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SUMMARY 

We have been investigating the new insight in the cancer stem cells (CSCs) by 

developing a CSC model that is derived from induced pluripotent stem cells (iPSCs). The 

evidence of CSCs was widely accepted as small percentage of cell population in tumor that 

have a self-renewal capability and are malignant. Microenvironment is crucial to regulate 

the proliferation, self-renewal ability and differentiation of normal stem cells. By extending 

this concept, microenvironment distorted by cancer cells could affect the diverse directions 

of stem cells and leading to the characteristics of CSCs. Even though CSC shared with 

normal stem cells in the characteristics of maintaining the stemness and differentiation 

potential, multiple genetic and epigenetic regulations are different to acquire the features of 

CSCs. Epigenetic mechanisms, such as DNA methylation, histone modification and non-

coding RNA elements, are involved in stem-cell maintenance and in the regulation of 

differentiation of stem cells. On the other hand, the epigenetic alterations are relating to the 

tumorigenesis with the activation of oncogenes and silencing of tumor suppressor genes.  

 We have succeeded in converting mouse iPSCs (miPSCs) into CSC-Like cells (miPS-

LLCcm) by treating the miPSCs with conditioned medium (CM) of Lewis Lung Carcinoma 

(LLC) cells. miPS-LLCcm cells developed highly angiogenic and malignant 

adenocarcinoma as well as lung metastasis when subcutaneously transplanted into nude 

mice. By the treatment, miPSCs obtained the ability of unlimited growth and the capacity 

to maintain their stemness, while they were allowed to differentiate without LIF. The 

subcutaneous transplantation of the survived cells into the mouse formed malignant 

tumors and metastasized into lung tissues. Thus, we concluded that miPSCs should be 

converted into CSCs without any intended genetic manipulation. Immunohistochemical 
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analysis revealed the heterogeneity of the tumors, in which miPS-LLCcm cells should on 

one hand maintain the undifferentiated population expressing GFP and differentiate on the 

other into adenocarcinoma phenotype expressing MUC1. The cells from tumors at primary 

site and metastatic nodules can be maintained in vitro.  

 In order to further confirm the acquisition of CSC-like phenotype, we characterized 

the miPS-LLCcm cells and its derived cells form tumor (Ptdc) and from lung metastatic 

nodules (LMN) with commonly known CSC markers. We evaluated the significantly 

higher expression of ALHD1 and CD44 in the Ptdc and LMN cells. Epithelial to 

mesenchymal transition (EMT) is believed to be the primary mechanisms in the transition 

of cellular stages during development, wound healing and cancer metastasis. The 

upregulated expression of EMT markers in Ptdc cells was suggesting the potential of 

partial and metastable epithelial-to-mesenchymal transition (EMT) phenotype in Ptdc 

cells. 

Since this conversion is triggered only by the factor(s) contained in the conditioned 

medium, we have hypothesized that epigenetic alterations can induce CSCs from normal 

stem cells in the cancer microenvironment. Methylation and demethylation is generally 

considered to silence and activate gene expression, respectively. We tried to evaluate the 

epigenetic changes in early stages of cancer development in this research that has not yet 

been assessed. We traced the development of CSCs by the change of DNA methylation 

levels, which would provide the difference between the miPSCs and derived CSCs.  Then, 

we compared the methylation in miPS-LLCcm, LMN and Ptdc cells with that in miPSC 

by three sets; (1) miPSCs vs miPS-LLCcm cells, (2) miPSCs vs Ptdc cells and (3) miPSCs 

vs LMN cells. All comparisons between the different cell populations were found to 

exhibit hypomethylation as compared to miPSCs and 926, 583 and 1105 differentially 
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methylated regions (DMRs) were identified respectively from the comparisons. DMRs-

associated genes were further identified and segregated into hypo- and hyper-methylated 

genes categories. As the results, hypomethylation was found superior to hypermethylation 

in the CSCs.  

The analysis of KEGG pathways relating to hypomethylated genes revealed the 

several notable pathways important in cancers. Validating certain pathways in the CSCs, 

that are corresponding to DMR-related genes showed the pathways relevant for 

carcinogenesis including Focal adhesion, PI3K-Akt signaling pathway, Calcium signaling 

pathway, Pathway in cancer and Transcriptional misregulation in cancer. Checking the 

upregulated expression of the genes included in the enriched pathways that are concordant 

with hypomethylation showed the trace of candidates relating to oncogenic potential of 

CSCs. The expression of hypomethylated genes relating to PI3K-Akt pathway was found 

significantly high among those of the other genes. We found Pik3r5, which is a regulatory 

subunit of Pik3cg enzyme, as a hypomethylated and highly up-regulated gene relating to 

PI3K-Akt pathway. In the recent reports, the PIK3CG and PIK3R5 were evaluated as a 

potential oncogene that are overexpressed in human cancers leading to oncogenic cellular 

transformation and malignancy. Overexpression of PI3K-Gamma candidates were relating 

to oncogenic potential of the CSC model. Together with the findings, the constitutive 

expression of Pik3r5 was detected by immunoblotting with anti-p101 antibody in miPS-

LLCcm and its derivatives. 

 Activation of PI3K-Akt signaling pathway has been commonly reported as key 

driver of carcinogenesis. The upregulated expression of Pik3r5 should induce the 

activation of Akt resulting in the onset of tumorigenic and metastatic potential of miPS-

LLCcm and Ptdc cells. We assessed the Akt activation with anti-phosphorylated Akt (p-
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Akt) antibody and we found Akt was constitutively activated in miPS-LLCcm, Ptdc and 

LMN cells. Therefore, the hypomethylation of Pik3r5 gene was leading to the up-

regulation and is closely related to the activation/phosphorylation of AKT that is the 

downstream target molecule.  

Significant overall DNA hypomethylation during the conversion activated the 

certain proto-oncogene, with the activation of PI3K-Akt signaling pathway, which 

represent the malignant conversion even without mutations. In our study, we have 

successfully demonstrated the CSCs generated from iPSCs by the treatment with CM from 

cancer derived cells acquired the DNA hypomethylation that might be considered to be 

the new aspect in the early stage of CSCs. 
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1.1. Cancer Stem Cells  

Cancer has been defined as an abnormal growth of cells with 

potential character of invasion or spreading into other parts of body [1]. 

These abnormal cells have the ability to proliferate rapidly, make the 

malignant tumors and invade the native tissue by producing enzymes. By 

contrast, benign tumors don't generally invade and usually push the 

normal tissue to the side [2,3]. There are over 100 types of cancer that can 

affect in human and their symptoms vary depending on the types of tissue, 

such as breast, skin, lung, colon, prostate, and lymphoma [1,4].  

Research into cancers, nowadays, has been changed enormously with 

new and advance technologies. In the area of cancer research, there is still 

questioning how the research projects have been done and how the 

effectiveness of therapies come from the cancer research in the past. To get 

the fundamental progress in treating cancers, the cancer researchers are 

currently focusing into the advanced and more understanding of two 

areas; (a) the genetic underpinning of cancers and (b) the biology of cancers. 

Progressive research outcomes developed many types of cancer treatments 

which depend on the type of cancer and how advanced it is. Conventional 

therapy is widely accepted in cancer treatment and is different from 

alternative or complementary therapies [5,6]. Examples of conventional 

treatment for cancers include chemotherapy, radiation therapy, and 

surgery. With the new findings in the area of cancer research, the cancer 

treatment has also been improved dramatically, such as the adjuvant 

chemotherapy, hormonal therapy, immunotherapy, and target therapy.  
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Recent chemotherapeutic treatment can give the promising results in 

treating the different types of malignancies by combining with surgical 

removal or radiotherapy. After decades of making the drugs to kill 

proliferating tumor cells, the notable progresses in cancer treatment was 

resulted [7,8]. However, cancer researchers are facing the divergent nature 

of cancers such as, chemo-resistance, turning into more tumorigenic form, 

metastasis and cancer relapse. One of the reason is the heterogeneity of 

cancer where certain population of cancer cells have ability to survive 

against several cancer treatments. The chemotherapeutic agents can 

remove and kill the rapidly dividing cells of the bulk tumor but often miss 

the certain population of cells with distinct morphological and functional 

profile [9]. These issues could be explained by the presence of stem cell 

population in the tumor as subgroup of cancer cells. Previous findings 

strongly suggested that these stem cells are responsible for 

chemoresistance and caner relapse [10]. The remaining stem cells are able 

to comprise the whole tumor even in a few number left. These population 

was broadly named as cancer stem cells (CSCs) and thought to be involved 

in driving the cancer [11]. 

Cancer stem cell is normally identified as a cell within a tumor that 

possess the ability to self-renew and to cause the heterogenous lineages of 

tumor cells. There are many hypothesizes of CSC with their different 

points of understanding. The hypothesis has to be tested whether what 

evidence is consistence with it or not and cancer researchers refine the way 

of treating the cancers according their assessment.  
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The cancer research over several decades has been led by the 

mutation theory in that any cell in body could become cancer when it 

acquires a package of mutation [12,13]. Because of single and/or series of 

mutation, single gene or some group of genes, called oncogenes, are 

activated and some genes, called suppressor genes, are inactivated in 

cancer. In some cases, the combination of these two events was also 

involved in the carcinogenesis. Therefore, oncologists defined cancers as 

some kind of genetic mistake. Form this concern, all types of cells in the 

multicellular organisms could become cancer with certain reasons [14]. 

Another concern of cancers was evaluated with the evidence of 

cancer stem cells in the tumor.  In this case, only a certain population of 

cells that have the stem cell properties are really prone to becoming 

malignant [8]. The hypothesis about the cancer stem cells is in an ongoing 

debate. There is still needed to answer whether CSCs represent a mature 

tissue stem cell which has undergone malignant change or whether 

differentiated cells dedifferentiated into stem cell program together with 

the malignancy [15]. Until now, cancer stem cells are purely defined only 

with their capacities of self-renewing and differentiation, considering 

independently from the concept of origin of cancers [7,16].  

Cancers themselves organized through in very similar way to a 

normal organ, but the cells are proliferating abnormally [17]. Normal organ 

is organized in a hierarchy where at the apex of the hierarchy it is the stem 

cell and give rise to the other cells which form the bulk of an organ. In the 
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tumor, it is generally thought that cancer stem is the master cell that gives 

rise to heterogeneity of cancers [7].  

Tumor initiating capacity of CSCs in tumor was shown by serial 

transplantation of limited tumor cells into immunocompromised animal 

models where undifferentiated cancer cells show more than the 

differentiated cancer cells [8,18]. Researchers had been trying to evaluate 

the markers to identify and isolate the population of stem cells from tumor 

cells. Even though the validity of CSC markers depends on different types 

of tissues, and/or modes of tumorigenesis, it is possible to address the 

population of CSC in the tumors with CSC markers detected in specific 

malignancies. Currently, CSCs were identified in human brain, breast, 

prostate, head and neck, pancreas, liver, ovary, and colon cancers, by using 

different markers, such as CD133, EpCAM, CD44, CD24, Lgr5 and ALDH1 

[19]. With many questions about CSCs, the nature and characteristics of 

CSCs become interested and therapeutic CSC-targeting approaches 

popular in past decade of cancer research. Experimental limitation for the 

researchers is that CSCs are very small percentage of tumor cells, and the 

culturing and maintenance of these cells are still difficult [9]. Many 

researchers evaluated the properties and characteristics of CSCs by using 

the model of CSCs that are selected by the help of CSC-markers. The 

evaluations about CSCs are still depending on the validity of markers on 

these cancer types [19,20].  

In conclusion, cancer stem cell is defined as a certain type oncogenic 

cell that have self-renewing and differentiation ability. Their self-renewing 
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properties drives the generation of more CSCs, and differentiation capacity 

generate the bulk of tumors. The metastasis and tumor relapse are also 

related with the properties of CSCs. Due to the properties of CSCs, it is 

very important to provide the therapy that eradicated CSCs completely. 

 

1.2. iPSC-CSC 

The tumor microenvironment (TME) is the cellular environment 

surrounding the tumor in which stromal fibroblasts, immune cells, 

macrophages, endothelial cells, leucocytes, and extracellular matrix exist 

and interact by releasing signaling molecules to promote tumor growth 

and metastasis. It has been reported the significant role of TME in disease 

progression like as cancer, but the clear-cut role has not been understood. 

A major concept of TME is that cancer cells interact closely with the 

surrounding cells, which together form the major construct of the TME 

leading into more complexity of cancer biology. In the case immune cells, 

the factors secreted in TME drive a chronic inflammatory, 

immunosuppressive, and pro-angiogenic environment. By getting 

adaptation in such environment, cancer cells are able to avoid the host 

immunosuppressive action and to get the new properties of metastasis and 

angiogenesis. The aberrant pathological process in tumor 

microenvironment can be related with divergent nature of cancers by 

changing the genetic or epigenetic regulation. Although it is a transient 

effect, it could activate the certain signaling pathways regulating cellular 
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proliferation and migration or in the case of stem cells it could be related 

with cell fate determination and differentiation.  

Stem cells are found in certain population in multicellular organisms 

with their special characteristics different from others in the body. Stem 

cells are thought to be in blank state that can develop into cells with 

different specialized functions in different parts of the body during early 

life and growth. Stem cells have been termed as undifferentiated and self-

renewing cells that can divide and make the unrestricted numbers of 

copies of themselves. Difference between stem cells and any other cells in 

the tissues is that when a stem cell divides, one remains by self-renewing 

as stem cell at exactly the same stage of differentiation and the other turns 

into a next stage of the differentiation down to a differentiated cell, such as 

a muscle cell or red blood cell, etc. [16,21].  Generally, type of stem cells can 

be divided into three types; (a) Embryonic stem cells (ESC) (b) Adult stem 

cells (c) Cancer stem cells. Embryonic stem cells are pluripotent, meaning 

they can develop into more than 200 cell types of the adult body and also 

have the ability to replicate indefinitely [22]. Adult stem cells found in 

adults can produce only a limited number of cell types. Cancer stem cells 

(CSCs) are tumor cells that have the principal properties of self-renewal, 

clonal tumor initiation capacity and clonal long-term repopulation 

potential [23].  

Like the normal stem cells, CSCs are believed to reside in their own 

niches [24]. The niches for normal stem cells are crucial for proper 

differentiation of stem cells into certain progenitor cells and differentiated 
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cells. In contrast, the TME could affect on the differentiation of stem cells. 

Seno et.al explained the fate of stem cells distorted by TME using the 

conditioned medium of Lewis Lung Carcinoma (LLC) [24,25]. In their 

hypothesis, mouse induced pluripotent stem cells (miPSCs) should be 

induced to some kinds of progenitor cells, such as hematopoietic cells and 

neural stem cells, differentiating into various phenotypes, such as 

macrophage, monocytes, neural cells, cardiac cells and pancreatic b-cells, 

when they were exposed to the normal niche. On the other hand, they 

hypothesized that CSCs may also be derived from miPS cells only when 

exposure to a malignant niche [Figure 1.1]. 

 

Figure 1.1 The hypothesis of miPSCs conversion into iPS-CSCs. CSCs 

are considered derived from normal stem cells affected by the 

microenvironment being influenced by cancer cells. [25] 

They evaluated the new insight in the CSCs developed in cancer 

microenvironment, by extending the concept that the niche of the normal 
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cells is involved in the differentiation of stem cells into normal tissues. 

While the mouse induced pluripotent stem cells (miPSCs) were allowed to 

differentiate in the presence of cancer conditioned medium, they acquired 

the ability to maintain their stemness and differentiation potential, as well 

as formed malignant tumors with the features of adenocarcinoma and 

metastasized into lung tissues in vivo, considering the sign of CSCs. These 

models of cancer stem cell will provide the great advantages in cancer 

research and its applications in the future. 

In iPS-CSC model, miPSCs were converted into CSCs without any 

intended genetic manipulation. The conversion could be considered 

through the transcriptional or translational changes determined by genetic 

or epigenetic alterations that are promoting tumorigenesis. Furthermore, 

they successfully generated various types CSC models converted from 

iPSCs with the aid of CM of various cancer cell lines such as human 

pancreatic carcinoma cell lines PK-8 cells and KLM-1 cells, human breast 

cancer cell lines T47D cells and BT549 cells, mouse carcinoma cell lines LLC 

cells, P19 cells, B16 cells and MC.E12 cells [14–16]. Anna et.al evaluated 

organ specific feature of xenografts tumors developed from iPS-CSC that 

were converted with conditioned medium of PDAC cells [26]. Furthermore, 

the story and origin of cancer associated fibroblast was explained with iPS-

CSC model developed in the conditioned medium of breast cancer cells 

[27]. The iPS-CSC have differentiated into the fibroblast that support the 

tumorigenesis and metastasis of iPS-CSC. Interestingly, iPS-CSC model 

can also differentiate into the progenies of CSCs containing vascular 

endothelium [24,28].  
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In conclusion, the iPS-CSC is a model of CSCs that can explain biology 

and characteristics of CSC in nature. In addition, CSC generation from 

various kinds of cancer cells could be a source that provide a library of 

CSCs for customized cancer treatment. iPS-CSC model could be used in 

the evaluation of bona fide CSC markers and also the screening of 

chemotherapeutic drugs that are targeting the CSC population, to get 

better therapeutic approach of cancer.  

 

1.3. CSC and Epigenetics 

Carcinogenesis has been explained by the classical cancer initiation 

theory; evolutional accumulation of one or more mutations in a single or a 

few cells resulting in uncontrolled growth [29]. Genetic mutation was 

considered as the major causes of neoplasia [30]. However, it is now 

accepting the involvement epigenetic regulatory mechanisms in 

carcinogenesis. Genetic mutation is responsible for activation of tumor 

driver genes and silencing of tumor suppressors. In the second part, 

disruption of epigenetic regulation is leading to overexpression of 

oncogenes and downregulation of the tumor suppressor genes [31,32]. The 

genetic and epigenetic regulation were viewed as sole reason of abnormal 

gene expression. 

The regulation performed by epigenetic mechanisms includes 

histone modification, chromatin remodeling factors, DNA methylation, 

microRNAs and post–translational modifications. The expression of 
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certain gene was determined by the status of DNA packaging at the 

regulation regions. These regions are normally the promoters and/or 

enhancers and insulators in chromatin. Some regulations were performed 

by the presence of transcription factors and chromatin modifying enzymes 

[33]. 

Without changing in DNA sequence, the ability to change the 

expression of genes is the primary role of epigenetic regulation. The 

epigenetic abnormalities involved in the tumorigenesis is not simple as the 

gain or loss of genes expression because the types of regulation will be 

different and complex depending on the stage and nature of carcinogenesis.  

During the tumor initiation and progression, DNA hypomethylation 

pattern was occurred in the cancer associated genes when comparing with 

normal tissues. Previously, the cancer-specific DNA methylation patterns 

was reported by comparing with associated tissues. The development of 

technologies in sequencing and microarray analysis are very supportive to 

examine and understand the aberrant epigenetic regulation specific to 

cancer.  

During differentiation, ESCs start in a pluripotent state from which 

they sequentially develop into unique cell type with a narrower 

pluripotency. Histone methylation is short-term silencing mechanism by 

which some set of genes required for development were repressed at the 

stage of stem cell [34,35]. On the other hand, DNA methylation are long-

term silencing mechanisms. Pluripotent stem cells express the set of 

transcription factors that are important for maintenance of stemness and 
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after development these genes are repressed by long-term silencing 

mechanisms. Therefore, in somatic cells the imprinted genes and 

pluripotency-associated genes were off by DNA hypermethylation [36,37]. 

The key developmental events with global epigenetic modifications and 

gene-expression patterns in mammalian cells were shown in Figure 1.2. 

 

Figure 1.2 Key developmental events with global epigenetic 

modifications and gene-expression patterns mammalian cells. [37] 

Some characteristics of CSC shared with normal stem cells 

including self-renewal and differentiation. Normal stem cells 

differentiated into the certain cell type in proper epigenetic regulation.  

Altered or aberrant epigenetic regulation was thought to be involved in 

CSC development required for the features of CSCs, highly proliferative, 

tumor formation, and metastatic ability to form the new tumor at distant 

site. The epigenetic regulation pattern for maintaining the stemness was 

occurred in CSC. The possibility of this evidence can be explained in two 

ways; one is dedifferentiation mechanisms gained in non-stem cancer cells 
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and another is the failure of DNA methylation mechanism in normal stem 

cell during differentiation.  

Several key developmental or signaling pathways have been shown 

to play essential roles to get the CSCs functions, especially tumorigenesis, 

cancer initiation and maintenance of self-renewing. Epigenetic 

deregulation may contribute the alteration in such kinds of pathways. 

Generally, the Jak-STAT, Wnt, Notch, Hedgehog, PI3K, and NF-kB 

signaling were shown to be involved in mediating various stem cell 

properties, such as self-renewal, cell fate decisions, survival, proliferation, 

and differentiation [38–40]. Recent reports interestingly had reported that 

the regulation of these signaling pathways are imbalanced in cancers. One 

of the reasons for these evidences could be the abnormal epigenetic 

regulations. Recently, the distinct DNA hypomethylation of specific gene 

sets in MCF7-derived mammosheres caused the activation of Jak-STAT 

pathway that was considered for the maintenance of CSC properties to be 

involved in the regulation of stem cells [38,41]. In gastric cancers, activation 

of Wnt pathways in were more frequently affected by epigenetic 

alterations than by genetic alterations in the related genes [42]. Moreover, 

it was reported that the activation of Hedgehog was related with epigenetic 

changes in which, Shh promoter hypomethylation was suggested as a 

critical event in breast carcinogenesis [43]. The Notch signaling pathway 

play important roles in developmental process, and cell-cell 

communication for regulating the cell proliferation, differentiation and cell 

lineage progression but it is also dysregulated in many cancers [44]. One 

of the growing evidences in epigenetic dysregulation of notch signaling 
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pathway showed that overexpression of Notch ligand has been gained 

from enhanced histone acetylation at promoter region of this ligand in 

multiple myeloma. 

In conclusion, although the experimental evidences of CSCs relating 

to their genetic and epigenetic regulation have been growing in number, 

the hypothesis of CSC still remain needed to understand how they develop, 

how different in characteristics depending on tissue, and dysregulation of 

key signaling pathways specific for their functions. It is very important to 

develop a CSC model that can sufficiently explain about the genetic or 

epigenetic profiles of CSC. The alteration mechanism in CSCs could be 

expected to be useful for development of specific therapy for cancer 

patients. 

 

 

 

 

 

 

 

 



CHAPTER 1 

 

16 

REFERENCES 

1.  GBD 2015 Mortality and Causes of Death Collaborators, G. B. D. 2015 

M.; of Death, C. Global, regional, and national life expectancy, all-

cause mortality, and cause-specific mortality for 249 causes of death, 

1980-2015: a systematic analysis for the Global Burden of Disease 

Study 2015. Lancet (London, England) 2016, 388, 1459–1544, 

doi:10.1016/S0140-6736(16)31012-1. 

2.  National Cancer Institute NCI Dictionary of Cancer Terms: 

https://www.cancer.gov/publications/dictionaries/cancer-

terms/def/benign-tumor. 

3.  PubMed Health Benign Tumor:  

https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0025285/. 

4.  Plummer, M.; de Martel, C.; Vignat, J.; Ferlay, J.; Bray, F.; Franceschi, 

S. Global burden of cancers attributable to infections in 2012: a 

synthetic analysis. Lancet Glob. Heal. 2016, 4, e609–e616, 

doi:10.1016/S2214-109X(16)30143-7. 

5.  Tannock, I. F. Conventional cancer therapy: Promise broken or 

promise delayed? Lancet 1998, 351, doi:10.1016/S0140-

6736(98)90327-0. 

6.  National Cancer Institute NCI Dictionary of Cancer Terms: 

https://www.cancer.gov/publications/dictionaries/cancer-

terms/def/conventional-treatment. 



CHAPTER 1 

 

17 

7.  Magee, J. A.; Piskounova, E.; Morrison, S. J. Cancer Stem Cells: 

Impact, Heterogeneity, and Uncertainty. Cancer Cell 2012. 

8.  Reya, T.; Morrison, S. J.; Clarke, M. F.; Weissman, I. L. Stem cells, 

cancer, and cancer stem cells. Nature 2001, doi:10.1038/35102167. 

9.  Klonisch, T.; Wiechec, E.; Hombach-Klonisch, S.; Ande, S. R.; 

Wesselborg, S.; Schulze-Osthoff, K.; Los, M. Cancer stem cell 

markers in common cancers - therapeutic implications. Trends Mol. 

Med. 2008. 

10.  Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. 

Nat. Rev. Cancer 2005. 

11.  Dalerba, P.; Cho, R. W.; Clarke, M. F. Cancer Stem Cells: Models and 

Concepts. Annu. Rev. Med. 2007, 

doi:10.1146/annurev.med.58.062105.204854. 

12.  Soto, A. M.; Sonnenschein, C. The somatic mutation theory of cancer: 

Growing problems with the paradigm? BioEssays 2004. 

13.  Blagosklonny, M. V. Molecular theory of Cancer. Cancer Biol. Ther. 

2005. 

14.  Brücher, B. L. D. M.; Jamall, I. S. Somatic mutation theory - Why it’s 

wrong for most cancers. Cell. Physiol. Biochem. 2016. 

15.  Hermann, P. C.; Huber, S. L.; Herrler, T.; Aicher, A.; Ellwart, J. W.; 

Guba, M.; Bruns, C. J.; Heeschen, C. Distinct Populations of Cancer 



CHAPTER 1 

 

18 

Stem Cells Determine Tumor Growth and Metastatic Activity in 

Human Pancreatic Cancer. Cell Stem Cell 2007, 1, 313–323, 

doi:10.1016/j.stem.2007.06.002. 

16.  Li, L.; Neaves, W. B. Normal stem cells and cancer stem cells: The 

niche matters. Cancer Res. 2006, 66, 4553–4557. 

17.  Egeblad, M.; Nakasone, E. S.; Werb, Z. Tumors as organs: Complex 

tissues that interface with the entire organism. Dev. Cell 2010. 

18.  Al-Hajj, M.; Wicha, M. S.; Benito-Hernandez, A.; Morrison, S. J.; 

Clarke, M. F. Prospective identification of tumorigenic breast cancer 

cells. Proc. Natl. Acad. Sci. 2003, doi:10.1073/pnas.0530291100. 

19.  Karsten, U.; Goletz, S. What makes cancer stem cell markers 

different? Springerplus 2013, doi:10.1186/2193-1801-2-301. 

20.  Lobo, N. A.; Shimono, Y.; Qian, D.; Clarke, M. F. The Biology of 

Cancer Stem Cells. Annu. Rev. Cell Dev. Biol. 2007, 

doi:10.1146/annurev.cellbio.22.010305.104154. 

21.  He, S.; Nakada, D.; Morrison, S. J. Mechanisms of stem cell self-

renewal. Annu. Rev. Cell Dev. Biol. 2009, 

doi:10.1146/annurev.cellbio.042308.113248. 

22.  Keller, G. Embryonic stem cell differentiation: emergence of a new 

era in biology and medicine. Genes Dev. 2005, 

doi:10.1101/gad.1303605. 



CHAPTER 1 

 

19 

23.  Plaks, V.; Kong, N.; Werb, Z. The cancer stem cell niche: How 

essential is the niche in regulating stemness of tumor cells? Cell Stem 

Cell 2015. 

24.  Matsuda, S.; Yan, T.; Mizutani, A.; Sota, T.; Hiramoto, Y.; Prieto-Vila, 

M.; Chen, L.; Satoh, A.; Kudoh, T.; Kasai, T.; Murakami, H.; Fu, L.; 

Salomon, D. S.; Seno, M. Cancer stem cells maintain a hierarchy of 

differentiation by creating their niche. Int. J. Cancer 2014, 

doi:10.1002/ijc.28648. 

25.  Chen, L.; Kasai, T.; Li, Y.; Sugii, Y.; Jin, G.; Okada, M.; Vaidyanath, 

A.; Mizutani, A.; Satoh, A.; Kudoh, T.; Hendrix, M. J. C.; Salomon, D. 

S.; Fu, L.; Seno, M. A model of cancer stem cells derived from mouse 

induced pluripotent stem cells. PLoS One 2012, 7, 

doi:10.1371/journal.pone.0033544. 

26.  Calle, A. S.; Nair, N.; Oo, A. K.; Prieto-Vila, M.; Koga, M.; Khayrani, 

A. C.; Hussein, M.; Hurley, L.; Vaidyanath, A.; Seno, A.; Iwasaki, Y.; 

Calle, M.; Kasai, T.; Seno, M. A new PDAC mouse model originated 

from iPSCs-converted pancreatic cancer stem cells (CSCcm). Am. J. 

Cancer Res. 2016, 6, 2799–2815. 

27.  Nair, N.; Calle, A. S.; Zahra, M. H.; Prieto-Vila, M.; Oo, A. K. K.; 

Hurley, L.; Vaidyanath, A.; Seno, A.; Masuda, J.; Iwasaki, Y.; Tanaka, 

H.; Kasai, T.; Seno, M. A cancer stem cell model as the point of origin 

of cancer-associated fibroblasts in tumor microenvironment. Sci. Rep. 

2017, 7, 6838, doi:10.1038/s41598-017-07144-5. 



CHAPTER 1 

 

20 

28.  Prieto-Vila, M.; Yan, T.; Calle, A. S.; Nair, N.; Hurley, L.; Kasai, T.; 

Kakuta, H.; Masuda, J.; Murakami, H.; Mizutani, A.; Seno, M. iPSC-

derived cancer stem cells provide a model of tumor vasculature. Am. 

J. Cancer Res. 2016, 6, 1906–1921. 

29.  Rozhok, A. I.; Salstrom, J. L.; DeGregori, J. Stochastic modeling 

indicates that aging and somatic evolution in the hematopoietic 

system are driven by non-cell-autonomous processes. Aging (Albany. 

NY). 2014, 6, 1033–1048, doi:10.18632/aging.100707. 

30.  Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: The next 

generation. Cell 2011. 

31.  Baylin, S. B.; Herman, J. G. S.B. Baylin, J.G. Herman, DNA 

hypermethylation in tumorigenesis: epigenetics joins genetics, 

Trends Genet. 16 (2000) 168–174. - Google Search. Trends Genet. 2000, 

16, 168–174. 

32.  Sandoval, J.; Esteller, M. Cancer epigenomics: Beyond genomics. 

Curr. Opin. Genet. Dev. 2012. 

33.  De Carvalho, D.; Sharma, S.; You, J. S.; Su, S. F.; Taberlay, P. C.; Kelly, 

T. K.; Yang, X.; Liang, G.; Jones, P. A. DNA Methylation Screening 

Identifies Driver Epigenetic Events of Cancer Cell Survival. Cancer 

Cell 2012, doi:10.1016/j.ccr.2012.03.045. 

34.  Boyer, L. A.; Plath, K.; Zeitlinger, J.; Brambrink, T.; Medeiros, L. A.; 

Lee, T. I.; Levine, S. S.; Wernig, M.; Tajonar, A.; Ray, M. K.; Bell, G. 



CHAPTER 1 

 

21 

W.; Otte, A. P.; Vidal, M.; Gifford, D. K.; Young, R. A.; Jaenisch, R. 

Polycomb complexes repress developmental regulators in murine 

embryonic stem cells. Nature 2006, doi:10.1038/nature04733. 

35.  Azuara, V.; Perry, P.; Sauer, S.; Spivakov, M.; Jørgensen, H. F.; John, 

R. M.; Gouti, M.; Casanova, M.; Warnes, G.; Merkenschlager, M.; 

Fisher, A. G. Chromatin signatures of pluripotent cell lines. Nat. Cell 

Biol. 2006, doi:10.1038/ncb1403. 

36.  Ohm, J. E.; McGarvey, K. M.; Yu, X.; Cheng, L.; Schuebel, K. E.; Cope, 

L.; Mohammad, H. P.; Chen, W.; Daniel, V. C.; Yu, W.; Berman, D. 

M.; Jenuwein, T.; Pruitt, K.; Sharkis, S. J.; Watkins, D. N.; Herman, J. 

G.; Baylin, S. B. A stem cell-like chromatin pattern may predispose 

tumor suppressor genes to DNA hypermethylation and heritable 

silencing. Nat. Genet. 2007, doi:10.1038/ng1972. 

37.  Reik, W. Stability and flexibility of epigenetic gene regulation in 

mammalian development. Nature 2007. 

38.  Dreesen, O.; Brivanlou, A. H. Signaling pathways in cancer and 

embryonic stem cells. Stem Cell Rev. 2007, doi:10.1007/s12015-007-

0004-8. 

39.  Ghoshal, P.; Nganga, A. J.; Moran-Giuati, J.; Szafranek, A.; Johnson, 

T. R.; Bigelow, A. J.; Houde, C. M.; Avet-Loiseau, H.; Smiraglia, D. J.; 

Ersing, N.; Chanan-Khan, A. A.; Coignet, L. J. Loss of the 

SMRT/NCoR2 corepressor correlates with JAG2 overexpression in 

multiple myeloma. Cancer Res. 2009, 69, 4380–4387, 



CHAPTER 1 

 

22 

doi:10.1158/0008-5472.CAN-08-3467. 

40.  Toh, T. B.; Lim, J. J.; Chow, E. K.-H. Epigenetics in cancer stem cells. 

Mol. Cancer 2017, 16, 29, doi:10.1186/s12943-017-0596-9. 

41.  Onishi, K.; Zandstra, P. W. LIF signaling in stem cells and 

development. Development 2015, doi:10.1242/dev.117598. 

42.  Yoda, Y.; Takeshima, H.; Niwa, T.; Kim, J. G.; Ando, T.; Kushima, R.; 

Sugiyama, T.; Katai, H.; Noshiro, H.; Ushijima, T. Integrated analysis 

of cancer-related pathways affected by genetic and epigenetic 

alterations in gastric cancer. Gastric Cancer 2015, doi:10.1007/s10120-

014-0348-0. 

43.  Cui, W.; Wang, L.-H.; Wen, Y.-Y.; Song, M.; Li, B.-L.; Chen, X.-L.; Xu, 

M.; An, S.-X.; Zhao, J.; Lu, Y.-Y.; Mi, X.-Y.; Wang, E.-H. Expression 

and regulation mechanisms of Sonic Hedgehog in breast cancer. 

Cancer Sci. 2010, doi:10.1111/j.1349-7006.2010.01495.x. 

44.  Bolós, V.; Grego-Bessa, J.; De La Pompa, J. L. Notch signaling in 

development and cancer. Endocr. Rev. 2007. 

 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER (2) 

“iPSC DERIVED CSC MODEL WITH LUNG 

METASTASIS DEVELOPED IN THE 

MICROENVIRONMENT OF LUNG 

CARCINOMA” 

 
 
 
 
 
 
 



 



CHAPTER 2 

 

25 

ABSTRACT 

Cancer stem cells (CSCs) are considered to be derived from normal stem 

cells affected by the tumor microenvironment through the genetic and epigenetic 

alterations that initiate malignant transformation. We have reported that the 

conditioned medium of Lewis lung carcinoma (LLC) cells can be used to convert 

mouse induced pluripotent stem cells (miPSCs) into cancer stem cell phenotype, 

which named miPS-LLCcm cells. miPS-LLCcm cells developed highly angiogenic 

and malignant adenocarcinoma after transplanted into nude mice. When miPS-

LLCcm cells were subcutaneously injected into a nude mouse, malignant 

adenocarcinoma-like tumor was formed with lung metastasis. 

Immunohistochemical analysis with GFP antibody showed that the nodules 

formed in lung expressed GFP, of which expression was controlled by Nanog 

promoter, further proving that these cells were metastatic to lung. This should 

therefore be a model to study lung metastasis from a tumor formed by 

subcutaneous injection. In this study, we analyzed the expression of three types 

of candidate genes for stem cell, tumor driver genes and epithelial–mesenchymal 

transition (EMT) on four different stages of cells. The CSC-like cells developed 

from miPSC exhibited self-renewal activity and stem cell marker gene expression. 

The expression of EMT markers were analyzed in the primary culture derived 

from the tumor and nodules metastasized to lung. The primary cells from the 

tumor highly expressed the EMT markers; snail, slug, Twist and N-cadherin. The 

results demonstrated in this study indicate that primary cells from tumor are rich 

in CSCs with high metastatic potential. 
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2.1. INTRODUCTION 

Tumors are composed of heterogeneous cancer cells with distinct 

morphological and functional profiles. This heterogeneity could be partially 

explained by the classical cancer initiation theory; evolutional accumulation of 

one or more mutations in a single or a few cells resulting in uncontrolled growth 

[1]. Another explanation is based on the presence of stem cells in tumors. Even in 

a few number the stem cells are considered to comprise the whole tumor in 

patient [2–4]. The heterogeneous population in cancer tissues are thought to be 

the progeny of stem cell population resulting from self-renewal and 

differentiation. Coupled with the malignant tumorigenic potential, the stem cells 

have been termed as cancer stem cells (CSCs) generating functionally hierarchical 

structure in a tumor. 

There is a considerable evidence that many different cancers have a unique 

subpopulation of self-renewing cells that can generate the diverse tumor cells. 

CSCs were identified in brain, breast, prostate, head and neck, pancreas, liver, 

ovary, and colon cancers, by using different markers, such as CD133, EpCAM, 

CD44, CD24, Lgr5 and ALDH1. The question about the origin of CSC is still 

controversial. The leukemic stem cells were the first identified with the cell-

surface markers, CD34+ CD38- differentiating in vivo into leukemic blasts [2]. This 

particular approach led to emerge new studies which described tissue-specific 

markers for solid tumors. The phenotype associated with cancers including 

motility, invasion and chemo-/radio-resistance could be traced to CSCs. 

Metastasis through the activation of CXCR4 receptor was previously 

demonstrated by the migration of invasive CSCs defined with CD133 in 
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pancreatic cancer [5]. On the other hand, other studies attributed their metastatic 

potential to the epithelial-mesenchymal transition (EMT) events showing that 

differentiated cancer cells could turn into CSC-like mesenchymal cells [6]. 

CSCs is normally characterized as fraction of cancer cells that have ability 

for self-renewal, pluripotency and sustaining of the bulk of cancer. The best 

evidence for the existence of CSCs was demonstrated with cancer stem cells 

model that is derived from mouse induced pluripotent stem cells (miPSC). When 

miPSC are cultured in the presence of conditioned medium prepared from 

various cancer cell lines, it acquires the characters of CSCs with high 

tumorigenicity and stemness. We have evaluated miPS-LLCcm cells that were 

derived from miPSCs developed in the conditioned medium of Lewis lung 

carcinoma (LLC) [7]. This cancer stem cell model has the highly tumorigenic and 

angiogenic ability and also metastatic potential was observed when spheroid cells 

were injected into the mouse tail vein, multiple metastatic nodules were found in 

lung after one month.  

Adult somatic cells have been successfully reprogrammed to pluripotent 

stem cells (iPSCs) with the transduction of four transcription factors [8]. The 

differentiation potential of iPSCs is largely expected to develop multiple potential 

avenues for the regenerative therapy. Immune rejection of embryonic stem cells 

can be avoided by replacing these with iPSCs. However, the risks of potential 

tumor development and other unpredictable biological changes during 

transplantation are still unresolved. The cellular interaction of transplanted cells 

in the microenvironment has been reported important to obtain successful results 

in regeneration therapy [9]. 
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In this evidence, our hypothesis is that miPSCs are affected by the 

conditioned medium to become the miPS-CSCs through the post-transcriptional 

and translational or epigenetic regulations. It is a good model to study the 

behaviors of CSCs in primary tumor induction and metastasis.  

 

2.2. RESULTS 

2.2.1. Conversion of miPSCs into CSC-like cells with tumorigenic and 

metastatic potential 

 We have reported a model of CSC-like cells converted from miPSC by the 

exposure to the conditioned medium (CM) from various cancer cell lines [7,10,11]. 

The miPSCs used in the studies had GFP under the control of Nanog promoter 

wherein undifferentiated stem cells exhibit strong GFP expression and 

differentiated cells lose green fluorescence. miPSCs were found to be viable in the 

presence of conditioned medium even when the differentiation was allowed 

while they started differentiation and failed to survive beyond 10 days without 

CM. This scheme is briefly summarized in Figure 2.1A. After 4 weeks of treatment 

with CM, the survived and undifferentiated cells expressing GFP were named as 

miPS-LLCcm cells. The self-renewal of miPS-LLCcm cells, a specific character of 

undifferentiated stem cells, was also confirmed by sphere-forming assay as well 

as its differentiation potential was evident with highly adhesive fibroblast-like 

phenotype and loss of GFP expression (Figure 2.1B).  
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(A)        (B) 

      
Figure 2.1. Conversion of miPSCs into miPS-LLCcm (A) Summarized 

scheme of conversion of miPSCs into miPS-LLCcm and its tumorigenic and 

metastatic activity. (B) Converted miPSCs in adherent culture (top) and in 

suspension culture (bottom). 

The subcutaneous transplantation of miPS-LLCcm cells into 

immunocompromised Balb/c nude mice generated malignant tumor together 

with the metastasized nodule-like structures in the lung (Figure 2.2A and 2.2B). 

These tumors and lung nodules were subjected to primary cell culturing to isolate 

GFP expressing cells. The primary cultured cells from tumors was named as Ptdc 

cells and the cells from lung nodules was named as LMN cells. The Ptdc cells were 

subsequently transplanted to generate the secondary tumor again. In the 

subcutaneous injection of 106 cells, the growth of tumors was compared (Figure 

2.2C). The Ptdc cells showed the most rapid growth when compared to miPS-

LLCcm cells and miPSCs.  
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Figure 2.2. Tumorigenic and metastatic potential of miPS-LLCcm (A) 

Tumors and metastatic nodules in lungs generated by subcutaneously 

transplanted miPSCs, miPS-LLCcm cells and Ptdc cells into the Balb/c-nu 

mouse. Arrows in lung indicate the positions of nodules. (B) The histogram 

showed the average number of lung nodules for each of the three cells. (C) 

The sizes of tumors growing in 4-6 weeks. 

Primary cultures derived from the tumors were positive for GFP signal, 

confirming they were originated from miPS-LLCcm cells and not from host cells, 

and displayed sphere-forming activity suggesting they preserve stem-like 

characteristics (Figure 2.3A and 2.3B). miPS-LLCcm cells, Ptdc cells and LMN 

cells maintained the expression of endogeneous stemness markers, such as 
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Nanog, Oct3/4, Sox2 and Klf4 without LIF similar with the untreated miPSCs 

cultured in the presence of LIF (Figure 2.4). Therefore, the stemness can be 

maintained in the presence of CM and this conversion supports the establishment 

of CSC-like features. 

 

Figure 2.3. Primary cultured cells (A) Ptdc cells in adherent culture (top) and 

sphere formation in suspension culture (bottom) with the expression of GFP. 

(B) LMN cells in adherent culture (top) and sphere formation in suspension 

culture (bottom) with the expression of GFP. 
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Figure 2.4. Comparison of the expression levels of stemness markers by rt-

qPCR. a, miPSCs; b, miPS-LLCcm cells; c, Ptdc cells; d, LMN cells. 

Histological analysis of the tumor showed poorly differentiated phenotype, 

high nuclear to cytoplasmic ratio, micrometastasis and some epithelial ductal-like 

structure, which are the signs of malignancy (Figure 2.5A). Metastatic node-like 

structures were observed in the lung of the mice (Figure 2.5B). Untreated miPSCs 

tumor displayed teratoma like phenotype with various germ layers (Figure 2.5C). 

These observations confirmed the self-renewing and tumorigenic potential of 

miPS-LLCcm cells.  



CHAPTER 2 

 

33 

 

Figure 2.5. Histological analyses of allografts of miPS-LLCcm cells. (A) High 

nuclear to cytoplasmic ratio (a) and with the mass of undifferentiated cells 

(asterisks in (b)), granular epithelial structure (arrows in (c)) and 

micrometastasis (arrows in (d)). (B) Metastatic nodules-like tumor in the 

lung pulmonary tissue (left), in the lung tissue (middle), and in the chest 

(right). (C) Teratoma from untreated miPSCs showing the three germ layers: 

squamous epithelial tissue (asterisks) in ectoderm (left), muscle tissue in 

mesoderm (middle) and gland-like structures (asterisks) in endoderm 

(right). (A-C) H&E staining. 
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2.2.2. Characterization of miPS-LLCcm, Ptdc and LMN cells 

In order to further confirm the acquisition of CSC-like phenotype, we 

assessed the expression of the commonly known CSC markers, CD44 and ALDH1 

by rt-qPCR as well as immuno-histochemical analysis. (Figure 2.6A and 2.6B). The 

LMN and Ptdc cells showed the significantly higher expression of ALHD1 and 

CD44 than the miPSCs. The miPS-LLCcm derived tumor also showed the 

expression of these two markers.  
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Figure 2.6. The localization and expression of CSC markers. (A) IHC analysis 

showing the expression of CD44 and ALDH1 in the tumor of the miPS-

LLCcm cells. (B) The comparison of the expression of CD44 and ALDH1 the 

Ptdc and LMN cells with miPS-LLCcm by rt-qPCR analysis. ***P < .001, **P 

< .01, *P < .05. 

2.2.3. In vivo tumorigenic differentiation of miPS-LLCcm  

 MUC1 plays a crucial role in cancer progression and is considered as a 

suitable marker for the adenocarcinoma tumor phenotype [12]. Immuno-

histochemical analysis showed that tumor associated MUC1 expression was 

detected in tumor of miPS-LLCcm (Figure 2.7A). Mass of highly proliferating cells 

showed the expression of GFP as population of cells that are maintaining self-

renewal ability.  

 Ptdc cells showed the upregulation of both E-cadherin, an epithelial marker, 

and N-cadherin, a mesenchymal marker, as compared to miPS-LLCcm and LMN 

cells (Figure 2.7B and 2.7C). The expression of Snail, Slug, Twist1 and Twist2 were 

also upregulated in Ptdc cells suggesting the potential of epithelial-to-

mesenchymal transition (EMT) in Ptdc cells. 
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Figure 2.7. The localization and expression of EMT markers in miPS-LLCcm 

derived tumors. (A) Immuno-histochemical (IHC) analysis showed that 

ductal epithelial structure expressed MUC1 (left) and the undifferentiated 

mass of cells expressed the GFP (right). Comparison of the expression of (B) 

epithelial and mesenchymal markers (E-cadherin and N-cadherin) and (C) 

EMT markers in a, miPS-LLCcm cells; b, Ptdc cells and c, LMN cells. 
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2.3. MATERIALS AND METHODS 

2.3.1. Cell Culture 

Mouse Lewis Lung Carcinoma cell lines (LLC) were purchased from ATCC 

(USA) and maintained in DMEM (D5796 Sigma) medium containing 10% fetal 

bovine serum (FBS,Gibco,NY) and 100 U/ml penicillin/streptomycin 

(Wako,Japan). Mouse induced pluripotent stem cells (miPS, iPS-MEF-Ng-20D-17; 

Lot No.012, Fiken Cell Bank, Japan) were cultured in DMEM containing 15% FBS, 

0.1 mM NEAA (100X NEAA, Gibco, NY), 2mM L-Glutamine (Nacalai Tesque, 

Japan), 50U/ml of penicillin/streptomycin (P/S), 0.1 mM 2-mercaptoethanol 

(Sigma) and 1000 U/ml of Leukemia Inhibitory Factor (LIF, Millipore, MA) on 

feeder layers of mitomycin treated mouse embryonic fibroblast (MEF) cells 

(Reprocell, Japan). In the case of feeder-less, the miPS cells were cultured on 

gelation (0.1%) coated dishes. The expression of GFP and cell morphology was 

observed and photographed using Olympus IX81 microscope equipped with a 

light fluorescence device (Olympus, Japan).  

2.3.2. Conversion of miPSCs into the CSC-like cells 

According to the methods reported by Chen L and Kasai T et al., we cultured 

the miPSCs in the presence of conditioned medium of LLC cells [7]. Nanog-GFP 

reporter expression was used in miPSC cells and the expression of GFP reflects 

the maintenance of stemness [13]. LLC cells were cultured and prior to collecting 

conditioned medium, the cells were changed into 5% serum medium at 70-80% 

confluency. After 48hrs incubation, the conditioned medium (CM) from LLC cells 

was collected and filtered through a 0.22 µm filter (Millipore, Ireland). The 
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miPSCs were treated with the CM for 4 weeks and miPSCs were cultured in the 

presence or absence of LIF as controls. The miPSCs cultured under feeder-less 

conditions were treated with the CM in 1:1 ratio of miPS medium and CM for four 

weeks. 

2.3.3. Sphere Formation Assay  

To generate the spheroids, serum free medium (DMEM 97.5%, NEAA 1%, 

L-Glutamine 1%, 100X Pen/Strep 0.5%, 0.1 mM 2-mercaptoethanol, and Insulin-

transferrin-selenium-X 1/100 v/v (ITS-X, life technologies, CA) was used and 

single cells were plated on ultra-low attachment dishes (Corning incorporated, 

NY) at cell density of 1x104 cells/ml [14]. 

2.3.4. Animal experiments 

The plan of animal experiments was reviewed and approved by the ethics 

committee for animal experiments of Okayama University under the IDs OKU-

2013252, OKU-2014157, OKU-2014429 and OKU-2016078. All experiments were 

performed according to the Policy on the Care and Use of the Laboratory Animals, 

Okayama University. Nude mice (Balb/c-nu/nu, female, 4 weeks) were 

purchased CharlesRiver, Japan. Cells at 1x106 were suspended in 200 !l of HBSS 

(Hanks Balanced salt solution, Gibco, NY) and were subcutaneously transplanted 

into nude mice. 

2.3.5. Preparation of primary cell culture 

To prepare the primary culture from a mouse allograft, the tumor was 

excised and cut into small pieces (approximately 1 mm3) and washed in the 
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Hank’s buffered salt solution (HBSS) for three times. These pieces were 

transferred into a 15-ml tube with 4 ml of dissociation buffer prepared in PBS 

containing 0.25% trypsin, 0.1% collagenase, 20% KnockOut™ Serum Replacement 

(Gibco, NY), 1 mM of CaCl2 and incubated at 37°C for 40 mins. To terminate the 

digestion, 5 ml of DMEM containing 10% FBS was then added. The cellular 

suspension transferred into the new tubes and centrifuged at 1000 rpm for 5 mins. 

The cell pellet was suspended in 5 ml of HBSS, and centrifuged at 1000 rpm for 5 

min. The cell pellet was placed into an appropriate volume of miPS medium 

without LIF and the cell number was counted with hemocytometer. Then the cells 

at 5×105 were seeded per 60-mm dish. After a passage, the cells derived from 

mouse allografts were cultured in the presence of 1 !g/mL of puromycin for 24 

hours to remove the host derived cells.  

To prepare the primary culture from metastatic nodules in a lung, the lung 

tissue was excised and cut into small pieces (approximately 1 mm3) and washed 

in the HBSS for three times. And the same procedures with those for the cells from 

a tumor allograft were employed to prepare the cells.  Finally, the expression of 

GFP and cell morphology was observed and photographed using Olympus IX81 

microscope equipped with a light fluorescence device (Olympus, Japan).  

2.3.6. RNA extraction, cDNA synthesis and qPCR mRNA expression analysis 

Total RNA was extracted using RNAeasy Mini kit (QUIAGEN, Germany) 

according to the manufacturer's instructions and 1 !g of RNA was reverse 

transcribed using Superscript First strand kit (Invitrogen, CA). Quantitative real 

time PCR was performed with cycler 480 SYBR green I Master Mix (Roche, 
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Switzerland) according to manufacturer’s instructions. Primers used for qPCR are 

listed in Table 2.1. 

Table 2.1. List of Primers Used in the Experiments 

No Names Forward Primer Sequence Reverse Primer Sequence 

1 Nanog AGGGTCTGCTACTGAGATGCTCTG AACCCAAGCACGTATCAGGG 

2 Oct3/4 TCTTTCCACCAGGCCCCCGGCTC TGCGGGCGGACATGGGGAGATCC 

3 Sox2 TAGAGCTAGACTCCGGGCGATGA TTGCCTTAAACAAGACCACGAAA 

4 Klf4 GGACTTACAAAATGCCAAGGGGTG TCGCTTCCTCTTCCTCCGACACA 

5 CD44 AGAAAAATGGCCGCTACAGTATC TGCATGTTTCAAAACCCTTGC 

6 ALDH1 AACACAGGTTGGCAAGTTAATCA TGCGACACAACATTGGCCTT 

7 E-cadherin AACCCAAGCACGTATCAGGG GGGGTCTGTGACAACAACGA 

8 N-cadherin CCTTGCTTCAGGCGTCTGTG CTTGAAATCTGCTGGCTCGC 

9 Snail GGAGTTGACTACCGACCTTGC TGGAAGGTGAACTCCACACAC 

10 Slug GCCCTTAAAGGCACTAACGAG ATTCACGAAGGTGACGAGCC 

11 Twist1 GCCGGAGACCTAGATGTCATTGT TTAAAAGTGTGCCCCACGCC 

12 Twist2 CTCACGAGCGTCTCAGCTAC TTGTCCAGGTGCCGAAAGTC 

13 GADPH AACGGCACAGTCAAGGCCGA ACCCTTTTGGCTCCACCCTT 

 

2.3.7. Histological analysis and immunohistochemistry (IHC) 

Paraffin embedded tumor sections (5!m) were stained with Hematoxylin 

(Sigma Aldrich,USA ;0.5%) and Eosin Y (Sigma Aldrich, USA) (HE) for 

histological analysis. Primary antibodies and dilutions used for IHC were used as 

follows; anti-GFP antibody 1:200 (#2956, Cell Signaling, USA), anti-MUC1 
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antibody 1:100 (Abcam/ab15481, UK), anti-ALDH1 antibody 1:200 (Abcam/ 

ab52492, UK) and Anti-CD44 antibody 1:200 (Abcam/ ab24504, UK). 

2.3.8. Statistical analysis 

The data were analyzed using two-tailed student’s t-test and are presented 

as the mean ± standard deviation (SD) at least three-time determinations. A P-

values less than 0.05 was considered to be statically significant, while less than 

0.01 was highly significant. 

 

2.4. DISCUSSION 

The current study focused on the DNA methylation in the CSC model 

converted from iPSCs by the treatment with conditioned medium of cancer cells. 

By the treatment, miPSCs obtained the ability of unlimited growth and the 

capacity to maintain their stemness, while they were allowed to differentiate 

without LIF. The subcutaneous transplantation of the survived cells into the 

mouse formed malignant tumors and metastasized into lung tissues. Thus, we 

concluded that miPSCs should be converted into CSCs without any intended 

genetic manipulation. The immunohistochemical analysis revealed the 

heterogeneity of the tumors, in which miPS-LLCcm cells should on one hand 

maintain the undifferentiated population expressing GFP and differentiate on the 

other into adenocarcinoma phenotype expressing MUC1 while miPSCs 

developed benign teratoma showing the three germ-layers differentiation and the 

loss of undifferentiated phenotype. Furthermore, the cells from benign teratoma 
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cannot be maintained but the cells from tumors at primary site and metastatic 

nodules can be maintained in vitro.  

The heterogeneous phenotypes characterized by the expression of E-

cadherin and N-cadherin in the Ptdc cells should be implying the progression of 

cancer and metastatic potential of the tumor maintaining the plasticity of the 

transition between epithelial and mesenchymal states. Further study is required 

to confirm the cells are undergoing the EMT being involved in maintenance of 

stemness, invasiveness and metastasis of tumor cells. 

Recently our group generated CSC models converted from iPSCs with the 

aid of CM of various cancer cell lines such as human pancreatic carcinoma cell 

lines PK-8 cells and KLM-1 cells, human breast cancer cell lines T47D cells and 

BT549 cells, mouse carcinoma cell lines LLC cells, P19 cells, B16 cells and MC.E12 

cells [7,10,11]. In the conversion of pancreatic duct like adenocarcinoma (PDAC) 

like CSC model, there was no evidence relating to single point mutations even in 

Kras oncogene and its xenografts tumors showed the features of acinoductal 

metaplasia, pancreatic intraepithelial neoplasia and PDAC lesions[10]. We 

postulated that CSCs may be induced epigenetic changes without any known 

mutations. 

Premature termination of reprogramming were reported to result in tumor 

development in various tissues with undifferentiated dysplastic cells exhibiting 

global changes in DNA methylation at H19 DMRs identifying IGF-2 expression 

up-regulated in the tumor initiating cells [31]. Since the changes in DNA 

methylation was considered responsible for the conversion of iPSCs into CSCs, 

the patterns of DNA methylation were compared between the converted cells 
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(miPS-LLCcm cells), tumor derived cells (Ptdc cells and LMN cells) and miPSCs. 

As the results of bisulfite sequencing, we evaluated the list of epigenetically 

affected genes regarding to the DMRs in the miPS-LLCcm cells and Ptdc cells and 

LMN cells. Hypo- and hypermethylated genes were identified and 

hypomethylation was found overall superior to hypermethylation in all CSCs 

when compared to the parental cell line miPSCs. 

The analysis of KEGG pathways relating to hypomethylated genes revealed 

the several notable pathways important in cancers. Checking the expression of 

genes associated with these pathways, the expression of hypomethylated genes 

relating to PI3K-Akt pathway was found significantly high among those of the 

other genes. PI3K-Akt-mTOR signaling pathway has previously been reported as 

a key driver of carcinogenesis in several cancer types [32,33]. In this study, we 

found Pik3r5 (p101), which is a regulatory subunit of Pik3cg enzyme, as a 

hypomethylated and highly up-regulated gene relating to PI3K-Akt pathway. In 

the recent report, the evidence of PIK3CG as a potential oncogene were evaluated 

by analyzing the differential role each unit of PIK3CG, of which overexpression 

of the catalytic subunit PIK3CG (p110γ) or the regulatory subunit PIK3R5 (p101) 

leads to oncogenic cellular transformation and malignancy [34]. Therefore, the 

hypomethylation of Pik3r5 gene leading to the up-regulation is closely related to 

the activation/phosphorylation of AKT that is the downstream target molecule 

and Pik3cg should play a key role in carcinogenesis. In fact, the multiple myeloma 

cells derived from patients, the upregulation of PI3K components, in which 

PIK3CG has been proved to be a main regulator of cells adhesion and migration 

[35]. The PIK3CA gene has been reported to be hypomethylated in esophageal 

cancer cases when compared to the adjacent normal tissues [36]. On the other 
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hand, both Pik3r5 and Pik3cg were overexpressed resulting in the up-regulation 

of PI3K-gamma in the class IB PI3Ks, but not the PI3K-alpha in the class IA in our 

CSCs. Collectively, the activation of PI3K-Akt signaling pathway should 

significantly be relating with the conversion of miPSC into miPS-LLCcm cells 

resulting in the constitutive activation of Akt in Ptdc and LMN cells. 

According to the recent reports, the tumor cells produced a variety of 

molecules such as growth factors, cytokines and chemokines, which exhibited 

various effects such as on tumor growth and angiogenesis, providing them with 

various microenvironments [37,38]. In our study, we have successfully 

demonstrated the CSCs generated from iPSCs by the treatment with CM from 

cancer derived cells acquired the DNA hypomethylation.  

 

2.5. CONCLUSIONS 

Significant overall DNA hypomethylation during the conversion should 

lead to the activation of certain proto-oncogene, which represent the malignant 

conversion even without mutations. In this context, the hypomethylation might 

be considered to contribute to the progression and metastasis of the cancer stem 

cells. 
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ABSTRACT 

The tumors formed by subcutaneous injection of miPS-LLCcm cells that 

were converted from miPSCs, showed the structures with pathophysiological 

features consisting of undifferentiated and malignant phenotypes generally 

found in adenocarcinoma. Metastasis in the lung was also observed as nodule 

structures. Excising from the tumors, primary cultured cells from the tumor and 

the nodule showed self-renewal, differentiation potential as well as tumor 

forming ability, which are the essential characters of CSCs. Since this conversion 

is triggered only by the factor(s) contained in the conditioned medium, we have 

hypothesized that miPSCs are induced to cancer stem cells (CSCs) through 

epigenetic regulations without genetic modifications. We then characterized the 

epigenetic regulation occurring in the CSCs. By comparing the DNA methylation 

level of CG rich regions, the differentially methylated regions (DMRs) were 

evaluated in all stages of CSCs when compared with the parental iPSCs. In DMRs, 

hypomethylation was found superior to hypermethylation in the miPS-LLCcm 

cells and its derivatives. The hypo- and hypermethylated genes were used to 

nominate KEGG pathways related with CSC. As a result, several categories were 

defined in the KEGG pathways from which most related with cancers, significant 

and high expression of components was PI3K-AKT signaling pathway. 

Simultaneously, the AKT activation was also confirmed in the CSCs. The PI3K-

Akt signaling pathway should be an important pathway for the CSCs established 

by the treatment with conditioned medium of LLC cells. 
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3.1. INTRODUCTION 

Genetic mutation in tumor suppressors and oncogenic drivers have been 

widely described in the subsets of cancer patients. Mutation hypothesis is not only 

the sole reason of malignancy but also the epigenetic abnormalities have been 

involved in the tumorigenesis.  Without changing in DNA sequence, the ability 

to change the expression of genes is the primary role of epigenetic regulation. 

Recent reports determined that epigenetic mechanisms, such as DNA 

methylation, can be involved in stem-cell maintenance and in the regulation of 

differentiation of stem cells [1,2]. Transcriptional silencing of tumor suppressor 

genes by promoter DNA hypermethylation is frequently found in human 

carcinogenesis [3]. However, hypomethylation was thought to be the epigenetic 

changes found in the early stages of carcinogenesis. Hepatocellular carcinoma 

lines that had been transformed with chemical carcinogens showed an aberrant 

hypomethylation of endogenous DNA during neoplastic transformation [4]. The 

global methylation difference between normal tissues and tumors showed that 

overall global hypomethylation is involved in oncogenesis or tumor progression 

[5]. 

It is well known that DNA methylation is one of the epigenetic 

modifications of DNA in all unicellular and multicellular organisms, associated 

with cell differentiation and proliferation [6]. Differentially methylated regions 

(DMRs) are stretches of DNA in the genome at which multiple adjacent CpG sites 

show differential methylation when comparing between two samples [7]. 

Growing evidences have shown that in many cancers, global DNA methylation 

changes contribute to alter gene expression programs, genomic instability, and 
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facilitate genetic mutations [8–10]. Most of researches in DNA methylation 

analyses have focused on aberrant methylation at the promoter, CpG rich and 

enhancer regions of related genes [11]. 

Recently, we demonstrated that the microenvironment of cancer cells can 

affect stem cells to convert iPSCs into CSC-like cells, with tumorigenic capacity as 

well as self-renewal and differentiation potential. In the present study, we tried 

to prove our hypothesis that epigenetic alterations can induce CSCs from normal 

stem cells in the tumor microenvironment. 

3.2. RESULTS 

3.2.1. Global DNA methylation analysis in Cancer Stem-like Cells  

We analyzed the global DNA methylation status of miPS-LLCcm and its 

derivatives and used miPSC as control. After filtering low quality reads from raw 

RRBS sequencing data, we generated 4.9, 4.3, 3.9, 3.7 clean Gb of paired-end 

sequence data of miPSC, miPS-LLCcm, Ptdc, and LMN cells respectively [Table 

S1]. After filtering, clean reads were mapped to the reference sequence using 

BSMAP and the genome. From the clean reads 4.9, 4.3, 3.9, 3.7 Gb, uniquely 

mapping rate (77.15%, 74.82%, 75.9% and 77.79% respectively) were successfully 

aligned to the reference genome (mm10, GRC38 mouse), providing an average 

12.02X, 11.7X, 8.9X, and 8.58X sequencing depth. The coverage of sequencing in 

all samples were 68.707%, 68.176%, and 663.969% and 62.886% of whole genome. 

The quality control items of sequencing data are corresponding to Table S2. 

According to the sequence context of cytosine in the DNA sequence, it can 

be classified into three types, CG, CHG and CHH (H=A, G, or T). The decreasing 
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line in Figure S1 reveled the range of effective sequencing depth of cytosine. 

These RRBS products cover the most number of promoters and CpG island of 

target regions, here we list the covered information include total number in 

genome, theoretical value in target region and the actual value which are covered 

by at least 5 CGs [Table 3.1] [Figure S2]. 

Table 3.1. Covered Promoter and CGI number of target regions 

 

 

 

 

The coverage of methyl-cytosines were occurred in two featured regions; 

promoter and CpG island, the data for proportion of total methyl-cytosine was 

shown in Table S3. Among the methylated cytosine contexts, percentage of CG 

methylation pattern support the enough coverage. In the case of the proportions 

of methyl-cytosine pattern, mCG was the most common in both regions of all 

samples. Average Methylation level of each sample is shown in Table S4 and 

determined by the reads which covered in cytosine, it was also equal the mC/C 

ratio at each reference cytosine. Methylation status of CG, CHG and CHH differ 

among species and even varies with different conditions concerning time, space 

and physiology within a single organism. The distribution of methyl-cytosine was 

analyzed according to methylation level, demonstrating that the different 

patterns were observed in four different stages of CSC model [Figure S3]. 

 PROMOTER CGI 
Whole Genome 24,445 16,023 
Target Region 13,287 14,198 
miPSC 9,368 11,719 
miPSC_LLCcm 9,410 11,949 
Ptdc cells 4,938 7,277 
LMN Cells 5,181 7,687 
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3.2.2.  Analysis of the differentially methylated regions (DMRs) in the cancer 

stem cell model converted from iPSCs 

Epigenetic alterations have been attributed to play an important role in 

carcinogenesis. Methylation and demethylation is generally considered to silence 

and activate gene expression, respectively. However, the epigenetic changes in 

early stages of cancer development in this research has not yet been assessed. 

Since the 4-week treatment of iPSCs with LLC-CM appears to be the main source 

of conferring the potential of CSCs to generate miPS-LLCcm, we hypothesized 

that altered epigenetic regulation rather than gene mutations, may perform an 

essential role in this conversion process. Sliding-window approach identified 

differentially methylated regions (DMRs), which contains at least five CG sites. 

The methylation levels were significantly different between the samples when 

assessed by Fisher test (P <0.05). 

We compared the methylation in miPS-LLCcm, LMN and Ptdc cells with 

that in miPSC by three sets; (1) miPSCs vs. miPS-LLCcm cells, (2) miPSCs vs. Ptdc 

cells and (3) miPSCs vs. LMN cells. From these three comparisons, 926, 583 and 

1105 DMRs were identified respectively (Figure 3.1A-3.1C and Table 3.2). All 

DMRs between the different cell populations were found to exhibit 

hypomethylation as compared to miPSCs (Figure 3.2). 
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(A) 

      

(B) 

    

(C) 

    

 

Figure 3.1. DMR in each chromosome and methylation pattern changes 

(Hyper and Hypomethylated DMRs) (A) miPSCs Vs miPS-LLCcm cells (B) 

miPSCs Vs Ptdc cells (C) miPSCs Vs LMN cells. 
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Table 3.2. Number and length of DMRs in each comparison with distribution 

in each chromosome 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 3.2. Relative DNA methylation levels of DMRs when miPS-LLCcm 

cells, Ptdc cells and LMN clells compared to miPSCs. miPSCs vs miPS-

LLCcm cells (left), miPSCs vs Ptdc cells (middle) and miPSCs vs LMN cells 

(right).  

#Chr 

miPSCs Vs miPS-
LLCcm cells 

miPSCs Vs Ptdc 
cells 

miPSCs Vs LMN 
cells 

DMR 
number 

DMR 
length 

DMR 
number 

DMR 
length 

DMR 
number 

DMR 
length 

chr1 90 22576 51 14197 83 23430 
chr2 57 15754 43 12381 79 22178 
chr3 49 12193 17 4575 32 8717 
chr4 58 14374 39 10165 86 23431 
chr5 66 17269 48 11344 75 21109 
chr6 38 9749 29 8886 35 10530 
chr7 76 18897 50 14132 85 23809 
chr8 73 18255 31 8643 86 23922 
chr9 45 11617 20 5377 45 12762 
chr10 37 10686 32 7642 55 14107 
chr11 84 22756 54 14689 115 33193 
chr12 31 8340 20 4956 32 8975 
chr13 26 7471 24 7108 41 11191 
chr14 24 5650 16 4445 35 8621 
chr15 46 11328 20 5208 52 13480 
chr16 26 6278 19 4440 35 8311 
chr17 47 11768 20 6246 47 14115 
chr18 18 4935 16 4820 31 9282 
chr19 20 5025 21 6078 35 10283 
chrX 15 3763 9 2505 16 4616 
chrY 0 0 4 734 5 1253 
chrM 0 0 0 0 0 0 

Total 926 238684 583 158571 1105 307315 
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DMRs-associated genes were further identified and segregated into hypo- 

and hyper-methylated genes categories (Dataset S2A,B, S3A,B, S4A,B). To 

validate whether the genes with DMRs were enriched for certain pathways, we 

performed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis 

for the hypomethylated genes in miPS-LLCcm, Ptdc and LMN cells. According 

the numbers of hypomethylated genes involved in the pathway, the top 15 KEGG 

pathways were nominated (Figure 3.3A and 3.3C and Table S5-S7) (Dataset S2C, 

S3C, S4C). We then selected the pathways most relevant for carcinogenesis 

including Focal adhesion, PI3K-Akt signaling pathway, Calcium signaling 

pathway, Pathway in cancer and Transcriptional misregulation in cancer. 
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Figure 3.3. KEGG pathways nominated with the number of hypomethylated 

genes (A) miPSCs vs. miPS-LLCcm cells, (B) miPSCs vs. Ptdc cells (C) 

miPSCs vs. LMN cells. 

 

3.2.3. Overexpression of PI3K-Gamma Candidates in the Model were Relating 

to Oncogenic Potential 

To evaluate the up-regulated expression of the hypomethylated genes in 

the pathway selected above, we performed rt-qPCR analysis on the miPS-LLCcm 

cells together with the Ptdc and LMN cells. As the results, the expression of 11 

genes were found up-regulated in miPS-LLCcm cells when compared to miPSCs 

(Figure 3.4). Among the candidates, Pik3r5 (p101) showed significantly high 

expression in all the cells. Recent reports have suggested that the overexpression 

of the catalytic subunit Pik3cg (p110γ) or the regulatory subunit Pik3r5 leads to 

oncogenic cellular transformation and malignancy [12]. These two subunits are 

class IB PI3Ks and considered to make a heterodimer of PI3K-gamma. We 

assessed the expression levels of Pik3cg and Pik3ca, which were class IB and class 

IA PI3Ks, in the miPS-LLCcm, Ptdc and LMN cells. As the result, Pik3cg showed 

significantly higher expression (P <0.01) than that of Pik3ca (Figure 3.5A). 
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Figure 3.4. Expression of hypomethylated genes significant in KEGG-

pathway related to cancer. rt-qPCR analyses of the candidate 

hypomethylated genes. 

3.2.4. PI3K-Akt Activation Drives iPSC-CSCs Model 

The up-regulated expression of Pik3r5 should induce the activation of Akt 

resulting in the onset of tumorigenicity and metastatic potential of miPS-LLCcm 

cells and Ptdc cells. Based on the evaluation in rt-qPCR, the constitutive 

expression of Pik3r5 was detected by immunoblotting with anti-p101 antibody in 

miPS-LLCcm and its derivatives (Figure 3.5B). Akt activation was simultaneously 

assessed by Western blotting with anti-phosphorylated Akt (p-Akt) antibody. We 

found Akt was constitutively activated in miPS-LLCcm, Ptdc and LMN cells 

(Figure 3.5B). In miPSCs, Akt was weakly activated in the presence of LIF but not 

in the absence of LIF. Taking these into consideration, the hypomethylation 

should lead to overexpress PI3K-gamma to enhance PI3K-Akt pathway in CSC-
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like cells without mutations in the open reading frames of DNA (Figure S4). These 

findings are consistent with the PI3K-Akt pathway as recognized one of the most 

frequent signaling pathway enhanced in human cancers [13]. 

 

Figure 3.5. Evaluation of the candidate signaling pathway nominated by 

the KEGG analysis. (A) rt-qPCR analyses of Pik3cg (top) and Pik3ca 

(bottom); ***P < .001, **P < .01, *P < .05. (a, miPSCs; b, miPS-LLCcm cells; c, 

Ptdc cells; d, LMN cells). (B) Immunoblotting analysis of AKT activation 

and the expression of Pik3r5.  

 

3.3. MATERIALS AND METHODS 

3.3.1. RRBS DNA methylation analysis 

The RRBS methylation analysis was performed by the BGI sequencing 

company. Extraction of DNA was carried out by QIAamp DNA Mini Kit 
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(QUIAGEN, Germany) according to manufacturing protocol. For RRBS library 

constructing, the DNA samples were digested with restriction enzyme after 

checking the sample quality test. This is followed by DNA-end repair, 3'-dA 

tailing, adapter ligation and size selection were carried out for fragments between 

40 and 220 bps in length. Finally, bisulfite treatment was carried out with ZYMO 

EZ DNA Methylation-Gold kit (Zymo Research, USA) and converted fragments 

were amplified by PCR and the prepared RRBS library were further sequenced 

for the analysis.  

RRBS libraries were sequenced on Illumina HiSeq 4000 using the PE100 

sequencing strategy. Data filtering was performed to remove adaptor sequences, 

contamination and low-quality reads. The low-quality reads mean that the ratio 

of unknown base (N) is over 10 % and the ratio of quality less than 20 bases over 

10%. After filtering the remaining reads are called clean reads and stored as 

FASTQ format. The clean reads were mapped to the reference sequence (mm10) 

using BSMAP in which the mapping rate and bisulfite conversion rate of each 

sample is calculated [14].  

Methylation level (!") is determined by the reads which covered in cytosine, 

it was also equal the mC/C ratio of each reference cytosine [15,16]. The formula 

was as following; 

!" = $"
$" + $&"

∗ 100 

($" represents the reads number of mC, while $&" represents the reads number 

of non-methylation reads.) 
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Putative DMRs were identified by comparison of the sample1 and sample 2 

methylomes using windows that contained at least 5 CpG (CHG or CHH) sites 

with a 2-fold change in methylation level and Fisher test pvalue<0.05. Two nearby 

DMRs would be considered interdependent and joined into one continuous DMR 

if the genomic region from the start of an upstream DMR to the end of a 

downstream DMR also had 2-fold methylation level differences between sample 

1 and sample 2 with a pvalue<0.05. Otherwise, the two DMRs were viewed as 

independent. After iteratively merging interdependent DMRs, the final dataset of 

DMRs was made up of those that were independent from each other [17]. The 

DMR related genes was annotated with UCSC table browser tool [18,19]. 

3.3.2. KEGG Pathway Enrichment 

Pathway-based analysis helps to further understand genes biological 

functions. DAVID bioinformatics resources is used to analyze the pathway 

enrichment of DMR -related genes [20–22]. This analysis identifies significantly 

enriched metabolic pathways or signal transduction pathways in DMR -related 

genes comparing with the target regions background. 

3.3.3. Western Blotting 

The whole lysates of cells cultured in various conditions subjected to sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The protein concentration in 

whole cell lysates was determined by BCA protein assay kit (Thermo Scientific;23235, 

USA). The protein was transferred from gel to polyvinylidene difluoride (PVDF) 

membrane (Merck Millipore, Germany) and probed with Antibodies against anit-Akt and 

anit-p-Akt (Ser473), anit-p110γ (D55D5), anit-p101 (D32A5) (Cell Signaling 
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Technology, USA) at a 1:1000 dilution followed by horseradish peroxidase-conjugated 

secondary antibodies (1: 2,000-1: 5,000, Cell signaling Technology).  In -LIF experiment, 

miPSCs were cultured in miPSC medium without LIF for 6 hours before protein 

extraction. Immune-complex signals were developed with an ECL kit (PerkinElmer Inc., 

USA) and detected by Light Capture II (ATTO, Japan). 

3.3.4. RNA extraction, cDNA synthesis and qPCR mRNA expression analysis 

Total RNA was extracted using RNAeasy Mini kit (QUIAGEN, Germany) according 

to the manufacturer's instructions and 1 μg of RNA was reverse transcribed using 

Superscript First strand kit (Invitrogen, CA). Quantitative real time PCR was performed 

with cycler 480 SYBR green I Master Mix (Roche, Switzerland) according to 

manufacturer’s instructions. Primers used for qPCR are listed in Table 3.3. 

Table 3.3. List of Primers Used in the Experiments 

No Names Forward Primer Sequence Reverse Primer Sequence 

1 TCF7 GCGCGGGATAACTACGGAAA ACTGTCATCGGAAGGAACGG 

2 Epas1 AGACACCCCAGGGAACACTA TCACTGAAGTCCGTCTGGGT 

3 HDAC1 CTGTGAACTACCCACTGCGA TGGCGTGTCCTTTGATGGTC 

4 Cs2fra GTCCTCAACTCCACGGGTCA CTCGAGCGCCTTCGTAGC 

5 Wnt11 ACACTGTAAACAGCTGGAGGG CGTGTACCTCTCTCCAGGTCAA 

6 Abl1 ATCTCAGATGAGGTGGAGAAGG GTGTCAGGCGCATCTTTCTG 

7 CCND3 GATTCTGCACCGCCTGTCTC GATACATCGCAAAGGTGTAATCTGT 

8 Pik3ap1 GAAGGCCATTTCTGAAGATTCTGG TCTCGTCCAGCTTGCATCTC 

9 Thsb4 CCCAGCTGGACACTGACAAA TCCTACCCCGTCATTGTTGC 

10 Phllp1 GCCTGGAGCTGCTCAATAAC CTCTCGGTTGTCACGGAAGT 
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11 Pik3r5 AAGTCCTTTGTCAGCAGTCCC CTGGTAAACCTGCAGCAACAC 

13 GADPH AACGGCACAGTCAAGGCCGA ACCCTTTTGGCTCCACCCTT 

 

3.3.4. STATISTICAL ANALYSIS 

The data were analyzed using two-tailed student’s t-test and are presented as the 

mean ± standard deviation (SD) at least three-time repetition. A P-values less than 

0.05 was considered to be statically significant, while less than 0.01 was highly 

significant. 

 

3.4. DISCUSSION 

The current study focused on the DNA methylation in the CSC model 

converted from iPSCs by the treatment with conditioned medium of cancer cells. 

In the conversion of pancreatic duct like adenocarcinoma (PDAC) like CSC model, 

there was no evidence relating to single point mutations even in Kras oncogene 

and its xenografts tumors showed the features of acinoductal metaplasia, 

pancreatic intraepithelial neoplasia and PDAC lesions[23]. We postulated that 

CSCs may be induced by epigenetic changes without any known mutations. 

Premature termination of reprogramming was reported to result in tumor 

development in various tissues with undifferentiated dysplastic cells exhibiting 

global changes in DNA methylation at H19 DMRs identifying IGF-2 expression 

up-regulated in the tumor initiating cells [24].  

Since the changes in DNA methylation was considered responsible for the 

conversion of iPSCs into CSCs, the patterns of DNA methylation were compared 
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between the converted cells (miPS-LLCcm cells), tumor derived cells (Ptdc cells 

and LMN cells) and miPSCs. As the results of bisulfite sequencing, we evaluated 

the list of epigenetically affected genes regarding to the DMRs in the miPS-LLCcm 

cells and Ptdc cells and LMN cells. Hypo- and hypermethylated genes were 

identified and hypomethylation was found overall superior to hypermethylation 

in all CSCs when compared to the parental cell line miPSCs. 

The analysis of KEGG pathways relating to hypomethylated genes revealed 

the several notable pathways important in cancers. Checking the expression of 

genes associated with these pathways, the expression of hypomethylated genes 

relating to PI3K-Akt pathway was found significantly high among those of the 

other genes. PI3K-Akt-mTOR signaling pathway has previously been reported as 

a key driver of carcinogenesis in several cancer types [25,26]. In this study, we 

found Pik3r5 (p101), which is a regulatory subunit of Pik3cg enzyme, as a 

hypomethylated and highly up-regulated gene relating to PI3K-Akt pathway. In 

the recent report, the evidence of PIK3CG as a potential oncogene were evaluated 

by analyzing the differential role each unit of PIK3CG, of which overexpression 

of the catalytic subunit PIK3CG (p110γ) or the regulatory subunit PIK3R5 (p101) 

leads to oncogenic cellular transformation and malignancy [27]. Therefore, the 

hypomethylation of Pik3r5 gene leading to the up-regulation is closely related to 

the activation/phosphorylation of AKT that is the downstream target molecule 

and Pik3cg should play a key role in carcinogenesis. In fact, the multiple myeloma 

cells derived from patients, the upregulation of PI3K components, in which 

PIK3CG has been proved to be a main regulator of cells adhesion and migration 

[28]. The PIK3CA gene has been reported to be hypomethylated in esophageal 

cancer cases when compared to the adjacent normal tissues [29]. On the other 
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hand, both Pik3r5 and Pik3cg were overexpressed resulting in the up-regulation 

of PI3K-gamma in the class IB PI3Ks, but not the PI3K-alpha in the class IA in our 

CSCs. Collectively, the activation of PI3K-Akt signaling pathway should 

significantly be relating with the conversion of miPSC into miPS-LLCcm cells 

resulting in the constitutive activation of Akt in Ptdc and LMN cells. 

According to the recent reports, the tumor cells produced a variety of 

molecules such as growth factors, cytokines and chemokines, which exhibited 

various effects such as on tumor growth and angiogenesis, providing them with 

various microenvironments [30,31]. In our study, we have successfully 

demonstrated the CSCs generated from iPSCs by the treatment with CM from 

cancer derived cells acquired the DNA hypomethylation.  

3.5. CONCLUSION 

Significant overall DNA hypomethylation during the conversion should 

lead to the activation of certain proto-oncogene, which represent the malignant 

conversion even without mutations. In this context, the hypomethylation might 

be considered to contribute to the progression and metastasis of the cancer stem 

cells. 
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Figure S1. Cumulative distribution of effective sequencing depth of 

cytosine. X axis represents the effective sequencing depth of C base 

while Y axis represents the cumulative percentage of C base at a 

certain sequencing depth.  
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Figure S2. The proportion of mCG, mCHG, and mCHH. Proportion 

of different methyl-cytosine patterns. The pie graph has three colors, 

each color represents one methylation type (mCG, mCHG, mCHH), 

and the area represent the proportion of the mC. 
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Figure S3. Methylation level distribution in CGI of four different 

stages of CSC cells, A. miPSC, B. miPS_LLCcm C. Primary Tumor 

Cells and D. Lung Nodules Cells. 
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Figure S4. Trace data of codons in Pik3ca and Pten cDNA from miPSCs, 

miPS-LLCcm cells and Ptdc cells and LMN cells. The sequencing was 
carried out to cover the positions of codons that are frequently found 

mutated in human cancers, of the genes related to PI3K-Akt signaling 
pathway.  (A) The sequencing of Pik3ca cDNA showed that there is no 

point mutation at the codons of 542E, 545E and 1047H in all cells. (B) The 
sequencing of Pten cDNA showed that there is no point mutation at the 

codons of 130R, 173R and 233R in all cells. (DNA sequencing and position 
of the codons are shown at the top. Names of the cells are indicated on the 

left.) 
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Table S1. Data Summary and QC 

Samples Fragment 
Length (bp) 

Sequencing 
Strategy 

Clean Reads 
No. 

Clean Data 
Size (bp) 

Clean 
Rate (%) 

miPSCs 40~220 PE100 49108448 4910844800 68.01 
miPSC_LLCcm 40~220 PE100 43937308 4393730800 52.25 
Ptdc cells 40~220 PE100 39970510 3997051000 53.56 
LMN cells 40~220 PE100 37446394 3744639400 56.22 
Clean Rate (%) = Clean Data Size (bp)/Raw Data Size (bp) 

 

Table S2. Alignment statistics with reference genome 

 
 
Table S3. Proportion of mCG, mCHG and mCHH 

 
 
Table.4 Average methylation level of mC 

Elements Sample mC mCG mCHG mCHH 

promoter miPSC 40.284 34.435 51 77.191 

promoter LMT 31.599 19.609 73.415 89.364 

promoter Primary 31.812 21.657 65.687 84.684 

promoter miPSC_LLCcm 36.447 27.234 60.194 85.299 

CGI miPSC 25.096 19.885 34.435 72.689 

CGI LMT 21.944 12.049 40.52 82.521 

CGI Primary 30.165 18.334 75.403 88.583 

CGI miPSC_LLCcm 20.431 14.563 28.361 58.732 

 

 

Samples Clean 
Reads 

Mapped 
Reads 

Mapping 
Rate (%) 

Uniquely 
Mapped 

Reads 

Uniquely 
Mapping 
Rate (%) 

Enzyme 
Digestion 

Efficiency (%) 
miPSC 49108448 44488548 90.59 37885255 77.15 33.783 

miPSC_LLCcm 43937308 38450620 87.51 32873456 74.82 39.441 
Primary 39970510 36058878 90.21 30337853 75.9 57.898 

LMT 37446394 34785507 92.89 29131403 77.79 65.552 

 

in Promoter in CGI 

mCG mCHG mCHH mCG mCHG mCHH 

miPSC 
mC number 9310 896 2556 21144 2199 5254 

Proportion (%) 72.932 7.026 20.042 73.938 7.69 18.373 

miPS_LLCcm 
mC number 6703 832 2173 14846 2059 5026 
Proportion (%) 69.046 8.57 22.384 67.694 9.389 22.917 

Ptdc Cells mC number 3713 304 805 7550 871 2108 
Proportion (%) 77.001 6.304 16.694 71.707 8.272 20.021 

LMN Cells 
mC number 3310 278 827 6800 793 2099 
Proportion (%) 74.972 6.297 18.732 70.161 8.182 21.657 
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Table S5.  KEGG pathway analysis on hypomethylated DMR-associated 

genes (miPSCs Vs miPS-LLCcm cells) 

Category Term Count % PValue Genes 

KEGG_PATHWAY PI3K-Akt signaling pathway 17 4.009 0.00176 

FGFR2, PHLPP1, COL4A3, COL4A2, COL4A1, PDGFA, ITGA11, ITGB4, NR4A1, 

EPHA2, VWF, CCND3, ITGB6, PIK3R5, PIK3AP1, NGFR, THBS4 

KEGG_PATHWAY Pathways in cancer 17 4.009 0.00592 

FGFR2, COL4A3, TCF7, COL4A2, COL4A1, EPAS1, APC2, PDGFA, HDAC1, ADCY9, 

PLCG2, PTCH1, PIK3R5, WNT11, ABL1, CSF2RA, TRAF3 

KEGG_PATHWAY Focal adhesion 13 3.066 0.00090 

VWF, COL4A3, COL4A2, COL4A1, CCND3, PDGFA, ITGB6, ITGB4, ITGA11, 

PIK3R5, VAV2, PXN, THBS4 

KEGG_PATHWAY Calcium signaling pathway 11 2.594 0.00328 

GRM5, P2RX4, ADCY9, ERBB4, PDE1C, PLCG2, RYR1, PLCD3, CACNA1G, PLCD1, 

CAMK2B 

KEGG_PATHWAY ECM-receptor interaction 9 2.123 0.00036 VWF, COL4A3, COL4A2, COL4A1, ITGB6, ITGB4, ITGA11, SDC4, THBS4 

KEGG_PATHWAY Axon guidance 9 2.123 0.00432 ABLIM2, UNC5B, UNC5A, RGS3, NTNG1, ABL1, NTN1, EPHA2, EPHB2 

KEGG_PATHWAY Oxytocin signaling pathway 9 2.123 0.01404 

KCNJ6, ADCY9, RYR1, NPR1, PIK3R5, CAMK2B, CACNA2D2, CAMKK2, 

CACNA2D4 

KEGG_PATHWAY Proteoglycans in cancer 9 2.123 0.05150 ANK1, ERBB4, PLCG2, PIK3R5, WNT11, PTCH1, CAMK2B, SDC4, PXN 

KEGG_PATHWAY Regulation of actin cytoskeleton 9 2.123 0.06603 FGFR2, APC2, PDGFA, ITGB6, ITGB4, ITGA11, PIK3R5, VAV2, PXN 

KEGG_PATHWAY 

Aldosterone synthesis and 

secretion 8 1.887 0.00164 DAGLA, ADCY9, HSD3B5, CACNA1G, NPR1, NR4A1, CAMK2B, PRKCE 

KEGG_PATHWAY 

Transcriptional misregulation in 

cancer 8 1.887 0.04940 ERG, CEBPE, HDAC1, PDGFA, SUPT3, NGFR, FCGR1, KLF3 

KEGG_PATHWAY 

Arrhythmogenic right ventricular 

cardiomyopathy (ARVC) 7 1.651 0.00291 TCF7, DES, ITGB6, ITGB4, ITGA11, CACNA2D2, CACNA2D4 

KEGG_PATHWAY Dilated cardiomyopathy 7 1.651 0.00629 DES, ADCY9, ITGB6, ITGB4, ITGA11, CACNA2D2, CACNA2D4 

KEGG_PATHWAY 

Thyroid hormone signaling 

pathway 7 1.651 0.02589 HDAC1, PLCG2, ATP1A3, PLCD3, MED24, PLCD1, PIK3R5 

KEGG_PATHWAY 

Inflammatory mediator regulation 

of TRP channels 7 1.651 0.04095 ADCY9, P2RY2, ASIC4, PLCG2, PIK3R5, CAMK2B, PRKCE 

 
 
Table S6.  KEGG pathway analysis on hypomethylated DMR-associated 
genes (miPSCs Vs Ptdc cells) 

Category Term Count % PValue Genes 
KEGG_PATHWAY Metabolic pathways 18 5.901639344 0.403807798 PLD2, ME3, ALPPL2, KL, ALOX12E, HKDC1, CYP2J6, SGMS1, AGMAT, 

GGT5, GALM, SCLY, PYGL, PLCH2, MGAM, ATP6V0A1, FUK, ABO 
KEGG_PATHWAY Calcium signaling pathway 10 3.278688525 3.49E-04 P2RX4, ADCY4, ATP2A3, PDE1C, CACNA1G, GNAS, CAMK2B, 

CACNA1S, PTAFR, F2R 
KEGG_PATHWAY cAMP signaling pathway 8 2.62295082 0.010549721 PLD2, ADCY4, FFAR2, GNAS, CAMK2B, RAPGEF3, CACNA1S, F2R 
KEGG_PATHWAY Neuroactive ligand-receptor 

interaction 8 2.62295082 0.06103172 P2RX4, CHRM4, GRIK3, RXFP2, NPFFR1, PTAFR, CTSG, F2R 
KEGG_PATHWAY PI3K-Akt signaling pathway 8 2.62295082 0.140484875 VWF, COL4A3, YWHAG, PIK3AP1, NGFR, FGF1, F2R, ITGA2B 
KEGG_PATHWAY Pathways in cancer 8 2.62295082 0.215920682 COL4A3, ADCY4, PPARD, GNAS, FGF1, CSF2RA, F2R, ITGA2B 
KEGG_PATHWAY Oxytocin signaling pathway 7 2.295081967 0.013014035 ADCY4, KCNJ6, CACNB2, GNAS, CAMK2B, CACNA1S, MAP2K5 
KEGG_PATHWAY Rap1 signaling pathway 7 2.295081967 0.047927182 ADCY4, GNAS, RAPGEF3, NGFR, FGF1, F2R, ITGA2B 
KEGG_PATHWAY Glutamatergic synapse 6 1.967213115 0.013458719 PLD2, ADCY4, GRIK3, GNAS, SHANK1, SHANK2 
KEGG_PATHWAY Serotonergic synapse 6 1.967213115 0.023071277 KCNJ6, ALOX12E, CYP2J6, GNAS, RAPGEF3, CACNA1S 
KEGG_PATHWAY Adrenergic signaling in 

cardiomyocytes 6 1.967213115 0.037206634 ADCY4, CACNB2, GNAS, CAMK2B, RAPGEF3, CACNA1S 
KEGG_PATHWAY Dilated cardiomyopathy 5 1.639344262 0.018881129 ADCY4, CACNB2, GNAS, CACNA1S, ITGA2B 
KEGG_PATHWAY Aldosterone synthesis and 

secretion 5 1.639344262 0.021223303 ADCY4, CACNA1G, GNAS, CAMK2B, CACNA1S 
KEGG_PATHWAY Insulin secretion 5 1.639344262 0.021223303 ADCY4, FFAR1, GNAS, CAMK2B, CACNA1S 
KEGG_PATHWAY GABAergic synapse 5 1.639344262 0.022041932 PLCL1, ADCY4, KCNJ6, CACNA1S, NSF 
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Table S7.  KEGG pathway analysis on hypomethylated DMR-associated 
genes (miPSCs Vs LMN cells) 

Category Term Count % PValue Genes 
KEGG_PATHWAY PI3K-Akt signaling pathway 22 3.716216216 6.25E-05 FGFR2, PPP2R5D, ITGB4, NR4A1, EPHA2, ITGA9, YWHAG, LAMB3, LAMB2, VEGFA, 

GYS1, PDGFRB, CREB3L1, PIK3AP1, PIK3R5, NGFR, COL1A1, THBS1, ANGPT2, ITGA2B, 

FN1, F2R 
KEGG_PATHWAY Rap1 signaling pathway 15 2.533783784 4.55E-04 FGFR2, GNAO1, GRIN2A, EPHA2, VEGFA, PDGFRB, GNAS, RAPGEF4, PIK3R5, RAPGEF3, 

NGFR, THBS1, ANGPT2, ITGA2B, F2R 
KEGG_PATHWAY Pathways in cancer 15 2.533783784 0.079528386 FGFR2, PPARD, LAMB3, LAMB2, VEGFA, WNT9B, MAPK9, PDGFRB, GNAS, PIK3R5, 

ABL1, CSF2RA, ITGA2B, FN1, F2R 
KEGG_PATHWAY Axon guidance 14 2.364864865 8.69E-06 NTNG2, SLIT1, EPHB1, EPHA2, SLIT3, EPHB2, NCK2, SEMA5B, UNC5B, EPHA8, NFATC4, 

ROBO3, ABL1, NFATC2 
KEGG_PATHWAY cAMP signaling pathway 13 2.195945946 0.002133177 PLD2, FFAR2, ATP1A3, GRIN2A, NPR1, GRIA1, CREB3L1, MAPK9, GNAS, RAPGEF4, 

PIK3R5, RAPGEF3, F2R 
KEGG_PATHWAY Focal adhesion 13 2.195945946 0.003211744 ITGA9, LAMB3, LAMB2, VEGFA, ITGB4, MAPK9, PDGFRB, MYLK2, PIK3R5, COL1A1, 

THBS1, ITGA2B, FN1 
KEGG_PATHWAY Ras signaling pathway 12 2.027027027 0.017974152 FGFR2, PLD2, VEGFA, GRIN2A, MAPK9, PDGFRB, PIK3R5, NGFR, ABL1, PLA2G3, 

ANGPT2, EPHA2 
KEGG_PATHWAY Calcium signaling pathway 11 1.858108108 0.009277251 P2RX4, TNNC2, PDE1C, RYR1, GRIN2A, PLCD3, CACNA1G, PDGFRB, MYLK2, GNAS, F2R 
KEGG_PATHWAY Cytokine-cytokine receptor 

interaction 11 1.858108108 0.060185364 AMHR2, TNFRSF9, ACVR2B, LTBR, CXCR5, VEGFA, TNFRSF13B, PDGFRB, NGFR, CSF2RA, 

IL11 
KEGG_PATHWAY Oxytocin signaling pathway 10 1.689189189 0.011431376 GNAO1, RYR1, CACNB2, NPR1, MYLK2, GNAS, PIK3R5, NFATC4, NFATC2, CAMKK2 
KEGG_PATHWAY cGMP-PKG signaling 

pathway 10 1.689189189 0.018383555 GTF2I, GATA4, PDE5A, ATP1A3, NPR1, MYLK2, CREB3L1, PIK3R5, NFATC4, NFATC2 
KEGG_PATHWAY Regulation of actin 

cytoskeleton 10 1.689189189 0.062437352 FGFR2, ITGA9, CHRM4, ITGB4, PDGFRB, MYLK2, PIK3R5, F2R, ITGA2B, FN1 
KEGG_PATHWAY Dilated cardiomyopathy 9 1.52027027 6.64E-04 ITGA9, DES, MYBPC3, LMNA, ITGB4, CACNB2, GNAS, SGCA, ITGA2B 
KEGG_PATHWAY Adrenergic signaling in 

cardiomyocytes 9 1.52027027 0.023805439 PPP2R5D, ATP1A3, CACNB2, CREB3L1, GNAS, PIK3R5, RAPGEF4, RAPGEF3, SCN5A 
KEGG_PATHWAY Arrhythmogenic right 

ventricular cardiomyopathy 

(ARVC) 8 1.351351351 0.00126012 ITGA9, DES, LMNA, ITGB4, CACNB2, DSP, SGCA, ITGA2B 
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