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Abstract Dynamin is a mechanochemical GTPase essential for membrane fission during clathrin-

mediated endocytosis. Dynamin forms helical complexes at the neck of clathrin-coated pits and

their structural changes coupled with GTP hydrolysis drive membrane fission. Dynamin and its

binding protein amphiphysin cooperatively regulate membrane remodeling during the fission, but

its precise mechanism remains elusive. In this study, we analyzed structural changes of dynamin-

amphiphysin complexes during the membrane fission using electron microscopy (EM) and high-

speed atomic force microscopy (HS-AFM). Interestingly, HS-AFM analyses show that the dynamin-

amphiphysin helices are rearranged to form clusters upon GTP hydrolysis and membrane

constriction occurs at protein-uncoated regions flanking the clusters. We also show a novel function

of amphiphysin in size control of the clusters to enhance biogenesis of endocytic vesicles. Our

approaches using combination of EM and HS-AFM clearly demonstrate new mechanistic insights

into the dynamics of dynamin-amphiphysin complexes during membrane fission.

DOI: https://doi.org/10.7554/eLife.30246.001

Introduction
Clathrin-mediated endocytosis (CME) is the best characterized endocytic pathway by which cells

incorporate extracellular molecules into cells as cargoes of clathrin-coated vesicles

(Kirchhausen et al., 2014; McMahon and Boucrot, 2011). CME is required for various essential pro-

cesses including neuronal transmission, signal transduction and other cell membrane activities such

as cell adhesion and migration. For precise progression of membrane invagination and fission during

CME, various proteins need to be assembled in a temporally and spatially coordinated manner at

the site of endocytosis.

One of those endocytic proteins, dynamin, is a GTPase essential for membrane fission in CME

(Antonny et al., 2016; Ferguson and De Camilli, 2012; Schmid and Frolov, 2011). There are three

dynamin isoforms in mammals: dynamin 1 and dynamin 3, two tissue-specific isoforms which are

highly expressed in neurons, and dynamin 2, an ubiquitously expressed isoform (Cao et al., 1998;

Cook et al., 1996, 1994). Structural studies from several groups demonstrated that dynamin con-

sists of five structurally distinct domains: a GTPase domain, a bundle signaling element (BSE), a stalk,
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a pleckstrin homology (PH) domain and a proline-rich domain (PRD) from N-terminus to C-terminus

(Faelber et al., 2011; Ford et al., 2011; Reubold et al., 2015). The GTPase domain is responsible

for hydrolysis of GTP (guanosine triphosphate) and the PH domain is required for membrane associa-

tion by binding to negatively charged phospholipids such as PI (4,5) P2 (phosphatidylinositol 4,5-

bisphosphate). The stalk structure serves as a binding interface for dimerization and oligomerization

of dynamin. The BSE, which is located between the stalk and GTPase domain, functions as a flexible

hinge required for structural changes of dynamin upon GTP hydrolysis. Dynamin forms helical

oligomers which was first observed in presynaptic terminals of shibire mutant flies at restrictive tem-

perature (Koenig and Ikeda, 1989). Dynamin also assembles into helices at the neck of endocytic

pits in the isolated presynaptic nerve terminals treated with slowly hydrolyzable GTP analogue

GTPgS (guanosine 5’-O-[gamma-thio]triphosphate) (Takei et al., 1995). Similar dynamin helices were

reconstituted in vitro either with liposomes (Sweitzer and Hinshaw, 1998; Takei et al., 1998) or

without liposomes in a low-salt condition (Hinshaw and Schmid, 1995).

There is a consensus view about the dynamin-mediated membrane constriction and fission which

is well supported by previous studies from different groups: membrane constriction is required, but

not sufficient, for fission (Antonny et al., 2016; Faelber et al., 2012; Schmid and Frolov, 2011).

However, it is still controversial how constriction is achieved, and what GTP energy is used for. For

example, membrane constriction could be achieved by assembly into the highly constricted state

when dynamin is bound to GTP (Chen et al., 2004; Mattila et al., 2015; Mears et al., 2007;

Zhang and Hinshaw, 2001). Alternatively, membrane constriction could be achieved by hydrolysis

of GTP that induces a conformational change leading to constriction (Cocucci et al., 2014;

Marks et al., 2001; Roux et al., 2006). However, precise mechanisms involved in dynamin-mediated

membrane constriction and fission remain unclear.

Amphiphysin is a BAR domain protein required for membrane invagination in CME (Wigge et al.,

1997). Amphiphysin has a lipid interacting BAR (Bin–Amphiphysin–Rvs) domain in its N-terminal, a

medial clathrin/AP-2 binding (CLAP) domain and C-terminal Src homology 3 (SH3) domain. The BAR

eLife digest The nerve cells that make up a nervous system connect at junctions known as

synapses. When a nerve impulse reaches the end of the cell, membrane-bound packages called

vesicles fuse with the surface membrane and release their contents to the outside. The contents,

namely chemicals called neurotransmitters, then travels across the synapse, relaying the signal to the

next cell.

Nerve cells can fire many times per second. The membrane from fused vesicles must be retrieved

from the surface membrane and recycled to make new vesicles, ready to transmit more signals

across the synapse. Many proteins at these sites are involved in folding the fused membrane back

into the cell, constricting the opening, and eventually pinching off the new vesicles – a process

known as endocytosis. Two proteins named dynamin and amphiphysin cooperate in this process, but

their precise mechanism remained elusive. Dynamin is a protein that acts like a motor; it breaks

down a molecule called GTP to release energy. Previous studies have seen that dynamin-

amphiphysin complexes join end to end to form long helical structures.

Takeda et al. have now looked at how the structure of the helices changes during endocytosis.

This revealed that the dynamin-amphiphysin helices rearrange to form clusters when the GTP is

broken down. Further analysis showed that the folded membrane becomes constricted at regions

that are not coated with the clusters of dynamin-amphiphysin helices. Takeda et al. also discovered

that amphiphysin controls the size of the clusters to help make the new vesicles more uniform.

The gene for dynamin is altered in a number of disorders affecting the nervous system and

muscles, including epileptic encephalopathy, Charcot-Marie-Tooth disease and congenital

myopathy. Moreover, a neurological disorder characterized by muscle stiffness (known as Stiff-

person syndrome) occurs when an individual’s immune system mistakenly attacks the amphiphysin

protein. As such, these new findings will not only help scientists to better understand the process of

endocytosis, but they will also give new insight into a number of human diseases.

DOI: https://doi.org/10.7554/eLife.30246.002
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domain of amphiphysin forms crescent-shaped dimer and its concave surface serves as a platform

for bending membrane or sensing membrane curvature (Peter et al., 2004). The CLAP domain binds

to clathrin and AP-2, major components of clathrin-coated pits, and helps to recruit amphiphysin to

the sites of CME. In addition, the C-terminal SH3 domain of amphiphysin binds directly to the PRD

of dynamin 1 (David et al., 1996; Takei et al., 1999) and enhances dynamin’s GTPase activity in the

presence of liposomes (Takei et al., 1999; Yoshida et al., 2004). Amphiphysin copolymerizes with

dynamin 1 into helical complexes, which form membrane tubules in vitro (Takei et al., 1999;

Yoshida et al., 2004) similar to those formed from synaptic plasma membranes (Takei et al., 1995).

Furthermore, injection of specific antibodies against amphiphysin into the giant synapse in lampreys

(Evergren et al., 2004) or amphiphysin KO in mice (Di Paolo et al., 2002) causes suppressed endo-

cytosis in synaptic vesicle recycling. These results suggest that dynamin mediates membrane fission

in CME in collaboration with amphiphysin in vivo. However, the precise contribution of amphiphysin

in the dynamin-mediated membrane fission remains elusive.

In this study, we analyzed dynamics of dynamin-amphiphysin helical complexes using an approach

combining electron microscopy (EM) and high-speed atomic force microscopy (HS-AFM). Firstly, we

show that the dynamin-amphiphysin helices are rearranged to form clusters upon GTP hydrolysis,

and membrane constriction occurs at protein-uncoated regions between the clusters. Secondly, we

reveal that GTP hydrolysis is required and sufficient for the cluster formation by dynamin-amphiphy-

sin complexes by EM analyses. Finally, we show a novel function of amphiphysin in controlling cluster

size, which in turn regulates biogenesis of endocytic vesicles. These findings provide new insights

into the mechanism of membrane constriction and fission by dynamin-amphiphysin complexes.

Results

GTP hydrolysis is required and sufficient for membrane constriction by
dynamin-amphiphysin complexes
To elucidate the mechanisms of dynamin-mediated membrane fission, we reconstituted the mini-

mum system in vitro and analyzed the time course of its structural changes using EM. Human dyna-

min 1 and amphiphysin were purified (Figure 1—figure supplement 1A) and their activity to form

ring-shaped complexes in a buffer of physiological ionic strength and pH condition (Figure 1—fig-

ure supplement 1B) at different stoichiometry of dynamin and amphiphysin (Figure 1—figure sup-

plement 2A) were confirmed. As previously described (Sweitzer and Hinshaw, 1998; Takei et al.,

1999), the dynamin-amphiphysin complexes induced tubulation of large unilamellar vesicles (LUVs)

in the absence of GTP (Figure 1A, No GTP) and it is not stoichiometry dependent (Figure 1—figure

supplement 2B). Immediately after the addition of 1 mM GTP, the appearance of lipid tubules was

not affected (Figure 1A, GTP 1 s), but they started to form multiple constriction sites over time

(Figure 1A, GTP 5 s, 10 s and 30 s) and membrane fission occurred finally and numerous vesicles

were generated within 1 min (Figure 1A, GTP 1 min). The membrane fission activity by dynamin-

amphiphysin complexes was stoichiometry sensitive: the membrane fission occurred efficiently at

1:0.5 or 1:1 molar ratio of dynamin and amphiphysin (Figure 1-figure supplement 2C, 1:0.5 and

1:1), while the fission activity was less efficient when dynamin and amphiphysin were mixed at 1:2

ratio (Figure 1-figure supplement 2C, 1:2), probably due to lower stimulatory effect of amphiphysin

on dynamin GTPase activity at the higher molecular ratio (Yoshida et al., 2004).

Next, we tried to clarify how the membrane constriction and fission by dynamin-amphiphysin heli-

ces are correlated with guanine nucleotide conditions during GTP hydrolysis. The appearance of

lipid tubules (Figure 1B, No GTP) was not affected in the presence of either slowly hydrolyzable

GTP analogue GTPgS (Figure 1B, GTPgS) or non-hydrolyzable GTP analogue GMP-PNP (guanosine

50-[b,g-imido]triphosphate) (Figure 1B, GMP-PNP). In contrast, in the presence of GDP (guanosine

diphosphate) and vanadate, the complex which mimics the GDP�Pi transition state, lipid tubules

were constricted at multiple sites (Figure 1B, GDP + vanadate). Addition of only GDP did not cause

membrane constriction or fission, but membrane tubules were deformed (Figure 1B, GDP). Finally,

numerous vesicles were generated 10 min after the addition of 1 mM GTP, in which multiple rounds

of GTP hydrolysis were likely to have taken place (Figure 1B, GTP). Taken these results together,

GTP hydrolysis is essential for both membrane constriction and fission by the dynamin-amphiphysin
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Figure 1. GTP hydrolysis is required and sufficient for membrane constriction by dynamin-amphiphysin helical complexes. (A) Electron micrographs of

lipid tubules induced by dynamin-amphiphysin helical complex before GTP addition (No GTP) and at different time points after addition of 1 mM GTP

(GTP 1 s, GTP 5 s, GTP 10 s, GTP 30 s and GTP 1 min). More than thirty samples from three individual experiments were examined and representative

images are shown. Scale bar is 200 nm. (B) Electron micrographs of lipid tubules induced by dynamin-amphiphysin helical complex without guanine

Figure 1 continued on next page
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complexes, but subsequent dissociation of GTP hydrolytic products (GDP and/or phosphate) is

required for completing membrane fission.

GTP hydrolysis induces clustering of dynamin-amphiphysin helices
Although we determined the requirement of GTP hydrolysis in membrane constriction and fission by

the dynamin-amphiphysin complexes, structural changes of the complexes were not clearly resolved

in the in vitro assay system using LUVs. To improve the resolution, we used rigid lipid nanotubes

containing glycolipid galactosylceramide (GalCer) (Wilson-Kubalek et al., 1998), instead of using

LUVs in the in vitro assay system. Lipid nanotubes are rod-shaped liposomes and similar in size to

the unconstricted necks of clathrin-coated pits observed in vivo (Figure 2A, Nanotube). Dynamin-

amphiphysin complexes assembled into helices on the lipid nanotubes (Figure 2A, No GTP), which

is similar to those formed by dynamin alone (Stowell et al., 1999). Interestingly, the dynamin-amphi-

physin helices transiently formed clusters after the addition of GTP (Figure 2A, GTP 1 s and 20 s,

brackets). The dynamin-amphiphysin clusters were disorganized over time and partially dissociated

from the nanotubes (Figure 2A, GTP 30 s and 1 min).

To correlate the dynamics of dynamin-amphiphysin complexes with GTP hydrolysis, we examined

structural changes of the complexes on lipid nanotubes at different transition states of GTP hydroly-

sis. The appearance of dynamin-amphiphysin helices was unchanged even in the presence of GTPgS

or GMP-PNP (Figure 2B, No GTP, GTPgS and GMP-PNP). Interestingly, addition of GDP and vana-

date induced rearrangement of the dynamin-amphiphysin helical complexes to form clusters similar

to those observed after the addition of GTP (Figure 2B, GDP + vanadate). The average pitch of heli-

ces in the clusters were shorter (15.0 ± 0.3 nm, mean pitch ± s.e.m.) compared to the average pitch

of the helical complexes in No GTP control (20.0 ± 0.5 nm, mean pitch ± s.e.m.) (Figure 2—source

data 1). Furthermore, unlike membrane fission activity (Figure 1—figure supplement 2C), clustering

behavior of the dynamin-amphiphysin complexes on the lipid nanotubes were not stoichiometry

dependent (Figure 2—figure supplement 1, 1:0.5, 1:1 and 1:2, white brackets). In contrast, GDP

alone did not affect the distribution of dynamin-amphiphysin helices (Figure 2B, GDP). Finally, the

dynamin-amphiphysin helical complexes were disorganized and eventually dissociated from the lipid

nanotubes 10 min after the addition of 1 mM GTP (Figure 2B, GTP). Taken these results together,

the dynamin-amphiphysin helical complexes transiently form clusters in the GTP hydrolysis transition

state of GDP�Pi during which membrane tubules are constricted.

Dynamic clustering of dynamin-amphiphysin helical complexes upon
GTP hydrolysis is revealed by HS-AFM
To elucidate the dynamics of dynamin-amphiphysin helical complexes during the membrane con-

striction and fission, we analyzed the clustering process of the complexes using HS-AFM

(Ando et al., 2013). LUVs were stably immobilized on the carbon-coated and glow-discharged mica

substrate (Figure 3—figure supplement 1A; Video 1), and they were successfully tubulated in the

presence of dynamin and amphiphysin (Figure 3—figure supplement 1B; Video 2). The dynamin-

amphiphysin helices on the lipid tubules were aligned with an almost regular pitch (22.0 ± 0.7 nm,

mean pitch ± s.e.m.) and they were immobile before GTP addition (Figure 3A, 0 s and 21 s; Video 3;

Figure 3—source data 1). Interestingly, the dynamin-amphiphysin helices became mobile after GTP

addition and eventually formed clusters consisting of a few helices with shorter pitch (15.7 ± 0.3 nm,

Figure 1 continued

nucleotide (No GTP) or with a transition states analogue of GTPase reaction, by adding 1 mM each of slowly hydrolyzable GTP analogue (GTPgS),

nonhydrolyzable GTP analogue (GMP-PNP), GDP combined with vanadate (GDP + vanadate), GDP (GDP), or GTP (GTP) for 10 min. More than thirty

samples from three individual experiments were examined and representative images are shown. Scale bar is 200 nm.

DOI: https://doi.org/10.7554/eLife.30246.003

The following figure supplements are available for figure 1:

Figure supplement 1. Purified dynamin and amphiphysin forms ring-shaped complexes.

DOI: https://doi.org/10.7554/eLife.30246.004

Figure supplement 2. Stoichiometry dependency of dynamin and amphiphysin in ring complex formation, liposome tubulation and membrane fission.

DOI: https://doi.org/10.7554/eLife.30246.005
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Figure 2. GTP hydrolysis induces clustering of dynamin-amphiphysin complexes on lipid nanotubes. (A) Electron micrographs of a lipid nanotube

(Nanotube) and those with dynamin-amphiphysin complexes before GTP addition (No GTP) and at different time points after GTP addition (GTP 1 s,

GTP 20 s, GTP 30 s, and GTP 1 min). Clusters of dynamin-amphiphysin helical complexes are indicated (white brackets). More than thirty samples from

three individual experiments were examined and representative images are shown. Scale bar is 100 nm. (B) Electron micrographs of lipid nanotubes

Figure 2 continued on next page

Takeda et al. eLife 2018;7:e30246. DOI: https://doi.org/10.7554/eLife.30246 6 of 19

Research article Biophysics and Structural Biology Cell Biology

https://doi.org/10.7554/eLife.30246


mean pitch ± s.e.m.) (Figure 3A, from 42 s to 131 s; Video 3; Figure 3—source data 1). Particle

tracking analyses of the individual dynamin-amphiphysin helices showed that the dynamin-amphiphy-

sin complexes were static before GTP addition (Figure 3B, 5-21 s; Video 4), but addition of 1 mM

GTP stimulated longitudinal movement of the helical complexes, leading to the cluster formation

(Figure 3B, 38-54 s, 38–86 s and 38–118 s; Video 5). Although membrane fission was not observed

in this sample probably due to a strong attachment of the lipid tubule to the substrate, the helices

had a tendency to constrict during the cluster formation (Figure 3C; Figure 3—figure supplement

2; Figure 3—source data 2; Figure 3—figure supplement 2—source data 1). These results suggest

that dynamin-amphiphysin helical complexes undergo two modes of structural changes, longitudinal

clustering and radial constriction, during GTP hydrolysis.

Membrane fission occurs at protein-uncoated regions flanking dynamin-
amphiphysin clusters
We next tried to correlate the cluster formation of dynamin-amphiphysin helical complexes with

membrane constriction and fission. In the representative sample in which membrane constriction

and fission occurred, a few dynamin-amphiphysin helices merged to form a cluster over time after

GTP addition (Figure 4A, 0 s, 125.3 s, 185.5 s and 227.5 s; Video 6; Figure 4—source data 1). Inter-

estingly, membrane constriction occurred at flanking regions of the cluster where membrane was

bare of dynamin-amphiphysin complexes (Figure 4A, fission point (FP).1 and FP.2). The heights at

sites marked with FP.1 and FP.2 were not changed before constriction (Figure 4B, before constric-

tion; Figure 4—source data 2), but they became lower in a stepwise manner from a pre-constriction

height of around 30 nm down to 20–25 nm or below (Figure 4B, after constriction; Figure 4—

source data 2). Similar longitudinal redistribution of the dynamin-amphiphysin helices before mem-

brane constriction was also observed in another sample, in which constriction occurred at one end of

clustered dynamin-amphiphysin complexes (Figure 4c, arrow; Video 8). These results strongly sug-

gest that membrane constriction and fission occur at the protein-uncoated regions created as a

result of the clustering of dynamin-amphiphysin helical complexes.

Amphiphysin contributes to efficient vesicle formation by controlling
cluster formation
We previously demonstrated that amphiphysin stimulates the GTPase activity of dynamin and thus

enhances vesicle biogenesis (Yoshida et al., 2004). In this study, we also noticed that the average

size of vesicles formed by dynamin-amphiphysin complexes (70.0 ± 2.9 nm, mean diameter ± s.e.m.)

was significantly smaller compared to those formed by dynamin alone (204.6 ± 12.3 nm, mean

diameter ± s.e.m.) after GTP addition (Figure 5A; Figure 5—source data 1). Consistently, dynamin-

amphiphysin complex formed constriction sites with shorter intervals (150.3 ± 9.8 nm, mean

intervals ± s.e.m.) compared to those formed by dynamin alone (193.5 ± 15.8 nm, mean intervals ± s.

e.m.) in the presence of GDP and vanadate (Figure 5B; Figure 5—source data 2). To further eluci-

date roles of amphiphysin in the membrane constriction and fission, the cluster formation by dyna-

min alone was compared to that by dynamin-amphiphysin complexes, using lipid nanotubes. As

Figure 2 continued

after addition of dynamin-amphiphysin complexes without guanine nucleotide (No GTP) or with a transition states analogue of GTPase reaction, by

adding 1 mM each of slowly hydrolysable GTP analogue (GTPgS), nonhydrolyzable GTP analogue (GMP-PNP), GDP combined with vanadate

(GDP + vanadate), GDP (GDP) and GTP (GTP) for 10 min. More than 30 samples from three individual experiments were examined and representative

images are shown. Clusters of dynamin-amphiphysin helical complexes are indicated (white brackets). The average pitch of helices in the clusters is

15.00 ± 2.2 nm (mean pitch ± s.e.m., n = 63 from 7 nanotubes) in GDP + vanadate, while the average pitch of the helical complexes is 20.0 ± 0.5 nm

(mean pitch ± s.e.m., n=81 from 9 nanotubes) in No GTP control. Scale bar is 100 nm.

DOI: https://doi.org/10.7554/eLife.30246.006

The following source data and figure supplement are available for figure 2:

Source data 1. Measuring pitch size of dynamin-amphiphysin helices on the lipid nanotube without GTP and in the presence of GDP and vanadate in

panel B.

DOI: https://doi.org/10.7554/eLife.30246.008

Figure supplement 1. Stoichiometry dependency of dynamin and amphiphysin in cluster formation

DOI: https://doi.org/10.7554/eLife.30246.007
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Figure 3. Dynamic clustering of dynamin-amphiphysin helices during GTP hydrolysis. (A) HS-AFM images captured at 1 frame/s of dynamin-

amphiphysin helical complexes on membrane tubules before (0 s and 21 s) and after GTP addition at different time points (42 s, 63 s, 84 s, 100 s, 115 s

and 131 s). Dynamin-amphiphysin helices (arrowheads) are assembled into three distinct clusters (1, 2 and 3 at 131 s). The pitch of dynamin-amphiphysin

helices on the lipid tubule was 22.0 ± 0.7 nm (mean pitch ± s.e.m., n = 36 from 3 time points) before GTP addition and 15.7 ± 0.3 nm (mean pitch ± s.e.

Figure 3 continued on next page
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already described, dynamin-amphiphysin complexes formed clusters with a few helices in the pres-

ence of GDP and vanadate (34.2 ± 1.7 nm, mean cluster size ± s.e.m.) (Figure 5C,

Dynamin + Amphiphysin; Figure 5—source data 3). In contrast, dynamin alone formed larger-sized

clusters consist of more helical complexes (59.3 ± 4.7 nm, mean cluster size ± s.e.m.) (Figure 5C,

Dynamin; Figure 5—source data 3). These results suggest that amphiphysin contributes to the

effective generation of properly sized vesicles by controlling the cluster formation of dynamin-amphi-

physin helical complexes.

Discussion
In this study, we analyzed dynamics of dynamin-amphiphysin helical complexes during membrane

constriction and fission using EM and HS-AFM. EM analyses showed that GTP hydrolysis is required

for both membrane constriction and fission, but dissociation of hydrolytic products (GDP and/or

phosphate) seems necessary for the completion of membrane fission (Figure 1). In the presence of

GTP or GDP and vanadate, dynamin-amphiphysin helical complexes are reorganized, resulting in the

formation of clusters consisting of a few dynamin-amphiphysin helices (Figure 2). HS-AFM analyses

directly demonstrated that GTP hydrolysis induces dynamic longitudinal movement of the dynamin-

amphiphysin helices as well as constriction during the cluster formation (Figure 3). Interestingly, HS-

AFM analyses also demonstrated that membrane constriction and fission occur at the ‘protein-

uncoated’ regions created as a result of cluster formation of dynamin-amphiphysin complexes (Fig-

ure 4). Finally, we found that amphiphysin contributes to effective biogenesis of endocytic vesicles

by regulating size of the clusters formed by dynamin-amphiphysin helical complexes (Figure 5).

There is a consensus view about the requirement of GTP hydrolysis in membrane fission, but the

requirement of GTP hydrolysis in membrane constriction is still controversial (Antonny et al., 2016).

Membrane tubules are constricted in the presence of non-hydrolyzable GTP analogue (Chen et al.,

2004; Mears et al., 2007; Zhang and Hinshaw, 2001) and more constricted with a GTP-loaded

GTPase defective K44A mutant (Sundborger et al., 2014). In both cases, membrane tubules are

evenly constricted and periodical membrane constriction sites which lead to membrane fission is not

created. In the present study, we showed that membrane constriction sites are created in the pres-

ence of GDP and vanadate, which mimicked a transition state of GTP hydrolysis (GDP�Pi), suggesting

that complete hydrolysis of GTP is required for the formation of constriction sites leading to mem-

brane fission (Figure 1B). Membrane fission has never been observed in the presence of GDP and

vanadate, suggesting that release of GTP hydrolytic products (GDP and/or phosphate) is a prerequi-

site for membrane fission. Further analyses will more precisely reveal which intermediate state in the

Figure 3 continued

m., n = 36 from 9 time points) after GTP addition. (B) Particle tracking of dynamin-amphiphysin helices before (5–21 s) and after addition of 1 mM GTP

(38–54 s, 38–86 s and 38–118 s) from Videos 4 and 5, respectively. Particle tracking of the complexes in the cluster 2 (light blue, dark blue and

magenta) and cluster 3 (red, yellow and green) are shown. (C) Dynamin-amphiphysin helices tend to constrict during clustering. Average heights before

(0 � t � 100 s) and after clustering (101 s � t) are 38.4 ± 0.2 nm and 36.5 ± 0.2 nm for cluster 1, 32.6 ± 0.2 nm and 32.6 ± 0.2 nm for cluster 2, 27.9 ± 0.1

nm and 26.8 ± 0.2 nm for cluster 3, respectively. The heights were measured from the substrate surface. The marks *** indicate p<0.001 and n.s. is not

significant, respectively.

DOI: https://doi.org/10.7554/eLife.30246.009

The following source data and figure supplements are available for figure 3:

Source data 1. Measuring pitch size of dynamin-amphiphysin helices on the lipid tubule before and after cluster formation.

DOI: https://doi.org/10.7554/eLife.30246.012

Source data 2. Measuring heights of dynamin-amphiphysin helices on the lipid tubule before and after cluster formation.

DOI: https://doi.org/10.7554/eLife.30246.013

Figure supplement 1. HS-AFM imaging of LUV and its tubulation by dynamin-amphiphysin complex.

DOI: https://doi.org/10.7554/eLife.30246.010

Figure supplement 2. Dynaimin-amphiphysin helices constrict during cluster formation.

DOI: https://doi.org/10.7554/eLife.30246.011

Figure supplement 2—source data 1. Measuring heights of dynamin-amphiphysin helices on the lipid tubule during cluster formation.

DOI: https://doi.org/10.7554/eLife.30246.014
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GTPase reaction is responsible for the membrane fission or how many GTPase cycles are required

for it.

In this study, we revealed that dynamin-amphiphysin helical complexes are rearranged to form

their clusters upon GTP hydrolysis (Figure 2 and Figure 3) and membrane fission occurs at the

Figure 4. Membrane fission occurs at the protein-uncoated regions flanking dynamin-amphiphysin clusters. (A) Clips of HS-AFM images captured at

0.42 frames/s showing membrane fission by dynamin-amphiphysin complexes (0 s, 125.3 s, 185.5 s and 227.5 s) in Video 6. Membrane fission occurred

at flanking regions of a dynamin-amphiphysin cluster. Corresponding height profiles along the red line (shown in the 0 s image) passing through the

two fission points (arrows marked with FP.1 and FP.2) are shown below, together with clustered dynamin-amphiphysin helical complexes (red

arrowheads). (B) Height profiles at fission points (FP.1 and FP.2) over time before (Video 7) and after constriction (Video 6). The heights of the lipid

tubules from the substrate surface were measured at the fission points. (C) Clips of HS-AFM images showing clustering dynamin-amphiphysin

complexes and membrane constriction at flanking regions of the cluster (arrow). HS-AFM images are shown in pseudo color. Scale bar is 40 nm.

DOI: https://doi.org/10.7554/eLife.30246.020

The following source data is available for figure 4:

Source data 1. Measuring height changes of lipid tubules during constriction and fission by dynamin-amphiphysin helices.

DOI: https://doi.org/10.7554/eLife.30246.021

Source data 2. Measuring heights of fission points (FP.1 and FP.2) over time before (Video 7) and after GTP addition (Video 6) for panel B.

DOI: https://doi.org/10.7554/eLife.30246.022
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Figure 5. Amphiphysin contributes to generation of uniformly-sized vesicles by controlling dynamin-amphiphysin clusters. (A) Representative EM

images of membrane vesicles generated by dynamin-amphiphysin complexes (Dynamin + Amphiphysin) or dynamin alone (Dynamin) after addition of

GTP. Size distribution of generated vesicles are shown in the right panel. The average sizes of vesicles were 70.0 ± 0.6 nm (mean diameter ± s.e.m.,

n > 30, N = 3) for dynamin-amphiphysin complexes and 204.6 ± 1.1 nm (mean diameter ± s.e.m., n > 45, N = 3) for dynamin alone. Scale bar is 200 nm.

(B) Representative EM images of membrane constriction induced by dynamin-amphiphysin complexes (Dynamin + Amphiphysin) and dynamin alone

Figure 5 continued on next page
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flanking ‘protein-uncoated’ membrane regions (Figure 4). In the ‘constrictase’ model, dynamin con-

stricts membrane until the membrane neck reaches to the hemi-fission state, which leads to sponta-

neous membrane fission (Chen et al., 2004; Hinshaw and Schmid, 1995; Mears et al., 2007).

However, several lines of evidences are apparently inconsistent with this simple model. For instance,

the super-constricted state of dynamin does not constrict the membrane sufficiently enough to reach

the hemi-fission state (Sundborger et al., 2014) and membrane tension and/or torsion is required

to overcome the energy barrier to fission (Bashkirov et al., 2008; Morlot et al., 2012; Roux et al.,

2006). In this study, we showed that GTP hydrolysis induces constriction of the dynamin-amphiphy-

sin helices as well as clustering (Figure 3). These radial and longitudinal remodeling of the dynamin-

amphiphysin helices may give local tension and/or torsion to the membrane tube at the edge of the

clusters to drive membrane fission. Alternatively, the dynamin-amphiphysin clusters may serve as a

lipid diffusion barrier that causes friction leading to membrane scission (Simunovic et al., 2017).

Longitudinal rearrangement upon GTP hydrolysis similar to the cluster formation by the dynamin-

amphiphysin complexes was also observed in an EM study on the dynamics of dynamin with lipid

nanotubes (Stowell et al., 1999) and more recently by HS-AFM analyses on dynamics of DPRD dyna-

min (Colom et al., 2017), suggesting that the longitudinal rearrangement is an intrinsic property of

dynamin during membrane fission.

In our previous studies, we showed that amphiphysin enhances dynamin’s GTPase activity in the pres-

ence of liposomes (Takei et al., 1999; Yoshida et al., 2004). In this study, we revealed that amphiphysin

may also contributes to effective vesicle biogenesis by controlling the number of constriction sites via

cluster formation of dynamin-amphiphysin helices in a long membrane tubule formed in vitro (Figure 5).

Although precise mechanisms of the cluster size control by amphiphysin remains unclear, amphiphysin

could have roles either in determining the number of dynamin-amphiphysin helices comprising the clus-

ters, or in positioning of breakage points in dynamin-amphiphysin helices to induce clustering. Tubular

structures have long been known to be present in various synapses, and they are described as ‘membrane

tubules’ (Heuser and Miledi, 1971), ‘cisternae’ (Heuser and Reese, 1973), ‘synaptic tubules’

(Samorajski et al., 1966) or ‘anastomosing tubules’ (Ekström von Lubitz, 1981). The tubules are

enriched in endocytic proteins including dynamin, synaptojanin, amphiphysin, and endophilin

(Fuchs et al., 2014; Takei et al., 1998), and the presence of the tubules becomes more prominent when

synapses are stimulated (Fuchs et al., 2014; Takei et al., 1998), or when membrane fission is blocked in

dynamin 1 K.O. mice (Ferguson et al., 2007). These findings strongly suggest that the tubular structures

represent endocytic intermediate at which dynamin-amphiphysin-dependent synergic vesicle formation

takes place in the synapse. Besides amphiphysin, other BAR domain proteins, endophilin and syndapin,

are also implicated in synaptic vesicle recycling (Dittman and Ryan, 2009; Koch et al., 2011;

Milosevic et al., 2011). Interestingly, recent study showed that endophilin potently inhibits the dynamin-

mediated membrane fission by intercalating dynamin rungs and preventing their trans-interactions

Figure 5 continued

(Dynamin) in the presence of GDP and vanadate. Distribution of intervals between constriction sites (arrows) are quantified in the right panel. The

average intervals of constriction sites induced are 150.3 ± 9.8 nm (mean intervals ± s.e.m., n = 25 from 7 tubes) by dynamin-amphiphysin complexes and

193.5 ± 15.8 nm (mean intervals ± s.e.m., n = 46 from 15 tubes) by dynamin alone. Scale bar is 200 nm. (C) Clustering of dynamin-amphiphysin

complexes (Dynamin + Amphiphysin) and dynamin alone (Dynamin) on lipid nanotubes in the presence of GDP and vanadate. Clusters of dynamin-

amphiphysin helices are indicated (white brackets). Distribution of cluster size were shown as scattered plot in the right panel. Average size of the

clusters formed by dynamin-amphiphysin complexes and dynamin alone are 34.2 ± 1.7 nm (mean cluster size ± s.e.m., n = 36 from 7 tubes) and

59.3 ± 4.7 nm (mean cluster size ± s.e.m., n = 30 from 5 tubes) respectively. Scale bar is 100 nm.

DOI: https://doi.org/10.7554/eLife.30246.026

The following source data is available for figure 5:

Source data 1. Measuring diameters of vesicles generated by dynamin-amphiphysin complexes or dynamin alone after GTP addition for panel A.

DOI: https://doi.org/10.7554/eLife.30246.027

Source data 2. Measuring distances between membrane constriction sites induced by dynamin-amphiphysin complexes and dynamin alone in the pres-

ence of GDP and vanadate for panel B.

DOI: https://doi.org/10.7554/eLife.30246.028

Source data 3. Measuring size of clusters formed by dynamin-amphiphysin complexes and dynamin alone in the presence of GDP and vanadate for

panel C.

DOI: https://doi.org/10.7554/eLife.30246.029
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required for membrane fission (Hohendahl et al.,

2017). Although the dynamin-mediated membrane

fission is also inhibited when an excess of amphiphysin co-assembles with dynamin (Figure 1—figure sup-

plement 2C), it is rather stimulatory when the molar ratio of dynamin to amphiphsyin is around 1:1

(Yoshida et al., 2004). One of the important future goals of dynamin study would be to clarify regulatory

mechanisms by which dynamin alters its interactions with various BAR domain proteins in physiological

contexts such as synaptic vesicle recycling.

In conclusion, live imaging analyses using HS-AFM in this study and a study from another group

(Colom et al., 2017) gave new mechanistic insights into the dynamin-mediated membrane fission.

Combinatory approaches using high temporal resolution imaging with HS-AFM and high spatial reso-

lution structural analyses with X-ray crystallography or Cryo-EM will be the most powerful approach in

resolving various dynamic membrane remodeling processes in the future.

Materials and methods

Purification of dynamin1 and amphiphysin
Human dynamin1 was purified using the method of Warnock et al. with some modification

(Warnock et al., 1996). Sf9 cells grown in 600 ml of SF-900II SFM (Thermo Fisher Scientific, Wal-

tham, MA) to the cell density of 1 � 106 cells/ml and the cells were infected with baculoviruses

expressing dynamin1. After cultivation of cells at 28˚C for 69 hr, the infected Sf9 cells were harvested

by centrifugation at 500 � g for 10 min. The cell pellet was resuspended by 1/20 of the culture vol-

ume (30 ml) of HCB (Hepes column buffer)100 (20 mM Hepes, 100 mM NaCl, 2 mM EGTA, 1 mM

MgCl2, 1 mM DTT, 1 mM PMSF, 1 mg/ml Pepstatin A, 40 mM ALLN, pH 7.2) and cells were sonicated

using a sonicator (Advanced-Digital SONIFIER model 250, BRANSON). The cell lysate was mixed

with equal volume of HCB0 (20 mM Hepes, 2 mM EGTA, 1 mM MgCl2, 1 mM DTT, 1 mM PMSF, 1

mg/ml Pepstatin A, 40 mM ALLN, pH 7.2) to make HCB50 (20 mM Hepes, 50 mM NaCl, 2 mM EGTA,

1 mM MgCl2, 1 mM DTT, 1 mM PMSF, 1 mg/ml Pepstatin A, 40 mM ALLN, pH7.2) and centrifuged at

210,000 � g for 1 hr at 4˚C. Ammonium sulfate was added to the cleared lysate to the 30% satura-

tion and incubated at 4˚C for 30 min and centrifuged at 10,000 � g for 10 min to recover the dyna-

min1 containing fraction in the pellet. The dynamin1 pellet was resuspended with 20 ml of HCB50

and dialyzed against 2L of HCB50 for total 4 hr (2 hr, 2 times) using dialysis membrane (Spectra/

Por Dialysis Membrane MWCO: 3500). The dialyzed dynamin1 fraction was applied to Mono Q5/50

GL column (GE healthcare) and bound proteins were eluted stepwise using HCB50, HCB100,

Video 1. HS-AFM imaging of a LUV.

DOI: https://doi.org/10.7554/eLife.30246.015

Video 2. HS-AFM imaging of a lipid tubules induced

from LUVs by dynamin-amphiphysin complexes.

DOI: https://doi.org/10.7554/eLife.30246.016
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HCB250 and HCB1000 buffers. Purified dynamin1 was recovered in HCB250 fraction and purity was

determined by SDS-PAGE (Figure 1—figure supplement 1A, Dynamin).

Human amphiphysin was purified following manufacture’s instruction (GE Healthcare) with slight

modifications. Host bacteria BL21 (DE3) transformed with an expression construct for GST fusions of

human amphiphysin (pGEX6P2-HsAMPH) were grown in 1 L of LB medium to the cell density of 0.6–

0.8 (OD 600 nm) at 37˚C and then protein expression was induced at 18˚C for 12 hr in the presence

of 0.1 mM IPTG. The bacterial cells were harvested by centrifugation at 7000 � g for 10 min and cell

pellet was resuspended by 1/10 culture volume (100 ml) of Elution/Wash 300 buffer (50 mM Tris-

HCl, pH 8.0, 300 mM NaCl). The resuspended cells were sonicated using Advanced-Digital SONI-

FIER model 250D (Branson) and centrifuged at 261,000 � g for 30 min at 4˚C and cleared lysate was

recovered in supernatant. To the cleared lysate, 1/100 culture volume (1 ml in bed volume) of Gluta-

thione Sepharose 4B Beads (GE Healthcare) was added and they are mixed using rotating mixer for

1 hr at 4˚C. The beads were washed with the Elution/Wash 300 buffer for 5 times in a repeated cycle

of centrifugation at 420 � g for 5 min at 4˚C followed by mixing with rotator for 5 min at 4˚C. The
beads with purified GST fusions of amphiphsyin were equilibrated with PreScission Buffer (50 mM

Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1 mM DTT, pH 7.0) and GST-tag was removed by PreScission

Protease (GE Healthcare) by incubating for 12 hr at 4˚C. The purified amphiphysin was recovered by

centrifuge (12,000 � g, 5 min at 4˚C) using spin column (Ultrafree-Mc, GV 0.22 mm, Millipore) and

purity was determined by SDS-PAGE (Figure 1—figure supplement 1A, Amphiphysin).

Preparation of LUVs and lipid nanotubes
Large unilamellar vesicles (LUVs) and lipid nanotubes were prepared as previously described

(Takei et al., 2001). For LUVs, 70% PS (Cat. No 840032C, Avanti), 10% biotinPE (Avanti) and 20%

cholesterol (Avanti) were mixed and, for lipid nanotubes 40% NFA Galactocerebrosides (Sigma

C1516), 40% PC (Avanti), 10% PI(4,5)P2 (Calbiochem) and 10% cholesterol (Avanti) were mixed in

250 ml of chloroform in a glass vial (Mighty Vial No.01 4 ml, Maruemu Cat. No 5-115-03). Then chlo-

roform was evaporated using slow-flow nitrogen gas to produce lipid a lipid film on the glass and

then completely dried in a vacuum desiccator for 30 min. The dried lipid was rehydrated by water-

saturated nitrogen gas followed by addition of

250 ml of filtered 0.3M sucrose for 2 hr at 37˚C.
The resultant LUVs and lipid nanotubes were

passed through 0.4 mm- and 0.2mm- polycarbon-

ate filters respectively 11 times using Avanti Mini

Video 3. HS-AFM imaging of cluster formation by

dynamin-amphiphysin helical complexes.

DOI: https://doi.org/10.7554/eLife.30246.017

Video 4. Particle tracking of dynamin-amphiphysin

helical complexes before GTP addition (frames from 5 s

to 21 s in Video 3).

DOI: https://doi.org/10.7554/eLife.30246.018
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extruder. The LUVs and lipid nanotubes (1 mg/ml of final concentration) were stored in dark at 4˚C
avoiding photooxidation.

EM imaging of in vitro assay with liposomes and dynamin-amphiphysin
complexes
LUVs and lipid nanotubes were diluted to 0.17 mg/ml in cytosolic buffer (25 mM Hepes-KOH, pH

7.2, 25 mM KCl, 2.5 mM Magnesium acetate, 0.1 M K-glutamate, pH 7.4). Dynamin-amphiphysin

complexes (1:1 in molar ratio) were diluted to 2.3 mM in the cytosolic buffer. Formvar filmed EM

grids were carbon-coated, then glow-discharged. Droplets of the diluted lipids (10 ml each) were

prepared on Parafilm and adsorbed on EM grids for 5 min at room temperature. Then the EM grids

with lipids were transferred to other droplets of the diluted dynamin-amphiphysin complexes and

incubated for 30 min at room temperature in a humid chamber. To see the temporal effect of GTP

hydrolysis, the EM grids were transferred to 1 mM of GTP and incubated for various time periods

(from 1 s to 10 min). The reaction was terminated by quick removal of the GTP solution by filter

paper at room temperature. Alternatively, the EM grids were incubated either GTP, GTPgS, GMP-

PNP, GDP plus Vanadate and GDP to analyze GTP hydrolysis transition state structures. The EM

grids were negatively stained with filtered 2% uranyl acetate and observed with transmission elec-

tron microscope (HITACHI H-7650).

HS-AFM imaging
All AFM images shown in this article were capture by a laboratory-built HS-AFM in which the ampli-

tude-modulation mode was used. For the HS-AFM imaging, a small cantilever with dimensions of 7

mm long, 2 mm wide, and 90 nm thick was used (Olympus). Its nominal spring constant and resonant

frequency were ~0.2 N/m and ~800 kHz in an aqueous solution, respectively. To obtain a sharp tip,

an amorphous carbon pillar was grown on the original bird-beak tip of the cantilever by electron

beam deposition (EBD) and then sharpened by a plasma etching in an argon environment. The typi-

cal radius of the EBD tip was approximately 2 nm after sharpening. For the amplitude-modulation

imaging, the cantilever was oscillated with amplitude less than 10 nm under free oscillation condition

and the set-point was set at ~90% of the free

oscillation amplitude. For HS-AFM imaging of lip-

osomes and dynamin-amphiphysin complexes

with lipid tubules or nanotubes, we used mica

covered with carbon film. After coating a freshly

Video 5. Particle tracking of dynamin-amphiphysin

helical complexes after GTP addition (frames from 38 s

to 124 s in Video 3).

DOI: https://doi.org/10.7554/eLife.30246.019

Video 6. HS-AFM imaging of constriction and fission of

lipid tubules by dynamin-amphiphysin complexes.

DOI: https://doi.org/10.7554/eLife.30246.023
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cleaved mica surface with carbon film, hydrophilic

treatment was carried out by a grow discharge.

The liposomes (0.17 mg/ml) were deposited on the hydrophilic mica surface and incubated for 5 min

at room temperature followed by deposition of proteins (0.6 mM of dynamin1 and amphiphysin) for

30 min at room temperature. After the incubation, the sample was thoroughly washed by cytosolic

buffer to remove excess liposomes and proteins. After the washing, the cantilever tip was

approached and the imaging was performed under the buffer.

Quantitative data analyses of EM and HS-AFM images
The EM and HS-AFM images were randomly captured to avoid data manipulation and representative

images were shown in all the figures. The average pitch between the dynamin-amphiphysin helices

in EM images (Figure 2) and HS-AFM images (Figure 3), diameter of vesicles, intervals between con-

striction sites and size of clusters generated by either dynamin-amphiphysin complex or dynamin

(Figure 5), were all measured by FIJI (Schindelin et al., 2012). Experimental data were statistically

analyzed using Excel (Microsoft) or Prism 7 (GraphPad software).
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