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spectroscopic ellipsometry of thick transparent films
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We present a numerical method for spectroscopic ellipsometry of thick transparent films.

When an

analytical expression for the dispersion of the refractive index (which contains several unknown coeffi-

cients) is assumed, the procedure is based on fitting the coefficients at a fixed thickness.
thickness is varied within a range (according to its approximate value).
The sample thickness is considered to be the one that gives the best fitting. The

method is as follows:

Then the
The final result given by our

refractive index is defined by the coefficients obtained for this thickness. © 1998 Optical Society of

America
OCIS codes:

1. Introduction

Ellipsometry is a standard characterization tech-
nique for thin-film manufacture because of its intrin-
sic high sensitivity and its nondestructive nature.
One of the particular applications in which ellipsom-
etry provides the best accuracy is in the study of very
thin films. In this case, spectrophotometric methods
are not useful since there are no interference extrema
in the transmittance or the reflectance spectra.
Conversely, for relatively thick films (several wave-
lengths of the considered working range) the use of
ellipsometric methods is less widespread because
they face several drawbacks, making spectrophotom-
etry the most common practice.

Recently, an interesting study of the characteriza-
tion of thick transparent films by variable-angle spec-
troscopic ellipsometry has been published.? In this
study, the specific problems related to the thickness
of the layer have been revised. One of the topics
implicated in this study is the numerical methods
that have been used for the inversion of the measured
ellipsometric data. In fact, the detailed treatment of
this problem is not presented in the text, but its
significance in the characterization of the thick layers
is evident.
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Let us analyze Figs. 2 and 3 of Ref. 1. Toillustrate
the model calculation proposed, the authors consider
a theoretical spectrum of the A, ¥ angles correspond-
ing to a 9-um layer on a silicon substrate. They
assume that the optical properties of the layer are
given by the Cauchy model

n(\) =A + B/\* + C/\* (1)

with the values A = 1.5364, B = 5.564 X 10"2 nm?,
and C = 8.010 X 10"* nm*. The spectrum is calcu-
lated for an angle of incidence of 70° in the 500—850
wavelength region. It is explained in the text in Ref.
1 that the plots of x? versus thickness were obtained
with “a series of least squares minimizations to find
the coefficients (A, B, C), with the thickness fixed for
each minimization.” In the particular case of Fig. 2,
various x? minima are obtained, and there is no doubt
of the identification of the right thickness since the
correct one has a noticeably lower value for x* than
the wrong ones. In the case of working with simu-
lated data having a small amount of statistic noise
added, a plot like Fig. 3 is obtained. The authors
note here that the minima are now closer together
and the values of x? at the valleys are similar. It is
evident that the existence of these side minima is an
important drawback for the proposed method, be-
cause it leads to the requirement of a previous deter-
mination of the thickness range of the layer by
profilometer measurements.

Our aim is to propose a numerical method for the
inversion of the ellipsometric data that does not lead
to the existence of side spurious minima. The
method is simple, easy to be implemented numeri-
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cally, and shows good convergence properties when
tested with simulated data having statistical noise
added.

2. Method

In its most basic implementation, the method that we
present comprises the two following steps:

1. Perform the ellipsometric data inversion (assum-
ing a fixed thickness) by use of a monochromatic al-
gorithm to find (n, k) for each wavelength
independently.

2. Use a best-fitting algorithm for the data (n, &)
obtained in the previous step to determine the con-
stants that define the dispersion model adopted.
Compute the x? that corresponds to the best fitting.

These two steps allow for the computation of x? for
the thickness assumed in step 1. Repeating the pro-
cess for a set of thicknesses within a variation range,
one gets a plot x? versus layer thickness. We will
show that this procedure does not lead to spurious
minima and also that it is very stable against noise in
the data.

Let us explain in more detail the two steps. Step
1 is a repeated application of any single-layer mono-
chromatic ellipsometry algorithm that determines (n,
k) at a known thickness from the ellipsometric data
(A, W), for example, a two-dimensional simplex on the
variables (n, k).2 Approximate values for the un-
knowns are needed to start any monochromatic algo-
rithm, but it is important to note that these must be
supplied only for one starting wavelength \, since the
result (n, k) for one wavelength may be the approxi-
mate value for the next one (as it is always quite
close, say 10 nm apart). In our particular case we
must supply an approximate value for the refractive
index 7,,,.,x at one of the wavelengths () of the
range of measurements. Since our method assumes
a fixed thickness for step 2, inverting A(\y) and W(7\,)
will generate n(\,) and £(\y). Note that in the case
of computed ellipsometric data corresponding to an
ideal transparent layer we will have k = 0, but for
noisy data, £ will be small but nonzero (the values
may increase with noise). For the next wavelength,
say \;, we may use n(\) instead of n,,,..., repeating
the monochromatic algorithm. For real ellipsomet-
ric data, we expect a behavior for £(\) similar to the
noisy case. Thus at the end of step 2, we have the
full spectrum n(\) and k£(\) at a fixed layer thickness
for the wavelength range considered.

Step 2 consists of applying a best-fitting algorithm
to the spectrum obtained in step 1. Thus we need to
assume a dispersion formula, fit the coefficients of
this formula, and calculate the final merit function.
This merit function may be the x? estimator, but it
could also be any other measure of the deviation be-
tween data and model. In ourimplementation of the
method, the dispersion formula is the one shown
above and the best-fitting procedure used is the sin-
gular value decomposition.3

Regarding the repetition of the process, to obtain
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Fig. 1. Refractive-index values and best fittings to the Cauchy

model corresponding to assumed thicknesses, 9.0 and 9.05 pm, for
the data with o = 1.0° noise added.

the plot of x? versus layer thickness, it is evident that
this is the most simple version of a one-dimensional
minimization algorithm. The limits of the thickness
range, and the step for increments defines the num-
ber of times that steps 1 and 2 will be performed and
also the accuracy in the final thickness determina-
tion.

3. Resiults

To illustrate the performances of our numerical pro-
cedure, we have applied it to the same theoretical
spectrum of Figs. 2 and 3 in Ref. 1, but with different
levels of statistical noise added to the ellipsometric
data. We start by computing the spectroscopic (A,
V) values corresponding to an ideal sample consisting
of a perfect 9-um-thick layer on a semi-infinite silicon
substrate. Three cases have been considered: ex-
act (A, V) data, and data with both o = 0.3° and 1.0°
rms noise added. The previously described method
has been applied to the three sets of theoretical spec-
tra, when thicknesses from 8.7 to 9.3 pm were con-
sidered.

Figure 1 shows two sets of refractive-index values
and their best fittings to the Cauchy model [Eq. (1)]
by singular value decomposition corresponding to two
assumed thicknesses, 9.0 and 9.05 wm, for the data
with ¢ = 1.0° noise added. As explained in the de-
scription of step 1, the use of the result for one wave-
length as the starting point for the next one in the
SIMPLEX algorithm guarantees the continuity in the
values of the refractive index and, consequently, the
smoothness of the subsequent fitting. A problem
could appear in the vicinity of the singular points
related to the thickness cycle of transparent layers,
i.e., when thickness (d), refractive index (n), wave-
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Fig. 2. Plots of x? versus layer thickness for three data sets cor-
responding to noise levels ¢ = 0°, 0.3°, 1.0°.

length (\), and incidence angle (¢) fulfill the expres-
sion

d=—————— m=0,1,2 (2)
2\n” — sin®

since one may obtain a meaningless value of n for
noisy data. It is unlikely to meet the conditions

leading to Eq. (2) however, but even in this case it is
easy to protect the point-by-point reinitialization of
the stMPLEX algorithm against misleading values of n
by considering the starting value for the initialization
to be more than one wavelength, that is, by looking at
the last two or three n values found and not allowing
variations that are too large.

Figure 2 plots x? versus layer thickness for three
sets of data having o = 0°, 0.3°, and 1.0° noise added.
The interval between thicknesses is 20 nm for the full
range and 10 nm in the inset for the zone near the
minimum.

From the figure we note that the method proposed
works quite well, giving only one minima for all the
noise levels considered. One may note that there is
a small but noticeable displacement of the absolute
minimum with respect to the 9-um value. This is
due to the noise introduced in the data that may
generate statistic fluctuations that become more im-
portant as the noise level increases.

In conclusion, the numerical method proposed
eliminates some of the drawbacks of the ellipsometric
data analysis developed in Ref. 1 for thick layers.
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