Patron: Her Majesty The Queen Rothamsted Research
\D Harpenden, Herts, AL5 2JQ

ROTHAMSTED Telephone: +44 (0)1582 763133
RESEARCH Web: http://www.rothamsted.ac.uk/

Rothamsted Repository Download

A - Papers appearing in refereed journals

Nelder, J. A. 1974. Users guide to evaluation of statistical packages and
systems. International Statistical Review. 42 (3), pp. 291-298.

The publisher's version can be accessed at:

» https://dx.doi.org/10.2307/1402986

The output can be accessed at: https://repository.rothamsted.ac.uk/item/8w09w.

© Please contact library@rothamsted.ac.uk for copyright queries.

28/03/2019 09:51 repository.rothamsted.ac.uk library@rothamsted.ac.uk

Rothamsted Research is a Company Limited by Guarantee
Registered Office: as above. Registered in England No. 2393175.
Registered Charity No. 802038. VAT No. 197 4201 51.

Founded in 1843 by John Bennet Lawes.

https://dx.doi.org/10.2307/1402986
https://repository.rothamsted.ac.uk/item/8w09w
repository.rothamsted.ac.uk
mailto:library@rothamsted.ac.uk

Vol. 42, No. 3, 1974, pp. 291-298/Longman Group Ltd|Printed in Great Britain

t. Revs

ot. 510

packages and Systems '

3. A. Nelder

Rothamsred Experimental Station, Harpenden, Herts, England

|
|

° .] ® i
A yser’s Guide to the Evaluation of Statistical |
|
I | muoductinll |
There is widespread concern today that the seneral availability of statistical packages and |
systems (Schucany, Murton and Shannon [6]) may bring dangers as well as benefits. Obvious !
dangers are (i) that the programs may not do what they purport to do, and so supply the
Ii ‘i ynsuspecting user with quite misleading results, (ii) that the procedures they contain may be
grossly misused, being applied to unsuitable data, again with the user being unaware of the
1 situation, and (iii) that systems may force the user into certain modes of analysis because these
: are what the system provides rather than what the user really needs. |
Terms like “assessment” and “yalidation” are usually taken to refer to the logical question
does this program do what it purports to do and how can I prove this true or false?” There
/ is, however, a much wider problem of assessment, namely that facing a scientist when, armed on
the one hand with his data and theories to be explored, and on the other with information on

programs from his computer centre, he has to match what is on offer against his needs.

I Because the analysis of data is, or ought to be, an open-ended process, no formal theory of I
this kind of assessment is possible. None the less, I think that users can be given some useful |

I

) information that will help them to assess existing programs before they commit themselves to

I I what may become an extensive period of use involving much of their own time and perhaps
much computer time also. The diversity of form and scope among programs makes this

assessment a formidable task. In this paper I discuss some of what seem to me the more impor-

0 | {ant considerations. If a potential user has a thorough grasp of these he will be equipped at

Jeast to ask awkward questions of the right people and to demand answers.

I ¢ There are several ways in which a program can be brought to an executable state. Three
important ones are considered below with their pros and cons.

1.1, Program with an Own-language Driver

i
II These consist of a set of subprograms for which the user must supply a main program and
perhaps other subprograms. These must be compiled, linked to the standard package and
then run. An example is provided by Yates’ Rothamsted General Survey Program Part 1[9],
where the input routines and the derived variate operations are provided by the user in Fortran.
The main advantage of this technique is that the user has access to the full power of a general- |
purpose programming language (GPL) (usually the same one in which the package was written)

I

|

1. How does it run? I
I

I

I

|

I
L

1 Substance of a talk given at a meeting entitled “The assessment and validation of scientific software”,
held on 19 December 1973 at Imperial College, London, and organized jointly by the Royal Statistical Society
and the British Computer Society. L

292

and this gives him greater flexibility than the usually more restricted problem-oriented language
(POL) supported by the package itself (see 1.3). Thus in RGSP the user can specify compley
input structures for his data by writing the appropriate Fortran instructions.

The main disadvantage of this technique is that it requires the user to master appreciable
parts of the system at the level of the language they are written in. How difficult this is wijj
depend critically on the documentation, a matter we consider in more detail later, and on the
user’s skill with the language in question. This skill also determines how long it will take to
get the driving program to work.

1.2. Programs with Translators

In this scheme the program presents the user with a problem-oriented language intended tq
simplify the specifying of a class of problems. The IBM Continuous Systems Modeling
Program (CSMP) [3] is an example for simulation. Having written his instructions in thig
language, the user presents them to a translator (which is part of the system concerned), which
in turn translates the program into a language for which the machine has a compiler. The
translated program is then compiled, linked with the rest of the system and run.

This scheme has the advantage that problem specification uses a problem-oriented language
which should relieve the user of many programming difficulties. It also has the advantage that
the translated program is compiled into machine code, and so should run faster than a pro-
gram using an interpretive language.

The corresponding disadvantages are that the problem-oriented language may lack some of
the generality of the underlying language, thus imposing constraints on the problems that can
be specified. (Possibly this may be overcome by including new subprograms in the underlying
language, in which case the situation reduces to the first type.) On some machines the fact that
four steps are involved in each run (translate, compile, link, run) can lead to appreciable system
overheads, but this is a variable characteristic.

1.3. Programs with Interpretive Languages

These programs present the user with an interpretive language in which he writes his instruc-
tions. The program exists in loadable form in the machine, and when called will interpret the
instructions and execute them. ASCOP (Cooper [1]), GENSTAT (Nelder [4]), and SPSS
(Nie, Bent and Hull [5]) are examples of such systems in statistics. In all these the underlying
Fortran program analyses and interprets the user’s instructions issuing calls to appropriate
Fortran routines to execute them.

Advantages of this scheme include the problem-oriented language, and having only a single
job stop at each run as against four for the second type. The disadvantages are the restrictions
in the interpretive language and the fact that interpreting is always slower in execution than
compiling, and may sometimes be much slower. Again there are ways of modifying the basic
process; for example, Genstat has a directive OWN which allows the user to add a new facility
to the system with an arbitrary set of parameters. However, to do this the user must know how
to write an interpreter for that system, which implies detailed knowledge of its internal data
structures, and he must also link his new part to the rest of the system before running it, so
that the disadvantages of the translator system then appear.

1.4. Do-it-yourself

A fourth option always open to the user is to do it himself, an option that some would say is
only too often used, with the resultant proliferation of many poorly written, poorly tested

293

rams. Of course, you can do it yourself at various levels — often there are good published

p{ oog;ithms for critical operations. Too often these are not used — the idea of a literature
a

rch for programs has made little progress.

sed

1.5. Extensibility

Whatever type of system is chosen its capacity for being extended will be crit.ical for any but
+he most routine use. The potential user has thus not only to assess whether 1.11s n_eeds are met
by the existing system, but also if not, whether the system is extensible in the direction required.

2, Characteristics of Problem-oriented Languages

Given that a POL exists for your kind of problem, usually as an interpretive languag(? of a
particular system, the question then arises whether it is ﬂ_ex1b1e enough for your partlcul_ar
needs. The scope of POLs varies enormously and it is essential that th.e user understand certain
fundamental characteristics of languages in order to make the required assessment.

2.1. Branching

Branching instructions are fundamental to GPLs. It is absolutely necessary that ‘fhe programmer
be allowed to branch on conditions and so break up the sequence of execution in arbitrary
ways. However, branching is not a universal property otj PO_Ls. Some, such as SPSS, al}ow
only a single sequence of operations. (It is true that some d}rectlves, e.g. for stcp\ylse regression,
may contain implicit branching within them, but none 1s.allc.)wed between directives.) The
advantage to the implementor of a language without branching is that he does not I.lave to save
the instructions internally. They can be executed as they are met and then dcl‘scardc?d. fx
branched language must allow instructions to be saved inter.nally in a coded form (compﬂed ,
though not of course into machine code if the language is interpretive) so that branching can
occur. - _

There is an important interaction between the type of language, i.e. wl.lether compiled or
not, and the mode of running, i.e. whether batch or interactive. An interactive program allqws
for real-time branching by its very mode of action. The user can look at tl_le output and de01'de
which way to go next. Formal branching facilities are thus much less important than with
batch running. . .

For any but the simplest type of analysis batch-type POLs without branching are severely
limiting to the user. Why then are they so widely accepted? It. may bp tha't most analyses are
very simple-minded so that conditions do not appear in their spemﬁca’uon. The.re are also
many users of packages, too many I would say, who don’t want to thlnlf quantltatlvel'y ab(?ut
their data, and who regard the program as a black box capable of delivering the analysis which
will make their data look thoroughly respectable to referees and editors, far too many of whom
are taken in by this ploy.

A user who i,las coile);o regard analysis as a multi-stage process will soon find batch systems
having languages without branching cripplingly restrictive.

2.2. Data Structures

A second important characteristic of POLs is the class of data structu‘res they support. .W'hat
kind of data can you declare, read in, operate on, store, retrieve, and pr.mt. out? Mosjc stat1§tlca1
systems recognize the data matrix as being of basic importance. This is a two-dimensional
structure indexed by units and variates and many kinds of experimental and survey data can
be cast in this form, particularly if qualitative variates (factors) are accepted. These serve to

stahye
octa-

n, Harp@
|

e

294

define mutually exclusive subsets of the units. All builders of statistical systems face a dilemmg
at this point — whether to take the row (one unit) or the column (one variate) as the basic
internal structure. The advantage of using a unit is seen best with survey data having many
units needing basic tabulations. The tables can be updated one unit at a time, so that the
number of units is unimportant and space is needed for only one at any time. While the additiop
of more units causes no trouble, the addition of more variates does, because extra cells haye
to be created scattered along the data, or a new data matrix begun which may need interng)
accessing of each record in order to insert one item. Such new variates can be created by fitting
a model to the data and saving fitted values and perhaps residuals. It is for this reason that
programs concentrating on analysis of experimental data have tended to take the variate as the
basic unit, and because the number of units in this situation is often not large, storage problems
have not been severe. The variate is easier to manage internally because all its values are of the
same type, whereas those of a unit need not be.

There is no perfect solution to the data-matrix dilemma. In Genstat we have taken the
variate as the basic unit to give the flexibility to create new variates easily, but we have allowed
for the many-units situation by allowing certain directives, READ, TABULATE, and SSP
to work sequentially on blocks of units, the data being lost from each block after processing,
(They can of course be saved, if required, on backing store.) While blocks of 1 unit would be
grossly inefficient with an interpretive language, blocks of 10 give satisfactory speed without
using large amounts of store.

At least as important as the data matrix are the other structures which the system supports.
As analysis proceeds, derived structures are produced from the data matrix and become the
input to the next stage. An example is the SSP matrix (which numerical analysts now frown
on). The user must ask — what does the system allow me to do with it? A good starting
question is — can I name it ? If you can’t, as in SPSS, then you will not be allowed to have more
than one active at any time, so that you cannot, e.g. add two SSP matrices together. If you
can name it, as in Genstat, then you can have several, and it is likely that more scope exists for
further operations.

Another basic structure is the multi-way table. All survey programs must be able to form and
print multi-way tables derived from data matrices, However, some stop at this point and do
not allow operations on tables considered as basic data structures. Again the naming facility
is crucial and its absence will be a sign that the originators did not think of these structures as
being input structures to an analytic procedure,

An analogous situation arises with character strings, or text. If these can be named, then
it takes very little extra coding to allow these to be inserted in the input stream of instructions
at a suitable place. This gives the user a macro-facility. Furthermore, if such text structures
can be stored and retrieved along with other structures, then macro libraries can be created
and referenced just as easily as sets of data. Such a facility is particularly valuable to the
statistician who wishes to create standard procedures for his clients for each subsequent use
by them. In a properly designed system, it takes remarkably little extra code to provide what
can be a powerful tool.

Action that is taken by implementors on naming and manipulating data structures is closely
bound up with assumptions about the analytic process itself, and these need bringing into the
open.

3. Multi-stage ys. Single-stage Analysis

Almost everyone accepts the idea that the analysis of a substantial body of data must be a
multi-stage process of trial and error. Our models can only be tentative, may be contradicted
by the data themselves, and will usually need revision. But although everyone may accept this

295

. _ile. far too many people accept computer programs that, far from_encouraging a multi-
ciple, _
ptr:;e Ia)lpproach, actively foster the single-stage procedure
s
input
analyse
output

Tiségf .who do not wish to think may welcome the magic black box that tabulates their
1

in ¢ si ¢ oes all possible regressions, calculates all possible statist1<{s,
da_ta llltllflrezs?:s]blil \::\fl:ald kilomelﬁcs of paper and then stops. The intelligent user W111
5 A this approach, but he needs to recognize symptoms that a program is based im-
rej'eFtl ;1 a ';inﬂic-s;age view of analysis. The critical question is — does the system allow
e ytout‘ﬂ:on;c a procedure to be named as instances of suitable data structure§, and
llwdofﬂ]))se uentlytas input to other procedures? If the answer is “no” ﬂ_lf.:n, real mu!tl-stage
use1 ’ is qoing to be at best difficult and at worst impossible. Thus facilities for naming out-
anett ylids theg definition of a common set of structures for both input and output are key feau.u_'es
(I:tl‘laasyslcm supporting multi-stage analysis. A further essential feature 1? otl' c?urge t'heda?_lhty
to save, and subsequently to retrieve, not just the raw data but data structures derived from
theEn)‘i-ample. Suppose a table of counts has been created .from a data matrix a(rild it 1; Eo:\; ﬁﬁ;ggi
to fit a log linear model to the table and calculate the dlscrepancy from the atz}il.. t ei) e
procedure must first allow the output to be saved as a multi-way table. Th§n t ﬁm ta le o
able to be used, either directly or indirectly as the .1nput to a program for tt}nfit oég- o
models. If the system allows weighted regression Wl.tl.l th_e naming of Vectogs oth 1e -\;inear
and weights, and also iteration by a branching facﬂl.ty in the language,h then the oi; e
fitting can be programmed by the user directly. If .1t dloes not, tchen the user n‘zusn s
persuade the originators to extend the system, or do it himself. It is an open questio

will take longer.

4, Characteristics of Algorithms
The algorithms of a system pose two problems for the user: (1) do they do what he wants to
do? and (2) do they work properly ?

4.1. What do they do?

There are many techniques of analysis and no attempt can be made to §pe01fy gll .the detsmlbtlg
features of each. Some general points of guidance can, however, be given. It is m111p'0r ari1 it
discover how missing values are treated. Are they, in the first place, allowI::d at aS Sl]gl 12; i
matrix ? May they occur in derived variate calculations? What‘he‘lppens when an : e
is formed from a data matrix containing missing values ? Can missing values be easily rep
b alues? o . .
ylflof;;rzzlslifnvanalysis the potential user should find out how aliasing (partl(;utlarlllilgimg}
aliasing) of effects is handled. Degeneracies should lea(% merely to commelfl‘t, r;c; ohaVe bi i
the calculations. If they do, then it is virtually certa'.m that no decent facili 16':5t s
provided for including factors (leading to terms like a; in the model). as well as variates (ziide g
to terms like bx). Be suspicious if automatic procedures (like §tepw1se).regresslxlon are ff;v s
without the steps of which they are made being separately available. Without these yo
b ink for yourself. '
eI?IiLO::;:SOE(EaﬁlItIhat al;’orithms should be able to work on subset§ of u.nlts as.i\;velt.a?J og liltllt }(l)i'
them. This facility is strictly one of data-access rather than of algorithmic specification,

two aspects are often not clearly separated.

stahy
‘'octa:

n, Harp|

52

296
4.2. Do they work?

A now well-known paper by Wampler [7] reported putting some admitted ly nasty regression
problems with nearly singular matrices to several packages with generally dismal results,
Many of the algorithms used were not numerically stable, and though they produced results
these might contain no correct significant digits at all. Thanks to the work of Wi]kinscn'
Golub and others there is now no excuse for not using stable algorithms for linear operations’
and for extracting latent roots and vectors. None the less, time spent on submitting searchip

test data to a program may not be wasted, and a healthy pessimism is always justified. Fop
example, Francis [2] has described the output from four programs for the analysis of Variange
of data from a two-way table with unequal numbers in the subclasses. One program gave the
wrong answer because it treated the data as orthogonal, two more gave incom plete answers ang
did not explain the incompleteness to the user, and the fourth one gave some incorrect sum of
squares through failure to recognize the marginality relations between the main effects and the
interaction term. (The results from this last program were not recognized by the author s
incorrect.) Thus a data structure for which the form of the analysis of variance has been known

for forty years (Yates [8]), is still being incorrectly treated in widely used programs. Let the

user beware.

5. Space

Space is required for both program and data, in core and in backing store. The user must
understand something of the constraints imposed both by the operating system and the pro-
gram itself. He should know what partition size is required and what the consequent priority
for his job is likely to be. If the program is overlaid, then a complex run may involve many
overlay changes; it may be possible ro reduce the number considerably by grouping together
the instructions that use the same segments.

For data the user needs to know how much space is available, both in core and on backing
store, whether there are restrictions on individual dimensions of structures and lists, and if
space is recoverable (by garbage collection) during a run. Some space restrictions may be very

difficult to circumvent, and one must be absolutely clear that the data and the problem are
going to fit if frustration is to be avoided.

6. Documentation

To convert a problem into a form where a program can be written, or a system used for its
solution is a complex process. What is needed is an intermediary. There are two possibilities
for most users; one is for the user himself to be the intermediary, and the other is for the local
expert to take on the job, The first question the user must ask is — does the local expert exist?
Whether the local expert exists or not depends very much on the policy of the computer centre
the user has to deal with, for centres differ widely in the extent to which they think the user
ought to be supported in this way. Some give all assistance short of actual help.

If the local expert does not exist, the user must do it himself, and face the translation prob-
lems involved. He must master the program’s jargon, and match its concepts with his own.
Most importantly he must establish whether, despite differences in terminology, he can actually
do what he wants]Some standardization of words used to describe data structures would be
of enormous help here. The user is totally dependent at this point on the documentation pro-
vided with the program. It is very difficult to provide good documentation, and still far from
clear how to do it. For Genstat we have arrived at the following state of affairs: to use the
system at the external level, i.e. without knowing its internal structure the user needs

(i) a prospectus;

(ii) user’s guides;

©

297

(i) 2 reference manual;
(iv) worked examples;
(v) a notice board. .
ectus is a document a few pages long, which outlines the. scope of th.e system,hic;e1
r:}sgtu res it supports and the algorithms it provides, together with the michmes g:n“; i
.+ i« available, and the partition size required to run it. From the prospectus the user
A ;asr; ‘opinion on whether to pursue the idea of using the sli/stemtfurtl}relrl. oo R
¥ i ive i i i ts of the system. They
’s troductions to various par :
e iy ions; lead the user into the system
tions; they try to lea
: ally and do not try to cover all the op ; th
mfom;llq]tyftges These guides do not discuss the statistical background to tﬁe .procedlgzséigt
B that the i ing to use a particular technique on hi 5
g - understands why he is proposing
b i i inni ith the syntax from character set to
: tten formally, beginning wi y ; _
The reference manual is wri : ' ot aleiotcns
irecti tem, with concise description
followed by all the directives in the system, i ‘ : fons,
B soend i tax, the diagnostics, machine-dependent features a
Appendices summarize the syntax, 5, 1 .
Ztecn'era??ndex It can be read as a book, but generally will &.erdv'e as atwork 0(11" 3{::::;:12 e to
- i rce file held on disc or tape an
¢ worked examples are supplied as a sou . o
ob’tr;in copies as required; they are internally annotated with comments and can be rea
i dent documents. o o .
ln(’11“611136:8 ?mtice board is another source file containing known restrictions and faults in the system
i irecti 11 but never is.
fied by directives. It ought to be nu : i "
CIEfls“sol use tl}lle system at the internal level, i.e. to modify the program at the Fortran level, t
user requires documents covering

(i) the internal representation of the data structures and “object” code;
(ii) the system’s accessing functions; .
(i) descriptions of common blocks and subprograms;
(iv) the linking structure. .
e
To undertake the writing of a new interpreter would presuppose a user of considera
sophistication, who would usually need the assistance of the originators.

The p
data st

Conclusion '

can
The hurdles facing the potential user who wants to use a corgpu;er t(:l r';i;l;é)és;gléltss gﬁhing

i t one may wonder how
ade to seem so many and so huge tha W anybc :

Ziiley;earl? Although things do get done yet the amount of frustration 1s stllé, I be::leve;l::rr:/
large Exis:[ing general-purpose programming languages are not adeguatz bort ;: or}i,ginatoé
POL; are better but there is no guarantee that the class oflproblems envisage hyth originator
include the user’s current problem, and it is often too difficult ‘to find outdw e e; s so of
not. Difficulties arise from inadequate standardization of terms, hlnade‘ql'lftte t}(iclll\lvlzuld i
inac i bly no accident that the activities tha
inadequate program support. It 1s proba ' : '
these (i]nadecll)uacies do not carry the kudos in the academic world that they should

References

isti j Version 3). Science Research Council.
P: A Statistical Computing Procedure (: el
g} goorfgg, ?'(159'7(31)97&}11353311 of several analysis of variance programs. Journal of the American Statistica
rancis, 1. .
Association, 68, 549-565.] _
[3] Ins:;;alional Business Machines. (1969). System/360 Continu
16X) User’s Manual. IBM.

4] Nelder, J. A, and Members o : :
N Inter-University| Research Councils Series, Report No.

Unit, Edinburgh Regional Computing Centre.
42/3—x

ous Systems Modeling Program (3604~CX-

Manual,
istics Department. (1973). Genstat Reference A
Kl StatlStIC;’ Sepcom’ Edition. Edinburgh: Program Library

stahydrl

octa-

h, Harpend

e ——
— ==

-

298

[5] Nie, N. H., Bent, D. H., Hull isti
MoGraw-Fill. » Hull, C. H. (1970). SPSS: Statistical package for the Social Sciences. Ney v,
: o)

|6] SChUCany, VV. R., Murton, P.D 5 S]lall]l()]l, B.S 1972 A Survey o sta 1511(:a1 pa(:kages (gmp”tl”g- Si
s 65~ . . o (). . ' ‘
4 79 qu)

[7] 'V‘Ud]llp[cl R. H (1970) n ccuracy of]eaSt square om ¥
b, . . . On the ai e
X 2\ : y q S C puter programs, Journal Of th Amerl'
S-r tist | A 65 519 565 Can

[8] Yates, F. (1934). The analysi i
, F. . ysis of multiple classi i i i
Journal of the American Statistical Association, st';ﬁ‘;ait—[(ﬁ)gs Wk Upual nymibers.dn the.differant lasses

[9] Yates, F. The Rothamsted Ge SUTVi v
(al) neral Survey Progr: P 1
b ; gram (Parts 1 and 2). Inter-Universi, 7
es, Reports Nos. 2 and 14. Edinburgh: Program Library Unit, Edizlbtﬁ'gi: R:;‘;:)Ls;-;ygéf;;t;rtc{h Cct'm"ms
ng Centre,

J. M. & BROWN, MARGARET E. J. appl. Bact. 37, 583-593.

B AREA,

Effects on Plant Growth Produced by Azotobacter
paspali Related to Synthesis of Plant Growth
Regulating Substances

J. M. BarEa* AND MARGARET 1. Browx

Soil Microbiology Department, Rothamsted Experimental Station,
Harpenden, Hertfordshire, England

(Received 27 February 1974 and accepted 20 May 1974)

Suantary, Treating seedling roots of several plant species with cultures of Azotobacter
paspali changed plant growth and development and significantly inereasod weight of
lonves and roots; effects were probably eaused by plant growth regulators. Culture
supernatent fuids contained indolyl-3-ncetic acid, at least 3 gibberellins and 2 eytokinins.
The added inoculum of A. paspali survived in plant rhizospheres for only a few weeks and
no nitrogen was fixed in the root zone of young Paspalum notatum, the grass with which
A. paspali is associated.

THE NITROGEN FIXING bacterium Azofobacter paspalt was found by Débereiner (19606)
in soils with a pH range of 4:9 to 7-8 and to ocour more abundantly in rhizospheres of
Paspalum notatum and P. plicatum than in soil away from roots, but it was absent
from root samples of 81 other pasture plants. Azotobacter paspali improved growth of
P. notatwm by fixing atmospheric nitrogen in the rhizosphere (Ddbereiner, Day &
Dart, 1972), an ability not known to be shared by other species of Azolobacter when
associated with roots of any plant species. However, other species of Azotobacter alter
plant growth by producing the growth regulators indolyl-3-acetic acid and gibberellins
(Brown & Burlingham, 1968; Lee, Breckenridge & Knowles, 1970; Azeén & Barea,
1973). This paper presents the results of examining culture supernatant fractions of
A. paspali for these substances and for cytokinins, and the effects on plant growth
following root treatment with bacterial cultures. Studies on cytokinin production
were made because recently these substances were found in extracts of cells of 4.
chroococcwm (Coppola, Percuoco, Zoina & Picei, 1971), of Agrobacterium lwmefaciens
(Romanow, Chalvignac & Pochon, 1969), and of Corynebacterium fasciens (Helgeson
& Leonard, 1966; Klimbt, Thies & Skoog, 1966), and in RNA preparations from a
wide range of micro-organisms (Skoog & Armstrong, 1970). Cytokinins were also
found in culture supernatant fractions of Anthrobacter sp. (Blondeau, 1970) and
Rhizobium japonicum (Phillips & Torrey, 1970).

Methods

Cullures
Cultures of Azotobacter paspali were grown for 14 days (Brown & Burlingham,
1968) in 100 ml amounts of medium containing (g/l); sucrose, 5:0; K,HPO,, 0:8;

* Present address: Estacion Experimental del Zaidin, Seccion de Miecrobiologia, Avenida
Cervantes, Granada, Spain.

[583]

stahydri
‘octa-

n, HarpanJ

