
An Auslader-Reiten principle
and

a lifting problem
over commutative DG algebras

Maiko Ono

July 2018

Graduate School of Natural Science and Technology

(Doctor’s Course)

OKAYAMA UNIVERSITY

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Okayama University Scientific Achievement Repository

https://core.ac.uk/display/162052817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Contents

Preface 3

Acknowledgments 6

1 An Auslander-Reiten principle in derived categories 7
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 AR principle in derived category . . . . . . . . . . . . . . . . . 9
1.3 The case of isolated singularity . . . . . . . . . . . . . . . . . 12
1.4 The case of codimension one singular locus . . . . . . . . . . . 15
1.5 A remark on the Auslander-Reiten conjecture . . . . . . . . . 18

2 A lifting problem for DG modules 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Preliminary on DG algebras and DG modules . . . . . . . . . 22
2.3 the j-operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 An example of liftings . . . . . . . . . . . . . . . . . . . . . . 40

References 44

2



Preface

Homological algebra has its roots in algebraic topology. In the 1950s, H.
Cartan and S. Eilenberg developed homological algebra as a fundamental
common tool in various fields. The homological approach to commutative
ring theory was first introduced in a research on generators and their relations
of a finitely generated module by D. Herbert in 1890. He showed that each
finitely graded module of a polynomial ring over a field has a finite graded
free resolution. Nowadays it is known as the Herbert’s syzygy theorem. In
1950s, commutative ring theory came to a turning point. A lot of researchers
(e.g., M. Auslander, D. Buchsbaum, D. Rees, D. G. Northcott, J.-P. Serre,
etc.) started to investigate commutative rings by using homological methods.
On account of their studies, commutative ring theory made great progress.
In particular, one of the most significant theorems, which was proved by J.-
P. Serre, is a characterization of regular local rings by the finiteness of the
global dimension of a commutative Noetherian local ring. This is a revolu-
tionary result that represents the interplay between ideal theoretic aspects
and homological algebraic aspects of regular local rings. Since then, homolog-
ical algebra has contributed to the development of commutative ring theory.
Moreover many various conjectures which are stated by notations of homo-
logical algebra has proposed in commutative ring theory. (the Nakayama
conjecture, the Auslander-Reiten conjecture, the Huneke-Wiegand conjec-
ture, etc.)

On the other hand, A. Grothendieck and J-L. Verdier established derived
categories in 1960s. By virtue of the introduction of derived categories, it
is possible to uniformly treat the classical homological algebra. Nowadays,
we often use them as useful tools to simply and deeply understand our re-
search objects. In this thesis, we work on our problems by using (categorical)
homological methods.

This doctoral thesis is composed of the following two individual themes.

In Chpater 1, we generalized the Auslander-Reiten (AR) duality theo-
rem in the derived category of a commutative Noetherian ring. In 1975,
Auslander-Reiten theory was established by M. Auslander and I. Reiten.
Auslnader-Reiten theory gives us the fundamental structure of a category of
maximal Cohen-Macaulay modules. The AR duality plays a central role of
Auslander-Reiten theory. In fact, we see that the AR duality induces the
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existence of Auslander-Reiten sequence in the category of maximal Cohen-
Macaulay modules over a Cohen-Macaulay local ring with an isolated singu-
larity. In recent years, O. Iyama and M. Wemyss [20] have generalized the
AR duality to the the case where a ring is a Cohen-Macaulay local that has
singularities with one dimensional singular loci. Then we consider a problem
as follows; what is the general principle behind the AR duality theorem and
the generalized AR duality due to Iyama and Wemyss? We attempted to find
a more general form of the theorem which leads us to them. Finally we give a
principle in the derived category of modules over a commutative Noetherian
ring which we call an AR principle. By applying our AR principle to certain
cases, we see that it implies naturally not only the classical AR duality but
the Iyama-Wemyss’s duality. As an application of our AR principle, we give
a partial answer to a conjecture which is called the Auslander-Reiten(AR)
conjecture. The AR conjecture can be stated as follows;

Let R be a commutative Noetherian ring and N a finitely generated R-
module. If ExtiR(N,N) = ExtiR(N,R) = 0 for all i > 0, then N is projective.

In Chapter 2, we investigate a lifting problem for differential graded (DG)
modules over a differential graded (DG) algebra. First of all, we introduce
our motivation for this research. M. Auslander, S. Ding and Ø. Solberg
[3] showed that the AR conjecture holds for complete intersections. They
showed the result by using lifting theory for finitely generated modules over
a complete intersection. To prove that the AR conjecture holds for a com-
mutative Noetherian ring R, we may assume that R is a complete local
ring. It is known from the Cohen’s structure theorem that there is a sur-
jective ring homomorphism S → R where S is a regular local ring. If we
can prove that a finitely generated R-module which satisfies the assumption
of the AR conjecture is liftable to S, then the AR conjecture is completely
resolved. (Here, a finitely generated R-module N is said to be liftable to
S if there is a finitely generated S-module M such that (1)N ∼= R ⊗S M
and (2)TorSi (R,M) = 0 for all i > 0.) However, it is difficult to investi-
gate such a lifting problem. So, we employ our strategy that we approach
the lifting problem by treating it as a problem for differential graded (DG)
modules. It is known that it is possible to construct a commutative DG
S-algebra S⟨X1, X2, · · · |dX1 = x1, dX2 = x2, · · · ⟩ that is quasi-isomorphic
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to the ring R as DG S-algebras. See [29]. The commutative DG S-algebra
R′ = S⟨X1, X2, · · · |dX1 = x1, dX2 = x2, · · · ⟩ resembles a “DG” polynomial
ring over S with variables X1, X2, · · · . Now we pose a conjecture;

If a semi-free DG R′-module N satisfies the condition ExtiR′(N,N) = 0 and
ExtiR′(N,R′) = 0 for i > 0, then N is liftable to S.

In this thesis, we consider a lifting problem in the situation A → B =
A⟨X|dX = t⟩ where A is a commutative DG algebra and B is an extended
DG R-algebra of A by the adjunction of one variable X which kills the cycle t
in A. Recently, S. Nasseh and S. Sather-Wagstaff [22], and S. Nasseh and Y.
Yoshino[23] studied the lifting or weak lifting problems for A → A⟨X|dX =
t⟩ where the degree of X, which is denoted by |X|, is odd. In this case,
A⟨X|dX = t⟩ is just a Koszul complex over A. We remark that in the case
where |X| is even, A⟨X|dX = t⟩ has the structure of a free algebra over A
with a divided variable X.

Secondly, we introduce our main results which are sated in Chapter 2.
In the rest of the preface, let A be a commutative DG algebra over a com-
mutative ring and B be a extended DG algebra A⟨X|dX = t⟩ of A where
|X| is positive even. For a semi-free DG B-module N , we describe a ob-

struction [∆N ] to be a liftable to A as an element of Ext
|X|+1
B (N,N). In

particular, we characterize the liftability for a semi-free DG B-module N
which is bounded below in terms of the condition whether [∆N ] is zero or
non-zero. Moreover, we prove that if a semi-free DG B-module N is liftable
to A and Ext

|X|
B (N,N) = 0, then a lifting of N is determined up to DG

A-isomorphisms. Finally, we present an example for liftings in the situation
R → R⟨X,Y |dX = x, dY = y⟩ where R is a commutative complete local ring
and R⟨X,Y |dX = x, dY = y⟩ is an extended DG algebra that is obtained by
the adjunction of variables X and Y of degree 1 and degree 2, respectively.
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1 An Auslander-Reiten principle in derived

categories

The contents of this chapter are entirely contained in the author’s paper [25]
with Y.Yoshino.

In Chapter 1, we give a principle in derived categories, which lies behind
the classical Auslander-Reiten duality and its generalized version by Iyama
and Wemyss. We apply the principle to show the validity of the Auslander-
Reiten conjecture over a Gorenstein ring in the case where the ring has
dimension larger than two and the singular locus has at most one dimension.

1.1 Introduction

Throughout this chapter, all rings are assumed to be commutative Noetherian
rings.

Let R be a Cohen-Macaulay local ring of Krull dimension d with canon-
ical module ω and let M,N be maximal Cohen-Macaulay modules over R.
Assume that R has only an isolated singularity. Then we have an isomor-
phism

HomR(M,N)∨ ∼= Ext1R(N, τM), (1.0.1)

where τM = HomR(Ω
d(TrM), ω). For the definition of TrM , see the para-

graph preceding Corollary 1.7. The isomorphism is known as Auslander-
Reiten duality, or simply AR duality. For the proof of (1.0.1) the reader
should refer to [5, Proposition 1.1].

The AR duality plays a crucial role in the theory of maximal Cohen-
Macaulay modules. In fact, one can derive from (1.0.1) the existence of
Auslander-Reiten sequence in the category of maximal Cohen-Macaulay mod-
ules over an isolated singularity. See [30, Theorem 3.2]. Further assuming
that R is Gorenstein, it assures us that the stable category of the category
of maximal Cohen-Macaulay modules has (d − 1)-Calabi-Yau property. See
[21, Theorem 8.3].

Recently, Iyama and Wemyss have generalized the AR duality to rings
whose singular locus has at most one dimension. See [20, Theorem 3.1].

The purpose of this chapter is to propose a general principle behind the
AR duality, by which we mean a general theorem for modules or chain com-
plexes of modules in a kind of general form that encompasses the classical
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AR duality and its generalization. In the end we have reached the following
conclusion to this aim of building the principle, which we dare call the AR
principle :

Theorem[AR Principle](Theorem 1.3). Let R be a commutative Noethe-
rian ring and let W be a specialization-closed subset of Spec(R). Given a
bounded complex I of injective R-modules with I i = 0 for all i > n and a
complex X such that the support of H i(X) is contained in W for all i < 0,
the natural map ΓW I → I induces isomorphisms

ExtiR(X,ΓW I)
∼=−→ ExtiR(X, I) for i > n.

This result is proved in §2. We emphasize that this theorem is similar to
a version of the local duality theorem; see Remark 1.4.

In §3 we apply the AR principle to deduce the formula (1.0.1). See
Corollary 1.7. In fact, we consider the case where (R,m) is a local ring,
W = {m}, and I is a dualizing complex of R. Then it naturally induces
Theorem 1.6 below, which is also regarded as a generalization of the original
AR duality (1.0.1).

In almost the same circumstances above butW = {p ∈ Spec(R) | dimR/p
≦ 1}, we deduce from AR principle the generalization of AR duality due to
Iyama and Wemyss. This will be explained in detail in §4. See Theorem 1.10
and Corollary 1.13 in particular.

In §5 we discuss the Auslander-Reiten conjecture for modules over Goren-
stein rings. The Auslander-Reiten conjecture (abbreviated to ARC) can be
stated in its most general form as follows:

(ARC) Let R be a commutative Noetherian ring andM a finitely generated
R-module. If ExtiR(M,M⊕R) = 0 for all i > 0, then M is projective.

This conjecture is a source of the generalized Nakayama conjecture, and
related to other conjectures such as Nakayama and Tachikawa conjecture.
Initially Auslander and Reiten [4] asked it for non-commutative Artinian al-
gebras, but later Auslander, Ding and Solberg [3] have set up it for commu-
tative Noetherian rings, and shown (ARC) holds for complete intersections.
In recent years, there has been several studies on (ARC), and it is proved
affirmatively in several cases such as
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• Artinian Gorenstein local rings with radical cube zero, by Huneke, Şega
and Vraciu [19].

• Gorenstein local rings with codimension at most four, by Şega [27].

• Gorenstein rings with only an isolated singularity and Krull dimension
not less than 2, by Araya [1].

By virtue of our AR principle we can prove a more stronger result than
(ARC) in some cases. Actually Corollary 5.5 below forces the following:

Theorem (See Corollary 1.18). LetR be a Gorenstein local ring of dimension
d that is larger than 2. Assume that M is a maximal Cohen-Macaulay R-
module whose non-free locus has dimension ≦ 1, i.e. Mp is Rp-free for any
p ∈ Spec(R) with dimR/p > 1. Furthermore we assume that

Extd−1
R (M,M) = 0 = Extd−2

R (M,M).

Then M is a free R-module.

1.2 AR principle in derived category

Let R be a commutative Noetherian ring. We denote by D = D(R) the full
derived category of R. Note that the objects of D are chain complexes over
R, which we denote by the cohomological notation such as

X = (· · · → Xn−1 → Xn → Xn+1 → · · · ).

It should be noted that D has a structure of triangulated category with shift
functor, denoted by X 7→ X[1].

Recall that a full subcategory L of D is called a localizing subcategory if
it is a triangulated subcategory and it is closed under direct sums and direct
summands. By Bousfield theorem [24, Theorem 2.6], the natural inclusion
i : L ↪→ D has a right adjoint functor γ : D → L, i.e.,

HomD(iX, Y ) ∼= HomL(X, γY ),

for all X ∈ L and Y ∈ D.
For a chain complex X we define the small support supp(X) to be the

set of prime ideals p such that X L⊗R κ(p) ̸= 0, where κ(p) = Rp/pRp. (Cf.,
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[13].) The small support of a full subcategory L of D is the union of all the
small supports of objects of L, so that

supp(L) = {p ∈ Spec(R) | X L⊗R κ(p) ̸= 0 for some X ∈ L}.

For any subset W ⊆ Spec(R), the full subcategory

LW = {X ∈ D | supp(X) ⊆ W}

is a localizing subcategory of D. The correspondences L 7→ supp(L) and
W 7→ LW yield a bijection between the set of localizing subcategories of D
and the power set of Spec(R). This was proved by A.Neeman [24, Theorem
2.8].

We say that a localizing subcategory LW is smashing if W is a special-
ization-closed subset of Spec(R), and in this case, the functor γ : D → LW

is nothing but the local cohomology functor RΓW . See [24, Theorem 3.3].

Remark 1.1. The big support Supp(X) of a chain complex X ∈ D is the
set of prime ideals p of R with the property X L⊗RRp ̸= 0, or equivalently
H(X)p ̸= 0. In general it holds

supp(X) ⊆ Supp(X),

for all X ∈ D. If X belongs to D−
fg(R), by which we denote a full subcategory

of D consisting of right bounded complexes with finite cohomologies, then
we have supp(X) = Supp(X) which is a closed subset of Spec(R). Given
a specialization-closed subset W of Spec(R), a complex X is an object of
LW if and only if the big support of X is contained in W if and only if
SuppH i(X) ⊆ W for all i ∈ Z. See [11].

Definition 1.2. Let X ∈ D be a chain complex;

· · · −→ Xn dn−→ Xn+1 dn+1

−→ Xn+2 −→ · · · .

For an integer n we define the truncations σ>nX and σ≦nX as follows:

σ>nX =
(
· · · → 0 → Im dn → Xn+1 dn+1

−→ Xn+2 → · · ·
)

σ≦nX =
(
· · · → Xn−2 dn−2

−→ Xn−1 → Ker dn → 0 → · · ·
)

See [18, Chapter 1; §7] for more detail. Note that there is an exact triangle
in D;

σ≦nX −→ X −→ σ>nX −→ σ≦nX[1].
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Now the following theorem is a main theorem of this part, which we call
AR principle. Actually this is an equivalent version of the theorem in the
Introduction.

Theorem 1.3. Let X, I be chain complexes in D and let L be a smashing
subcategory of D with γ : D → L a right adjoint functor to the natural
embedding ι : L ↪→ D. We assume the following conditions hold for some
integer n;

1. I is a bounded injective complex, and right bounded at most in degree
n.

2. σ≦−1X ∈ L.

Then the natural map γI → I induces an isomorphism;

σ>nRHomR(X, γI) ∼= σ>nRHomR(X, I).

Proof. Since γ is right adjoint to ι, we have a counit morphism ιγI → I in
D, which induces the morphism

RHomR(X, γI) → RHomR(X, I).

To prove the theorem it is enough to shown that this morphism induces
isomorphisms

H i(RHomR(X, γI)) ∼= H i(RHomR(X, I))

for i > n.
Note that H i(RHomR(X, I)) ∼= HomD(X, I[i]), where [i] denotes the i

iterations of the shift functor [1] in the triangulated category D. Therefore,
noting that I is a bounded injective complex, we see that an element f of
H i(RHomR(X, I)) is a homotopy equivalence class of a chain map X → I[i]:

· · · → X−i−1 −−−→ X−i −−−→ · · · −−−→ X−i+n −−−→ X−i+n+1 → · · ·

f−i−1

y f−i

y f−i+n

y 0

y
· · · → I−1 −−−→ I0 −−−→ · · · −−−→ In −−−→ 0

Since −i+ n < 0, we have

HomD(X, I[i]) ∼= HomD(σ≦−1X, I[i]). (1.3.1)
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Now since L is smashing, it forces that γ is of the form RΓW for a special-
ization-closed subset W of Spec(R). Thus γI is a subcomplex of I and each
term of γI is also an injective module. As a consequence γI satisfies the same
condition as I. Therefore similar argument as above shows the isomorphism

HomD(X, γI[i]) ∼= HomD(σ≦−1X, γI[i]). (1.3.2)

The right-hand sides in the equations (1.3.1),(1.3.2) are naturally isomorphic
each other, since σ≦−1X ∈ L. This completes the proof. ■

Theorem [AR Principle] stated in the introduction is a direct restatement
of Theorem 2.3. In fact, ifW is a specialization-closed subset of Spec(R) and
if L = LW , then it follows that γ = RΓW , and the condition (2) in Theorem
2.3 is equivalent to that SuppH i(X) ⊆ W for i < 0, by Remark 2.1.

Remark 1.4. We adopted such description of the AR principle as in Theo-
rem 1.3, because of its similarity to the generalized version of local duality,
that can be stated as follows:

Let X, I be complexes in D and let L be a smashing subcategory of D with
γ : D → L being as above. We assume the following conditions hold;

1. I is a bounded injective complex.

2. X ∈ D−
fg(R).

Then we have an isomorphism in D;

RHomR(X, γI) ∼= γRHomR(X, I).

This version of local duality theorem was proposed by Hartshorne [18, Chap-

ter V, Theorem 6.2] and later generalized by Foxby[13, Proposition 6.1].

Question 1.5. In Theorem 1.3 and Remark 1.4, do the conclusions hold true
if L is not necessarily smashing but just localizing?

1.3 The case of isolated singularity

Now in this section we assume that (R,m) is a local ring of dimension d. We
apply the AR principle to the following setting;
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− W0 = {m},

− L = LW0 = {X ∈ D | suppX ⊆ {m}}, and

− I is a dualizing complex of R.

We normalize I so that it is of the form;

0 −−−→ I0 −−−→ I1 −−−→ · · · −−−→ Id −−−→ 0,

where I i =
⊕

dimR/p=d−iER(R/p) for each i. (Cf. [18] or [28].) In this case,
since γ = RΓm, we have γI = E[−d] where E = ER(R/m) is the injective
hull of R/m.

For a chain complex X ∈ D we denote

X∨ = RHomR(X,E), X† = RHomR(X, I),

which are respectively called the Matlis dual and the canonical dual (or
Grothendieck dual) of X. To all such situations, Theorem 1.3 can be applied
directly and we get the following theorem.

Theorem 1.6. Let (R,m) is a local ring of dimension d as above. We assume
X ∈ D satisfies that supp(σ≦−1X) ⊆ {m}. Then we have an isomorphism

σ>0(X
∨) ∼= σ>d(X

†)[d].

By Remark 2.1, the theorem can be stated in the following way:

If SuppH i(X) ⊆ {m} for all i ≦ −1, then ExtjR(X,E) ∼= Extj+d
R (X, I)

for all j > 0.

Now assume that (R,m) is a Cohen-Macaulay local ring which possesses
canonical module ω. Note in this case that the dualizing complex I is a
minimal injective resolution of ω. We denote the category of maximal Cohen-
Macaulay modules over R by CM(R). For a finitely generated R-module M
we write as NF(M) the non-free locus of M , i.e.,

NF(M) = {p ∈ Spec(R) | Mp is not Rp-free}.

It is known and easily proved that NF(M) is a closed subset of Spec(R)
whenever M is finitely generated, since NF(M) = SuppExt1R(M,ΩM).
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We need to recall the definition of the (Auslander) transpose for the

corollary below. Let F1
∂→ F0 → M → 0 be a minimal free presentation

of a finitely generated R-module M . Then the transpose TrM is defined as
Coker(Hom(∂,R)).

Theorem 1.6 implies the following result that generalizes a little the
Auslander-Reiten duality mentioned in the beginning of this chapter.

Corollary 1.7. Let R be a Cohen-Macaulay local ring with canonical module
and let M,N ∈ CM(R). Assume that NF(M) ∩ NF(N) ⊆ {m}. Then we
have an isomorphism

HomR(M,N)∨ ∼= Ext1R(N, τM),

where τM = [Ωd(TrM)]†

Proof. SettingX = TrM L⊗RN , we see that the condition NF(M)∩NF(N) ⊆
{m} forces that supp σ<0X ⊆ Supp σ<0X ⊆ {m}. Hence we can apply The-
orem 1.6 to X and get an isomorphism

Hd+1(X†) ∼= H1(X∨) ∼= H−1(X)∨.

It is known that H−1(X) = TorR1 (TrM,N) ∼= HomR(M,N). See [30, Lemma
3.9]. On the other hand, we have

Hd+1(X†) ∼= Extd+1
R (TrM,N †) ∼= Ext1R(Ω

dTrM,N †) ∼= Ext1R(N, [Ω
dTrM ]†),

sinceX†=RHomR(TrM
L⊗RN, I)∼=RHomR(N, [TrM ]†)∼=RHomR(TrM,N †).

■
Remark 1.8. We remark form Corollary 3.2 that AR duality still holds
even if M is a finitely generated R-module but N is not necessarily finitely
generated. Suppose that NF(M) ∩ Supp(N) ⊆ {m} and H i(N †) = 0 for
i > 0. In a similar way to Corollary 3.2, we can show that

Hom(M,N)∨ ∼= Ext1R(N, τM).

Note that if R is a Cohen-Macaulay complete local ring and N is a big Cohen-
Macaulay module, it follows that H i(N †) = 0 for i > 0. See [15, Proposition
2.6]. For example, R = k[[x, y]] is a formal power series ring where k is a
field and N = R ⊕ ER(R/(y)). Assume that M is a finitely generated R-
module which is a locally free on the punctured spectrum. Since N is a big
Cohen-Macaulay module from [15, Remark 3.3], we obtain that

Hom(M,ER(R/(y)))
∨ ∼= Ext1R(ER(R/(y)), τM).
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1.4 The case of codimension one singular locus

In this section (R,m) always denotes a local ring of dimension d as before.
We consider the following conditions, in which we apply the AR principle
1.3:

− W1 = {p ∈ Spec(R) | dimR/p ≦ 1},

− L = LW1 = {X ∈ D | suppX ⊆ W1}, and

− R has a (normalized) dualizing complex I.

In this case, since γ = RΓW1 , it follows that γI is a two-term complex;

0 −−−→ Id−1 ∂−−−→ Id −−−→ 0, (1.8.1)

where
Id−1 =

⊕
dimR/p=1

ER(R/p) =: J, Id = ER(R/m) =: E.

We thus have a triangle in D;

E[−d] −−−→ γI −−−→ J [−d+ 1]
∂[−d+1]−−−−→ E[−d+ 1].

Now let X ∈ D and assume that σ≦−1X ∈ L. It follows that there is a
triangle in D;

X∨[−d] −−−−→ RHomR(X, γI) −−−−→ RHomR(X, J)[−d+ 1]
RHom(X,∂)−−−−−−−−→ X∨[−d+ 1].

On the other hand, Theorem 1.3 says that there are isomorphisms

Hd+i(X†) ∼= Hd+i(RHomR(X, γI)),

for i > 0. Combining this isomorphism with the triangle above, we have the
following proposition.

Proposition 1.9. Assume that X ∈ D satisfies that supp(σ≦−1X) ⊆ W1.
Then there is a long exact sequence of R-modules:

HomR(H
−1(X), J)

HomR(H−1(X),∂)−−−−−−−−−−→ H−1(X)∨ −−−→ Hd+1(X†)

−−−→ HomR(H
−2(X), J)

HomR(H−2(X),∂)−−−−−−−−−−→ H−2(X)∨ −−−→ Hd+2(X†)

−−−→ · · ·

−−−→ HomR(H
−i(X), J)

HomR(H−i(X),∂)−−−−−−−−−−→ H−i(X)∨ −−−→ Hd+i(X†)

−−−→ · · · .
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This leads us to the following theorem that is more applicable to our
computation. Recall thatDfg(R) denotes the full subcategory ofD consisting
of all chain complexes whose cohomology modules are finitely generated R-
modules.

Theorem 1.10. Let X be a chain complex in Dfg(R), and assume that
supp(σ≦−1X) ⊆ W1. Then, for any i > 0, there is a short exact sequence

0 −−−→ H0
m(H

−i(X))∨ −−−→ Hd+i(X†)∧ −−−→ H1
m(H

−i−1(X))∨ −−−→ 0,

and an isomorphism

H0
m(H

−i(X))∨ ∼= H0
m(H

d+i(X†)).

In the sequence above, ∧ denotes the m-adic completion.

Note from Remark 1.1 that the assumption for X in Theorem 1.10 is
precisely saying that SuppH i(X) ⊆ W1 for i < 0.

Before proving Theorem 1.10 we note the following lemmas.

Lemma 1.11. Let ∂ : J → E be the map in (1.8.1) above. Suppose we
are given a finitely generated R-module M such that dimM ≦ 1. Then the
following hold.

1. There are isomorphisms of R̂-modules

Ker(HomR(M,∂))∧ ∼= H1
m(M)∨, Coker(HomR(M,∂))∧ ∼= H0

m(M)∨.

2. H1
m(M)∨ is a Cohen-Macaulay R̂-module of dimension one, in partic-

ular, it holds that H0
m(H

1
m(M)∨) = 0.

Proof. (1) Noting that dimM ≦ 1, we have HomR(M,
⊕

dimR/p=iER(R/p)) =
0 for all i > 1. It hence follows the equalities

Ker(HomR(M,∂)) = Hd−1(M †) and Coker(HomR(M,∂)) = Hd(M †).

On the other hand the local duality theorem implies that

Hd−1(M †)∧ ∼= H1
m(M)∨ and Hd(M †)∧ ∼= H0

m(M)∨.
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(2) We may assume dimM = 1. Note that M = M/H0
m(M) is a one-

dimensional Cohen-Macaulay R-module, and H1
m(M) = H1

m(M). Replace M
by M , and we may assume that M is a one-dimensional Cohen-Macaulay
module. Then it is known that (M †)[d − 1] = Extd−1

R (M, I) is again one-
dimensional Cohen-Macaulay, hence so is the completion Extd−1

R (M, I)∧.
However it follows from the local duality that Extd−1

R (M, I)∧ = H1
m(M)∨. ■

Lemma 1.12. Let M be a finitely generated module over a local ring (R,m).
Then the equality

H0
m(M) ∼= H0

m(M
∧)

holds.

Proof. Note that H0
m(M) is a unique submodule N of M such that N is

of finite length and M/N has no nontrivial submodule of finite length (or
equivalently depth M/N > 0). Taking the m-adic completion for modules in
a short exact sequence 0 → H0

m(M) → M → M̄ → 0, and noting that the
m-adic topology on H0

m(M) is discrete, we have an exact sequence

0 → H0
m(M) →M∧ → M̄∧ → 0.

Since depthM̄∧ > 0 as depthM̄ > 0, we have the desired equality H0
m(M) =

H0
m(M

∧). ■
Now we proceed to the proof of Theorem 1.10. It follows from Theorem

1.9 that there is an exact sequence:

0 → Coker(HomR(H
−i(X), ∂)) → Hd+i(X†) → Ker(HomR(H

−i−1(X), ∂)) → 0,

for i > 0. Since H−i(X) and H−i−1(X) are finitely generated and their
dimensions are at most one, we can apply Lemma 1.11 and get a short exact
sequence

0 −−−→ H0
m(H

−i(X))∨ −−−→ Hd+i(X†)∧ −−−→ H1
m(H

−i−1(X))∨ −−−→ 0,

as in Theorem 1.9. To show the isomorphism in Theorem 1.10, apply the
functor H0

m to this short exact and it is enough to notice from Lemma 1.11(2)
and 1.12 thatH0

m(H
1
m(H

−i−1(X))∨=0 andH0
m(H

d+i(X†)) ∼= H0
m(H

d+i(X†)∧).
■

Now let us assume that (R,m) is Cohen-Macaulay and letM,N ∈ CM(R).
We apply Theorem 1.10 above to X = TrM L⊗RN , and we get a theorem of
Iyama and Wemyss [20].
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Corollary 1.13. Let (R,m) be a Cohen-Macaulay local ring and let M,N ∈
CM(R). We assume that NF(M) ∩ NF(N) ⊆ W1. Then, for each i > 0,
there is a short exact sequence;

0 → H0
m(HomR(M,Ωi−1N))∨ → ExtiR(N, τM)∧ → H1

m(HomR(M,ΩiN))∨ → 0,

and an isomorphism;

H0
m(HomR(M,Ωi−1N))∨ ∼= H0

m(Ext
i
R(N, τM)).

1.5 A remark on the Auslander-Reiten conjecture

Now in this section we restrict ourselves to consider the case where R is
Gorenstein. In this case it is easy to see that the syzygy functor Ω : CM(R) →
CM(R) is an auto-equivalence. Hence, in particular, one can define the
cosyzygy functor Ω−1 on CM(R) as the inverse of Ω. We note from [12] and
[17, 2.6] that CM(R) is a triangulated category with shift functor [1] = Ω−1.
Note that HomR(M,N) ∼= Ext1R(M,Ω1N) for all M,N ∈ CM(R). Note also
that, since R is Gorenstein, we have

τM = [ΩdTrM ]† ∼= Ωd−2(M∗)∗ ∼= M [d− 2].

Therefore Corollary 1.7 implies the fundamental duality.

Corollary 1.14. Let R be a Gorenstein local ring of dimension d. Assume
that M,N ∈ CM(R) satisfy NF(M) ∩ NF(N) ⊆ {m}. Then there is a func-
torial isomorphism

HomR(M,N)∨ ∼= HomR(N,M [d− 1]).

Note that this is the case for any M and N if R has at most an isolated
singularity. On the other hand Theorem 1.10 implies the following:

Corollary 1.15. Let R be a Gorenstein local ring of dimension d. Assume
that M,N ∈ CM(R) satisfy NF(M) ∩ NF(N) ⊆ W1. Then there is a short
exact sequence;

0 → H0
m(HomR(M,N [d−1]))∨ → HomR(N,M)∧ → H1

m(HomR(M,N [d−2]))∨ → 0.
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Araya [1] shows that Corollary 1.14 implies the Auslander-Reiten conjec-
ture for Gorenstein rings with isolated singularity of dimension not less than
2. Since the ring R is Gorenstein, noting that a module M is a maximal
Cohen-Macaulay module if and only if ExtiR(M,R) = 0 for all i > 0, we can
state the AR conjecture for Gorenstein rings as follows:

Conjecture 1.16. Let R be a Gorenstein local ring as above and let M be
in CM(R). If ExtiR(M,M) = 0 for all i > 0, then M is a free R-module.

In fact, the assumption of the conjecture is equivalent to the conditions
HomR(M,M [i]) = 0 for i > 0. On the other hand M is free if and only if
HomR(M,M) = 0. Therefore it is restated in the following form:

− If HomR(M,M [i]) = 0 for i > 0, then HomR(M,M) = 0.

By virtue of Corollary 1.14, the conjecture is trivially true if R is an
isolated singularity and d ≧ 2. This is what Araya proved in his paper [1].

In contrast to this, we can prove the following theorem by using Corollary
1.15.

Theorem 1.17. Let (R,m) be a Gorenstein local ring of dimension d and
let M,N ∈ CM(R). Assume the following conditions:

1. NF(M) ∩ NF(N) ⊆ W1,

2. depth HomR(M,N [d− 1]) > 0,

3. depth HomR(M,N [d− 2]) > 1.

Then we have Hom(N,M) = 0.

Note in the theorem that we adopt the convention that the depth of the
zero module is +∞, so that the conditions (2)(3) contain the case when
HomR(M,N [d− 1]) = HomR(M,N [d− 2]) = 0.

The proof of Theorem 1.17 is straightforward from Corollary 1.15. In fact
the assumptions forM,N in the theorem imply the vanishing of the both ends
in the short exact sequence in Corollary 1.15, hence we have Hom(N,M) = 0.

The following is a direct consequence of Theorem 1.17.

Corollary 1.18. Let (R,m) be a Gorenstein local ring of dimension d and
let M ∈ CM(R). Assume that NF(M) ⊆ W1. Furthermore assume

depth HomR(M,M [d− 1]) > 0, depth HomR(M,M [d− 2]) > 1.

Then M is a free R-module.
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This result assures us that the AR conjecture 1.16 holds true if NF(M) ⊆
W1 and d ≧ 3. This is automatically the case, for example, whenever R is a
normal Gorenstein local domain of dimension 3.
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2 A lifting problem for DG modules

The contents of this chapter are entirely contained in the author’s paper [26]
with Y.Yoshino.

Let B = A⟨X|dX = t⟩ be an extended DG algebra by the adjunction of
a variable of positive even degree n, and let N be a semi-free DG B-module
that is assumed to be bounded below as a graded module. We prove in this
paper that N is liftable to A if Extn+1

B (N,N) = 0. Furthermore such a lifting
is unique up to DG isomorphisms if ExtnB(N,N) = 0.

2.1 Introduction

Lifting problems of algebraic structures appear in various phases of algebra
theory. In fact many authors have studied variants of liftings in their own
fields such as modular representation theory, deformation theory and com-
mutative ring theory etc. From the particular view point of ring theory, the
lifting problem and its weak variant, called weak lifting problem, was sys-
tematically investigated firstly by M. Auslander, S. Ding and Ø. Solberg
[3]. The second author of the present paper extended the lifting problems
to chain complexes and developed a theory of weak liftings for complexes in
[31]. On the other hand in the papers [22, 23], the lifting or weak lifting
problems were generalized into the corresponding problems for DG modules,
however they only considered the cases of Koszul complexes that are DG al-
gebra extensions by adding one variable of odd degree. In contrast, our main
target in the present paper is the lifting problem for DG algebra extension
obtained by adding a variable of positive even degree.

Let A be a commutative DG algebra over a commutative ring R, and X
be a variable of degree n = |X|. Then we can consider the extended DG
algebra A⟨X|dX = t⟩ that is obtained by the adjunction of variable X with
relation dX = t, where t is a cycle in A of degree n − 1. Note that if n is
odd, then A⟨X|dX = t⟩ = A⊕XA as a right A-module, which is somewhat
similar to a Koszul complex. In contrast, if n is even, A⟨X|dX = t⟩ =⊕

i≥0X
(i)A is a free algebra over A with divided variable X that resembles a

polynomial ring. In each case there is a natural DG algebra homomorphism
A→ A⟨X|dX = t⟩. See §2 below for more detail.

In general, let A → B be a DG algebra homomorphism. Then a DG
B-module N is said to be liftable to A if there is a DG A-moduleM with the

21



property N ∼= B⊗AM as DG B-modules. In such a caseM is called a lifting
of N . We are curious about the lifting problem for the particular case that
B = A⟨X|dX = t⟩. The both papers [22, 23] treated the lifting problem in
such cases but with the assumption that |X| is odd. They actually showed

that the vanishing of Ext
|X|+1
B (N,N) implies the weak liftability of N .

We consider the lifting problem for A → B = A⟨X|dX = t⟩ in the case
that |X| is positive and even. Surprisingly enough we are able to show in this

paper that the vanishing of Ext
|X|+1
B (N,N) implies the liftablity (not weak

liftability) and moreover the vanishing of Ext
|X|
B (N,N) implies the uniqueness

of such a lifting. The following is our main theorem of this chapter that
answers the question raised in [23, Remark 3.8].

Theorem. (Theorem 2.17 and Theorem 2.19) Let A be a DG R-algebra,
where R is a commutative ring. Let B = A⟨X|dX = t⟩ denote a DG R-
algebra obtained from A by the adjunction of a variable X of positive even
degree. Further assume that N is a semi-free DG B-module.

(1) Under the assumption that N is bounded below as a graded R-module,

if Ext
|X|+1
B (N,N) = 0, then N is liftable to A.

(2) If N is liftable to A and if Ext
|X|
B (N,N) = 0, then a lifting of N is

unique up to DG A-isomorphisms.

In §2 we prepare the necessary definitions and notations for DG algebras
and DG modules that will be used in this chapter. In §3 we introduce the
notion of j-operator and give several useful properties of j-operators. §4 is
the main body of the present chapter, where we prove the main theorem
above. §5 is devoted to giving an example for liftings. In fact, we present
it in the situation S → S⟨X,Y |dX = x, dY = y⟩ where S is a commutative
complete local ring and S⟨X,Y |dX = x, dY = y⟩ is an extended DG algebra
that is obtained by the adjunction of variables X and Y of degree 1 and
degree 2 respectively.

2.2 Preliminary on DG algebras and DG modules

We summarize some definitions and notations that will be used in Chapter
2. Throughout this chapter, R always denotes a commutative ring. Basically
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all modules considered in this chapter are meant to be R-modules and all
algebras are R-algebras.

Let A =
⊕

n≥0An be a non-negatively graded R-algebra equipped with
a graded R-linear homomorphism dA : A → A of degree −1. Then A =(⊕

n≥0An, d
A
)
is called a (commutative) differential graded R-algebra, or a

DG R-algebra for short, if it satisfies the following conditions:

1. For homogeneous elements a and b of A, ab = (−1)|a||b|ba where |a|
denotes the degree of a. Moreover if |a| is odd, then a2 = 0.

2. The graded R-algebra A has a differential structure, by which we mean
that

(
dA
)2

= 0.

3. The differential dA satisfies the derivation property; dA(ab) = dA(a)b+
(−1)|a|adA(b) for homogeneous elements a and b of A.

Note that all DG algebras considered in this chapter are non-negatively
graded R-algebras. We often denote by A♮ the underlying graded R-algebra
for a DG R-algebra A.

Let f : A → B be a graded R-algebra homomorphism between DG R-
algebras. By definition f is a DG algebra homomorphism if it is a chain map,
i.e., dBf = fdA.

Let A be a DG R-algebra and M =
⊕

n∈ZMn be a graded left A-module
equipped with a graded R-linear map ∂M : M → M of degree −1. Then
M =

(⊕
n∈ZMn, ∂

M
)
is called a left differential graded A-module, or a DG

A-module for short, if it satisfies the following conditions:

1. The graded module M has a differential structure, i.e.,
(
∂M
)2

= 0.

2. The differential ∂M satisfies the derivation property over A,
i.e., ∂M(am) = dA(a)m+ (−1)|a|a∂M(m) for a ∈ A and m ∈M .

Note that every left DG A-module M can be regarded as a right DG A-
module by defining the right action as ma = (−1)|a||m|am for a ∈ A and
m ∈ M . Similarly to the case of DG algebras, M ♮ denotes the underlying
graded A♮-module for a DG A-module M .

LetM and N be DG A-modules. Then the graded tensor productM ♮⊗A♮

N ♮ of graded modules has the differential mapping defined by

∂M⊗AN(m⊗n) = ∂M(m)⊗n+(−1)|m|m⊗∂N(n) for m ∈M and n ∈ N.
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The tensor product of DG A-modules is denoted by M ⊗A N , by which we
mean the DG A-module

(
M ♮ ⊗A♮ N ♮, ∂M⊗AN

)
.

If A → B is a DG algebra homomorphism, and if M is a DG A-module,
then B ⊗A M is regarded as a DG B-module via action b(b′ ⊗m) = bb′ ⊗m

for b, b′ ∈ B and m ∈M .

Definition 2.1. Let A → B be a DG algebra homomorphism. A DG B-
module N is called liftable to A if there exists a DG A-module M such that
N is isomorphic to B ⊗A M as DG B-modules. In this case, M is called a
lifting of N .

Let A be a DG R-algebra and let M , N be DG A-modules.
A graded R-module homomorphism f : M → N of degree r (r ∈ Z)

is, by definition, an R-linear mapping from M to N with f(Mn) ⊆ Nn+r

for all n ∈ Z. In such a case we denote |f | = r. The set of all graded
R-module homomorphisms of degree r is denoted by HomR(M,N)r. Then
HomR(M,N) =

⊕
r∈ZHomR(M,N)r is naturally a graded R-module. A

graded R-module homomorphism f ∈ HomR(M,N)r is called A-linear if it
satisfies f(am) = (−1)r|a|af(m) for a ∈ A and m ∈ M . We denote by
HomA(M,N)r the set of all A-linear homomorphisms of degree r. Then
HomA(M,N) =

⊕
r∈ZHomA(M,N)r has a structure of graded A-module,

on which we can define the differential as follows:

∂HomA(M,N)(f) = ∂Nf − (−1)|f |f∂M .

In such a way we have defined the DG A-module HomA(M,N).
By definition, a DG A-homomorphism f : M → N is an A-linear ho-

momorphism of degree 0 that is a cycle as an element of HomA(M,N). A
DG A-homomorphism f : M → N gives a DG A-isomorphism if f is in-
vertible as a graded A-linear homomorphism. On the other hand a DG
A-homomorphism f :M → N is called a quasi-isomorphism if the homology
mapping H(f) : H(M) → H(N) is an isomorphism of graded R-modules.

A DG A-module F is said to be semi-free if F ♮ possesses a graded A♮-free
basis E which decomposes as a disjoint union E =

⊔
i≥0Ei of subsets indexed

by natural numbers and satisfies ∂M(Ei) ⊆
∑

j<iAEj for i ≥ 0. A semi-free
resolution of a DG A-module M is a DG A-homomorphism F → M from a
semi-free DG A-module F to M , which is a quasi-isomorphism. It is known
that any DG A-module has a semi-free resolution. See [7, Theorem 8.3.2 ].
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Given a DG A-module M , and taking a semi-free resolution FM → M , one
can define the ith extension module by

ExtiA(M,N) := H−i (HomA(FM , N)) ,

which is known to be independent of the choice of a semi-free resolution of
M over A. See [1, Proposition 1.3.2.].

There is a well-known way of constructing of a DG algebra that kills a
cycle by adjunction of a variable. See [1],[16] and [29] for details. To make
it more explicit, let A be a DG R-algebra and take a homogeneous cycle t
in A. We are able to construct an extended DG R-algebra B of A by the
adjunction of a variable X with |X| = |t| + 1 which kills the cycle t in the
following way. In both cases, we denote B by A⟨X|dX = t⟩.

(1) If |X| is odd, then B = A⊕XA with algebra structure X2 = 0 in which
the differential is defined by dB(a+Xb) = dA(a) + tb−XdA(b).

(2) If |X| is even, then B =
⊕

i≥0X
(i)A which is an algebra with divided

powers of variable X. Namely it has the multiplication structure X(i)X(j) =(
i+j
i

)
X(i+j) for i, j ∈ Z≥0 with |X(i)| = i|X|. (Here we use the convention

X(0) = 1, X(1) = X.) Adding to the derivation property, the differential on
B is simply defined by the rule dB(X(i)) = X(i−1)t for i > 0, hence it is given
as follows for general elements:

dB

(
n∑

i=0

X(i)ai

)
=

n−1∑
i=0

X(i)
{
dA(ai) + tai+1

}
+X(n)dA(an).

In each case a natural map A→ B = A⟨X|dX = t⟩ is a DG algebra ho-
momorphism. As we have mentioned in the introduction, we are interested
in DG B-modules N that are liftable to A, particularly in the case (2) above,
that is, when |X| is even. In fact, S. Nasseh and Y. Yoshino have stud-
ied a liftable condition, or more generally a weak liftable condition, for DG
B-modules in the case where |X| is odd. See [23, Theorem 3.6] for more
detail.

2.3 the j-operator

As in the end of the previous section, A is a DG R-algebra in which we take
a cycle t, that is, dAt = 0. Our specific assumption here is that |t| is an odd
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non-negative integer. We denote by B = A⟨X|dX = t⟩ the extended DG
algebra of A by the adjunction of variable X that kills the cycle t. Since |X|
is even, note that

B♮ =
⊕
i≥0

X(i)A♮, (2.1.1)

where the right hand side is a direct sum of right A-modules.
Let N be a DG B-module, and we assume the following conventional

assumption:

There is a graded A♮-module M satisfying N ♮ = B♮ ⊗A♮ M . (2.1.2)

Note that if N is a semi-free DG B-module, then, since N ♮ is a free B♮-
module, it is always under such a circumstance. By virtue of the decompo-
sition (2.1.1), we may write N ♮ as follows under the assumption (2.1.2):

N ♮ =
⊕
i≥0

X(i)M. (2.1.3)

Note that there are equalities of R-modules

Nn =
⊕

i≥0, k+i|X|=n

X(i)Mk,

for all n ∈ Z.
Now let r be an integer and let f ∈ HomR(N,N)r. Recall that f is R-

linear with f(Nn) ⊆ Nn+r for all n ∈ Z. Given such an f , we consider the
restriction of f on M , i.e., f |M ∈ HomR(M,N)r. Along the decomposition
(2.1.3), one can decompose f |M into the following form:

f |M =
∑
i≥0

X(i)fi, (2.1.4)

where each fi ∈ HomR(M,M)r−i|X|. Actually, for m ∈ M , there is a unique
decomposition f(m) =

∑
iX

(i)mi with mi ∈ M along (2.1.3). Then fi is
defined by fi(m) = mi. Note that the decomposition (2.1.4) is unique as
long as we work under the fixed setting (2.1.3). We call the equality (2.1.4)
the expansion of f |M and often call f0 the constant term of f |M .

Taking the expansion of f |M as in (2.1.4), we consider the graded R-linear
homomorphism

φ =
∑
i≥0

X(i)fi+1,
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which belongs to HomR(M,N)r−|X|. This R-linear mapping φ can be ex-
tended to anR-linear mapping j(f) onN by setting j(f)(X(i)mi) = X(i)φ(mi)
for each i ≥ 0 andmi ∈M . In such a way we obtain j(f) ∈ HomR(N,N)r−|X|.

Summing up the argument above we get the mapping j : HomR(N,N)r →
HomR(N,N)r−|X| for all r ∈ Z, which we call the j-operator on HomR(N,N).
For the later use we remark that the actual computation of j(f) is carried
out in the following way;

j(f)(X(n)m) = X(n)j(f)(m)

= X(n)
∑
i≥0

X(i)fi+1(m)

=
∑
i≥0

X(n+i)

(
n+ i

i

)
fi+1(m)

(2.1.5)

for n ≥ 0 and m ∈M .

Theorem and Definition 2.2. Under the assumption (2.1.2) we can define
a graded R-linear mapping j : HomR(N,N) → HomR(N,N) of degree −|X|,
which we call the j-operator on HomR(N,N). For any f ∈ HomR(N,N)r,
taking the expansion (2.1.4) of f |M along the decomposition (2.1.3), j(f)
maps X(n)m to

∑
i≥0X

(n+i)
(
n+i
i

)
fi+1(m) as in (2.1.5).

Remark 2.3. The notion of j-operator was first introduced by J. Tate in
the paper [29] and extensively used by T.H. Gulliksen and G. Levin [16].

In the rest of this chapter we always assume the condition (2.1.2) for a
DG B-module N .

Definition 2.4. We denote by E the set of all B-linear homomorphisms
on N , i.e., E = HomB(N,N). Note that E ⊆ HomR(N,N) and that a
homogenous element f ∈ HomR(N,N) belongs to E if and only if f(bn) =
(−1)|b||f |bf(n) for b ∈ B and n ∈ N .

We say that a gradedR-linear mapping δ ∈ HomR(N,N) is aB-derivation
if it satisfies |δ| = −1 (i.e., δ ∈ HomR(N,N)−1) and δ(bn) = dB(b)n +
(−1)|b||δ|bδ(n) for b ∈ B and n ∈ N . We denote by D the set of all B-
derivations on N .
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Remark 2.5. 　

1. Assume that an R-linear mapping δ : N → N satisfies the derivation
property δ(bn) = dB(b)n+(−1)|b||δ|bδ(n). Since |dB(b)n| = |b|+ |n| − 1
and |bδ(n)| = |b|+|n|+|δ|, if |δ| ̸= −1 then δ is never a graded mapping.

2. If δ ∈ D then the actual computation for δ is carried out by the follow-
ing rule:

δ

(∑
i≥0

X(i)mi

)
=
∑
i≥0

X(i) {tmi+1 + δ(mi)} .

3. If δ, δ′ ∈ D then it is easy to see that δ − δ′ is in fact B-linear, hence
δ − δ′ ∈ E .

Note that both E and D are graded R-submodules of HomR(N,N).

Lemma 2.6. Under the assumption (2.1.2), any A-linear homomorphism
α : M → M is uniquely extended to α̃ ∈ E such that the constant term of
the expansion of α̃|M equals α. Similarly any A-derivation β : M → M is
uniquely extended to β̃ ∈ D such that the constant term of the expansion of
β̃|M equals β.

In both cases, we have j(α̃) = 0 and j(β̃) = 0.

Proof. In each case the extension is obtained by making the tensor product
with B over A:

α̃ = B ⊗A α, β̃ = B ⊗A β.

More precisely, any element n ∈ N is written as n =
∑

i≥0X
(i)mi formi ∈M

along (2.1.3), and taking into account the linearity of α̃ and the derivation
property of β̃, we can define them by the following equalities:

α̃(n) =
∑
i≥0

X(i)α(mi), β̃(n) =
∑
i≥0

X(i) {tmi+1 + β(mi)} .

Their uniqueness follows from the next lemma. ■

Lemma 2.7. Assume that f, g ∈ E and δ, δ′ ∈ D. Then the following asser-
tions hold.

(1) f = g if and only if f |M = g|M .
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(2) δ = δ′ if and only if δ|M = δ′|M .

Proof. (1) Assume f |M = g|M . For each n ∈ N we decompose it into the
form n =

∑
i≥0X

(i)mi along the decomposition (2.1.3). Since f and g are
B-linear, we have

f

(∑
i≥0

X(i)mi

)
=
∑
i≥0

X(i)f(mi) =
∑
i≥0

X(i)g(mi) = g

(∑
i≥0

X(i)mi

)
,

and hence f = g.
(2) Assume δ|M = δ′|M . Noting from Remark 2.5(3) that δ − δ′ is a

B-linear homomorphism, we see that δ − δ′ = 0 by virtue of (1). ■

Lemma 2.8. The following assertions hold.

(1) If f ∈ E , then j(f) ∈ E .

(2) If δ ∈ D then j(δ) ∈ E .

(3) Let δ ∈ D. Then the constant term δ0 of the expansion of δ|M is an
A-derivation on M .

As a consequence, the j-operator defines a mapping E ∪ D → E.

Proof. (1) Write f |M =
∑

i≥0X
(i)fi as in (2.1.4). Since f is B-linear and

noting that |f | ≡ |fi|(mod 2), we see that

f(am)=(−1)|a||f |af(m)=(−1)|a||f |a
∑
i≥0

X(i)fi(m)=
∑
i≥0

X(i)(−1)|a||fi|afi(m)

for a ∈ A and m ∈M . Thus by the uniqueness of expansion it is easy to see
that

fi(am) = (−1)|a||fi|afi(m).

Namely each fi is A-linear, and therefore j(f)|M =
∑

i≥0X
(i)fi+1 is A-linear

as well. Meanwhile, it follows from the definition of j(f) or (2.1.5) that
j(f) commutes with the action of X on N . Thus j(f) is B-linear, and j(f)
belongs to E .
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(2), (3); Write δ|M =
∑

i≥0X
(i)δi. Since δ is a B-derivation, we have

equalities;

δ(am) = dB(a)m+ (−1)|a||δ|aδ(m)

=
{
dA(a)m+ (−1)|a||δ|aδ0(m)

}
+
∑
i≥1

X(i)(−1)|a||δ|aδi(m),

for a ∈ A and m ∈ M . On the other hand, δ(am) =
∑

i≥0X
(i)δi(am).

Comparing these equalities and noting that |δ| ≡ |δi|(mod 2) for all i ≥ 0,
we eventually have

δ0(am) = dA(a)m+(−1)|a||δ0|aδ0(m) and δi(am) = (−1)|a||δi|aδi(m) for i > 0,

which imply the desired results in (2) and (3). ■

Proposition 2.9. The following equalities hold for f, g ∈ E and δ, δ′ ∈ D.

(1) j(fg) = j(f)g + fj(g).

(2) j(fδ)|M = j(f)δ|M + fj(δ)|M .

(3) j(δf)|M = j(δ)f |M + δj(f)|M .

(4) j(δδ′)|M = j(δ)δ′|M + δj(δ′)|M .

Before proving Proposition 2.9, we should remark that graded R-module
homomorphisms fδ, δf and δδ′ do not necessarily belong to E or D, and
neither do j(fδ), j(δf) and j(δδ′). The equalities in (2)-(4) hold only when
they are restricted on M .

Proof. (1) Note from Lemma 2.8 that j(fg), j(f)g and fj(g) are elements of
E . By this reason, we have only to show that j(fg)|M = j(f)g|M + fj(g)|M
by Lemma 2.7. Taking the expansions as f |M =

∑
i≥0X

(i)fi and g|M =∑
i≥0X

(i)gi, we have the equalities:

fg|M = f(
∑
i≥0

X(i)gi) =
∑
i≥0

X(i)fgi =
∑
n≥0

X(n)

n∑
i=0

(
n

i

)
fign−i.

Hence it follows from the definition of j-operator that

j(fg)|M =
∑
n≥0

X(n)

n+1∑
i=0

(
n+ 1

i

)
fign−i+1.
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On the other hand, we have equalities;

j(f)g|M + fj(g)|M =
∑
k≥0

j(f)(X(k)gk) +
∑
k≥0

f(X(k)gk+1)

=
∑
k≥0

X(k)(j(f)(gk) + f(gk+1))

=
∑
k≥0

∑
i≥0

X(i+k)

(
i+ k

i

)
(fi+1gk + figk+1)

=
∑
n≥0

X(n)

{
n+1∑
i=1

(
n

i− 1

)
fign−i+1 +

n∑
i=0

(
n

i

)
fign−i+1

}
.

Since
(
n+1
i

)
=
(

n
i−1

)
+
(
n
i

)
for 0 < i ≤ n, we deduce that j(fg)|M = j(f)g|M +

fj(g)|M .
(2) Recall from the previous lemma that the constant term δ0 in the

expansion δ|M =
∑

i≥0X
(i)δi is an A-derivation onM . Set δ̃0 as the extended

B-derivation of δ0 on N defined by means of Lemma 2.6. Then as we noted
in Remark 2.5 (3), δ − δ̃0 is B-linear of degree |δ| = −1. Moreover we see
that j(δ − δ̃0) = j(δ), since j(δ̃0) = 0. Thus it follows from the equality
(1) of the present lemma that j((δ − δ̃0)f) = j(δ − δ̃0)f + (δ − δ̃0)j(f) =
j(δ)f + δj(f) − δ̃0j(f). On the other hand, j((δ − δ̃0)f) = j(δf) − j(δ̃0f).
Therefore we have that

j(δf)− j(δ̃0f) = j(δ)f + δj(f)− δ̃0j(f).

Hence it is enough to prove the equality in the case where δ = δ̃0, that is,

j(δ̃0f)|M = δ̃0j(f)|M . (2.9.1)

To prove this, take the expansion as f |M =
∑

i≥0X
(i)fi, and we get

δ̃0f |M = δ̃0

(∑
i≥0

X(i)fi

)
=
∑
i≥0

X(i)(tfi+1 + δ0fi).

Then it follows that

j(δ̃0f)|M =
∑
i≥0

X(i)(tfi+2 + δ0fi+1),
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while

δ̃0j(f)|M = δ̃0

(∑
i≥0

X(i)fi+1

)
=
∑
i≥0

X(i)(tfi+2 + δ0fi+1).

This proves (2.9.1).
(3) Similarly to (2), it is sufficient to prove the equality j(f δ̃0)|M =

j(f)δ̃0|M . If f |M =
∑

i≥0X
(i)fi is the expansion, then we have f δ̃0|M =

fδ0 =
∑

i≥0X
(i)fiδ0. Hence it follows from the definition of j-operator that

j(f δ̃0)|M =
∑
i≥0

X(i)fi+1δ0 = j(f)δ0 = j(f)δ̃0|M ,

as desired.
(4) Let δ0 be the constant term of the expansion δ|M =

∑
i≥0X

(i)δi. As

in the proof of (2) we take the extension δ̃0 of δ0, and hence it holds that
δ − δ̃0 is B-linear, and that j(δ − δ̃0) = j(δ). Now applying the equality
proved in (2), we have that

j((δ−δ̃0)δ′)|M = j(δ−δ̃0)δ′|M+(δ−δ̃0)j(δ′)|M = j(δ)δ′|M+δj(δ′)|M−δ̃0j(δ′)|M .
(2.9.2)

In contrast, we have

j((δ − δ̃0)δ
′) = j(δδ′)− j(δ̃0δ

′). (2.9.3)

Combining these equalities, we obtain the equality:

j(δδ′)|M = j(δ)δ′|M + δj(δ′)|M + j(δ̃0δ
′)|M − δ̃0j(δ

′)|M .

Thus it is enough to prove the following equality:

j(δ̃0δ
′)|M = δ̃0j(δ

′)|M . (2.9.4)

To prove (2.9.4) let δ′|M =
∑

i≥0X
(i)δ′i be the expansion, and we have that

δ̃0δ
′|M = δ̃0

∑
i≥0

X(i)δ′i =
∑
i≥0

X(i)(tδ′i+1 + δ0δ
′
i),

therefore it follows

j(δ̃0δ
′)|M =

∑
i≥0

X(i)(tδ′i+2 + δ0δ
′
i+1).
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On the other hand, we have

δ̃0j(δ
′)|M = δ̃0

∑
i≥0

X(i)δ′i+1 =
∑
i≥0

X(i)(tδ′i+2 + δ0δ
′
i+1).

It proves the equality (2.9.4). ■
Corollary 2.10. Let f ∈ E and δ ∈ D, and assume that f is invertible in
E. Then we have equalities:

(1) j(f)f−1 + fj(f−1) = 0.

(2) j(fδf−1) = j(f)δf−1 + fj(δ)f−1 + fδj(f−1).

Proof. (1) It follows from Proposition 2.9 (1) that j(ff−1) = j(f)f−1 +
fj(f−1). On the other hand, it holds j(ff−1) = j(idN) = 0, hence the
equality (1) follows.

(2) First of all we note that both j(f)δf−1 + fδj(f−1) and fj(δ)f−1 are
B-linear. To verify this fact we remark that the following equalities hold:

(j(f)δf−1 + fδj(f−1))(X(n)m)

=j(f)δ(X(n)f−1(m)) + fδ(X(n)j(f−1)(m))

=j(f)(tX(n−1)f−1(m)+X(n)δf−1(m))+f(tX(n−1)j(f−1)(m)+X(n)δj(f−1)(m))

= tX(n−1)(j(f)f−1(m) + fj(f−1(m))) +X(n)(j(f)δf−1 + f(m)δj(f−1)(m))

=X(n)(j(f)δf−1 + fδj(f−1))(m),

where the last equality holds because of (1). On the other hand, since fδf−1

belongs to D, j(fδf−1) is B-linear as well. Therefore it is enough to prove
the equality: j(fδf−1)|M = (j(f)δf−1 + fj(δ)f−1 + fδj(f−1))|M by Lemma
2.7. From Proposition 2.9(2), we get

j(f−1(fδf−1))|M = j(f−1)(fδf−1)|M + f−1j(fδf−1)|M . (2.10.1)

Meanwhile, Proposition 2.9(3) implies that

j(f−1(fδf−1))|M = j(δf−1)|M = j(δ)f−1|M + δj(f−1)|M . (2.10.2)

Summarizing (2.10.1) and (2.10.2), we see that

j(fδf−1)|M = −fj(f−1)(fδf−1)|M + fj(δ)f−1|M + fδj(f−1)|M
= j(f)δf−1|M + fj(δ)f−1|M + fδj(f−1)|M .

where the last equality holds by virtue of (1) in the present corollary. This
completes the proof. ■
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2.4 Main results

Now we are able to prove the main theorems of this chapter. See Theorem
2.17 and Theorem 2.19 below.

In the rest of the section, A always denotes a DG R-algebra and B =
A⟨X|dX = t⟩ is an extended DG algebra by the adjunction of variable X
that kills the cycle t ∈ A, where |X| is a positive even integer. Let N be a DG
B-module and we always assume here that N is semi-free. We are interested
in the conditions that sufficiently imply the liftability of N to A. Since N

♮

is free as a B♮-module, the condition (2.1.2) is satisfied, that is, there is a
graded A♮-module M such that N ♮ ∼= B♮ ⊗A♮ M as graded B♮-modules.

The differential mapping ∂N on N belongs to D which, we recall, is the
set of all B-derivations on N . It thus follows from Lemma 2.8 that j(∂N)
is B-linear, equivalently j(∂N) ∈ E . This specific element of E will be a key
object when we consider the lifting property of N in the following argument.
This is the reason why we make the following definition of ∆N as

∆N := j(∂N). (2.10.3)

Recall again from Lemma 2.8 that ∆N is a B-linear homomorphism on
N such that |∆N | = −|X| − 1 is an odd integer.

Remark 2.11. The exact same definition was made by S. Nasseh and Y.
Yoshino in the case where |X| is odd. See [23, Convention 2.5].

As we see in the next lemma, ∆N defines an element of Ext
|X|+1
B (N,N),

which will turn out to be an obstruction for the lifting of N to A.

Lemma 2.12. It holds that ∆N∂
N = −∂N∆N . Hence ∆N is a cycle of degree

−|X| − 1 in E = HomB(N,N).

Proof. Noting that
(
∂N
)2

= 0, we have from Proposition 2.9 that 0 =
j(∂N∂N)|M = j(∂N)∂N |M + ∂Nj(∂N)|M . On the other hand it is easily seen
that j(∂N)∂N + ∂Nj(∂N) is B-linear. Hence it follows from Lemma 2.7 that
j(∂N)∂N + ∂Nj(∂N) = 0. ■

In the proof of our main theorems, we shall need some argument on au-
tomorphisms on the DG B-module N . The following lemma is a preliminary
for that purpose.
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Lemma 2.13. Let φ : N → N be a graded B-linear endomorphism of degree
0. As before we assume that the expansion is given as φ|M =

∑
i≥0X

(i)φi. If
φ is a B-linear automorphism on N , then the constant term φ0 is an A-linear
automorphism on M .

Proof. Take a graded B-linear endomorphism ψ such that φψ = idN = ψφ.
Writing ψ|M =

∑
n≥0X

(n)ψn as well, we see that φψ|M = idM implies that
the constant term φ0ψ0 of φψ|M is equal to idM . Similarly ψ0φ0 = idM .
Therefore φ0 is an A-linear automorphism on M . ■

A DG module L, or more generally a graded module L =
⊕

i∈Z Li, is
said to be bounded below if L−i = 0 for all suffieceintly large integers i. A
graded endomorphism f on a graded module L is said to be locally nilpotent
if, for any x ∈ L, there is an integer nx ≥ 0 such that fnx(x) = 0, where fnx

denotes the nx times iterated composition of f .
The converse of Lemma 2.13 holds in several cases. The following is one

of such cases.

Lemma 2.14. Adding to the assumption (2.1.2) we further assume that N
is bounded below. Let φ : N → N be a graded B-linear endomorphism of
degree 0 with expansion φ|M =

∑
i≥0X

(i)φi. Assume that the constant term
φ0 is an A-linear automorphism on M . Then φ is a B-linear automorphism
on N .

Proof. Note that φ is an automorphism if and only if so is (B ⊗A φ
−1
0 )φ.

Hence we may assume φ0 = idM . Setting f = φ − idN , we are going to
prove that f is locally nilpotent. For this we note that f(M) ⊆

⊕
i≥1X

(i)M .
Then, since f is B-linear, we can show by induction on n > 0 that

fn(M) ⊆
⊕
i≥n

X(i)M.

Since f has degree 0 as well as φ, the graded piece Mr of M of degree r is
mapped by fn into (⊕

i≥n

X(i)M

)
r

=
⊕
i≥n

X(i)Mr−i|X|.

Since M ⊆ N is a graded A-submodule, we remark that M is also bounded
below. For a given integer r, we can take an integer n that is large enough so
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that Mr−i|X| = 0 for all i ≥ n, since |X| > 0. We thus have from the above
that fn(Mr) = 0. This shows that f is locally nilpotent as desired.

Then
∑∞

i=0(−1)if i = idN−f+f 2−f 3+· · ·+(−1)nfn+· · · is a well-defined
B-linear homomorphism on N , and in fact it is an inverse of φ = idN+f . ■

The following is a key to prove one of the main theorems.

Proposition 2.15. Let f be a graded B-linear endomorphism of degree −|X|
on N and g0 be a graded A-linear homomorphism of degree 0 on M . Then
there is a graded B-linear endomorphism g of degree 0 on N satisfying that

j(g) = gf and g0 is the constant term of g.

Proof. Take the expansion of f as f |M =
∑

n≥0X
(n)fn. Note here that each

fn is a graded A-linear endomorphism onM of degree −|X|(n+1) for n ≥ 0.
Setting g|M =

∑
n≥0X

(n)gn, we want to determine each gn so that g satisfies
the desired conditions.

We recall that gf |M =
∑

n≥0X
(n)
∑

0≤i≤n

(
n
i

)
gifn−i from the equality in

the proof of Proposiotn 2.9 and that j(g)|M =
∑

n≥0X
(n)gn+1. Comparing

these equalities, we obtain the following equations for gn (n ≥ 0) to satisfy
the required conditions;

gn+1 =
n∑

i=0

(
n

i

)
gifn−i for all n ≥ 0.

Starting from g0 and using these equalities, we can determine the graded
A-linear homomorphism gn by the induction on n ≥ 0. Thus define g as
a linear extension of g|M to N , that is, g = B ⊗A g|M . This is a B-linear
endomorphism on N of degree −|X|, and satisfies all the desired conditions.

■

Lemma 2.16. Suppose that ∆N = 0 as an element of E. Then the graded
A-module M has structure of DG A-module and N = B ⊗A M holds as an
equality of DG B-modules.

Proof. In the expansion ∂N |M =
∑

i≥0X
(i)αi, that ∆N = 0 implies that

αi = 0 for i > 0. Therefore ∂N |M = α0 is an A-derivation on M and (M,α0)
defines a DG A-module. Moreover we have ∂N = B ⊗A α0 that equals α̃ in
the notation of Lemma 2.6. Thus N = B ⊗A M as DG B-modules. ■
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Now we are ready to prove the main theorem. Note from Lemma 2.12
that ∆N defines a cohomology class in Ext

|X|+1
B (N,N), which we denote by

[∆N ]. As we show in the following theorem the class [∆N ] gives a precise
obstruction for N to be liftable.

Theorem 2.17. As before let N be a semi-free DG B-module, and assume
that N is bounded below. Then [∆N ] = 0 as an element of Ext

|X|+1
B (N,N) if

and only if N is liftable to A.

Proof. First of all we recall that N is liftable if and only if there is an A-
derivation ∂M on M of degree −1 that makes (M,∂M) a DG A-module and
there is a DG B-isomorphism φ : N → B ⊗A M . In such a case φ is a
graded B-linear isomorphism of degree 0 that commutes with differentials,
i.e., (B ⊗A ∂

M)φ = φ∂N or equivalently

B ⊗A ∂
M = φ∂Nφ−1. (2.17.1)

Now assume that N is liftable. Then there is such a DG B-isomorphism
φ. Applying the j-operator on (2.17.1) and using Corollay 2.10 (2), we have
that

0 = j(B ⊗A ∂
M) = j(φ)∂Nφ−1 + φj(∂N)φ−1 + φ∂Nj(φ−1).

It thus follows that

j(∂N) = −φ−1j(φ)∂N − ∂Nj(φ−1)φ.

Here we note form Corollary 2.10 (1) that φ−1j(φ) = −j(φ−1)φ. Therefore if
we set f = φ−1j(φ), then we see that |f | = −|X| is even and ∆N = j(∂N) =

∂Nf − f∂N . The last equality shows [∆N ] = 0 in Ext
|X|+1
B (N,N).

Conversely assume that [∆N ] = 0. Then there is a graded B-linear endo-
momorphism γ on N of degree −|X|, which satisfies the equality

∆N = ∂Nγ − γ∂N . (2.17.2)

We note that |∆N | is odd and |γ| is even. It follows from Proposition 2.15
that there is a B-linear endomorphism φ on N of degree 0 such that φ0 = idM

and
j(φ) = φγ. (2.17.3)
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We should note from Lemma 2.14 that such φ is a B-linear automorphism
on N . Define an alternative differential ∂′N on N by

∂′N = φ∂Nφ−1.

Then it follows that φ : (N, ∂N) → (N, ∂′N) is a DG B-isomorphism.
Since the equality j(φ−1)φ+φ−1j(φ) = 0 holds by Corollary 2.10 (1), we

see from (2.17.3) that
j(φ−1) = −γφ−1. (2.17.4)

Thus we conclude that

j(∂′N) = j(φ∂Nφ−1) = φ(γ∂N +∆N − ∂Nγ)φ−1 = 0,

which means that (N, ∂′N) equals B ⊗A M with M having DG A-module
structure defined by ∂M = ∂′N |M . See Lemma 2.16. Hence (N, ∂N) ∼=
B ⊗A M as DG B-modules. This proves that N is liftable to A.

■

In the rest of this section we consider the uniqueness of liftings. The
following lemma will be necessary for this purpose.

Lemma 2.18. Let M and M ′ be DG A-modules, and let φ : B ⊗A M →
B⊗AM

′ be a graded B-linear homomorphism of degree 0. Assume we have an
expansion φ|M =

∑
i≥0X

(i)φi, where each φi : M → M is a graded A-linear
homomorphism. Then the following statements hold :

(1) φ is a cycle in HomB(B ⊗A M,B ⊗A M
′) if and only if the following

equalities hold for i ≥ 0:

φi∂
M = tφi+1 + ∂M

′
φi.

(2) φ is a boundary in HomB(B ⊗A M,B ⊗A M
′) if and only if there is

a graded B-linear homomorphism γ of degree 1 such that γ has an
expansion γ|M =

∑
i≥0X

(i)γi, and there are equalities for i ≥ 0:

φi = γi∂
M + ∂M

′
γi + tγi+1.
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Proof. A direct computation implies that

φ∂̃M |M = φ∂M =
∑
i≥0

X(i)φi∂
M , (2.18.1)

where ∂̃M is the extended derivation of ∂M to B ⊗A M by means of Lemma
2.6. On the other hand,

∂̃M
′
φ|M = ∂̃M

′

(∑
i≥0

X(i)φi

)
=
∑
i≥0

X(i)
{
tφi+1 + ∂M

′
φi

}
. (2.18.2)

(1) Since φ∂̃M − ∂̃M
′
φ is in E , the cycle condition φ∂̃M − ∂̃M

′
φ = 0 is

equivalent to that φ∂̃M |M − ∂̃M
′
φ|M = 0 by Lemma 2.7. Therefore the right

hand sides of (2.18.1) and (2.18.2) are equal.
(2) φ is a boundary if and only if there exists a graded B-linear homomor-

phism γ of degree 1 such that φ = γ∂̃M + ∂̃M
′
γ. Because φ and γ∂̃M + ∂̃M

′
γ

belong to E , this is equivalent to that φ|M = (γ∂̃M + ∂̃M
′
γ)|M by Lemma

2.7. Then by the same argument as in (1) using (2.18.1) and (2.18.2), we can
show the desired equalities. ■

Theorem 2.19. Let N be a semi-free DG B-module as before, and assume
that N is liftable to A. If Ext

|X|
B (N,N) = 0, then a lifting of N is unique up

to DG isomorphisms over A.

Proof. Assume that there are a couple of liftings (M,∂M) and (M ′, ∂M
′
) of

N . Then there is a DG B-isomorphism φ : (B⊗AM, ∂̃M) → (B⊗AM
′, ∂̃M

′
),

where ∂̃M , ∂̃M
′
are the extended differentials of ∂M , ∂M

′
respectively. (See

Lemma 2.6.) We take an expansion φ|M =
∑

i≥0X
(i)φi. Since φ is a cycle

of degree 0 in HomB(B ⊗A M,B ⊗A M
′), Lemma 2.18 implies the equality

φn∂
M − ∂M

′
φn = tφn+1 holds for each n ≥ 0. In particular, we have

φ0∂
M − ∂M

′
φ0 = tφ1. (2.19.1)

Since there is an equality φ∂̃M = ∂̃M
′
φ, and since j(∂̃M) = 0 = j(∂̃M

′
),

Proposition 2.9 leads that j(φ)∂̃M |M = ∂̃M
′
j(φ)|M . It hence follows that

j(φ)∂̃M = ∂̃M
′
j(φ),

because j(φ)∂̃M− ∂̃M ′
j(φ) is B-linear. Thus j(φ) is a cycle of degree −|X| in

HomB(B⊗AM,B⊗AM
′), and it defines the element [j(φ)] of the homology
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module H−|X| (HomB(B ⊗A M,B ⊗A M
′)). Regarding N as a semi-free reso-

lution of B⊗AM and B⊗AM
′, we see that HomB(B⊗AM,B⊗AM

′) is quasi-

isomorphic to HomB(N,N). Since we assume Ext
|X|
B (N,N) = 0, we have

[j(φ)] = 0. Hence there is a graded B-linear homomorphism γ : B ⊗A M →
B⊗AM

′ of odd degree −|X|+1 such that j(φ) = γ∂̃M + ∂̃M
′
γ. Write γ|M =∑

i≥0X
(i)γi, and we get from Lemma 2.18 that φn+1 = γn∂

M +∂M
′
γn+ tγn+1

for n ≥ 0. In particular we have

φ1 = γ0∂
M + ∂M

′
γ0 + tγ1. (2.19.2)

Note that t2 = 0, because |t| is odd. Then we obtain from (2.19.1) and
(2.19.2) the equality

(φ0 − tγ0)∂
M = ∂M

′
(φ0 − tγ0).

Namely φ0 − tγ0 : (M,∂M) → (M ′, ∂M
′
) is a DG A-homomorphism. Since

φ is a graded B-linear isomorphism, φ0 is an A-linear isomorphism as well
by Lemma 2.13. Then it follows that φ0 − tγ0 : M → M ′ is an A-linear
isomorphism, since φ−1

0 + tφ−1
0 γ0φ

−1
0 gives its inverse. Therefore φ0 − tγ0 :

M →M ′ is a DG isomorphism over A. This completes the proof. ■

2.5 An example of liftings

At the end of this thesis, we give an example of liftings (Example 2.23).
Before presenting it, we need to show the next lemma.

Lemma 2.20. Let A be a DG R-algebra and t is a cycle of odd degree in A,
and let B = A⟨X|dX = t⟩ be an extended DG algebra by the adjunction of
variable X that kills t. Let N be a DG B-module. Assume that N is liftable
to A with a lifting M . If ExtnB(N,N) = 0 and Ext

n+|X|−1
B (N,N) = 0 for

some integer n, then ExtnA(M,M) = 0.

Proof. We assume that a DG A-moduleM is a lifting ofN . Note that we may
assume thatM is semi-free. Take a semi-free resolution f : FM →M over A.
It is known from [7, Proposition 11.1.6] that B⊗A f : B⊗AFM → B⊗AM is
a quasi-isomorphism. Hence B ⊗A f gives a semi-free resolution of B ⊗A M
over B. because B⊗AFM is a semi-free DG B-module. From the assumption
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of the liftabilty of N , we see that B⊗A f induces a semi-free resolution of N
over B. Since B ⊗A FM is a semi-free DG B-module, we have

H−i(HomB(B ⊗A FM , N)) ∼= H−i(HomB(B ⊗A FM , B ⊗A FM)) (2.20.1)

for any integer i. See [7, Lemma 9.3.5]. On the other hand, ExtiB(N,N)
is defined by the left-hand sides in the isomorphism (2.20.1). Therefore we
have ExtiB(N,N) ∼= H−i(HomB(B ⊗A FM , B ⊗A FM)) for all i. It follows
from a similar argument as above that ExtiA(M,M) ∼= H−i(HomA(FM , FM))
for all i. Hence we may assume that M is a semi-free DG A-module and
(N, ∂N) = (B⊗AM, ∂̃M) where ∂̃M is the extended differential of ∂M defined
by means of Lemma 2.6.

In order to prove that ExtnA(M,M) = 0, let φ ∈ HomA(M,M) be a cycle
of degree −n, that is ∂Mφ− (−1)nφ∂M = 0. Set φ̃ as the extended B-linear
homomorphism of φ on B⊗AM . See Lemma 2.6. Remark that φ̃ is a cycle of
degree−n in HomB(B⊗AM,B⊗AM), since φ̃∂̃M−(−1)n∂̃M φ̃ is B-linear and
the equalities φ̃∂̃M |M − (−1)n∂̃M φ̃|M = φ∂M − (−1)n∂Mφ = 0 hold. Then φ̃
defines the homology class [φ̃] in H−n(HomB(B ⊗A M,B ⊗A M)). Since we
assume that ExtnB(B⊗AM,B⊗AM) = 0, there is a B-linear homomorphism
γ : (B ⊗A M, ∂̃M) → (B ⊗A M, ∂̃M) of degree −n+ 1 such that

φ̃ = ∂̃Mγ − (−1)n−1γ∂̃M . (2.20.2)

We take an expansion γ|M =
∑

i≥0X
(i)γi. It follows from Lemma 2.18 that

φ = γ0∂
M − (−1)n−1(∂Mγ0 + tγ1). (2.20.3)

The equality (2.20.2) implies ∂̃Mj(γ)|M − (−1)n−1j(γ)∂̃M |M = 0, because
j(φ̃) = 0 and j(∂̃M) = 0. Since j(γ) belongs E from Propotision 2.8
(1), we see that ∂̃Mj(γ) − (−1)n−1j(γ)∂̃M is B-linear. Hence ∂̃Mj(γ) −
(−1)n−1j(γ)∂̃M = 0. Then it means that j(γ) is a cycle of degree −n −
|X| + 1 in HomB(B ⊗A M,B ⊗A M). Thus j(γ) defines the element [j(γ)]
in H−n−|X|+1(HomB(B ⊗A M,B ⊗A M)). It follows from our assumption

Ext
n+|X|−1
B (B ⊗AM,B ⊗AM) = 0 that there is a B-linear homomorphism ζ

of degree −n− |X|+ 2 such that

j(γ) = ∂̃Mζ − (−1)n+|X|−2ζ∂̃M .
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We have an expansion ζ|M =
∑

i≥0X
(i)ζi. It follows from Proposition 2.18(2)

that γi+1 = ζi∂
M − (−1)n+|X|−2(∂Mζi + tζi+1) for i ≥ 0. In particular, we get

γ1 = ζ0∂
M − (−1)n(∂Mζ0 + tζ1), (2.20.4)

because |X| is even. Summarizing equalities (2.20.3) and (2.20.4), we have

φ = γ0∂
M − (−1)n−1(∂Mγ0 + tγ1)

= γ0∂
M − (−1)n−1[∂Mγ0 + t{ζ0∂M − (−1)n(∂Mζ0 + tζ1)}]

= {γ0 − (−1)n−1tζ0}∂M − (−1)n−1∂M{γ0 − (−1)n−1tζ0}.

The last equality holds, since t is a cycle of odd degree. Namely we see that φ
is a boundary in HomA(M,M). Therefore we conclude that ExtnA(M,M) =
0. ■

In the rest of this section, we use the following notations.

Notation 2.21. Let R be a commutative ring and x, y be elements in R.
Assume that the equalities of ideals AnnR(x) = yR and AnnR(y) = xR
hold. Define A to be the extended DG R-algebra obtained from R by the
adjunction of the variable Y of degree 1 to kill the cycle y, that is,

A = R⟨Y |dY = y⟩.

Further we denote by B the extended DG algebra of A by the adjunction of
the variable X of degree 2 that kills the cycle xY , that is,

B = A⟨X|dX = xY ⟩ = R⟨X,Y |dY = y, dX = xY ⟩.

Under such circumstances, B gives a DG R-algebra resolution of S = R/yR.
Equivalently there is a DG R-algebra homomorphism B → S which is a
quasi-isomorphism. See [29].

In this situation, we consider a lifting problem for a DG S-algebra homo-
morphism R → B.

Corollary 2.22. We work in the setting in Notation 2.21. Let N be a
semi-free DG B-module. We assume that R is (y)-adically complete, and
N is bounded below and its semi-basis over B is finite in each degree. If
Ext2B(N,N) = 0 and Ext3B(N,N) = 0 then N is liftable to R.
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Proof. Since Ext3B(N,N) = 0 and N is bounded below, Theorem 2.17 implies
that N is liftable to A. Thus there is a semi-free DG A-module M such
that N ∼= B ⊗A M . (We see that a lifting DG A-module of N is uniquely
determined up to DG A-isomorphisms, because of Theorem 2.19.) It follows
from the assumption Ext2B(N,N) = 0 and Ext3B(N,N) = 0 and Lemma 2.20
that we have Ext2A(M,M) = 0. Claim that M is bounded below and its
semi-basis over A is finite in each degree, because N is bounded below and
its semi-basis over B is finite in each degree. In this case, it is known that
M is liftable to R by [22, Theorem 3.4]. This completes the proof.

■

Example 2.23. We use the same notation as in Notation 2.21. Now we
assume that an S-module N satisfies the condition Ext3S(N,N) = 0. Then
N is regarded as a DG B-module through B → S. Taking a semi-free
resolution FN → N over B. It is known from [8, (1.6)] or [9, (1.3)] that
Ext3S(N,N) ∼= Ext3B(FN , FN). Therefore our main theorem (Theorem 2.17)
forces the existence of a semi-free DG A-module M with the property FN

∼=
B ⊗A M as DG B-modules. Furthermore we assume that Ext2S(N,N) = 0.
Then we see from Corollary 2.22 that there exists a semi-free DG R-module
L such that FN

∼= B ⊗R L as DG B-modules.
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