results and Discussion

Analysis of VOC emissions from intact Maize plants indi-
cated that root colonization by P. putida has no direct effects 
on emission of the majority of volatiles tested (Fig. 1). The only 
volatile showing increased emission rates in P. putida-colonized 
plants was the monoterpene (±)-Linalool. Linalool has been 
shown to affect insect behavior.26-28 Ref. 29 reported that VOC 
blends with higher levels of (-)-isomer deterred oviposition on 
Datura wrightii by Manduca sexta moths. More recently, ref. 30 
reported contradictory data, and showed that increased emis-
sion of (+)-Linalool from transgenic tobacco plants deters ovi-
position by the moth Helicoverpa armigera, but has no effect on 
larval development or feeding.30 Since we did not investigate 
the chirality of linalool identified in our experiments it is not 
possible to predict the likely effect of increased emission upon 
insect behavior.

In contrast to undamaged plants, stress treatment by leaf 
wounding and JA application in P. putida-colonized plants 
resulted in augmented emissions of nearly all volatiles tested, 
except for the green leaf volatile (Z )-3-hexenal (Fig. 1). These 
priming effects were statistically significant in at least one of 
the two experiments performed. Hence, root colonization by 
P. putida KT2440 appears to prime emission of stress-induc-
ible aromatic and terpenoid volatiles from shoots. Why stress-
induced emission of (Z )-3-hexenyl acetate was not primed by 
P. putida remains unclear. However, Maize plants primed by 
caterpillar herbivory show a similar pattern of aromatic and 
terpenoid volatile potentiation with no effect upon green leaf 

Figure 1. Emission of volatile organic compounds (VoCs) from maize leaves upon root-colonization by Psedomonas putida Kt2440 and subsequent 
defense elicitation by leaf wounding and Ja application. Shown are average emission rates (± SEm) from two independent experiments over a 24 h col-
lection period. asterisks indicate statistically significant differences between bacterized and non-bacterized control groups (Student’s t-test; p < 0.05).
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of Pseudomonas putida KT2440. Bacteria were cultivated as 
described previously.16 P. putida-induced priming of wound- and 
JA-inducible volatile emission was studied in the Maize cultivar 
Delprim, which is routinely employed to study herbivore-induced 
VOC emission due to a robust and relatively strong volatile 
response to wounding.20 To determine the role of benzoxazinoids 
in P. putida KT2440-induced defense gene priming, benzox-
azinoid-producing and benzoxazinoid-deficient mutant lines 
of Maize were used, derived from a cross between bx1 single-
mutant and indole-deficient igl mutant lines, as described by ref. 
19. Because the bx1 mutant produces residual amounts of ben-
zoxazinoids due to a functional Indole-3-Glycerol phosphate Lyase 
gene (IGL),19 comparisons were made between benzoxazinoid-
producing BX1 and benzoxazinoid-deficient bx1 lines in the igl 
mutant genetic background (i.e., BX1 igl vs. bx1 igl).

Root inoculation with P. putida and plant cultivation. 
Maize seeds were pre-germinated in wetted Petri-dishes for 3–4 
d in the dark. Bacterial root colonization was effected by gently 
shaking sprouting seeds for 30 min in a suspension of washed P. 
putida cells from an overnight culture as described by ref. 16. A 
second set of seedlings were shaken in the same manner in sterile 
salt solution (3.4 mM NaHPO

4
; 2 mM KH

2
PO

4
; 0.9 mM NaCl; 

0.9 mM NH
4
Cl) to provide the non-colonized control treatment. 

Visual observation of the roots using epi-fluorescence micros-
copy confirmed that roots exposed to GFP-expressing P. putida 
FBC004 were extensively covered in a bacterial film. Sets of four 
seedlings were transferred to 80 mL pots containing compost and 
grown for 10 d under controlled conditions (25°C; 16:8 h light-
dark cycles; 150 μE m-2 s-1).

Collection and quantification of volatile organic compound 
emission. For each treatment (with or without bacteria), 12 plants 
in three pots were stimulated for JA-dependent VOC emission by 

physiology between benzoxazinoid-producing and benzoxaiznoid-
deficient host plants. We have previously demonstrated that apo-
plastic accumulation of DIMBOA in Maize during initial stages 
of aphid feeding and fungal infection boosts callose deposition.19 
Although benzoxazinoid-producing and benzoxaiznoid-deficient 
Maize lines do not show differences in JA-dependent defense gene 
expression in the absence of P. putida, we cannot exclude that the 
development of a primed defense state upon root colonization by P. 
putida requires functional benzoxazinoid metabolism in the leaves. 
However, considering that belowground exudation of DIMBOA 
promotes root colonization by P. putida,16 we propose that the lack 
of defense priming in benzoxazinoid-deficient Maize plants relies 
on activity of the bacterial partner.

In context of our previous findings on the role of benzoxa-
zinoids in Maize-biotic interactions,16,19 our study further justifies 
the conclusion that these secondary metabolites play an important 
regulatory role in below- and aboveground defense responses of 
Maize. The implication that belowground benzoxazinoids recruit 
bacteria that promote aboveground defense responsiveness has con-
sequences at multiple trophic levels. Further support for this notion 
comes from reference 31, who demonstrated that root benzoxa-
zinoids can be exploited by the specialist root herbivore Diabrotica 
virgifera to localize nutrient-rich crown roots, which, in turn, can 
alter defense responses aboveground.23 Further research on the 
effects of root-exuded benzoxazinoids on communities of plant-
associated microbes and arthropods is warranted to fully reveal the 
importance of benzoxazinoids in cereal-biotic interactions.

Materials and Methods

Biological material. The green fluorescent protein-expressing 
strain FBC004 was used for all experiments, which is a derivative 

Figure 2. transcription of Ja-responsive genes in maize leaves of benzoxazinoid-producing (BX1 igl) and benzoxazinoid-deficient (bx1 igl) maize after 
root-colonization by P. putida Kt2440 and subsequent leaf wounding and Ja application. Shown are means of relative gene expression (± SEm; n = 6) 
at 8 h after wounding and Ja application. Values are normalized to the average expression value of intact, control-treated BX1 igl plants. the asterisk 
indicates a statistically significant difference between the bacterized and non-bacterized group (Student’s t-test; p < 0.05).
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vessels after treatment by wounding and JA. Four shoots per pot 
were collected from three pots per treatment at 8 h after induction 
treatment. RNA extraction and cDNA synthesis were performed 
as described previously.23 Quantitative PCR (qPCR) analysis of 
transcript accumulation of the Maize Proteinase Inhibitor gene 
(MPI) and the Serine Proteinase Inhibitor gene (SerPIN) was 
performed using a Corbett Rotor-Gene-6000, using previously 
described DNA primers.21 Two technical replicates of each sample 
were subjected to the qPCR reaction. PCR efficiency (E) of primer 
pairs were estimated from data obtained from multiple amplifi-
cation plots using the equation (1 + E) = 10slope. Transcript lev-
els were calculated relative to the constitutively expressed Actin-1 
and Glycerol phosphate dehydrogenase C (GAPC) genes,21 using the 
2-ΔΔCt method.24,25 Gene expression levels were normalized to aver-
age expression levels in control-treated, unwounded BX1 igl plants.
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wounding the first three leaves at two separate sites, using 12-inch 
serrated dressing forceps dipped in a 100 μM jasmonic acid solu-
tion (Sigma-Aldrich; J2500). Similar numbers of plants of each 
treatment remained free of mechanical stress. VOC emission was 
measured by air-entrainment as described previously.21,22 Potted 
plants were placed in air-tight glass vessels and charcoal-purified 
air was pumped through at a rate of 0.7 L min-1. Air exiting the 
vessels was passed through a trap containing Porapak™ Q beads. 
After 24 h, volatile traps were removed and the absorbed VOCs 
were eluted with three sequential 750 μL washes of redistilled 
diethyl ether, spiked with 200 ng/mL tridecane as internal stan-
dard. VOCs contained in the eluent were then identified using gas 
chromatography coupled to mass spectrometry (GC-MS) using 
a capillary gas chromatography column (EC05, 30 min length, 
0.25 mm i.d., 0.25 μm film thickness) directly coupled to a mass 
spectrometer (VG Autospec, Fisons Instruments). Ionization was 
performed by electron impact (70 eV, 250°C). The oven tempera-
ture was maintained at 30°C for 5 min, and then programmed 
to rise 5°C min-1 up to 250°C. Volatile quantities were estimated 
on the basis of the internal standard (tridecane). Tentative com-
pound identities were based on comparison of mass spectra with 
existing databases, and were confirmed by comparison of reten-
tion indices and mass spectra of authentic standards.

Gene expression analysis. Plants for gene expression analysis 
were treated similarly to VOC analysis, but were not kept in glass 
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