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In this study,we conduct a spatial analysis of soil total phosphorus (TP), acid extractable phosphate (PO4) and the
stable oxygen (O) isotope ratio within the PO4 molecule (δ18OPO4

) from an intensively managed agricultural
grassland site. Total P in the soil was found to range from 736 to 1952 mg P kg−1, of which between 12 and
48% was extractable using a 1 M HCl (HClPO4

) solution with the two variables exhibiting a strong positive corre-
lation. The δ18OPO4

of the extracted PO4 ranged from 17.0 to 21.6‰with a mean of 18.8‰ (±0.8).While the spa-
tial variability of Total P has been researched at various scales, this is the first study to assess the variability of soil
δ18OPO4

at a field-scale resolution. We investigate whether or not δ18OPO4
variability has any significant relation-

shipwith: (i) itself with respect to spatial autocorrelation effects; and (ii) HClPO4
, elevation and slope - both glob-

ally and locally. Results indicate that δ18OPO4
was not spatially autocorrelated; and that δ18OPO4

was only weakly
related to HClPO4

, elevation and slope, when considering the study field as a whole. Interestingly, the latter rela-
tionships appear to vary in strength locally. In particular, the δ18OPO4

to HClPO4
relationship may depend on the

underlying soil class and/or on different field managements that had operated across an historical north-south
field division of the study field, a division that had been removed four years prior to this study.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Phosphorus (P) is an essential element for plant growth and is ap-
plied to agricultural systems, often in large quantities, to underpin in-
tensive levels of agricultural production (Haygarth et al., 2014). It can
be applied as either inorganic mineral fertilizers, or via the spreading
of animal wastes or other organic materials. Such wastes can occur ei-
ther directly voided by the animal in the field or applied in bulk after
storage while animals are housed. However, P can have significant det-
rimental effects when theymove from land into water bodies. These ef-
fects range from direct toxicity (Lewis and Morris, 1986) through to
indirect consequences such as eutrophication (Smith et al., 1999). Sur-
facewaters are particularly sensitive to P because critical concentrations
of only a few tens of μg of phosphate (PO4) can cause eutrophication, but
are an order of magnitude lower than soil PO4 concentrations required
for crop growth (Heathwaite and Dils, 2000). Identifying the different
pollutant sources that are impacting on a water body is critical to

understand its ecosystem health. However apportioning a pollutant to
any given source or sources is fraught with difficulty and in recent
years techniques have been developed to try to elucidate pollutant ori-
gins (e.g. Baker et al., 2002, Collins et al., 1997; Old et al., 2012) and
these include the use of natural abundance stable isotope ratios (e.g.
Amberger et al., 1987; Granger et al., 2008). More recently still the sta-
ble isotope approach has been applied to P and although P only has one
stable isotope, the technique uses the stable oxygen (O) isotope ratio
within the PO4 molecule (δ18OPO4

) to isotopically characterise PO4

sources and transformations. However, data on the δ18OPO4
of different

PO4 sources remains limited (Tamburini et al., 2014; Young et al., 2009).
One potential source of PO4 in water is from soil, which often re-

ceives P inputs in excess of requirements resulting in P accumulation
within the soil (Haygarth et al., 1998a). Therefore, as with many other
soil properties, an understanding of soil P variability is essential for de-
signing sampling strategies or the evaluation of the effectiveness of dif-
fuse water pollution mitigation measures (Goovaerts, 1998; Rivero et
al., 2007). Despite this, few studies describe spatial variability of soil
properties and their inter-relationships at a landscape scale (i.e.
Marriott et al., 1997; Page et al., 2005). The spatial variability of a
given soil property may be related to the combined action of several
physical, chemical or biological processes that act at different spatial
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scales depending on the soil property and process of interest
(Goovaerts, 1998). Soil spatial variability is present in both natural
and agricultural systems, even if the latter have a long-term uniform
management history (Goovaerts, 1998; Marriott et al., 1997). Under-
standing soil spatial variability is essential to land-based experiments
at all scales and its omission is detrimental to the conclusions drawn
from such experimental data.

In this study, we conduct a spatial analysis of soil δ18OPO4
from an in-

tensivelymanaged agricultural grassland site.While the spatial variabil-
ity of total P has been described at different scales by other researchers
(e.g. Glendell et al., 2014; Page et al., 2005; Penn et al., 2007), this is the
first study to assess the variability of soil δ18OPO4

at a field-scale. We in-
vestigate whether or not δ18OPO4

variability has any significant relation-
ship with: (i) itself with respect to spatial autocorrelation effects; and
(ii) soil P (extracted using 1 M HCl (HClPO4

)), elevation and slope -
both globally and locally within the study field. In particular, the follow-
ing four null hypotheses are tested:

A. δ18OPO4
does not strongly co-vary with HClPO4

, with elevation and
with slope across the field as a whole.

B. δ18OPO4
is not a spatially-autocorrelated process.

C. The relationships of (A) do not significantly change in different areas
of the field.

D. The relationship between δ18OPO4
and HClPO4

is not conditional on
the the under-lying soil class or different management histories.

Furthermore, in order to efficiently test the given set of null hypoth-
eses, all statistical analyses are conducted in a manner that accounts for
a certain sub-optimality in the study sample design. In particular, statis-
tical methods are chosen to cater for significant areas of under- and
over-sampling.

2. Methods

2.1. Study site

To characterise soil P spatial variability, a series of soil samples were
collected from one field of the Rothamsted Research ‘North Wyke Farm
Platform’, in south-west England (50.8°N, 3.0°W). The field sampled, re-
ferred to as ‘Great Field’, was located on a north-west facing hillslope
and comprises clay loam soil overlying the shales and thin subsidiary
sandstone bands of the Crackington formation (Harrod and Hogan,
2008). The soils can be further divided in three main types; Hallsworth
(USDA Aaerichaplaquept, FAO Stagni-verticcambisol), Halstow (USDA
typichaplaquepts, FAO dysticgleysol), and Denbigh (USDA
Dysticeutrochrept, FAO Stagni-eutriccambisol) (Harrod and Hogan,
2008). The long-term annual temperature and rainfall are 9.6 °C and
1056 mm, respectively, with a high proportion of rainfall occurring be-
tween October and March resulting in waterlogged soils.

Records of the historic farm management show that prior to 2010
the field comprised two separate areas (north 1.5 ha and south 5.6 ha)
with contrasting management histories. The northern part had been
managed as permanent grassland for at least 25 years, whereas the
southern part has been ploughed three times in the last 25 years, most
recently in September 2007 when it was re-seeded with a ryegrass/clo-
ver mixture following a previous winter barley crop. At the time of the
study, both areas of the field had the same vegetation cover being clas-
sified under the National Vegetation Classification (NVC) category:
“MG7 Lolium perenne Poa trivialis and related grasslands”. The southern
region, however, had a higher clover content (Trifolium repens), less
dense vegetation cover and approximately double the sward height
compared to the northern part. These management histories are repre-
sentative of normal management cycles of intensive grasslandmanage-
ment (Bilotta et al., 2007).

2.2. Sample design, collection and analysis

To quantify spatial variability in δ18OPO4
, a sampling patternwas cho-

sen with the view of a geostatistical analysis not only to δ18OPO4
, but to

other soil variables, as presented in Peukert et al. (2012). In order to as-
sess spatial variability across three different spatial scales, 78 soil sam-
ples were taken in total with samples at: (i) a broad scale (75 × 75 m
grid); (ii) an intermediate scale (25 × 25 m grid); and (iii) a small
scale (10 × 10 m grid). A hand-held GPS (Nomad Trimble, Sunnyvale,
USA) was used to map and mark the sampling points.

All samples were collected inMay 2011 to a soil depth of 7.5 cm and
were oven dried at 105 °C for 24 h. Dried soils were then sieved through
a 2 mm mesh. Total P (TP) was determined at an external laboratory
(Natural Resource Management, Berkshire, U.K.) through digestion of
the soils ground to 0.5 mm in aqua-regia followed by subsequent anal-
ysis on an ICP-AES. The δ18OPO4

of the soil was determined on the 1 M
HCl extractant described by Tamburini et al. (2010) butwith a fewmod-
ifications. Briefly, between 10 and 20 g dry soil was added to 100ml 1M
HCl and shaken overnight. The supernatants were collected after sepa-
ration from the residual solids by centrifugation and filtration. Phos-
phate concentrations were determined colourimetrically on an
Aquachem 250 analyser using a molybdenum blue reaction (Murphy
and Riley, 1962) after theywere diluted by at least 1/10 to avoid acid in-
terference with the molybdenum chemistry. The extracted PO4 is pre-
cipitated and dissolved as firstly ammonium phospho-molybdate and
then magnesium ammonium phosphate before excess magnesium
and chloride is removed through the addition of a cation resin and a
small dose of silver nitrate crystals respectively. The resultant PO4 in so-
lution is then converted to silver phosphate (Ag3PO4) though the addi-
tion of an Ag-ammine solution and subsequent adjustment of the pH to
between 7 and 8 with 0.5 M HNO3 before incubation for two days at
50 °C in an oven.

Soil PO4 extracted using 1 M HCl (HClPO4
) represents an integration

of several potential PO4 pools (Zohar et al., 2010): (i) the most labile,
water-extractable soil PO4, including intracellularmicrobial PO4 typical-
ly released through processes such as soil drying and re-wetting and cell
lysis (ii) weakly adsorbed bicarbonate-extractable soil PO4, and (iii)
strongly fixed, calcium and iron bound P. The weak acid extraction
does not include the strongly adsorbed aluminium oxide bound PO4,
which requires a NaOH-based extraction (Tiessen and Moir, 1993),
nor does it include P in organic matter, the hydrolysis of which with
1 M HCl has been shown to be negligible during the development of
the extraction protocol by Tamburini et al. (2010). To confirm that or-
ganic P forms were not being hydrolysed, duplicate soil samples were
extracted using 18O-labeled and unlabelled 1 M HCl. If the extracted
HClPO4

was to contain large amounts of hydrolised organic P or con-
densed PO4 species (e.g. polyphosphates, pyrophosphates, etc.) then
the δ18OPO4

of the sample duplicates would be markedly different. For
all tested samples, the 18O of the sample extracted with unlabelled
and 18O-labeled acid was no N1%. The contribution of calcium-bound
P is also considered to be negligible as both the soil parent material
was neither igneous nor calcareous, and the soil pH is generally b6.
Therefore HClPO4

is assumed to extract PO4 from the same soil pool as
is released by water, anion resins, and NaHCO3 extraction, namely ex-
tracellular labile PO4 and metabolic intracellular microbial PO4 and
also some iron bound PO4. Using the 1 M HCl as an extractant enables
far greater quantities PO4 to become available, quantities that are re-
quired to allow the successful precipitation of Ag3PO4 from small
amount of soil.

Oxygen isotope analysis was carried out ETH Zurich on a Vario Pyro
Cube (Elementar GmbH, Hanau, Germany) coupled in continuous flow
to an Isoprime 100 isotopic ratio mass spectrometer IRMS (Isoprime,
Manchester, UK). Triplicate samples of ~0.3mg of Ag3PO4 were weight-
ed into silver capsules togetherwith a small amount offine carbon black
powder to promote the reaction between theAg3PO4 and carbon to pro-
duce CO. The produced reaction gases are carried through a
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temperature-controlled chromatography column and ultimately to the
IRMS. Calibration and corrections for instrumental drifts were done by
repeated measurements of an internal standard (ACROS Ag3PO4 N

97.5%, δ18O = +14.2‰; measured and calibrated at the University of
Lausanne by T. Vennemann), and of benzoic acids IAEA 601 and IAEA
602 (+23.3‰ and +71.4‰, respectively). The δ18O values are given
in the standard ‰ notation with respect to VSMOW (Vienna Standard
Mean Oceanic Water). Silver phosphate standards are routinely ana-
lyzed, and standard deviation on analytical replicates was better than
0.3‰.

2.3. Statistical analyses

Unfortunately, the described sampling design of Peukert et al.
(2012) was flawed due to a mis-interpretation of the requirements
needed for an efficient statistical analysis. The design resulted in: (i)
large areas of gross under-sampling or voids and (ii) areas of preferen-
tial or clustered sampling due to the chosen sampling scheme. Both
flaws also interact and compound each other. Given this, the direct ap-
plication of many statistical methods is likely to be inefficient and sub-
optimal, resulting in biased outputs (Diggle et al., 2010; Gelfand et al.,
2012; Olea, 2007). As a consequence, all of this study's statistical analy-
ses had to be conducted in amanner thatwould account for this sub-op-
timal sample design.

As a first step to mitigate against possible biasing effects, the follow-
ing data pre-processing actions were taken: (1) the limits of the study
area were set to lie significantly within the field boundary using a
10 m buffer around the all sample points that lie to the edge; (2) the
data were declustered by removing observations that contribute the
most to the preferential sampling; and (3) to complement Action 2,
one-point declustering weights were found using the algorithm of
Deutsch and Journel (1998), that enables the full data set to be used
but where the clustered data are down-weighted (and so negate poten-
tial bias).

The statistical analyses for assessing the variation in δ18OPO4

accorded to the following four linked stages: (i) a standard exploratory
analysis; (ii) a variographic analysis to assess spatial dependence (e.g.
Goovaerts, 1997); (iii) a geographically weighted (GW) correlation
analysis (Fotheringham et al., 2002; Harris and Brunsdon, 2010) to in-
vestigate spatial heterogeneity in paired relationships; and (iv) a confir-
matory regression analysis based on that observed in stages (i) to (iii),
where δ18OPO4

is taken as some function of HClPO4
, elevation, slope, soil

class and the historical north-south division. In addition to these analy-
ses, that are centred on δ18OPO4

, complementary spatial analyses were
conducted on TP and HClPO4

to provide useful context. All study hypoth-
esis test results are reported at the 95% significance level; and all statis-
tical analyses were implemented in R (http://www.r-project.org).

2.3.1. Standard exploratory analysis
Conditional boxplots and conditional scatterplots were used to as-

sess δ18OPO4
distributions and relationships. This included evidence for

multiple populations for δ18OPO4
, according to the historical north-

south field division or to soil class; and whether or not the relationship
for δ18OPO4

with HClPO4
, with elevation andwith slope; changed accord-

ing to the north-south division. Multiple linear regression (MLR) fits
were conducted using a step-wise, ordinary least squares (OLS) estima-
tion that finds the best predictor variable subset according to the Akaike
Information Criterion (AIC). Considering the data is spatial, the OLS fits
were viewed as exploratory; definitive spatial regression fits are de-
scribed in Section 2.3.2, below. Hypothesis tests relating to this stage,
follow the usual parametric approach via t-tests.

2.3.2. Variographic analysis
To assess spatial dependence in δ18OPO4

, we limited our investiga-
tions to: (i) raw data variograms; (ii) residual data variograms from
the OLS MLR trend fits of Section 2.3.1; (iii) (outlier-resistant) robust

variograms (Hawkins and Cressie, 1984); (iv) within-class variograms
(e.g. Goovaerts, 1997); (v) local variograms (where (iv) and (v) accord
to the historical field division); (vi) normal-scores transformed data
variograms; and (vii) cross-variograms with HClPO4

. Lags for all empiri-
cal variograms were chosen to reflect the study's sample design; and
only omni-directional variograms were found. To counter any biasing
effects on variogram estimation caused by the sample design, a two-
point declustering algorithm was also used to provide weighted
variograms (Richmond, 2002). For variograms that displayed spatial
structure, theyweremodelled using aweighted least squares (WLS) ap-
proach specified with an exponential variogram model-type.

For investigation (ii), an OLS MLR fit and its corresponding WLS re-
sidual variogram model fit are sub-optimal (but often informative in
an explorative context). As such (and when required), both sets of pa-
rameters (i.e. those for the MLR and those for the variogram) were op-
timally re-estimated using restricted maximum likelihood (REML) (e.g.
Schabenberger and Gotway, 2004). REML is also useful in that it can
similarly account for variogram bias due to the sample design, as can
the two-point declustering algorithm, above (Marchant et al., 2013).

2.3.3. Geographically weighted correlations
Spatial heterogeneity in δ18OPO4

relationships was investigated via
the mapping of GW correlations. These localised correlations are
found at the sample sites of the study area, where they are calculated
in the same manner as their standard (global) counterpart, but only
use data that are spatially nearby to the sample locations. Nearby data
are spatially weighted (via a kernel weighting function), so that the
closest data points are given more influence in the local statistic. Geo-
graphically weighted correlations form one of a suite of GW methods
(Fotheringham et al., 2002; Lu et al., 2014; Gollini et al., 2015), another
of which, GW regression (GWR) is described below.

A GWmethod can be viewed as a moving window weighting tech-
nique, where the size of the window over which any localised statis-
tic/model might apply is controlled by the kernel's bandwidth.
Commonly, this exploration of spatial heterogeneity involves: (i) a care-
fully judged choice of bandwidth; (ii) a test for significance of the ob-
served heterogeneity; together with (iii) a mapping of the outputs.
For this study, we specified the GW correlations using an adaptive
Gaussian kernel. In the absence of an objective procedure for bandwidth
selection, we experimented with three user-specified bandwidths of
30%, 40% and 50%. Hypothesis tests for this stage, followed a
randomisation approach where the true local correlation is compared
to that found from 999 random permutations of the data (e.g.
Fotheringham et al., 2002).

2.3.4. Regression analysis
The following three regressions were considered, where δ18OPO4

is
the response variable: (i) MLR; (ii) MLR with spatially-autocorrelated
error; and (iii) GWR (Brunsdon et al., 1996). The first two regressions
assume data relationships are globally-fixed, while the third regression
allows data relationships to locally-vary. The parameters of the twoMLR
models can be estimated by OLS and REML, respectively. Similar to GW
correlations, GWR enables the exploration of data relationships, where
localised regressions are fitted using spatially weighted data and the re-
sultant regression coefficients are mapped. GWR parameters are esti-
mated using a WLS procedure, where we again specify an adaptive
Gaussian kernel weighting scheme. For GWR, an objective function ex-
ists for bandwidth selection; and here we use an automatic AIC proce-
dure (Fotheringham et al., 2002). To compare the fit of chosen
regressions, AIC and R2 values are reported.

Hypothesis tests for significant regression coefficient heterogeneity
follow both: (i) a randomisation approach (Brunsdon et al., 1998) and
(ii) a parametric bootstrap approach (Harris et al., 2015). For the former,
GWR is applied to 999 random permulations of the data and the vari-
ance of a given coefficient is found. The actual variance of the same co-
efficient is then included in the ranked distribution of variances, where
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its position (i.e. its p-value) relates towhether there is significant spatial
variation in this coefficient.

For the latter, bootstrap samples of the response variable are found
for a null (fixed coefficient) model (e.g. MLR), where the simulations
are based on the estimated parameters of the null model fit to the sam-
ple data. The predictor variables are not considered random and are the
same as the sample data. A test statistic q that measures the spatial var-
iability in the GWR coefficients is then used to test against the null hy-
pothesis. Thus a GWR model is fitted to each bootstrap sample and a
q-statistic is found for each regression coefficient. As the null model is
a random process, even when coefficients do not vary spatially, one
would not expect the GWR coefficients to be identical in different loca-
tions. The bootstrap analysis determines howmuch coefficient variabil-
ity one might expect to encounter due to random variation in a model,
and to compare the level of variability in the observed data set, against
this.

The bootstrap tests are run with the number of simulations set at
999. For each regression coefficient, the 95% points of the bootstrap
samples are computed, and significance levels are found for upper sin-
gle-tailed hypothesis tests. In addition, at every sample (i.e regression
point) location, the localised set of regression coefficients are tested
for significant difference to their corresponding fixed coefficient esti-
mates. Here at each sample location, a bootstrap sample of pseudo t-
values (e.g. Harris et al., 2010) are found for each coefficient, enabing
a bootstrap p-value to be found accordingly. Mapping these p-values
identifies where local coefficients significantly differ to their fixed (or
global) coefficient counterpart.

3. Results

3.1. Distributions of TP, HClPO4
and δ18OPO4

with the raw clustered data

The TP of the soil across Great Field ranged from 736 to 1952 mg P
kg−1, while the HClPO4

ranged from 93 to 821 mg P kg−1 extracting be-
tween 12 and 48%of the TP present in the sample. Aswould be expected
there was a strong positive correlation between TP and HClPO4

(r =
0.91), where the proportion of TP as HClPO4

was found to increase
with increasing soil TP content. The δ18OPO4

of the HClPO4
ranged from

17.0 to 21.6‰ with a mean of 18.8‰ (±0.8).
The spatial distributions of TP, HClPO4

and δ18OPO4
are presented in

Fig. 1a–c. The historic field divide appears an important discriminating
variable in terms of both TP and HClPO4

with higher values to the
north of the divide. Soil class also appears a useful discriminator of TP
andHClPO4

. The study field slopes downwards from its south-east corner
to broadly where the historical divide starts to the west; and similarly

slopes downwards from the north to the same point. Thus the field is
broadly concave in shape, and this also appears to influence the distri-
bution of TP and HClPO4

. Conversely, there does not appear to be any
spatial trend in δ18OPO4

or environmental factors that influence its vari-
ability. Note that all data descriptions in this section are naïve given that
any bias due to the sample design, are not (as yet) considered.

3.2. Actions taken to address sub-optimal sample design

As a first action to address potential sub-optimality (Action 1, from
Section 2.3), a 10mbufferwas used around the data to limit all analyses
to only a sub-region within the study field (Fig. 2). For Action 2 the data
were both moderately and strongly declustered by removing 7 and 22
observations, respectively through expert judgement. Actions 1 and 2
are depicted in Fig. 2. Both declustered data sets simply lessen the im-
pact of the three main areas of clustering, where data have been manu-
ally removed according to their location (and not by their
measurements). The main drawback to the use of declustered data is
the reduced information, which is already limited to 78 locations.

Next, we assessed for bias in the (global) means of TP, HClPO4
and

δ18OPO4
, according to the three different data sets depicted in Fig. 2. An

alternative set of weighted means were also calculated using weights
found from a cell-declustering to a 25 m grid cell (a natural choice
given the design); which is Action 3 from before. Results are presented
in Table 1, where the clustered data tends to: (i) slightly under-estimate
the mean for TP; (ii) slightly over-estimate it for HClPO4

; and (iii) very
slightly under-estimate it for δ18OPO4

. Results suggest that continuing
with the clustered data is reasonable, with a proviso that only models
that cater for possible bias are applied. Weighted correlations and
weighted regressions (WLS MLR) can also be found using the clustered
data, where we assume that the cell-declustering weights found for an
unbiased global mean (for δ18OPO4

in Table 1), are also suitable to
down-weight data relationships in areas of clustering. It is also prudent
to calibrate models with the strongly declustered data; and their out-
puts compared with models calibrated with the clustered data.

3.3. Complementary analyses for TP and HClPO4

Although our focus is the spatial analysis of δ18OPO4
, it is useful to

provide an insight into how TP and HClPO4
vary spatially. This provides

context to the analysis of δ18OPO4
, especially as we choose to investigate

its relationship to HClPO4
in subsequent sections. As opposed to TP,

HClPO4
more directly relates to our understanding of δ18OPO4

. Thus in
Fig. 3, prediction surfaces are given for TP and HClPO4

; both of which
were constructed using a kriging with external drift (KED) model,

Fig. 1. The spatial distribution of (a) TP, (b) HClPO4
, and (c) δ18OPO4

of the HClPO4
within ‘Great Field’ on the North Wyke Farm Platform.
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with all parameters estimated optimally via REML, and a global
neighbourhood specified. For TP, its KED trend component was in-
formed by elevation, slope and the north/south division; whereas for
HClPO4

its trend was informed by elevation, slope, soil class and the
north/south division. The R2 values for the trend fits (i.e. via OLS)
were strong at 0.69, in both cases.

Observe that for the trend component of each KED model, TP and
HClPO4

were not used to help predict each other, as this would not in-
form predictions on a grid (δ18OPO4

was similarly not used in this re-
spect). Variography for both KED models was reasonably well-
behaved, with a clear single structure depicting spatial dependence up
to distances of around 100 m. As both variables are highly correlated,
their parameterisation and surfaces are broadly similar. The highest TP
and HClPO4

values clearly lie to the north of the historical division,
while the lowest values lie in a broad swathe south and east of the his-
torical division.

All analyses in this sectionwere conducted on the clustered data, but
with consideration to potential bias. Observe that the clustered data can
be usedwhen kriging (i.e. after its parameterisation), as it inherently ac-
counts for such configurations via its information, screening and relay
effects (Chilès and Delfiner, 1999).

3.4. Exploratory analysis for δ18OPO4

Using both the clustered and strongly declustered data, the relation-
ship matrices for δ18OPO4

, HClPO4
, elevation and slope are presented in

Fig. 4a & b. Correlation coefficents are given for the complete data sets,
while scatterplots depict relationships that are conditional to the histor-
ic field division. The latter of which, provides a first insight into possible
local relationships. Weighted correlations using the cell-declustering
weights are also given in Table 2. By focusing only on those relationships
with δ18OPO4

, the strongest relationship is with HClPO4
, but this is weak

with a correlation of only 0.30 (for the weighted correlation). Clearly,
δ18OPO4

poorly correlates with elevation and with slope. It appears that
data relationships may be conditional to the historic field division; and
in particular, the relationship of δ18OPO4

with HClPO4
.

Conditional boxplots are used in Fig. 4c & d to relate the distribution
of δ18OPO4

to both the historic field division and to soil class; again using
both clustered and strongly declustered data. Marginally higher δ18OPO4

values are generally found in the northern part of thefield, but in gener-
al, discrimination is poor. Similarly, the three soil classes do not appear
to be a strong discriminator of δ18OPO4

. In general, there is little to choose
between the clustered and declustered data analyses. Thus the sample
design does not appear to strongly bias δ18OPO4

in this respect. Regard-
less of any biasing effects, all relationships for δ18OPO4

are weak or indis-
tinct. Locally however, this may not be the case, and we investigate this
further in Sections 3.6 and 3.7.

Tables 3 and 4 present the results from a series of MLR fits to the
clustered and strongly declustered data, with δ18OPO4

as the response.
Table 3 reports the results using all predictors (HClPO4

, elevation, slope,
soil class and north/south division), while Table 4 reports the results
using predictor subsets chosen via step-wise AIC. In both cases, WLS
MLR fits are also reported using the cell-decustering weights from be-
fore. Clearly, all MLR fits are poor, where the highest R2 is only 0.35.
There is also no consistency in the make-up of the predictor subset or
in the significance of those variables chosen (note that significance
tests are naïve in that any spatial dependence in the data is not as yet
considered). For the former, this is not surprising given that reductions
in AIC are consistently small. Unlike the previous analyses, it now ap-
pears that the sample design is detrimental to fitting regressions (as
the poorest R2 values result when directly using the clustered data).
None of the predictor variables appear particularly worthy predictors
of δ18OPO4

in this global sense, but it is unclear which, if any varables,
could be safely removed, before we proceed to more detailed analyses.
Given these analyses, study hypothesis (A) is accepted.

3.5. Variographic analysis for δ18OPO4

We next investigate for spatial dependence in δ18OPO4
using raw

data, residual data, robust, local and within-class empirical variograms.
Again, we compare results using the clustered and strongly declustered
data. For the residual variograms, OLS MLR trend fits with all predictor
variables are used. We also provide a weighted variogram to the clus-
tered data and REMLmodel fits to both data sets using all available pre-
dictors to inform the trend. All variograms are given in Fig. 5,where only
very weak evidence for spatial dependence is found and the δ18OPO4

data is essentially random. This is endorsed by the REML results,
where the AIC for the spatial model was 4 units higher than the corre-
sponding non-spatial model for the both data sets. Unsurprisingly, as
spatial dependence was absent in δ18OPO4

, cross-dependence with
HClPO4

was also absent (even though spatial dependence is present in

Fig. 2. The distribution of: (a) clustered data, (b) moderately declustered data and (c) strongly declustered data.

Table 1
Global means of clustered and declustered data sets.

Variable
Clustered
data

Moderately
declustered data

Strongly
declustered data

Clustered data
with weights

TP 1134.82 1146.49 1151.94 1145.61
HClPO4

317.77 322.37 314.73 311.79
δ18OPO4

18.75 18.81 18.89 18.62
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HClPO4
, from Section 3.3). Given these results, it is unnecessary to for-

mally test for spatial dependence in δ18OPO4
and study hypothesis (B) is

accepted.

From Fig. 5, the effects of data clustering on the variograms are quite
evident, where semi-variances at the lower lags of the clustered data
variograms are commonly heightened, resulting in very poor small-

Fig. 3. The spatial distribution of (a) TP and (b) HClPO4
; each found using a KED model.

Fig. 4. Scatterplots and correlation coefficients for the (a) clustered and (b) strongly declustered data, respectively. These display the pairwise relationships between δ18OPO4
, HClPO4

,
elevation and slope. Points coloured red and blue relate to samples to the south and north of the historic field division, respectively. Conditional boxplots for δ18OPO4

, with respect to
the historic field division or the three soil classes for (c) clustered and (d) strongly declustered data, respectively.
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scale structure. Conversely, most of the strongly declustered data
variograms depict small-scale structure, but no longer have any
semivariance values at the lowest lag distances. The differences be-
tween the raw data variograms (using complete data sets) and the
south data variograms indicate that δ18OPO4

has a higher variance in
the north than that found in the south. The behaviour of the within-
class variograms somewhat endorses this (noting that they mimic the
south variograms at higher lags as no such semivariance pairs exist in
the north). North data variograms were not found as there were too
few data points to compute a valid variogram. All residual variograms
clearly depict pure nugget effects, as do the REML models. Finally, nor-
mal-scores variograms were also found, but did not help in structure
identification.

3.6. Local relationships for δ18OPO4

Given that spatial autocorrelation effects are absent for the δ18OPO4

process, out next objective is to assess for any spatial heterogenic effects
with respect to the relationships between δ18OPO4

with HClPO4
, eleva-

tion, and slope. Furthermore, if such heterogeneities exist, do they de-
pend on the historical field divison or alternatively, the under-lying
soil class?

Evidence for such heterogeneities have already been observed in Fig.
4, where the relationship between δ18OPO4

and HClPO4
appears condi-

tional to the historic field division. In order to explore this particular re-
lationship further, the same conditional scatterplot is given in Fig. 6a,
using the strongly declustered data. Here we calculate correlations for
the northern and southern parts of the field. Given that spatial autocor-
relation effects are absent (both globally andwithin each partition), and
that the declustered data is used, we can report the significance of these
correlations (using standard t-tests with correlations) with relative as-
surance. Here the global correlation of 0.29 between HClPO4

and
δ18OPO4

is significantly different to a zero correlation, whereas the local
correlation in the south is very weak at 0.02 and not significant. In the
north, the local correlation was relatively strong at 0.55, but given that
it is found using only eleven data points, this correlation was also insig-
nificant. Observe that we have shown the data with their linear fits,
where the intercept and slope vary locally. This concept of spatially-
varying regression coefficients is re-visited in Section 3.7. Note that as
we are investigating locally, it is assumed that an unbiased analysis
will result by only using the strongly declustered data (see Section 4).

To further our investigations of relationship heterogeneity, Fig. 6b–d
presents GW correlation maps for δ18OPO4

with HClPO4
, with elevation,

and with slope; each specified with a bandwidth of 40%. Co-variability
for δ18OPO4

with HClPO4
tends to be stronger in the northern part of the

field (Fig. 6b), and these findings are endorsed by the associated
randomisation tests that indicate areas of unusually strong correlation,
as well as unusually weak correlation in the south. The distribution of
GW correlations between HClPO4

and δ18OPO4
largely confirm that

found in Fig. 6a, but with more detail. As a continuous (Gaussian)
weighting scheme is specified, all GWcorrelations are actually informed
by all 58 observations of the strongly declustered data (a bandwidth of
40% entails that the nearest 22 observations exert the greatest influence
on each localised correlation). Thisweighting specification is considered
crucial to a GW analysis to such a relatively small data set. Thus the GW
correlations in the north and the south of the field are better informed
than the two partitioned correlations frombefore. From Fig. 6c–d, corre-
lations for δ18OPO4

with elevation, and with slope, only marginally vary
across thefield. It is possible that all such heterogeneities are dependent
on the field division (and therefore different managements) or the
under-lying soil class.

3.7. Regression analysis for δ18OPO4

Given the analyses of the preceeding sections, only MLR (estimated
using OLS) and GWR models need to be considered. Extending MLR to
account for spatial autocorrelation in the residual term is unnecessary
given the residual data variograms and REML results of Section 3.5.
Models are applied, using the strongly declustered data only and all pre-
dictor variables are used. Thus the MLRmodel is the same as that given
in Table 3. The bandwidth for the GWRmodel is optimally found at 88%,
indicating a shallow weighting and suggesting weak relationship het-
erogeneity. The model fit results for MLR and GWR give AIC values of
125.4 and 124.6, respectively; together with R2 values of 0.35 and
0.38, respectively. Clearly, there is little to be gained from applying
GWR in preference to MLR. Table 5 tests for coefficient heterogeneity
using: (i) the parametric bootstrap approach with MLR as the null
model and (ii) the randomisation approach. Clearly, and as expected,
there is no significant evidence for coefficient (i.e. relationship) hetero-
geneity in this data, as all p-values are N0.05. Given these test results,
study hypothesis (C) is accepted.

The localised regression coefficients from GWR associated with
HClPO4

are mapped in Fig. 7a, where it appears that the relationship for
δ18OPO4

with HClPO4
varies spatially. Furthermore, this relationship ap-

pears to depend on the historical field divison and/or the under-lying
soil class. There is also a north-west to south-east trend in the coeffi-
cients, reflecting the shallow weighting function that was specified. In
Fig. 7b, the bootstrap p-values for the local sets of pseudo t-values indi-
cate where the coefficients associated with HClPO4

are significantly
smaller (to the north) and significantly larger (to the south) than the
global value. However from the map legend, this only relates to a 90%
significance level and not the stated study significance level of 95%.
Thus, the local coefficients are not significantly different to their global
counterpart, and as such, study hypothesis (D) is accepted. Observe that
given the results of Table 5, we do not further investigate the localised
regression coefficients for the intercept or the other predictor variables.

4. Discussion

4.1. Variability of HClPO4
and TP

Analyses for HClPO4
and TP indicate that both variables are spatially

autocorrelated; where elevation, slope, soil class and the historic field
divide can influence this variability. However the historic field divide
is considered the most important driver, with higher values to the
north of the divide than to the south. This is not unexpected given the
management differences between the two sectors and is because the

Table 2
Weighted correlations using the cell-declustering weights.

Slope Elevation HClPO4
δ18OPO4

Slope 1 −0.30 0.14 0.19
Elevation – 1 −0.26 −0.019
HClPO4

– – 1 0.30
δ18OPO4

– – – 1

Table 3
MLR fits using the full predictor variable set.

Data set Estimation R2 Predictor set Significant predictors

Clustered OLS 0.23 All predictors Intercept, Hallsworth soil class
Clustered WLS 0.31 All predictors Intercept, Hallsworth soil class
Strongly declustered OLS 0.35 All predictors Intercept, HClPO4

, Hallsworth soil class
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northern part of the field has not been ploughed for a significant time,
while the southern part had been ploughed and most recently in
2007. The surface enrichment of P is normal in agricultural soils, espe-
cially grasslands which may not be ploughed frequently, and reflects
the accumulation of P from inorganic fertilizers and manures over
time. The decrease in P with depth is often marked over a few cm
with the bulk of the soil profile considerably lower in P. Where
ploughing has occurred, such profiles are destroyed within the plough
zone and the high P surface soil diluted or replaced with lower P soil
brought up from depth (e.g. Haygarth et al., 1998a, b; Watson and
Matthews, 2008). The amounts of the HClPO4

indicate that N50% of P in
the soil is in 1 M HCl recalcitrant forms such as organic P or aluminium
oxides. Given the negligible contribution of bedrock apatite PO4 it is as-
sumed that the bulk of the HClPO4

is comprised of PO4 adsorbed to soil
particles and microbial PO4. The soils in this region have been shown
to have a high microbial biomass P content, which in turn has been
shown to be released upon drying and rewetting through cell lysis
(Blackwell et al., 2013). The amounts of HClPO4

measured are very sim-
ilar to the levels of microbial P reported by Blackwell et al. (2013) and
therefore we assume that HClPO4

in these soils represents, in large
part, adsorbed soil PO4 and intracellular microbial PO4, the latter nor-
mally exceeding the former (Blackwell et al., 2010).

4.2. Variability of δ18OPO4

In order to discuss δ18OPO4
values observed, we need to estimate the

theoretical equilibrium δ18OPO4
value that might be expected for PO4 in

equilibrium with soil water which is believed to be mediated by the
ubiquitous intracellular enzyme pyrophosphatase (Blake et al., 2005).
This causes the exchange of PO4 oxygen with the oxygen in H2O and re-
sults in a temperature dependent relationship initially described by
Longinelli and Nuti (1973). However recent work by Chang and Blake
(2015) has developed a refined, rigorous and controlled laboratory cal-
ibration of the temperature-dependence of equilibrium PO4 and water,
catalyzed by pyrophosphatase, over a typical environmental tempera-
tures (3–37 °C):

Eδ18OPO4
=−0.18 T+26.3+δ18OH2Owhere Eδ18OPO4

is the stable
oxygen isotope ratio of PO4 at equilibrium in ‰, T is the temperature
in degrees Celsius and δ18OH2O is the stable oxygen isotope ratio of
H2O in ‰. The intracellular phosphate, already at equilibrium, is re-
leased to the soil after cell lysis.

Although measurements of soil water δ18OH2O were not directly
made it has been suggested that soil water at the location is very similar
δ18OH2O to groundwater, in that it is an integrated value ofmany rainfall
events (Granger et al., 2010). As such the δ18OH2O should be similar to
that of the global meteoric water line for this area with δ18OH2O ranging
between−5.5 to−6.0‰ (Darling et al., 2003). The average soil temper-
ature measured at 10 cm depth nearby was 13 °C for the month of May
and this would give estimated vales of δ18OPO4

at equilibrium with soil
water of between 18.0 and 18.5‰. However given the uncertainties in
these assumptions it is wise to examine a window of potential soil
δ18OPO4

and temperature values to understand better the measured
δ18OPO4

data compared to the theoretical equilibrium δ18OPO4
values.

For example, it might be expected that the integrated soil temperature
of the soil profile from surface to 7.5 cm depth is slightly warmer than
that measured at 10 cm. Further, although ground water is an analogue
for soil water, the variability of soil water δ18OH2O is more pronounced
and subject to strong influence from individual rainfall events and also
from enrichment in 18O through evapotranspiration, especially in the
surface of the soil (e.g. Hsieh et al., 1998; Treydte et al., 2014). Therefore
if it is assumed that the integrated 7.5 cm profile soil temperature
ranges between 13 and 15 °C, and that the δ18OH2O is enriched by up
to 4‰ compared to groundwater, then the theoretical δ18OPO4

equilibri-
um values range between 18.0 and 23.0‰. This range of values better
matches the δ18OPO4

of the soil and suggests that the HClPO4
within the

soil is at or around equilibrium. This finding is in commonwith other re-
searchers. Angert et al. (2012) found that across a Mediterranean bed
rock and rainfall gradient, both soil resin extractable PO4 and HClPO4

were broadly in equilibrium with soil water and proposed, amongst
other reasons, that a flux of intracellular equilibrated PO4 from the soil
microbial biomassmay be causing this. Tamburini et al. (2012) also con-
clude that in young and developing alpine soils, regardless of the contri-
bution of PO4 from minerals or vegetation, or from the activity of

Table 4
MLR fits using predictor variable subsets chosen by the step-wise AIC procedure.

Data set Estimation R2 AIC reduction Predictor subset Significant predictors

Clustered OLS 0.22 4.6 Slope, soil class Intercept, slope, soil class
Clustered WLS 0.31 3.3 HClPO4

, slope, soil class Intercept, slope, Hallsworth soil class
Strongly declustered OLS 0.34 1.2 HClPO4

, elevation, north/south division, soil class Intercept, HClPO4
, elevation, Hallsworth soil class

Fig. 5. Variograms for δ18OPO4
using (a) clustered data and (b) strongly declustered data.
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extracellular enzymes,microbial biomasswas themain controller of the
δ18OPO4

, keeping it in equilibrium with soil water. In both these exam-
ples however the soils were generally low in P, and where P is limiting
it is expected that microbial cycling would be rapid.Within this current
study soil P should not be limiting and it is therefore interesting that
δ18OPO4

would still appear to be relatively rapidly cycled and have no ob-
vious trace of any P source signatures. One explanation for this, would
be if the predominant P sources had δ18OPO4

signatures similar to that
of the equilibrium δ18OPO4

value. The δ18OPO4
of inorganic fertilizers

have been reported to show a very wide range of values from 14.8 to

27.0‰while virtually no δ18OPO4
values have been published for animal

excreta (Young et al., 2009) or for stored and managed animal wastes,
however, water-extractable PO4 from dairy farm slurries in this area
have been found to range from 12.0 and 15.0‰ (Granger, unpublished
data).

Analysis results for δ18OPO4
relationships within the data are enig-

matic. Considering the field as a whole, all relationships for δ18OPO4
are

weak or indistinct. HClPO4
, elevation, slope, soil class and the historic

field divide are not particularly good drivers of δ18OPO4
variability; and

δ18OPO4
is not spatially correlated with itself. For within-field

Fig. 6. (a) Strongly declustered data conditional scatterplot for δ18OPO4
with HClPO4

. Points are separated on their location in the field relative to the historic field division. Lines of best fit,
using: all of the data, north data only, and south data only are shown. Geographically weighted correlations for δ18OPO4

with (b) HClPO4
, (c) elevation, and (d) slope - at the strongly

declustered data locations. Associated randomisation test results are circled, indicating locations of unusual correlation. Maps are given with the historical field division and the three
soil class divisions.

Table 5
Bootstrap test q-statistics, associated p-values and randomisation test p-values.

Intercept HClPO4
Elevation Slope N/S division Hallsworth soil class Halstow soil class

Actual 0.726 0.000 0.006 0.006 0.091 0.026 0.059
MLR 95% 2.475 0.001 0.017 0.026 0.242 0.078 0.128
MLR p-value 0.266 0.140 0.220 0.400 0.208 0.193 0.158
Randomisation test p-value 0.275 0.096 0.200 0.575 0.443 0.900 0.584
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relationships between δ18OPO4
and HClPO4

, elevation and slope; only the
local relationship for δ18OPO4

with HClPO4
appears to have any value,

showing a positive relationship north of the historic field divide which
does not exist to the south. However, such localised relationships are
not significantly different to that found for the field as a whole. Thus
in essence, δ18OPO4

is not only randomly distributed with respect to it-
self, but also to the particular environmental factors that this study
has considered.

If it had been found that the positive relationship between δ18OPO4

with HClPO4
was significant in the northern part of the field, which this

study can only allude to; this may imply that the process of ploughing,
which has destroyed the soil P profile in the south, has also decoupled
any link between HClPO4

and δ18OPO4
that is present in the north. The

scenario described by the data seems to suggest that, in the north, ele-
vated HClPO4

occurs as ‘hotspots’ with associated higher δ18OPO4
, and

that as the HClPO4
of these hotspots declines so the δ18OPO4

becomes
lower. Such P hotspots have been described previously under cattle
grazing regimes which not only leads to an increasing the TP in the sur-
face of the soil but also to a heterogeneous distribution of TP ‘hotspots’
as a result of livestock excreta (Page et al., 2005; Pennet al., 2007). How-
ever, the available data on δ18OPO4

in excreta, although limited, indicates
that it is not elevated. If howevermetabolic PO4 released from leaf litter
has an elevated δ18OPO4

(Pfahler et al., 2013) this might explain the dif-
ference between the north and south of the field. In the south,
ploughing has buried and mixed soil organic matter, which in the
north has had time to accumulate. Potentially, this accumulation may
not be homogenous andmay still be affected by the hotspots of excreta
described previously or it might just reflect a heterogeneous accumula-
tion of non-excretal plant material within the soil profile. However if
this is the cause of the relationship between δ18OPO4

and HClPO4
it is

not reflected in the soil total carbon content which shows no relation-
ship with δ18OPO4

.

4.3. Controling variables

Throughout this study, we have not attempted to de-couple the ef-
fects of the historic field divide from the underlying soil class, in how
these categorical variables influence variation and co-variation in
HClPO4

, TP and δ18OPO4
. It is clear from Fig. 1 that both categorical vari-

ables act as similar discriminators, as data only coincides with the Den-
bigh class in the northern part of the field, while the Halstow class
primarily relates to data in the south. Such similarity in discriminating
power is then clearly evident in the subsequent analyses. Given that

sample size is small andmany results are null, it was considered appro-
priate to maintain the controlling interaction between these categorical
variables in all regression fits. However, as the distinction between the
three soil classes is considered minimal in practise, any HClPO4, TP or
δ18OPO4

difference between the soil classes is considered more likely a
reflection of the historic field division rather than a characteristic of
the soil classes themselves.

4.4. Analysis limitations

Although the statistical analyses for δ18OPO4
point to a series of null

results, it should be borne in mind that the study data is limited in
size and that the sampling configurationmaymiss the key scales of spa-
tial dependence and co-dependence in δ18OPO4

. In this respect, future
δ18OPO4

(and HClPO4
) studies should consider sampling on a finer grid

with increased sampling, with nested sampling strategies (e.g. Atteia
et al., 1994; Corstanje et al., 2008). Increased sampling should also
guard against results simply reflecting sampling variation rather than
the true properties of the spatial process.

Issues of sample design necessitated the use of the strongly
declustered data for all localised analysis; and the associated loss of in-
formation. The only way to have proceeded with the clustered data
would have required the calculation of localised sets of de-clustering
weights, as it was not viable to use the globally-found ones of Section
3.2. As this would have presented a challenge for any partitioned analy-
sis, andmore so for anyGWanalyses (where thenature of the clustering
bias would locally-vary according to the kernel and its bandwidth), the
use of localised de-clustering weights was not considered.

Given the poor model fits throughout, the small sample size and the
known issues for GWRwith respect to local predictor variable collinear-
ity (Páez et al., 2011), the results of Section 3.7 are viewedwith caution.
Although here, the GWR fit was assessed for adverse collinearity effects
following the procedures outlined in Gollini et al. (2015), and although
collinearity was present, its effects were not considered serious. Further
work could extend the GWR analyses in this respect, where in addition
to the fit of a penalised form of GWR, a mixed GWR (Brunsdon et al.,
1999) could be consideredwhere the categorical predictors are globally
fixed, while the other predictors are allowed to locally-vary.

It is also worth noting that variation in δ18OPO4
may be driven by en-

vironmental covariates not considered in this study, as such, future
studies should consider identifying these missing covariates. Measure-
ment error in δ18OPO4

could also be mitigating factor in this study's

Fig. 7. The (a) GWR coefficients for HClPO4
with a bandwidth of 88% and (b) the associated results from parametric bootstrap test.
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null results and could be incorporated in future work, noting that the
δ18OPO4

values of this study represent an average of a three replicates.

5. Conclusions

This study has shown that, despite differences in elevation, slope, the
under lying soil class and management, the δ18OPO4

has no relationship
with these field variables even though the HClPO4

can have. The soil
δ18OPO4

values within the field were found to be within the range pre-
dicted for that has been microbially cycled and is at equilibrium with
δ18OH2O. However given the lack of information of PO4 source δ18OPO4

signatures, it is not clear whether this is due to the rapid microbial cy-
cling of PO4 or because PO4 sources have a similar δ18OPO4

to that of
the equilibrium value. Although no relationships were found between
the δ18OPO4

, and itself (with respect to spatial autocorrelation) and the
field variables investigated, there was a suggestion of a positive correla-
tion between δ18OPO4

and HClPO4
in the northern unploughed, field sec-

tor which was not present in the southern ploughed part of the field.
While no conclusive evidence has been found to explain this, it has
been suggested that this might be related to the metabolic PO4 within
plant material heterogeneously accumulating in the soil surface in the
unploughed part of the field.

This study provides an important advance to understanding spatial
dependencies and spatial relationships in phosphate stable oxygen iso-
topes within a temperate agricultural soil. Some variability information
was as hypothesised while intriguingly others were not. Given this, fur-
ther work is ear-marked to learn and benefit from this study's results,
via the implementation of a coherent multivariate sampling design, to
a different field, with a known long-term management history.
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