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The sensitizing action of amorphous silicon nanoclusters on erbium ions in thin silica films has

been studied under low-energy (long wavelength) optical excitation. Profound differences in fast

visible and infrared emission dynamics have been found with respect to the high-energy (short

wavelength) case. These findings point out to a strong dependence of the energy transfer process

on the optical excitation energy. Total inhibition of energy transfer to erbium states higher than the

first excited state (4I13/2) has been demonstrated for excitation energy below 1.82 eV (excitation

wavelength longer than 680 nm). Direct excitation of erbium ions to the first excited state (4I13/2)

has been confirmed to be the dominant energy transfer mechanism over the whole spectral range of

optical excitation used (540 nm–680 nm). VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4712626]

I. INTRODUCTION

The discovery of the sensitizing action of silicon nano-

cluster (Si-nc) on erbium ions (Er3þ) offered a new material

platform where silicon based optical amplifiers and laser

sources could be developed.1 Complementary metal oxide

semiconductor (CMOS) process compatibility combined

with convenient light emission in the third telecom window

(1.5 lm) has been considered as a particular advantage of

this material.2 In spite of promising initial reports of optical

gain3 and efficient electrical excitation,4 the demonstration

of a laser action seems still to be quite challenging. While a

number of limiting factors to stimulated emission have been

identified,5–8 the estimates of their impact on laser action are

still imprecise, partially owing to difficulties encountered

when modeling the energy transfer mechanism.9–11

Although, the transfer mechanism between Si-nc and Er3þ

has been thoroughly studied,7,11,12 there is no clear consen-

sus in literature on the more appropriate model to describe

this interaction. Most of the studies have been performed

with optical excitation in the high energy spectral region

(blue, UV) where the absorption cross section of Si-nc is

dominating that of the Er3þ ions.13,14 Excitation at longer

wavelengths (lower energies), where the absorption cross

section of these two materials becomes comparable, may

provide a valuable insight in the energy transfer

mechanism.11,15–18

II. EXPERIMENTAL DETAILS

We report on a photoluminescence (PL) study of silicon

rich oxide thin films co-doped with Er3þ ions (SRO:Er3þ),

under low-energy optical excitation. The general features of

the PL dynamics are studied by time resolved photolumines-

cence (TR PL) measurements, performed both in the visible

and in the infrared.

Samples are produced by reactive magnetron co-

sputtering. Detailed description of fabrication details can be

found in Ref. 19. The sample details are summarized in

Table I. Photoluminescence measurements were done using,

as an excitation source, the optical pulses (6 ns pulse length,

10 Hz repetition rate) of an optical parametric oscillator

(OPO) pumped with the third harmonic of a Nd:YAG laser.

The excitation photon flux (1024 ph cm�2 s�1) was main-

tained constant over the whole used spectral range. Continu-

ous wave (CW) PL measurements were performed using the

476 nm line of an Argon laser (3� 1020 ph cm�2 s�1). Detec-

tion consisted of a spectrograph (Chromex) coupled to a

streak camera (Hamamatsu, visible) or of a monochromator

(Chromex) coupled to an InGaAs photomultiplier (Hama-

matsu, infrared) with overall time resolution of 2 ns (visible)

and 40 ns (infrared), respectively. All measurements were

performed at room temperature. All spectra were corrected

for the spectral response of the instruments.

These samples have been previously systematically

characterized under a short wavelength excitations (355 nm,

476 nm), pulsed and continuous.7 Based on these results, a

model describing the energy interaction between Si-nc and

Er3þ in this (high energy) regime was proposed.10

a)nikolap@science.unitn.it.
b)Present address: Catalan Institute of Nanotechnology (CIN2-CSIC), Cam-

pus UAB, Edifici CM3, 08193 Bellaterra, Spain.
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III. RESULTS AND DISCUSSION

When optically exciting this material (with energy not

matching any of the possible internal transitions of Er3þ

ions, see Fig. 1), the pump photons are absorbed by the sili-

con nanoclusters and the energy is subsequently transferred

to the Er3þ ions. Recently, it has been demonstrated that this

energy transfer occurs on a very short temporal scale.6,10,12

As a consequence of the energy transfer, the exciton popula-

tion in Si-nc is decreased, leading to a quenching of the visi-

ble PL (originating from Si-nc) in the Er3þ doped sample.10

In our samples, we monitor the visible PL dynamic (at

750 nm) in the first 400 ns after the laser pulse arrival, by

using a 50 ns time gate (Fig. 2) in order to filter out any ini-

tial fast contribution that might not be due to radiative inter-

band exciton recombination in Si-nc. We observe that

although there is a clear difference in the emission dynamic

for the two samples (A and B, see Table I) with a “blue”

pump (470 nm), the dynamics becomes equal moving

towards the “red” (640 nm) (Fig. 2).

It is important to underline that the difference in the

emission dynamic of the two samples under “blue” pump

condition does not necessary imply that the energy transfer

from Si-nc to Er3þ is still occurring on the timescale of ob-

servation (�100 ns). In fact, it was demonstrated recently

that the energy transfer could be a very fast process,6,10,12

taking place typically on the timescale shorter than 100 ns

(Ref. 6) (<36 ns in our samples).10 On the other hand, the

exciton recombination dynamics in Si-nc depends heavily on

the exciton population itself, due to effects such as Auger

recombination20 and inter-nanocluster transport.21,22 This is

well illustrated in the Fig. 2 if we consider the emission

dynamic of the same sample under two different excitation

conditions (“blue” and “red”). Although, approximately, the

same excitation photon fluxes were used (see Experimental

Details), the wavelength dependence of the absorption cross-

section13 of the Si-nc leads to different exciton populations

and different fast (<ls) emission dynamics.

The difference in emission dynamics we observe

between different samples (A and B) under the same (“blue”

pump) excitation condition is an indicator of a different exci-

ton population in the two samples. This difference is not

related to a change in the absorption cross-section (as we are

using the same pump conditions), but to the Er3þ ions pres-

ence.13,14 As already mentioned previously, Er3þ ions are

introduced in our samples during the deposition phase,19

minimizing, therefore, the occurrence of erbium related

defect states.23 Hence, we associate the difference in emis-

sion dynamics (exciton population) with the energy transfer

mechanism present in erbium co-doped sample.24

However, if we consider the different samples (A and B)

under the same “red” pump condition (Fig. 2) the emission

dynamics (exciton populations) we observe are practically

the same. As it is rather unlikely that non-radiative recombi-

nation due to Er3þ related defect states show such a strong

dependence on excitation wavelength in this range of ener-

gies,23,25 we attribute this distinct behavior to a change in

the energy transfer process.

In order to investigate further this phenomenon, we moni-

tor the initial PL dynamics of the 4I13/2 – 4I15/2 transition of

Er3þ ions (at 1535 nm, transition from the first excited to fun-

damental state, see Fig. 1) while changing the excitation

wavelength in the spectral range (540 nm–680 nm) around the

value of the “red” pump previously used (640 nm).26

In the literature, the dynamics of the 4I13/2 – 4I15/2 transi-

tion is frequently described by an initial microseconds PL

rise followed by a very slow PL decay (on millisecond time
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FIG. 1. Spectrum of the 4I13/2 – 4I15/2 transition of Er3þ ions (transition

from the first excited state to the ground state) under non-resonant (476 nm)

continuous optical excitation. Inset: Er3þ energy states scheme with Russel-

Saunders notation and characteristic radiative transitions.
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FIG. 2. Fast decay dynamics of the visible PL of samples A (red and green

line) and B (black and blue line) under 470 nm excitation (upper two lines)

and 640 nm (lower two lines). The time decay traces were recorded at

750 nm using a 90 nm wide spectral window. 50 ns time gate (inset) was

used in order to filter out the initial fast contribution.

TABLE I. Sample specifications.

Deposition method RF reactive magnetron sputtering

Sample

name

Si

excess (%)

Er3þ

(� 1020 cm�3)

Annealing

temperature ( �C)

A 5 6 2 3.4 6 0.2 900

B 6 6 2 … 900
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scale, 5.5 ms in our sample) (see Fig. 3).6,7 The later is due

to the radiative 4I13/2 – 4I15/2 transition and, in the absence of

detrimental effects such as cooperative up-conversion, it is

independent on the excitation photon flux.27 On the other

hand, the initial microseconds rise dynamic is considered to

be due to the internal relaxation from high energy states of

Er3þ to the 4I13/2 state.7,11,28 The higher energy states of

Er3þ are indirectly populated by the energy transfer process.

Although the first tens of ns are hidden by a very fast PL

decay contribution (Fig. 3, inset), it is evident that the ls PL

rise does not start from a zero level. This implies that a frac-

tion of the Er3þ ions have been excited through the energy

transfer process directly to the first excited state.7,11,28

The very fast PL decay contribution (Fig. 3, inset), in

our samples, has been experimentally related to the presence

of the silicon nanoclusters (silicon excess) in the silicon

dioxide matrix7,10,29 in accordance with what reported in

Ref. 30. However, based on similar experimental findings,

an alternative interpretation involving Er3þ 4I13/2 – 4I15/2

radiative transition and Er3þ related traps has been pro-

posed.6,23 Considering that the contribution of this compo-

nent to the total PL is practically negligible and that the

elucidation of its exact origin falls out of the scope of this

work, it will not be investigated further.

In order to quantify the relative contributions of the

direct and higher state energy transfer contributions to the

total PL, we fit the experimental data with the equation (see

Appendix for more details)

IPLðtÞ ¼ IBackground þ AAll exp½�ðt� t0Þ=t2�
� ASlow exp½�ðt� t0Þ=t1�; (1)

where IBackground (background level) and t0 (laser pulse ar-

rival time) are fit parameters, t1¼ 4.2 ls and t2¼ 5.5 ms have

been independently measured.10 The other fit parameters are

ASlow and AAll (AFast being AAll – ASlow). Their graphical

interpretation is presented in Fig. 3. ASlow weights the elec-

tronic contribution to the first excited state coming from the

internal relaxation from higher energy states while AFast rep-

resents the direct contribution to the first excited state. AAll

is simply the sum of the two, or in other words, the total con-

tribution to the first excited state.

More insight on the underlying physics could be gained

by the plot of the ratio AFast/AAll (see Fig. 4 and inset of Fig.

4), which yields an estimate of the “fast” direct contribution

(given by AFast) to the total excited Er3þ population, as a

function of the excitation wavelength.31

We observe a non-monotonic dependence of the AFast/

AAll ratio upon excitation wavelength (see Fig. 4). For exci-

tation wavelength shorter than 600 nm, a saturation region

where the ratio is almost independent of the excitation pho-

ton wavelength is found. On the contrary, for longer excita-

tion wavelengths, the ratio is increasing, and reaches a value

of one for 680 nm excitation independently of the photon

flux (within the limits imposed by our experimental setup).

The antiresonant feature at 650 nm is related with the direct

resonant excitation of Er3þ ions to 4F9/2 energy state (see

Fig. 1). Indeed, in this case we observe an increase of the

“slow” contribution (given by ASlow), leading to a decrease

of the ratio AFast/AAll. Note that resonant features at shorter

wavelengths are not observed, since the energy transfer to

high Er3þ states becomes more efficient than the direct

excitation.

A ratio of one corresponds to a complete absence of the

contribution from higher lying states to the Er3þ 4I13/2 state.

In other words, energy transfer from Si-nc to higher excited

states of Er3þ is not allowed any more at the excitation

FIG. 3. Initial PL dynamics of the 4I13/2 – 4I15/2 transition of Er3þ ions under

560 nm pulsed excitation (black spheres). The best fit by Eq. (1) (red line) of

the experimental data is also shown. The meaning of the fit parameter AAll is

illustrated as well. Inset: Zoom on the first ls of the initial PL dynamics.

Graphical interpretation of the fit parameters ASlow and AFast is shown.

FIG. 4. Variation of the AFast/AAll ratio (black spheres) with the excitation

wavelength. The black dashed line represents the value at which no contri-

bution from higher excited state of Er3þ ions is present. The red solid line is

only a guideline for the eyes. Inset: Initial PL dynamics of the 4I13/2 – 4I15/2

transition of Er3þ ions under 560 nm (thin black bottom curve), 640 nm (thin

red middle curve), and 680 nm (thin blue upper curve) pulsed excitation.

The best fits by Eq. (1) (thick lines of corresponding color) of the experi-

mental data are also shown. The data and fit curves have been normalized

and offset by 0.2 for clarity.
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energy of 1.82 eV, where the excess energy with the respect

to the second excited state of Er3þ is approximately 0.55 eV.

It is worth noticing that transition to this state is rather

smooth, taking place for the excitation energies in the range

between 2.1 and 1.8 eV (see Fig. 4). Moreover, a part from

the change in its initial dynamics (Fig. 2), visible PL coming

from the Si-nc is still observable.

These observations could be associated with the intra-

band model for the energy transfer.10,11 In this model, intra-

band electronic transitions are responsible for the energy

transfer to Er3þ and, in particular, they require a minimum

excess energy corresponding to a bandgap value of silicon

nanoclusters.10,11 However, it comes as a surprise the rela-

tively small amount of the measured excess energy values

needed for the transfer to occur towards the 4I11/2 state

(0.8–0.55 eV). These values are lower than the expected

bandgap energy of silicon nanoclusters in our samples

(�1.6 eV)32 and even lower than the bulk crystalline silicon

bandgap (�1.1 eV), indicating a participation of a sub-

bandgap state in the energy transfer process.10

Sub-bandgap states have been theoretically predicted in

amorphous Si-nc with low hydrogen content.33 In addition, a

modest spread in energy has been suggested to occur for

weakly localized states due to limited effects of quantum

confinement.33

It should be mentioned, that recently, it has been postu-

lated, as well, the possible existence of deep trap states

related with presence of Er3þ ions in the bulk silicon.25

An alternative explanation to our experimental observa-

tions would be that we have two different types of sensitizers

present in our samples. As the absorption cross-section of

the silicon nanoclusters is decreasing with wavelength, the

effective cross-section of Er3þ ions sensitization through the

Si-nc may reach a lower value, where the contribution from

another sensitizer type could become significant.

The influence of Er related matrix defects on Er3þ pho-

toluminescence has been demonstrated recently, but in very

different energy range.23 On the other hand, the silicon

excess related “luminescence center” erbium sensitization

has been well established in a wide range of excitation

energies.15,29 However, an even distribution in the energy

of these defect states is expected,15,28,29 with wavelength

dependence of effective cross-section for erbium sensitiza-

tion mirroring one of the silicon nanoclusters.15 Moreover,

the energy transfer to higher energy states of Er3þ ions

would be still possible for this sensitizing mechanism at the

excitation energies we use,12,28–30 in contrast to what we

observe.

To address this issue, we report in Fig. 5 AFast (direct

contribution to the first excited state) as a function of the ex-

citation energy (wavelength). A continuous monotonic

decrease can be observed across the whole excitation range

suggesting the existence of only one erbium sensitizer which

we relate to Si-nc.13

The presence of a saturation region below 600 nm (see

Fig. 4) with a value of AFast/AAll ratio equal to 0.6 implies

that direct energy transfer to the first excited state remains to

be a dominant excitation mechanism even under short wave-

length excitation.

IV. CONCLUSIONS

In conclusion, we reported a systematic study of the energy

transfer process in silicon nanoclusters and Er3þ co-doped thin

films under low energy optical excitation. The study presented

here complements a recent work focused on PL quantum yield

of SRO:Er3þ material under similar excitation conditions.18 We

find profound differences in the fast dynamic of the visible PL

with respect to the high energy optical excitation regime which

we attribute to a decrease of the energy transfer efficiency and/

or decrease of excitation to higher (than first) excited states of

Er3þ. We demonstrate that the energy transfer to a higher

energy state of Er3þ ions ceases to be effective for photon ener-

gies between 2.1 and 1.8 eV (0.7–0.55 eV of pump excess

energy with respect to the energy of 4I11/2 state). We explain

this behavior in the framework of the intraband model in terms

of sub-bandgap states participation in the energy transfer.

Although we do not provide the definitive proof of their physi-

cal nature, we correlate them with the presence of Si-nc. We

confirm that the energy transfer to the first excited state of Er3þ

remains to be a dominant excitation mechanism in the range of

considered excitation energies, implying that even with the

opening of the new excitation channels, through the higher

Er3þ excited states, only modest improvements in the efficiency

of the Er3þ ions excitation should be expected.
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APPENDIX: EQUATION 1 DERIVATION

The PL dynamics of the 4I13/2 – 4I15/2 transition of

Er3þ ions (at 1535 nm, transition from the first excited to

520 560 600 640 680
10-3

10-2

10-1 2.3 2.2 2.1 2.0 1.9 1.8

A F
as

t

Excitation wavelength (nm)

Excitation energy (eV)

FIG. 5. AFast (direct contribution to the first excited state of Er3þ ions) de-

pendence on the excitation wavelength (black spheres). The red solid line is

only a guideline for the eyes.
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fundamental state, see Fig. 1, main text) is characterized by

two contributions (see Fig. 2, main text): a very fast direct

one (on �ns timescale) and a slow (on �ls timescale) pro-

cess caused by the internal relaxation from higher excited

states of Er3þ ions. The very fast decaying initial PL contri-

bution is not considered since regardless of its origin, its con-

tribution to the total PL intensity is insignificant. Therefore,

the time evolution of the PL signal can be described by the

following equation:

IPLðtÞ ¼ IBackground þ AFast exp½�ðt� t0Þ=t2�
þ ASlowf1� exp½�ðt� t0Þ=t1�gexpð�½t� t0�=t2Þ:

(A1)

IBackground (background level) and t0 (laser pulse arrival time)

are fit parameters, t1¼ 4.2 ls and t2¼ 5.5 ms are fixed quan-

tities and have been independently measured.10 t2 is the

decay constant of the first excited state while t1 is the mea-

sure of the internal relaxation time. The other fit parameters

are ASlow and AFast. AFast is the direct contribution to the

total PL while ASlow gives the contribution by the internal

relaxation from higher energy states.

The first exponential term describes the PL signal

evolution coming from the fraction of the Er3þ ions popu-

lation that has been directly excited to the first excited

state while the second term gives the PL signal of the

Er3þ ions that has been excited to higher states. In this

last case, PL follows an internal relaxation from the

higher states to the first excited state. On the timescale of

the observation, the amplitude of the later one is a func-

tion of time as the internal relaxation continues (Eq. (A1))

causing the complex exponential dependence of the PL

signal in time.

We assumed that the direct excitation to the first (and

higher) excited states is instantaneous (faster than the time

resolution of our detection system �40 ns) and that the relax-

ation from the higher excited states to the 4I13/2 state can be

well described by a decaying single exponential function

with a characteristic time t1¼ 4.2 ls. Note that Eq. (A1) and

parameter physical interpretation are different respect to

what can be found in similar works.17,34

By introducing the parameter AAll, which is the sum of

the previous two contributions, or in other words, the total

contribution to the first excited state

AAll ¼ AFast þ ASlow: (A2)

Eq. (A1) could be rewritten as:

IPLðtÞ ¼ IBackground þ AFast exp½�ðt� t0Þ=t2�
þ ASlow exp½�ðt� t0Þ=t2�
� ASlow exp½�ðt� t0Þ=t1� exp½�ðt� t0Þ=t2�

¼ IBackground þ AAll exp½�ðt� t0Þ=t2�
� ASlow expf½t2ðt� t0Þ þ t1ðt� t0Þ�=½t1t2�g: (A3)

Knowing that t1 is more than three orders of magnitude

smaller than t2, Eq. (A3) can be simplified to

IPLðtÞ ¼ IBackground þ AAll exp½�ðt� t0Þ=t2�
� ASlow exp½�ðt� t0Þ=t1�: (A4)

This form is the one used for the fitting procedure.
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Yassievich, and T. Gregorkiewicz, Phys. Rev. B 84, 241308(R) (2011).
19L. Khomenkova, F. Gourbilleau, J. Cardin, and R. Rizk, Physica E 41,

1048 (2009).
20H. M’ghaieth, H. Maaref, I. Mihalcescu, and J. C. Vial, Phys. Rev. B 60,

4450 (1999).
21L. Pavesi and M. Ceschini, Phys. Rev. B 48, 17625 (1993).
22R. Lockwood, A. Hryciw, and A. Meldrum, Appl. Phys. Lett. 89, 263112

(2006).
23S. Saeed, D. Timmerman, and T. Gregorkiewicz, Phys. Rev. B 83, 155323

(2011).
24S. Yerci, R. Li, S. O. Kucheyev, T. Van Buuren, S. N. Basu, and L. Dal

Negro, IEEE J. Sel. Top. Quantum Electron. 16(1), 114 (2010).
25I. Izeddin, M. Klik, N. Vinh, M. Bresler, and T. Gregorkiewicz, Phys. Rev.

Lett. 99, 077401 (2007).
26We measured as well the dynamics of the 4I11/2 – 4I15/2 transition of the

Er3þ ions (at 980 nm, transition from the second excited to ground state,

see Fig. 1). However, the analysis of this last is complicated by the weak

signal under “red” excitation and by the high background noise due to re-

sidual Si-nc emission. Thus, these measurements are inconclusive and, as

such, discarded from further consideration.
27D. Navarro-Urrios, A. Pitanti, N. Daldosso, F. Gourbilleau, L. Khomen-

kova, R. Rizk, and L. Pavesi, Physica E 41, 1029 (2009).
28O. Savchyn, R. M. Todi, K. R. Coffey, and P. G. Kik, Appl. Phys. Lett. 94,

241115 (2009).
29S. Cueff, C. Labbé, B. Dierre, F. Fabri, T. Sekiguchi, X. Portier, and R.

Rizk, J. Appl. Phys. 108, 113504 (2010).
30A. Al Choueiry, A. M. Jurdyc, B. Jacquier, F. Gourbilleau, and R. Rizk,

J. Appl. Phys. 106, 053107 (2009).
31The same dependence is found even when t1 is assumed to be a fit parame-

ter. In this case, values of t1 of the order of few ls are found as well.
32Estimated from the peak of visible photoluminescence.
33G. Allan, C. Delerue, and M. Lannoo, Phys. Rev. Lett. 78, 3161 (1997).
34M. Fujii, J. Appl. Phys. 95, 272 (2004).

094314-5 Prtljaga et al. J. Appl. Phys. 111, 094314 (2012)

Downloaded 05 Jul 2012 to 161.116.168.80. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.119624
http://dx.doi.org/10.1063/1.119624
http://dx.doi.org/10.1038/nphoton.2010.167
http://dx.doi.org/10.1063/1.1419035
http://dx.doi.org/10.1364/OE.18.002230
http://dx.doi.org/10.1103/PhysRevB.76.245308
http://dx.doi.org/10.1103/PhysRevLett.97.207401
http://dx.doi.org/10.1103/PhysRevB.79.193312
http://dx.doi.org/10.1063/1.2227637
http://dx.doi.org/10.1103/PhysRevB.77.035318
http://dx.doi.org/10.1063/1.3476286
http://dx.doi.org/10.1103/PhysRevB.78.035327
http://dx.doi.org/10.1103/PhysRevB.76.195419
http://dx.doi.org/10.1103/PhysRevB.61.4485
http://dx.doi.org/10.1063/1.1331074
http://dx.doi.org/10.1063/1.3272271
http://dx.doi.org/10.1038/nphoton.2007.279
http://dx.doi.org/10.1016/j.optmat.2004.08.029
http://dx.doi.org/10.1103/PhysRevB.84.241308
http://dx.doi.org/10.1016/j.physe.2008.08.016
http://dx.doi.org/10.1103/PhysRevB.60.4450
http://dx.doi.org/10.1103/PhysRevB.48.17625
http://dx.doi.org/10.1063/1.2424656
http://dx.doi.org/10.1103/PhysRevB.83.155323
http://dx.doi.org/10.1109/JSTQE.2009.2032516
http://dx.doi.org/10.1103/PhysRevLett.99.077401
http://dx.doi.org/10.1103/PhysRevLett.99.077401
http://dx.doi.org/10.1016/j.physe.2008.08.030
http://dx.doi.org/10.1063/1.3157135
http://dx.doi.org/10.1063/1.3517091
http://dx.doi.org/10.1063/1.3211319
http://dx.doi.org/10.1103/PhysRevLett.78.3161
http://dx.doi.org/10.1063/1.1631072

