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Abstract

In this paper we analyze the aggregate volatility of a stylized econ-
omy where agents are networked. If strategic relations connect agents’
actions, idiosyncratic shocks can generate nontrivial aggregate fluctu-
ations. We show that the aggregate volatility depends on the network
structure of the economy in two ways. On the one hand, the more con-
nected the economy, the lower the aggregate volatility. On the other
hand, the more concentrated the network, the higher the aggregate
volatility. We provide an application of our theoretical predictions
using US data on intersectoral linkages and firms’ diversification pat-
terns.

Keywords: Aggregate fluctuations, Networks, Firms, Intersectoral linkages.

JEL Classification: E32, C67, D57.

Abstract

En este art́ıculo, analizamos la volatilidad agregada de una economı́a
estilizada donde los agentes están conectados en redes. Si hay rela-
ciones estratégicas entre las acciones de los agentes, choques idios-
incráticos pueden generar fluctuaciones agregadas. Demonstramos
que la volatilidad agregada depiende de la estructura de redes de la
economı́a de dos maneras. Por un lado, si hay más conexiones en
la economı́a en su conjunto, la volatilidad agregada es más baja. Por
otro lado, si las conexiones están más concentradas, la volatilidad agre-
gada es más alta. Presentamos una aplicación de nuestras predicciones
teóricas que utiliza datos de EEUU de conexiones intrasectoriales y
de diversificación de las empresas.
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1 Introduction

This paper sheds light on how aggregate fluctuations can originate from
idiosyncratic shocks. The economic crisis started in 2007 posed the need
of discretionary interventions by the public authorities aimed at stabilizing
the financial markets. As the different destinies of Lehman Brothers and AIG
illustrate, the rationale behind these interventions was not based on the size
of the institutions that needed financial help but rather on their systemic
relevance. The public bail-out of AIG was justified on the basis that AIG
was “too interconnected to fail.” Apart from the natural consequences for
normative analysis and policy design, the main theoretical question behind
these interventions is whether aggregate fluctuations are simply the results of
inherently aggregate shocks that hit all the agents of an economy at the same
time, or they are rather the consequence of idiosyncratic shocks occurring at
the micro level and then propagating through the economy. In this paper
we present a theoretical toolbox to analyze the transmission of idiosyncratic
shocks to the aggregate level when the economy presents a network structure.

Aggregate fluctuations can be the result of intrinsic aggregate shocks like
in Kydland and Prescott [1982] or extrinsic aggregate shocks (sunspots) like
in Cass and Shell [1983]. In contrast with these two approaches, our shocks
are independent across agents and none of them is the necessary culprit of
aggregate fluctuations. Our paper is close in spirit to the seminal work of
Jovanovic [1987], who showed that theoretically any amount of aggregate
risk can originate from idiosyncratic shocks. In an economy composed by
a large number of agents, the standard diversification argument à la Lucas
[1977] maintains that idiosyncratic shocks cannot result in aggregate volatil-
ity because the Law of Large Numbers (LLN) applies and independently
distributed shocks cancel each other out. However, although the shocks to
the agents may be independent per se, the strategic complementarities across
agents’ actions make the actions to be not independent in equilibrium. Thus,
aggregate shocks can be the result of the aggregation of idiosyncratic shocks.

From an empirical point of view, if the assumptions of size homogene-
ity or independence behind the LLN do not hold, then nontrivial aggregate
fluctuations can be the result of idiosyncratic shocks. For example, Gabaix
[2011] shows that the shocks to the biggest 100 firms can account for up to
one third of aggregate fluctuations for the US economy. The main reason
is the existence of a power-law size distribution for US firms, so that the
aggregate consequences of an idiosyncratic shock to a big firm are consider-
ably different from the consequences of a shock to a small firm. Moreover,
Carvalho [2007] and Acemoglu et al. [2011] point at the importance of the
input-output structure of the US economy to understand the transmission
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of sector-specific shocks to the aggregate level. In particular, the presence
of sectors that work as hubs to the economy, providing intermediate goods
to almost all other sectors, permits the generation of aggregate fluctuations
that could potentially account for up to two thirds of aggregate volatility.
In line with these approaches, we do not claim that idiosyncratic shocks are
the only driving force of aggregate fluctuations. We simply maintain that
a sizable share of the aggregate volatility that cannot be explained by in-
herently aggregate shocks derives from the aggregation of independent micro
shocks, and that such a share can be analyzed and quantified once we know
the network structure of the economy.

We present a stylized economy composed of N agents. We model it on
the basis of Ballester et al. [2006]. The effort of each agent can be either a
strategic complement or a strategic substitute to the effort of other agents.
These strategic relations across agents describe the network structure of the
economy. For example, firms involved in joint R&D activities may see the
research effort of their partners as a strategic complement, while firms that
compete in the same market with other firms may see the production of
their competitors as a strategic substitute.1 When information is perfect,
the effort of each agent at equilibrium depends on the network structure of
the economy, that is, on the whole set of bilateral strategic relations across
agents. Hence, the dispersion of effort levels at equilibrium depends mainly
on the position of each agent in the network structure. An idiosyncratic
shock to a single agent of the economy can transmit to the aggregate level
depending on whether that agent is highly interconnected with other agents
but also on whether there exists the possibility of another idiosyncratic shock
originated somewhere else in the economy to countervail the first one. The
aggregate volatility of the economy is the aggregation of the equilibrium
consequences of any idiosyncratic shock that hit any agent in the economy.

We are able to decompose the aggregate volatility of the economy into
three components. The first component reflects the usual LLN. According
to this component, aggregate volatility should decrease at pace

√
N as the

number N of agents increases. The second component measures the overall
connectedness of the economy. We find that the more connected the econ-
omy, the lower the volatility. This is due to the fact that the links between
agents imply the emergence of preliminary LLNs that partially diversify the
idiosyncratic risk before the market interaction and the realization of the
equilibrium. The third component accounts for the concentration of the net-
work. We provide a mapping between a commonly used centrality measure

1On R&D and collaboration networks see for example Goyal and Moraga-Gonzalez
[2001] and Goyal and Joshi [2003].
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developed in Bonacich [1987] and the eigendecomposition of the adjacency
matrix, that is, the eigenvectors and eigenvalues of the matrix that repre-
sents the network structure of the economy. We find that the more concen-
trated the network, the higher is aggregate volatility. The intuition is that
the more central some agents are with respect to other agents within the
network, the more likely is an idiosyncratic shock to the former agents to
propagate through the economy and to generate an aggregate fluctuation.
The third component reflects therefore that the aggregate volatility depends
on how the linkages across agents are structured rather than on their number
or their strength.

Our paper is related to the analyses of systemic risk, especially if we con-
sider the case of networks of financial liabilities.2 For example, Nier et al.
[2007] finds that more concentrated banking systems are conducive of larger
systemic risk. This conclusion is similar to our finding about the positive
relation between the concentration of the network and the aggregate volatil-
ity. However, our work has a difference theoretical focus with respect to the
literature on financial contagion and systemic risk. We analyze the aggregate
volatility as it results from idiosyncratic shocks that hit all the agents of the
economy, and not from the propagation of a particular shock to a particu-
lar agent. Moreover, most of the analyses of systemic risk devote particular
attention to the banking sector or to the wider financial sector, and usually
within a partial equilibrium framework. Our results instead may apply to the
economy as a whole and are designed for general equilibrium applications.

The paper is organized as follows. In Section 2, we present the general
set-up of our economy and its equilibrium. In Section 3, we analyze the
connection between the network structure and aggregate volatility. In Section
4, we provide an application of the theoretical predictions of the general
model to the case of establishment-level shocks. In Section 5, we draw the
conclusions and present possible lines of research for the future. Proofs,
tables, figures, and numerical exercises can be found in the Appendix.

2 The Model

Consider the economy composed of N agents. Each agent’s payoff is linear
quadratic, concave in the agent’s own effort and such that other agents’ efforts
are strategically complementary or substitutable to her own. Under mild
conditions, this framework yields a unique interior Nash equilibrium that
expresses each player’s effort as a linear function of her weighted Bonacich
centrality, as in Ballester et al. [2006]. The Bonacich centrality is a measure

2A review of network models of financial contagion is provided by Wims et al. [2011].
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of how the single agent is at the center of a nexus of paths within the network
of the economy. Let us first review the main insights of Ballester et al. [2006]
and then extend this framework to the analysis of aggregate volatility.

2.1 Set-up and equilibrium

Each Agent i in N ≡ {1, ..., N} chooses the effort qi ≥ 0 that maximizes the
payoff,

πi ≡ εiqi +
γii
2
q2i +

∑

j∈N \{i}

γijqiqj , (1)

where εi > 0 and γii < 0 for every i in N , and γij ∈ R for every (i, j) in N 2.
We call εi the idiosyncratic endowment of Agent i. Note that each agent’s
payoff is concave in own effort and that there are bilateral strategic relations
among players which are pair-specific and can be both positive and negative.
The effort of Agent j is a strategic complement to the effort of Agent i when
γij > 0, for example if i and j are firms involved in a common R&D activity
and qi and qj are the research efforts of Firm i and Firm j. The effort of
Agent j is a strategic substitute to the effort of i when γij < 0, for example if
i and j are firms that compete in quantities where the effort is the quantity
produced by each firm. The strategic relation γij does not need to coincide
with γji unless i = j, for every (i, j) in N 2. Nevertheless, for the clarity of
exposition we simplify our framework. We discuss in Remark 1 the general
case.

Assumption 1. The concavity in own effort γii is the same for all agents,
that is, γii = γ for every i in N . Moreover, the strategic relations among
players are symmetric, that is, γij = γji for every (i, j) in N 2.

We can represent the First Order Conditions (FOCs) of all players in
matrix form, that is,

−Γq̄ = ε̄, (2)

where q̄ and ε̄ are vectors of length N and Γ is a N ×N square matrix. The
i-th elements of q̄ and ε̄ are qi and εi, respectively. The (i, j)-th element
of Γ is γij, and in particular γii = γ when i = j. We can decompose Γ

into a concavity component, a global substitutability component, and a local
complementarity component. In order to do this, we make the following
simplifying assumptions. Let us define γmin ≡ min{γij|i 6= j} and γmax ≡
max{γij|i 6= j}.

Assumption 2. The concavity of payoff is less than the minimal bilateral
strategic relation, that is, γ < γmin. Moreover, there exist at least a pair of
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agents whose efforts are strategic substitutes, that is, γmin < 0, and at least
a pair of agents whose efforts are strategic complements, that is, γmax > 0.

This implies that γmax − γmin > 0 and γmin − γ > 0. We define

gij ≡
γij − γmin

γmax − γmin
,

for every (i, j) in N 2 such that i 6= j and gii ≡ 0 for every i in N . By
construction, 0 ≤ gij ≤ 1. Thus, the FOCs in (2) become

[(γmin − γ)I− γminU− (γmax − γmin)G] q̄ = ε̄, (3)

where I is the N × N identity matrix, U is the N × N matrix of ones, and
G ≡ [gij ] is an N ×N nonnegative square matrix with zeros on the diagonal.
The component (γmin − γ)I reflects the concavity of payoffs in own effort,
the component −γminU reflects the uniform substitutability of effort across
players, and the component −(γmax − γmin)G reflects the complementarity
of effort across players relative to the benchmark of global substitutability.
We can rewrite (3) as

[

I− γmax − γmin

γmin − γ
G

]

q̄ =
1

γmin − γ
[ε̄+ γminU] .

In order to characterize the equilibrium, we have to find conditions that
permit us to express q̄ as a function of the rest. Let us therefore define

a ≡ γmax − γmin

γmin − γ
> 0, (4)

which by construction is strictly positive. Moreover, let us call λmax the
maximal eigenvalue of G.

Assumption 3. The maximal eigenvalue λmax of G is strictly smaller than
the inverse of a, that is,

aλmax < 1,

where a is defined in (4).

The intuition behind this assumption is that the maximal relative comple-
mentarity across the efforts (γmax − γmin)λmax must be less than the relative
concavity of payoff in own effort γmin − γ. Otherwise, the feasible set of ef-
forts might be nonconvex for some agents. Note that by the Perron-Frobenius
theorem all eigenvalues of G are real numbers due to symmetry implied by
Assumption 1. Moreover, Assumption 2 guarantees that G has at least one
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nonnil entry, so that λmax > 0. Given that a > 0 and all values of G are non-
negative, Theorem III* in Debreu and Herstein [1953] states that the matrix
[I− aG]−1 has only nonnegative values if and only if Assumption 3 holds.
Moreover, under Assumption 3 we can rewrite the inverse of [I− aG]−1 in
its Neumann series form. Hence, we can define

M ≡ [I− aG]−1 =
+∞
∑

k=0

akGk, (5)

where Gk is the k-th power of G. In particular, G0 = I. Let 1̄T denote the
horizontal vector of ones of length N . Thus, we can characterize the vector
q̄∗ of equilibrium efforts.

Proposition 1. Suppose that Assumption 1, Assumption 2, and Assumption
3 hold. Then, there exists a unique (Nash) equilibrium. Moreover, the vector
q̄∗ of equilibrium efforts is

q̄∗ =
1

γmin − γ

[

Mε̄+
γmin1̄

TMε̄

γmin − γ − γmin1̄TM1̄
M1̄

]

, (6)

where q∗i > 0 for every i in N and M is defined in (5).

The equilibrium effort of each agent is a function of all idiosyncratic
endowments ε̄ and the structure of direct and indirect strategic relations
across agents M.

2.2 Equilibrium and network centrality

We can interpret G as the adjacency matrix of a network g of relative pay-
off complementarities across pairs. If the complementarity induced by the
presence of a linkage from Agent i to Agent j within the network g is strong
enough to countervail the uniform substitutability in efforts, then effort of
Agent j is a strategic complement to Agent i. Otherwise, the effort of Agent
j is a strategic substitute to Agent i. The network g can be represented as a
graph with neither loops nor multiple links. Given that we suppose that the
original Γ is symmetric, then G is symmetric and therefore the underlying
network g is an undirected network. We define a network centrality measure
introduced by Bonacich [1987] and applied to our framework in Ballester
et al. [2006].

Definition 1 (Weighted Bonacich centrality). The vector of weighted Bonacich
centralities of the economy is

b̄(x̄) =
+∞
∑

k=0

akGkx̄,
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where x̄ is a length-N vector of nonnegative weights.

According to (5), this implies that

b̄(x̄) = Mx̄. (7)

Let us call g
[k]
ij the (i, j)-th element of Gk. Thus, the i-th element of b̄(x̄) is

bi(x̄) =
∑

j∈N

(

+∞
∑

k=0

akg
[k]
ij

)

xj =
∑

j∈N

mijxj ,

where xj is the j-th element of x̄. Since G is the adjacency matrix of the net-
work g, the nonnil elements of G account for the direct connections between
agents, that is, the paths of length one within the network. Consequently,
the nonnil elements of the k-th power of G account for the indirect connec-
tions, that is, the paths of length k within the network. In other words, the
element g

[k]
ij is equal to the number of paths of length k that exist between

i and j. If g
[k]
ij = 0, then there does not exist any path of length k between

i and j. If instead g
[k]
ij > 0, then there exists at least a path of length k

between i and j, and the intensity of this indirect connection is exactly g
[k]
ij .

Example 1. Suppose that adjacency matrix of g is

G =





0 1 1
1 0 0
1 0 0



 .

You can see a graphical representation of this network in Figure 1. The
network is such that there are a link between 1 and 2 and a link between 1
and 3, but no link between 2 and 3. The second power of G is

G2 =





2 0 0
0 1 1
0 1 1



 .

There are two paths of length two that go from 1 to herself, either from 1 to
2 and back or from 1 to 3 and back. Moreover, there is one path of length
two that goes from 2 to 3, one from 2 to herself, and one from 3 to herself.

The weighted sum
∑+∞

k=0 a
kg

[k]
ij accounts for all paths of any length be-

tween i and j. The weighted Bonacich centrality of Agent i sums up all the
paths of any length across all agents of the economy, weighing each Agent j
who is connected to i by her weight xj . Thus, the Bonacich centrality mea-
sures how much Agent i is at the center of a nexus of paths from any other
agent within the network of the economy. Figure 11 reports an example of
Bonacich centralities for a network structure we describe later on.
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Proposition 2. Suppose that Assumption 1, Assumption 2, and Assumption
3 hold. Then, we can rewrite the equilibrium solution as

q̄∗ =
1

γmin − γ

[

b̄(ε̄) +Bγmin1̄
T b̄(ε̄)b̄(1̄)

]

,

where

B ≡ 1

γmin − γ − γmin1̄T b̄(1̄)
> 0.

In other words, the equilibrium effort of each agent is a linear function of her
Bonacich centrality with weights ε̄ and 1̄.

The equilibrium effort of each agent depends on how that agent is at the
center of a nexus of paths coming from all other agents, who are themselves
weighted either by their idiosyncratic endowments ε̄ or by the uniform 1̄.

3 Network structure and aggregate volatility

3.1 Eigendecomposition of network centrality

Let us consider the adjacency matrix G. Since it is symmetric due to As-
sumption 1, it has N distinct eigenvalues and is therefore diagonalizable.
Hence, there exists an invertible matrix V such that

V−1GV = Λ,

where Λ is a diagonal matrix with the eigenvalues of G on its diagonal, and
V is an invertible matrix whose colums are the eigenvectors of G. Thus,

G = VΛV−1. (8)

Moreover, the eigenvectors of G can be chosen to form an orthonormal basis
of RN . Thus, we set V to be an orthogonal matrix, which implies V−1 = VT ,
where VT is the transpose of V. This implies that VVT = VTV = V−1V =
I.

Remark 1. Suppose that Assumption 1 does not hold. If the bilateral strate-
gic relations across agents are not symmetric, that is, γij is not necessarily
equal to γji for every i and j in N , then the resulting adjacency matrix G

is not symmetric either. Hence, the matrix does not necessarily have N dis-
tinct eigenvalues, in which case we could not decompose it into the diagonal
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matrix Λ of eigenvalues and its eigenvector matrices, V and V−1. However,
there exists an invertible matrix P of generalized eigenvectors of G such that

P−1GP = J,

where J is called the Jordan normal (or canonical) form of G. The matrix J

is a N ×N block diagonal matrix, that is,

J =











J1

J2

. . .

JL











,

where L ≤ N is the number of distinct eigenvalues of G and Ji is a so-called
Jordan block, for every i in L ≡ {1, · · · , L}. Each Jordan block Ji is defined
by two elements, the eigenvalue λi of G and its multiplicity µi, for every i
in L . The Jordan block Ji is a µi × µi square matrix. The diagonal of each
Jordan block Ji is filled with the fixed element λi and the superdiagonal is
filled with ones. All other entries of Ji are zeros, so that

Ji =















λi 1 0 · · · 0
0 λi 1 · · · 0
...

...
. . .

. . .
...

0 0 0 λi 1
0 0 0 0 λi















,

for every i in L . In fact, the diagonal form Λ of G in (8) is the special case
of Jordan normal form of G when G is symmetric. If G is symmetric, the
L = N and each Jordan Block Ji consists of a 1 × 1 matrix with a single
entry, λi. We let Assumption 1 hold and we restrict G to be symmetric
only for simplicity. All propositions and intuitions can be reformulated with
minor changes using the Jordan normal form of G.

Proposition 3. Suppose that Assumption 1, Assumption 2, and Assumption
3 hold. Then, the matrix M defined in (5) is such that

M = VΛ̃V−1,

where V is the matrix of eigenvectors of G and Λ̃ is a diagonal matrix whose
l-th diagonal element is a convex function of the l-th eigenvalue in Λ, that
is,

λ̃l ≡
1

1− aλl
> 0,

where a is defined in (4), for every l in N .
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The connections of any length between the N agents of the economy
describe a rotation of theN -dimensional space of direct connections described
by the original adjacency matrix G. Each dimension l in this new space is
associated to an eigenvalue λl of the original G, which measures how much
the dimension l accounts for the structure of indirect connections in G. We
call such a dimension a latent group. The (i, j)-th element of M is then

mij =

+∞
∑

k=0

akg
[k]
ij =

∑

l∈N

vilv
−1
lj λ̃l,

where vil is the (i, l)-th element of V and v−1
lj is the (l, j)-th element of V−1.

Since we choose V such that V −1 = V T , then v−1
lj = vjl. Hence,

mij =
∑

l∈N

vilvjlλ̃l.

The element vil of V accounts for how much Agent i contributes to the
relevance of latent group l in capturing the structure of indirect connections
contained implicitly in G, while the element vjl does the same for Agent j.
Hence, the element mij , which measures how many paths of any length pass
between i and j, can be obtained by summing all the contributions of Agent i
and Agent j to any latent group l, weighing each pair of contributions (vil, vjl)
by the (duly transformed) relevance λ̃l of the latent group l in capturing the
structure of indirect connections.

We can express the unweighted Bonacich centrality of Agent i,

bi(1̄) =
∑

j∈N

(

+∞
∑

k=0

akg
[k]
ij

)

=
∑

j∈N

mij,

in terms of the contributions of Agent i to all the latent groups of G, that
is,

bi(1̄) =
∑

j∈N

∑

l∈N

vilvjlλ̃l.

For example, suppose we add a link of some weight between Agent i and
Agent j. On the one hand, the Bonacich centrality of i increases because any
path that could arrive up to j now arrives until i. On the other hand, the
contribution of i to some latent group l to which also j contributes increases,
as well as the relevance λ̃l of that latent group in explaining the structure
of indirect connections across agents, that is, M. Using Definition 1 and
Proposition 3, we can express the vector of weighted Bonacich centralities
with weights x̄ as

b̄(x̄) = VΛ̃V−1x̄. (9)
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In other words, the network centrality of the agents in a networked economy
can be decomposed into the eigenvectors and the (transformed) eigenval-
ues of the adjacency matrix. The intuition behind the eigenvalues and the
eigenvectors is that they describe a series of latent groups implied by the
adjacency matrix. The single (transformed) eigenvalue λ̃l associated to the
latent group l in N measures how much of the indirect connections implied
by the adjacency matrix can be accounted for by that latent group, while the
corresponding eigenvectors measure the contribution of each agent to that la-
tent group. Once we know the adjacency matrix, we can pin down all indirect
connections and therefore also their representation through the eigendecom-
position. Central agents in the network are agents that contribute relevantly
to sizeable latent groups, that is, latent groups that account for large por-
tions of the indirect connections. Peripheral agents instead are agents that
contribute little to the latent groups, and isolated agents are agents that
contribute perhaps relevantly but to relatively small latent groups. Hence,
there is a mapping between the network centrality of each agent and her
contributions to latent groups of different sizes.

3.2 Aggregate volatility and network centrality

We want to study the aggregate volatility of efforts in our stylized economy.
In order to do this, suppose that the idiosyncratic endowment εi of an agent’s
payoff is the realization of a random variable, ε̃i.

Assumption 4. The random variable ε̃i is independently and identically
distributed for every i in N . It follows a distribution with support set
E ⊆ (0,+∞), finite mean µ ≡ E [ε̃i], and finite variance σ2 ≡ E [(ε̃i − µ)2].

The idiosyncratic endowment εi in (1) is then the realization of ε̃i. Hence,
the vector ε̄ is the vector of realizations of a random vector whose i-th element
is ε̃i, for every i in N . The dispersion of equilibrium efforts q̄∗ simply reflects
the dispersion of realizations of ε̃i across the agents filtered by the equilibrium
interaction.3 Since our economy is inherently static and the time dimension
corresponds simply to the repetition of the vector of idiosyncratic shocks,

3Suppose that there are realizations of the random vector through time. According to
(6), different realizations ε̄ through time yield different vectors q̄∗ of equilibrium efforts. If
we define the aggregate volatility as the dispersion of the first moment of q̄∗ through the
time dimension, there is no necessary relation between the dispersion of q∗

i
across agents

at a certain point in time and the dispersion of, say, the average of elements in q̄∗ through
time. Nevertheless, if the random vector whose realization is ε̄ is iid through time, then
the cross-sectional dispersion in equilibrium levels is tighly connected to the aggregate
volatility.
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from now on we use interchangeably the concepts of cross-sectional variance
and volatility.4 First, we define and analyze the variance-covariance matrix
of equilibrium efforts. Second, we provide a measure of aggregate volatility
derived from the variance-covariance matrix.

Definition 2. The variance-covariance matrixΣ(G) is the N×N real-valued
matrix given by

Σ(G) ≡ E
[

(q̄∗ − E [q̄∗]) (q̄∗ −E [q̄∗])T
]

,

where the expectation operator E [·] is defined over the probability distribu-
tions of ε̃i, for every i in N .

In our economy under Assumption 2 agents are necessarily networked and
the equilibrium effort is described by (6). Hence, the variance-covariance
matrix of equilibrium efforts depends on the idiosyncratic volatility but also
on how the agents are linked to each other. The pattern of direct and indirect
connections across agents determines the structure of the variance-covariance
matrix, and the potential correlation in equilibrium efforts is a product of
some direct or indirect connection between agents.

Let us analyze the variance-covariance matrix. The diagonal entries of
the variance-covariance matrix account for the volatility of each agent, while
the off-diagonal entries account for the comovement between different agents.
Since there exist links between agents, there exists covariance in the equilib-
rium effort across agents although the idiosyncratic shocks εi for every i in
N are independently distributed. Moreover, the volatility of the individual
equilbrium efforts itself is affected by the presence of the linkages, because
the single agents are subject not only to their own idiosyncratic shocks but
also to the shocks that hit directly or indirectly connected agents. Hence, the
variance-covariance matrix depends on the network structure of the economy.

Proposition 4. Suppose Assumption 1, Assumption 2, Assumption 3, and
Assumption 4 hold. Then, the variance-covariance matrix Σ(G) of the equi-
librium efforts is the sum of an idiosyncratic component ΣI, a uniform com-
ponent ΣU, and a network component ΣN, that is,

Σ(G) =

(

σ

γmin − γ

)2

[ΣI +ΣU +ΣN] . (10)

4A dynamic model would yield different harmonics depending on the network structure
of the economy and would permit the spectral decomposition of volatility. We leave the
dynamic formulation to future research.
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In particular,
ΣI ≡ MIM = M2,

where M is defined in (5),

ΣU ≡ (Bγmin)
2
[

1̄TM21̄
]

MUM,

and
ΣN ≡ BγminM [UM+MU]M,

where B is the scalar defined in Proposition 2.

Since the presence of a link between two agents implies a correlation in
their equilibrium efforts, the variance-covariance matrix of the equilibrium
efforts of all agents depends on the adjacency matrix. In particular, it de-
pends on the structure of paths of connections of any length between agents.
If any two agents are connected by a path of some degree, their equilibrium
efforts will be correlated. The degree of correlation will depend not only
on how long the path of connection is but also on the general structure of
paths in the whole economy, given that the equilibrium efforts are a result of
agents’ interactions in equilibrium. The first component ΣI of the variance-
covariance matrix measures the volatility of agents that comes directly from
the idiosyncratic volatility σ2. If there were no links, this component would
simply be I and the other components would not exist, as we discuss in
Example 2. The only volatility would be the idiosyncratic volatility and ag-
gregate volatility would decrease with the number of agents according to the
LLN. Given that there are links, the idiosyncratic volatility is distributed
across all agents depending on the existence of paths of connection, that is,
according to M. The second component ΣU of the variance-covariance ma-
trix simply scales up or down the correlation across agents. The higher the
number and the intensity of connections, the higher the scalar

[

1̄TM21̄
]

that
multiplies the N×N matrix of ones, U. Any uniform intensity of the network
is filtered by the matrix M of paths of connections. The third component
ΣN of the variance-covariance matrix takes into account the structure of the
network. The matrix [UM+MU] differs across pairs of agents, since its
(i, j)-th element is

∑

k∈N

mik +
∑

k′∈N

mk′j =
∑

k∈N

mik +
∑

k′∈N

mjk′ =
∑

k∈N

(mik +mjk).

In other words, the correlation between two agents i and j depends on the
centralities of both Agent i and Agent j. If both are central to the overall
network structure, the correlation of their efforts is likely to be high given
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that the likelihood of a path of connection between the two agents is high.
If the two agents are more peripheral, the correlation is lower. Again, any
pattern of correlation measured by ΣN is filtered by the actual structure of
the connections M.

The analysis of the variance-covariance matrix sheds light on the compo-
sition of the aggregate volatility.

Definition 3. The aggregate volatility σ2
Y (G) is the scalar given by

σ2
Y (G) ≡ E





(

1

N

N
∑

i=1

(qi − E [qi])

)2


 ,

where the expectation operator E [·] is defined over the probability distribu-
tion of ε̃i for every i in N .

The aggregate volatility measures the expected square of the average
deviation of the equilibrium efforts from their expected level. This definition
of aggregate volatility corresponds to a norm of the diagonal elements of the
variance-covariance matrix under the assumption of underlying iid shocks.
Consider the variance of the random process ε̄i. Given that ε̃i is identically
distributed for every i in N , the idiosyncratic volatility (variance) is the same
through time (across all agents) and equal to σ2 ≥ 0. The aggregare volatility
σ2
Y (G) of equilibrium efforts will depend on the idiosyncratic volatility σ2

but also on the number N of agents and on whether these agents are linked
through some strategic interaction, that is, on G.

Example 2. Suppose that Assumption 1 holds and that there are no strate-
gic interactions between agents, that is, γij = 0 for every i 6= j. Note that
this condition is incompatible with Assumption 2 and that therefore we can-
not decompose Γ into its three components. Nevertheless, (2) boils down
to

−γq̄ = ε̄.

Then, q∗i = −εi/γ > 0 for every i in N and the variance-covariance matrix
is simply

Σ(G) = (σ/γ)2I,

that is, an N ×N diagonal matrix with (σ/γ)2 on all diagonal entries. The
aggregate volatility instead is

σ2
Y (G) =

(σ/γ)2

N
.
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Besides the usual negative effect of the payoff concavity γ on aggregate
volatility, when the shocks are iid the aggregate volatility decreases as the
number N of agents increases, as predicted by the Law of Large Numbers
(LLN). This is the standard diversification argument, that is, idiosyncratic
shocks do not transmit to the aggregate level because they cancel each other
out as the number of agents grows. Hence, as long as the number of agents is
high enough, the average effort is not affected by the idiosyncratic volatility
and the resulting aggregate volatility is close to zero.

Since the measure of the aggregate volatility corresponds to a norm of
the diagonal elements of the variance-covariance matrix, also the aggregate
volatility can be decomposed into three components, each of them reflecting
a different aspect of the (static) propagation of shocks.

Proposition 5. Suppose Assumption 1, Assumption 2, Assumption 3, and
Assumption 4 hold. Then, the aggregate volatility σY (G) of equilibrium ef-
forts is the product of an idiosyncratic component σI, a uniform component
σU, and a network component σN, that is,

σY (G) = σIσUσG. (11)

In particular,

σI ≡
σ2

N
,

σU ≡ B2 =

(

1

γmin − γ − γminb(1̄)

)2

,

and

σN ≡ 1

N

∑

i∈N

∑

j∈N

∑

l∈N

vilvjlλ̃
2
l .

The idiosyncratic component σI of aggregate volatility represents the
standard diversification argument. The aggregate volatility is a function
of the idiosyncratic volatility σ2 and decreases at rate

√
N as the number N

of agents increases. The second component σU captures the idea that the
aggregate volatility decreases as the number of links increases, other things
equal. By adding any link between a pair of agents, there is at least one
additional path of connection between all agents of the economy, that is, the
network centrality of some agent necessarily increases. Hence, the sum of
all unweighted network centralities b(1̄) increases and therefore the uniform
component of aggregate volatility decreases. The third component σN of
aggregate volatility refers more directly to how the network is structured.
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Recall that the eigendecomposition of M identifies a rotation of the space
spanned by the original adjacency matrix G. We call each dimension of the
new space a latent group, and each latent group l accounts for a certain
portion of the indirect connections across agents. This portion is measured
by the transformed eigenvalue λ̃l defined in Proposition 3, for every l in N .
The contribution of Agent i to latent group l is measured by the entry vil in
the corresponding eigenvector. On the one hand, λ̃l is strictly positive and
it is a convex function of the original eigenvalue λl, for every l in N . On
the other hand, the diagonal elements of G are nil, so the trace of G is zero.
This implies that the sum of all eigenvalues of G is nil as well, that is,

∑

l∈N

λl = tr(Λ) = 0,

where tr(Λ) is the trace of Λ.5 Hence, any increase in the standard devia-
tion of the eigenvalues of G corresponds to a mean-preserving spread of the
eigenvalues.

Proposition 6. Suppose Assumption 1, Assumption 2, Assumption 3, and
Assumption 4 hold. Then, the network component σN of aggregate volatility
increases if the standard deviation of the eigenvalues of G increases, other
things equal.

The aggregate volatility of a networked economy has three components,
each of them capturing a different aspect of the network structure. The
idiosyncratic component σI reflects the standard diversification mechanism
of the Law of Large Numbers, the uniform component σU decreases as the
number of links increases and more in general as the number of paths of con-
nection of any length increases, and the network component σN increases as
the concentration of network increases. The standard deviation of the eigen-
values of G, which according to Proposition 6 drives the level of the network
component of aggregate volatility, represents the dispersion of the magni-
tudes of the latent groups of the adjacency matrix. The more condensed the
network, the more of the overall dispersion in equilibrium efforts can be ac-
counted by just a few latent groups, with each agent contributing differently
to these latent groups. The more evenly distributed into different loosely
connected groups (or even into completely isolated components) the agents,
the less dispersed the eigenvalues and the lower the network component of
aggregate volatility. On the one hand, more links imply more smoothing out
of the idiosyncratic volatility before the equilibrium interaction, as measured

5This is due to the fact that the trace is similarity-invariant, that is, tr(G) =
tr(VΛV−1) = tr(ΛV−1V) = tr(Λ).
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by the uniform component σU of aggregate volatility. On the other hand, if
the links are organized so that agents are grouped together into just a few
latent groups, the possibility of an aggregate fluctuation arising as a conse-
quence of an idiosyncratic shock is higher, since the contagion to a relevant
portion of agents from the same idiosyncratic shock is more likely. Hence,
there are two countervailing effects of the presence of linkages across agents
reflected by the uniform component and the network component. On the one
hand, the more connected the network, the lower the aggregate volatility. On
the other hand, the more concentrated the network, the higher the aggregate
volatility. In Appendix B we provide an intuition for this decomposition.

4 An application: firms and sectors

4.1 The origins of fluctuations: grains and networks

A recent stream of literature tries to provide a microfoundation for the exis-
tence of aggregate shocks as the result of idiosyncratic volatility. We refer to
this stream as the granular hypothesis (GH) literature, as in Gabaix [2011].
In this literature there are at least two types of “grains” from which ag-
gregate fluctuations may originate. First, idiosyncratic shocks to firms have
the potential to trigger aggregate fluctuations. For example, Gabaix [2011]
notices that the empirical size distribution of firms is fat-tailed, and more
specifically follows a power law. Hence, the homogeneity in size necessary
for the standard LLN to apply does not hold in the case of firm-specific
shocks. As a consequence, the variability in sales of the 100 top US firms can
explain as much as 1/3 of aggregate volatility. Other studies that look at
firms to at least partially explain aggregate fluctuations are, among others,
Jovanovic [1987], Durlauf [1993], Bak et al. [1993], and Nirei [2006]. Sec-
ond, idiosyncratic shocks to sectors can contribute to the origin of aggregate
fluctuations as well. The seminal paper of Long and Plosser [1983] started a
series of contributions that use multisectoral RBC models to generate aggre-
gate volatility. Some examples are Horvath [1998], Horvath [2000], Conley
and Dupor [2003], Dupor [1999], Shea [2002], Scheinkman and Woodford
Scheinkman and Woodford [1994], Carvalho and Gabaix [2010], and Ace-
moglu et al. [2011]. The main idea is that if we look at the input-output
tables we can notice some sectors that provide intermediate inputs to almost
all other sectors of the economy. The presence of these hub sectors make
idiosyncratic shocks that would normally be irrelevant propagate to the ag-
gregate level. More recent works like Carvalho [2007], Acemoglu et al. [2010],
and Acemoglu et al. [2011] exploit the same intuition but with the explicit
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use of network theory tools applied to the analysis of the input-output tables,
linking aggregate volatility to the network structure of intersectoral trade.

These explanations of the micro-origins of aggregate fluctuations may
be overlapping. On the one hand, the existence of big firms allows for the
transmission of micro-level shocks to macro-level variables. On the other
hand, aggregate fluctuations can originate from idiosyncratic shocks to sec-
tors that spread through the economy via the input-output structure of pro-
duction. Aggregate fluctuations are therefore either alternatively or jointly
facilitated by idiosyncratic shocks to sectors and firms. In this section we
consider sector- and firm-specific volatilities as two aggregations of the same
fundamental uncertainty, the volatility coming from idiosyncratic shocks to
establishments. The baseline intuition of our model is that big firms are not
sector-specific. In other words, firms are intersectoral networks of sector-
specific establishments. Each establishment produces a sector-specific com-
modity, and it can be part of a firm. We make shocks originate at the estab-
lishment level, so that firm- or sector-wide fluctuations result as aggregations
of multiple establishment-specific shocks. Moreover, sectors per se are linked
through input-output relations. Hence, the network of intersectoral linkages
and the network of proprietary relations overlap and constitute the network
structure of the economy.

4.2 A stylized framework

We present a static economy with a final sector and multiple intermedi-
ate sectors. The final sector aggregates multiple intermediate goods in or-
der to produce a unique final consumption good. On the preference side, a
continuum of households consumes the unique consumption good. On the
production side, the final sector is populated by a continuum of perfectly
competitive and identical final good producers. They all produce the same
final good using different intermediate good varieties. The varieties can be
more or less complementary in the production of the final good. These pro-
duction complementarities across varieties of intermediate goods reflect the
input-output structure of production and constitute the network structure
of intersectoral linkages. Within each intermediate sector, a finite number
of sector-specific establishments compete in quantities for the sector-specific
demand expressed in the final good sector. We suppose that each estab-
lishment can have proprietary realtions with other establishments. If a link
exists, then the two linked establishments are part of the same firm.6 In

6In the real world firms have several establishments that operate in the same sector. We
can think of the establishments here as an agglomeration of all establishments belonging
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the terminology of network theory, the establishments represent the vertices
of a graph where we can note different components, that is, distinct path-
connected subnetworks of establishments. Each component is a firm. The
network structure of proprietary relations overlaps independently with the
network structure of intersectoral linkages.

Each household owns a symmetric share of the profits realized on the
production side. Each final good producer aggregates all intermediate good
varieties into a unique final good. There are S ∈ N intermediate commodities
produced in S intermediate sectors, with s ∈ S = {1, · · · , S}.7 Each sector
s is populated by ns establishments, and each establishment i in sector s
produces an undifferentiated quantity qi of good s competing à la Cournot
with the other establishments within the same sector. The total production
Qs of intermediate good s in S is simply the sum of the production of all
establishments in sector s, that is,

Qs =
∑

i∈Ns

qi, (12)

where Ns is the set of establishments that operate in sector s. The set N of
all establishments of the economy is N ≡

⋃

s∈S
Ns, and the total number N

of establishments in the economy is N ≡∑s∈S
ns. The production function

of the final good producer is linear-quadratic, that is,

Q ≡
∑

s∈S

αsQs −
1

2

∑

s∈S

βQ2
s +

∑

s∈S

∑

s′ 6=s

βss′QsQs′,

where αs > 0, β > 0, and βss′ ∈ [0, 1/(S − 1)] for all s and s′ in S .8 The
value of αs measures the size of sector s, that is, αs is high enough so that
the final good production function is strictly increasing and strictly concave
separately with respect to each intermediate good quantity Qs. The parame-
ter β measures the concavity of the final good production function separately
with respect to each good, and βss′ parametrizes the degree of technological
complementarity between different intermediate goods. A possible interpre-
tation for these technological complementarities is the direct requirement
values we can extract from an input-output table. If βss′ = 0, the goods are
independent, that is, the intermediates from sector s are not necessary for the
production in sector s′. If 0 < βss′ ≤ 1/(S − 1), the goods are complements
at different degrees, that is, for each intermediate unit of sector s we need

to the same firm that operate in the same sector.
7From now on, we use the term commodity and sector interchangeably because we

assume that only sector s produces commodity s.
8We omit the index for the generic final good producer.
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a certain amount of intermediate goods produced in sector s′. The upper
bound on the possible values of βss′ avoids aggregate increasing returns in
the model. For simplicity, we assume that βss′ = βs′s, that is, the relation
of complementarity between two good types is symmetric. This assumption
relates to Assumption 1.9

There is a unique final good, so the problem of the final good producer is

max
{Qs}s∈S

∑

s∈S

αsQs −
1

2

∑

s∈S

βQ2
s +

∑

s∈S

∑

s′ 6=s

βss′QsQs′ −
∑

s∈S

psQs, (13)

taking the price ps of intermediate good s as given. The FOC yields a linear
inverse demand function for each commodity, that is,

ps = αs − βQs +
∑

s′ 6=s

βss′Qs′ . (14)

For a discussion of the parameter values for which we have positive prices
and quantities, see Bloch [1995]. Within each intermediate sector s there are
ns establishments. They compete à la Cournot and share the sector-specific
demand expressed by the final good sector. The maximization problem of
establishment i in intermediate sector s is

max
qi

πs
i ≡ psqi −miqi, (15)

subject to (14), where mi is the marginal cost of producing one unit of
intermediate s. The marginal cost mi of establishment i in sector s is

mi =
δ

2
qi −

∑

j∈N \Ns

δijqj − ξi, (16)

where δ > 0 parameterizes the concavity of each establishment’s profits in
own production. The idiosyncratic component ξi is the realization of an
iid random variable with mean µ and finite variance σ2, as in Assumption
4. The element −

∑

j∈N \Ns
δijqj represents how the marginal cost of an

establishment decreases linearly with the production of the establishments
that are linked to it. If i does not have any proprietary relation with j, then
δij = 0. If instead i owns a share of j or viceversa, then δij > 0. We can
think of δij as proportional to how much of the total shares of j i owns, or

9In reality, the input-output table are asymmetric at any aggregation level, and Ace-
moglu et al. [2011] show that this asymmetry has important implications for aggregate
volatility. We discuss the case of asymmetric strategic relations in Remark 1.
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viceversa. By construction, δij = δji and 0 ≤ δij ≤ 1 for every i and j in N .
In particular, δii = 0.10

There exists a proprietary relations (a link) between i and j if establish-
ment i owns some shares of establishment j, or viceversa. Hence, if i and j
are part of the same firm, then there exists a series of bilateral proprietary
relations that connects i to j. Figure 2 reports an example of firm composed
of different establishments linked to each other through proprietary relations.
Note that according to our definition of proprietary relation, two establish-
ments do not need to share a direct link in order to belong to the same
conglomerate firm. Moreover, we suppose that a firm cannot have more than
one establishment in each sector. This is not the case in the real world where
firms tend to have several establishments within the same sector, especially
if the aggregation level is high enough. We can think of this assumption as
implying that the establishments in our model are alerady the aggregation of
all establishments belonging to the same firm that operate in a given sector.
This assumption implies that the maximum degree of any establishment i
is S − 1, that is, the number of sectors other than its own. Since a firm
can have at most one establishment in each sector, two establishments that
belong to the same firm cannot compete with one another within the same
sector. Hence, if i and j operate in sector s, then δij = 0. Moreover, δij = 0
also if there exists a path of proprietary relations between i and j such that
an establishment in the middle of the path belongs to either the sector of
firm i or the sector of firm j.

Our set-up and specifically (15) and (16) imply a positive correlation
in production levels among establishments linked by proprietary relations.
One way to think about this is that establishments are in general credit
constrained. Hence, whenever an establishment within the same firm is hit
by a positive efficiency shock, the cash flow generated by this establishment
propagates through the corporate structure, relaxing the constraints of all
neighboring establishments. This generates a strategic complementarity in
the actions of different agents of the same type that we analyzed in the
general framework.

According to (12), (14), (15), and (16), the payoff function of establish-
ment i in sector s is

πs
i =



αs − β
∑

j∈Ns

qj +
∑

s′ 6=s

βss′

∑

j∈N
s′

qj



 qi −





δ

2
qi −

∑

j∈F\Fs

δijqj − ξi



 qi,

10The case of cross-ownerships is very limited by specific accounting regulations in most
developed countries. In general, the permitted amounts of cross-ownerships are negligible.
Moreover, self-links are ruled out by the fact that in most real-world regulatory settings a
juridical entity cannot own itself, so δii = 0 for every i in N .
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which implies the FOC

(δ + β)qi + β
∑

j∈Ns

qj −
∑

s′ 6=s

βss′





∑

j∈N
s′

qj



−
∑

j∈N

j /∈Ns

δijqj = αs + ξi.

Hence, the equilibrium allocation satisfies the system of equations in matrix
form

[

(δ + β)I−
(

B̂+∆
)]

q̄∗ = ᾱ + ξ̄, (17)

where q̄∗ is a vector of length N whose i-th element is the equilibrium pro-
duction q∗i of establishment i. We order the establishments by sector, so the
first ns = n1 elements of q̄∗ refer to the equilibrium production of the estab-
lishments in sector s = 1, the following ns = n2 elements of q̄∗ refer to estab-
lishments in sector s = 2, and so on, for all s in S . Consequently, B̂ ≡ [Bss′]
is an N × N block matrix whose (s, s′)-th block Bss′ is a ns × ns′ matrix.
Every diagonal block Bss has all entries equal to −β, while every (s, s′)-th
block Bss′ for s 6= s′ has all entries equal to βss′. The matrix ∆ ≡ [δij] is the
N ×N matrix of proprietary relations, so the (i, j)-th element of ∆ is δij for
every i and j in N . The vector ᾱ ≡ [αs] is the block vector of length N with
S blocks, where each block s is of length ns and has all entries equal to αs, for
every s in S . The vector ξ̄ ≡ [ξi] is a vector of length N whose i-th element
is ξi. The FOCs in (17) reflect the same equilibrium interaction as the FOCs

in (2). In fact, if we substitute
[

(δ + β)I−
(

B̂+∆
)]

for −Γ and ᾱ+ ξ̄ for

ε̄, we obtain (2) from (17). We can decompose
[

(δ + β)I−
(

B̂+∆
)]

as in

(3) such that

[

(δ + β)I− (θ + β)G
]

q̄∗ = ᾱ + ξ̄ − β

(

∑

i∈N

q∗i

)

1̄,

where θ is the maximal entry of B̂+∆ and the generic element gij of G is

gij ≡
θij + β

θ + β
∈ [0, 1] ,

the element θij being the (i, j)-th element of B̂+∆. Thus, we can characterize
the equilibrium allocation as in Proposition 1 and given that Assumption 1,
Assumption 2, and Assumption 4 hold by construction we can apply all the
propositions of the previous sections, provided that Assumption 3 holds.11

11For Assumption 3 to hold we simply need β or δ large enough.
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4.3 The numerical results

We use our stylized framework to conduct a numerical exercise with US
data. First, we use BEA data for sectoral sizes ᾱ and intersectoral linkages
B̂, and US Census Bureau data for the number ns of establishments for
each intermediate sector s. Second, we use a random graph algorithm to
create a network structure Λ of proprietary relations that is consistent with
our stylized framework and that reproduces some aggregate features of the
diversification of US firms across sectors. Third, we check that the joint
adoption of actual and simulated data yields aggregate statistics that are
consistent with some key aggregate features of the US economy like the size
distribution of establishments. Fourth, we conduct a counterfactual exercise
to give a numerical intuition of the relation between the network structure
of an economy and its aggregate volatility.

First, we derive data on the US economy. We take into account the
year 2002. We choose to use the highest aggregation level for the BEA
data and the US Census Bureau, which accounts for 14 sectors once we
exclude government and the residual category. Thus, S = 14 and S is
the ordered set of IO codes from 1 to 14. Table 1 reports the sectors to
which each code corresponds. For each sector s, we use its gross output as
a proxy for αs and the number of employer establishments as a proxy for
ns. Moreover, we derive the intersectoral linkage βss′ for each pair of sectors
(s, s′) from a transformation of BEA’s direct requirements table. In general,
the direct requirements table is asymmetric and this feature has important
consequences for the aggregate volatility.12 The numerical results below hold
also in case we simply use the (s, s′)-th entry in the input-output table as
a proxy for βss′, and the theoretical predictions would not change relevantly
either as discussed in Remark 1. Nevertheless, in order to be consistent with
the simplified framework implied by Assumption 1, we apply the following
transformation on the input-output table. First, we call β̃ss′ the (s, s′)-th
entry in the input-output table. Then, we derive our symmetric proxy for
βss′ as

βss′ = βs′s ≡
1

S − 1

β̃ss′ + β̃s′s

max(s,s′)∈S 2{β̃ss′ + β̃s′s}
,

for every s 6= s′ in S . In other words, we add the two corresponding en-
tries in the input-output table and we normalize the sum in order to obtain
values of βss′ in the interval [0, 1/(S − 1)]. The intuition for this transfor-
mation is that we capture both the upstream and the downstream diffusion
of shocks. Shocks to the production of a certain intermediate can affect the

12See for example Acemoglu et al. [2011].
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production of other intermediates either downstream, that is, from a sector
that supplies the intermediate to other sectors that demand the intermedi-
ate, or upstream, that is, from a sector that demands the intermediate to
other sectors that supply the intermediate. By summing both entries of the
input-output table, we have a partial proxy for this transmission mechanism.
We must though bear in mind that this transformation dismisses part the
information contained in the input-output table and it is simple meant to
simplify the exposition. Moreover, we ignore the diagonal elements of the
input-output table. Table 2 reports the values of our βss′’s. If we considered
this table as the adjancency matrix of the network of intersectoral linkages,
the network structure would look like in Figure 3 and Figure 4.

Second, we create the proprietary relations, that is, the matrix ∆. There
exist databases that have detailed information on the proprietary relations
and the sectoral specialization of each establishment. One example is the
WorldBase database compiled by Dun & Bradstreet for 2005 and used by
Alfaro and Chen [2009], among others. A thorough empirical exercise would
require the use of such a database. Given the illustrative purpose of our
numerical exercise, our alternative is to construct a random graph algorithm
that generates a network of proprietary relations consistent with the assump-
tions of the theoretical framework and mimicking key aggregate characteris-
tics of the intersectoral diversification of US firms. The key assumption we
adopt to construct the network of proprietary relations is that firms cannot
have more than one establishment in each sector. This assumption implies
not only that there cannot exist a path of proprietary relations between
two establishments that operate in the same sector, but also that any path
between two establishments i and j cannot pass through an intermediate
establishment k that operates in the sector of either i or j. As a conse-
quence, there exists an upper bound on the degree, that is, on the number
of proprietary relations, that an establishment can have. This upper bound
is the number of sectors where the establishment does not operate, that is,
S− 1 = 13. Moreover, an establishment cannot have links with two different
establishments that operate in the same sector, because that would mean
that they belong to the same firm. These limitations lead to the network
structure reported in Figure 5, where each node of the graph is an establish-
ment and each component, that is, each path-connected group of nodes, is
a firm. The components that arise from this algorithm have different sizes.
Components with several nodes are firms that have establishments in several
sectors, that is, firms that are diversified across sectors. Components with
only one or few nodes are instead firms specialized in one or few businesses.
Hence, the size distribution of components, that is, the frequency at which
components of different sizes occur, mirrors the distribution of firms’ inter-
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sectoral diversification. Figure 6 reports this distribution as it arises from
the algorithm we use.13 The reason for the emergence of such a distribution
is the interaction between the upper bound on firms’ diversification and the
fixed number of establishments per sector. The shape of the distribution
that we obtain through our algorithm resembles the actual diversification
distribution for the Fortune 500 firms for the years 1980 and 1990 reported
in Figure 7 taken from Davis et al. [1994].

Third, we merge the actual data on intersectoral linkages with the gen-
erated data on proprietary relations in order to obtain the (normalized) net-
work structure of the economy. We provide a graphical representation of
the resulting adjacency matrix G in Figure 8. Note that the intersectoral
linkages are diffuse across establishments but not particularly intense, while
the proprietary relations are relatively sparse with respect to the number of
establishments in the economy but quite intense individually. Since we have
the actual data on the αs’s, the ns’s, and the βss′’s, and the generated data
on the δij ’s, we can derive values for δ and β that respect Assumption 2
and Assumption 3. This permits us to compute the Bonacich centrality of
each establishment as in Definition 1, which we represent for the case of equal
weights in Figure 9. Note that the most path-central establishments in the US
economy appear to be the establishments that operate in the “manufactur-
ing” sector. This is due to two reasons. On the one hand, the manufacturing
sector provides considerable amounts of intermediate goods to all the other
sectors of the economy, so that it is central in the network of intersectoral
linkages. On the other hand, there are only a few big establishments in the
manufacturing sector, which means low competition and high likelihood to
be part of all firms that are diversified through many sectors. This intepreta-
tion is confirmed by the fact that two sectors similar in size and intersectoral
linkages to the “manufacturing” sector, like the “professional and business
services” sector and the “finance, insurance, real estate, rental, and leasing”
sector, are not populated by establishments with centrality measures compa-
rable with the manufacturing sector. This is due to the fact that these two
sectors are populated by high numbers of establishments. In order to com-
pute the vector q̄∗ of production at equilibrium that solves (17), we only need
a realization of ξ̄ which we draw from an iid uniform distribution between 0
and 1 which respects Assumption 4. Thus, we can compute the equilibrium
production q∗i of each establishment i given the network structure, which is
associable with the amount of sales that each establishment realizes. Sup-

13A future exercise that targeted the average firm diversification may use the theoretical
results of Newman et al. [2001] on the relation between the degree distribution and the
component size distribution.
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pose we consider the sales as a proxy for the size of an establishment. Then,
if we analyze the size distribution of these establishments, that is, the fre-
quency at which establishments of different sizes occur, we obtain Figure 10.
Our exercise generates a size distribution of establishments, and of firms if
we were to aggregate production at the firms level, that is similar in shape
to the power law distribution that we observe in the data, as described by
Luttmer [2007] among many others. This is not the target of the algorithm
used to generate the network structure of proprietary relations, and should
be looked at as an encouraging collateral result.

Fourth, we conduct a counterfactual exercise in order to understand the
relation between the network structure of the economy and its aggregate
volatility. The results of this exercise are reported in Table 3. In particular,
we compute the level of aggregate volatility σY (G) as defined in Definition 3
for different cases. In Case 1, we consider a benchmark economy with neither
intersectoral linkages nor proprietary relations. This economy is similar to
the one described in Example 2. We compute what would be the aggregate
volatility in this case and normalize its value to 1. In Case 2, we introduce
the intersectoral linkages based on the US data that we derived above, and
we compute the corresponding aggregate volatility. As predicted in Propo-
sition 5, the presence of linkages decreases the second component σU due to
the smoothing of idiosyncratic shocks across establishments within the same
paths of connection that occurs before the equilibrium interaction. The drop
in volatility implied by the presence of intersectoral linkages is around 10%.
This is due to the decrease in the second component σU of aggregate volatility.
Nevertheless, the third component σG increases because the concentration of
the network increases with the introduction of the intersectoral linkages. We
pass from a situation with no linkages to a situation where we can distinguish
between more central and less central sectors, as Figure 3 and Figure 4 illus-
trate. In Case 3, we introduce the proprietary relations generated through
the algorithm described above, that is, we compute the aggregate volatility
of our fully networked economy. The volatility decreases again but the drop
is not as relevant as in Case 2. The reason for such a difference in magnitude
is mainly due to the sparseness of the network of proprietary relations with
respect to the overall number of potential linkages across establishments.
Moreover, the presence of firms that are diversified across sectors adds paths
of connections across establishments in different sectors, partially increasing
the concentration of the network around the three central sectors in the net-
work of intersectoral linkages. This is captured by the third component σN

which increases as predicted by Proposition 6.
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5 Conclusion

We propose a stylized framework for the analysis of the aggregate volatil-
ity in a networked economy. Aggregate fluctuations can be the result of
idiosyncratic shocks that transmit to the aggregate level through the strate-
gic complementarities across agents and the market interaction. We show
that aggregate volatility depends on the network structure of the economy.
On the one hand, the more connected the network the lower the aggregate
volatility, because the existence of a linkage partially diversifies the idiosyn-
cratic risk. On the other hand, the more concentrated the network the higher
the volatility, because the high centrality of some agents within the network
structure makes the economy susceptible to the propagation of micro shocks
through the economy.

This paper helps explaining how the observed correlations across agents in
microeconomic data can be partially accounted for by knowing the network
structure of the economy. Part of the autocorrelation across agents may
be simply due to strategic complementarities across agents that translate
perfectly independent shocks into correlated equilibrium outcomes. This
paper suggests analytical tools to identify how much of the total correlation
between the actions of two agents is due to their relative positions within the
network structure of the economy.

Our contribution focuses on the analysis of aggregate volatility taking as
given the network structure of the economy. There are at least two ways in
which we can proceed further in this line of research. First, we can consider
non-interior solutions. Our stylized set-up only admits interior solutions.
Nevertheless, an arguably relevant part of the aggregate fluctuations consists
of corner solutions that propagate through the economy. For example, a
negative shock to an establishment might induce its parent company to shut
down the establishment once and for all rather than conveying resources from
other establishments in order to buffer the impact of the negative shock.
Second, we can consider equilibrium networks. In our set-up the existence of
a link is part of the technology of the model. If our bilateral relations were the
result of an equilibrium interaction, we could understand how the network
structure of the economy responds to different shocks and consequently have
a better understanding of propagation mechanisms and aggregate volatility.
In this way, we could understand the reverse causality between aggregate
volatility and network structure. For example, we could investigate whether
a drop in aggregate volatility like the Great Moderation triggered a shift in
the network structure like the change of US top firms’ diversification pattern
presented in Figure 7.

The formation of the network structure is a promising line of future re-
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search. We could set up a two-stage game where the model presented so far
would represent the second stage, being the first stage devoted to network
formation. There would be a trade-off between the cost of forming a link
and the benefits of contributing to a latent group. Agents would act strate-
gically and decide with whom to share a link depending on the potential
equilibrium outcomes in the second stage. Another possibility is a dynamic
network formation model as in König et al. [2009], where the timing of the
two stages is inverted. First, the agents realize their equilibrium production
given previous period’s network. Second, given the equilibrium result they
choose which other agents to share a link with. With a payoff structure
similar to ours, different network structures arise and it is possible to iden-
tify stationary network structures that follow the properties of nested split
graphs.14 These networks are also called interlink stars in Goyal and Joshi
[2003] and Goyal et al. [2006]. Their main property is the core-periphery
structure, which partially reminds us of the ownership structure of firms,
with a central parent establishment that specializes the firm into a core busi-
ness and peripheral subsidiaries that diversify the production to smooth out
sector-specific fluctuations.

The model has also several policy implications. For instance, future work
may use our framework to instruct discretionary policy interventions. If
idiosyncratic shocks can transmit to the aggregate level and can generate
aggregate fluctuations, then discretionary policy interventions may play a
role in stabilizing output. If the public authority bails out a troubled es-
tablishment, it stabilizes the performance of all the establishments directly
or indirectly connected to it by paths of bilateral ties. Each intervention in-
volves a public cost, as the bailout of AIG exemplified. Hence, a key question
is which economic agent we should stabilize first in order to obtain the most
substantial drop in aggregate volatility. Our model suggests that the estab-
lishment to be stabilized is the most central establishment of the economy.
Moreover, the mapping between centrality and volatility suggests a practical
way of identifying the key establishments to stabilize. The highest eigenvalue
of the network matrix identifies the largest latent group. The highest value
in the eigenvector that correspond to the highest eigenvalue tells us which es-
tablishment contributes the most to aggregate volatility.15 This method has
important analogies with the static Principal Component Analysis (PCA).
Future research could explore further the link between centrality measures
and PCA in networks.

14On nested split graphs see, for example, [Mahadev and Peled, 1995, Chapter 5].
15Related works on the importance of the eigendecomposition of the adjacency matrix in

identifying key players in the network is, e.g., Bramoullé et al. [2010], Golub and Jackson
[2010], and Banerjee et al. [2012]
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Appendix A: Proofs

Proof of Proposition 1. The proof is a variation of Theorem 1 and Remark
1 in Ballester et al. [2006].

Proof of Proposition 2. The proof is straightforward once we consider Propo-
sition 1, Definition 1, and (7).

Proof of Proposition 3. The eigendecomposition in (8) implies that the ma-
trix M can be expressed as

M =
+∞
∑

k=0

akGk =
+∞
∑

k=0

ak
(

VΛkV−1
)

= V

(

+∞
∑

k=0

akΛk

)

V−1.

Moreover, sinceΛ is a diagonal matrix, the l-th diagonal element of
∑+∞

k=0 a
kΛk

is
+∞
∑

k=0

(aλl)
k ,

where a is defined in (4), for every l in N . If Assumption 3 holds, then

aλl ≤ aλmax < 1,

so the l-th element of
∑+∞

k=0 a
kΛk converges to

+∞
∑

k=0

(aλl)
k =

1

1− aλl
> 0,

for every l in N .

Proof of Proposition 4. Let us call

b(x̄) ≡ 1̄T b̄(x̄),

for every x̄ in RN . Given (6) and Proposition 3, we can express the equilib-
rium efforts as

q̄∗ =
1

γmin − γ
VΛ̃V−1 [ε̄+Bγminb(ε̄)1̄] ,

where

B ≡ 1

γmin − γ − γmin1̄TVΛ̃V−11̄
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and
b(ε̄) =

∑

i∈N

bi(ε̄) = 1̄TVΛ̃V−1ε̄

are scalars. Then, the expectation of q̄∗ is

E [q̄∗] =
1

γmin − γ
VΛ̃V−1 [µ1̄ +Bγminb(µ1̄)1̄] ,

where
b(µ1̄) = 1̄TVΛ̃V−1µ1̄

The vector of deviations from the expected values is

q̄∗ −E [q̄∗] =
1

γmin − γ
VΛ̃V−1 [(ε̄− µ1̄) +Bγminb(ε̄− µ1̄)1̄] , (18)

where
b(ε̄− µ1̄) = 1̄TVΛ̃V−1 (ε̄− µ1̄) .

Hence, the variance-covariance matrix is

Σ(G) = E
[

(q̄∗ − E [q̄∗])(q̄∗ − E [q̄∗])T
]

=

(

1

γmin − γ

)2

VΛ̃V−1E

[

[(ε̄− µ1̄) +Bγminb(ε̄− µ1̄)1̄]

[(ε̄− µ1̄) +Bγminb(ε̄− µ1̄)1̄]
T

]

VΛ̃V−1

=

(

1

γmin − γ

)2

VΛ̃V−1E

[

[(ε̄− µ1̄) +Bγminb(ε̄− µ1̄)1̄]

[

(ε̄− µ1̄)
T
+ [Bγminb(ε̄− µ1̄)1̄]

T
]

]

VΛ̃V−1

=

(

1

γmin − γ

)2

VΛ̃V−1E

[

(ε̄− µ1̄) (ε̄− µ1̄)
T
+

+ (Bγminb(ε̄ − µ1̄))
2
1̄1̄T+

+Bγminb(ε̄ − µ1̄)1̄ (ε̄− µ1̄)
T
+Bγminb(ε̄− µ1̄) (ε̄− µ1̄) 1̄T

]

VΛ̃V−1

=

(

1

γmin − γ

)2

VΛ̃V−1

[

E
[

(ε̄− µ1̄) (ε̄− µ1̄)
T
]

+

+ (Bγmin)
2E
[

1̄TVΛ̃V−1 (ε̄− µ1̄) (ε̄− µ1̄)
T
VΛ̃V−11̄

]

U+

+BγminE
[

1̄TVΛ̃V−1 (ε̄− µ1̄)
(

1̄ (ε̄− µ1̄)
T
+ (ε̄− µ1̄) 1̄T

)]

]

VΛ̃V−1
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=

(

1

γmin − γ

)2

VΛ̃V−1

[

E
[

(ε̄− µ1̄) (ε̄− µ1̄)
T
]

+

+ (Bγmin)
2E
[

1̄TVΛ̃V−1 (ε̄− µ1̄) (ε̄− µ1̄)
T
VΛ̃V−11̄

]

U+

+BγminE
[

1̄1̄TVΛ̃V−1 (ε̄− µ1̄) (ε̄− µ1̄)
T
+

+ (ε̄− µ1̄) (ε̄− µ1̄)
T
VΛ̃V−11̄1̄T

]

]

VΛ̃V−1.

=

(

1

γmin − γ

)2

VΛ̃V−1

[

E
[

(ε̄− µ1̄) (ε̄− µ1̄)
T
]

+

+ (Bγmin)
2
[

1̄TVΛ̃V−1E
[

(ε̄− µ1̄) (ε̄− µ1̄)
T
]

VΛ̃V−11̄
]

U+

+Bγmin

[

UVΛ̃V−1E
[

(ε̄− µ1̄) (ε̄− µ1̄)
T
]

+

+ E
[

(ε̄− µ1̄) (ε̄− µ1̄)
T
]

VΛ̃V−1U
]

]

VΛ̃V−1.

By Assumption 4, E
[

(ε̄− µ1̄) (ε̄− µ1̄)
T
]

= σ2I, so

Σ(G) = E
[

(q̄∗ − E [q̄∗])(q̄∗ − E [q̄∗])T
]

=

(

1

γmin − γ

)2

VΛ̃V−1

[

σ2I+ (Bγmin)
2
[

1̄TVΛ̃V−1σ2IVΛ̃V−11̄
]

U+

+Bγmin

[

UVΛ̃V−1σ2I+ σ2IVΛ̃V−1U
]

]

VΛ̃V−1

=

(

1

γmin − γ

)2

σ2VΛ̃V−1

[

I+ (Bγmin)
2
[

1̄TVΛ̃2V−11̄
]

U+

+Bγmin

[

UVΛ̃V−1 +VΛ̃V−1U
]

]

VΛ̃V−1

=

(

1

γmin − γ

)2

σ2M

[

I+ (Bγmin)
2
[

1̄TM21̄
]

U+Bγmin [UM+MU]

]

M

Proof of Proposition 5. According to (9) and (18), Agent i’s deviation from
her expected equilibrium effort is

q̄∗i −E [q̄∗i ] =
1

γmin − γ
[bi (ε̄− µ1̄) +Bγminb(ε̄ − µ1̄)bi (1̄)] .
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Hence,

1

N

∑

i∈N

(q̄∗i −E [q̄∗i ]) =
1

N(γmin − γ)

[

∑

i∈N

bi (ε̄− µ1̄) +Bγminb(ε̄− µ1̄)
∑

i∈N

bi (1̄)

]

,

that is,

1

N

∑

i∈N

(q̄∗i −E [q̄∗i ]) =
1

N(γmin − γ)
[b (ε̄− µ1̄) +Bγminb(ε̄− µ1̄)b (1̄)] ,

where b(x̄) ≡
∑

i∈N
bi(x̄), for every vector x̄ in RN . Thus,

1

N

∑

i∈N

(q̄∗i − E [q̄∗i ]) =
1 +Bγminb(1̄)

N(γmin − γ)
b (ε̄− µ1̄) ,

which by the definition of B is

1

N

∑

i∈N

(q̄∗i − E [q̄∗i ]) =
1

N
Bb (ε̄− µ1̄) .

Hence, the aggregate volatility of equilibrium efforts is

σ2
Y (G) ≡ E





(

1

N

N
∑

i=1

(qi −E [qi])

)2




= E

[

(

1

N
Bb (ε̄− µ1̄)

)2
]

= E

[

1

N2
(B)2 b (ε̄− µ1̄)

2

]

=
1

N2
(B)2E

[

1̄TVΛ̃V−1 (ε̄− µ1̄) (ε̄− µ1̄)
T
VΛ̃V−11̄

]

=
1

N2
(B)2

[

1̄TVΛ̃V−1σ2IVΛ̃V−11̄
]

=
σ2

N
(B)2

1

N

[

1̄TVΛ̃2V−11̄
]

=
σ2

N
(B)2

1

N

∑

i∈N

∑

j∈N

∑

l∈N

vilλ̃
2
l vjl

=
σ2

N

(

1

γmin − γ − γminb(1̄)

)2
1

N

∑

i∈N

∑

j∈N

∑

l∈N

vilλ̃
2
l vjl.
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Proof of Proposition 6. Given the definition of σN,

σN =
1

N

∑

i∈N

∑

j∈N

∑

l∈N

vilλ̃
2
l vjl,

and the definition of λ̃l,

λ̃l ≡
1

1− aλl
,

for every l in N , then the network component of aggregate volatility is a
sum of the values of a convex function of the eigenvalues of G, that is,

σN =
1

N

∑

i∈N

∑

j∈N

∑

l∈N

vilvjl

(

1

1− aλl

)

,

where a is defined in (4). Consider an alternative adjacency matrix Ĝ that
satisfies Assumption 1, Assumption 2, and Assumption 3. Suppose, on the
one hand, that the eigenvector matrices of Ĝ and G are the same, that is,
V̂ = V. On the other hand, suppose that the matrix Λ̂ of eigenvalues is such
that

1

N

∑

l∈N

λ̂2
l >

1

N

∑

l∈N

λ2
l ,

where λ̂l is the l-th diagonal element of Λ̂. In other words, suppose that
the standard deviation of the eigenvalues of Ĝ is higher than the standard
deviation of the eigenvalues of G. Given that

1

N

∑

l∈N

λl =
1

N

∑

l∈N

λ̂l = 0,

this is equivalent of saying that the alternative adjacency matrix Ĝ has eigen-
values that are a mean-preserving spread of the eigenvalues of G. Given that
λ̃l is an increasing and convex function of λl for every l in N , then

1

N

∑

i∈N

∑

j∈N

∑

l∈N

vilvjl

(

1

1− aλ̂l

)2

>
1

N

∑

i∈N

∑

j∈N

∑

l∈N

vilvjl

(

1

1− aλl

)2

,

that is,
σ
Ĝ
> σN,

where σ
Ĝ

is the network component of the aggregate volatility when the

adjacency matrix is Ĝ.
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Appendix B: Decomposing aggregate volatility

This exercise illustrates how the aggregate volatility does not depend on the
number of connections in the economy nor on their strength but rather on
the disposition of the links, that is, on the topology of the network.

Suppose that the economy is composed by 10 agents with a benchmark
(complex) network structure. Suppose that γij can be either γmax > 0 or
γmin < 0. Then, gij = 1 if γij = γmax or gij = 0 if γij = γmin. The graph
representation of the benchmark G is portrayed on the left side of Figure 11.
Moreover, we set γ = k(γmin−(γmax−γmin)λmax) < (γmin−(γmax−γmin)λmax)
with k > 1, so as to satisfy Assumption 1, Assumption 2, and Assumption 3.

The right side of Figure 11 reports the implied unweighted Bonacich cen-
tralities of each agent, that is, how much each agent is central to the network
structure of the economy. We set γmax = 2, γmin = −1, and k = 1.5 simply in
order to have small magnitudes. We can distinguish some peripheral agents
such as Agents {1, 2, 7, 8, 9, 10}, and some central agents such as Agents
{3, 4, 5, 6}. This distinction is based on the level of their Bonacich central-
ities, that is, on their relative position within the network structure of the
economy. Moreover, we assume that the idiosyncratic volatility σ is equal
to N = 10, so that the first component σI of aggregate volatility as defined
in Proposition 5 is equal to 1. This network structure implies an aggregate
volatility equal to σY = 0.00474, which is the product of the second compo-
nent σU = 0.00076 and the third component σN = 6.24975. We take these
values as the benchmark and we normalize them to 1. First, we add a link
between Agents 1 and 2. Second, we add a link between Agents 4 and 6.
Third, we remove the link between Agents 3 and 5 and add a link between
Agents 1 and 2. Fourth, we remove the link between Agents 2 and 3 and
add a link between Agents 4 and 6. We illustrate these exercises in Figure
12 and Table 4.

First, we add a link between two peripheral agents, Agent 1 and Agent
2, that is, g12 = g21 = 1. This means that the efforts between the two agents
become strategic complements. On the one hand, this increases the general
connectiveness of the economy, thus decreasing the second component of
aggregate volatility which drops to 88.73% of its initial value. On the other
hand, given that Agent 1 and Agent 2 pass from being relatively peripheral
to being quite central, the concentration of the network increases since now
only Agents {7, 8, 9, 10} are peripheral. Hence, the third component jumps
to 118.64% of the initial value. The result is that the aggregate volatility
increases to 105.27% of its initial value.

Second, we add a link between two central agents, Agent 4 and Agent 6,
that is, g46 = g64 = 1. The connectiveness increases and brings down the
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second component to 72.57% of the initial value. Nevertheless, given that
Agents 4 and 6 are central, a link between them increases the concentration
of the network substantially, that is, the gap in centrality between the most
central and the least central agents widens. This results in a considerable
increase (21.26% of its initial value) in the aggregate volatility.

Third, we remove a link between central agents, Agent 3 and Agent 5, and
add a link between peripheral agents, Agent 1 and Agent 2. As expected from
Proposition 6, this redistribution of centrality decreases the third component
by almost 25% and leads the aggregate volatility to 87.30% of its initial value.

Fourth, we remove a link between peripheral agents, Agent 2 and Agent
3, and add a link between peripheral agents, Agent 4 and Agent 6. The
effect is to decrease the (latent) concentration of the network and therefore
to increase aggregate volatility to 117.86% of its initial value.
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Appendix C: Figures and Tables

Figure 1: An example of a network structure with three agents and two
links. Given that the adjacency matrix is symmetric, the links are undirected.
Moreover, the diagonal elements of the adjacency metrix are nil, so there are
no self-links. The software used for this figure is Borgatti et al. [2002].

Figure 2: The network structure of the Benetton group in Vitali et al. [2011].
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Figure 3: The network structure of intersectoral linkages. The most central
sectors are Manufacturing (5), Finance (10), and Professional and business
services (11). The software used for this figure is UCINET by Borgatti et al.
[2002].

Figure 4: The dichotomized network structure of intersectoral linkages. The
numbers correspond to the IO codes listed in Table 1. The software used for
this figure is UCINET by Borgatti et al. [2002].
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Figure 5: An example of the network structure of proprietary relations. Each
group of connected establishments is a firm. Firms can be more or less
sectorally diversified depending on whether they are composed of several or
a few establishments. There are firms that operate in 9 different sectors and
others that operate in just one. The software used for this figure is UCINET
by Borgatti et al. [2002].
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Figure 6: An example of diversification distribution of firms generated with
our algorithm.

Figure 7: Frequency distribution of diversification: Fortune 500. Source:
Davis, Diekman, and Tinsley [Davis et al., 1994, Figure 2].
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Figure 8: A representation of the network matrix G of the economy. Data
sources: BEA’s direct requirements tables for intersectoral linkages, number
of establishments per sector from the US Census Bureau’s County Business
Patterns. Year: 2002. On the horizontal and vertical axis there are 558
establishments ordered by sector of activity. These represent the 5524784
establishments distributed across the 14 sectors of the US economy, expressed
in tens of thousands and rounded up within each sector. Elements in the
matrix represent whether there is a connection or not. The different shading
represent the different degree of complementarity, from low complementarity
(darker) to high complementarity (lighter). The blocks represent the 14
different sectors. A dark block means that between block s’s sector and
block s′’s sector there is low complementarity, a light block that there is high
complementarity. The white dots correspond to the existence of a proprietary
relation between column i’s establishment and row j’s establishment. These
dots are almost white because the intensity of the bilateral relation between
two establishments within the same firm is much higher with respect to any
other pair of establishments that do not share a link. The most important
feature of this representation is that it highlights the sparseness of the matrix
of proprietary relations Γ with respect to the matrix of intersectoral linkages
B̂.
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Figure 9: The unweighted Bonacich centrality measures of US establishments
implied by the network structure described in Figure 8. On the horizontal
axis there are the 558 representative establishments for the US economy
grouped by sector of activity. The different floors represent the average
centrality measure of establishments that operate in the same sector, while
the spikes within the same sector are due to which firm each establishment
belongs. According to this graph, the most central establishments of the US
economy are the ones that operate in Manufacturing. This is due on the one
hand to the centrality of the Manufacturing sector per se and on the other
hand on the small number of establishments operating in the sector.
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Figure 10: The size distribution of establishments implied by the network
structure represented in Figure 8. The horizontal axis is the production qi
of each establishment i, while the vertical axis measures at which frequency
(smoothed at its kernel) each production level occurs.
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Graph 1: The benchmark
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Graph 1: Unweighted Bonacich centralities

Figure 11: Graph 1 describes the benchmark network structure used in Ap-
pendix B. On the left side we can distinguish the position of each agent
within the network structure of the economy. On the right side we report
the implied (unweighted) Bonacich centrality measures of each agent.
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Graph 2: Add a peripheral link (1,2)
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Graph 3: Add a central link (3,6)
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Graph 4: Switch a central (3,5) for a peripheral link (1,2)

1

2

3

4

5

6

7

8

9

10

Graph 5: Switch a peripheral (2,3) for a central link (4,6)

Figure 12: Graph 2 represents the network structure we obtain if we add the
link between Agent 1 and Agent 2 to the benchmark network presented in
Graph 1. Given that both Agent 1 and Agent 2 are peripheral with respect
to the network structure of the economy, we can consider the link (1,2) a
peripheral link. Graph 3 represents the addition of the central link (4,6) to
the benchmark, that is, a link between two already central agents. Graph
4 reports the network structure that we obtain if we severe the central link
(3,5) and we add the peripheral link (1,2) to the benchmark. Graph 5 reports
the network structure we obtain if we severe instead the peripheral link (2,3)
and we add the central link (4,6).
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IO code Sector Gross Output Employer establishments Companies

1 Agriculture, forestry, fishing, and hunting 240.8 29250 249290
2 Mining 188.7 19324 102029
3 Utilities 320.4 6223 18896
4 Construction 970.6 729842 2780323
5 Manufacturing 3848.3 310821 601181
6 Wholesale trade 894.0 347319 711083
7 Retail trade 1030.9 745872 2584689
8 Transportation and warehousing 579.2 167865 976826
9 Information 959.6 76443 309117
10 Finance, insurance, real estate, rental, and leasing 3438.4 507281 3047522
11 Professional and business services 1780.6 1061706 4877023
12 Educational services, health care, and social assistance 1295.7 629550 2430839
13 Arts, entertainment, recreation, accommodation, and food services 704.9 538265 1645857
14 Other services, except government 464.0 392656 2677613

Total 16716.1 5524784 22974655

Table 1: Gross output (in billions of dollars), number of employer establishments, and number of nonemployer
companies by industry. Year: 2002. Sources: BEA (accounts), US Census Bureau (County Business Patterns and
Survey of Business Owners). We report the number of nonemployer companies only for illustrative purposes. In
fact, these companies constitute three quarters of all establishments in the economy but account for only around
3% of total sales and receipts data. Hence, we consider only employer establishments in the analysis. We do not
consider the residual category “Industries not classified” in the list of industries because it is not present in the list
of industries used by the BEA.

50



IO code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 0 560 722 567 6250 1156 137 1008 336 3279 1716 223 444 360 219 612 096
2 560 0 3032 1033 3891 519 180 759 379 2953 3018 166 358 302 263 546 147
3 722 3032 0 706 2427 430 317 1399 454 1486 2114 328 721 402 375 403 116
4 567 1033 706 0 6187 867 840 788 518 1734 2760 143 313 476 396 276 082
5 6250 3891 2427 6187 0 2529 1243 4127 2447 2230 4787 2492 3481 3239 2832 5245 173
6 1156 519 430 867 2529 0 309 1084 575 1403 2557 409 685 617 559 779 170
7 137 180 317 840 1243 309 0 662 352 2179 2078 081 228 317 163 059 060
8 1008 759 1399 788 4127 1084 662 0 790 2297 2995 335 658 725 850 642 485
9 336 379 454 518 2447 575 352 790 0 1843 3658 451 851 706 736 552 248
10 3279 2953 1486 1734 2230 1403 2179 2297 1843 0 3257 2288 2122 3076 1170 1378 126
11 1716 3018 2114 2760 4787 2557 2078 2995 3658 3257 0 2413 3118 2530 2804 3028 116
12 223 166 328 143 2492 409 081 335 451 2288 2413 0 276 274 237 077 071
13 444 358 721 313 3481 685 228 658 851 2122 3118 276 0 536 449 281 074
14 360 302 402 476 3239 617 317 725 706 3076 2530 274 536 0 374 305 070
15 219 263 375 396 2832 559 163 850 736 1170 2804 237 449 374 0 094 173
16 612 546 403 276 5245 779 059 642 552 1378 3028 077 281 305 094 0 166
17 096 147 116 082 173 170 060 485 248 126 116 071 074 070 173 166 0
Mean 1040 1065 908 1040 3152 862 542 1153 876 1931 2526 604 859 842 688 850 140
Std 1557 1273 878 1486 1815 724 677 1046 931 961 1155 866 1033 1032 854 1341 106

Table 2: Complementarity matrix. All the entries are in 10−5. Year: 2002. Source: BEA commodity-by-commodity
direct requirements tables. We do not consider in the simulation exercises the following categories: “Government”
(15), “Scrap, used and secondhand goods” (16), and “Other inputs” (17). The reason is that they are not reported
in the list of industries of US Census Bureau’s County Business Patterns.
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σY σU σG

Case 1: no networks 1 1 1
Case 2: only intersectoral linkages 0.7765 0.7743 1.0029
Case 3: intersectoral and proprietary relations 0.7701 0.7678 1.0031

Table 3: Numerical application with US data. Sources: BEA and US Census
Bureau. Year: 2002. Case 1 reports the components of aggregate volatil-
ity for the US economy in case there were no intersectoral linkages and no
proprietary relations. Case 2 reports the same components with only the in-
tersectoral linkages. Case 3 reports the components when both intersectoral
linkages and proprietary relations are into place.

σY σU σG

1) Benchmark 1 1 1
2) Add peripheral link (1,2) 1.0527 0.8873 1.1864
3) Add central link (4,6) 1.2126 0.7257 1.6709
4) Remove central link (3,5), add link (1,2) 0.8730 1.1593 0.7530
5) Remove peripheral link (2,3), add link (4,6) 1.1786 0.8251 1.4285

Table 4: Numerical exercise of Appendix B. The Benchmark refers to the
network structure illustrated in Graph 1 of Figure 11. 2) refers to Graph 2
in Figure 12, 3) to Graph 3 in Figure 12, 4) to Graph 4 in Figure 12, and 5)
to Graph 5 in Figure 12.
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