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We discovered the A301S mutation in the RDL GABA-gated chloride channel of fiprole resistant rice brown
planthopper, Nilaparvata lugens populations by DNA sequencing and SNP calling via RNASeq. Ethiprole selection
of two field N. lugens populations resulted in strong resistance to both ethiprole and fipronil and resulted in fix-
ation of the A301S mutation, as well as the emergence of another mutation, Q359E in one of the selected strains.
To analyse the roles of these mutations in resistance to phenylpyrazoles, three Rdl constructs: wild type, A301S
Keywords: and A301S + Q359E were expressed in Xenopus laevis oocytes and assessed for their sensitivity to ethiprole
Ethiprole and fipronil using two-electrode voltage-clamp electrophysiology. Neither of the mutant Rdl subtypes signifi-
RDL cantly reduced the antagonistic action of fipronil, however there was a significant reduction in response to
A301S ethiprole in the two mutated subtypes compared with the wild type. Bioassays with a Drosophila melanogaster
Q359E strain carrying the A301S mutation showed strong resistance to ethiprole but not fipronil compared to a strain
Insecticide resistance without this mutation, thus further supporting a causal role for the A301S mutation in resistance to ethiprole. Ho-
mology modelling of the N. lugens RDL channel did not suggest implications of Q359E for fiprole binding in con-
trast to A301S located in transmembrane domain M2 forming the channel pore. Synergist bioassays provided no
evidence of a role for cytochrome P450s in N. lugens resistance to fipronil and the molecular basis of resistance to
this compound remains unknown. In summary this study provides strong evidence that target-site resistance
underlies widespread ethiprole resistance in N. lugens populations.
© 2017 Rothamsted Research Ltd. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The brown planthopper (BPH), Nilaparvata lugens Stdl (Hemiptera:
Delphacidae), is a key economic pest of rice (Oryza sativa L.) throughout
Asia. It is a monophagous herbivore and affects the rice crop through di-
rect feeding causing nutrient depletion in the plant. This causes a series
of deleterious effects that leads to ‘hopperburn’, which is characterised
by visible stunting, wilting and browning of the affected crop. BPH is
also an efficient vector for various rice viruses, including ragged rice
stunt and grassy stunt virus [1]. These combined can cause significant
damage to rice crops, with up to 60% loss of yield in susceptible cultivars
[2].

The application of chemical insecticides has been the preferred
method to control BPH, however, this has inevitably led to the evolution
of resistance and a reduction in effectiveness. Resistance has affected
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many of the major classes of insecticides including organophosphates,
carbamates, pyrethroids, neonicotinoids and phenylpyrazoles [3-6].
Understanding the levels of resistance through monitoring and
analysing the mechanisms responsible for this resistance is a core con-
cept behind being able to effectively control BPH through resistance
management strategies.

The phenylpyrazole (fiprole) insecticides, such as ethiprole and
fipronil were introduced for BPH control after resistance to imidacloprid
became commonplace [7]. Phenylpyrazoles are described as non-com-
petitive blockers of the gamma-aminobutyric acid (GABA)-gated chlo-
ride channel, a member of the pentameric transmembrane cys-loop
ligand-gated ion channel family mediating synapse inhibition in the in-
sect central nervous system [8-10]. Fiproles are potent inhibitors of
GABA-mediated inhibitory nerve transmission and belong to group 2
of the MoA classification scheme of the Insecticide Resistance Action
Committee (IRAC), that encompasses GABA-gated chloride channel an-
tagonists [11]. This MoA class also includes much older insecticide
chemistry, such as the cyclodiene hydrochlorines, which include

0048-3575/© 2017 Rothamsted Research Ltd. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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endosulfan and dieldrin [12]. Ethiprole is structurally similar to
fipronil only differing in an ethylsulfinyl substituent replacing the
trifluoromethylsulfinyl moiety in fipronil [13].

Structural change by replacements of alanine 301 in the GABA-gated
chloride channel, encoded for by the Rdl (Resistance to dieldrin) gene,
has been linked to high levels of resistance to insecticidal antagonists,
in particular cyclodiene organochlorines [ 14]. The most common substi-
tution at this position, A301S, was first identified in Drosophila
melanogaster and shown to cause 4000-fold resistance to dieldrin [15].
However, the role of this mutation in resistance to the newer fiprole in-
secticides has been debated [16,17]. Other mutations at this amino acid
residue, situated in the M2 transmembrane domain, have also been as-
sociated with fipronil resistance. A 20,000-fold fipronil resistant strain
of Drosophila simulans exhibited a A301G replacement at this position
in combination with a substitution at a second site, T350M in the M3 do-
main [18]. Functional expression of Rdl in Xenopus oocytes showed that
the A301G mutation has modest effects on fipronil action, while a recep-
tor variant with both of the mutations exhibited higher levels of resis-
tance to fipronil [18]. A third substitution at the A301 position, A301N
(A2'N), has been recently associated with fipronil resistance in two
other rice planthopper species, Sogatella furcifera and Laodelphax
striatellus [19,20]. In the former species the A301N mutation was iden-
tified in association with a R340Q mutation in the cytoplasmic loop be-
tween M3 and M4 of the S. furcifera RDL with membrane potential
assays suggesting the influence of the double mutation on fipronil resis-
tance was more profound than that of the A301N alone [21]. This find-
ing parallels that of the earlier work in Drosophila suggesting two
mutations in RDL, one at AA residue 301 and one elsewhere act in con-
cert to influence the level of in vivo resistance to fipronil [ 16]. However,
in contrast to these findings other electrophysiological in vitro studies
have revealed no significant differences in fipronil antagonist potency
between wildtype and A301S RDL variants expressed in Xenopus
oocytes [22,23].

Very recently the A301S mutation was also identified in N. lugens
and correlated with low levels of resistance to fipronil (5-fold in the
presence of enzyme inhibitors and 23-fold without) [24]. The authors
of this study also identified a second substitution in TM2 (R299Q) that
in combination with A301S, was associated with much higher levels of
resistance in a laboratory selected strain (96-fold with synergists, 237-
fold without). Expression of recombinant RDL receptors, showed the
R299Q mutation has a profound effect on the normal functioning of
the receptor in response to the endogenous agonist GABA, suggestive
of a strong fitness cost. However, the deleterious effects of R299Q was
reduced in the presence of the A301S mutation. Surprisingly, the
R299Q substitution was identified at extremely low frequency in field
populations of N. lugens suggesting this is not the main mechanism of
resistance in field populations [24].

Due to the evolution of resistance to fipronil in populations of N.
lugens throughout Asia, and potential issues with the environmental
toxicity of this insecticide, most growers subsequently switched to
using ethiprole [25,26]. Unfortunately, the rapid uptake of this insecti-
cide has led to recent reports of resistance [5]. To date, the molecular
basis of resistance to this insecticide has not been characterised and
the potential role of mutations in the GABA-receptor remain
unexplored. Metabolic resistance has been implicated in an ethiprole
resistant BPH field strain from Thailand [27], though the authors also
speculated that GABA receptor mutations could play a role in
ethiprole resistance. Another study implicated two cytochrome
P450s, CYP4DE1 and CYP6CW3v2, in ethiprole resistance in L.
striatellus [28].

The aim of this study was to screen the Rdl gene for potential muta-
tions in phenylpyrazole resistant BPH field and laboratory selected
strains. We report here on the identification of the A301S mutation
and a novel mutation, Q359E, and examine their role in fiprole resis-
tance in vivo and in vitro. The potency of these mutations in causing
ethiprole resistance was further assessed in D. melanogaster.

2. Material and methods
2.1. N. lugens strains and laboratory selection

The laboratory maintained strain of N. lugens (Bayer-S) was provid-
ed by Bayer CropScience (Monheim, Germany). The field strains NI33
(South Vietnam, collected November 2010) and NI55 (East Godavari
District, Andhra Pradesh, India, collected February 2012) were provided
by Bayer CropScience. NI33 and N155 demonstrated high levels of resis-
tance to ethiprole and were then placed under further selection with
ethiprole in the laboratory. Strains of NI33 and NI55 were reared on
rice plants sprayed with successively higher concentrations (ranging
between 7.5 and 100 mg L~ ') of ethiprole over 15 generations. A second
culture of N133 and NI55 was maintained on untreated rice plants. All
strains were reared in the laboratory on whole rice plants (0. sativa L.
ssp.) under controlled environmental conditions (26 °C, 16 h photoperi-
od and 70% relative humidity).

2.2. D. melanogaster strains

Fly strains utilised in this study were maintained on standard food
(Bloomington formulation) at 24 °C. The wild type strain Canton-S
(#1, wild type) and the A301S strain (#35492, RdIMP-RR) were sourced
from the Bloomington Drosophila Stock Center at Indiana University,
USA.

2.3. Leaf dip bioassay

Adults were taken from age-structured populations and were aged
<10 days old. Rice stems (10 cm cut length) were dipped into the re-
quired concentrations of formulated fiprole insecticide (ethiprole SC
200 and fipronil WG 80, Bayer CropScience, Monheim, Germany) for
20 s, air-dried and placed in a plastic specimen tube. Approximately
15 adults were aspirated directly into each tube and sealed with a ven-
tilated lid. A small hole (3 mm diameter) was drilled in the base of each
of the tubes, which were then stored vertically in a water bath
(submerging only the base of each stem) at 26 °C for 72 h. Mortality
was assessed and adults showing no sign of movement were scored as
dead. Bioassays consisted of 3 replicates at each concentration. For syn-
ergism assays, each insect was treated upon the pronotum with 0.2 pL of
100 mg/L~ ! piperonyl butoxide (PBO in acetone) (20 ng adult~!) and
then transferred to rice stems dipped in fipronil. Mortality was assessed
at48 h.

24. Genotyping via sequencing

Genomic DNA from individual adults was extracted using 15 pL
microlysis plus extraction buffer (Microzone Ltd., Haywards Heath, Sus-
sex, UK) following the manufacturer's recommended protocol for tough
cells. A typical PCR (25 pL) contained 0.5 uM of each primer (Table S1),
2 pL extracted DNA, 12.5 uL DreamTaq (Thermo Fisher, Waltham, MA,
USA) containing Taq polymerase, 2x PCR buffer and 4 mM MgCl,
(2 mM final concentration). Cycling conditions were 95 °C for 2 min
followed by 30 cycles of 95 °C for 30 s, 57 °C for 30 s and 72 °C for
1 min, and a final elongation at 72 °C for 5 min. PCR products was veri-
fied by agarose gel electrophoresis prior to PCR cleanup and sequencing
which was carried out by Eurofins Genomics (Ebersberg, Germany).

Table 1
Mortalities (%) (4 standard error) for all N. lugens at two diagnostic doses (LDgs and 5 X
LDgs of the susceptible strain) of ethiprole by leaf-dip bioassay.

Compound Strain 3 mgL~' (+SE) 15 mg L~ (+SE)
Ethiprole Bayer-S 100.00 + nc 100 + nc

NI33 6.72 (£3.82) nt

NI55 13.89 (£5.69) 8.64 (+4.68)
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Table 2
Dose-response data for N. lugens laboratory susceptible and fiprol-resistant strains against ethiprole and fipronil applied as a leaf dip to adults.
Compound Strain Generations without selection LCso [mg L] 95% limits Slope (+ SD) RR
Ethiprole Bayer-S 174 0.34 0.24-0.44 2.671 + 0432 1
NI33 27 1383 90.82-198.3 1.32 4+ 0.148 406.8
NI55 18 112.7 54.03-281.8 0.693 + 0.124 3315
NI33-eth - >5000 - - >14000
NI55-eth - >5000 - - >14000
Fipronil Bayer-S 174 1.16 0.70-1.66 10.858 + 0.864 1
NI33 46 37.13 1.06-137.3 1.259 + 0453 32
NI55 29 3.46 0.77-8.21 0.966 + 0.197 3
NI33-eth - >1000 - - >860
NI55-eth - >1000 - - >860

Sequence analysis and protein alignments were done with Geneious R8
(Biomatters, Auckland, New Zealand).

2.5. RNA extraction and illumina sequencing

Total RNA was extracted from pooled homogenates of six insects of
each of the five strains detailed in this study using the Bioline Isolate
RNA Mini Kit (Bioline, London, UK) according to the manufacturer's
guidelines. Prior to the RNAseq experiment the quality and quantity of
RNA was checked using a NanoDrop spectrophotometer (Nanodrop
Technologies, Wilmington, DE, USA). Total RNA was used as a template
for the generation of barcoded libraries (TrueSeq RNA library prepara-
tion, Illumina). Libraries were sequenced by The Genome Analysis
Centre (TGAC, Norwich, UK) with replicates multiplexed for sequencing
on an [llumina HiSeq 2500 flowcell (100 bp paired end reads) to
generate at least 15 million reads per biological replicate. FastQC
(version 0.11.2) was used to check the quality of the raw reads obtained.

2.6. SNP calling of RNA-Seq reads aligned to BPH Rdl

Raw reads of each BPH strain were mapped to the BPH Rdl reference
gene sequence (accession no KX592155). Geneious R8's (Biomatters,
Auckland, New Zealand) map to reference function was used with the
BPH Rdl gene as the reference. Settings were: no gaps, maximum mis-
matches: 10%, minimum overlap identity: 80%, index word length: 14,
maximum ambiguity: 4. All reads that aligned to AA residue 301 and
359 were then assessed for their nucleotide bases.

2.7. Pyrosequencing

For pyrosequencing purposes genomic DNA was extracted from in-
dividual BPH adults either using Microlysis-Plus-DNARelease Buffer
(Microzone, UK) or QuickExtract Solution (Epicentre, USA) according
to the supplier's recommended protocol. Rd! gene fragments were
amplified by PCR from 50 ng aliquots of gDNA using two primers for
the desired target sequence (Table S1; e.g. BPH_Q359E_fw &
BPH_Q359E_rev_Btn for Rdl Q359E (Fig. S1) designed with Geneious 8
(Biomatters Ltd.) utilizing a partial sequence of the brown plant hopper
GABA receptor gene. The pyrosequencing protocol comprised of 40 PCR
cycles with 0.67 uM forward and reverse primer (one biotinylated, see
Table S1) in 30 pL reaction mixture containing 2x JumpStart Taq
ReadyMix (Sigma-Aldrich, Germany) and cycling conditions of 95 °C
for 3 min, followed by 40 cycles of 95 °C for 30 s, 57 °C for 30 s and
72 °C for 1 min, and a final incubation at 72 °C for 5 min in a C1000
Touch Thermal Cycler (Bio-Rad Laboratories, Inc.).

In addition, we also analysed the obtained plasmids for sequence
correctness at the respective Rd! mutation positions by pyrosequencing,
i.e. Q359E and A301S. A single PCR was conducted for each mutation
site from 50 ng plasmid DNA using two primers (Q395E:
BPH_Q359E_Plasmid_fw_Btn and BPH_Q359E_Plasmid_rev; A301S:
BPH_A301S_Plasmid_fw_Btn and BPH_A301S_Plasmid_rev, Table S1).
The PCR prior to pyrosequencing was carried out in 40 cycles with
0.5 uM forward and biotinylated reverse primer and 2 x JumpStart Taq
ReadyMix in 30 pL reaction volume and cycling conditions of 95 °C for
3 min, followed by 40 cycles of 95 °C for 30 s, annealing temperature
for Q359E PCR 52 °C and for A301S PCR 54 °C, followed by 72 °C for
1 min, and a final incubation at 72 °C for 5 min.

Single strand DNA preparation required for pyrosequencing was
done using the PyroMark Q96 Vacuum Workstation (Qiagen) in combi-
nation with streptavidin coated beads (Streptavidin Sepharose) to sep-
arate the biotinylated strand of the PCR products. The pyrosequencing
reactions were carried out according to the manufacturer's instructions
utilizing the PyroMark Gold Q96 Reagent Kit (Qiagen) and the
respective sequencing primers for genotyping (individual BPH
adults: BPH_Q359E_seq; plasmids: BPH_Q359E_Plasmid_seq and
BPH_A301S_Plasmid_seq; Table S1). The genotypes were analysed
using the supplied PyroMark Q96 ID Software 2.5 (Qiagen). A typical ex-
ample of the Q359E pyrosequencing results is shown (Fig. S2).

2.8. Preparation of cRNAs encoding N. lugens Rdl variants

Three variants of N. lugens Rdl were synthesized and sub-cloned into
the expression vector pcDNA3.1(+) by Thermo Fisher Scientific (Life
Technologies GmbH, Darmstadt, Germany): wildtype Rdl (accession
no KX592155), RdI-(A301S) and Rdl-(A301S + Q359E). The obtained
plasmids were linearized by Bbsl digestion according to manufacturer
instructions (New England BioLabs Inc., USA), briefly: 20 pg plasmid
DNA was incubated with 50 units Bbsl for 3 h at 37 °C in a total volume
of 100 pL. Subsequently the linearized DNA was purified using Qiagen
QIAquick PCR Purification Kit (Qiagen GmbH, Germany). The capped
cRNAs were generated using the mMESSAGE mMACHINE T7 transcrip-
tion kit (ABI-Ambion, USA) and dissolved in RNase-free water at con-
centrations of 1718 ng/uL (wildtype Rdl), 1699 ng/uL (Rdl-(A301S))
and 1677 ng/uL (RdI-(A301S + Q359E)).

2.9. Rdl expression and electrophysiological recordings in Xenopus oocytes
Defolliculated oocytes from Xenopus laevis in Barth's solution sup-

plemented with gentamycin were received from Ecocyte Bioscience
(Castrop-Rauxel, Germany). They were prepared and shipped one day

™2 TM3
N. lugens PARVALGVTTVLTMTTLMSSTNAALPKISYVKSIDVYLGTCFVMVFASLLEYATVGYMAKRIOM
0 L
A3015 Q359E

Fig. 1. Amino acid sequence of TM2 and TM3 (TM regions underlined) from N. lugens RDL. The alanine and glutamine residues that are mutated in fiprole resistant strains are highlighted.
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before injection. Oocytes were injected with 75 nL of the prepared cRNA
at a concentration of 100 ng/pL. All injections were performed using the
automated injection system Roboinject (Multi Channel Systems MCS
GmbH, Reutlingen, Germany). Oocytes were then incubated in Barth's
solution with gentamycin (20 pg/mL) at 19 °C for 1-3 days. For electro-
physiological measurements oocytes were superfused with Normal
Frog Ringer (NFR) solution (DiacleanShop, Castrop-Rauxel, Germany)
and voltage-clamped at a holding potential of —80 mV using an auto-
mated two-electrode voltage clamp Roboocyte set-up (Multi Channel
Systems MCS GmbH, Reutlingen, Germany). GABA was dissolved in
NFR, whereas stock solutions of test compounds were prepared in
DMSO and subsequently diluted with NFR to the desired test concentra-
tions. Antagonist incubations were conducted with slight modifications
according to Liu et al. (2015), i.e. antagonist solutions were perfused
alone for 60 s after at least four successive GABA applications (ECs),
followed by repeated antagonist/GABA (ECsg) co-applications at 30 s in-
tervals. Electrophysiological recordings were analysed using the soft-
ware package Roboocyte V2.2.0 (Multi Channel Systems MCS GmbH,
Reutlingen, Germany) and ECso/ICso-values were calculated from plot-
ting normalized responses as a function of compound concentration
using GraphPad Prism Software 5.03 (Graphpad Software, Inc., USA).

2.10. D. melanogaster insecticide bioassays

3-5 day old adult females were used in insecticide bioassays to as-
sess the susceptibility of different fly strains to the technical com-
pounds, ethiprole and fipronil (Sigma Aldrich, St. Louis, MO, USA). The
flies were subjected to the insecticide in a contact/feeding bioassay.
The full bioassay method is described in a previous paper [29]. The
raw data was corrected for control mortality using Abbott's formula
[30] and lethal concenctration values LCsq and LCgs were calculated
by probit analysis using the GenStat® (2014, 17th Edition, ©VSN
International Ltd., Hemel Hempstead, UK) statistical system.

2.11. Modelling

Protein modelling of the RDL Nilaparvata sequence was performed
using the Orchestrar suite within the Certara software package Sybylx
2.1.1 (Certara L.P,, St. Louis, MO). The crystal structure of the GluCl chan-
nel of Caenorhabditis elegans (PDB-1d: 3RHW) served as a template for
the construction of the monomeric Nilaparvata homology model. Over-
all amino acid sequence identity between the monomers of the two spe-
cies was 38.6%. The pentameric arrangement was realized by an
iterative fit to each of the five subunits of the original crystal structure,
followed by a subsequent energy minimization to remove any unwant-
ed contacts and conformational distension from the complete model
construction.

2.12. Database submission

Sequence data used in this study have been deposited at the National
Center for Biotechnology Information as follows:
BioProject (accession no PRJNA331084).

Table 3
Genotypes via Sanger sequencing of N. lugens strains for A301S and Q359E.

Table 4
SNP calling via RNA-Seq of N. lugens strains for A301S and Q359E.
NI33 NI33-eth NI55 NI55-eth
No. % No. % No. % No. %
reads reads reads reads
A301S Total 20 - 34 - 10 - 18 -
reads
G(WT) 17 85 0 0 8 80 0 0
T(Mut) 3 15 34 100 2 20 18 100
Q359E Total 25 - 30 - 11 - 23 -
reads
C(WT) 25 100 30 100 8 7273 1 435
G (Mut) 0 0 0 0 3 2727 22 95.65

BioSample (accession numbers SAMN05437238, SAMN05437239,
SAMNO05437240, SAMN05437241, SAMN05437242).
Run (accession no SRP079631).

3. Results
3.1. Fiprole bioassays

Diagnostic dose bioassays with ethiprole (Table 1), were performed
on NI33 and NI55 soon after field collection, with high levels of resis-
tance seen compared to the susceptible Bayer-S strain, previously re-
ported in [5]. Log-dose probit-mortality data obtained from leaf dip
bioassays are presented in detail (Table 2). Ethiprole resistance of the
unselected NI33 and NI55 populations was 406-fold and 331-fold re-
spectively compared to the lab susceptible strain Bayer-S. Selection of
these strains with ethiprole (NI33-eth and NI55-eth) resulted in a dras-
tic increase in resistance of > 14,000-fold. With a resistance ratio of 32-
fold NI33's level of resistance to fipronil was markedly lower compared
with its ethiprole resistance. The same observation, but much more pro-
found, was made for NI55, which displays only a 3-fold resistance to
fipronil. The two selected strains, in contrast, demonstrate similarly
high levels of resistance to fipronil, with approximately 860-fold
resistance against Bayer-S.

3.2. Genotyping A301S and Q359E via sanger sequencing

The mutations analysed in this study are shown (Fig.1). All strains
were analysed for the presence of the A301S mutation by Sanger se-
quencing of an amplified 257 bp sequence from genomic DNA.
Genotyping of A301S in Bayer-S confirmed the wild type genotype
(Table 3). NI55 on the other hand displayed a mix of genotypes, with
only 12.5% of insects homozygous for A301S and 32.5% homozygous
for the wildtype genotype. 100% of insects analysed from NI55-eth car-
ried the A301S mutation in the homozygous form. A novel mutation,
Q359E, was also identified but only in NI55 and NI55-eth, with all
other strains being 100% homozygous for the wildtype genotype at
this AA residue. NI55 displayed 7% of individuals homozygous for the
Q359E mutation, with 57% of insects homozygous for the wildtype ge-
notype. However, 87% of individuals were homozygous for the Q359E
mutation in NI155-eth, while the remaining 13% were heterozygous.
Since the A301S mutation reached fixation in N155-eth it can be con-
cluded that there are two A301S alleles present in that strain, one
with and one without the Q359E mutation.

Population A301S genotype (%) Q359E genotype (%) Table 5
RR SR sS RR SR N Pyrosequencing of Q359E in two populations of N. [ugens.
Bayer-S 0 0 100 0 0 100 Population Allele frequency
Nssen im0 0 o s 16 o o o :
(N155 A301S N = 40, NI55-eth A301S N = 40, NI55 Q359E N = 28 and NI55-eth Q359E E:gg—eth ggg g;i 82?1

N = 38).
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Fig. 2. Effect of GABA and fiprole antagonists on GABA-induced currents in N. lugens RDL receptors functionally expressed in Xenopus oocytes. (A) GABA concentration-response curves on
wildtype (WT) and mutant RDL variants carrying an A301S and A301S + Q359E amino acid substitution, respectively. Data are mean values 4+ SEM (n = 3); (B) Typical example of
electrophysiological oocyte recordings showing the concentration-dependent action of GABA (10, 5, 2.5, 1.25, 0.625, 0.313 and 0.156 pM) on functionally expressed receptors (Rdl
A301S). (C, D) Antagonist concentration-response curves for fipronil and ethiprole on three different RDL variants. The responses were normalized relative to the currents induced by
5 UM GABA for each receptor variant. Data are mean values 4 SEM of 3-5 independent recordings.

3.3. SNP calling of A301S and Q359E via RNA-Seq

For all the strains, RNA-Seq reads were mapped against the BPH Rdl
nucleotide sequence to observe any non-synonymous mutations, of
which there were two: A301S and Q359E. Bayer-S SNP calling of
A301S, displayed 100% of reads containing the wild type genotype at
AA residue 301 (Table 4). NI33 and NI55 exhibited 85% and 80% of
reads with the wild type genotype respectively. While for the NI33-
eth and NI55-eth populations, 100% of reads contained the A301S muta-
tion. In agreement with Sanger sequencing, the SNP calling of RNAseq
data showed that the Q359E mutation was only found in NI55 and

Table 6
Log-dose probit mortality data for fiproles against Drosophila melanogaster strains.

NI55-eth (Table 4), with 96% of N155-eth reads containing the Q359E
mutation, compared to 27% for NI55.

3.4. Genotyping of Q359E via pyrosequencing

Ninety-six insects each of NI55 and N155-eth were assessed for ge-
notype at the 359 position (Table 5). NI55 (unselected) showed 69% of
individuals homozygous for Q, while only 3% homozygous for E, with
the remaining individuals heterozygous for Q/E. NI55-eth (selected)
displayed 2% of individuals homozygous for Q, while 74% of individuals

Resistance ratio

Compound Strain LCso [mg L] 95% CL LCos [mg L] 95% CL Slope (+ SD) LCso LCos

Ethiprole Canton-S 5.73 4.77-6.77 22.39 17.14-33.08 2.777 £+ 0.238 1 1
RDL-MD-RR >25000 - >25000 - - >4300 >1100

Fipronil Canton-S 1.27 0.77-1.85 9.04 5.29-25.55 1.931 4+ 0.333 1 1
RDL-MD-RR 8.82 5.34-13.7 62.36 33.11-238.1 1.936 4+ 0.363 6.9 6.9
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Table 7

Mortalities (%) of ethiprole selected populations to fipronil after application of PBO.
Strain 100 mg L™! 500 mg L™!
NI33-eth 20 16
NI55-eth 10 24

were homozygous for E, with the remaining individuals heterozygous
for Q/E.

3.5. Sensitivity of wildtype and mutant N. lugens Rdl receptors to GABA,
ethiprole and fipronil

All three cRNA variants resulted in functional GABA-gated chloride
channels when injected in Xenopus oocytes, i.e. RDL wildtype (WT),
RDL-(A301S) and RDL-(A301S + Q359E). Concentration dependent in-
ward currents were obtained in voltage-clamp recordings in response
to bath-applied GABA indicating the functional expression of
homomeric RDL receptors in oocytes (Fig. 2A and B). The agonist
PECsp-values calculated from the fitted curves were 5.43 + 0.02,
3.90 + 0.03 and 5.21 4 0.02 for RDL wildtype, RDL-(A301S) and RDL-
(A301S + Q359E), respectively. Both fipronil and ethiprole reduced
the response of the three RDL subtypes to GABA (measured at ECsg) in
a concentration dependent manner (Fig. 2C and D). No significant dif-
ference in the antagonistic action of fipronil was measured between
RDL subtypes: RDL wildtype, pICsq 5.74 + 0.06; RDL-(A301S), pICsq
5.70 4 0.08; and RDL-(A301S + Q359E), pICsp 5.65 + 0.08. However,
for ethiprole significant differences in antagonistic action were obtained
between RDL wildtype (pIC50 6.41 + 0.05) and the two mutated sub-
types, RDL-(A301S) (plCs 5.70 + 0.06) and RDL-(A301S + Q359E)
(pICso 5.56 4 0.03).

3.6. D. melanogaster fiprole bioassays

The RDL-MD-RR (carrying Rdl A301S) strain displayed high levels of
resistance to ethiprole with a resistance ratio > 4000 fold based on the
LCso when compared with the wildtype strain, Canton-S (Table 6).
Against fipronil the RDL-MD-RR strain had a resistance ratio of only
6.9-fold.

3.7. Synergist bioassays with PBO + fipronil

Synergistic bioassays were conducted with PBO on the highly
fipronil resistant populations NI33-eth and NI55-eth to assess whether
P450 monooxygenases (and esterases) could be potentially contribut-
ing to the resistance phenotype observed. Fipronil mortality of both
populations was under 25% against a concentration of 500 mg L™!
(Table 7) indicating that the majority of the individuals of both strains
is unaffected by the application of PBO prior to exposure to fipronil.

4. Discussion

To date, the molecular basis of ethiprole resistance in N. lugens has
remained unclear. A previous study linked esterase activity, and to a
lesser extent P450s activity, to ethiprole resistance in N. lugens in central
Thailand, based on the separate application of PBO, triphenyl phosphate
and diethyl maleate as synergists prior to ethiprole exposure [27]. How-
ever, to date, no mutation(s) in the non-competitive antagonist binding
site of RDL has been implicated in resistance to ethiprole. In the case of
fipronil resistance, a potential novel mechanism of resistance was very
recently implicated in a laboratory selected strain of N. lugens (see
Introduction), but was not observed at sufficient frequency to cause
resistance in field populations [24].

In this study, we identified two mutations in Rdl associated with
phenylpyrazole resistance in two field strains. Both strains, NI33
(Vietnam) and NI55 (India) exhibited high levels of resistance to
ethiprole, despite a long period of non-selection (27 and 18 generations
respectively). When these strains were exposed to continuous ethiprole
selection, their resistance markedly increased compared to the non-se-
lected populations. We identified two mutations in these strains; the
first was the previously reported A301S mutation [24], which was ob-
served at low frequency in both parental field strains but rapidly rose
in frequency and became fixed under ethiprole-selection. We further
identified a novel mutation, Q359E, in one of the strains that also in-
creased in frequency under selection. Subsequent functional analysis
of the role of these mutations in resistance to fipronil and ethiprole,
provided several lines of evidence to support a causal role of the
A301S mutation in resistance to ethiprole.

Firstly, expression of recombinant wild-type and A301S RDL recep-
tors in Xenopus oocytes followed by electrophysiological assays showed
that presence of the A301S mutation reduces the sensitivity of the

B Q359E

Fig. 3. A) Top-view of the RDL GABA-R homo-pentamer (NI RDL homology model based on 3RHW) showing three subunits in yellow, one in green and red, respectively. The mutation site
A301S is located in the middle of the M2 transmembrane helices forming the channel pore. The other mutation site Q359E is located intracellularly at the end of helix M3 outside the pore
region (indicated by an arrow). B) Side-view showing two of the RDL subunits and the location of the mutation site A301S in transmembrane pore helix M2, whereas mutation site Q359E
is located >40 A from this residue (the helical structure of the domain is proposed as amino acid positions 337-428 are missing in the modelling template 3RHW).
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receptor to ethiprole 8-10-fold compared to wild-type providing strong
evidence of a role in vitro. Further in vivo evidence of the role of this mu-
tation in ethiprole resistance was also provided by insecticide bioassays
of a D. melanogaster line with the same mutation, which exhibited 4000-
fold resistance to ethiprole in comparison to a strain without the
mutation.

In contrast to our findings with ethiprole very limited evidence was
seen for a causal role of the A301S mutation in resistance to fipronil. In
electrophysiological assays the recombinant A301S RDL receptor
showed no significant shift in sensitivity to fipronil, with a response
broadly similar to that of the wild type. A low level of resistance to
fipronil was seen in the D. melanogaster line with the A301S mutation
(around 7-fold compared to Canton-S). This result is similar to a recent-
ly reported study (13.8-fold) [16], on the same strain. A different strain
of D. melanogaster strain carrying the same mutation was previously re-
ported to show 73-fold resistance to fipronil [31], however, such high
levels of resistance to fipronil were not apparent in our study or that
carried out previously by Remnant et al. 2014.

As detailed above a second mutation, Q359E, was also observed in
the NI55 strain from India at low frequency but increased to high fre-
quency upon ethiprole selection. All insects with Q359E carried it in
combination with A301S. Since this mutation is never seen in isolation
in the selected population, we decided to focus our analysis on the dou-
ble mutant variant (A301S + Q359E) via electrophysiology to assess the
effect of Q359E in tandem with A301S.

Our data suggest that in comparison to A301S, the Q359E mutation
plays no direct role in resistance to either ethiprole or fipronil with dou-
ble mutant receptors displaying the same level of sensitivity to both
compounds as the single mutant receptor (A301S). A model of the N.
lugens RDL channel places the Q359E mutation at least >40 A away
from the key A301S residue which could be a potential reason for its
lack of direct impact (Fig. 3). However, a previous study using the
Drosophila Genetic Reference Panel (DGRP) lines identified three
fipronil resistant strains (A301S + T350S, A301S + T360I and A/
S301 + M/1360) demonstrating the ability of multiple mutations in
the Rdl to cause fipronil insensitivity [16]. Duplication at the Rdl locus
has been described, and demonstrated the ability to accrue resistance
mutations but maintain wildtype functionality in this insecticide target
site [32]. In this study the Q359E mutation has only been tested in vitro
and it would be interesting in future to examine its role in vivo in either
N. lugens or Drosophila by using transgenic approaches such as the
CRISPR/Cas system [29].

In the light of our results there are two possible explanations for the
increase in frequency of the Q359E mutation under ethiprole selection.
Firstly, it is a random polymorphism that because of its close proximity
to A301S has hitchhiked to high frequency due to the physical linkage of
the two mutations and the adaptive advantage of A301S. Secondly, this
mutation, while not directly contributing to ethiprole resistance, may
have a fitness benefit, to N. [ugens individuals that carry this mutation
in combination with A301S. For example, the Q359E mutation might
act as a compensatory mutation for A301S as has been recently claimed
for the R299Q substitution (see Introduction). Our results do not sup-
port this idea as recombinant receptors with A301S alone and
A301S + Q359E show the same affinity for the native ligand GABA. Fur-
thermore, A301S has been shown to persist in other insect species at
high frequency in the absence of insecticide selection [33], suggesting
it may have a minimal fitness penalty.

The A301S mutation was one of the first target-site resistance muta-
tions to be described in insects and has since appeared in a wide array of
different insect species [32]. Originally described as the primary mech-
anisms of resistance to cyclodienes, it has also been linked with low
level cross-resistance to fipronil [16,17]. The effect of A301S in relation
to cyclodiene resistance is two-fold, it reduces insecticide binding and
destabilises the antagonist favoured structure of the RDL channel [34].
Surprisingly, this mutation has never been previously implicated in
ethiprole resistance. Fipronil and ethiprole are highly structurally

similar (Fig. S3) and so it is surprising that the A301S mutation can pro-
vide such effective resistance against ethiprole, but not to the same ex-
tent against fipronil.

The extremely high resistance levels seen in BPH strains selected
with ethiprole, cannot be completely explained by the Rdl A301S muta-
tion. The difference between wild-type and A301S RDL constructs in the
voltage clamp recordings, was not enough to be wholly responsible for
the resistance described in Table 2. Therefore, there must be another
mechanism of resistance capable of causing resistance to ethiprole
within the BPH populations tested here. We hypothesise that the un-
known fipronil resistance mechanism (discussed later) could cause
cross resistance to ethiprole, and therefore explain the very high levels
of resistance in these BPH strains.

Zhang et al. recent study on R299Q and A301S mutations in RDL and
their correlation with fipronil resistance [24], has similarities with our
study. The finding of a novel mutation existing only in tandem with
the A301S mutation is a key finding. However, the new mutation they
describe (R299Q) appears to increase resistance to fipronil when com-
bined with A301S, further than A301S by itself. Although we find a
novel mutation, it does not have the same direct impact as R299Q. Sim-
ilar to Zhang et al. we also find that the RDL mutations we analysed in
this study are not the main mechanism of resistance to fipronil in the
BPH populations tested.

The lack of impact of either of the RDL mutations against fipronil led
us to carry out tests with the P450 and esterase inhibitor PBO to explore
if these enzyme systems are involved in resistance to this compound. In
this regard, recent research has used the same approach to implicate
metabolic mechanisms in resistance to fipronil in N. lugens [24]. In our
study the application of PBO had no noticeable impact on the fipronil re-
sistance of the resistant populations, NI33-eth and NI55-eth suggesting
P450s and/or esterases are either not involved in resistance or play a
minor role. However, in contrast to our study Zhang et al. applied a mix-
ture of synergists (PBO, triphenyl phosphate and diethyl maleate), so it
is possible that other enzyme systems that are inhibited by triphenyl
phosphate and/or diethyl maleate are involved in resistance such as
glutathione S-transferases [24].

An interesting observation from our selection experiments was that
the selection of the NI33 and NI55 strains with ethiprole also increased
resistance to fipronil. Despite this observation, our data clearly suggest
that the mutations analysed in this study are not the explanation for
the increased fipronil resistance in the NI33-eth and NI55-eth strains
and the molecular basis of fipronil resistance in these strains requires
further investigation. However, this finding is of field relevance as it
suggests that fipronil would not be a viable substitute for ethiprole, if
ethiprole was no longer able to control N. lugens within economic
thresholds.

In conclusion, two mutations (A301S and Q359E) were identified in
the Rdl gene of N. lugens and assessed for their potential role in resis-
tance to fiproles. Our results indicate that the common A301S mutation
confers resistance to ethiprole, a widely used insecticide for the control
of brown planthopper. However, neither this mutation nor the novel
mutation Q359E causes significant resistance to fipronil based on the
in vitro and in vivo studies conducted here. Our finding that selection
with ethiprole also selects for cross-resistance to fipronil is relevant to
the future application of these insecticides in the field and the design
and implementation of resistance management programmes.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.pestbp.2017.01.007.
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