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A Reinforcement Learning (RL) method was used to train a virtual character to move participants to a specified 
location. The virtual environment depicted an alleyway displayed through a wide field-of-view head-tracked 
stereo head-mounted display. Based on proxemics theory we predicted that when the character approached 
within personal or intimate distance to the participants, they would be inclined to move backwards out of the 
way. We carried out a between-groups experiment with 30 female participants, with 10 assigned arbitrarily to 
each of the following three groups: In the Intimate condition the character could approach within 0.38m and in 
the Social condition no nearer than 1.2m. In the Random condition the actions of the virtual character were 
chosen randomly from amongst the same set as in the RL method, and the virtual character could approach 
within 0.38m. The experiment continued in each case until the participant either reached the target or 7 minutes 
had elapsed. The distributions of the times taken to reach the target showed significant differences between the 
three groups, with 9 out of 10 in the Intimate condition reaching the target significantly faster than the 6 out of 
10 who reached the target in the Social condition. Only 1 out of 10 in the Random condition reached the target. 
The experiment is an example of applied presence theory: we rely on the many findings that people tend to 
respond realistically in immersive virtual environments, and use this to get people to achieve a task of which 
they had been unaware. This method opens up the door for many such applications where the virtual 
environment adapts to the responses of the human participants with the aim of achieving particular goals. 

 
Categories and Subject Descriptors: H5.1 [Information, Interfaces and Presentation]: – Multimedia Information 
Systems Artificial, Augmented and Virtual Realities. I.3.7 [Computer Graphics]: Three-Dimensional Graphics 
and Realism—Virtual reality 
General Terms: Experimentation, Human Factors 
Additional Key Words and Phrases: human-computer interaction, proxemics, virtual characters, avatars. 
________________________________________________________________________ 
 
 
1. INTRODUCTION  

 

There has been significant research over the past two decades indicating that people tend 

to respond realistically to situations and events portrayed within immersive virtual 

environments (IVE), see [Sanchez-Vives and Slater 2005] for a review. Much of this has 

been under the umbrella of ‘presence research’ which studies the extent to which 

participants experience a sense of being in the place depicted by the IVE displays [Held 

& Durlach 1992; Sheridan 1992; Barfield & Weghorst 1993; Slater & Wilbur 1997; 

Draper et al. 1998]. One particular example of such realistic response is ‘proxemics’. 

Results that show that people tend to behave in IVEs according to the predictions of 

proxemics theory with respect to social encounters between people in reality - that is, 

they tend to maintain socially appropriate distances between themselves and virtual 

characters they encounter in the IVE, e.g., [Bailenson et al. 2003].  In this paper we 
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exploit these earlier results to show that a machine learning (ML) agent represented by a 

virtual character (or ‘avatar’) in an IVE can learn to manipulate the behavior of people so 

that they achieve a task that they had not previously been instructed to carry out. In 

particular we show that proxemics may be exploited by the ML agent to control the 

avatar in such a way that it learns to drive participants to a certain pre-specified position 

in the virtual space, even though the participants were unaware that reaching this point in 

space was their task.   

 

In this paper by ‘agent’ we mean the underlying ML process that learns to achieve its 

goal using real-time data based on the actions of the human participant. The particular 

ML method that we have used is Reinforcement Learning (RL), but we do not make any 

special claims that this is the best or ideal method for the problem, it is only illustrative of 

the general paradigm that we are proposing - that based on an assumed realistic response 

by people to situations and events in an IVE an agent can learn to manipulate their 

behavior. Finally, by ‘avatar’ we mean a virtual humanoid character that represents the 

state of the agent by its position in the virtual space relative to the participant’s, and also 

the actions determined by the agent, represented by its walking and gestural behavior.  

 
There have been numerous papers investigating the concept of presence, using 

questionnaires and qualitative methods, e.g. [Lessiter et al. 2001; Witmer et al. 2005; 

Witmer and Singer 1998; Garau et al. 2008; Schubert et al. 2001; Usoh et al. 2000], and 

behavioral studies including physiological and brain-activation responses, e.g. [Pan et al. 

2008; Razzaque et al. 2002; Zimmons and Panter 2003; Meehan et al. 2003; Hoffman et 

al. 2003; Meehan et al. 2002; Hoffman et al. 2004; Rey et al. 2008]. These have studied 

whether people tend to respond to events and situations in virtual environments 

realistically. It has been repeatedly shown that this ‘response-as-if-real’ (RAIR) does 

occur in various ways during exposures to IVEs.  
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In the research presented in this paper we have used an inverse strategy in comparison 

with previous work. Instead of carrying out experiments that manipulate factors in order 

to examine people’s responses, here we assumed that RAIR would occur, and 

consequently whether an agent could exploit this to learn the conditions under which the 

participant can be driven to realize a particular task. In this case we assumed that 

proxemics behavior would be activated, and that this could be the basis for an agent to 

learn how to get participants to move to a particular pre-specified location, by exploiting 

the fact that they would be likely to move away when approached too close by an avatar 

representing the agent. This is similar to applications that implicitly rely on the 

assumption that RAIR occurs – especially, for example, in psychotherapy, where it is 

required that patients do experience sufficient anxiety when confronting the feared 

situation in a virtual environment, e.g. [Wallach et al. 2009; Krijn et al. 2004; Baas et al. 

2004; Harris et al. 2002; Rothbaum and Hodges 1999; Rizzo et al. 2005; Krijn et al. 

2007; Rothbaum et al. 2000; Regenbrecht et al. 1998; Hodges et al. 1995] including the 

use of IVEs in the study of paranoia, e.g. [Freeman et al. 2008]. However, here we 

systematically exploit a particular RAIR - proxemics - in order to achieve a very specific 

target behavior.  

 

Hall [1973] introduced the term proxemics which is concerned with implicit social rules 

of interpersonal distance that people maintain, each conveying a different social meaning.  

Hall proposed four such regions of interpersonal distance: public (≥3.7m, <7.6), social 

(≥1.2m, <3.7), personal (≥0.46m, <1.2), and intimate (<0.46m) (Figure 1).  A person 

might feel embarrassed or surprised when these rules are not adhered to and may try to 

back away if, for example, someone approaches them within the range of intimate 

distance, the inner most region in Figure 1, when this is not appropriate given the 

relationship between them. It has been shown that such proxemics rules tend to occur in 

virtual environments [Bailenson et al. 2003; Bailenson et al. 2001; Guye-Vuilleme et al. 

1999; Friedman et al. 2007; Wilcox et al. 2006] in relationships between people and 

virtual human characters, and recently it has been shown that proxemics violations 

generate physiological responses in people with respect to skin conductance as predicted 

by the theory [Llobera et al. 2010].  



 
Figure 1 PROXEMICS zones according to the theory of Hall [1973]. 

 

2. HYPOTHESES AND EXPERIMENT OVERVIEW 

 

The experiment reported in this paper places a participant in a virtual environment 

depicting an alleyway, seen through a wide field-of-view, lightweight, head-tracked and 

stereo head-mounted display. There a male avatar beckons to the participant to approach 

towards him, or moves itself towards or away from the participant. Our expectation is 

that people would tend to obey rules of proxemics and react by moving backwards when 

the avatar gets too close. 

 

This expectation is based not only on previous experiment results discussed above, but 

also it follows from our theoretical framework which has deconstructed presence into two 

orthogonal concepts – place illusion (PI) and plausibility (Psi) [Slater et al. 2010]. In the 

experiment reported here the participant perceives the world through moving her body in 



a natural way (e.g., head turns result in appropriate visual update) and even navigating 

using a form of body-centered interaction. This employment of realistic sensorimotor 

contingencies for perception typically results in PI, the strong feeling or qualia of being 

in the place depicted by IVE. Moreover in the IVE there are events that clearly relate 

directly and personally to the participant (the avatar calls out to her and waves, or moves 

closer but stops in front) – one aspect that contributes to Psi, the illusion that the events 

happening in the IVE are real. When PI and Psi both occur the prediction is that people 

would be more likely to exhibit RAIR. 

 

Our aim in this experiment here is not, however, to investigate presence or proxemics, 

but to use these as mechanism for making participants achieve a certain goal within the 

IVE. The focus therefore is on whether the system can learn from the participant 

responses and use these to achieve the goal. 

 

30 people were recruited to an experiment designed with the purpose of testing this idea. 

Two conditions that used RL based on interpersonal distances were examined. One was 

where the avatar could approach the human up to 0.38m, within the intimate region, and 

another one where the avatar could only approach the human up to 1.2m, within the 

social region (Figure 1).  The third condition was a control to test the performance of the 

RL method by comparing it to a random choice of the agent’s actions, but where the 

avatar also could approach the participant up to a distance of 0.38m.  

 

Our first hypothesis is that RL will perform better than the random condition in which 

significantly less people (if any) would reach the target, and which anyway would take a 

far longer time than those in the RL conditions. The second hypothesis was that in both 

the intimate and the social conditions the participant might be driven to the target, but 

based on proxemics theory this would be more efficiently achieved in terms of time taken 

by those in the intimate compared to the social distance conditions. 

 

 

 

 

 

 

 



3. REINFORCEMENT LEARNING (RL) 

 

RL is a class of machine learning algorithms that aims to learn response functions by 

interacting with the environment and receiving rewards. An agent receives the state of the 

environment and selects an action. As a consequence of this action it receives a reward. 

The goal of RL methods is to maximize the long-term reward based on past experience. 

Originally developed in the artificial intelligence community using ideas from animal 

learning theory, it now forms a common research language between biologists and 

engineers [Doya 2007] with both sides progressing the field further. The use of 

Reinforcement Learning methods is typically found in robotics applications. Walking 

robots are discussed in [Collins et al. 2005] where RL is used to obtain control policies 

for the articulated parts.  

 

There has also been a growing interest in applying RL methods [Sutton and Barto 1998] 

in controlling characters in both the robotics [Collins et al. 2005; Vigorito 2007; Wu et al. 

2009] and computer graphics communities [Ikemoto et al. 2005; McCann and Pollard 

2007; Lo and Zwicker 2008; Shum et al. 2008; Lee and Popović 2010; Friedman and 

Gillies 2005]. Typically these applications aim to control mechanical issues such 

walking, facial animations and moving within a VE, their goal being a high level of 

realism of motor behavior.  Wu et al in [Wu et al. 2009] used RL for controlling the 

parameters of the inverse kinematic model of the 31 servo motors in order to produce 

realistic facial expressions. The expressions were learned by comparing them to an image 

database with the use of facial recognition software. In [Vigorito 2007] RL was used to 

plan paths for robots in rough terrains. Similar applications of RL can also be found in 

the computer graphics community. Friedman and Gillies [2005] used RL to teach avatars 

to use body language. The user of their system assigned rewards manually in order to 

train the character to choose the appropriate body language for the given context. They 

used RL to calculate the optimal path, in which the avatar avoids obstacles and hostile 

entities while trying to keep the length of the path as short as possible.  

 

Controlling character animation is a challenging problem in the computer graphics 

community. One of the difficulties arises from the problem of balancing realism with 

precision in the animation. A RL solution to this problem was proposed in [McCann  and 

Pollard 2007] where data driven animation for game controllers was created. The aim 

was to exactly combine the ability to control the character precisely with the quality of 



the produced motion. Lo and Zwicker [2008] used data from motion capture, as well as 

parameterized motion and interpolations for similar purposes. In [Treuille et al. 2007] the 

aim was to produce high fidelity animations while performing complex navigation and 

obstacle avoidance tasks. Shum et al [2008] used RL to create avatar controllers while 

efficiently handling the high dimensional state space of animations. In a recent paper by 

Lee and Popović [2010] controllers with different styles were generated by an RL 

approach. The different styles, namely normal, playful and watchful defined how the 

avatar behaved towards obstacles in a navigation task. These controllers were calculated 

by providing examples of the desired style and estimating the reward function. The 

estimation of the reward function was performed by a modified apprenticeship algorithm 

[Abbeel and Ng 2004].   

 

In contrast to previous applications we provide an example of the use of RL to make 

human participants in an IVE achieve particular goals through interaction with an avatar 

controlled by an RL agent. Here, therefore, RL is not intended to increase the realism of 

the behavior of the avatar, but for the avatar to learn to generate a particular behavior in 

the human participant. 

 

4. MATERIALS AND METHODS 

 

4.1 Participants 

Thirty female participants were recruited by advertisement around the campus. Their 

mean age was 26 ± 8 (S.D.) years. After initial trials it was obvious that dyadic 

interactions in terms of interpersonal distances were dependent on the gender of both the 

participant and the avatar. Thus we decided to recruit only in one gender in order to 

remove one possible source of variation, and females for the practical reason that 85% of 

the students on our campus are female. They were paid €5 for their participation in the 

study. The experiment was approved by the ethics committee of IDIBAPS at the Hospital 

Clinic of University of Barcelona. 

 

4.2 Materials 

A Fakespace Labs Wide5 stereo head-mounted display was used which has field of view 

of 150º × 88º with an estimated 1600 × 1200 resolution displayed at 60Hz1, and also 

                                                           
1 http://www.fakespacelabs.com/files/Download/Wide5%20Data%20Sheet.pdf 



Sennheiser HD215 stereo headphones. The head-tracking system was an Intersense 

IS900. 

 

The virtual environment was programmed and displayed using XVR [Carrozzino et al. 

2005]. For animating the avatar the HALCA library (Hardware Accelerated Library for 

Character Animation) was used [Gillies and Spanlang 2010; Mortensen et al. 2008].  The 

agent was controlled by BAREL (Basic Reinforcement Learning Toolbox) with the Q(λ) 

algorithm for discrete state spaces [Sutton and Barto 1998]. 

 

4.3 The Scenario 

The scenario depicted an alleyway with the agent and the participant positioned as shown 

in Figure 2. The participant could see facing towards her a male avatar 10m away. In 

Figure 3 the environment can be seen from the perspective of the human participant. 

 

The avatar could perform the following actions: be in idle mode (standing still but 

fidgeting slightly in order to give the impression of aliveness), walk towards the 

participant, look behind himself and walk backwards or wave towards the participant 

while calling ‘Come here!’. The avatar was not programmed to make direct gaze contact 

with the participant, although this could occur by chance. Idling animations were 

displayed between the end of an action caused by the agent and the start of a new one. 

They lasted for a mean time of 2.4±0.4s (S.D.) the exact time chosen randomly. Walking 

forward took 0.8s and 1.5s for 1m and 2m, respectively. Walking backwards was slightly 

slower taking 1.8s and 3.2s. The idle action took 4.2s to complete and the waving 3.7s. 

The waving was accompanied by a randomly selected voice recording of one of the 

following phrases, ‘Come come!’, ‘Come here’, ‘Hey come here’, ‘Hey here’ and ‘Over 

here’. These were said in Catalan, Spanish or English according to a prior language 

choice of the participant. 

 



 
Figure 2 A top down diagram of the environment at the start of the experiment. G 
represents the goal, P the participant and A the agent. P can only move forward or 
backwards and cannot cross behind A. 
 

4.4 The Reinforcement Learning Parameters 

The aim of the RL agent was to find which actions of the avatar caused the participant to 

move towards the target. The state of the agent was calculated according to the distance 

of its avatar from the participant. The values of the agent’s state were chosen from 

proxemics theory: the avatar was within personal distance (<1.2m), social distance 

(<3.7m), public distance (<7.6m) or not-engaged (>7.6) (Figure 1). In each state the agent 

could determine the avatar to take one of the following 6 actions: walk forward for 1m, 

walk forward 2m, walk backward 1m, walk backward 2m, idle and wave. After each 

action the avatar in any case stood in idle mode for 2.4s, to give time for the participant to 

respond. The avatar and the participant could not move past each other. If they tried to do 

so they simply remained in the same positions in the VE.  

 

Rewards were calculated by considering the distance from the target in the VE travelled 

by the human when the avatar performed one of the six actions and then stood in idle 

mode for about 2.4 seconds, as previously explained. The reward function was based on 

the response of the human. If the person moved towards the target the RL agent received 

a positive reward (1 + response distance in m) and in all other cases a negative reward    

(-1).  The target was positioned 27 meters behind the starting position of the human 

participant (Figure 2).  The Q(λ) algorithm, used for RL, takes advantage of the concept 

of eligibility traces, which bridges between temporal differencing and Monte Carlo 

methods. The spectrum between these two families of methods is spanned by the λ 

parameter, which defines how far back in the history of state-actions a reward will be 

assigned.  

 



The algorithm was initialized without any training data. The agent automatically adapted 

individually to each participant. This was possible due to the compact state-action space, 

4 by 6 for the intimate condition and 3 by 6 for the social condition. The parameters of 

Q(λ) were as follows: λ was set to 0.7, the rate of learning α was equal to 0.2 and the 

discount factor γ to 0.15. Finally an ε-greedy policy improvement was used with ε set to 

0.15. 

 

4.5 Procedures 

Participants were first asked which language they preferred for the experiment: Catalan, 

Spanish or English, in order to accommodate the variety of native languages on the 

campus. The participant was given an information sheet to read and the experiment was 

also verbally explained to them. If they agreed to do the experiment (all did) then they 

completed the consent form and a short questionnaire that obtained demographic 

information such as age, occupation, and so on. The participant was fitted with the HMD, 

the tracker and the headphones. After they had donned the HMD, they were asked to stay 

still and during that time their head position was recorded. Participants were also asked to 

keep their legs in a fixed position on the ground.  

 

Then a training period started where they learned how to navigate in the VE, and also 

acclimatized to the environment; during this time the avatar was not shown, and of course 

the RL process was not operating. It was explained and demonstrated to them that they 

could move forwards and backwards in the VE by leaning without moving their feet from 

the floor. A forward lean would move the participant forward in the VE, and a backward 

lean would move them backwards. The participant always faced in the same direction. 

This is similar to the method for navigation discussed in [Mine et al. 1997].  As part of 

the training the participant was then instructed to go to particular locations in the VE and 

observe the posters and paintings on the walls. Once the participant was capable of 

moving to the required locations, and was also able to remain stationary by not leaning 

forwards or backwards, the training session was terminated. Finally the participant was 

asked to close her eyes while the training environment was switched off and the new one 

loaded. 

 

At this time participants were told: ‘There will be another person in the environment, 

please move freely in order to feel comfortable.’ Once the participant was inside the new 

environment, their position was calibrated and the main stage of the experiment began. 



The scenario started with the avatar signaling to the participant. The RL agent controlled 

whether the avatar would idle, wave, or move forwards or backwards according to the 

participant’s response, i.e. her change of position within the VE. The experiment 

terminated when the participant had moved to the target location (Figure 2), 27 meters 

behind her starting position in the VE. If the participant had not reached the target 

location by the end of 7 minutes the experiment was terminated, and the participant 

removed the HMD and earphones. The participant was then debriefed and paid the €5. 

 

4.6 Experimental Design 

This was a single factor between-groups design with three conditions, with 10 

participants arbitrarily assigned to each condition. The Intimate condition (I) used RL and 

the avatar could move up to intimate distance to the participant. The Social condition (S) 

used RL and the avatar could move up to social distance to the participant. In the 

Random condition (R) the actions chosen by the agent were the same set as in the RL 

conditions except that they were selected uniformly randomly. In this condition also the 

avatar could move up to intimate distance. Specifically, in conditions I and R the avatar 

could invade the participant’s personal space (up to 0.38m) therefore reaching inside the 

intimate distance, while in condition S it could only go as near as 1.2m (Figure 1).   

 

The maximum of 7 minutes duration was chosen by taking into account the number of 

possible actions by the avatar, the probability of a step backwards, and the possible size 

of that step. This had been fine tuned after running several pilot studies in order to allow 

for the experiment to be completed successfully or otherwise to be terminated without 

keeping the participant in the virtual reality system for too long to be comfortable. 



 

4.8 Response Variables and Statistical Methods 

There are two main response variables of interest. The first is the proportion of 

participants who reached the target. The second response variable is the overall time 

taken – either to reach the target or to terminate after 7 minutes without reaching the 

target.  

 

The time distribution within each condition is an example of survival data, how long the 

participant ‘survived’ before being driven back out of the alleyway. Since there was a 

cutoff time of 420s this is right-censored survival data since we cannot know for any 

individual whether given enough time they might eventually have reached the target. This 

type of survival data can typically be modeled by the lognormal distribution, which arises 

 

Figure 3 The scenario is an alleyway that contains a avatar seen from the 
participant’s viewpoint: (A) the character is quite far away (B) he has walked closer 
(C) calls to the participant to ‘come here!’ while waving (D) has approached closer 
(E) is within personal distance (F) is within intimate distance. 



when there is a system that is subject to many shocks, which eventually ‘fails’. This is 

quite similar to the case of this experiment, where the participant is subject to many 

influences (the actions of the agent) and eventually the participant may be driven out of 

the alleyway (here of course this is a ‘success’ rather than a ‘failure’ – but this is only a 

matter of nomenclature).  A random variable y has a log-normal distribution with 

parameters μ and σ when log(y) has a normal distribution with mean μ and standard 

deviation σ. Our method was to first fit the censored data by lognormal distributions and 

then use the Kolmogorov-Smirnov test to examine the goodness of fit. Then we provide 

confidence intervals for the parameters of the distribution. 

 

5. RESULTS 

 

It is clear from Figure 4 that in the RL conditions a far greater number of participants 

reached the target than in the random condition. In the R control condition only 1 out of 

10 participants reached the target, while in the I condition there were 9 out of 10 and in 

the S condition 6 out of 10 participants who reached the target position within the 7 

minutes. 

 

Figure 5 shows the cumulative distribution functions (CDFs) for the I and S survival 

times. For example, it can be seen that at, say, 220 seconds 80% of those in the I 

condition had reached the target compared with 30% of those in the S condition. The first 

successful termination in the I condition occurred in just over 40s whereas in the S 

condition it was just over 100s. Already by just over 60s half of those in the I condition 

had reached the target, whereas in the S condition this occurred only after 340s. It is clear 

that the distributions of the time courses are quite different in the two cases and the 

Kolmogorov-Smirnov (KS) test rejects the hypothesis that the two samples are from the 

same distribution (P = 0.03). Note that the significance level here is an underestimate due 

to the censoring.  

 

Moreover KS tests do not reject the hypotheses that the two censored survival time data 

sets (for I and S) are from lognormal distributions (P = 0.49 in the case of I and P = 0.07 

for S).  

 



 
Figure 4 The percentage of participants reaching the target under the 3 conditions. 

 
 

 
Figure 5 Empirical Cumulative Distribution Functions for the Intimate and Social 
Conditions. 
 

Table 1 shows the maximum likelihood estimates for μ and σ and the corresponding 95% 

confidence intervals for each of the I and S conditions. While there is no significant 



difference between the I and S distributions with respect to σ, there is in the case of μ. To 

give an idea of the meaning of these parameters it is simple to use them to evaluate the 

mean and standard deviation of the log-normal distributions, shown in the last two 

columns. These are the estimates of the theoretical population values corresponding to 

what we would have observed for a very large data set. Note that since the method takes 

account of the censoring the estimated mean of the distribution for S is actually greater 

than the cutoff point of 420s. In other words although the variance between the two 

groups are not significantly different, the mean time to reach the target is far greater for 

the S group (444s) than the I group (164s) taking into account the censoring of the data. 

The difference between the two fitted probability density functions as a whole can also be 

seen in Figure 6.  

 

Table 1 Parameter Estimates for the Lognormal Distribution Fits and their 95% 
Confidence Intervals. 

Condition ˆ μ  95% CI for ˆ μ  ˆ σ  95% CI  for ˆ σ  Mean sec. SD sec. 

Intimate 4.69 4.13 - 5.26 0.90 0.56 - 1.45 164 183 

Social 5.84 5.34 - 6.34 0.72 0.38 - 1.33 444 364 

 

 

 
Figure 6 Fitted lognormal probability density functions to the I and S condition 
censored survival times. 



 

Finally, it is worth considering the wave action in I and S conditions. After the initial 

piloting stage we found that when the agent was too far away the responses of the human 

became irrelevant to the agent’s decisions. We therefore added the wave action, where 

the agent would wave his hand and call the participant, in order to get her attention. In 

Figure 7 it can be seen that the wave action caused the participant to change her position 

in the IVE the most while in the furthest away state (at least 7.6 meters away), by moving 

away from the target and towards the agent, which, of course, generates a large negative 

reward for the agent. However, this very well illustrates the operation of the RL 

algorithm that has the objective of maximizing its long term reward. It is interesting to 

note that the agent learned to choose actions that sacrificed short term reward for the 

ultimate maximization of its long term reward.   

 

 
Figure 7 Mean human reaction, i.e. participant walks towards the target, for each of 
the possible actions of the agent, when the human participant was in the furthest 
away state (≥7.6m). 
 

 

6. DISCUSSION 

 

In this experiment the agent learned, using RL, the rule that when it moves so close to the 

participant that it breaks the convention of personal distance, the participant tended to 

move backwards. The RL agent also learned that generally the action of moving towards 

the participant only had an effect on her response when she and the avatar were already 



close enough. Hence the agent also discovered that it is possible to get the participant 

closer to the avatar when the distance between them is too great, and thereafter exploit 

proxemics to drive the participant backward to the far end of the alleyway. In a second 

condition, where the avatar never could enter within intimate distance, the proxemics rule 

was learned less efficiently and the agent’s goal was less likely to be achieved.  

 

The typical approach in presence research is to design an experiment that manipulates 

various factors, for example frame rate [Barfield and Hendrix 1995], navigation method 

[Usoh et al. 1999], rendering quality [Slater et al. 2009] etc., where the participants carry 

out a known task, and then the responses of the participants are examined with respect to 

how much presence or ‘response-as-if-real’ they exhibit. Here we have turned this on its 

head, and instead we have assumed the response-as-if-real, and the system learned to 

exploit this in order to get the participants to realize a task (in this case go to a certain 

location) that they were not previously informed about. Only three out of the twenty 

participants in the two RL conditions had worked out the goal of the agent after the 

experiment. The method is actually directed at the behavior of the human participant, and 

manipulates the behavior of the avatar that represents the agent only as a means to this 

end.  

 

Studies of proxemics in IVE [Llobera et al. 2010; Bailenson et al. 2003] have added to 

the growing evidence that people respond realistically in IVEs and in particular tend to 

obey proxemics rules even in interaction with avatars. In prior work the actions of the 

avatars were determined in advance by the computer program. Here although the set of 

actions open to the avatar were fixed in advance, which sequence of actions it would take 

depended only on how the participants behaved. One interesting finding is that we 

learned that even in this simple case of a 1D walk, it was not possible to rely on only 

three types of action (our original intention) – idle, move forward or move back. A wave 

action was added that drew the attention of the participant to the avatar. This type of 

action was necessary to maintain the interaction or re-engage it and create the closed 

system needed for the successful application of this methodology. 

 

Since the human and avatar could not walk past each other it might be thought that the 

method was bound to succeed. This is not the case, since the whole point of the approach 

was for the agent to learn that it had to get as close as possible to and therefore ‘trap’ the 

participant so that she could only go backwards or do nothing.  The fact that some people 



did not reach the target (1 out of 10 in the I condition , 4 out of 10 in the S condition and 

9 out 10 in the R condition) also shows that there was no inevitability built into the 

system. 

 

Although we have argued that the results of the experiment are based on the fact that 

proxemics was operating, it is fair to note that there are alternative explanations. For 

example, the reason for the relative success of the method might not be because of the 

specific reason of social proxemics but simply because the female participants were 

afraid of the male avatar. In fact we have no way of knowing that, but even if it were the 

case it still does not affect our fundamental idea, since it would only mean that instead of 

exploiting proxemics the RL may for some participants have been exploiting some other 

type of response. However, the fact that the results were different between the Intimate 

and Social condition suggests that proxemics did operate. The most important point is 

that whatever the underlying reason, the agent did learn the appropriate behavior. 

Additionally proxemics was the starting point of this work, and is the simplest 

explanation for the result, especially given the weight of evidence from previous 

research. 

 

Another possible problem with our results could be the fact that egocentric distance 

judgments are often mistaken in head-mounted displays. Studies show that usually 

distance estimation is typically compressed to between 70% and 90% of veridical 

distance when estimating distances of between 3m and 15m. For a recent review see 

[Kuhl et al 2009] and the references within.  In the proxemics application, however, a 

compression of distance estimation can only make the response more likely, and also the 

personal space only starts at 1.2m, which is outside of the boundary of distances that have 

typically been studied. Moreover, this issue has not hitherto been reported as problematic 

in proxemics studies, probably because in this application the exact distance is not 

critical. However, it would be a further topic of research in this area to examine the 

influence of exact distance perceptions. 

 

It is important to note in general the benefit of using an online learning approach since 

the response of each participant could be different and might even change during the 

duration of an experiment. The RL method used here was able to learn the responses of 

each individual participant in order for them to achieve the predetermined goal.  

 



7. CONCLUSIONS 

 
A novel approach in the design of IVEs has been presented in this paper by applying RL 

methods in order to drive a participant towards achieving a task – even though the task 

was unknown to them. This methodology opens up new approaches for the design of 

more robust virtual environment applications, ones that are explicitly ‘participant 

centered’, where it is recognized that the goal is to affect the behavior of the participants 

rather than to generate visual or behavioral effects on an avatar that are in themselves 

more realistic for their own sake. Here we were able to exploit the results of previous 

work that had shown proxemics rules operate in IVEs. The task was not to make the 

avatar look more realistic but to exploit these rules to affect the behavior of the 

participant. This is quite a different approach to the design of IVEs than is normally the 

case. This idea of an intelligent interaction system where the goal of the user is the 

primary objective of the system is applicable to many areas of Human Computer 

Interaction (HCI). Our approach has been supported by the results of the experiment. 

Allowing the avatar to invade personal space resulted in faster completion time than 

when only social distances were allowed. By comparing with a control condition the 

experiment has demonstrated that RL was capable of sampling the response functions of 

the participants, providing qualitative and quantitative measures of the participant’s 

perception of proxemics interactions. Our further work will investigate this paradigm in 

more complex scenarios, involving manipulation of other behavioral as well as 

physiological responses. 
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