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ABSTRACT 

This study deals with the statistical properties of a randomization test applied 

to an ABAB design in cases where the desirable random assignment of the 

points of change in phase is not possible. In order to obtain information about 

each possible data division we carried out a conditional Monte Carlo 

simulation with 100,000 samples for each systematically chosen triplet. 

Robustness and power are studied under several experimental conditions: 

different autocorrelation levels and different effect sizes, as well as different 

phase lengths determined by the points of change. Type I error rates were 

distorted by the presence of autocorrelation for the majority of data divisions. 

Satisfactory Type II error rates were obtained only for large treatment effects. 

The relationship between the lengths of the four phases appeared to be an 

important factor for the robustness and the power of the randomization test.  
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How to analyze single-subject data is a question yet to be answered. The 

different perspectives on the autocorrelation controversy have led to the 

proposal of a variety of techniques. It has been suggested that autocorrelation 

is a common feature in N = 1 data requiring the use of ARIMA to eliminate 

serial dependence before testing the treatment effect for significance (Jones, 

Weinrott, & Vaught, 1978). In contrast, Huitema and McKean (1998) have 

emphasized that the assumption of independence refers to residuals (or errors) 

and not to observations. If the autocorrelation between errors is nonsignificant, 

the authors recommend using widely known techniques like ANOVA 

(Huitema, 1985) and ordinary least squares when data series are short 

(Huitema, McKean, & McKnight, 1999). Despite that, the bias of 

autocorrelation estimators (Huitema & McKean, 1991) and the insufficient 

power of related significance tests in short series (Matyas & Greenwood, 

1991) may lead to uncertainty regarding the size of the autocorrelation 

parameter and question the use of analyses based on the general linear model 

(Ferron, 2002).  

Complementing these theoretical discussions, there is some empirical proof 

that in presence or even in absence of autocorrelation the performance of 

several analytical techniques can be deficient. For instance, the simplest and 

most frequently applied (as reported by Parker & Brossart, 2003) visual 

analysis does not seem to be as exempt from Type I errors (Matyas & 

Greenwood, 1990) as it was postulated (Parsonson & Baer, 1986). The time 

series analysis that was especially designed for dealing with autocorrelation 



requires lots of observations, while biased autocorrelation estimators (Huitema 

& McKean, 1991) or lack of control of Type I error rates (Greenwood & 

Matyas, 1990) are other drawbacks it may present. Type I error rates have also 

been found to be problematic for ANOVA (Toothaker, Banz, Noble, Camp, & 

Davis, 1983), the C statistic (Blumberg, 1984), the binomial test and the split-

middle method (Crosbie, 1987).  

As each of the previously mentioned techniques, randomization tests have 

their own advantages (Edgington & Onghena, 2007) and limitations (Kazdin, 

1980). The appropriateness of their application to single-case data has on the 

one hand been seriously questioned (Cox & Hinkley, 1974), but on the other 

hand, randomization tests have been claimed to be useful for a great diversity 

of designs (e.g., Levin, Marascuilo, & Hubert, 1978; Levin & Wampold, 1999; 

Marascuilo & Busk, 1988; Onghena & Edgington, 1994; Wampold & Furlong, 

1981). While some authors (e.g., Crosbie, 1987; Kratochwill & Levin, 1980, 

Wampold & Worsham, 1986) state on theoretical grounds that serial 

dependence is not a problem when randomization tests are used, empirical and 

nominal Type I error rates need to be compared in absence of treatment effect 

in order to accumulate evidence on test’s performance (Hayes, 1996).  

Most of the previous investigations focusing on the application of 

randomization tests to serially dependent single-case data (e.g., Ferron, Foster-

Johnson, & Kromrey, 2003; Ferron & Onghena, 1996; Ferron & Ware, 1995; 

Lall & Levin, 2004) concur that Type II rather than Type I error rates are the 

main problem of the technique. For instance, for AB designs with 30 



observations, power was less than .5 for an effect size of 1.4, while for designs 

with 32 observations following an ABAB structure power did not reach .6 for 

the same magnitude of effect (Ferron & Ware, 1995). Nevertheless, there is 

also evidence that Type I error rates are not always controlled when 

randomization tests are used (Gorman & Allison, 1996; Sierra, Solanas, & 

Quera, 2005). 

In view of the surveys reporting that random assignment is not frequent in 

applied settings (Ferron & Jones, 2006), we considered it necessary to explore 

the performance of the randomization test under the influence of serial 

dependence for each possible data division, defined by the points of change in 

phase. This kind of information can be useful for applied researchers who are 

sometimes forced to choose the data division systematically – it shows them 

when to reject the null hypothesis maintaining the correspondence between 

nominal and empirical Type I error rates. The importance of data divisions can 

be expressed in terms of the length of each of the phases. Evidence on the 

variable performance of randomization tests when the only changing factor is 

the number of measurements in each phase has already been obtained for AB 

designs, showing that false alarm rates increase if either of the phases is a lot 

shorter than the other one (Manolov & Solanas, in press). Here, we want to 

study the importance of phase length for ABAB designs, extending the work 

of Ferron et al. (2003). Therefore, each data division studied preserves the 

phase order (i.e., ABAB) but varies the phase lengths (i.e., has different values 

of nA1, nB1, nA2, and nB2).  



The randomization test studied here was proposed by Onghena (1992), and 

consists of randomly selecting the three points of change in phase (i.e., 

introduction, withdrawal, and re-introduction of the treatment). In the present 

paper, we are not advocating for a new randomization test, but we are rather 

studying and using a previous proposal in a different manner (i.e., systematic 

selection of the points of change in phase). Each particular data division is 

determined by a triplet of points of change and, consequently, each different 

data division will be called a “triplet” throughout this article. Each triplet is 

defined by the length of the four phases and will be identified by “b1.a2.b2”, 

where b1 is the first data point for the first treatment phase, a2 is the first data 

point for the second baseline phase, and b2 is the first data point for the second 

treatment phase; the first data point for the first baseline phase (a1) is 

obligatorily 1. Ferron et al. (2003) studied this type of randomization test 

applied to an ABAB design with n = 30, without distinguishing one specific 

data division (or triplet) from another. The authors found that when the 

procedure of selecting a triplet matches the method of permuting the data Type 

I error rates are controlled (.0468 for φ = −.3, .0484 for φ = .0, .0448 for φ = 

.3, and .0512 for φ = .6) and, hence, autocorrelation does not affect the ease of 

obtaining significant results when no effect is present in the data. However, 

when the triplet is systematically chosen, a practice we do not encourage as it 

contrasts with the inherent features of randomization tests, the statistical 

properties of the technique may vary across data divisions.  



Therefore, the aim of the current study is to extend the contributions of 

published scientific literature and provide triplet-specific information by 

studying the statistical properties (i.e., robustness against the violation of the 

independence assumption and sensitivity) of the randomization test for the 

cases of independent and nonindependent data. The data-division-specific 

information implies that phase length is studied as a factor possibly related to 

the differential performance of the randomization test in terms of Type I and 

Type II errors.  

 

Method 

 

Selection of designs  

An ABAB design with n = 30 is studied. The rationale behind this design 

length lies in the continuation of the work of Ferron et al. (2003) so that results 

can be compared. Following Edgington (1980), a minimum of five 

measurements per phase is established in order to rule out the possibility of 

having too few measurements for some of the phases. Applying the formula 

presented in Onghena (1992) with the current specifications, we obtain a 

totality of 286 possible triplets.  

 

Data generation 



Data were generated according to the following formula, employed 

previously in related investigations (e.g., Ferron & Onghena, 1996; Ferron & 

Ware, 1995; Matyas & Greenwood, 1990): 

yt = φ1* yt–1 + εt + d, where: 

yt: data point corresponding to measurement time t; 

yt–1: data point corresponding to measurement time t-1;  

φ1: value of the lag-one autocorrelation coefficient; 

εt: error term following N (0, 1); 

d: effect size.  

This expression was incorporated in FORTRAN 90 programs and the values 

of the error term were generated with the assistance of NAG fl90 

mathematical-statistical libraries (specifically, the external subroutines 

nag_rand_seed_set and nag_rand_normal). The values chosen for the level of 

serial dependency (–.3, .0, .3, and .6) are commonly used in simulations 

(Ferron & Onghena, 1996; Ferron & Ware, 1995; Greenwood & Matyas, 

1990) and are assumed to represent the range of autocorrelation present in 

behavioral data. Following Ferron and Sentovich (2002), effect size was 

defined as the difference between phase means divided by the standard 

deviation of the error term. For the study of the Type I error rates d was set to 

zero, while for the study of power the following values were used: .20, .50, 

.80, 1.10, 1.40, 1.70, and 2.00, as they are frequent in similar studies (e.g., 

Ferron & Onghena, 1996; Ferron & Sentovich, 2002). The studied effect was 



an immediate and permanent change in level following the practice of 

previous research (e.g., Ferron & Onghena, 1996; Ferron & Sentovich, 2002).  

Data generation involved simulating more numbers than the ones needed in 

order to discard 20 numbers between each pair of successive data series. This 

manipulation permitted reducing artificial effects (i.e., to diminish the effect of 

anomalous initial values) (Greenwood & Matyas, 1990) and ruling out the 

possibility of correlations between the last points of one series and the first 

points of the following one (Huitema, McKean, & McKnight, 1999).  

 

Simulation 

The simulation for the study of robustness consisted of 100,000 iterations 

(samples) for each combination of a triplet and an autocorrelation coefficient. 

The specific steps were: 1) successive selection of a triplet out of a list of all 

possible triplets commencing with data divisions with short first phase(s) (e.g., 

“6.11.16”) and ending with data divisions with long first phase(s) (e.g., 

“16.21.26”); 2) systematic selection of the degree of serial dependence; 3) 

systematic selection of the effect size; 4) generation of the data; 5) calculation 

of each of the two test statistics for the actual data, obtaining the outcomes; 6) 

permutation of the data for all possible triplets and calculation of the test 

statistics for each data division; 7) construction of the randomization 

distribution sorting all values; and 8) ranking the outcome, according to its 

position in the randomization distribution. 



Type II error rates were estimated for only a fraction of the 286 possible 

triplets – the ones for which the test did not seem to be affected by any of the 

degrees of serial dependence studied.  

The use of 100,000 iterations seems to ensure sufficient accuracy for the 

estimation of the robustness and the power of a randomization test (Robey & 

Barcikowski, 1992).  

 

Analysis 

In an applied setting a particular educational or clinical study would start 

with a problem – excess or lack of a behavior – and a null hypothesis. 

Therefore, the researcher knows if the intervention is supposed to reduce an 

undesirable behavior or to enhance a positive behavior and would use a 

directional null hypothesis. The next steps to take if he/she is willing to apply 

a randomization test are described in detail by Onghena (1992). In the current 

study, the one-tailed null hypothesis was expressed as H0: μA ≥ μB due to the 

fact that d was added to the measurements pertaining to phase B, simulating a 

treatment that increments a desirable behavior. The selected level of 

significance is 5% and two test statistics are used. The first one is expressed 

as B AX X
and represents the difference between phase means (hereinafter, 

MD), previously used in various studies (Ferron & Ware, 1995; Ferron & 

Onghena, 1996). The second one is pooled variance t statistic (hereinafter, 

TS), calculated according to
  2 2/ / /B A B AX X s n s n 

, which was included 



as there is evidence that data variability is relevant when differences in mean 

level are to be evaluated (Sierra, Quera, & Solanas, 2000). As there are two 

test statistics computed on each data set, there are two different randomization 

distributions for each data division. 

The first part of the assessment of the randomization test focuses on zero 

effect size (i.e., estimating Type I error rates). The outcome is compared to the 

randomization distribution and is ranked. The proportion of each of the 286 

ranks is calculated. As alpha was set to .05 we sought to find, for each 

combination of data division and test statistic, the number of extreme ranks 

whose cumulative proportion is ≤ .05. These ranks would represent the critical 

ranks for null hypothesis rejection. With a directional null hypothesis only one 

of the extremes of the randomization distribution would be used. For instance, 

when H0: μA ≥ μB, the null hypothesis would be rejected if the outcome is 

assigned some of the largest ranks, which correspond to greater positive 

difference between phase B and phase A. However, in order to reduce the 

effects of random fluctuations in the generated data (i.e., to base the estimation 

on a greater number of iterations), the proportions of critical ranks at both 

extremes were used. That is to say, we averaged the proportions of ranks 286 

and 1 firstly, of ranks 285 and 2, secondly, of ranks 284 and 3 thirdly, and so 

on. After that, we summed those average proportions until the cumulative 

proportion became as close as possible to .05 without overcoming this value. 

This procedure showed that for the same triplet there can be a different 



number of critical ranks according to the test statistic used, if we want the 

probability of committing a Type I error to be close to 5%.   

In order to judge whether the effect of serial dependence in data is slight or 

important, we compared the cumulative proportions of the critical ranks when 

φ = .0 (i.e., the cumulative proportion for independent data, hereinafter, CPID) 

with the cumulative proportions of the same number of ranks when φ ≠ .0.  

This comparison was carried out for each combination of data division and test 

statistic. With the objective to measure the similarity between those 

proportions, we used Bradley’s (1978, cited in Robey & Barcikowski, 1992) 

stringent criterion. Out of the variety of existing criteria (e.g., the liberal and 

the intermediate), we chose the stringent one (which provides narrower 

intervals) as it rules out the possibility of too liberal or too conservative Type I 

error rates. This criterion can be viewed as a tool for marking the boundaries 

between what can be considered “similar enough” (i.e., robust) and what can 

be thought of as “too distant” (i.e., not robust). If the cumulative proportions 

for φ = −.3, .3, and .6 all fell within the interval CPID ± 10% * CPID, then the 

randomization test was qualified as robust for the particular combination of 

triplet and test statistic and the effect of autocorrelation was judged to be 

insignificant. Only those triplets for which the test was robust against the 

violation of the independence / exchangeability assumption were used in the 

power analysis (i.e., when d ≠ 0).  

 As robustness was evaluated 286 * 2 times (for each combination of triplet 

and test statistic), it was possible to identify triplets for which the 



randomization test is robust only for one of the test statistics. For instance, 

Table 1 shows how for triplet “8.13.26” with TS high positive autocorrelation 

makes the randomization test too conservative. On the other hand, Table 2 

exemplifies a case in which autocorrelation has no critical influence on the 

Type I error rates, but in order to ensure an empirical rate of 5% the number of 

critical ranks is different. Among the “non-robust triplets” there were some for 

which the deviation from the robustness interval was small (Table 3), while 

for others the Type I error rate distortion due to autocorrelation was rather 

large (Table 4).  

 

INSERT TABLES 1, 2, 3, & 4 ABOUT HERE 

 

The power analysis was carried out in the following manner and only for the 

“robust triplets”: 1) identify the number of critical ranks for each combination 

of data division and test statistic; 2) use the randomization test to assign a rank 

to the outcome for each combination of degree of serial dependence and effect 

size; 3) count the number of times that the outcome has been assigned one of 

the corresponding critical ranks; 4) divide the value obtained in the previous 

step by 100,000 (the number of iterations) in order to estimate power.        

 

Results 

In this section, only part of the results will be presented in tabular format, 

although more detailed information is available from the authors upon request.  



Table 5, containing Type I error rates averaged across all possible (286) 

triplets, shows that autocorrelation does not (in general) affect the probability 

of detecting a non-existent treatment effect. These results concur with 

previous findings on the correct performance of randomization tests applied in 

cases where random assignment is possible (Ferron et al., 2003).  

 

INSERT TABLE 5 ABOUT HERE 

 

Nonetheless, the data-division-specific Type I error estimates obtained 

showed that the randomization test is robust, under Bradley’s stringent 

criterion, to the violation of the independence assumption for 52 triplets when 

using MD and for 51 triplets when using TS. The results do not suggest that 

one test statistic is better than the other in terms of controlling the Type I error 

rates. However, using one test statistic or another has two implications: a) the 

number of critical ranks needed to obtain a Type I error rate of .05 for φ = .0 

may be different; and b) the randomization test for a specific triplet may be 

relatively unaffected by autocorrelation for one test statistic but not for the 

other. Therefore, the performance of the randomization test is not independent 

from the test statistic used.  

Each of the triplets for which the randomization test was found to be 

insensitive to serial dependence has its number of critical ranks that guarantee 

a Type I error rate approximately equal to .05. For instance, if an applied 

researcher using MD as a test statistic has chosen triplet “6.13.21”, he/she 



should reject the null hypothesis if the outcome is assigned one of the 15 most 

extreme ranks. In case TS is the test statistic, the 14 most extreme ranks ought 

to be used for null-hypothesis rejection for the same triplet. Then the 

probability of committing a Type I error would be approximately .05, if −.3 ≤ 

φ ≤ .6. Using another decision rule does not guarantee the matching between 

nominal and empirical false alarm rates.  

With Table 6 we explore phase length, defined by the nA1, nB1, nA2, and nB2 

values, in relation to Type I error rates for all 286 triplets. An inspection of 

those rates allows identifying the phase length pattern of the “robust” triplets, 

on one hand, and the pattern of the data divisions most affected by serial 

dependence, on the other. We arbitrarily labeled phases with length 5 to 8 as 

“short” (S) and phases with more than 8 observations as “long” (L). It appears 

that positive autocorrelation leads to a more conservative test when the triplet 

has approximately equally long phases (i.e., the SSSS pattern), when it has 

short baseline and long treatment phases (i.e., the SLSL pattern) and vice 

versa (i.e., the LSLS pattern). When the first and the last phases are shorter 

(SLLS pattern), positive autocorrelation is associated with a more liberal test. 

The performance of the randomization test was found to be more satisfactory 

for triplets with one long and three short phases and for data divisions with 

short second and third phases (LSSL).  

 

INSERT TABLE 6 ABOUT HERE 

 



An additional analysis of the phase length pattern of the “robust” triplets can 

be found in Table 7. The most distinguished pattern is LSSL, which seems the 

case for which serial dependence produces less distortion. Concurring with the 

previous table, the most affected data divisions were the ones with four 

equally long phases (SSSS) and the ones with short phases in either of the 

conditions (SLSL and LSLS).  

 

INSERT TABLE 7 ABOUT HERE 

 

The power study was performed for the combinations of triplet and test 

statistic for which the test was judged to be robust, as the lack of control of 

Type I error rates presented by the remaining combinations renders 

meaningless the estimation of Type II error rates for them. The mean power 

across the 52 MD-triplets and the 51 TS-triplets can be found in Table 8. In 

terms of sensitivity, as was the case for robustness, none of the test statistics 

outperformed the other. It is evident that Type II errors can be excessively 

probable unless the treatment effect is rather large (i.e., d = 1.7). Smaller 

effects are likely to be missed by the technique, as power estimates for the 

effect sizes labeled by Cohen (1992) as “small” (d = .2), “medium” (d = .5), 

and “large” (d = .8) are lower than .40. 

 

INSERT TABLE 8 ABOUT HERE 

 



However, power varies across triplets. Table 9 presents the power estimates 

for the “robust” triplets when d = 2.0, grouped according to the phase length 

pattern. Higher power was found for triplets with one long phase (SSLS, 

SLSS, and LSSS) and with two initial long phases (LLSS). Complementarily, 

lower power estimates were associated with data divisions in which A2 and/or 

B2 are the phases containing more data points (SSSL, SSLL). An evident 

general tendency is that high positive autocorrelation is related to lower 

sensitivity.   

   

INSERT TABLE 9 ABOUT HERE 

 

Discussion 

 

The triplet-averaged results presented in Table 5 show that for the correct 

application of the randomization test (i.e., selecting randomly the data 

division) the empirical Type I error rate is approximately equal to alpha, 

concurring with the result reported by Ferron et al. (2003). However, 

whenever the randomization test is applied systematically, it is necessary to 

distinguish one triplet from another and to obtain information about the 

influence of serial dependence for each data division. The present simulation 

research shows that the estimated empirical Type I error rates for a nominal 

value equal to .05 clearly vary across the different data divisions. Phase length 

appears to be an important factor in terms of robustness and power. The 



randomization test in its systematic application performs better for data 

divisions in which the only long phase is one of the first three and for data 

divisions with two long phases – the first and the last. From a clinical 

perspective an LSSL pattern may be suitable, as it would allow sufficient time 

for assessing the existing situation and establishing a stable baseline. It would 

also have the advantage of a long treatment phase at the end of the 

professional-client relationship.     

The most important consequence for single-case analysts is that, once a 

specific triplet has been systematically selected, the randomization distribution 

can be different from that of other triplets. Therefore, for the same risk that the 

researcher is willing to assume (i.e., for the same nominal alpha) the number 

of critical ranks is different. That is to say, different rank values may be 

associated with the same nominal Type I error rate. Rejecting the null 

hypothesis when the outcome is assigned one of the 14 most extreme ranks (as 

the 286 * .05 = 14.3 calculation suggests) would lead to Type I errors in 5% of 

the cases only when all ranks are equally probable. However, for some of the 

triplets it is easier to obtain extreme ranks and a rejection rule based on 14 

ranks would make Type I errors more frequent. For other triplets it is more 

difficult to obtain extreme ranks and, hence, the probability of committing 

Type I errors would be smaller than .05 but this would also lead to a decrease 

in power. Therefore, in order to control Type I error rates and not to lose 

power, the ranks which lead to null hypothesis rejection ought to be the 

adequate ones for the specific data division systematically chosen. If applied 



researchers cannot randomly choose the triplet, their systematic selection can 

be limited to the triplets for which the randomization test was found to be less 

affected by autocorrelation. The results presented here give more information 

to applied researchers and permit improving the planning of single-case 

studies. They can choose a “robust” triplet that matches best their specific case 

out of the list presented in Appendix 1. The rule for rejecting the null 

hypothesis of no treatment effect would be determined by the number k of 

critical ranks associated with the triplet chosen. If the test statistic is assigned 

one of the k most extreme ranks, then the applied researcher would have 

evidence of the effectiveness of the intervention. The R codes presented in 

Appendices 2 and 3 (for MD and TS, respectively) perform all necessary 

calculations leading to the statistical decision and only require that the applied 

researcher enters the data obtained and the three points of change in phase 

actually used.      

As regards Type II error rates, the power estimates obtained in the present 

study are similar to the ones obtained by Ferron and Ware (1995) and it was 

possible to identify the same tendency of less sensitivity for greater degrees of 

autocorrelation. Comparing our ABAB-results with the ones obtained for other 

types of designs containing 30 observation points, we found similar power 

estimates as in multiple-baseline designs (Ferron & Sentovich, 2002) and 

lower sensitivity than in six-phase designs (Ferron & Onghena, 1996).   

In relation to the test statistic that can be used in the randomization test, it 

has to be adverted that the distorting effect of autocorrelation is not 



independent from the test statistic used. Out of the two test statistics studied it 

cannot be claimed that one is more recommended than the other. The evidence 

obtained on MD and TS shows that when choosing the triplet and the decision 

making rule, the test statistic employed has to be taken into consideration.     

Finally, we have to address the question of the adequacy of the triplet 

procedure studied as an analytical technique for single-case designs. It should 

be highlighted that randomization tests are designed to be applied in 

conditions of random assignment and the validity of their “systematic” use is 

questionable. Moreover, the usefulness of the randomization test studied is 

limited by the number of measurements required, which does not seem to 

correspond to the average series’ length reported by Huitema (1985). On the 

other hand, for the median negative and positive autocorrelations found by 

Parker (2006), −.20 and .42 respectively, the procedure studied controls false 

alarm rates for some of the triplets and detects only powerful treatments, 

whose effects go beyond statistical significance and have potentially greater 

probability to be clinically meaningful.    

The results of the present investigation should be considered with prudence, 

as it has centered only on one type of treatment effect (immediate and 

permanent change in level) and on one specific series length. Additionally, the 

information provided here may not be exactly accurate for randomization tests 

using test statistics other than MD and TS. The Type I and Type II error 

estimates presented here are specifically relevant for the occasions in which 

applied researchers are forced to select the triplet systematically and further 



generalization is not advised. Finally, a last limitation stems from the fact that 

a random sampling model was used to generate the simulated series. Under the 

null hypothesis of a pure random assignment model, there are no other scores 

than the observed scores, and it can be shown that the randomization test is, by 

definition, perfectly valid in that case (Edgington & Onghena, 2007). 

Future research may focus on assessing the statistical properties of 

randomization tests applied to designs with fewer phases (i.e., ABA and BAB) 

as they permit using less observation points and are, therefore, more feasible. 

The studies on those types of designs can be based on the methods previously 

applied and also on the one followed in the current study, in order to obtain 

evidence on the performance of the analytical techniques in settings where 

random assignment is possible, and also in cases where it is not. Additionally, 

more attention should be paid to phase lengths in order to explain why certain 

patterns enhance the performance of randomization tests, while others distort 

it.    
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