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ABSTRACT 

Objective 

The objective of this study was to use machine learning and health standards to 

address the problem of clinical data interoperability across healthcare institutions. 

Addressing this problem has the potential to make clinical data comparable, searchable 

and exchangeable between healthcare providers.  

Data sources 

Structured and unstructured data has been used to conduct the experiments in this 

study. The data was collected from two disparate data sources namely MIMIC-III and 

NHanes. The MIMIC-III database stored data from two electronic health record systems 

which are CareVue and MetaVision. The data stored in these systems was not recorded 

with the same standards; therefore, it was not comparable because some values were 

conflicting, while one system would store an abbreviation of a clinical concept, the other 

would store the full concept name and some of the attributes contained missing 

information. These few issues that have been identified make this form of data a good 

candidate for this study. From the identified data sources, laboratory, physical 

examination, vital signs, and behavioural data were used for this study. 

Methods 

This research employed a CRISP-DM framework as a guideline for all the stages of 

data mining. Two sets of classification experiments were conducted, one for the 

classification of structured data, and the other for unstructured data. For the first 

experiment, Edit distance, TFIDF and JaroWinkler were used to calculate the similarity 

weights between two datasets, one coded with the LOINC terminology standard and 

another not coded. Similar sets of data were classified as matches while dissimilar sets 

were classified as non-matching. Then soundex indexing method was used to reduce 

the number of potential comparisons. Thereafter, three classification algorithms were 

trained and tested, and the performance of each was evaluated through the ROC curve. 

Alternatively the second experiment was aimed at extracting patient’s smoking status 

information from a clinical corpus. A sequence-oriented classification algorithm called 

CRF was used for learning related concepts from the given clinical corpus. 

Hence, word embedding, random indexing, and word shape features were used for 

understanding the meaning in the corpus. 
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Results 

Having optimized all the model’s parameters through the v-fold cross validation on a 

sampled training set of structured data (      ), out of 24 features, only (  8) were 

selected for a classification task. RapidMiner was used to train and test all the 

classification algorithms. On the final run of classification process, the last contenders 

were SVM and the decision tree classifier. SVM yielded an accuracy of 92.5% when the 

  and   parameters were set to             and            . These results were 

obtained after more relevant features were identified, having observed that the 

classifiers were biased on the initial data. On the other side, unstructured data was 

annotated via the UIMA Ruta scripting language, then trained through the CRFSuite 

which comes with the CLAMP toolkit. The CRF classifier obtained an F-measure of 

94.8% for “nonsmoker” class, 83.0% for “currentsmoker”, and 65.7% for “pastsmoker”. It 

was observed that as more relevant data was added, the performance of the classifier 

improved. The results show that there is a need for the use of FHIR resources for 

exchanging clinical data between healthcare institutions. FHIR is free, it uses: profiles to 

extend coding standards; RESTFul API to exchange messages; and JSON, XML and 

turtle for representing messages. Data could be stored as JSON format on a NoSQL 

database such as CouchDB, which makes it available for further post extraction 

exploration. 

 

Conclusion 

This study has provided a method for learning a clinical coding standard by a computer 

algorithm, then applying that learned standard to unstandardized data so that 

unstandardized data could be easily exchangeable, comparable and searchable and 

ultimately achieve data interoperability. Even though this study was applied on a limited 

scale, in future, the study would explore the standardization of patient’s long-lived data 

from multiple sources using the SHARPn open-sourced tools and data scaling platforms 

such Hadoop.  
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CHAPTER 1: 

Introduction 

 

1. INTRODUCTION 

Health care facilities in South Africa still find it difficult to share, trace and efficiently 

search for patients’ medical data on their health information systems. According to 

(Masilela, Foster, & Chetty, 2013) health information systems are characterised by 

fragmentation and a lack of coordination. The report further adds that there is 

prevalence of manual systems and the lack of automation in health care, and between 

those systems that have been automated, there is a lack of interoperability.  

 

(Mxoli, Mostert-Phipps, & Gerber, 2014) have defined interoperability in health care 

systems as the ability of information and communication technology (ICT) systems to 

share and exchange patients’ health data. In health care, standardization concepts have 

been considered to be the potential solution to the fragmented and siloed health 

systems (Smith, Fridsma, & Johns, 2014). Data management standards have enabled 

seamless exchange of information and have reduced the complexity when sharing data 

between multiple systems (Adebesin, Kotzé, Greunen, & Foster, 2013; Gruenheid, 

Dong, & Srivastava, 2014; Nagy, Preckova, Seidl, & Zvarova, 2010). 

 

Even though there are standards in place designed to ensure consistency and 

interoperability between systems, the adoption rate in South Africa remains low. This 

has been attributed to the lack of human resources for implementing the standards, lack 

of implementation guidelines, a limited participation in standards development, and a 

lack of standards’ development prioritisation (Adebesin, Kotzé, et al., 2013). Another 

problem is that standards evolve and change over time, for instance HL7 health Version 

2 standard organises data in a “comma separated value” file system, while Version 3 

uses a complex XML file format. FHIR is the latest version of HL7 standards, it is 

resource-based and organizes information in XML, JSON, and turtle syntax. (Smits & 

Cornet, 2014) in their findings have reported FHIR to be completely different and not 

compatible with the previous versions of HL7 standard. Therefore, the researcher 



  

2 
 

claims that as the standards evolve, the health systems implementing those standards 

would need to adapt to that change. Now the problem comes when the data in system A 

in not easily retrievable, or comparable, or exchangeable with system B. Therefore, this 

study addresses the problems mentioned through health standards and machine 

learning. 

 

As such, this research study addresses the data interoperability problem that is 

currently experienced by the health care industry in both developing and developed 

countries. In the United States of America, they introduced the Meaningful Use 

programme, aimed at improving quality, safety, and the efficiency of Electronic Health 

Records (EHR) systems, and thus reducing health disparities (D’Amore et al., 2014). 

Here in South Africa, the National Department of Health (NDoH) has introduced the 

Health Normative Standards Framework (HNSF), which is an interoperability guideline 

that provides guidance for eHealth standards implementation between information 

technology systems (CSIR & NDoH, 2014). These are some of the items that this study 

aims to address. Below is an overview of the current chapter. 

  

In section 1.1 the researcher gives the background of this study, and a brief detail about 

data management is covered in section 1.2. Deficiencies in past literature and the 

significance of the study is then covered in section 1.3 and 1.4 respectively. While the 

objective and research questions are detailed in section 1.5 and in its subsections. 

Section 1.6 gives an outline and the proposed research methods for this study, and later 

in this section, the limitations of the study are identified, proposed tools and instruments 

are mentioned, and the validity of the instruments and data analysis methods are 

described. Section 1.7 gives a summary of what lies beyond this chapter. 

 

1.1 BACKGROUND TO THIS STUDY 

It could be said with great confidence that standards are put in place to format and 

organise data, regardless of the industry. In health care as well, standards can be used 

to achieve data exchange (Gay & Leijdekkers, 2015), however, health data comes in 

many forms. Some of the data is produced from wearable devices, and does not follow 
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a certain health standard, yet wearable device data is considered to be a treasure trove 

when it comes to health care (Topol, 2015). If it can be possible to integrate this data to 

the clinicians’ or hospitals’ health systems, then it can be possible to achieve high 

quality health care, due to the availability of useful data that is passively generated. 

Patients are able to generate their own data from their devices (smartphones and 

sensors), and are taking advantage of m-Health applications to improve and assist their 

health, said (Paschou, Sakkopoulos, Sourla, & Tsakalidis, 2012). 

 

According to (Swan, 2012), data from patients’ devices can be treated as personalised 

preventative medicine and can be used to prevent, diagnose and treat diseases. 

Personalised preventive medicine does not only focus on disease management, but has 

the following advantages: reduction of patients’ hospital readmission rates; extension of 

the patients’ lifespan and reduction of disability; and also prevent conditions from rising. 

 

Patients with chronic diseases are constantly required to monitor their health, and some 

use their smartphones, while others, especially diabetics, use a glucose tracker device 

to monitor their health. Data produced from these devices cannot be easily combined 

with data at the clinician’s office. Data from wearable sensors is said to be 

heterogeneous, unstructured, and noisy (Chen, Mao, Zhang, & Leung, 2014), and as a 

result, it is difficult to integrate, and is costly to manage and exchange.  

 

To make the data interoperability picture clearer, in the Eastern Cape, the South African 

Society of Cardio-vascular Intervention has observed that different doctors are not able 

to share their medical notes. As a result, they don’t know the history of the patients’ 

treatments and often during consultations, patients would be requested to do lab scans, 

lab tests, and be prescribed to medicine that another doctor previously prescribed but 

that did not work (The Competition Commission South Africa, 2016). The current health 

data management system is costly and inefficient. Hence, this study is targeted at 

collecting patient’s data from multiple data sources, then classifying it based on health 

standards, such that patients’ information can be easily searchable, shareable and 

comparable for patterns. 
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1.2 AN OVERVIEW OF DATA MANAGEMENT AND DATA PROCESSING METHODS 

The South African health information systems policy states that information that can be 

gathered in health facilities includes the following: 

 Health status information: which includes morbidity, mortality, births, deaths, 

injuries and disease burden; 

 Health related information: which includes demographic, social economic, 

residential and other related information; 

 Health service information: which is about utilisation of health services; and 

 Health management information: which is about the administrative services. 

Even though the policy clearly categorises the types of information in health facilities as 

listed above, the type of information collected in the private health sector is not similar to 

that collected in the public sector (Matshidze & Hanmer, 2007). In the private sector, the 

Council of Medical Schemes (CMS) has developed a minimum data set that stipulates 

which information the medical aid scheme ought to collect.  

 

There is also disparity in health services between health facilities in rural and in urban 

areas. (Coleman, Herselman, & Potass, 2012) have found that in urban areas, internet 

connection is much faster and more reliable than it is in rural areas, even though the 

ICT infrastructure and systems are not integrated. Furthermore, (Coleman et al., 2012) 

have also stated that the PAAB system is used to collect and send patient demographic 

information to the head office of the North-West Health Department on a monthly basis. 

Urban hospitals in Rustenburg and Klerksdorp are able to share x-ray images 

electronically. 

 

The ability of certain hospitals to share data amongst themselves does not remove the 

interoperability issues. The National Health Insurance (NHI) Plan aims to achieve 

interoperability between health systems by implementing the health information 

exchange middleware, while clinically-generated data will be shared and exchanged 
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using the middleware (South Africa Department of Health, 2015). However, wearable 

device data, such as heart rate, blood pressure, glucose measurements, sleep patterns, 

activity measurements, and so forth cannot be easily integrated into the national patient-

based information system because at the moment there is no standard that stipulates 

how wearable data should be stored (Li et al., 2017). If data stored or shared uses a 

similar standard, then it would be similar in structure, thus making it easier to manage. 

 

The health care industry is flooded with both structured and unstructured data, and 

when structured data is shared between health care organizations, the original data 

ends up being semi-structured, due to the lack of standardization. In health care, 

unstructured data comes in the form of medical reports, medical scans, doctors’ notes, 

and more. (Sarawagi, 2007) suggests that structure could be given to unstructured data 

through information extraction methods. Extraction methods include: rule-based 

learning and statistical methods. A number of statistical models have been used to 

assign labels to tokens in a sentence. Sarawagi also stated that Support Vector 

Machines (SVM) have been used for classifying each token to an entity type, e.g. a 

person’s name would be classified to a “person” entity, depending on a list of available 

entities. Classification helps with the task of choosing the correct target class for a given 

input.  

 

SVMs are not only useful for classifying sentences into entities, but other researchers 

such as (Cheng, Zhang, Xie, Agrawal, & Choudhary, 2012; Zhao, Wang, Bi, Gong, & 

Zhao, 2011) have used SVM classifiers for classifying hierarchical data, such as web 

pages and xml documents. Therefore, the researcher proposes the use of machine 

learning algorithms and data coding standards for achieving data interoperability across 

manifold datasets that are not standardized, or that are fragmented. 

 

1.3 DEFICIENCIES IN PAST LITERATURE  

Fragmented and disparate health care systems in South Africa can achieve 

interoperability through the standardization of health care systems (Adebesin, Foster, 

Kotzé, & Van Greunen, 2013; Orgun & Vu, 2006). To ensure that health standards are 
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developed in health care, the National Department of Health (NDoH) has commissioned 

the Meraka Institute of CSIR to develop a Health Normative standards framework  

(Masilela et al., 2013). The framework will provide guidance and the know-how of the 

eHealth standards to the Health Department. However, existing systems would have to 

comply with the framework, which means redevelopment of these systems, and begs 

the question as to how the old data before the enrolment of the standard ought to be 

standardized.  

 

The old data would have to be captured, or exported, and be structured based on the 

standard that was implemented, if data is sourced from different providers; which use 

different standards, then the problem of interoperability resurfaces. For example, (Ding, 

Yang, & Wu, 2011) have stated that different sources of health data, such as data from 

a wearable sensor, can have different semantics and data structures, which increase 

the difficulties in data processing. Hence, previous literature on data management 

shows that the focus has been on implementing a standard at systems-level and not at 

data-level. The standardization of structured data solves a fraction of the interoperability 

problem, however as it has been stated, 80% of organizations’ data is unstructured 

(Barrett, Humblet, Hiatt, & Adler, 2013). Unstructured data is also dormant in health 

care. In a hospital setting, vital clinical information is recorded in a human-readable 

language such as English. Recording the information in a human readable language 

makes it easier and faster for clinical personnel to record into the EHR (Electronic 

Health Record) than to record the data in a structured format. Unstructured data is often 

easier to read by humans but it is much more difficult to manage via computers 

(Barbulescu et al., 2013; Rosenbloom et al., 2010). Even in such a case, the volume of 

this data is overwhelming for clinicians to manage manually, and to organize via 

computers. Therefore one would have to apply Natural Language Processing (NLP) 

algorithms in order to easily manage this data. Therefore, there is a need to also 

standardize unstructured data. 

 

Another method of standardizing data is through the use of SDKs. APPLE provides an 

SDK HealthKit to third party devices and application developers. The SDK is aimed at 
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making patients' data collatable and shareable between applications and devices. 

Nevertheless, in order to use the SDK, developers or data users must own an iPhone 

smartphone, and they would also have to redevelop their applications using Apple’s 

SDK HealthKit, which runs on the Macintosh operating system (Hattersley, 2014).  

 

Other data management techniques include Data Fusion, which has been used to 

combine multiple data sources in order to ensure data management. Another technique 

is using record-linkage algorithms that are aimed at finding attributes that are shared 

between data sources, where they can be used to match records across different 

sources. (Hassanzadeh et al., 2013) used a record-linkage algorithm to create a 

framework for discovering linkage points over large semi-structured web data. This 

framework was only focused on web data sources, and they saw a need to extend their 

framework to accommodate syntactic, semantic, and lexical matching functions. Other 

researchers such as (Viangteeravat et al., 2011) have presented a prototype for the 

implementation of HL7 Reference Information Model mapping for data integration of 

distributed clinical data sources. These researchers have recognised the need for an 

automatic mapping service that uses semantic mapping, pattern matching and machine 

learning techniques for mapping traditional health data to an appropriate RIM-based 

classes and attributes.  

 

1.4 THE SIGNIFICANCE OF THE STUDY 

The study of the integration and management of patients’ data in South Africa is of 

paramount importance, because without relevant data, it is impossible to make correct 

decisions. It is mentioned by (Mayosi et al., 2012) that, “detection, management, and 

outcomes of care for individuals with non-communicable diseases are suboptimum” (p. 

10). With the introduction of the National Health Insurance (NHI) plan, there is a need to 

standardize clinical data so that data can be easily sharable between health care 

institutions. Standardizing data ensures that common reimbursement codes are used 

for the clinical services being provided, and hence preventing fraud by overcharging the 

services provided in health care. 
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More relevant data is needed to understand the patient so that decision-making in 

health care can be improved through the use of integrated patient information. If the 

data is integrated and is easily retrievable, then it can be easy to extract useful 

information (Hinssen, 2012). Integrated patients’ data would allow the physician to 

search for treatments that worked for a similar patient to the one being treated; and data 

can be filtered by age, gender or any other relevant characteristics (Barbarito et al., 

2015). However, currently health data is not integrated, and a large portion of it cannot 

be used for secondary purposes because it is not structured in the same way and is 

stored in different locations (Rea et al., 2012). 

 

Data is difficult to manage manually, which is why this study proposes the use of 

computer algorithms to organise patients’ data. In addition, (Fu, Christen, & Boot, 2010) 

suggest that linked information facilitates improved retrieval of information, and it also 

improves the quality of the data, which in return offers more value and opportunities in 

data usage for further analysis. (Porter & Lee, 2013) have suggested that in order to 

enable universal comparison of health outcomes, and for stimulating improvements in 

health care, it is vital to measure outcomes by conditions, and the researcher suggests 

that standardizing health data would improve how outcomes are measured in health 

care.  

 

1.5 THE OBJECTIVE OF THE STUDY 

The objective of this study is to use standardized clinical observation data as input on a 

learning algorithm, where the algorithm would learn a function   for identifying patterns 

in the input data, such that when the algorithm is given new but related unstandardized 

observation data, it would be able to classify the data to the related standard. The 

researcher has planned to use the SVM classifier as the learning algorithm, and 

laboratory data that is standardized (also known as gold standard), based on the LOINC 

standard. This objective is meant to address the problem of data interoperability, by 

ensuring that clinical observation data is searchable, comparable and exchangeable 

between health care facilities. Clinical observation data includes but is not limited to vital 

signs, laboratory data, and social history such as tobacco use. 



  

9 
 

 

1.5.1 RESEARCH QUESTIONS 

The following research questions have been identified, and are aimed at addressing 

clinical observation data interoperability across health care facilities. The researcher has 

identified two main questions for this study, and sub-questions are extracted from these 

main questions: 

1. When will health information systems in South Africa be standardized in 

order to be able to seamlessly exchange and share consolidated patients’ 

data? 

2. How can the process of data compliance across health care providers be 

automated through machine learning concepts? 

In order for these questions to be answered, the following sub-questions have been 

identified as mentioned in Table 1.1. 

Table 1. 1: Research sub-questions for this research study 

# Research sub-question 

i.  What type of health-related data sets will this research study focus on? 

ii.  What methods are being used to classify objects accordingly in other industries, 

and how can those methods be applied in healthcare in order to achieve semantic 

and syntactic interoperability?  

iii.  How were features selected for structured data? 

iv.  How were features selected for unstructured data 

v.  What methods are used to automatically map source dataset (unstandardized) to 

the target dataset (standardized) with high level of accuracy? And which one is 

appropriate for health-related data? 

vi.  What features will be used to determine similarity between two records? 

vii.  How will the correctness of the results be evaluated? 
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1.5.2 HYPOTHESIS DEVELOPMENT 

From accomplishing the objective of the study as stated in section 1.5, the researcher 

claims interoperability will be achieved, therefore the following hypothesis statements 

have been developed:   

- Patients’ data is not easily exchangeable, searchable and comparable because 

it’s not structured; therefore, in order to give it a structure, one must apply a 

working standard, and to automate the process of data standardization one can 

use a learning algorithm.  

- Support Vector Machine algorithm can learn better than logistics regression and 

Decision Tree algorithms because they are sensitive to outliers, and it maximizes 

the margin that separates the positive and negative training examples.  

On the discussion section of this study, the researcher proves the hypothesis he has 

developed. 

 

1.6 RESEARCH DESIGN 

The output of this research study is evaluated through a design science research (DSR) 

approach, whereby a model prototype is developed in order to test if the learning 

algorithm is able to make correct predictions on unknown data. The DSR approach 

helps design research experiments that can be reproduced by other researchers. In 

addition, the researcher uses Knowledge Discovery and Data (KDD) mining process 

models as a guideline for implementing data mining projects. Few of the KDD process 

models are: Sample Explore Modify Model Assess (SEMMA), Cross-Industry Standard 

Process for Data Mining (CRISP-DM), and Integrated Knowledge Discovery and Data 

Mining (IKDDM). SEMMA was developed by SAS, and it uses an iterative experimental 

cycle of five steps which makes up its name. The SEMMA data mining process is as 

follows: firstly, the data is sampled where training set, cross-validation set and test set 

are selected and partitioned; selected data is then explored for anomalies and outliers; 

thereafter modified through the identification of additional features and removal of 

redundant features; then the model is built by using modelling techniques such Decision 

Trees, Support Vector Machines (SVM), and more; then lastly, the selected model is 
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assessed in order to predict its performance on test data (Olson & Delen, 2008). 

Alternatively, CRISP-DM and IKDDM consists of six phases namely: business 

understanding, data understanding, data preparation, modelling, evaluation, and 

deployment (Rivo et al., 2012) see Figure 1.1 for a process flow.  

 

The researcher starts by defining the phases in relation to CRISP-DM. The business 

understanding phase is meant to assess the need, significance and the objective of a 

DM and KD project. From section 1.1 through to 1.5, the researcher provides the 

business understanding for this research study. The second step of the CRISP-MD 

methodology is data understanding, which includes the process of data collection, data 

defining, data review and exploration, and the verification of the authenticity of the data. 

The third step is data preparation, where, during this step, the collected sampled 

dataset is cleaned of redundant data values, missing values are filled, and outliers are 

identified and fixed. Part of data preparation includes data normalization, indexing, 

attribute and record comparisons, feature selection, feature preparation, and feature 

weighing and vectorisation. 
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Figure 1. 1:  CRISP-DM process flow (Source: (Olson & Delen, 2008)) 

 

The fourth step of CRISP-DM is data modelling, where the data is loaded into software 

such as RapidMiner, MATLAB, Octave, or R for visual exploration of the data points. 

During this step, the data is partitioned into three sets, namely training data, cross-

validation data and the testing data. Thereafter the data mining technique is identified, 

where classification algorithms such as Decision Trees, SVM, and Logistic Regression 

are identified. The data is then evaluated during the fifth step of CRISP-DM, where the 

evaluation is based on recall, precision and accuracy. Finally, the last step is 

deployment, which involves applying the results of the learned model on a live system, 

and observing the performance (Olson & Delen, 2008). Similarly, IKDDM also defines 

the same phases as CRISP-DM. IKDDM is an integrated version of CRISP-DM whereby 

links are formed between tasks within a phase and between phases. The IKDDM 
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approach has been reported to provide an efficient and an effective implementation of 

DM and KD processes. Furthermore, IKDDM was designed to address the fragmented 

approach of CRISP-DM (Mansingh, Osei-Bryson, & Asnani, 2016; Sharma & Osei-

Bryson, 2010). However, with all the features that IKDDM offers, the researcher has 

struggled to find documentation on the uses of IKDDM. Therefore, the researcher has 

considered the use of CRISP-DM since its documentation is easily accessible, even 

(Krzysztof Cios, Witold Pedrycz, Roman Swiniarski, & Lukasz Kurgan, 2007) declared 

that its documentation is good and easy to follow. In addition (Kurgan & Musilek, 2006) 

have reported that CRISP-DM can be used by novice data miners, it is suitable for 

industrial projects, and has been regarded as a successful and extensively applied 

framework in multiple industries. With the CRISP-DM base set, in Chapter Three, the 

researcher shows the relationship between the DSR approach and CRISP-DM.    

1.7 THE OUTLINE OF THE STUDY 

Chapter Two presents a review of literature, and is aimed at giving a summary of the 

studies consulted when conducting this study. During this chapter, the researcher will 

define the components of this study such as health data, health care data standards, 

and data mining concepts. Chapter Three will provide research methodologies, 

approaches and strategies. 

 

Chapter Four will analyse the data collected in this study. Chapter Five will provide the 

results and discuss the findings, and finally Chapter Six will present the applicability, 

impact and the implication of the findings. 
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CHAPTER 2: 

Health Data, Coding Standards and Data Integration Techniques 

 

2. LITERATURE REVIEW 

2.1 INTRODUCTION 

This chapter builds the foundation for this study by establishing the attributes that 

makes up big data, and discussing how to manipulate this data using computer 

algorithms and international standards, for health data. The domain of this study is 

health care, specifically data about clinical observations, which include(s) vital signs, 

laboratory data, device measurements, and social history, such as tobacco usage. The 

researcher starts section 2.2 by describing the characteristics of big data. Section 2.3 is 

focused on big data applications, information systems in health care, data sources from 

which to collect data from, and lastly, mobile health care delivery systems, are 

discussed in section 2.3.3. 

 

Section 2.4 discusses the health standards to be used for this study; standards ensure 

interoperability between disparate systems in different health care facilities. Section 2.5 

describes the details about data cleaning, for structured, and semi-structured data. In 

section 2.6 the researcher provides methods for preparing the collected data sets so 

that machines are able to read the contents of this data, thereafter, also in this section 

schema and attribute mapping methods are covered. Data storage, querying, and data 

exchange are covered in section 2.6. 

2.1.1 BACKGROUND AND FUTURE OF BIG DATA IN HEALTH CARE 

Big data has been deemed as the key driver for creating value and transforming health 

care providers, however, health care providers have been reported to discard 90% of 

the data that they generate (Hinssen, 2012). Even though health care providers collect 

massive amounts of data, however, this collection has been motivated by patients’ care, 

compliance, regulatory requirements, and record-keeping (Raghupathi & Raghupathi, 

2014). Apart from what big data has been used for previously, it can also be used for 

managing decision support systems, disease surveillance, and population health 
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management, but then, in order to achieve all of this, health organizations need to be 

data-driven. According to a report by (IBM, 2013),  

To thrive, or even survive, in this time of massive change, health 

care organizations [sic] must become data driven. They must treat 

data as a strategic asset and put processes and systems in place 

that allow them to access and analyse the right data to inform 

decision-making processes and drive actionable results (p. 2). 

In support of this statement (Groves, Kayyali, Knott, & Van Kuiken, 2013; Shah & 

Tenenbaum, 2012) emphasise that  data-driven medicine will enable the discovery of 

new treatment options, discover hidden trends in data, identify patterns related to 

readmissions and drug side-effects, deliver patient-centered care, and reduce health 

care costs. Data-driven health care systems have a strong focus on big data, but what 

does big data entail? 

Big data definition 

(Villars & Olofson, 2011) have defined big data as “a growing challenge that 

organizations [sic] face as they deal with large and fast-growing sources of data or 

information that also present a complex range of analysis and use problems” (p. 2). 

(Kaisler, Armour, Espinosa, & Money, 2013) define big data as the amount of data that 

is beyond the current computer storage and the processing power, and regard big data 

as a moving object, because it constantly changes in structure. The data is difficult to 

store and process, because some is correctly ordered (structured), while some is 

without order (unstructured).  The properties of big data includes: 

- the lack of available computer processing for ingesting, validating and analysing 

large volumes of data; 

- the lack of methods to deal with unstructured or schemaless data; and 

- the lack of methods to deal with real-time collection and analysis of data. 

While On the other hand, (Feinleib, 2014) defines big data based on the impact that this 

data has, noting that it is the ability to capture and analyse data and gain actionable 
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insight from that data at a much lower cost than was historically possible, that makes it 

valuable.  

 

In a similar way to (Feinleib, 2014), (Feldman, Martin, & Skotnes, 2012) have defined 

big data as a natural resource with a high value by stating that “big data is the fuel, it is 

like oil. If you leave it on the ground it does not have a lot of value” (p. 7). A succinct 

definition that covers all the aspects of big data is that one of (Demchenko, De Laat, & 

Membrey, 2014), they have defined it as: “high-volume, high-velocity and high-variety 

information assets that demand cost-effective, innovative forms of information 

processing for enhanced insight and decision making” (p. 9). Common dimensions for 

big data are: volume, variety, velocity, and veracity as it is shown in Figure 2.1.  

2.2 THE CHARACTERISTICS OF BIG DATA 

 

Figure 2. 1:  Dimensions of big data (Source: (Feldman et al., 2012)) 

Figure 2.1 summarises the dimensions of big data, where in this case, the ‘Four Vs’ that 

are used to define big data.  

2.2.1 VOLUME 

The first “V” in Figure 2.1 is the volume of the data, which indicates its size or quantity. 

The greater the number of electronic devices there are, the bigger the volume of data 
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produced from those devices, where it can therefore be deduced that the rate of growth 

of the number of electronic device is directly proportional to the growth of data from 

those devices. In 2011, (Friess & Vermesan, 2011) predicted that the growth of 

connected devices will reach 16 billion by 2020, and a year later (Swan, 2012) predicted 

50 billion to be reached by 2020. With the expanding production of electronic devices, 

data is growing in immeasurable quantities as well.  

 

In 2011, (Hinssen, 2012) estimated that the size of big data was 150 exabytes, which is 

equivalent to 250 million DVDs of data, noting that this data is growing at a rate of 1.2 to 

1.4 exabytes per year. (Chen et al., 2014) cements the relationship between data and 

electronic devices by stating that, the growth of IoT (internet of things or connected 

electronic devices) and cloud computing promotes a sharp growth of data. Figure 2.2 

gives a glimpse of IoT products that are currently being used in delivering care to 

patients, noting that all these devices generate exabytes of data that could be useful to 

health care facilities if they could be collected and analysed. This proliferation of data is 

caused by the fact that these devices provide more processing power; more storage; 

more value for money; and are smaller in size, in such a way that their users can carry 

them around. This is in keeping with Moore’s Law, which states that the overall 

processing power of computers doubles every two years. Increased processing power 

means more transistors can be fitted into the device’s microchips, and there is and more 

memory storage, and ultimately more data, which can be generated quicker than it can 

be stored. As a result, it is termed ‘big data’. In addition (Philip Chen & Zhang, 2014; 

Villars & Olofson, 2011) supposed that the rate of growth of data has extended beyond 

Moore’s Law.  
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Figure 2. 2:  Internet of Things products and prototypes (Source: Islam, Kwak, 
Kabir, Hossain, & Kwak, 2015) 

 

The effective use of big data has the potential to transform economies and to deliver 

production growth, however, big data includes data that is inconsistent, incomplete, 

lacks privacy, is semi-structured, and unstructured (Philip Chen & Zhang, 2014). Hence, 

(Friess & Vermesan, 2011) advise caution, saying that the data generated will only be of 

value if it can be collected, analysed and interpreted. In many instance it remains 

difficult to obtain value from big data. 
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2.2.2 VARIETY 

Similar data sets that are collected from different devices and from different data 

sources have a high probability of becoming unstructured during data integration, 

particularly when the target data set and the source data set do not conform to a similar 

data acquisition standard, data exchange standard, or data storage standard. On the 

basis of varying data, variety in big data can be defined as data acquired from diverse 

data sources, and from multiple data sets. The attribute of variety means that the data is 

extremely heterogeneous at the data set (schema) level as well as at the metadata level 

(Dong & Srivastava, 2013). Big data varies in structure because it holds the qualities of 

being structured, semi-structured and unstructured (Demchenko et al., 2014; 

Raghupathi & Raghupathi, 2014). Structured data can be easily stored, queried, 

analysed, recalled and manipulated (Feldman et al., 2012), whereas semi-structured 

data is defined as being neither raw, nor of a strict type or characteristic.  

Incomplete columns in the data sets might even have extra information such as 

annotations, and similar information that is stored differently in multiple tables 

(Abiteboul, 1997). Figure 2.1A and Figure 2.1B reveal some of the properties of semi-

structured data as defined by (Abiteboul, 1997). Data in both features represent a single 

patient, however the patient’s laboratory data is stored differently across health care 

provider A and B. 

Table 2. 1A: Data set from Provider A 

HOSPITAL ITEM VALUE UOM RESULTSTATUS 

Medico Glucose (serum) 121  Normal 

Medico Blood Pressure systolic 137 mmHg  

Medico Blood saturation 95 %  Normal 

 

Table 2. 1B: Data set from Provider B 

HOSPITAL 
NAME 

LABEL Sample OBS_VALUE UNIT OF 
MEASURE 

OBSERVATION 

Steve Lancet Manual BP [Systolic]  20 Mmol/ml True 

Steve Lancet Glucose Serum -   

Steve Lancet SpO2 Blood 137 percentage  

 



  

20 
 

Both Table 2.1A and Figure 2.1B can be distinctly classified as structured data, but if 

the data from Table 2.1A and Table 2.1B were to be integrated, the data would then be 

semi-structured. The process of exchanging the data between provider A and provider 

B would be difficult due to the following issues in the data:  

- Metadata integrity: Observation name and sample is concatenated into one field 

called Item in provider A, whereas for provider B there is a column for the sample 

called sample. 

- Metadata and data inconsistency: Both providers have similar database attribute 

names, where even the method of measuring test units is not the same. Provider 

A uses mmHg for blood pressure unit of measure, while Provider B uses 

mmol/ml. 

- Data integrity: Provider A stores the full observation name for oxygen saturation, 

while Provider B only stores an abbreviated (spO2) version of the analyte. 

- Missing data: The sample attribute in Provider B does not have a value and this 

is an important attribute when managing laboratory tests. 

Therefore, it can deduced that the above data is dirty or messy, it is filled with conflict, 

and this sort of data can mislead data analysis if the data cleaning process is not carried 

out correctly (Do, 2009). More details about data cleaning are covered in the current 

chapter in section 2.5.1, where the researcher will delve deeper into data cleaning 

strategies, including which ones are appropriate for clinically-based data. Thus far, the 

focus has been solely on data that is stored in tabular form such as tables, relations, 

arrays and spreadsheets, and this form of data storage is suitable for structured and 

semi-structured data.  

 

Meanwhile, unstructured data is a lot more complex, because it is difficult to acquire, to 

store, to analyse, and to visualise. This sort of data is collected from different sources, 

at different intervals, and as a result, the data has a high possibility of becoming 

unstructured. Figure 2.3 presents a “word cloud” of unstructured data, which is aimed at 

giving an overview of what type of data is unstructured in the health care industry.  
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Figure 2. 3:  Unstructured data word cloud 

Acquiring unstructured data means: getting data from physical file processing systems; 

scanned files using text-extraction algorithms; organizational email servers; or through 

voice input. All these inputs require extra processing power and intelligence in order to 

extract and transform the data into a machine-understandable format. Hence, 

(Barbulescu et al., 2013) roughly defined unstructured data as the type of data that is 

easily understood by humans, but least understood by computers. Once the data is 

acquired, it is then to be stored in a format that allows it to be easily retrieved using a 

suitable query language. 

 

It is reported that 80% to 85% of business information exists as unstructured data, 

which includes: organizational documents, images, emails, reports and more (Abdullah 

& Ahmad, 2013; Jing Gao & Koronios, 2015; Gharehchopogh & Khalifelu, 2011). It is 

thus a challenge for organizations to create value from this data, because it is not 

structured in a manner that would allow for accurate data analysis. Storing big data in 

the popularly used Relational Database Management Systems (RDBMS) would be a 

challenge, and more details about big data storage is covered in Section 2.6.6. 

  

Once the unstructured data has been stored in a format that allows it to be queried and 

retrieved, then data analysis and even visualization can be performed on this data. 

Inasmuch as unstructured data poses a lot of challenges, it also presents a lot of 
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opportunities for organizations that are prepared to use efficient computer algorithms to 

analyze the data and create value from it. Algorithms that were fed lots of messy but 

relevant data performed better than the same algorithms with less but accurate data.  

 

In that regard, IBM and Google’s language translation algorithms were compared 

against each other for performance. IBM is said to have fed their translation algorithm 

lots of accurate data sets for translation between English and French languages, where 

the algorithm performed fairly well. However, Google later fed their messy data sets 

from multiple and various data sources, including voice as input. At first, the translation 

was accurate to some degree, but with glitches. Over time, however, it performed better 

translating more than 60 languages, where even uncommon translations, such as from 

Hindi to Catalan, proved possible (Mayer-Schönberger & Cukier, 2013). 

 

2.2.3 VELOCITY 

It can be assumed that measuring a phenomenon gives one an advantage in gaining 

valuable information about that phenomenon. This emanates from observing 

environments where data is constantly being collected in huge quantities, over short 

time periods, and from various data sources, with the aim of identifying areas that could 

cause problems, or that could create value for organizations.  

 

A Controller Area Network (CAN) is a valuable asset in mobile vehicles, because it 

constantly collects data while monitoring every state of the vehicle. The same can be 

said about a critically ill patient in a hospital bed, where the patient can be monitored at 

different intervals by machines and even by humans; and data is collected in real-time, 

with the objective of improving the patient’s outcomes. Patients with heart conditions 

can be given a wearable electrocardiogram (ECG) device that they can wear while at 

home, and this device constantly streams ECG measurements to the patient’s 

electronic health record system. 
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In 2004, Google started a project of digitising the world’s textbooks, and by 2012, 15% 

of those books had already been digitised. An estimated 130 million distinct books have 

been published since the invention of the printing press between 1440 and 1450, so 

Google was able to digitise 20 million unique textbooks in eight years. Not only was the 

content digitised, but it was also transformed into usable data that can be indexed, and 

comparable for analysis. The indexing of books reveals the need to use the data 

generated by hospital telemetry devices, where, as it stands, the ECG telemetry device 

connected to a patient is able to generate 1000 readings per second (Mayer-

Schönberger & Cukier, 2013). However, this data is underused and thus wasted (Belle 

et al., 2015).   

Digitising and indexing data raises challenges for the privacy and security of the 

organizations collecting data, where data is classified, and some has limited availability. 

The next section introduces data quality assurance as big data is acquired, stored, 

analysed and visualised.  

2.2.4 VERACITY 

Veracity results from collecting large sums of data. Where the data has been collected, 

the following questions ought to be asked to ensure data quality: 

- How accurate is the data?  

This quality indicator measures the correctness of data values stored for an 

object. e.g., a short date format for a South African date format is as follows 

“yyyy/MM/dd”, where storing date values as “2016/13/10” is not accurate, 

because the maximum month value is 12.   

- Is the data recent? 

This measures how up-to-date is the data. When it comes to health, doctors 

require relevant data to make informed decisions, where they need to measure 

the amount of cholesterol in the patient’s blood, the most recent information 

would be more relevant than old one, because the patient’s body changes over 

time, hence old information becomes irrelevant over time.  

- Is the data consistent? 
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This measures the data uniformity, where, when sharing data, the data values 

and the metadata must always be consistent. If a “gender” field name is used to 

store gender information, at any point in the future, the same field must be used 

instead of alternating to a “sex” field name. 

- Is it accessible, or is it private? 

This measures how easily accessible the data is, and whether the data can be 

searched and retrieved. Other data is confidential, and should therefore always 

be treated as private data. This is sometimes encrypted, therefore, it should be 

possible to decrypt encrypted data. 

- Can organizations trust this data?  

This measures the integrity of the data in relation to where the data originates, 

and whether the data provider can be trusted. This question is even asked of the 

data manager themselves. 

Since organizations share information between one another, it is of paramount 

importance that measures are taken to determine the trustworthiness of the data as well 

as the data providers (Dai, Lin, Bertino, & Kantarcioglu, 2008).    

Answering these questions about the data ensures data quality assurance, which is 

defined as: the process of profiling the data to discover inconsistency, inaccuracy, 

incompleteness, and other anomalies in the data  (Gao, Xie, & Chuanqi, 2016). Data 

cleaning, extraction, aggregation, transformation, and loading are all part of the data 

quality process.  

When big data is collected, there is a high chance that the data will be unstructured as it 

was mentioned in Section 2.2.2, and some of the data might be redundant. Therefore, 

applying redundancy reduction and data compression can reduce redundancy, without 

affecting the validity of the values, thereby compressing the magnitude of the data for 

efficient data storage (Chen et al., 2014). In addition, there are other data issues that 

must be eliminated in order to improve data quality (see Figure 2.4). (Gao et al., 2016) 

suggested that organizations do not understand their data quality, and have difficulty 

understanding the reasons to invest in data quality. 
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Figure 2. 4: Factors affecting data quality (Source: (Jerry Gao et al., 2016)) 

In other instances, it is difficult to achieve data quality, because the data is deliberately 

messy, and is encrypted to ensure that confidentiality is not compromised. Health data 

has a high chance of being private, anonymous and secured, because it is sensitive, 

and an incorrect change to it could lead to wrong prescriptions being given to incorrect 

patients. According to (Kleynhans, 2011), in South Africa health information is not easily 

accessible because majority of the health institutions record patient information on a 

paper-based filing system. While South Africa lags behind in the digitisation of health 

records, in the United States of America (USA), patients are able to download their data 

using the blue button programme, so that patients and doctors can easily access this 

information (Turvey et al., 2014). Once the data has been downloaded, it can be 

accessible to authorised personnel, but, what are the risks to be mitigated that comes 

with big data? 

2.2.5 THE RISKS OF BIG DATA 

The availability of relevant information gives companies a competitive edge in business. 

Amazon can recommend ideal books to its users, while Google can rank and list the 

most relevant websites to its users, Facebook gives you the platform to find your long-

lost friends, and governments use the census data to improve service delivery to its 

citizens. However, the government can turn this information into a system of repression, 
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where for example in 2013, Edward Snowden exposed mass data collection by the 

National Security Agency, who uses this data to spy on American citizens (Bilbao-

Osorio, Dutta, & Lanvin, 2013).  

Companies can misuse the data that users share on their platforms, selling it for 

revenue to advertisers without the platform users knowing that their personal 

information is being shared. It is not only the users’ privacy that is a concern with the 

use of big data, but in addition, there are the dangers of predictive analysis, when big 

data is used with algorithms to predict in advance whether a certain person is culpable 

for future actions. Actuaries use data predictively, and can calculate subjects such as, 

“men over 50 are prone to prostate cancer”, and therefore, any man that is over 50 

years of age may pay more for health insurance, irrespective of their state of health. 

Predicting events before they happen could lead to discrimination against certain 

groups of people and also lead to guilt by association. In the US, the Department of 

Homeland Security uses big data to try and identify potential terrorists by monitoring 

body language, and other physiological patterns, and this could turn into a weapon of 

dehumanisation if big data and algorithms are used inappropriately (Mayer-Schönberger 

& Cukier, 2013).  

It remains crucial to acknowledge that big data can offer incredible benefits to 

governments, companies and individuals, and contrarily, incorrect uses of big data pose 

privacy risks, discriminatory predictions, and overreliance on data. In order to minimise 

these risks, government policy makers should assess the value of data usage against 

the risks. A risk matrix framework can be developed to measure the use of data against 

potential risks, and they can also develop methods aimed at evaluating the practicality 

of obtaining true and informed consent to use the data. The most important societal 

values in communities are: public health, national security, environmental protection, 

and economic efficiency, and therefore, the ideas of privacy and data protection should 

be geared towards these areas (Tene & Polonetsky, 2012). 

2.3 HEALTH SYSTEM APPLICATIONS AND THE INFLUENCE OF BIG DATA 

In this section of the study the researcher attempts to show which systems are used to 

manage data in health care. On the following subsection, the researcher covers the 
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categories of data that is collected in Health Information Systems (HIS). These 

categories are represented in a form of layers that are intended to cover all health 

aspects of a human being. Then lastly the researcher looks at mobile health and tele-

health. All these sections are aimed at showing the different forms of data that is 

collected in health care, although this study only covers observable patients’ data. 

 

2.3.1 HEALTH INFORMATION SYSTEMS 

HIS can technically be defined as a socio-technical subsystem of an institution, which 

comprises all information processing as well as associated human or technical actors. 

In simple terms, HIS deals with processing data, information, and knowledge in health 

care environments (Winter et al., 2011). HIS has four key functions, known as: data 

generation, capturing, analysis and synthesis, and visualisation. Ultimately, data is 

converted into information for making health-related decision in the health care 

environment (World Health Organization, 2008).  

 

A widely regarded paper by (Haux, 2006) argues that HIS systems were intended to 

support health care professionals, and administrative staff in hospitals, where the 

primary component in HIS is the patient, such that HIS systems should be aimed at 

contributing to a high-quality, and efficient patient care.  

 

Currently, health care delivery is mass-focused, but in the future, it will be increasingly 

individualised and patient-driven, because more data will be available that distinguishes 

each patient from the rest. (Topol, 2015) has noted the following about the physicians of 

the future: 

More importantly, they will incorporate sharing your data, the full 

gamut from sensors, images, labs, and genomic sequence, well 

beyond an electronic medical record. We are talking about lots of 

terabytes of data about you, which will someday accumulate, from 

the womb to tomb, in your personal cloud, stored and ready for 

ferreting out the signals from the noise, even prevent an illness 

before it happens. 
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Before Topol wrote about patient-driven health care, (Haux, 2006) wrote on the future of 

medicine to say that in the next 10 years, information technology (IT) will be the catalyst 

in transforming health care into becoming patient-driven. More types of data will be 

captured, such as genome and proteins, where technologies will emerge such as 

wearable devices that continually measure and track patient ’s health non-invasively, 

which means the ability to monitor and measure non-invasively. This means that data 

about the patient will not be solely generated at the health care facility, but from the 

various patients’ points of interaction.  

 

Data generated at the health care facility is known as clinically-generated data. This 

data is collected from HISs such as Electronic Health Records (EHR) and Electronic 

Medical Records (EMR). EMR contains medical information and treatment history of a 

patient gathered in one practice. While EHR contains a patient’s lifelong data collected 

from more than one practice, both EMR and EHR may include data about the patient’s 

demographics, test results, medical scans, prescription data, doctors’ medical notes, 

medical reports and more (Ebadollahi et al., 2006; Mxoli et al., 2014). EMR and EHR 

systems are managed by the health practice, whether in a hospital or a clinician’s office.  

 

Nowadays there are also other systems, known as Personal Health Record (PHR) 

systems. PHR systems allow patients to create, store and maintain information related 

to their health, where the information could be collected from multiple sources, and 

where the goal is to allow the patient to centrally manage their own health. They can 

therefore share their health information with relevant parties. PHRs can improve doctor-

patient relationship, as well as health knowledge for both patients and clinicians, and 

allow for better management of chronic diseases (Luo, Tang, & Thomas, 2012; Mxoli et 

al., 2014; Mxoli, Mostert-Phipps, & Gerber, 2015). With all these advantages that PHR 

systems offer, at the moment, there is no PHR aimed at the South African population 

(Mxoli et al., 2014). 
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2.3.2 COLLECTION OF HEALTH BIG DATA THROUGH GIS LAYERS 

EHR, EMR and PHR systems collect data from multiple sources, where Figure 2.5 gives 

an overview of the layers that make up the multiple health data sources, known as 

human GIS (Geographic Information System). In a short summary, the layers include 

information that deals with an individual’s demographic, physiologic, anatomic, biologic 

and environmental data.        

 

Figure 2. 5: Geographic Information System of a human being (Source: Topol, 
2014) 

 

The first layer is called the phenome, which is meant to collect information such as age, 

gender, occupation, family history, medications, and more. The physiome and biosensor 

layers work in conjunction, where physiologic data is captured using wearable sensors, 

and other physiologic tracking devices, such as blood pressure gauges or devices. 

Physiome data includes blood pressure, heart rhythm, respiratory rate, blood glucose 

and other metrics (Omholt & Hunter, 2016).  
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There are other instances when a patient’s need exceeds what their clinicians or health 

care provider could offer, for example, when a patient requires blood or organ donation. 

In the health space, there are social networks that have been launched internationally in 

the last few years including PatientsLikeMe, CureTogether, DailyStrength, and MedHelp 

just to mention a few. Health social networks serve a great purpose in connecting 

patients, and the social aspect of health is covered by the Social Graph layer (Swan, 

2009). 

 

Health social networks have made it possible to bring people with shared interests 

together, even when the people are separated by geographical boundaries. It can then 

be inferred that through these connections: patients can find suitable organ donors; 

clinicians can share knowledge with other clinicians or patients through social 

connections; and patients can ask physicians questions and get responses at a low fee, 

without the need to visit the doctor’s office in person. Hence pharmaceutical companies, 

industry analysts, policy architects, and other interested parties can easily assess the 

demand and the market size during clinical trials (Christakis & Fowler, 2009). 

 

The next GIS layer is imaging and anatome, aimed at collecting data about medical 

scans such as x-ray, CT scans, and MRI scans. Other layers include: genome, 

transcriptome, proteome, metabolome, microbiome and epigenome layer, all these 

layers represent the levels at which one may collect microbiology data. Lastly, the 

exposome layer, where data is collected regarding an individual’s exposure from 

internal to external environment, from the time they are born to the time they die 

(Omholt & Hunter, 2016).  

 

Internal exposure refers to when the body’s metabolism, physical activity, ageing and 

more are studied, after which an individual’s financial status, social capital, education, 

climate and more are taken into consideration. Then, there is a specific external 

exposure that deals with matters such as radiation, environmental pollutants and 

chemical contaminants, occupation and medical interventions, diets, food, lifestyle 

factors such as alcohol or tobacco, and infectious agents (Wild, 2012). 
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A patient’s historic data should always include environmental information, which serves 

to help clinicians understand the underlying causes of the patient’s diseases and 

sicknesses. On the ground, when collecting various data sets, value could be added if 

data about the heart rate, blood pressure, respiratory and more could be aggregated. 

Aggregating this data is helpful because one could: develop deep knowledge about 

patients; discover proactive practice of individually-based medicine; and provide 

disease risk profiles for individual patients, empowering them through data (Belle et al., 

2015; Chawla & Davis, 2013).  

 

2.3.3 M-HEALTH AND TELEHEALTH 

Smartphones can be used to monitor virtually any psychological metric from any place, 

any time, or even all the time, and such are the attributes of m-Health technology. M-

Health is the use of mobile devices to provide health care services to communities, and 

is fully focused on delivering care to patients via mobile software applications. 

According to (Malvey & Slovensky, 2014), m-Health has the following advantages for 

the health care industry:  

- it allows care to be provided at a personal level for patients;  

- it improves patient’s participation throughout the arc of a sickness;  

- it provides preventive measures; and 

- it is less expensive to implement. 
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Figure 2. 6: iTriage mobile health application (Source: http://histalkmobile.com) 

 

Figure 2.6 shows a mobile health application called iTriage, a free PHR App that allows 

patients to get answers to their health questions. It help patients to find nearby and 

appropriate help, securely stores patient’s health information, and allows it to be 

accessed remotely. Wireless communications technology have overcome geographical 

and organizational barriers (Poon, Zhang & Bao, 2006), where specialists such as 

gynaecologists spend a great deal of time travelling between multiple hospitals treating 

patients, some of whom could be assessed remotely.  

 

There are other mobile applications that have helped doctors to monitor patients 

remotely. Monitoring of patients remotely is known as Telehealth or Telemedicine, and 

this improves patient’s access to health care services. Other methods of improving 

access include the primary health care (PHC) service, which is aimed at providing care 

as close as possible to where people live and work. This is an essential form of health 

care based on practical and scientific methods that have been made to be universally 

accessible to individuals and families at an affordable cost (National Department of 

Health, South Africa, 2015). Previously, (Porter & Lee, 2013) released a paper 

supporting the creation of value for a patient through integrated practice units (IPU). 
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IPUs are organised around the patients’ medical condition, and health providers see 

themselves as part of a common organizational unit. With the South African NHI 

system, IPU can be seen as a PHC service focused in districts or municipalities or 

wards. There is no doubt that m-Health, Telehealth and PHC will improve health care 

accessibility in South Africa. However, at the moment, there are still issues such as the 

ones listed below:  

- lack of national eHealth strategy; 

- differing eHealth strategies across and within provinces; 

- expensive broadband connectivity; and 

- lack of interoperability and communication between health systems. 

These issues were listed on the eHealth strategy document by (Masilela et al., 2013), 

who, in their report, suggested that a Health Normative Standards Framework could 

solve the interoperability problem between health systems, which is the focus of  this 

research study. The next section presents the use of standards in health care to 

improve interoperability between health systems. 

  

2.4 STANDARDS FOR SYSTEMS INTEROPERABILITY 

This section partly addresses the following research sub-question: 

 

# Research sub-question 

iii.  What methods are being used to classify objects accordingly in other 

industries, and how can those methods be applied in health in order to achieve 

semantic and syntactic interoperability? 

 

One of the strategic priorities of the eHealth strategy for South Africa is how to achieve 

interoperability through standards in the delivery of care. This strategy is aimed at 

solving the interoperability problem that exists between heterogeneous systems when 

exchanging data, or when sharing health information (Masilela et al., 2013).  According 
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to (CSIR & NDoH, 2014; Lopez & Blobel, 2009), interoperability is categorised as 

follows: 

- Technical interoperability: covers matters of connecting systems and services 

through interfaces, protocols and more, for example, the IPv4 router is not 

compatible with IPv6 router, and there is no interoperability between the two. 

- Syntactical interoperability: the exchange of messages from one system to the 

other, where messages must have a well-defined syntax, vocabulary, and 

encoding. This follows the same example that was made earlier in Section 2.2.2 

regarding similar variable names that are written differently, or which store data 

in different formats. 

- Semantic interoperability: concerned with the meaning of the content which is 

agreed upon by human rather than computer interpretation, where in health care, 

it is focused on coding standards. For example, application developers from 

organizations that exchange data should be open about the medical coding 

schemes that they use in their software programmes to achieve data sharing. 

- Organizational interoperability: the ability for organizations to effectively 

communicate and transfer data or information to other organizations that are not 

using the same infrastructural architecture, dependent on the success of 

technical, syntactical, and semantic interoperability. 

In this study, a great deal of focus will be paid to syntactical and semantic 

interoperability of patients’ data. The goal of this research is to use a learning algorithm 

and health standards to format data so that it follows the desired structure as per the 

directive of the standard. Using a standard to format the structured and unstructured 

data ensures that the resultant data is FAIR, viz.: findable, accessible, interoperable, 

and reusable (Nickerson et al., 2016).  

 

In South African health care facilities, interoperability between health systems remains a 

problem requiring higher priority. In light of the interoperability problem at hand, a report 

by National Department of Health (NDoH) compiled by CSIR shows that more than 70% 

of Health HIS used in hospitals do not comply with interoperability standards. Some of 

those that do comply, are not able to exchange health records because the hospital to 



  

35 
 

exchange with uses a different HIS, and does not comply with the standard from other 

hospitals (CSIR & NDoH, 2014). It is not only HIS vendors in South Africa who are less 

eager to implement health standards, but software vendors in other countries as well 

(Jian et al., 2007).  

 

These are some of the reasons why HIS vendors drag their feet in implementing 

standards: 1) there are several conflicting and overlapping standards; 2) it is difficult to 

combine standards from different Standard Development Organizations (SDO); 3) there 

is limited participation in standards development process; 4) governments do not 

understand the importance of standards development; 5) and there is a lack of 

implementation guidelines and the well-skilled standards developers (Adebesin, Kotzé, 

et al., 2013). 

 

Health Normative Standards Framework 

The standards implementation problems have sparked the development of the Health 

Normative Standards Framework (HNSF) by the National Department of Health 

(NDoH). HNSF aims to set a foundational basis for interoperability between health 

systems in South Africa. On the HNSF report, three of the leading standards in health 

care were compared against each other with the aim of assessing which one would be 

suitable for implementation in South Africa. See Figure 2.7 for a summary of attributes 

that were weighted to reach a decision about which one to implement. 

 

Figure 2. 7: Leading standards evaluation matrix (Source: (CSIR & NDoH, 2014)) 
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According to Figure 2.7, the results of the report by the (CSIR & NDoH, 2014) favoured 

the Integrating the Health care Enterprise (IHE) option. The report said IHE has low 

risks to implement, has a huge market acceptance in first world countries, and there is 

availability of technical workforce that can implement the standard. However, IHE is not 

a standard per se, but an initiative by health care professionals that uses established 

standards such as Health Level 7 (HL7) or documents imaging and communications in 

medicine (DICOM) to accomplish medical workflows (Adebesin, Kotzé, et al., 2013; 

Vreeland et al., 2016). HL7 Version 3 has been regarded as being too technical and 

complex to implement, while ISO 13606 comes with high implementation risks. 

 

HL7 is a non-profit American National Standards Institution (ANSI) accredited 

organization that develops standards aimed at exchanging clinical and administrative 

data from multiple systems (Adebesin, Kotzé, et al., 2013). On the other hand, DICOM, 

is used for storing and communicating medical images in Radiology, Cardiology, 

Ophthalmology and other departments that use Ultrasound Imaging. IHE’s XDS (Cross-

Document Sharing) and XDS-I (Cross-Document Sharing for Imaging) leverages on 

DICOM, HL7, ebXML RIM, and other standards that aim to structure and mark-up 

clinical content for the purposes of data exchange between institutions (Viana-Ferreira, 

Ribeiro, & Costa, 2014; Vreeland et al., 2016).  

 

Table 2.2 provides a list of functions performed in a health care facility in relation to the 

objective of this study, hence the focus is on searching for patients’ records, exchanging 

records between health care facilities, and tracing for patterns in patients’ health records 

from any HIS. 

 

IHE’s XDS Architecture 

When using the IHE option, every action or function in health care is linked to a profile. 

A profile is a detailed specification for any action to be performed in a health care 

facility, which is then linked to standards that can be used in conjunction with one 

another to carry out a given action. One of the most used profiles to share health 

information between disparate health systems is the IHE’s XDS. XDS uses XML to store 
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information in ebXML repositories and registries. Figure 2.8 highlights the architecture 

of XDS. Repositories are used to store the physical XDS documents in a file system or 

a database server; registries are used to store the metadata that builds up the XDS 

files; the document source is used to publish the XDS document; and the consumer 

(clinician or patient) queries for patient’s information from this document registry 

(Eichelberg, Aden, & Riesmeier, 2005; Noumeir, 2011). 

 

Table 2. 2: Mapping functions to profiles and standards 

Function IHE Profile Standards 

Searching and retrieval of 

patient’s record across 

multiple HIS. 

Retrieve information for display (RID) and 

Patient identifier cross-referencing (PIX) 

Cross-enterprise document sharing (XDS) 

Multi-Patient Queries (MPQ) 

- HL7 V 2.3.1 

- HL7 V3 CDA release 

2.0 

- RIM 

- DICOM 

- ebRIM, ebMS,ebRS 

- OWL 

Exchanging or sharing 

patients’ electronic, media 

or record 

Cross-enterprise document sharing (XDS) 

Cross-enterprise document sharing for 

imaging (XDS-I.b) 

Cross-community access (XCA) 

 

- HL7 V3 CDA release 

2.0 

- RIM 

- DICOM 

- ebRIM, ebMS,ebRS 

Trace for patterns in 

medical health data 

Cross-enterprise document sharing (XDS) 

Patient identifier cross-referencing (PIX) 

Cross-enterprise document sharing for 

images (XDS-I.b) 

Cross-community access (XCA) 

- HL7 V 2.3.1 

- HL7 V3 CDA release 

2.0 

- RIM 

- DICOM 

- ebRIM, ebMS,ebRS 

- OWL 

 

HL7 Clinical Document Architecture 

HL7 standards were introduced in order to fix the interoperability problem in the health 

care industry, where this fix was mainly based on the messaging standards applied on 
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Version 2 and Version 3 of the standards. The Clinical Document Architecture uses 

XML to represent medical concepts using Reference Information Model (RIM) standard. 

RIM is used to define the metadata and the structure of Clinical Document Architecture 

(CDA) of the HL7 standards. CDA is a document mark-up standard that specifies the 

structure and the semantics of clinical documents. The top hierarchy of RIM contains 

the core attributes of RIM, which are as follows: entity, role, participation and act. 

 

Figure 2. 8: Cross-Enterprise Document Sharing Architecture and data flow 
(Source: (Noumeir, 2011)) 

 

A new standard called HL7 FHIR has been developed to eradicate the complexities of 

CDA, but is however still based on the ideas of HL7 RIM. FHIR is more specific, and 

uses resources to categorise medical concepts, for instance the observation resource is 

used for managing and capturing demographic characteristics, monitoring progress, and 

for supporting diagnostics. FHIR uses resources to represent health data, where FHIR 

does not only represent the data in XML, but also uses JSON, and Turtle syntax. One 

can observe from Figure 2.9 how respiratory information is encoded in FHIR. Some of 

the information on Figure 2.9 has been discarded for reasons of brevity. For users of the 

data to understand the data, FHIR encodes the human-readable data on an HTML tag, 

while other contents of the file use alternative formats mentioned above. When it comes 

to exchanging messages between one health care institution to the next, FHIR uses 

RESTFul API for sending, receiving, and querying messages. The contents of the FHIR 

message contains even more coding standards, where in Figure 2.9, there is LOINC 



  

39 
 

code, which is embedded on the file. Now, when data is shared between health care 

institutions, the receiving institution and the sending institution should be able to 

understand and interpret the contents of the file. The next section covers the coding 

standard that is embedded within the FHIR resource file. 

 

Figure 2. 9: FHIR Observation example for representing patient’s respiratory rate 
using FHIR resources (Source: (FHIR, 2011)) 

 

2.4.1 CODING STANDARDS 

LOINC 

(Fidahussein & Vreeman, 2014) have defined LOINC as a universal coding system for 

identifying clinical laboratory observations such as patients’ vital signs, laboratory data, 

device measurements, microbiology, social history such as tobacco examination usage.  

(Abhyankar, Demner-Fushman, & McDonald, 2012) have meanwhile defined LOINC to 

have the following features: 

- allows redundant laboratory codes to be grouped into one common code; 
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- used to exchange clinical documents and messages between disparate health 

systems using Health Level (HL) 7 FHIR or the previous HL7 standards; and 

- allows data from multiple different sources, and data recorded in different time 

intervals to be commonly coded as a unit. 

The LOINC coding standard contains six major elements, and the headings of Table 2.3 

display those elements.  

 

Table 2. 3 Mapping functions to profiles and standards 

Component Property Time Aspect System ScaleType Method 

Body 
temperature 

Temp PT Mouth Qn  

Breaths NRat PT Respiratory 
system 

Qn  

Heart rate NRat PT Arterial system Qn  

Cholesterol MCnc PT Ser/Plas Qn  

Glucose MCnc PT Bld Qn Glucometer 

 

The component is the name of the physiologic measure, the property distinguishes 

between different quantities for the same substance, e.g. mass ratio code for items with 

mg/g as unit of measure. Time aspect specifies when the property is measured, 

whether at a moment in time or over a time interval, for instance, an amount over 

interval is expressed as mass rate (MRat, e.g. mg/24h). System is also known as the 

sample (e.g. blood sample), which could be urine, blood, or even the patient who is 

being tested can be regarded as a sample. Scale type is the scale of measurement, for 

instance an Albumin test could be written as follows “Albumin(>3.2)”, where “>3.2” 

indicates the scale type. The last part of the LOINC element is the method, which 

specifies the method of performing the test (Kim, El-Kareh, Goel, Vineet, & Chapman, 

2012).   

CPT 

In full this is called Current Procedural Terminology (CPT-4), it is a five-digit code that is 

used to describe diagnostic procedures and other medical services such as medical 

billing. This code was established by the American Medical Association (AMA) and its 

sole purpose is to provide a standard that defines medical, surgical, and diagnostic 
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services. Even LOINC could be mapped to CPT codes, however, one LOINC 

observation name could be mapped to multiple CPT codes, and a broad CPT code to 

be mapped to more than one LOINC code (Vreeman & Mcdonald, 2005). (Matshidze & 

Hanmer, 2007) have reported that there is also a South African version of CPT called 

Complete CPT, which has extra South African codes, however this code is often used 

by medical schemes and providers and it was also mentioned that adoption by the 

public sector was tied to the CPT’s proprietary nature. 

 

SNOMED-CT 

SNOMED-CT coding standard is also known as Systematised Nomencluture of 

Medicine-Clinical Terminology, and is maintained by the International Health 

Terminology Standards Development Organization (IHTSDO). It is used for 

representing clinically relevant information with consistency, where the developers of 

SNOMED claim that it is the most comprehensive health care terminology system in the 

world (Aouicha, Ali, & Taieb, 2016). Other researchers (Melton et al., 2006) have 

deemed SNOMED-CT to be an information-rich framework that has a good clinical 

concept coverage and also with a rich structure of relationship between the concepts. 

SNOMED-CT has been reported as having more than 361 800 concepts since 2004. It 

has 46 semantic relationships, which define the type of relationship between concepts. 

 

RXNORM 

It is a coding standard for controlled-medical terminologies, where this standard was 

developed by Unified Medical Language System (UMLS) in order to integrate and map 

competing medical terminologies with an aim of achieving interoperability. This standard 

is built up of the following elements: medication name; dosage; route of administration; 

ingredients; and common dose forms. The use of RxNorm has become even more 

important, due to the Meaningful Use programme, which is focused on improving the 

quality of delivering care in United States (Bennett, 2012).  

2.5 DATA PRE-PROCESSING 

The causes of unstructured data were mentioned in Section 2.2.2. To review, structured 

data becomes unstructured as more data from multiple and various sources are brought 
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together. In Figure 2.3, types of unstructured data were shown, such as medical reports, 

scans, doctor’s notes, and so forth. In this section, the researcher will cover data pre-

processing methods such as data cleaning, as one of the processes of data mining. 

2.5.1 DATA CLEANING 

According to (Natarajan, Li, & Koronios, 2009), data mining consists of a list of methods 

for discovering useful information in the data, and extracting hidden data from a 

collection of data sets. Once the data has been collected, it must first go through a data 

cleaning process before value can be created from that data. Data cleaning is the 

process of identifying errors within messy data, such as missing, duplicate, inconsistent, 

incomplete, or unreasonable data.  

 

According to (Tang, 2014), errors in the data are removed by following a three-step 

process: error detection, data repair, and data cleaning systems. In addition (Chen et 

al., 2014) suggests a more rigorous approach which involves: (a) identifying error types 

and categorising them; (b) searching for and identifying actual errors; (c) documenting 

error examples and error types; and (d) modifying data entry procedures to reduce 

future errors. 

Data cleaning plays a pivotal role in data analysis, because it dictates what should 

happen to the incoming data before it is integrated with other data sets for analysis. The 

main problem with incorrect data is that it may lead to incorrect analysis, and ultimately 

provide detrimental conclusions to the consumers of this information. When data 

cleaning is performed incorrectly, it may lead to accidentally introducing bias during 

modifications, and can even remove important fields and values from those data sets, 

where any change to the data set impacts data analysis (Malley, Ramazzotti & Wu, 

2016; Taleb, Dssouli & Serhani, 2015). One of the inevitable problems of data 

integration is when there is missing, erroneous and inconsistent data.  

Missing data occurs when no value is stored for the variable in an observation, or the 

data set attributes do not exist, whereas in other databases they exist, or attribute 
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names do not match across databases. Below is a list of potential solutions for how to 

handle missing data as per (Christen, 2012b; Kuhn & Johnson, 2013). 

- remove records without data, in SQL databases those are attributes with empty 

values, not “null” value, where “null” indicates a value that is not required. The 

records to be removed should be assessed, firstly if they do not relate to other 

records from a different table that has values, or if crucial fields such as 

addresses and names are missing from a contact table, that record can be 

removed because the sole information is missing; 

- remove non-identifying attributes (non-primary key) that are missing values, 

where identifying attributes by default ought not to allow null or empty values. 

However, an identity field should not allow empty or “null”, for example, because 

it is an identifying and a crucial field; and 

- if the missing value is a postal code, and the name of the province and the city 

appear, then one could use the available data to search for the missing value in 

other databases. Also, a gender value could be extracted from the person’s 

specified identity number. 

Missing data can be managed better with tree-based techniques, such as Decision 

Trees, which do not require attributes or values to be removed or altered. However, k-

nearest neighbour, feature extraction and linear regression perform better when dealing 

with missing data. Hidden Markov has been found to be useful when segmenting 

attributes into well-defined and consistent attributes (Kuhn & Johnson, 2013). 

 

Noisy data is defined as data that is mislabelled. At this stage, noisy data is different 

from an outlier, where an outlier is an abnormality, anomaly, discordant, or deviant. In 

health care, outliers are the result of equipment malfunction, human error, or anomalies 

arising from patient’s behaviour, due to unusual samples combined with other samples 

in a multidimensional space. An example of this would be having a value where the date 

of birth is recorded as “01/01/2016” but the recorded age is 20 years old, or a male 

record that also has an attribute with unexpected values about “number of times 

pregnant”.  
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To fix these issues, Logistic Regression algorithms and clustering algorithms can be 

used to detect outliers by grouping a set of values, such that those in the same group 

are more similar than those from other groups. As for fixing noisy data, binning methods 

can be used to smoothen a sorted data value according to their neighbouring and 

values around that data (Malley et al., 2016).  

Some of the data in data sets is inconsistent or duplicated, and such data is costly to 

maintain and manage. This incurs great expense, in terms of money, as well as the 

computer storage and processing speed. Often this is caused by allowing free-text, 

instead of allowing users to choose from a list. An example of that is when exchanging 

data between two databases, one uses “F” to store a female value and another uses 

“Female”. Inconsistencies could be identified through the use of object identification and 

linkage through multiple sources, where linked data sets help to remove 

inconsistencies. Linked data sets work with the context and the data usage pattern, 

where context is used to identify similar data items between data sets, and the data 

usage pattern is used to identify data that is grouped together even when it is not similar 

(Liu, Kumar, & Thomas, 2015).  

Other research studies have found that Functional Dependency (FD), and its extension 

Conditional Functional Dependency (CFD) integrity constraints yields better outcomes 

for detecting inconsistencies in data sets. Inconsistencies can be repaired by 

partitioning data sets either vertically or horizontally, however in distributed systems 

such as Hadoop and MapReduce, it is much harder to detect errors in the data (Fan, Li, 

Tang, & Yu, 2014).  

The methods discussed above are sufficient for data cleaning only, and once that has 

been achieved, features should be extracted or selected from the cleaned data sets. 

Thereafter, more algorithmic processing can be performed from this data, and details 

about this processing is covered on the following section. 
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2.6 DATA INTEGRATION 

Data integration is about building relationships between one or more data sets, and 

relations create value for data consumers, which in the case of this study are health 

care clinicians and patients. Through these relations, predictive models can be created. 

Predictive models work based on probabilities and not on exactitude, an example of 

which is Google’s Flu trends model, which was used to forecast in real-time the 

potential number of influenza cases in various geographical location based on what 

people searched for on Google’s Search engine. This model helped medical centres to 

respond timeously to pandemic outbreaks (Huang et al., 2015; Mayer-Schönberger & 

Cukier, 2013).   

2.6.1 FEATURE SELECTION 

Dimensional reduction is one of the data preparatory concepts that comes post data 

cleaning step. There are two forms of dimensional reduction, namely feature extraction 

and feature selection. Feature extraction is used to transform the data from its original 

space into a new one with lower dimensionality that cannot be linked back to the original 

space. Subsequently, feature selection aims to select a subset of features that minimise 

redundancy and maximise relevance to the target, which is known to have  better 

readability and interpretability features (Aggarwal & Reddy, 2013). The most popular 

feature selection models are as follows: 

- Filter model: there are three types of this model, which work without classifiers, 

and these are: Relief, Information Gain, Fisher Score, CFS and FCBF. 

- Wrapper model: this uses a classifier as a selection criteria, and it requires cross-

validation, even though it is computationally expensive, but it offers greater 

accuracy. Classifiers that could be used include Support Vector Machines and K-

Nearest Neighbour. 

- Hybrid model: this combines the best functionalities of both Filter and Wrapper 

models, however, it employs the BBHFS and HGA algorithms. 

- Embedded model: this is known for achieving model fitting and feature selection 

simultaneously, these are regularisation methods such as Lasso, C4.5, BlogReg 

and SBMLR. 
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Based on the type of features to be used, the researcher will either extract features from 

data attributes or will select features from data attributes. Feature selection methods 

offer: a high learning accuracy; a better learning performance; and a lower 

computational cost. Feature selection is also able to discriminate samples that belong to 

different clusters; and ultimately it allows for human supervision (Charu, Aggarwal & 

Reddy, 2013). A learning algorithm that works with health-based data should allow for  

human input, and hence, ought to feature selection methods which allow for human 

intervention in order to improve the accuracy of the classifier, this procedure is part of 

supervised learning. 

Feature selection criteria can be implemented using the processes as shown in Figure 

2.10, where the whole process is divided into two phases, namely, Feature Selection 

and Model Fitting and Performance Evaluation.  

Figure 2. 10: A unified view of a feature selection process (Source: Liu, Motoda, 
Setiono & Zhao, 2010) 

During the Feature Selection phase, a candidate training set that contains a subset of 

the original training data (sample) is generated, after which the candidate set is 

evaluated by discarding or adding features based on relevance. Lastly, using a stopping 

criterion, optimum features are determined and selected for the learning model, if they 



  

47 
 

are not good enough or do not satisfy the stopping criterion, the whole process is 

repeated (Setiono et al., 2010). 

 

Furthermore, (Setiono et al., 2010) have noted that, once the optimum features have 

been selected, they can then be used to filter the training and test data for model fitting 

and predictions. One other thing to take note of is the results of the model on the test 

data, which could be used to evaluate the effectiveness of the feature selection 

algorithm for the learning model. However, before features can be fed into a learning 

algorithm, they should be presentable mathematically. According to (Zhao et al., 2011) 

Vector Space Model (VSM) can be used to represent features by taking term 

occurrence statistics as feature vectors from a plain text document.  

 

Although VSM works best with flat files, it has been recorded to perform poorly when 

handling structured data sets. Structured data sets include RDF graphed data sets, 

XML data sets, and JSON-based data sets. (Asghari & Keyvanpour, 2015; Zhao et al., 

2011)  have proposed the use of a Structured Link Vector Model (SLVM) which extends 

VSM, and can be used to represent the structure and the contents of XML files for the 

learning algorithm.  

 

2.6.2 SIMILARITY MEASURE 

In the case of this study, the classification is based on whether the source record 

matches the target record. However, in order to determine these matches, a similarity 

measure is used for each attribute value. The similarity measure function outputs a 

weight of how much similar one string is from another, where, if the source string 

matches the target string then a weight of “1” is given otherwise it is given a weight of a 

“0”. The following section serves to provide details about similarity measure algorithms 

used in string comparisons. Similarity algorithms are not limited to the three covered in 

this study, but an interested reader may find more from a studies by (Christen, 2012; 

Doan, Halevy, Ives, et al., 2012). 
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Jaro-Winkler 

(Doan, Halevy, Ives, et al., 2012) have reported that both Jaro and Winkler’s techniques 

have the highest average similarity values for short strings, and therefore that makes 

these techniques suitable for calculating the similarity between the source and the 

target labels. Firstly the Jaro function aims to find the common character between the 

instance of source label and the target label, in Equation (1)   represents instances of 

common characters between the source label and the target label, and   is the 

transposition character which represents the instance of both the source label and the 

target label that are not matching even though they are common (Han, Kamber & Pei, 

2012).  

 

                                                             ( 1) 

 

The Jaro formula was then modified. Equation (2) shows the modification to the 

equation. This modification is meant to improve similarity between strings that are 

similar in the beginning of the string and differences are found towards the middle and 

in the end of the two strings (Christen, 2012). 

 

                                                                       ( 2) 

 

The “p” variable represents the first four matching characters at the beginning of two 

strings, for instance comparing the strings “Mandla” and “Mandela” would yield the 

results “p”=4.   

 

                                         

                          
   

                
         ( 3) 
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The optimisation objective of the Jaro and Winkler formula is the output of a value 

between “0” and “1”, where any value that is closer to “1” indicates that the similarity 

between the source label and the target label is high, and closer to “0” indicates items 

with low similarity weight. 

Edit distance 

The Edit distance algorithm is also known as the Levenshtein distance, and it measures 

the minimum cost of transforming one string to the other. The process of transforming 

involves inserting, deleting, and substituting characters from one string to the other. This 

process can be applied to either string and the effect is the same, and this method is 

mostly used where data is captured manually, where people could make typographical 

errors (Doan, Halevy, & Ives, 2012). 

 

            
         

                          
                      ( 4) 

 

An example of Edit distance is shown below where a misspelt “blood pressure” is 

compared against a correctly spelled laboratory name. 

 

                                   
 

       
               

 

The Edit distance measure compares each character of    instance with each and every 

character of the    instance, and this has a computation cost of 

                           . With this setup, (Perkins et al., 2011) suggests that there 

will be 
      

 
 comparisons, making this function highly computationally expensive. 

 

Term Frequency and Inverse Document Frequency 

This method is abbreviated as TFIDF and is used to evaluate how important a word is 

as well as the absence of a word from a document. This method uses a Vector Space 

Model, which is used for converting the occurrence of a string from document into a 
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numerical value. The conversion process checks for occurrence of a word from a 

dictionary, and assigns a “1” if the value exists, and “0” if it does not exist in the 

dictionary. This method is often used in spam classification problems, where the words 

that are expected to be contained on a random spam message will be recorded in the 

dictionary. The input text is first normalized to preferred text casing, then tokenised and, 

then stemmed, by removing stop words. Stop words are words that occur often on an 

English text, such as the, is, this, on etc. (Manning,  Raghavan, & Schütze, 2009; Lan, 

Tan, Su, & Lu, 2009).   

 

                 
                      ( 5) 

                                          ( 6) 

 

The function         returns the number of times that term t is present in document  , 

where the function         assigns a “1” if the compared terms are the same, and “0” if 

otherwise. Table 2. 4A represents the doctor’s notes about the patient’s vital signs, 

where the text has been lowered for cases and stems from common English words. 

Then Table 2. 4B records the document vector for vital signs, where the headers on 

Table 2. 4B indicates the dictionary used, and the given text is checked for whether it 

is contained in the defined dictionary. While Table 2. 4C is similar to Table 2. 4B, it 

checks for unit of measures used in vital signs. 

Table 2. 4A Word stemming for source data 

Source not stemmed patient’s weight 3.115 kg. length 50 cm. head circumference 

31.5 cm. large for gestational age 

Source stemmed patient s weight 3.115 kg length 50 cm head circumfer 31. 5 

cm larg for gestat ag 

 

Table 2. 4B Target vital signs features 
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height weight respiratori  head 

circumfer 

Blood 

pressure 

oxygen length 

0 1 0 1 0 0 1 

 

Table 2. 4C Target vital signs features 

metre m Centimeter cm kg litre Mmol/L 

0 0 0 1 1 0 0 

 

2.6.3 INDEXING TECHNIQUES 

Indexing, also known as blocking, involves limiting the number of data objects and 

therefore comparisons in a feature space. If one were to compare the similarity of data 

objects from the source data with 100 records and the target data with 100 records, 

there would have to be 10 000 comparisons, which affects the algorithm’s running time. 

The number of comparisons grows quadratically with the training set. This problem is 

fixed through blocking strategies whereby blocks are created based on similar 

characteristics of the data, for instance, records that have the same postal code would 

be blocked together, or laboratory names that sound the same, or the first three 

characters of lab names that are similar. (Bilenko, 2006) has reported that blocking is 

more critical in the scaling of record linkage systems and data clustering algorithms. 

With the emergence of data integration, it becomes even more important to apply 

automatic blocking, and (Bilenko, 2006) has used an approximation algorithm to 

construct blocking functions automatically. (Christen, 2012) suggests that indexing 

should be applied to attributes or attributes that do not have missing values, and with a 

uniform frequency distribution between the values. He further advised that phonetic 

coding was specifically designed for the English language, and therefore, it ought to be 

used cautiously when considering South African names. An example of an indexing 

technique includes soundex, which looks at the similar sounds between two words, and 

phonex which is a variation of soundex; however these apply punctuation, such as 

removing characters prior to the word/sound comparison. There is another indexing 
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method called phonix, which has more punctuation rules, and is said to run slower than 

soundex (Manning et al., 2009).  

 

2.6.4 DATA SET MATCHING 

Differences and mismatches between heterogeneous data formats can be solved by 

dataset and attribute mapping systems. Dataset mapping is important for handling 

problems experienced during data integration, data exchange, peer-to-peer data 

sharing, and dataset evolution (Fagin et al., 2009). For illustration, see Table 2.5, which 

shows the mapping process from the source to the target dataset. For the purposes of 

this study, a dataset is defined as the organization of data according to a blueprint of 

how databases are constructed and can be viewed as a set of repositories in the form of 

database tables or XML or ontologies. In Table 2.5, a database table “TblLabs” is 

mapped to the Observation FHIR resource, where the table’s attributes are also 

mapped to the FHIR valuesets. The example in Table 2.5 satisfies the definition of what 

dataset mapping is (Bonifadi, Mecca, Papotti, & Velegrakis, 2011), defining it as 

“expressions that specify how an instance of the source repository should be translated 

into an instance of the target repository” (p.112).  

 

Conceptual mapping of FHIR resources in a clinical setting 

FHIR resources could be understood through scenarios in the health care environment. 

A patient’s visit to a clinician or a hospital could be systematically recorded, based on 

the following set of variables, but not limited to this list: patient information, 

demographics, providers, health care procedures, utilisation data (e.g., length of stay in 

hospital, charges), and more. According to FHIR resources, a patient’s visit to a health 

care facility is classified as an Encounter, and a patient is defined through the Person 

and Patient resources. A Person allows for a variety of roles in delivering care, where, 

for example, a patient being treated is handled differently from an organ donor, while 

Patient resource includes patient’s attributes. 
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Table 2. 5 Mapping legacy data sets and attributes to FHIR resource 

Source  Target  

Database 

attribute 

Database table Match FHIR 

ValueSet 

FHIR Resource 

Glucose TblLabs  LOINC: 

15074-8 

Observation: 

Glucose 

[moles/volume] in 

blood 

Weight TblPatient  LOINC: 

29463-7 

Observation: Body 

Weight 

CellNo TblContact  Telecom Person 

Temp TblPatient  SNOMED-

CT: 

56342008 

Observation: 

Temperature taking 

Chol hdl TblLabs  LOINC: 

2085-9 

Observation: 

Cholesterol in HDL 

Serum or Plasma 

Gender TblPatient  Gender Patient 

Drank 

contaminated 

water, tested +ve 

for lead exposure 

TblSummary  LOINC: 

10368-9 

Observation: Lead 

in Capillary blood 

 

 Now, the doctor treating the patient is classified as Practitioner, where the patient’s 

complaints are termed Condition, tests to be done are termed Observation, the doctor’s 

findings are termed Diagnosis. The resources are not limited to the few mentioned 

above, this is only to give an example of how the classification is done, and each 

resource also has attributes, which are also used for classification purposes.  

 

Methods of mapping source dataset to target dataset 
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There are various methods used to map the source repository to the target repository. 

One of the methods is attribute correspondence. Attribute correspondence is used for 

associating attributes from different datasets, which also helps limit the query search 

space during a mapping activity. Attribute correspondence has been extended to 

include contextual, semantic, and probabilistic attribute correspondence. Contextual 

attribute correspondence maps object      to object    , based on condition  , and it is 

interpreted in this triple form (        ). Contextual attribute correspondence is 

deterministic and would prove highly expensive to thoroughly search for attributes in 

data that is hierarchically structured. Semantic attribute correspondence fixes the issue 

of hierarchical search, while probabilistic methods allow for attributes to be matched 

through machine learning concepts, and the combination of these three methods is 

thought to have the potential of an even more powerful model (Bonifadi et al., 2011).   

 

Classification methods for dataset mapping 

Datasets, attributes and values can also be mapped to the target data set using the 

following classification methods:  

- threshold-based classification 

- probabilistic classification 

- cost-based classification 

- rule-based classification 

- supervised classification methods 

Classification is used for predicting a class or a category on a given set of training 

examples. The threshold method is the simplest way to classify whether candidate 

records pairs are a match, a non-match, or a potential match, through the use of the 

similarity threshold. The probabilistic method uses the dataset attributes as well as the 

values stored on that attribute to determine a match, a non-match or a potential match, 

and the threshold-based method lacks this functionality. While the cost-based method 

can be applied in all classification methods, it aims to minimise misclassifications and it 

is a suitable method for classifying sensitive data. Lastly, the rule-based method applies 

rules that classify the candidate record pairs into a match, non-match and potential 

matches (Christen, 2012). 
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2.6.5 TEXT CLASSIFICATION ALGORITHMS 

Classification is when a machine learning algorithm receives input data for the task of 

predicting a class or a category to which the input data should be classified. Now the 

received input data might have labels or it might not, so when the data with labels is 

trained through the learning algorithm, the algorithm is considered supervised because 

it is given clues about the classes to which the input data should be classified. The 

opposite is unsupervised classification, when the algorithm learns patterns from the 

input data and it creates clusters based on the unlabelled data (Wang & Domeniconi, 

2008). The model is first built from the training data using the learning algorithm, the 

produced model is then applied to the new or unknown (test) data for making 

predictions (Figure 2.11). 

 

 

Figure 2. 11: Training a supervised algorithm 

 

Partitions of the data are created prior to training, where there is a training set, cross-

validation set and test set. The training set for a supervised classification contains both 

positive and negative training examples. In Figure 2.12, the training data contains five 

training examples  , with four features   that can be used to build the model, the target 

feature or class is the “Secured loan” attribute from the given training set. It is 

Training 
Data 

Learning 
Algorithm 

Model 

Test Data  Model 
Predicted 

Output 
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observable that the target feature outputs a value of “No” or “Yes”, this is called a 

binomial classifier, there is also a multiclass classifier which output a range of values 

e.g. (“1”,”2”, “3”, “4”).  

 

Figure 2. 12: Example of training examples for determining whether to grant loan 
to the applicant or not (Source: (Gorunescu, 2011)) 

 

The test set is loaded once a good model has been built. During the building process of 

the model there are parameters that are optimized using the cross-validation set. The 

best model is then built based on the optimized parameters, and such a model is one 

with a smaller cost function value. The produced model is then tested on the test set. 

The test set contains data that was not used during the training or cross-validation 

process, and it should be noted that each set of data is applied on a specific process. 

For instance, the training set is applied during the training process, the cross-validation 

set is applied during the cross-validation process, and the test set is applied during the 

testing process. The testing process is the final output because it tests the classifier’s 

(or learning algorithm)  predictions on the given data, if the classifier is able to predict 

correctly, then it is regarded as being able to learn, and therefore, it is also considered 

being able to generalise from unknown data (Han et al., 2012). (Christen, 2012) further 

added that test data and training data should be in the same format and structure, 



  

57 
 

however, test data should not have the same data that was used on the training set, or 

on the cross-validation set.  

There are a myriad of examples where a classification-based algorithm can be applied 

namely: an email spam classification where the input are words on an email message, 

and the classifier has to predict whether the email is spam or not spam (Kuhn & 

Johnson, 2013); predicting patients who are eligible for palliative care by collecting EHR 

data from different clinical systems (Avati et al., 2017); another example is the 

prediction of whether a patient’s tumour is benign or malignant, this is classified from an 

input of an electronic radiograph image. Another well-known method of classification is 

one that is rule-based, it uses a set of IF-THEN rules in order to achieve classification. 

The rules use conditions which include disjunctions (logical OR ()) and conjunctions 

(logical AND ()) to determine when to classify the given input data into a corresponding 

class (Christen, 2012). For instance, Figure 2.18 uses logical rules for determining if two 

distinct records match or not, in the case of Figure 2.18 it is record   and record  , and 

therefore the process of classification is determined by the conditions in each rule. 

 

Figure 2. 13: Rules that use conjunctions and disjunctions to determine whether 
two records match or not (Source: (Christen, 2012)) 
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For instance, the first rule of Figure 2.13 states if the attribute “GivenName” for record   

has a similarity weight of “0.9” or more when compared with the   record, and also 

considering the other attributes and weights, if the first rule is met then the two records 

are considered to match. The similarity weight is calculated using methods discussed in 

section 2.6.2. 

 

2.6.6 STORAGE MECHANISMS FOR BIG HEALTH DATA 

Currently, Relational Database Management Systems (RDBMS) are being used on a 

daily basis to store data in a structured format, and RDBMS are easily queried through 

“Structured Queried Languages” (SQL). RDBMS require tables and columns to be 

defined first before data can be stored. However, the nature of unstructured data makes 

it impossible to have predefined table names and columns, and therefore, relationships 

between the data cannot be established in similar formats as with RDBMS (Leavitt, 

2010). It can then be concluded that RDBMS are powerless when storing unstructured 

data (Liu, Lang, Yu, Luo, & Huang, 2011).  

 

Distributed file systems 

Big data storage can be classified into three mechanisms, namely, distributed file 

systems, databases, and programming models. An example of a distributed file systems 

is a cluster-based Hadoop Distributed File System (HDFS), which was derived from 

Google File Systems (GFS). HDFS is a data storage platform for a MapReduce 

Framework, and both these technologies are a part and parcel of Hadoop. Parallel 

computing for MapReduce Framework is achieved when the HDFS cluster uses a single 

NameNode for managing the metadata of files, while the data nodes are used for 

storing the actual data (Chen et al., 2014; Huang et al., 2015).    

 

Big data databases  

Another form of storage systems are databases, NoSQL databases have been 

designed for managing huge heterogeneous data sets, as well as to scale to thousands 

or millions of users who are performing updates and reads, almost at the same time, 
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instead of guaranteeing data integrity through ACID (atomicity, consistency, isolation 

and durability) transactions like RDBM. NoSQL databases ensure that there is strong 

consistency, high availability, and that there is partition tolerance, which is transparent 

to the user, and is done across different servers (Moniruzzaman & Hossain, 2013). 

 

XML has become a heavily used data format for achieving interoperability between 

disparate organizations. The HL7 standard and IHE XDS achieves interoperability 

between data through the use of XML-based technologies, such as ebXML and HL7 

CDA. Therefore, in health care, there is a need to implement NoSQL-based database 

for XML documents, because of scalability and performance issues. An Italian hospital 

has used an open-source version of MongoDB database for managing large CDA 

documents, with a repository that contains about 22 million CDA documents, and with 

50K admissions per year, and 2.5 million outpatient visits in a year (Adrián et al., 2013).   

 

MongoDB, Cassandra, BigTable, and HBase are various forms of NoSQL databases, 

HBase is Google’s open-sourced version of BigTable. These databases can be 

categorised into three forms, based on how they store data, and are: Key-value 

databases, Column-Oriented databases, and Document databases. MongoDB is a 

Document-based database, which uses Binary JSON (BSON) objects to store data, 

BSON and is derived from Javascript Object Notation (JSON) (Chen et al., 2014).  

 

If one plans to store XML documents in MongoDB, a translator would be needed to 

translate XML elements to JSON objects in order to store and query the data in a 

supported language syntax. On the other hand, in section 2.4, the architecture of 

ebXML was explained, and it was mentioned that ebXML stores XDS documents to 

repositories and the document’s metadata to the registry. The question then arises as to 

how to integrate NoSQL databases with ebXML for managing XDS documents. 

(Messina, Storniolo, & Urso, 2016) have proposed the use of a Multi-Model NoSQL 

database called OrientDB. OrientDB is an open-source database that supports Graph 



  

60 
 

databases, Document databases, Key-Value and Object models, and allows for data to 

be queried through “SQL” related queries.  

Programming models for big data 

The processing of big data comes with a lot of challenges for organizations, one of 

which is querying data from heterogeneous distributed sources. Even if the data uses 

the same standard, querying such sparse data requires distributive and parallel 

computing services. Exchanging and sharing big health data between multiple 

organizations presents scalability and performance problems. 

With these problems in mind, in order to fix them, programming models like MapReduce 

may be appropriate. A well-known MapReduce framework is Apache Hadoop, which 

has two operational bases, namely, Map and Reduce. The Map() step uses the master 

node to take the input and recursively divides it into smaller sub-problems then 

distribute it to slave nodes. During the Reduce() step, the master node collects the 

answers and combines them together to form the final answer to the actual problem to 

be solved (Philip Chen & Zhang, 2014). The map and reduce are a part of analysis or 

interacting with the stored data from multiple nodes in Hadoop.   

There are other programming models that can be used with NoSQL databases such as 

Dryad, All-pairs and Pregel. These models have become the foundation of analysis for 

big data, because they effectively improve the performance of NoSQL databases by 

reducing the performance gaps between relational databases (Chen et al., 2014). 

2.6.7 CONCLUSION 

This chapter commenced by indicating the characteristics of big data. It has been 

shown that big data can have four or more characteristics, the most common of which 

are: volume, variety, velocity and veracity. More emphasis was placed on the “variety” 

attribute of big data, because most data in organizations are not structured, however, 

this data is often deleted, or not used, because it is difficult to create value from this 

type of data. 

The veracity attribute addressed the issue about the accuracy, relevance, consistency, 

security, and the ownership of the data. Often, machine learning and big data have 
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been regarded as a silver bullet for problems encountered in various industries. 

However, in this chapter, it has been shown that such data comes with risks. To 

mitigate these risks, a risk matrix framework should be developed in order to protect the 

consumers and the producers of big data. 

In section 2.3, Health Information Systems such as EHR, EMR, and PHR were defined. 

Then in section 2.3.2 one of the research questions was answered by providing detailed 

layers that constitute the sources of data for this study. One of the layers is the 

exposome, which concerns capturing environmental data and including it as part of the 

patient’s profile. In section 2.3.3, technologies for delivering care remotely to patients 

were identified and defined. One of the core research themes for this study is data 

standardization, by means of which to achieve interoperability amongst disparate health 

care facilities. In section 2.4, the researcher communicated about the use of standards 

such as HL7, LOINC, SNOMED-CT, ICD-10, and more. Section 2.5 briefly identifies 

methods for cleaning the data. In section 2.6, the researcher identified feature selection 

methods, similarity measures, indexing techniques, data matching and classification 

algorithms, and lastly storage mechanism for big data.  



  

62 
 

CHAPTER 3: 

                     Research Design and Methodology    

 

3. RESEARCH METHODOLOGY 

3.1 INTRODUCTION 

The previous chapter gave a detailed view of relevant literature that constitutes this 

study. In this chapter, the researcher will discuss research planning. In section 3.2 the 

researcher addresses the theoretical perspective of the use of SVM. Then, in section 

3.3 the researcher lists the research questions and shows how these questions are 

addressed. In section 3.4, CRISP-DM and DSRM is discussed, then in section 3.5 the 

researcher lists the datasets to be used to conduct this study. Then section 3.6 shows 

the methods of data preparation and section 3.7 lists the notation that is used in the 

study. Section 3.8 talks about the supervised classification methods, while section 3.9 

addresses clinical tools and medical thesaurus to be used in this study. Lastly, section 

3.10 speaks about ethical clearance.   

3.2 THEORETICAL PERSPECTIVE TO THE PROPOSED SOLUTION 

The objective of this study is to use standardized clinical observation data as input on a 

learning algorithm, where the algorithm would learn a function     for identifying 

patterns in the input data, so that when the algorithm is given new but related 

unstandardized observation data, it would be able to classify the data to the related 

standard. The researcher has planned to use the SVM classifier as the learning 

algorithm, and clinical observation data that is standardized, based on the LOINC 

standard. The standardized data is sometimes referred to as the gold standard, and in 

this study it is also termed as such. The solution that the researcher proposes is based 

on the Statistical Learning (SL) theory. According to a paper by (Vapnik, 2013), the 

theory was developed by Vapnik and co-workers more than 30 years ago. (Bousquet, 

2004) noted that the SL theory is used for studying the problem of inferences by 

focusing on learning, generalisation, regularisation and the characterisation of the 

performance of a learning algorithm. In simple terms, the theory formalizes the process 
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of: (1) observing a phenomenon; (2) constructing a model for that phenomenon; (3) then 

making predictions using the constructed model. Machine learning therefore allows the 

steps mentioned above to be automated (Bousquet, 2004).   

 

 

 

 

 

 

 

 

 

Figure 3. 1: Hypothesis evaluation process  

 

Figure 3.1 shows the process of evaluating the hypothesis value, which is part of 

observing the phenomenon. The training set consists of input variables ( ) and target 

variables ( ), the model is created by learning the hypothesis function (     ), which 

is also used to predict the target variable from the given input variable. A linear classifier 

can be used to predict the hypothesis whereby    represents the slope of the line and 

   represents a point that crosses, see Equation (7).  

 

                              ( 7)       

 

 The SL theory is focused on three learning problems namely, pattern recognition, 

regression estimation, and density estimation. Pattern recognition is used in object 

categorisation problems, whereby an object is categorised to a certain class based on 

Training Set (x,y) 

Learning Algorithm 

h 

X 

(Input Feature) 

Y 

Predicted Target 
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its properties. The SL theory is supported by a highly used classifier called Support 

Vector Machines (SVM), which is supervised, because it learns patterns from 

predefined training examples. Therefore, SVM has its roots from the statistical learning 

theory (Nasien, Yuhaniz, & Haron, 2010). 

The principles of the SL theory has made way for SVM to be applied to classification 

and regression problems. Some of the notable uses of SVM include: sentiment 

classification (or market prediction); spam classification; bioinformatics; image retrieval; 

face detection; and text categorisation (Moraes, Valiati, Gavião Neto, & Neto, 2013; 

Tian, Shi, & Liu, 2012). SVM provides a highly accurate classification capability, and 

(Xu, Zhen, Yang, & Wang, 2009) have further added that SVM provides a high 

performance generalisation of data.   

In machine learning, one of the requirements is an accurate generalisation, meaning 

that there is a quest to find a function ( ) that is able to correctly classify previously 

unseen examples. Therefore, the key variables in statistical learning theory are the 

ability for the classifier to learn from feature sets      , generalise unseen examples, 

and regularise by preventing high variance (over fit) and high bias (under fit) on the 

training set (Ng, 2011). An example made by (Hamel, 2009) drives the bias-variance 

point home, where the author notes that high bias occurs when the learning algorithm 

cannot fit the training data, and high variance occurs as the result of fitting all the data 

points accurately, such that it fails to regularise (make correct predictions) on new or 

unknown input data. Figure 3.2 illustrates this point.  

 

According to Figure 3.2, underfitting is shown by the linear graph, while overfitting is 

shown by the polynomial graph. Regularisation problems occur as the result of fewer 

features as well as unnecessary features, where this shows the relationship between 

the process of learning and the features that were selected.   
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Figure 3. 2: High variance and high bias (Source: (Hamel, 2009)) 

 

A relationship that makes up a learning algorithm is guided by three variables, 

according to an expert in machine learning (Mitchell, 1997). Mitchell defines a learning 

algorithm as being able to: “learn from experience E with respect to some task T and 

performance P, if its performance at tasks in T, as measured by P, improves by 

experience E” (1997:2). These machine learning variables can further be mapped to the 

SL theory, whereby a supervised learning algorithm will be able to generalise if it is able 

to learn from experience. The task is the action being done by the classifying algorithm, 

and the learning performance of the algorithm improves when the generalization error is 

minimized, and therefore achieving regularization.  

 

From the objective of this study, which was defined in section 1.5, the researcher has 

extracted variables shown in Table 3.1, also revealing how the machine learning 

definition by Mitchell provided above influences the construction of these variables.  
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Table 3. 1 Variables of the study 

Independent variables Dependent variables Mediating variables 

1. Similarity Measures 

2. Indexing algorithms 

3. Classifiers 

1. Similarity weights 

2. Set match 

3. Classification 

4. Performance 

measures 

1. LOINC mapped 

dataset 

2. Observation dataset 

 

 

Independent variables affect the outcomes of the study, and dependent variables are 

the outcomes of the study, while the medicating variables are actually an independent 

variable that directs the outcome of the study (Creswell, 2014). The mediating variable 

is used as a supervision method for unstandardized data, where in simpler terms, it is 

an example that is emulated by the classifier by following the gold standard so as to 

standardize the unstandardized data. The independent variables are functions that 

manipulate the mediating variables in order to get the dependent variables. For 

instance, an indexing function is applied on the observation dataset and LOINC-mapped 

datasets, in order to obtain records that are compatible with one another in terms of 

sound, where for example, records about “blood pressure” would be compared against 

records that sound the same, such as shown in Table 3.2 below. 

Table 3. 2 Results of records to be compared with blood pressure record 

LOINC Code Observation name 

10389-5 Blood product.other 

9855-8 Blood pressure special circumstances^* 

79965-0 Blood velocity-time integral.systole 

 

The indexing algorithm such as soundex limits the number of potential target records to 

be compared against the source record. Then, a similarity weight function such as Jaro-

Winkler, Edit distance or TFIDF is applied in order to calculate how similar the two 

records are, and these weights are then calculated for each record-distinguishing field in 

a record set. The weights then are loaded into a classifier, which determines whether 
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the two records matches on not. Therefore the researcher’s goal is to use the 

independent variables and mediating variables as inputs in order to determine if two 

records match. If they do match then that record can be standardized to the selected 

LOINC code. Tests for these matches are used to evaluate whether a standard can be 

learned through a machine learning classifier or not. 

3.3 FORMULATION OF RESEARCH QUESTIONS 

The researcher used the objective of the study to draw out the two main research 

questions, where question (a) addresses the nature of society that hinders data to be 

interoperable; question (b) speaks to the use of methods from science and technology 

in order to standardize patients’ data. See questions below: 

a) When will health information systems in South Africa be standardized in order to 

be able to seamlessly exchange and share consolidated patients’ data? 

b) How can the process of data compliance across health care providers be 

automated through machine learning concepts? 

These are the core questions driving the research, and were used to develop the sub-

questions listed in section 1.5.1. The objective of this study further suggests that a 

functionalist paradigm is used in this study because of the combinational use of why 

and how as main questions. (Cronje, 2014) advises that if the researcher wants to 

develop a prototype solution for the research problem, then the questions to ask are 

arranged in the following format “why is the current method not working?” and “how 

should it be fixed?” The questions raised suggest that a prototype will be created in 

order to reach the objective of the study, therefore the researcher will follow the CRISP-

DM framework and Design Science Research as guidelines for purposes of this study. 

3.4 CRISP-DM FRAMEWORK AND DESIGN SCIENCE RESEARCH 

The researcher has chosen to use the CRISP-DM framework as a guide to reach the 

expected output for this study. The CRISP-DM framework and other alternative 

frameworks were discussed in Chapter One. CRISP-DM in full is called CRoss-Industry 

Standard Process for Data Mining. This framework is not only for guidance purposes, it 

also allows projects to be replicated, and encourages best practices of data mining in 

order to get correct results (Clifton, 2004). CRISP-DM consists of six steps for 

https://mylifeunisaac-my.sharepoint.com/personal/43615554_mylife_unisa_ac_za/Documents/NGWENYA%20FULL%20EDIT_FINAL.docx#_Research_questions
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conducting data-mining projects. As shown in Table 3.3, these steps include: business 

understanding, data understanding, data preparation, modelling, evaluation and 

deployment. Therefore, based on the manner that CRISP-DM framework uses to 

address a problem, it can be said that CRISP-DM is a framework artefact that might 

have been developed using Design Science Research Methodology (DSRM). This is 

because DSRM approach aims to define a solution to a business requirement by 

building an IT artefact (Lapão, da Silva, & Gregório, 2017) of which in this case is 

CRISP-DM. 

Table 3. 3 Similarities between DSRM and CRISP-DM 

DSRM Activity CRISP-DM Phase Tasks 

Identify problem and motivate Business understanding Health care Information 
systems in South Africa are 
operated in silos, a large 
portion of these systems 
are not implementing 
health standards. Those 
that do implement cannot 
share that data because 
the receiving system would 
not be able to interpret this 
data. 

Define objectives of a solution Data understanding Collect structured and 
unstructured relevant 
health data from multiple 
sources so as to replicate 
the problem being 
experienced.  

Design and development Data preparation Prepare the data 
processing, design 
methods that would make 
the data easily computable 
through feature selection 
and vectorization. 

Demonstration Modelling From the selected features, 
split data into training and 
testing set. Build a 
predictive model from the 
training set.  

Evaluation Evaluation Test if the model built can 
make correct predictions. 

Communication Deployment Deploy the model on live 
environment. 
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In this study the researcher follows CRISP-DM for the application of supervised 

machine learning algorithms on structured data. However, the same framework was 

applied on unstructured data, where natural language processing (NLP) techniques and 

unsupervised machine learning algorithms (e.g. brown clustering) were used. Therefore, 

data mining and knowledge discovery applications can use CRISP-DM as a guideline 

for achieving the desired outcome for a given data mining problem. CRISP-DM is 

considered finished if it solves the relevant problem at hand (Weber, 2010), therefore, 

the final phase cannot be reached until a model that satisfies the business requirement 

is built, thereafter it can be deployed. In Table 3.3 the researcher shows the relationship 

that can be drawn between CRISP-DM and the DSRM approach. 

 

However, it is worth mentioning that there are also differences between the CRISP-DM 

and DSRM. On DSRM, the iterative process of building is running concurrently with the 

process of evaluating. While with CRISP-DM the modelling phase would have to be 

finished before the model could be evaluated. However there is flexibility, because the 

process could be refined and restarted from business understanding in case the model 

built is not satisfactorily. This chapter only covers two processes from the CRISP-DM 

framework as highlighted in Figure 3.3, however the researcher also gives an outline of 

the modelling phase in section 3.7 of this chapter. 
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Figure 3. 3: CRISP-DM for data understanding and data preparation  (Source: 
(Olson & Delen, 2008))  

 

3.5 DATA UNDERSTANDING 

This section addresses research sub-questions (i) and (ii) of this study: 

 

# Research sub-question 

i.  What type of health-related data sets will this research study focus on? 

 

The problem at hand is that health facilities are not able to exchange health records 

between themselves, because there is no common coding standard for data 

management, hence the systems are operated in silos. Therefore, the researcher has 

proposed a solution that allows a classifier to learn patterns of standardized data (Table 

3.4A) so that the generated model can be applied to the unstandardized data (Table 

3.4B), and hence learn the factors from standardized data. Standardized data acts as a 

gold standard that the researcher uses as a base to standardize other data.  
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Table 3. 4A Standardized tests from LABEVENTS and D_LABITEMS MIMIC tables 

LABEL FLUID CATEGORY VALUE VALUEUOM LOINC_CODE 

Cholesterol, 
LDL, Calculated 

Blood Chemistry 101 mg/dL 2090-9 

Hematocrit Blood Hematology 42.8 % 4544-3 

Hemoglobin Blood Hematology 12.6 g/dL 718-7 

Cholesterol, 
LDL, Measured 

Blood Chemistry 140 mg/dL 18262-6 

Cocaine, Urine Urine Chemistry NEG  3397-7 

Oxygen 
Saturation 

Blood Blood Gas 95 % 20564-1 

pCO2 Blood Blood Gas 33 mm Hg 11557-6 

Urine 
Appearance 

Urine Hematology Cloudy  5767-9 

Urine Color Urine Hematology Amber  5778-6 

 

Table 3. 4B Unstandardized observations from CHARTEVENTS and D_ITEMS 
MIMIC tables 

LABEL FLUID CATEGORY VALUE VALUEUOM DBSource 

Cholesterol  Labs 173 mg/dL MetaVision 

Cholesterol 
(<200) 

 Chemistry 252 mg/dl CareVue 

Hematocrit 
(serum) 

 Labs 36.9 % MetaVision 

O2 saturation 
pulseoxymetry 

Respiratory 91 % MetaVision 

Mixed Venous O2% Sat Blood 
Gases 

55  CareVue 

SaO2  ABG's  % CareVue 

pCO2  ABG'S 43  CareVue 

Urine pH   5 kg CareVue 

 

The proposed approach is derived from the statistical learning theory. To test the 

proposal, the researcher has collected data that is standardized based on the LOINC 

coding standard, as well as data that is not standardized. (Bousquet, 2003) has 

suggested that initially, sampled data that is used to train the model should be somehow 

related to the future data (or unseen data) in order to be able to make correct 

predictions on the new data, otherwise it would not be possible to solve the prediction 

problem. Therefore, the researcher has collected health data from two databases, 
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namely MIMIC-III and NHanes. These databases were used to exemplify the lack of 

interoperability between two disparate systems. This is a similar problem as the one 

experienced by Health Information Systems (HIS) in South Africa (CSIR & NDoH, 

2014). The MIMIC-III database stores the same clinical observation data as the 

observation dataset on the NHanes database. However, the data in these databases 

was collected on different setups, MIMIC-III contains data from the hospital, while 

NHANES contains data from a mobile centre. These databases store this information 

differently in terms of data values, data types, and attribute names. It should be noted 

that this study only covers the variety aspect of big data, whereby the researcher looks 

at two disparate databases. In addition, MIMIC-III also contains unstructured clinical 

data, and the researcher intends to standardize this data in order to make it easier to 

query or retrieve, to make it comparable and to make it ready for exchange purposes. 

The data from MIMIC-III is sourced from two separate information systems namely 

Philips CareVue Clinical Information System and IMDSoft MetaVision ICU (Johnson et 

al., 2016). Other details about these systems are covered in the following sections, and 

throughout this study, these systems will be referred to as CareVue and MetaVision.  

 

3.5.1 DATA SOURCES 

- MIMIC-III Databases 

This database contains patients’ data and not only limited to that, but it also includes 

laboratory tests, medications, ICD9 diagnoses, admitting notes, discharge summaries 

and pharmacotheraphy, demographics, and a medical history dictionary. This database 

consists of data collected from the following technologies: Electronic Medical Record 

(EMR), free text format, medical record, medical coding process document and 

electronic bill system. This data is not open-source data, however it is accessible to 

researchers under a data usage agreement (Johnson et al., 2016) and MIMIC-III 

database is accessible on the http://mimic.physionet.org website.  

- NHANES 

NHANES in full is known as the National Health and Nutrition Examination Survey. This 

project is meant to assess the health and nutritional status of adults and children in the United 

States. The survey has been defined to be unique, because it conducts interviews and also 

http://mimic.physionet.org/
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collects data about the patients’ physical examination. In addition, the NHANES program is 

publicly accessible, however there is also restricted data that may be accessed upon request. 

The laboratory tests for NHANES take place at a mobile examination centre (MEC), and the 

interviews conducted include demographic, dietary, socioeconomic, and health-related 

questions (Patel et al., 2016). 

 

3.5.2 DATA EXPLANATION 

MIMIC-III structured data tables 

There were five database tables that were recognized for the structured data and the list 

is as follows: 

- LABEVENTS 

This table records laboratory information for all inpatients and outpatients, there are 

27 million records in this table. The table uses eight attributes for recording the data 

namely subject_id, hadm_id, itemid, charttime, value, valuenum, valueuom and flag. 

The subject_id is an identifier for the patient and hadm_id is an identifier for patient’s 

stay in hospital and records without a value for this field are meant to represent an 

outpatient. Then itemid is a foreign key from the D_LABITEMS, which is a code-list 

for all the observation names contained in the LABEVENTS table. The charttime is 

the time when the observation was charted, and it is the closest time to when the 

test was actually taken; then the value is the recorded value for the test and 

valuenum stores the same value as recorded value attribute provided it is a numeric 

value. The valueuom attribute is the unit of measure for the test, and then the flag 

records whether or not the test value is abnormal or not. 

 

- PATIENTS 

This table contains 46 520 records for patients whose data is sourced from the 

MetaVision and CareVue Health Information Systems (HIS). There are seven 

attributes used to store the data, subject_id is the unique identifier for the patient as 

mentioned above, there is a gender attribute, and dob which is used for recording 

the patient’s date of birth. Patients whose age is older than 89 have had their date of 
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birth shifted, with the aim of obscuring their age and hence complying with the 

HIPPA (Health Insurance Portability and Accountability Act) regulations. Then dod is 

the date of death for the given patient while dod_hosp is the date of death as 

recorded in the hospital database, and then dod_ssn is the date of death from the 

social security database, which is not part of the MIMIC-III database. 

- CHARTEVENTS 

This table is also sourced from the MetaVision and CareVue HIS, there are 330 

million records in ChartEvents table. It mainly contains patient’s stay while in the 

ICU. The table stores information such as vital signs, ventilation settings, mental 

status, laboratory values, and patients’ additional information. Some of the table’s 

attributes are similar to ones mentioned before, subject_id, hadm_id, charttime, 

value, valuenum, valueuom. Attribute icustay_id is a unique identity per patient stay 

at the ICU, item_id is sourced from a different code-list table D_ITEMS, then the 

storetime attribute stores the time when the record was manually validated by the 

member of the clinical staff. The dgid stores the unique identifier of the caregiver, 

then warning and error are MetaVision specific fields, which record whether a 

warning for a value was raised, and if an error occurred during a measurement. The 

CareVue HIS uses result_status to determine whether the type of measurement was 

automatic or manual, and the stopped attribute specifies whether the test was 

stopped or not. 

- D_LABITEMS 

This is code-list table and sometimes it is referred to as a definition table, 

D_LABITEMS contains 753 unique records about the definition of laboratory tests, 

data from this table is linked to D_LABEVENTS through the itemid attribute. The 

data contained in this table includes data from hospital wards and clinics outside the 

hospital. There are 585 records that have been standardized and mapped to LOINC 

and 168 have not been mapped, out the 585 that have been mapped there were 565 

active LOINC codes. This table uses: itemid as a unique identifier; the label attribute 

represents the observation name; fluid attribute stores information about the sample; 

and the category attribute gives information about the type of measurement being 

done.  
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- D_ITEMS 

This is also a definition table with 12 487 records, the table’s data is sourced from 

the CareVue and MetaVision HISs. It contains itemid which is different from the one 

in the D_ LABITEMS table however it is used for the same purpose, the label 

attribute is the same as one described on D_LABITEMS. There is also an 

abbreviation attribute, and the dbsource attribute which specifies the data source 

database name, this is either the hospital, or CareVue or the MetaVision HIS. Then 

the category attribute from D_ITEMS is used for storing the type of test, and the 

unitname stores the unit of measure values.      

 

The above listed tables are the main tables used in this study for working with 

structured data, also the LAB_EVENTS table contains LOINC-standardized data which 

will be used as the target dataset or the table that defines the gold standard. The 

mapping for this table was done by a fourth-year medical student and an informatics 

fellow using the RELMA mapping tool. Then an expert reviewer assessed the mappings 

made by the student and the informatics fellow (Abhyankar et al., 2012). There are 

cases where the LAB_EVENTS table would not be sufficient as the target dataset table. 

In an instance when the data to be mapped to is not available on that table, the 

researcher would therefore use the LOINC database table. (Mcdonald et al., 2017) give 

more information about the structure of the LOINC database table.  

 

The information contained in the mentioned tables was regarded relevant to this study 

because: it contained information that has been captured from different health systems; 

the data contained duplicates information, missing values, outliers and more; 

MetaVision and CareVue HIS do not record the same information based on the same 

itemid, meaning that one could get a heart rate using itemid of 212 for CareVue, 

whereas the same test uses a different itemid on the MetaVision system; and the 

CareVue system has been reported to be the source of duplicates, because some of the 

data entry allows for free text. Therefore, the fact that this data is not organised in the 

same order makes it a good candidate for the objective of this study.  
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MIMIC-III unstructured data table 

For the unstructured data the researcher used the NOTEEVENTS table, this table’s 

data is sourced from the hospital database which is different from the CareVue and 

MetaVision HIS and in total this table contains 2 million records. These records consist 

of medical reports, ECG reports, social work reports, discharge summaries, respiratory 

reports, nutritional reports and more unstructured text data. The NOTE_EVENTS table 

has 8 database attributes namely subject_id, hadm_id, chartdate, category, description, 

cgid, iserror, and text. The rest of these attributes store the same type of values as 

indicated above, however category and description define the type of note recorded, for 

instance a category could be “nutritional” and the description could be the “summary”. 

Then the iserror attribute is used to indicate that the physician has identified an error on 

the clinical note, while the text attribute contains the actual patient’s note in a textual 

format compiled by a nurse or a clinician. According to (Pustejovsky & Stubbs, 2013) 

the data contained in the text fields is referred to as corpora, and once a single note 

from this set is annotated then the annotated one is then referred to as the corpus, 

therefore in this study this type of data will be referred to as such. The researcher had 

sampled 195 unique records based on the subject_id, these records were filtered by the 

“discharge summary” category and by whether they contained behavioural data such as 

the patient’s smoking status. Additional filters were applied to exclude: deceased 

patients, patients younger than 18 years of age, and to exclude records with a true flag 

for the iserror attribute. The researcher ensured that the retrieved results for all the 

queries are unique based on every sample that was selected, the uniqueness of a 

record was based on the subject_id which is unique per patient on the MIMIC-III 

database. 

 

NHANES dataset 

The researcher has collected the 2011-2012 NHANES publicly accessible health data. 

This data consisted of 9338 examined participants, however the data that is of interest 

to this study is the laboratory and physical examination data. The NHANES data uses 

data that is stored in multiple datasets, for instance, data about the participants’ age and 

gender is stored on the demographic dataset which is separate from the laboratory 
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dataset and the physical examination dataset. There were 860 unique observation 

names that have been identified for the purpose of this study. The data was arranged 

based on the test names, for example the cholesterol HDL observation had 7821 

records, and each record represents the number of participants for that test. 

Environmental data such as the presence of lead in the blood is included in the lab data. 

Capturing environmental data is part of the effort to store patient’s living conditions. 

When it comes to the physical examination data, the researcher only covered blood 

pressure and body measures surveys with results. The blood pressure data file had 27 

variables, however, variables that captured comments were excluded from the rest of 

the data. The dataset consisted of the heart rate, radial pulse, and blood pressure 

measurements. The NHANES data is in line with this study, because it captures more 

details about an observation, wherein with this type of data, the researcher will be able 

to apply a supervised classification algorithm in order to learn how to standardize 

laboratory observations using a coding standard.  

 

3.6 DATA PREPARATION 

One of the underlying steps that should be carried out before feature selection 

commences is data pre-processing, where data from the identified datasets is cleaned 

of errors, duplicates are removed, and outliers are identified. As a matter of fact, (Doan, 

Halevy, Ives, et al., 2012) have suggested that it is useful to perform feature 

standardization before applying similarity measures between the source and the target 

dataset values. Therefore, the researcher centralized the data to be pre-processing by 

firstly loading it from the flat file format into a Postgre SQL 9.3 database. More 

information about how to load the MIMIC-III database can be found on the following web 

address http://mimic.physionet.org. 

 

3.6.1 DATA PRE-PROCESSING FOR STRUCTURED DATA 

Since MIMIC-III database is a relational database, data is stored in different related 

tables, however in order to create value from the identified tables one needed to join the 

data through SQL join statements. The D_ITEMS table was joined with the 

http://mimic.physionet.org/
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CHARTEVENTS using the item_id, and also the PATIENT table was joined to the 

CHARTEVENTS table through the subject_id and this join was treated as the source 

dataset. The resulting dataset contained more than 300 million records, the researcher 

randomly took 50 000 records and also applied filters so that only CareVue and 

MetaVision data was retrieved, also filtered patients whose age was less than 18 and 

those that were diseased. These filters were done specifically for MIMIC-III, however 

some were also applicable to the NHANES database. For MIMIC-III the researcher 

filtered out data that contained different categories other than: respiratory, routine vital 

signs, hemodynamics, laboratory data, cardiovascular (pacer data), and the general 

category. From MetaVision, there were 27402 records, where the same setup was 

applied on the CareVue HIS, but without filtering categories because only 7% of the 

CareVue data had a category value specified. There were also laboratory observations 

such as AST which needed to be expanded in order to make sense of the acronym.   

Abbreviation expansion 

Abbreviation expansion is a technique used for identifying corresponding and relevant 

long forms of an abbreviation. In this context, abbreviations also cover acronyms, and 

therefore for the duration of this study, the researcher will use abbreviations to 

represent both terms. The abbreviation’s long form can be illustrated as follows: “DOD” 

is an abbreviation of “Date of death” which is its long form. In addition, (Moffat et al., 

2008) have noted that abbreviations often cover multiple long forms, which makes it 

difficult to identify the relevant long form, e.g. the short form “DOD”, which could be 

expanded to “Department of Defence”, or “dead of disease”, or “date of discharge”. The 

representation of abbreviations is sometimes confusing and unclear, and therefore, (Hill 

et al., 2008) have devised a method of handling abbreviations using regular expressions 

for various patterns (see Table 3.5).  

 

Table 3. 5 Mechanisms for mining abbreviation expansions 
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Pattern Regular expression Short form Long form 

Acronym                              ICU Intensive Care Unit 

Prefix           Lab Laboratory 

Dropped 

letter 

                           Dept Department  

Combined 

word 

                               Rcpt Receptor 

 

Other standardization procedures 

The dataset that the researcher is using contains data that is arranged based on 

international localization and globalization standards, and therefore, some of the data 

needs to be standardized to a South African localization and globalization standard. The 

following labels have been identified for localization. 

- Dates: US format is mm/dd/yyyy, and the South African format is yyyy/mm/dd. 

- Temperature values: the standard temperature unit in South Africa is Celsius (C) 

therefore any unit that is in Fahrenheit will be converted to Celsius. 

- Units of measurement: pounds are converted to kilograms. 

All the dataset attributes were converted into lower cases for both the source and the 

target attributes. Observation test names that start with any alphanumeric characters 

were normalized by removing the pretext, for instance, tests such as “% hemoglobin 

a1c”, the leading “%” sign was removed. However based on the guide stipulated by 

(Regenstrief Institute, 2016), the pretext “%” provided more information about the unit of 

measure for the test. This showed that other health organizations store laboratory 

observation names with the unit of measure in one field. This was similar to the 

NHANES observation names, for instance, an observation name would be structured in 

this format (albumin, ser), which provided an indication that the same field is also used 

to store the observation name (albumin) and the sample (serum). 
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It was noted that this would cause data reading issues, because the researcher would 

pre-process the data and store it on a csv file format, and because of the comma an 

extra column would be added, causing the record to lose its structure. Therefore, all the 

observation names were pre-processed so that commas are replaced by underscores. 

 

It was also mentioned previously that the NHANES used multiple separate files to store 

data, therefore the researcher created joins that joined the demographic dataset with 

both laboratory dataset and physical examination dataset. 

3.6.2 DATA PRE-PROCESSING FOR UNSTRUCTURED DATA 

The unstructured data from the NOTEEVENTS table is purely textual data, and the 

structure of the data is for human-readability purposes only because it is not organized 

in a computer-readable format such as XML or JSON. However, indentation, spacing 

and letter capitalization was used to format the contents of these files in order to 

indicate section headers. Part of the contents contained in the files is categorized by 

allergies, major procedure, history of present illness, and past medical history just to 

mention a few. From the Postgre database, the researcher ran an SQL query to filter 

the results from the NOTEEVENTS table, there were 288 unique records that were 

sampled based on the subject_id, these records were filtered by the “discharge 

summary” category. The researcher further filtered the records by selecting only records 

that contained living patients, patients older than 18 years of age, and records with a 

false flag for the iserror attribute. Then each of the selected records was saved into a 

separate text file renamed by the subject_id. It is worth mentioning that the files were 

initially uploaded to Postgre database table for easier searching capabilities, otherwise 

the researcher would have to manually search file-by-file in order to find the relevant 

content. Once the files were saved, then 80% of the files were loaded into the CLAMP 

training corpus folder, this folder already had 388 pre-annotated clinical notes as per 

(Soysal et al., 2017). The remaining 20% from the selected files were loaded into the 

test corpus. Thereafter the text was transformed into lower cases, it was tokenized, and 

stemming was also applied. According to (Manning et al., 2009) the input below is 

referred to as the document in NLP, so therefore it will be  referred to as such 
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throughout this study. Below are the examples of input text where lower-casing, 

tokenization and stemming were applied: 

Input: The patient denies smoking. 

Function: transform cases 

Output: the patient denies smoking 

The transform cases function converts upper case into lower cases if it is 

specified as such, this ensures that document similarity function compares 

documents that are based on the same case style. 

Function: tokenization 

Output:  

the Patient Denies Smoking 

 

The tokenization function breaks the document down into tokens, (Manning et al., 

2009) defines a token as an instance of a sequence of characters from a 

document that are useful for understanding the building blocks of the document 

for further processing. One can choose a breaking point for documents, where a 

regular expression can be used so that words are broken based on the rules 

defined, whereas a common method breaks the document based on spaces 

found between words on a document. 

Function: Stemming and lemmatization 

Output:  

Patient banana supplier Deni Smoke 

 

Stemming is used for removing multiple derivations of words, e.g. smoke has 

multiple grammatical forms such as smoked, smoking, smokes and others. 

Therefore, stemming reduces the word to its base form. Lemmatization performs 

the same function as stemming, however lemmatization reduces the word into its 
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canonical form (Biba & Xhafa, 2011), unlike stemming which reduces to an 

extent where it removes meaning. An example of this is the stemming of the 

word saw, stemming would produce s as an output while lemmatization would 

produce a lemma such as see or saw based on grammatical meaning on a 

document. 

These are few of the well-known Natural Language Processing (NLP) pre-processing 

techniques. The CLAMP software comes with dictionaries for identifying temporal 

features (such as dates) through the temporal recognizer, and negation keywords (such 

as “not”) in the following statement “patient does not drink”, an assertion classifier was 

used for negation detection in clinical statements. However, the dictionaries were limited 

in word coverage, therefore the researcher modified the dictionaries and added more 

words for both temporal and negation detection functions.   

3.7 NOTATION USED 

This is the common notation and this section is only meant to be a guideline for 

understanding symbolism that is used throughout this study. 

 

    : Input ith variable or feature 

    : Target or output ith variable 

   : Training example 

 : Number of training examples 

 : Number of training features 

  
           : ith training example 

    : ith Hypothesis function (Maps input feature to output feature) 

 : Parameter of the model 

 : Length of projection between vectors 

 : Regularisation constant    

: Conjunctions (Logical AND) 

: Disjunctions (logical OR) 

 : Similarity value 

     : Transposed term or parameter 
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    : Ith landmark  

   : Gaussian Kernel parameter 

 

3.8 CLASSIFIERS AND PROBABILISTIC GRAPHICAL MODELS USED 

There are two types of classifiers that will be employed to model structured data in this 

study; a rule-based (such as Decision Trees) and a kernel-based classifier (such as 

SVM or Logistic Regression). However, for the task of modelling unstructured data for 

semantic and standardization purposes a different method is used which is probabilistic 

graphical modelling. Therefore, in this section the researcher gives details about these 

methods.   

Logistic Regression 

Logistic Regression is a classification algorithm that is used for classifying data into 

discrete classes, this is different from linear regression which attempts to fit a straight 

line to the training data. With Logistic Regression one could perform a binary 

classification which outputs a binary output ( ) and          , or in cases of a multiclass 

classification it outputs                classes (Ng, 2000; Ng & Jordan, 2002). An 

example of problems that have been solved using a Logistic Regression classifier are 

as follows: an email spam classification where the input are words on an email 

message, and the classifier has to predict whether the email is spam or not spam; a 

loan application problem whereby the classifier receive as input details about the 

applicant’s spending behaviour, and the classifier predicts a binary value of whether to 

give or not to give a loan; another example is the prediction of whether a tumour is 

benign or malignant, this is classified from an input of an electronic radiograph image. 

The Logistic Regression classifier uses sigmoid function as shown in Figure 3.4, and its 

hypothesis function is shown in Equation (8). 

 

      
 

       
                    ( 8)       
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Figure 3. 4: Sigmoid function or logistic function 

The sigmoid function is also known as the logistic function and it asymptotes at value 

“0” and value “1”, when the value of   approaches negative infinity it can be observed 

that the sigmoid function      is less than “0.5”, when the value of   approaches 

positive infinity, then the sigmoid function      becomes greater than “0.5” Figure 3.4. 

With this said, Logistic Regression predicts     when the hypothesis function is 

         , and     when it is            (Ng, 2000). Therefore, when the hypothesis 

outputs a value of “0.8”, it is interpreted as that there is an 80% probability that the 

evaluated condition is true. However, one of the most important steps is the calculation 

of the cost function  , the cost function   measures how close the predicted hypothesis 

      is from the corresponding given output   value as shown in Equation (9).  
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Now the cost function should be minimized in order to get an accurate output, and it is 

minimized by applying a batch gradient descent whereby the parameter   is 

simultaneously updated so as to get an optimized parameter value. Logistic Regression 

is also known as a discriminative classifier, and (Ng & Jordan, 2002) have found that 

these types of classifiers outperform the generative ones such as Naïve Bayes. Another 

discriminative classifier is Support Vector Machines (SVMs) which is covered in the 

following sub-section.  

 

Support Vector Machines 

SVM is a classifier that attempts to find an optimal hyperplane to separate positive 

training examples from the negative ones. This classifier is built on the principle of 

Structural Risk Minimisation (SRM), where positive and negative training examples are 

separated by a hyperplane and SRM helps maximise the margin between the 

hyperplane and the training examples (Nasien et al., 2010). SRM is comparative to 

Artificial Neural Network’s (ANN) empirical risk minimisation principle, and in addition to 

that (Olson & Delen, 2008) have reported in favour of SVM as: it is less prone to 

overfitting; it always finds the global minimum; and the complexity of the SVM’s model is 

not controlled by keeping the size of the features small as with ANN. However, SVM 

minimization function is similar to that of Logistic Regression, which is a classifier that 

outputs a probability, in contrast SVM outputs a prediction of either “1” or “0”.  

 

The SVM separating planes can be seen from the equations given below, Equation (10) 

is the central hyperplane, and in Figure 3.5 it is represented by the solid blue line. 

Equation (11) represents the margin from the central hyperplane to the positive plane 

(dotted), in other words the value of “1” in Equation (11) represents a threshold that 

should be met for the classification of positive training examples. For illustration 

purposes, positive examples can be viewed as the orange dots in Figure 3.5, while 

negative examples are represented by the black squares, and in terms of the equations 

this is shown by Equation (12) which are training examples with negative classes.  
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                    ( 10) 

                 ( 11) 

                 ( 12) 

 

The value of   in these equations is the input feature, whereas the value of   is the 

distance from the central hyperplane to the support vectors which are training examples 

that lie closer to the hyperplane, and in Figure 3.5 they are shown in a yellow colour. 

Then   is the bias which controls the displacement of the hyperplane from the origin 

point. 

 

   

Figure 3. 5: SVM decision boundaries (Source: (Nasien et al., 2010)) 

 

One can observe from Figure 3.5 that the training data is linearly separable, however 

there are other instances where the training set is not linearly separable (see first graph 

from Figure 3.6). In such cases, kernels are used to transform the input space into 

feature space as shown in Figure 3.6, this arranges the training examples in a manner 

that is easily understandable by the classifier (Harrington, 2012). According to (Kumar, 

2015), kernels are suitable for classification tasks when the number of training 
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examples are in the range (           ) and when the number of features are 

(1       ). 

 

 

Figure 3. 6: Mapping input space to feature space (Source:(Hofmann, 2006)) 

By definition kernels are known as similarity measures, they provide a functionality for 

calculating the similarity between a high dimensional input feature      and the new 

input represented as   feature. The phi ( ) function is useful for mapping the original 

data attribute to a high dimension feature. Below are the two of the kernel similarity 

measures that can be implemented with nonlinear SVM, Equation (13) represents a 

polynomial kernel which allows for features to be constructed in a joint format up to the 

order of polynomial (such as quadratic, or cubic order). Then Equation (14) is a radial 

basis function (RBF) kernel is also known as Gaussian kernel, it is one of the well-

known kernel functions and it maps the data into an infinite dimensional space (Manning 

et al., 2009). 

 

             
      

 
                                                                    ( 13) 

                       
 
                                                               ( 14) 
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One of the differences between polynomial kernel and RBF kernel is that polynomial 

has more hyperparameters as compared to RBF, with RBF there are two important 

parameters, gamma ( ) and the penalty or cost parameter    More details about these 

parameters and how they are optimized is covered in section 4.5. 

 

Decision Trees 

The Decision Trees are one of the most well-known data mining techniques, they can 

be used for data regression or data classification or even both through Classification 

and Regression Tress (CART). CART is one of the algorithms used for implementing 

Decision Trees, there are other algorithms such as ID3, C4.5, CHAID and more which 

are built for decision tree implementations. (Mitchell, 1997) who is an expert in Machine 

Learning have defined decision tree learning as one of the practical methods for 

inductive inference, in support of that statement (Gorunescu, 2011) said a decision tree 

is built through an inductive process called “tree induction”. Decision Trees offer more 

benefits because they are easy to implement, they help define rules that are governing 

the dominant attributes in a dataset, and they can be easily visualized. They are also 

easy to convert into a set of rules, the tree can be generated from the training set, and 

each tree node represents a condition that tests a rule. The leaf nodes are a possible 

outcome of the rule, whether the condition is true or false (Christen, 2012; Doan, 

Halevy, & Ives, 2012). 

Rules are expressed as the testing of a condition, which yields a certain conclusion, 

following the expression as show below: 

IF condition THEN conclusion 

From Figure 3.7 it can be seen that the dataset consists of three variables, two input 

variables and one output variable, the “Age” represents continuous values, “Car type” is 

categorical value and ”Accident risk” is a binary value. 
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Figure 3. 7: Risk prediction based on the type of car and the driver’s age (Source: 
(Gorunescu, 2011)) 

 

The tree in Figure 3.7 has conditions that checks if the “Age < 32”, if this is true then the 

risk is high, whereas if “Age ≥ 32” and “Car Type = Other” then the risk is considered 

low. One can observe that “Age” is at the root of the tree, which means that it is the 

splitting attribute, as mentioned above that Decision Trees help identify the dominant 

attributes. There are various methods that can be used for achieving the splitting 

criterion, (Gorunescu, 2011) lists some of the few methods: 

- GINI INDEX: It is an impurity measure often used with the CART algorithm, and it 

measures the frequency of a randomly selected attribute from the training set 

that could be incorrectly labelled if it was randomly labelled according to the 

distribution of labels in the dataset.   

- Information Gain: It uses the concept of an entropy for deciding on which feature 

to split at during each step of building the tree, it is mainly implemented by ID3, 

C4.5 and C5.0. 

- Chi-square measure: It is a statistical hypothesis test that is commonly used in 

inferential statistics, this method tests for the goodness of fit on an observed 

distribution, and it is also commonly used with CHAID trees. 
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Up to so far the machine learning algorithms that were described are used for the 

classification of structured data, and these algorithms fall short in extracting relational 

clinical concepts and identifying related sequences in the clinical text. A study by (Li, 

Kipper-Schuler, & Savova, 2008) has found that Conditional Random Fields (CRFs) 

outperform SVM for named-entity recognition tasks. This type of classifier is specifically 

designed for identifying sequences in various forms of data, hence this classifier is 

called a sequence classifier. 

 

Conditional Random Fields 

Conditional Random Fields (CRFs) is a task-specific type of a probabilistic graphical 

modelling framework, it is used for classifying sequential data through segmentation 

and annotation. CRFs trains a model discriminatively, a discriminative model learns to 

make a conditional prediction of a class (or hidden state) from the given features (or 

observable states) and it is represented as follows:       . Other than that, there are 

generative models which learn the features (or observable states) that would result in 

predictions that favour the given class (or hidden state). Examples of classifiers that 

apply generative models are Naïve Bayes and Hidden Markov Models (HMMs) (Sutton 

& Mccallum, 2011). (Ng & Jordan, 2002) have found that generative-based classifiers 

are easier to implement and give a good performance on a small training set, however 

on a larger training set, the discriminative models are preferred because they provide a 

better performance. It is also worth mentioning that CRFs are an extension of a 

generative HMM and the discriminative Maximum Entropy Markov Models (MEMMs), 

because CRFs are a type of a graphical model, which also has observable states  , 

hidden states   and state transitions (that is edges between the hidden states) as 

shown in Figure 3.8. 
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Figure 3. 8: Hidden Markov Model graph for estimating the atmospheric pressure 
(Source: (Koller & Friedman, 2009)) 

 

The first model of Figure 3.8 represents HMM, HMM is a probabilistic finite state 

machine that consists of observable and hidden states, state transitions, observation 

symbol and initial state. HMMs have been used previously for a speech recognition task 

and in natural language processing tasks such as part-of-speech tagging, Named-Entity 

recognition (NER), and chunking (Christen, 2012; Marszalek, 2009; Ponomareva, 

Rosso, Pla, & Molina, 2007). However, HMMs employ a direct graphical model which 

means that they are tied to a linear sequence structure, and as thus (Xing, 2007) has 

reported that HMMs have a dependency weakness. They fail to capture related items 

from the given input. To illustrate this point, Table 3.5 gives an example of a given 

clinical note as input, and tokens extracted from the input and the part-of-speech (POS) 

tokens, the purpose here is to extract entities and relationships between these entities. 

  

Table 3. 6 Example about relation extraction to showcase the shortcomings of 
HMM 

Input Laboratory data revealed Hematocrit of value 32.4. 

Tokens Laboratory Data Revealed Hematocrit of value 32.4 . 

POS NN NNS VBD NN IN NN CD . 

 

Since HMMs only capture dependencies between a specific hidden state and its 

observed state, therefore it would fail to see: 

- That “Hematocrit” and Laboratory are capitalized 
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- The end of the sentence where there is a punctuation mark “.” 

- That “32.4” is the decimal value, and that it is a value of “Hematocrit” 

These are few of HMMs limitations, however, all the limitations of HMMs are addressed 

by MEMM, hence MEMMs provides the freedom of choosing features for representing 

the observable states. MEMMs is modelled discriminatively unlike HMMs, and it uses a 

conditional probability to predict the state sequence from the observable state 

sequences (Siddiqi, Alam, Hong, Khan, & Choo, 2016). In addition, MEMM share the 

same applications with HMM, also (Siddiqi, Alam, Hong, Khan, & Choo, 2016) have 

further applied it in human facial expression detection. Although MEMM is better than 

HMM, MEMMs also suffer from a label-bias problem, and (Sutton & Mccallum, 2011) 

have described it as the inability for future observable state to provide information about 

the currently observable state, and (Koller & Friedman, 2009) have described it as the 

failure of the model to go back and change its predictions about the first few observable 

states. Therefore, CRF has capabilities that address the label-bias problem experienced 

by MEMM, although CRFs were defined in the beginning of this sub-section, the 

researcher will further add more details about this framework. CRFs are modelled as 

undirected graphs and are used in applications similar to those mentioned for HMM and 

MEMM. In this study, the researcher has aimed to use CRF for extracting clinical 

entities such as: the smoking status and the negation status. The CRF framework 

makes the aim possible to achieve because it employs the “BIO notation” whereby the 

“B” indicates the beginning of the named-entity phrase, “I” indicates the inside or the 

end of the named-entity phrase and “O” is other, which indicates that the word is not 

part of the named-entities (Koller & Friedman, 2009), see Figure 3.9 for use of the “BIO 

notation”. 
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Figure 3. 9: A linear chain CRF model showing observable states shown as Grey 
nodes, and hidden states shown as clear nodes  (Source: (Koller & Friedman, 
2009)) 

 

3.9 TOOLS AND DATABASES 

Model creation for structured data 

The researcher has used a free version of RapidMiner studio for creating the models, 

and for visualisation of the training data (see Appendix B).  RapidMiner is a software 

platform for data science teams that unites data through data preparatory processes, 

which allows for the application of machine learning, and the predictive model 

deployment. The researcher used version 7.6.001 of the software. However, prior to 

model creation, similarity weights were calculated using Jaro-Winkler, Edit distance, and 

functions from MATLAB. 

Unstructured data annotation methods 

Unstructured data is said to be difficult to search, summarize, and to apply in decision 

support systems. This difficulty is fuelled by the data having been captured on a free-

text basis, and this data is prone to spelling mistakes where in health care this data is 

captured by multiple health personnel which increases the number of mistakes. 

Therefore, the researcher has assessed the usefulness of the UIMA component for the 
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purpose of this study. UIMA in full is called Unstructured Information Management 

Architecture, it is an open source framework that was originally developed by IBM for 

processing text, sound and video. For text, UIMA uses analysis engines in order to 

annotate documents. The user or implementer defines these engines through a type 

system by using a structure for a possible markup, and this markup in turn helps to 

achieve interoperability (Wu et al., 2013). UIMA is scalable and extensible, and could be 

used for processing any type of document, IBM has used it to showcase this 

framework’s ability to understand complex natural language questions on the Jeopardy 

competition, and giving correct answers from the Wikipedia corpus (Pablo, 2014). 

However, in the case of this study, the researcher wants to use this framework for 

processing unstructured clinical data.  

 

Two systems which use UIMA as an underlying framework are cTakes and CLAMP. 

cTakes is also known as clinical Text Analysis and Knowledge Extraction System, while 

CLAMP is Clinical Language Annotation, Modelling and Processing. The cTakes system 

has been defined as an open source system that helps discover codable entities, 

events, properties and relations. Figure 3.10 gives an overview of the features that are 

found in cTakes, observe the type the input that cTakes receives below. 

 Input: Fx of obesity but no fx of coronary artery diseases 
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Figure 3. 10: cTakes processing of a clinical text document (Source: Savova et al. 
(2010)) 

 

The input shown above is an excerpt of a large clinical note file, so one of the functions 

in cTakes is the sentence boundary detector. This function detects the beginning and 

the end of a sentence, then the tokenizer has two sub-functions, firstly it breaks the 

sentences into tokens that can be analysed further, then it merges tokens in order to 

create date, fraction, measurement, person title, range, roman numerals, and time-

based tokens. The normalizer also produces tokens, but now based on punctuation, 

spelling variants, stop words, and symbols just to mention a few. Part of speech (POS) 

functionality detects the type of grammar used on the text data, it assigns tags of tokens 

such as “patient” to a noun tag, then the shallow parser or chunker is used for tagging 

noun phrases, verb phrases and more. The Named Entity Recognition (NER) extracts 

entities from the given text through rule-based techniques and machine learning, this is 

one of the most important functions because it is a building block for understanding the 

semantics of a language (Savova et al., 2010).  

 

There are also other useful functions that one can use within cTakes. Apart from the 

initial functions, (Garla et al., 2011) have extended the functionality of cTakes by 

introducing YTEX which is also an open source component built on top of cTakes and 

UIMA. The component was aimed at improving and simplifying feature extraction and 

applying the latest Negex algorithm for detecting negation (which determines if a 

medical condition exists or not) in a clinical note said (Mehrabi et al., 2015). YTEX also 

stores annotations to a relational database using DBConsumer analysis engine. In 

addition, the functionality of cTakes is similar to that of CLAMP, however CLAMP has a 

distinct functionality to disambiguate and reorganise abbreviations in clinical text. 

CLAMP provides a graphic user interface (GUI) which simplifies the process of 

annotating clinical text, and the output from annotating is a UMLS Concept Unique 

Identifier (CUI) code that can be used to map to a coding standard such as LOINC, 

RXNorm or SNOMED-CT. 
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Medical tools and databases 

The UMLS database was used for searching for acceptable medical terms so that they 

can be used to replace the ones that are abbreviated, and those that are incorrectly 

written from the MIMIC-III and NHanes databases. Additionally, the UMLS database is 

used for integrating and distributing key terminologies, find related medical terms, 

classifications and coding standards in order to promote the creation of more effective 

and interoperable biomedical information systems and services. UMLS is a non-fee 

service, although its users are required to fill in an annual report on how they use the 

service (Hassanpour & Langlotz, 2016). The researcher will thus use these tools and 

data in order to load, clean the dataset and make it compatible to acceptable medical 

terms. 

3.10 ETHICAL CLEARANCE 

The researcher has applied for ethical clearance before conducting this study, and the 

application was approved with a (040/MN/2017/CSET_SOC) reference number (see 

Appendix A-1). In preparation for the use of the MIMIC-III database the researcher had 

to complete a prerequisite course called data and or specimen research, after which a 

certificate from the CITI programme (http://www.citiprogram.org) was obtained under 

the affiliation Massachusetts Institute of Technology Affiliates (ID: 1912), the certificate 

is attached in Appendix A-2. 

3.11 CONCLUSION 

This chapter introduced the methodology that was followed in conducting this study. 

Firstly, a theoretical perspective was given in section 3.2 where the idea about SVM 

was introduced and how the SVM classifier works. The researcher then showed how 

the research questions were generated based on the objective of the study in section 

3.3. 

 

In section 3.4, the researcher spoke about the relationship between CRISP-DM and 

DSRM, and section 3.5 covered data understanding. Section 3.6 listed methods for data 

preparation, where the researcher dealt with abbreviations and compound nouns used 

http://www.citiprogram.org/
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in defining data objects. Section 3.7 listed the notations used in this study, 3.8 covered 

data classification methods. Section 3.9 covered clinical tools and medical thesaurus to 

be used in this study. Then lastly, section 3.10 presented information on ethical 

clearance required for the use of clinical data. 
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CHAPTER 4: 

Data Modelling 

 

4. MODELLING 

4.1 INTRODUCTION 

In this chapter, the researcher aims to address the practical aspects of model design, 

where supervised classification methods are used for data modelling. The previous 

chapter focused more on the theoretical understanding of statistical learning theory, and 

how can it be applied to address the researcher’s proposed solution to the research 

problem. The researcher starts this chapter by feature engineering from the collected 

raw datasets in section 4.2, whereas section 4.3 addresses feature selection methods 

for structured data. Thereafter in section 4.4 the researcher shows how features are 

selected for unstructured data. In section 4.5 model selection is covered, and thereafter 

in section 4.6 the researcher addresses environmental setup for experiments, and how 

the performance of the model will be measured. Figure 4.1 has highlighted what will be 

covered on this chapter based on the CRISP-DM model. 
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Figure 4. 1: CRISP-DM framework for model selection (Source: (Olson & Delen, 
2008)) 

 

4.2 FEATURE ENGINEERING AND SELECTION 

 

# Research sub-question 

Iii How were features selected for structured data? 

 

Structured and semi-structured data 

Features were extracted and selected from dataset attributes. A clear view of the 

observation attributes are shown in Table 4.1, which gives an overview about how 

source dataset is structured. Not all datasets are structured in this format, even though 

Table 4.1 represents real database objects. At this moment, it is only used for 

illustration purposes. From these source attributes, the researcher manually selects 

features that would have a high impact when comparing attributes with those on the 

target dataset.  
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Now, when developing a model, it is common to use few and significant features for 

predicting a phenomenon (Holzinger, 2016). Also in this study, the researcher first 

selects a few features and then tests their influence on the predictions. The selected 

features include the “observation name”, “category” and “uom” for both the source and 

the target database. 

 

Table 4. 1 MIMIC-III Source Observation Dataset 

Observation name Category UoM Charttime Value Flag 

Respiratory Rate Alarms BPM 2106-03-02 
03:00:00.000 

32  

Arterial Blood Pressure 
diastolic 

Routine Vital 
Signs 

mmHg  200  

Arterial Blood Pressure 
mean 

Routine Vital 
Signs 

mmHg    

Alkaline Phosphate Labs IU/L 2175-07-24 
08:00:00.000 

106  

SpO2  %    

ALT Labs IU/L    

Anion Gap Chemistry mEq/L 2104-08-08 
04:15:00.000 

28 abnormal 

Fingerstick Glucose Chemistry     

Gentamicin (Trough) Labs     

Glucose Chemistry mg/dL 2134-10-01 
14:50:00.000 

21 NormaL 

AST Labs IU/L    

 

The “observation name” and “uom” were expanded in order to gather meaningful 

comparisons, for instance “BP” was expanded to “blood pressure”, and “mmHg” to 

“millimetres of mercury” unit of measure. Thereafter, the researcher applied a blocking 

strategy using the “observation name” and the “uom” as the blocking keys in order to 

minimise the number of comparisons between the source data and the target data. 

Blocking was part of data normalization, and details about it were covered in section 

3.5. The researcher used the soundex algorithm for blocking purposes, where soundex 

uses the sound of words to generate a code that can be used to identify a word, e.g. 

“activity” and “activated” would be assigned the same code.
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Table 4. 2A Source features with soundex blocking keys 

RecId SourceObse
rvation 
name 

SourceU
OM 

SourceUOMFull SourceCat SNDX(SLName) SNDX(SUOM
) 

A1 Access 
Pressure 

mmHg       millimiters of 
mercury 

Dialysis A220 M453 

A2 Activity  
oxygen  sat - 
Aerobic 
Activity 
Response(O
2) 

%          Percentage OT Notes A231 P625 

A3 Activated 
Clotting 
Time 

            Labs A231 0000 

A4 Acetylcysrei
ne 

             A234 0000 

A5 Albumin g/dL       grams per deciliter Labs A415 G652 

A6 Fibrinogen mg/dL      milligrams per 
decilitre 

Labs F165 M426 

A7 Fibrinogen mg/dL      milligrams per 
decilitre 

Labs F165 M426 

A8 Glucose 
(serum) 

mg/dL      milligrams per 
decilitre 

Labs G422 M426 

A9 glucose by 
glucometer 
(Fingerstick 
Glucose) 

            Chemistry G422 0000 

 

It can be observed from both Table 4.2A and Table 4.2B that “observation name” and 

expended “uom” were used as blocking keys for both the source and the target 

datasets. The researcher used query Q1 to obtain the results for both the source and 

the target datasets, where the query is aimed at retrieving observation names that have 

ten similar characters between the source and the target observation names. The 

starting characters were also checked. 
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Query 1: Similar lab names with ten characters 
Q1: SELECT distinct s.[Observation name] as SourceObservation name, s.[UOM] as 
SourceUOM 
         ,s.[UOMFull]  as SourceUOMFull,s.[Category] as SourceCat 
   ,SOUNDEX(s.Observation name) as 'SNDX(SourceObservation name)'  
   ,SOUNDEX(s.[UOMFull]) as 'SNDX(SourceUOM)' 
   ,t.[COMPONENT] as TargetObservation name, t.[UOM] as TargetUOM 
   ,t.[UOMFULL] as TargetFullUOM, t.[SYSTEM] as TargetSYSTEM 
   ,SOUNDEX(t.COMPONENT) as 'SNDX(TargetObservation name)' 
   ,SOUNDEX(t.UOMFULL) as 'SNDX(TargUOM)' 
  FROM [ResearchTestData].[dbo].[SourceData] s 
  INNER JOIN [ResearchTestData].[dbo].TargetDataSet t 
  ON SOUNDEX(s.Observation name) = SOUNDEX(t.COMPONENT)  
 ORDER BY 'SNDX(TargetObservation name)' ASC 
 
 

 

Table 4.3 shows comparisons that will be made based on lab attributes e.g., 

“Observation name”, for example records that have been recorded as A231 will be 

compared with records B2 from the target dataset and so on, and block M426 of the 

“uom” attribute will be compared with the “uom” in record B8 and B9. Thereafter, a 

similarity measure between the source and the target attribute were achieved through 

the use of a Jaro-Winkler algorithm. There are cases where the similarity measure 

algorithm failed to yield a correct similarity weight, because of the manner in which the 

attribute value is structured. For instance, when comparing “body weight” and “weight”, 

the Jaro-Winkler similarity measure outputs a weight of “0”, while Edit distance outputs 

a weight of 0.63 reflecting that the values being compared do not match. Although the 

algorithm failed to identify the attributes as similar, a human would know that “body 

weight” and “weight” refer to that of a person. Therefore, as part of a learning algorithm 

supervision process, an extra feature    was added, so as to check reversed characters 

of the lab test names. When the reverse algorithm is applied to “body weight” and 

“weight”, the following results were obtained: “body weight” becomes “thgiew ydob”, 

then “weight” becomes “thgiew”, and when the Jaro-Winkler similarity measure was 

applied, a weight of 0.89 was obtained.  
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Reversing strings is important in cases where there are two strings and the first string is 

used to describe the other string, however the reversed weight feature will only be used 

when the output of the “observation name” weight is less than 0.8. 

Table 4. 2B Target features with soundex blocking keys 

RecI
d 

TargetObservat
ion name 

TargetUO
M 

TargetFullU
OM 

TargetSYST
EM 

SNDX(TargetObserva
tion name) 

SNDX(TUO
M) 

B1 Accessory 
nerve (CN XI) 
exam 

  Nerves.cran
ial 

A226 M453 

B2 Activated 
clotting time 

ratio Ratio PPP A231 R300 

B4 Acetylcarnitine 
(C2) 

umol/L micromoles 
per litre 

Amnio fld A234 M265 

B5 Albumin g/24 H grams per 
24H 

Urine A415 G652 

B6 Fibrin D-dimer ug/L micrograms 
per litre 

PPP F165 M262 

B7 Fibrinogen g/L grams per 
liter 

PPP F165 G652 

B8 Glucose umol/L umol/L Bld G422 M265 

B9 Glucose^pre 
dialysis 

mg/dL milligrams 
per deciliter 

Dial fld prt G422 M426 

 

Table 4. 3 Blocking key values 
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Block A: Observation name     Block B: Unit of measure 

 

For the unit of measure the researcher used Edit distance, because the source unit of 

value often differs by the prefix of the matric of the target e.g., source might be “ug/ml” 

while the target unit of measure uses ”ng/ml” matric, where the difference is that one 

uses micro, while the other uses nano as a prefix. Therefore, Edit distance calculates 

the minimum cost of transforming string “y” to string “x”. On the Metavision dataset, 

there were 214 unique tests that were identified for mapping, however, only 97 had the 

same sound and similar starting characters with the LOINC dataset, and the 117 that 

did not pair with LOINC were recorded on an observation dictionary database table. The 

researcher used detailed laboratory information from the following sources (Mayo Clinic, 

2015; Regenstrief Institute, 2016) for extracting more information about the remaining 

tests. Thereafter each test that was found after searching was inserted into the 

observation dictionary table and a matching LOINC code was entered on this table as 

well.  

 

Table 4. 4 Observations with sounds that differ from LOINC observation 

 

 

 

 

 

 

 

A231  

 
 

 
 
 

B2  M453  B1 

A234 B4 G652 B5 

A415 B5 M426 B8, B9 

F165 B7   

G422 B8, B9   
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Analyte

Id 

Observation 

name 

LOINC LOINCAnalyte LongUO

M 

Datasource 

39 SVO2SAT 56875-8 Mixed venous oxygen 
saturation monitoring 

Mixed 
venous 
saturatio
n (SVO2) 

CareVue 

1 ALT 1742-6 Alanine 
aminotransferase 
[Enzymatic 
activity/?volume] in 
Serum or Plasma 

Alanine 
transami
nase 

MetaVision 

10 O2 Consumption 60842-2 Oxygen consumption 
(VO2) 

oxygen 
consump
tion 

MetaVision 

 

 

Goal definition and information extraction from the selected corpora 

The unstructured data does not follow any kind of schema, and as a result it does not 

have structure at all, except that it has headings that are meant to make the documents 

easier to read for a human. In this study, structure is inferred through the use of 

sentence identification and section header detector, and these form part of the features 

in this study. However, in other applications like spam classification, or sentiment 

analysis, each word is treated as a feature and features are selected through Mutual 

Information technique, chisquare (  ) feature selection, and frequency-based system 

(such as TFIDF) feature selection methods (Manning et al., 2009). Therefore, before 

features could be selected or extracted, it is worth mentioning the purpose for extracting 

meaning from clinical text and how it links with the overall study. The researcher is 

interested in extracting and standardizing smoking status from clinical text. The patient’s 

smoking information is a behavioural factor which forms part of an external 

environmental exposure that was discussed in section 2.3.2. This task is sparked by the 

fact that other important clinical information is not easily recorded in a structured format, 

and according to (Wu et al., 2013), health professionals such as nurses use a human 

language to record information in a more detailed format. However, this kind of 

information is not easy to search for because it is not structured, hence the goal is not 

simply about extracting text contained in the clinical note, but it is about extracting 
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meaning and context from these notes and also standardize it so that it becomes a 

common way of representing smoking information from clinical text. Therefore, in order 

to be able to extract meaning and context from clinical text, data, methods, and tools 

that are dedicated to that identified task are needed. Hence the researcher has 

identified open source tools such cTakes and CLAMP for processing the identified 

clinical corpora, and these NLP tools were discussed in detail in section 3.9. In this 

section the researcher will talk about the methods that were used for extracting features 

from a given clinical text such as the one in Table 4.5.  

 

Table 4. 5 Clinical text about patient’s smoking information and the meaning 

Text Meaning 

Social history 
Miss. CM is an energetic young woman who has had bouts with 
sleeplessness for the past year or so.  She said that her insomnia 
began with the death of her father who was killed in a train accident 
last year. Patient is 25 and claims she has smoked for the last five 
years or so. She used to smoke about half a pack a day, but for the 
last month she has been down to about 3-5 cigarettes a day. She is 
having trouble stopping altogether. 

Current Light Smoker 

 

The clinical note in Table 4.5 covers the patient’s social history, however the rest of the 

note has multiple sections such as medication report, discharge summary, ECG report, 

and physical examination just to mention a few. It should be observed from Table 4.5 

that the underlined words are key in determining the patient’s smoking status, therefore 

the researcher will use a clinical pipeline in order to extract information from the clinical 

notes, and the pipeline includes the following components:  

- Sentence detector: A specific DF_CLAMP_Sentence_Detector was used, this is 

a default sentence detector within the CLAMP software, it was specifically built to 

process clinical text by determining where a sentence on a clinical note ends. 

- Rule-based tokenizer which segments raw text into tokens, in this study 

DF_CLAMP_Tokenizer was used. 

- POS tagger: A DF_OpenNLP_POS_tagger which is used to tag parts of speech 

on the tokens of data was used as the default NLP Part of speech. 



  

107 
 

- Section Identifier: This feature was used to identify a section on a clinical text, 

meaning that there is no need to manually specify which section deals with 

laboratory data or medication data. For the section identifier the researcher used 

DF_Dictionary_based_section_identifier. 

- Assertion Identifier: This checks if there is a negation associated with a clinical 

concept, the negation function uses DF_NegEx_assertion to check for the 

absence or opposite of a positive observation, e.g. “Patient’s father has history of 

alcohol abuse, but patient does not drink alcohol”, in this case “patient does not 

drink alcohol” is negated, while the first passage about patient’s father is not 

negated. 

- UMLS encoder: The encoder is used to match the clinical concept terms into 

UMLS Concept Unique Identifier (CUI) code, once a term has been mapped to a 

CUI code it is then easier to map that term to LOINC or SNOMED or to any 

coding standard. For instance, heart rate is mapped to the CUI code of 

C0018810 which has a LOINC code of 8861-7.  

- Named Entity Recognizer: The researcher used the 

DF_CRF_based_named_entity_recognizer which identifies three types of clinical 

concepts namely problems, treatments and tests. 

- Ruta Rule Engine: This is also known as UIMA rule engine, this was used for 

identifying, creating and modifying annotations, and the identified annotations are 

treated as features, one example where the rule engine is used is the 

identification of lab tests and their corresponding values and unit of measures. 

- Temporal recognizer and relation: For the recognizer, a CRF-based temporal 

was used, a temporal is able to extract time-specific information such “last 

month”, “3rd of August”, “2011-01-02” and more. Then temporal relation is used 

for creating relations between the event and the time, e.g. “smoked” is the event, 

and “five month” is the temporal recognized.   

These components help with the task of annotating clinical notes, and annotation helps 

provide more information about a text, it is like the metadata of the whole text. 

Annotation is similar to the process of supervising a machine learning algorithm, this 

gives the machine learning algorithms clues about the data. Therefore, in the following 
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section the researcher will show rules written in UIMA RUTA (Kluegl, Toepfer, Beck, 

Fette, & Puppe, 2016) language for creating an annotated corpus. 

 

 

4.3 FEATURE SELECTION FOR MATCHING SOURCE TO TARGET 

Based on Table 4.6, one can observe that there are four features with weight attached 

on each,                        and the indication of whether it’s a match or 

non-match is represented by    as an output feature. In the case of this study, the 

process of feature selection is aimed at selecting features that contribute to the decision 

of determining if record A matches record B, and the all the features are scaled between 

values “0” and “1”.  

Table 4. 6 Attributes similarity comparison 

 

 Observation 

name 

Category ShortUOM LongUOM Match 

Record A 
- Source 

Intra Cranial 
Pressure #2 

Hemodynamics mmHg millimiters of 
mercury 

 

Record B 
- Target 

Intracranial 
systolic 

Skull mmHg millimiters of 
mercury 

 

Weight 0.77 0 1 1 ? 

 

For the output variable, the researcher uses the feature called “match” as shown in 

Table 4.6, where at the moment it is not known if the two records match or not. Table 

4.6 shows record “A” as the source dataset and record “B” as the target dataset, where 

each attribute is compared and weighted using Jaro-Winkler and Edit distance similarity 

algorithm. It can also be observed from Table 4.6 that the weight label is used to record 

the similarity output. If the output is 0.77, then this is interpreted a 77% match between 

the source and the target. However, the researcher has set a 75% threshold for 

# Research sub-question 

Iv What features will be used to determine similarity between two records? 
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matching laboratory observations except for the “unit of measure” which uses a 

threshold of 80%. The “unit of measure” observation is short, and the majority of the 

“unit of measure” characters should match in order to determine if the compared 

records match or not. A match is represented by a “1” and a non-matching record by a 

“0” on the “match” attribute. 

 

                                                          (15)  

                                                          (16) 

 

Furthermore, a match is represented as shown in Equation (15) and a non-match in 

Equation (16), where the variable   and   represent the compared attribute instances,   

represents the source or the target dataset. Features are numerical representations of 

raw data, or data that could be understood by the classifier for model building. However, 

the researcher has proposed the use of rules to determine matching records. This 

method of record comparison is not new, it is often used in record matching system as 

illustrated by (Doan, Halevy, Ives, et al., 2012). The rules in Figure 4.2 were defined in 

order to determine if two records match, the training data was loaded into a decision 

tree model, and the rule model was produced from executing the decision tree model. 

 

                                                                     

                                              

                                                                    

                                                  

                                                                    

                                                  

                                                                     

                                             

Figure 4. 2: Initial rules for determining if two records match or not. 
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According to (Kim, El-Kareh, Goel, Vineet, & Chapman, 2012), enhancing or expanding 

local observation names improved the chances of correctly identifying the matching 

LOINC observation name, where also adding the unit of measure was found to reduce 

the number of false positive matches. (Mcdonald et al., 2017) also suggests that the 

“unit of measure” is important when matching local observation names to LOINC 

observations. In addition, the “ObsevationName” shown in Figure 4.2 was already 

expanded from a short “ObservationName”, e.g “O2 sat” was expanded to “Oxygen 

Saturation”, “Temp” to “Temperature”.  

 

For laboratory tests, there are other cases where the name of the sample is included on 

the observation name, for example, bicarbonate serum or base excess arterial. Such 

tests give extra information and therefore a laboratory sample information can be 

extracted from the observation name when the sample name has not been provided. 

 

4.4 ANNOTATING THE CLINICAL CORPORA 

# Research sub-question 

Iv How were features selected for unstructured data? 

 

Annotating the text is part of extracting and selecting features for the given corpora. A 

simple form of annotation in web design is the enclosing of text such as the following: 

“<b>Text annotation</b>” and the browser would interpret this as a bolded text “Text 

annotation”. Therefore, also with clinical data annotation, the goal is to teach the 

algorithm how to identify smoking-based named entities and how these entities relate to 

one another. Therefore, in this study, annotation rules are used to annotate the corpora, 

and once it has been annotated then the annotated corpus will act as input to the 

learning algorithm for the purpose of training the algorithm. However, before training the 

algorithm, it is good to clearly define what the goal of extracting smoking information 
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entails. The researcher has followed the guidance of a study by (Uzuner, Goldstein, 

Luo, & Kohane, 2008) to identify smoking status, and this is as follows: 

- Current smoker: This is a patient whose discharge summary states that for the 

past year the patient was a smoker. 

- Smoker: A patient who can be regarded as a current smoker or non-smoker, 

however the discharge summary does specify that the patient has history of 

smoking although it does not mention whether the patient did quit or not. 

- Past smoker: The discharge summary states that the patient has a history of 

smoking, however has not smoked for the past year. 

- Non-smoker: The discharge summary states that the patient never smoked 

before. 

- Unknown: The discharge summary of the patient does not state whether the 

patient smokes or not.  

One would also note that Table 4.7 has CUI codes which help identify each smoking 

status, once the CUI code is defined it becomes easier to standardize the clinical term 

using LOINC or SNOMED-DT coding standards. 

Table 4. 7 Smoking status examples 
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Clinical note Smoking 

status 

category 

CUI SNOMED-CT LOINC 

Former 2 pack per day  

smoker x 28 years, now 

smokes a pack every other 

day. 

Current 

Smoker 

C3241966 428071000124103 64234-8 

The patient's coronary 

artery disease risk 

factors include, 

hypertension, 

hypercholesterolemia and a 

cigar smoker for thirty 

years. The patient has no 

history of diabetes. 

Smoker C0337664 449868002  

She quit smoking >10years 

ago, but prior to that had 

approx. 30 packyear h/o  

tobacco. 

Past smoker C0337671 8517006  

Patient is an accountant.  

He does not consume 

alcohol or smoke 

cigarettes. 

Non-Smoker C0425293 266919005  

Binge drinking (6-pack x2 

per week).  He uses 

cocaine via inhalation once 

or twice per month.  He also 

uses marijuana and has a 

history of IV drug use, 

heroin and cocaine, 

approximately 10 years 

ago. 

Unknown C0425306 266927001  
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Now, based on the above defined smoking statuses, a rule-based system known as 

UIMA Ruta (Rule-based scripting language) was used for creating rules for extracting 

information that could be standardized. The RUTA rule allows for execution of 

conditional statements, control structures and the declaration of variables. Figure 4.3 

indicates the rules written in a RUTA language for determining the smoking status of the 

patient from a given clinical text. The rules are executed in a linear order, and before the 

rules can be executed, the CLAMP pipeline is executed first. During the running of the 

CLAMP pipeline each token or word from a clinical text is tagged using the 

“semanticTag”, so the first rule in Figure 4.3 states that if the “history” tag is followed by 

the “smoker” tag then a new tag “PastSmoker” is created as a feature. This is only a 

sample rule and it is not explicitly defined, however the rules that the researcher has 

used are accessible and be opened vie Notepad++, the path to access the file is shown 

in Appendix E. 

 

TYPESYSTEM ClampTypeSystem; 

 

// 1. rules to parse past smokers; 

BLOCK(ForEach) Sentence{} { 

// pattern: history of smoking; 

ClampNameEntityUIMA{ FEATURE( "semanticTag", "History") } 

    ClampNameEntityUIMA{ FEATURE( "semanticTag", "Smoker") -> SETFEATURE( 

"semanticTag", "PastSmoker" ) }; 

 

// 2. rules to parse non-smokers; 

BLOCK(ForEach) Sentence{} { 

    ClampNameEntityUIMA{ FEATURE( "semanticTag", "Smoker"), FEATURE( 

"assertion", "absent" )  

        -> SETFEATURE( "semanticTag", "Non-smoker" ) }; 

} 

 

// 3. rules to parse current smokers; 
BLOCK(ForEach) Sentence{} { 

// currently smokers 

ClampNameEntityUIMA{ FEATURE( "semanticTag", "TimeModifier") } 

    ClampNameEntityUIMA{ FEATURE( "semanticTag", "Smoker") -> SETFEATURE( 

"semanticTag", "CurrentSmoker" ) }; 

} 

Figure 4. 3: A sample rule for detecting a smoking status of a patient for a given 
clinical note. 
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The second rule states that if there is a “smoker” tag followed by a negated tag 

“absent”,then create a new feature and label its tag as “Non-smoker”. The “absent” 

keyword indicates that the tag is negated, for instance, when the clinical note states that 

“the patient denies tobacco use”, therefore because of the keyword “denies” next to the 

“tobacco” keyword then the phrase is said to be negated, and the opposite of this is the 

“present” keyword which means the phrase is not negated. The third rule extracts 

information about the current smokers, the rule was constructed by first identifying a 

temporal which in this case are time-based adverbs such as currently, momentarily, in 

the meantime, presently, time being, present moment and more. This rule checks if the 

temporal is followed by a “smoker” tag, and if this condition is true, then a 

“CurrentSmoker” tag is set as a feature. The rules used for detecting patient’s smoking 

status were derived from the studies by (Sohn & Savova, 2009; Uzuner, Goldstein, Luo, 

& Kohane, 2008).   

 

Figure 4.4 shows the results of a tagged clinical note using as input the text from Table 

4.5, from these tags the next task is to add rules that specifically would make an 

annotated corpus. Figure 4.5 shows the result of annotated corpus; which is an XML file 

that uses an XML Metadata Interchange (XMI) structure, and the CRF learning 

algorithm expects input such as one in “.xmi” format. The “.xmi” file that is produced 

uses a Stand-off Annotation by Character Location type of annotation, this method 

records the start and an end of the annotated text. One can observe from Figure 4.4 

that the text “the past year” is annotated as a “temporal”, meaning it is a time-specific 

text, then Figure 4.5 is the representation of the “.xmi” file whereby the location of the 

annotated text is recorded, the start of the “the past year” starts at character location 

“77" and ends at location “90”. Other information such as the concept unique identifier 

(CUI) code can also be added as part of the “.xmi” file. The start and the end locations 

are helpful for the computer to find important information on an annotated text which is 

necessary for the application of machine learning algorithms (Pustejovsky & Stubbs, 

2013). 
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Figure 4. 4: Feature extraction from clinical text using named entity recognition 

 

 

Figure 4. 5: Results from the extracted entities 

 

4.5 MODEL SELECTION AND OPTIMISATION 

This study is aimed to classify patient’s observation data into a standard that would 

make the data easy to search, trace and share. Therefore, the researcher has used 

multiple datasets from different data sources. There is a physical activity dataset, 

environmental dataset, laboratory dataset and a vital signs dataset. As stated in 

Chapter Three, these datasets are from different sources, and the researcher will use 

an SVM classifier to learn to classify this data according to the LOINC coding standard.  
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Data visualisation 

The researcher started off by loading the training data into the RapidMiner tool, and the 

visual exploration of the data can be seen in Figure 4.6. The training data consisted of 

laboratory data, examination data, and vital signs from four different data sources. 

Three of the datasets were LabEvents, CareVue and MetaVision, and all of these were 

from the MIMIC-III database. There are also datasets from NHanes, which included 

laboratory and examination data.   

 

Figure 4. 6: Number of training examples for datasets 

Figure 4.6 shows the number of training examples for each data set, where there were 

2483 training examples, with 629 missing data values for output feature. Therefore, only 

1845 were used for training the model. There were also 29 features, included in which 

were eight attribute similarity weighting features. Weighting features were used for 

evaluating whether the source matched the target attribute.  

Model testing 
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Having selected the training data with all the weight attributes, the researcher then 

loaded the training data so as to get a pictorial view of the initial model. Figure 4.7 

shows results of the generated model. The model was trained firstly with the labelled 

1845 training set, and a model was generated, then the generated model was applied 

onto the 629 of the unlabelled training set and a prediction with the accuracy of 90.88% 

was achieved, a model with a predicted output can be seen in Figure 4.8.  

 

 

Figure 4. 7: Tested model without cross-validation 

 

However, the results shown above are there to get started with model building, this 

helps address complexities such as variance and bias when working on a machine 

learning problem. The model generated above used a decision tree classifier, and 

building a decision tree helps with the understanding of which feature has a high 

splitting criterion. A decision tree classifier also gives a vivid picture of the rules 
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governing the training data. Further on, the researcher added an SVM classifier, and 

model validation criterion was applied.   

Model validation and parameter optimisation 

The model is evaluated in order to avoid underfitting, therefore it is of paramount 

importance to validate the model. The model is evaluated by splitting the dataset into a 

training set, cross-validation set, and a testing. A training set consists of all the 

examples from the selected dataset for fitting the model, a cross-validation is a set of 

examples also from the same dataset, however, its purpose is for tuning parameters 

during the process of training. Finally, a test set is used for testing the performance of a 

classifier (Kuhn & Johnson, 2013; Meyer, 2009; Ng, 2016). As for sampling the data, the 

researcher used automatic sampling which uses a stratified sampling for either 

polynomial or binomial class labels, and if the class labels are neither polynomial or 

binomial then it uses random shuffling.  

 

 

Figure 4. 8: Predicted model without cross-validation 
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There are many different methods for performing cross-validation, however in this study 

the researcher will use V-fold cross-validation (CV). (Arlot & Celisse, 2010) have noted 

that this procedure is the most popular, due to its mild computational cost. The V-fold 

CV works by partitioning the training data into “k-1” number of folds, where only a single 

“k” fold will be used for testing the model. In the case of this study, 10 sets of fold were 

selected for training the model, and only one set was used for testing, and Figure 4.9 

shows how V-fold CV works.  

 

Having selected the cross-validation procedure, the researcher has also added the 

LibSVM classifier, which makes it effortless to optimise parameter   during the cross-

validation procedure.  

 

Figure 4. 9: Pictorial view of a 10-fold cross-validation (Source: (Olson & Delen, 
2008)) 

 

LibSVM is a non-linear library for solving classification, regression and distribution 

problems. Before LibSVM could be implemented, the user should first select the value 

of   (which is a penalty parameter for error term). Equation (17) shows this parameter. 
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LibSVM also requires a kernel function to be chosen from a set of available ones which 

were mentioned in section 3.8, and radial basis function (RBF) kernel has been selected 

for the purposes of this study. This function uses two parameters, namely the cost 

parameter   and   (gamma) parameter, and these parameters were optimised through 

the execution of a grid-search process (Chang & Lin, 2011).  

 

             
                  

    
     

   
         

                 
             

 
 

   
         ( 17) 

 

The grid-search process was made part of the CV process and Table 4.8 illustrates the 

process of grid-search. While the classifier was being trained on 10 folds, the   and   

parameters were selected and printed out for performance evaluation purposes. There 

were 242 iterations when the number of folds were set to 10; parameter   within a 

range of 0.001 to 1000; the number of steps set to 100;   with a range of 0.001 to 1; 

and number of steps set to 10. Both parameters were set to a logarithmic scale of log 

base 2. 

 

Table 4. 8 Model selection criteria 

Degree of 

polynomial 

Hypothesis function Model 

d=1                  Linear 

d=2                          Quadratic 

d=3                            Cubic 

     

d=10                              10th order Polynomial 

 

Table 4.8 starts off with a simple linear problem whereby a linear boundary can be used 

to separate the positive and negative training examples. As more features are added, 

the model changes with the degree of polynomial as shown in Table 4.8. The variable 
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“d” denotes the order of polynomial for the   parameter, therefore this parameter value 

is used as input in the calculation of the cross-validation error. Then the cross-validation 

function that yields the smallest cross-validation error will be used to test for the 

generalisation errors during the testing phase. The cross-validation phase is used to 

tune parameters, and for selecting new or discarding features so that the learning 

algorithm can produce a near-accurate classifier. During the testing phase, the 

researcher used training data that was not previously fed to the model, or data that is 

not known to the model, in order to produce a generalisation error. The produced 

generalisation error is used for evaluating if the classifier is able to predict that the 

source observation data is similar to the target observation data. When the classifier 

makes a correct prediction, it confirms the classifier is capable of learning from the 

training data, and therefore that source data was standardized in the same manner as 

the target data. In Chapter Five the researcher will show that even when the classifier 

has made a correct prediction, that prediction might have a high bias, or alternatively, 

the results might have a high variance, or may be overfitted. Overfitting is a result of a 

model’s inability to make correct predictions on unseen training data. Both high variance 

and high bias are major problems when designing a learning system, if left undiagnosed 

then one might be optimistic about the model’s performance even though it is highly 

biased, and such a model would lead to incorrect results on a production system. 

Overfitting occurs also with NLP algorithms when unstructured data is used, and with 

NLP applications it is often caused when many features are used to train the algorithm, 

and an algorithm that is given many features fails to correctly predict a class for new 

training examples.  

 

Gold standard and feature selection for the corpus 

Model selection for structured data is similar to the process of annotation creation for 

unstructured data which means that the annotation process is based on expert advice 

on how to differentiate between different smoking statuses. Therefore, in the absence of 

a health informatician expert or a clinical data annotator, the researcher has resorted 

into using the suggestions of (Sohn & Savova, 2009) in order to create the gold 
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standard. The gold standard is also known as the benchmark. Once this is properly 

defined then the resulting corpus is ready to be used to train a machine learning 

algorithm. A good performance by the algorithm would mean that the generated model 

could thus be used as the common annotator for the detection of the smoking status 

across multiple clinical corpora. It should be noted that the end-goal of the annotation 

task in not about the smoking status annotation, but it is about standardizing the 

smoking status through a coding standard such as LOINC or SNOMED-CT. In fact 

(Pustejovsky & Stubbs, 2013) said that these days annotations are done so as to get 

data to train a machine learning algorithm, which is the case with this study as well. For 

the purposes of generating the gold standard, the researcher has identified three 

smoking statuses to be extracted from the corpora. These are referred to as classes or 

tags and they include: the current smoker, the non-smoker and the past-smoker class. 

The other two classes (unknown and smoker)  were excluded because the findings by 

(Sohn & Savova, 2009) have indicated that it is least challenging to predict if a 

document should be annotated as an “unknown” or “smoker” class, hence they have 

obtained a high F-measure score for both, and as a result the researcher will not cover 

these classes. 
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Figure 4. 10: Annotation process (Source: (Pustejovsky & Stubbs, 2013)) 

 

Since there are only three smoking classes that the researcher is interested in, it is 

important to determine how these statuses are often phrased in the English language. 

For instance, determining if whether the patient never smoked could be phrased like 

this: “Patient does not have history of smoking”; “Smoking is the least thing the patient 

has considered in his life”; “He never smoked”, these are a few of the examples of a 

non-smoking class. The problem is now that there is no common method that nursing 

professionals use to phrase that a person does not smoke. However there are programs 

that can be used to identify common words used to determine an event or action. The 

researcher therefore used the Google’s Ngram Viewer (Google, 2013) to learn about 

the common use of words in books to indicate non-smokers. The Google Ngram Viewer 

is a website which allows for the search of common words or phrases using parts of 

speech and wildcards for querying the desired information in Google books. Data is 

derived from a subset of 5 million books out of a total of 15 million that have already 

been digitized (Michel et al., 2011). From the Ngram Viewer website the researcher was 
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able to observe common use of words in relation to time, for instance Figure 4.11 gives 

a graph of the word usage in books regarding patient’s non-smoking status, and from 

Figure 4.11 it can be observed that the phrase “does not smoke” was more common in 

books than the phrase “never smoked” around the year 1947 and 2007. This 

information could help determine common words that should be tagged from the 

corpora to determine the three smoking classes. 

 

 

Figure 4. 11: Shows the usage results of two sets of ngrams between the year 
1800 and 2008, this is a comparison between 3-gram which is (does not smoke) 
and a 2-gram (never smoked). 

 

Once the researcher was satisfied with the gold standard, the next task is to select 

features that will be used with the learning algorithm. The CLAMP software allows one 

to select features for named-entity extraction tasks, these are word representation (WR) 

features and they arranged as follows: (1) clustering-based feature; (2) distributional 

feature; (3) word embeddings features. These features are described in brief below: 

- Brown Clustering 

This is a clustering-based word representation algorithm that groups related words into 

clusters based on the context that these words are in. The brown clustering receives 

either a corpora of words or an annotated corpus, then the algorithm partitions the 

words and thereafter outputs the partitions into clusters of words (Figure 4.12). Lastly, it 
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generates an agglomerative hierarchical cluster which is a cluster that implements a 

bottom up approach (Collins, 2011). Figure 4.12 shows the results that were obtained 

from a classic study done by (Brown, Della Pietra, deSouza, Lai, & Mercer, 1992), 

where their findings showed that words can be grouped together based on the 

surrounding words and their contexts.  

 

Figure 4. 12: Word clustered based on context and relatedness from an input of 
260 741-word vocabulary (Source: (Brown et al., 1992))  

Therefore, when one is working on a named-entity recognition (NER) problem, the 

search for words that are not familiar or not in the dictionary defined for NER, can be 

inferred through Brown clustering methods by finding their surrounding words. This 

helps identify meaning from phrases that are not structured in the same way, because 

people use language differently even though the concept being addressed might be the 

same. Therefore the researcher used 34066 words that had already been arranged into 

a hierarchical structure. In fact, this is the default setting from the CLAMP software, and 

with the Word embedding feature the researcher also used the default list provided by 

CLAMP. 

- Discrete Word Embedding 

CLAMP differentiates between word embeddings and discrete word embedding. 

However in this section the researcher groups the two and give the underlying idea 
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behind the word embedding feature. The word embedding feature has the capability to 

represent words as vectors, and words that are contextually related to one another are 

represented closer while nonrelated words appear far apart from each other, for 

instance words such as “king” and “queen” are paired closer to each other, as are “dog” 

and “cat”. However, these two sets appear far apart from one another on a vector 

space. Word embeddings could be employed through techniques such as Word2vec 

and glove. Both these techniques use a neural networks and matrix factorization so that 

it learns to predict a word when given a set of a context word (Zamani & Croft, 2016),  

e.g. “Patient ? cigarette”, the algorithm would predict the probable word to replace the 

question mark “?” based on the context and other related words, could be ”smokes”, 

“hates” or any other word that addresses a similar concept.  

- Random Indexing 

This is a form of a distributional word representation technique that has been reported 

to have human cognitive features such as the ability to make judgements about the 

quality of an essay or any text-based material that one wants to analyse. (Higgins & 

Burstein, 2007) have used Random Indexing (RI) for assessing the coherence of words 

used in a student’s essay. The RI technique addresses the drawbacks of latent 

semantic analysis (LSA), LSA is also a technique that uses statistical computing in 

order to extract information from a large text corpora and represents the meaning of 

words, passages, and sentences in different contexts as context vectors. Therefore the 

idea is that words that have similar meaning have similar context vectors and those that 

are not similar have dissimilar context vectors (Kanerva, 2009). Since the RI feature 

helps to extract meaning from the given corpora or corpus, it is therefore considered as 

one of the features to be used to train CRF sequence classifier. 

The researcher has attached all documents and dictionaries that were used with the 

identified features, and these dictionaries use “.txt” and therefore can be opened with 

Notepad, and the path to access these files is shown in Appendix E. Other preparations 

for the data included the splitting of the training data and test data and the test data 

was made up of 20% of the annotated corpus. A 5-fold cross validation was then 
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selected for parameter optimization, and 5-folds were selected because CLAMP only 

allowed this number of folds to be selected.  

 

4.6 EXPERIMENTAL PROCEDURES 

4.6.1 SYSTEMS SET UP 

The experiments will be run on a Windows 10 Lenovo machine, with the following 

specifications: Processor: Intel (R) Core (TM) i7 7500U CPU at 2.90GHz; RAM: 8GB 

System type: 64-bit Operating System. 

 

4.6.2 EVALUATION MEASURES 

 

# Research Question 

vii How will the correctness of the results be evaluated? 

 

This section of the study claims to answer the research sub-question as shown above, 

where the researcher gives details about machine learning model evaluation methods. 

The results of applying these methods are discussed in Chapter Five. Building a model 

comes with many challenges that should be addressed before results can be 

considered correct or accurate. Recall, Precision and F1-score are few of the methods 

used for evaluating the performance of a classifier on the given test data. Recall is also 

known as sensitivity and it is the measure of completeness or coverage. A simple 

example that helps with the understanding of recall and precision is the diagnosis 

(prediction) of cancer patients, in this case recall would be the proportion of patients that 

had cancer which were diagnosed (or predicted) by the oncologist (or algorithm) as 

having cancer. Then precision (also known as specificity) is the proportion of patients 

that were diagnosed (or predicted) as having cancer who in fact had cancer. There is a 

trade-off between recall and precision. An algorithm with a very high precision has low 

recall because it would fail to cover patients without cancer, also with a very high 
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coverage the algorithm would have low precision, therefore F1-score or F-Measure is 

used to combine the measures of both precision and recall (Gorunescu, 2011).  

 

(Han et al., 2012) has described accuracy as measuring the recognition rate on a test 

set, that is, how accurate in terms of percentages the classifier can be in identifying 

correct matches between records. Four different tests are identified in order to test for 

performance of the algorithm, these are as follows: true positives, false positives, false 

negatives, and true negatives. In order to define these four tests with regards to this 

study, the researcher uses the following illustration: set “B” represents an     training 

example from the source dataset, and set “C” an     training example from the target 

dataset. The true positives measure signifies that the predicted class matches the 

actual class, set “B” matches set “C” in terms of similarities measures (see Table 4.9). 

Then, false positives is when the classifier incorrectly predicts that set “B” matches set 

“C”, while false negatives refer to when the classifier fails to predict that set “B” matches 

set “C” when it ought to match. Lastly, true negatives refer to when the classifier 

correctly predicts that set “B” and “C” do not match. 

Table 4. 9 Evaluation metrics for the classifier 

 

P
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Actual Class 

1 0 

1 True Positive (TP) False Positive (FP) 

0 False Negative (FN) True Negative (TN) 

 

The “1s” in Table 4.9 represent a positive outcome such as “is a match”, and 

alternatively “0” represents “is not a match”. The researcher will thus use this method to 

measure the accuracy, precision (Equation 18), recall (Equation 19), and the F1-score 

(Equation 20). 
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                ( 18)       

       
  

      
                ( 19)       

         
                    

                   
              ( 20)     

 

These evaluation methods are suitable binary classification problems whereby the 

prediction is either “yes” or “no”, “true” or “false”, however there are other cases where 

one needs a multiclass classifier where the predictions could be a range of classes. 

Therefore in such cases there are measures for averaging the performance of the 

predictions across classes, these measures take the average of both precision and 

recall. (Barrett, Levell, & Milligan, 2013) have defined macro-average precision as the 

average precision from all the classes (see Equation 22), and macro-average recall and 

Equation (21) was derived for simplicity and it is exactly the same as Equation (18), the 

same is applicable for Equation (19) and Equation (23). Equation (24) calculates the 

macro-average recall which is basically the average of all the “recall” measures for the 

given classes. 
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Now micro-averaging is used for summing up all the true positives, false positives, and 

false negative for each class or tag, and this sum is further computed for effectiveness 

on large classes on the test data (Manning et al., 2009). Then Equation (27) is 

calculated by taking an average of all the F1-scores for multiple classes, whereas 

Equation (28) uses a harmonic mean (as shown in Equation 20) of all the used classes.  

 

The researcher will use the Receiver Operating Characteristic (ROC) curves to compare 

the performance of SVM and decision tree on the given training and test data. ROC, as 

shown in Figure 4.13, is one of the methods used to quantitatively evaluate the 

performance of machine learning models. The ROC curves are used in classification 

problems, and these curves show the relationship between the sensitivity of the 

classification model and the rate of false positives that were yielded by the evaluation 

metrics. When using ROC, there are four possible outcomes: when x-axis represents 

the level of false positives, and y-axis the level of true positives. It can therefore be said 

that point (0;0) represents a level where there are no true positives and no false 

positives, and point (0;1) is a perfect classification, when there are true positives and no 

false positives. The upper right point (1;1) reveals both high levels of true positives and 

high levels of false positives; point (1;0) reveals high false positives with low true 

positives. A classifier that leans towards the North-West of the curve is a good classifier, 

because it has more true positives than false positives. A liberal classifier is one whose 

curve is towards that north-eastern direction, where this classifier is able to classify true 

positives. However, there may be an abundance of errors, because it also has high 

false positives (Olson & Delen, 2008; Salciccioli, Crutain, Komorowski, & Marshall, 

2016). 
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Figure 4. 13: ROC curve with multiple classifiers (Source: (Olson & Delen, 2008)) 

 

4.7 CONCLUSION 

This chapter introduced the design of experiments for a machine learning problem, 

where the researcher started off by identifying what constitutes features in machine 

learning. During this process, features were manually identified from source data’s 

attributes. It was then shown how features are converted into a numerical format that 

can be received as input and manipulated by a learning algorithm, and all of this was 

covered in section 4.2. As features presentation was discussed, the researcher in 

section 4.3 covered features selection, section 4.4 covered feature selection for 

unstructured data using data annotations. Section 4.5 covered model selection and how 

the classifier’s parameters were optimized. Section 4.6 identified the computer setup for 

experimental purposes and also identified how the classifier’s performance will be 

evaluated.  
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CHAPTER 5: 

Evaluations 

 

5. EVALUATIONS 

5.1 INTRODUCTION 

This chapter presents the results of the experiments that were carried out throughout 

the progress of this study, and covers both results from the structured and the 

unstructured data. As has been shown in the previous chapters, Figure 5.1 is a 

continuation of the CRISP-DM framework, and in this chapter, the researcher will 

present and discuss the results of the experiments that were carried out based on the 

procedures outlined in Chapter Four. Firstly, the researcher evaluated the similarity 

measures that were used in this study, which are Jaro-Winkler, Edit distance, and (Term 

frequency and inverse document frequency). Section 5.2 presents the results of the 

similarity measure that were used. Section 5.3 gives results for the standardization of 

structured data, while section 5.4 covers the results of unstructured data. Section 5.5 to 

5.6 are the discussions for both experiments.  
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Figure 5. 1: CRISP-DM framework for model evaluation (Source: (Olson & Delen, 
2008)) 

 

5.2 RESULTS FROM SIMILARITY MEASURES 

The objective of the first experiment was to develop a solution that uses a Support 

Vector Machines (SVM) classifier to determine how to classify clinical observation data 

sets from multiple data sources through the prescription of health data coding 

standards. The researcher has attempted to fulfil this objective by collecting clinical 

observation data from multiple data sources. Similar data items are then matched using 

the learning algorithm, after which the algorithm is taught how to distinguish between 

similar tests that could not initially be detected. Firstly, results from Jaro-Winkler and 

Edit distance similarity algorithms are shown in Table 5.1A and Table 5.1B. Both tables 

record the same attributes. Attribute “S_obsname” is the source observation name, and 

the “S_UOM” is the source unit of measure, while the ones prefixed by “T” are the 

targets, and weights are calculated using Jaro-Winkler and Edit distance. From these 

results, it is evident that Jaro-Winkler is the best performing similarity measure when 

compared with Edit distance for clinical laboratory observation names and the expanded 

unit of measures. Edit distance did not perform poorly simply because the source 

observation name is syntactically dissimilar to the target observation name. It did so 

because the lengths of the strings have a negative impact on the performance of the 

similarity function. 

 

Table 5. 1A Edit distance similarity results for observation name and unit of 
measure 
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Row# S_obsname T_osbname Weight S_UOM T_UOM Weight 

1 mean blood 
pressure non 
invasive 

mean platelet 
dry mass 

0.3438 millimiters of 
mercury 

picograms 0.1364 

2 mean blood 
pressure arterial 

mean platelet 
dry mass 

0.3214 millimiters of 
mercury 

picograms 0.1364 

3 blood urea 
nitrogen 

blood 
flow.mean 

0.3684 millimiters of 
mercury 

milli liters per 
second 

0.5652 

4 mean blood 
pressure non 
invasive 

mean platelet 
component 

0.3125 millimiters of 
mercury 

grams per 
deciliter 

0.1818 

5 mean blood 
pressure arterial 

mean platelet 
component 

0.2857 millimiters of 
mercury 

grams per 
deciliter 

0.1818 

6 mean blood 
pressure non 
invasive 

mean sphered 
cell volume 

0.3438 millimiters of 
mercury 

fluid 0.0909 

 

Table 5. 1B Jaro-Winkler similarity results for observation name and unit of 
measure 

Row# S_obsname T_obsname Weight S_UOM T_UOM Weight 

1 mean blood 
pressure non 
invasive 

mean platelet 
dry mass 

0.7395 millimiters of 
mercury 

picograms 0.5148 

2 mean blood 
pressure arterial 

mean platelet 
dry mass 

0.8029 millimiters of 
mercury 

picograms 0.5148 

3 blood urea 
nitrogen 

blood 
flow.mean 

0.765 millimiters of 
mercury 

milli liters per 
second 

0.7851 

4 mean blood 
pressure non 
invasive 

mean platelet 
component 

0.7249 millimiters of 
mercury 

grams per 
deciliter 

0.6302 

5 mean blood 
pressure arterial 

mean platelet 
component 

0.7405 millimiters of 
mercury 

grams per 
deciliter 

0.6302 

6 mean blood 
pressure non 
invasive 

mean sphered 
cell volume 

0.7618 millimiters of 
mercury 

Fluid 0.3303 

 

5.2.1 MATCHING DISCUSSION 

The objective of applying the similarity measures was to calculate how similar each 

source item is to the target item. The results presented in Table 1B gives evidence that 

Jaro-Winkler is the best performing algorithm for measuring the similarity of observation 

names. The Jaro-Winkler algorithm has been used previously to match people’s names, 

street names, and surnames; and according to (Taburt, 2011) it performed better than 

Edit distance for short strings. Although Jaro-Winkler performed better than Edit 
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distance for observation names, the latter algorithm is also powerful when comparing 

two strings that have approximately the same length and fewer spelling mistakes (Doan, 

Halevy, Ives et al., 2012). As a result, the researcher has used Edit distance for short 

observation names that could not be matched using the soundex indexing algorithm.  

An example of this is when the soundex yielded a code of “B300” and “T510” for “bdy 

temp” and “temp” respectively, and Jaro-Winkler yielded a similarity weight of “0”. When 

using soundex, non-matching codes are an indication that the two tests are not similar, 

and therefore there is no need to compare other features since the observation names 

do not match. However, it is a given that similar tests will not always sound the same 

such as “bdy temp” and “temp”. For this reason, the researcher supervised the 

comparisons by applying another algorithm, in this case, edit distance. When Edit 

distance was applied to the tests mentioned above, a match of 50% was achieved, this 

was a good sign for the rest of the features to be compared between the source and the 

target. Using the rest of the features proved that “bdy temp” and “temp” are a match. 

Nevertheless, there were also cases where Edit distance failed to find a match between 

short observation names. The source short observation name was “art bp sys” and the 

target short observation name was “sys bp”. The “art bp sys” observation name is from 

the MetaVision dataset (source), while “sys bp” is from a LOINC data table (target). 

When comparing the similarities between these observation names, Jaro-Winkler 

yielded a similarity weight of 0.6, while Edit distance yielded a weight of 0.3. Therefore, 

in such cases where tokens of the observation name are similar although structured 

differently, the researcher used the Term Frequency Inverse Document Frequency 

(TFIDF) algorithm. This algorithm produced a similarity weight of 0.707, meaning that 

“sys bp” has a more than 70% chance of being similar to “art bp sys”. Since the short 

observation name could not be assessed with one similarity measure, the researcher 

has implemented three methods for measuring similarity between short observation 

names, namely, Edit distance, Jaro-Winkler and TFIDF. The one with the highest weight 

was used as a feature for short observation names. 
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5.3 FIRST EXPERIMENT: STRUCTURED DATA 

The weights produced by the similarity measures are used as input features for the 

classifier to make predictions. This section is expected to show the reader how the data 

was trained, tested and how the predictive model was generated. The training data 

consisted of data that had already been mapped to a LOINC standard. Data that was 

already mapped to a coding standard was treated as the target dataset, while the one to 

be mapped was the source dataset. The researcher’s task was to apply the model 

produced during the cross-validation process to the unstandardized data and predict 

whether the model could correctly classify the new data. Firstly, SVM’s performance is 

covered, then thereafter the performance of SVM is compared with the one from 

Logistic Regression and later compared with the decision tree classifier. All these 

classifiers went through a process of parameter optimisation, cross-validation, training, 

testing, and prediction. 

5.3.1 SUPPORT VECTOR MACHINES 

The process of optimising hyperparameters gamma ( ) and cost ( ) took approximately 

30 minutes for the SVM classifier. The cost ( ) parameter was set to iterate 10 times in 

the search for an optimum value, while gamma ( ) was set to iterate 10 times. 

Therefore, the pair of parameters executed for around 100 steps multiplied by the 

number of folds selected for the cross-validation, which was 10, the optimization 

process resulted to approximately 1000 models created. 

 

Table 5. 2A Confusion matrix for Support Vector Machines 

 true false true true class precision 

pred. false 
890 86 91.19% 

pred. true 
75 879 92.14% 

class recall 
92.23% 91.09% 

 

 

Table 5.2A shows a confusion matrix as a summary of the results shown in Figure 5.2A. 

These results were produced during the search for optimum parameters for the SVM 
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classifier. This output is from the RapidMiner software, and some of the performance 

variables in Figure 5.2A were repeating. Thus, for reasons of brevity, the researcher has 

discarded the rest of the iterative steps and only included the ones that select optimum 

performance for the model and the parameters. One should note that the final output of 

SVM classifier output in Figure 5.2A produced an accuracy of 91.63%, with   parameter 

set to 200.0008 and the   parameter set to 0.0900811. Tuning the parameters is 

necessary for controlling overfitting and underfitting. A large value for the   parameter 

ensures that the positive examples are separated from negative examples and vice 

versa through the decision boundary. However, a large value for the   leads to 

overfitting, because the model tries to perfectly fit all the training examples, and when 

new examples are added, it then becomes difficult for the model to generalise to new 

examples if all it knows is to fit the training data accurately. When   is too small, the 

model underfits the data, which is called high bias, where the goal that the researcher is 

trying to reach is to have a value of   that is not too small and not too big.   

       

PerformanceVector: 

accuracy: 91.63% +/- 1.74% (mikro: 91.66%) 

ConfusionMatrix: 

True: false true 

false: 890 86 

true: 75 879 

classification_error: 8.37% +/- 1.74% (mikro: 8.34%) 

kappa: 0.832 +/- 0.035 (mikro: 0.833) 

AUC (optimistic): 0.926 +/- 0.011 (mikro: 0.926) (positive class: true) 

AUC: 0.927 +/- 0.011 (mikro: 0.927) (positive class: true) 

AUC (pessimistic): 0.927 +/- 0.011 (mikro: 0.927) (positive class: true) 

precision: 92.10% +/- 2.64% (mikro: 92.14%) (positive class: true) 

recall: 91.11% +/- 1.67% (mikro: 91.09%) (positive class: true) 

f_measure: 91.58% +/- 1.69% (mikro: 91.61%) (positive class: true) 

sensitivity: 91.11% +/- 1.67% (mikro: 91.09%) (positive class: true) 

positive_predictive_value: 92.10% +/- 2.64% (mikro: 92.14%) (positive class: 

true) 

true: 75 879 

negative_predictive_value: 91.14% +/- 2.00% (mikro: 91.19%) (positive class: 

true) 

 

SVM.C = 200.0008 

SVM.gamma = 0.0900811 

Figure 5. 2A: Results from running a 10-fold cross-validation and grid-search for 
parameter optimisation of SVM 

It should be noted as well that changing   has a direct impact to the gamma parameter 

(Ben-Hur & Weston, 2010), and this change affects the performance of the model. 
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Therefore, big and small values of   are relative to the data, as well as to the gamma 

parameter. Equation (13) and Equation (14) shows how the gamma parameter 

influences the    and    values. If    is a support vector while   holds a small value, then 

the class (positive or negative) of the support vector will determine how    should be 

classified. Support vectors are data points that are closest to the decision boundary of 

the SVM, and are thus helpful for determining whether a new training data point should 

be classified on a positive or a negative class (Ben-Hur & Weston, 2010; Chih-Wei Hsu, 

Chih-Chung Chang, 2008). One should observe that there were a total of 965 positive 

training examples and 965 negative training examples, and that the total number of 

training examples was 1930. This number was reduced from 2483 to 1930, with the 

goal of balancing the number of positive examples to negative examples. Without 

balancing these numbers, the model would produce inaccurate output, and (Longadge 

& Dongre, 2013) have warned about the danger of imbalanced or skewed classes. 

When there are imbalanced classes the minority classes have a high chance of being 

misclassified. Therefore, the researcher had to select the maximum number of positive 

examples, since they were the minority classes and the proportions were decided based 

on the minority classes. For testing the model, 800 testing examples without the output 

value were selected through the stratified sampling methods in order to ensure equal 

set distribution between the data. All the 1930 records were used for training and testing 

the SVM, Logistic Regression and the decision tree classifier.  

 

5.3.2 MULTIPLE MODEL PERFORMANCES 

As part of parameter optimisation, Logistic Regression classifier ran for less than one 

minute with the same setup as SVM regarding the number of iterations for the selection 

of the parameters. The grid-search yielded a lambda parameter value of 0.001 and the 

alpha parameter value of 0.7. The prediction accuracy of the model sat at 88.89% as 

shown in Figure 5.2B, and the classification error was 11.11%. 

 

Table 5. 2B Confusion matrix for a Logistic Regression classifier 
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 true false true true class precision 

pred. false 864 113 88.43% 

pred. true 101 852 89.40% 

class recall 89.53% 88.29% 
 

 

When compared with the SVM performance, the Logistic Regression classifier had a 

total of 1716 correct predictions, while SVM had 1769 correct predictions. Correct 

predictions are the diagonal measures from the top position of the confusion matrix, in 

the case of Logistic Regression the values are 864 and 852. The 864 value represents 

the number of negative examples that have been correctly predicted by the classifier to 

be negative, and the bottom value of 852 represents the number of positive examples 

that have been predicted to be positive by the classifier. The value 101 represents the 

number of negative examples that the classifier failed to predict as negative, and the 

value 113 are positive examples that the classifier failed to predict as positive. A study 

by (Kim, XuYu, & Unland, 2011) specified that the accuracy of the model can be 

calculated as shown in Equation (29), whereby    are the total number of true 

negatives,    is the total number of true positives,    is the total number of false 

negatives, and    is the total number of false positives.  

 

         
     

           
                     ( 29)     

 

The recall value of 88.29% reveals that out of all positive training examples, the 

classifier was only able to predict 88.29% as positive, and when it came to negative 

examples, the classifier was able to predict 89.53% as negative. The recall measure 

looks at the actual examples and calculates how much of the actual examples were 

predicted correctly, which is unlike precision, which examines what has been predicted, 

and then calculates how much of the predicted examples are actually true. 
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PerformanceVector: 

accuracy: 88.89% +/- 2.54% (mikro: 88.91%) 

ConfusionMatrix: 

True: false true 

false: 864 113 

true: 101 852 

classification_error: 11.11% +/- 2.54% (mikro: 11.09%) 

kappa: 0.777 +/- 0.051 (mikro: 0.778) 

AUC (optimistic): 0.912 +/- 0.016 (mikro: 0.912) (positive class: true) 

AUC: 0.912 +/- 0.016 (mikro: 0.912) (positive class: true) 

AUC (pessimistic): 0.912 +/- 0.016 (mikro: 0.912) (positive class: true) 

precision: 89.36% +/- 3.63% (mikro: 89.40%) (positive class: true) 

recall: 88.32% +/- 3.15% (mikro: 88.29%) (positive class: true) 

f_measure: 88.78% +/- 2.64% (mikro: 88.84%) (positive class: true) 

sensitivity: 88.32% +/- 3.15% (mikro: 88.29%) (positive class: true) 

positive_predictive_value: 89.36% +/- 3.63% (mikro: 89.40%) (positive class: 

true) 

negative_predictive_value: 88.43% +/- 3.10% (mikro: 88.43%) (positive class: 

true) 

 
alpha = 0.7, lambda = 1.0E-4 

Figure 5. 2B: Results from running a 10-fold cross-validation and grid-search for 
parameter optimisation of Logistic Regression 

 

The recall and precision are helpful when diagnosing the outputs produced by the 

classifier. The last classifier comparison is the SVM against the results produced by the 

decision tree classifier. Table 5.2C and Figure 5.2C give the results of the decision tree, 

whose classification criterion was also executed via the grid-search for optimum values.  

 

Table 5. 2C Confusion matrix for a decision tree classifier 

 true false true true class precision 

pred. false 914 83 91.68% 

pred. true 51 882 94.53% 

class recall 94.72% 91.40%  

 

For the decision tree, there were no parameters that were selected, however, a minimal 

gain and a classification criterion was selected between four possible criterions: namely 

information gain, Gini index, gain ratio, and accuracy. The decision tree had a 

confidence value of 0.25, and the maximum depth of the tree was set to 10, and the tree 
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was also set up to apply pruning. From Figure 5.2C, a Gini index classification criterion 

was selected for the decision tree with a minimal gain of 0.01. The decision tree 

outperformed the SVM classifier on the given training data. An accuracy of 93.05% was 

produced by the decision tree classifier. This is not a rare performance, where other 

studies such as those of (Kirkos, Spathis, & Manolopoulos, 2008) have found the C4.5 

decision tree outperforming SVM and neural networks. Accuracy has been the preferred 

method to record the performance of the results. A classic study by (Ling, Huang, & 

Zhang, 2003) has proven that ROC’s AUC is a better and more reliable measure than 

accuracy. Considering that SVM has a higher AUC value than that of the decision tree, 

then this is a sign that more assessment needs to be made on the training data. Figure 

5.3 shows the ROC (receiver operating characteristic) curve for all three classifiers. The 

ROC curve was used to compare the performance of each classifier. The ROC output is 

used for determining an effective threshold so that values that are above the threshold 

represent a specific classification event. 

 

PerformanceVector: 

accuracy: 93.05% +/- 1.33% (mikro: 93.06%) 

ConfusionMatrix: 

True: false true 

false: 914 83 

true: 51 882 

classification_error: 6.95% +/- 1.33% (mikro: 6.94%) 

kappa: 0.861 +/- 0.026 (mikro: 0.861) 

AUC (optimistic): 0.905 +/- 0.018 (mikro: 0.905) (positive class: true) 

AUC: 0.915 +/- 0.014 (mikro: 0.915) (positive class: true) 

AUC (pessimistic): 0.926 +/- 0.015 (mikro: 0.926) (positive class: true) 

precision: 94.53% +/- 1.61% (mikro: 94.53%) (positive class: true) 

recall: 91.45% +/- 1.42% (mikro: 91.40%) (positive class: true) 

f_measure: 92.95% +/- 1.14% (mikro: 92.94%) (positive class: true) 

sensitivity: 91.45% +/- 1.42% (mikro: 91.40%) (positive class: true) 

positive_predictive_value: 94.53% +/- 1.61% (mikro: 94.53%) (positive class: 

true) 

negative_predictive_value: 91.59% +/- 2.02% (mikro: 91.68%) (positive class: 

true) 

 

Decision Tree.criterion = gini_index 

Decision Tree.minimal_gain = 0.01 

Figure 5. 2C: Results from running a 10-fold cross-validation and grid-search for 
parameter optimisation of decision tree 
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Figure 5. 3: ROC curve for decision tree, Logistic Regression and SVM 

 

A good model yields a curve that lies on the North-Western part of the plot, while a bad 

model yields a curve that is far from the north-western position. The x-axis of the curve 

represents the rate of false positives, while the y-axis is the rate of true positives. The 

ROC is meant to address details that were missed by the accuracy measure and the 

classification error. 

  

5.4 SECOND EXPERIMENT: UNSTRUCTURED DATA 

In this section of the study, the researcher aims to show the results obtained from the 

application of classification rules and machine learning algorithms on unstructured data 

using Conditional Random Fields sequence classifier. The task was to extract meaning 

from unstructured data, then standardize it in order to enable searchability, 

comparability and exchangeability. The task involved the extraction of smoking 

information and determining if the patient is a current smoker; is a past smoker; or is a 

non-smoker. Therefore, there are three classes from which each document should be 

classified, and as thus the classifier is evaluated on its ability to correctly assign an 

appropriate tag or class on the correct document based on the gold standard. This 

means that if the gold standard matches with the predictions made by the classifier, 
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then that is regarded as a correct prediction. The CLAMP software uses the CRFSuite 

library (Okazaki, 2007) and this library outputs the precision, recall and the F1-measure 

score. These evaluation measures were produced for all the five folds that were 

executed for selecting the best model and for optimizing the parameters. In each fold, 

CRFSuite uses the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) 

algorithm for estimating the CRF parameters, and default settings were used for the 

CRF parameter. A paper by (Okazaki, 2007) has more details on CRFSuite 

implementation. Table 5.3 represents the summarized results for the 5-folds of cross-

validation which executed for a minimum of three hours for each model. It must also be 

noted that the results in this section are presented differently than on the previous 

section, since more than one class is predicted. Instead of representing results through 

a confusion matrix, the researcher will thus present the results through a micro and 

macro-averaging for the precision, recall and F-measure scores.  

 

Table 5. 3 Results for smoking status detection produced by a CRF sequence 
classifier 

  Output from CLAMP prewritten rules (A) Output from customized rules (B) 

 P R F1 TP Prd G P R F1 TP Prd G 

Past 

Smoker 

0.788 0.882 0.832 82 

 

104 93 0.724 0.750 0.737 84 116 112 

Current 

Smoker 

0.833 0.784 0.808 80 96 102 0.574 0.684 0.624 39 68 57 

Non-

Smoker 

0.783 0.722 0.751 65 83 90 0.714 0.652 0.682 60 84 92 

Macro 

Avg. 

0.801 0.796 0.797    0.670 0.695 0.681    

Micro 

Avg. 

0.8021 0.8438 0.822    0.6829 0.7011 0.692    

 

Precision, Recall and F-Measure 
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The researcher started training the model with annotations that were produced from 

executing both prewritten rules and customized rules. Prewritten rules are represented 

as output “A”, and annotations from customised rules are represented as output “B” 

(see Table 5.3). Therefore, these results will be referred to as specified throughout this 

section. Table 5.3 shows an abbreviated version of the evaluation measure, the items 

below give an expanded version of these abbreviations: 

 P: Precision 

 R: Recall 

 F1: F-measure 

 TP: True positives 

 Prd: Prediction count 

 G: Gold standard 

The findings show that output “A” has outperformed output “B” for all the predictions. 

There were 112 “pastsmoker” annotations that met the gold standard for output “B”, 

however, according to output “A”, there are only 104 annotations for the “pastsmoker” 

class. Now based on the gold standard, it can be said that none of the annotations 

agree to have the same gold standard, it is only the “nonsmoker” class that has 

approximately the same quantity of annotations between output “A” and output “B”. 

Furthermore, it can be observed that the number of true positives are 5 annotations 

apart, and the number of predictions differ by 1 between the two outputs. Another 

observation is that the “pastsmoker” has the highest F-measure for both output “A” 

(0.832) and output “B” (0.737), meaning that there is a balance between precision and 

recall for this class, however there is a need for improvement. The researcher has 

further computed the micro and macro-averaging since there are multiple classes to be 

predicted. (Wang & Domeniconi, 2008) say that the micro-average is used for 

computing the average precision at a document level, or at an annotated corpus level, 

unlike macro, which computes the average precisions from all the classes that are used. 

One of the key takeaways is that macro-averaging has more influence on smaller 

classes, and on the other hand micro-averaging has a high measure of effectiveness on 

larger classes (Manning et al., 2009).  
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Furthermore, the precision and recall results give more information about the class 

distribution and the correctness of the methods used for identifying correct classes. The 

class with both the highest precision and recall is a sign that the rules that were used 

were able to detect the smoking statuses in the given corpus. In addition, the test data 

had enough tests for the calculation of predictions for the same class, meaning there 

was a good class coverage. A true reflection of such a case was the precision of the 

“currentsmoker” class for output “A”, which was 83%, while the recall was 78%, thus 

indicating a roughly balanced trade-off between precision and recall. Therefore, the 

annotation improvements will be based on enhancing class coverage on the test set, 

and also improving the rules for class detection. 

 

5.5 FIRST EXPERIMENT DISCUSSIONS 

The researcher has demonstrated that laboratory data that is standardized in LOINC 

could be used to formulate a predictive model, which could be used to predict the 

LOINC codes that should be assigned to unstandardized data. Firstly, the researcher 

discusses the results obtained through the performance indicators. 

ROC results 

The ROC curves are less biased by the class distribution; these curves are used 

together with AUC, which measures how good the area under the curve is; where the 

larger the curve, the better the model. The results presented in Figure 5.3 were made 

based on the following setup, a 10-fold cross-validation, with a split ratio of 0.9 and the 

sampling was set to “shuffled” for the ROC function. From the ROC curves, it can be 

observed that SVM outperforms the rest of the models, where the SVM has a higher 

number of true positives while incurring a small percentage of false positives, however 

this was based on small sample. According to (Witten & Frank, 2011), the results of the 

ROC are interpreted based on the shaded area, or convex hull. The study by (Witten & 

Frank, 2011) argues that one should always operate at the upper boundary of the 
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convex hull. Other measures were also used to determine the correctness of the 

generated models. 

Recall and Precision 

Recall was used to determine records that were mistakenly predicted to match whilst 

they actually not matching. Precision then looks at all the predicted records to be 

matching, determining the fraction of them that are actually matching. Recall was used 

to check the prediction coverage of the classifier, because prior to predictions, it is 

already known how many records match and those that do not match. If the recall gives 

an output with a lesser number than the actual number, it is a sign of an incorrect 

classifier. A high recall is an indication that there are less chances of misclassifying a 

non-matching record as a match. A high precision means that the chances of 

misclassifying a matching record as non-matching was small. A recall of 91.5% for the 

decision tree and 91.11% for SVM is a good result, although, on the other hand, the 

precision was also high. These two measures were balanced by the high F-measure 

score, because having a high precision trades off recall and vice versa.  

 

Error analysis 

The researcher has found that matching and mapping laboratory data to a standard is a 

laborious exercise that needs time and skill to perfect, as noted by (Abhyankar et al., 

2012; Lee, Groß, Hartung, Liou, & Rahm, 2013). Hence the researcher has attempted 

to solve the problem through a machine learning process. As the results have been 

shown on the previous sections, it was not enough to just accept these results without 

questioning their accuracy. Error analysis was applied for checking the correctness of 

the produced models. During error analysis, the researcher checked for high bias and 

high variance. There are various methods for testing high bias and high variance. An 

expert in machine learning (Ng, 2011) suggests that one of the methods for detecting 

high bias and high variance is through the observation of the training error and the 

testing error. Having said that, a random sample of 100 sets from the training data was 

then used to train the classifier. At that time, the researcher used the SVM classifier 
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because (Singh, 2010; Xu, Caramanis, & Mannor, 2008) said SVM has proven to be a 

robust classifier. The result of the error analysis is shown in Figure 5.4 where it shows 

that when more training sets are added, the classifier’s test error decreases, resulting in 

a logarithmic curve, and it was the same with the train error, however, in an opposite 

direction. The objective of this was to get a test error value that was close to the training 

error value, provided there was low test error and training error. The problem with the 

tests produced, was a high recall and high precision, which was a positive attribute of a 

good classifier. However, the researcher went on to manually assess the predicted 

results. It was discovered that the classifier could not distinguish between common tests 

such as cholesterol ldl and cholesterol hdl. This was caused by the fact that the 

similarity weight between the two observation names was 0.9522, and that the rest of 

the weights for other features gave a high score, which meant that the two records were 

the same. If adding more features would fix the problem, then (Ng, 2011) says that is a 

sign that the model is highly biased.  

 

 

Figure 5. 4: SVM model classification error 
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Therefore, the researcher revisited the features and identified more features to be used 

for the classifier. 

  

Feature refinery for distinct matching 

The researcher has discovered that adding more distinct features improves the 

performance of the classifier. This ultimately removes false matches, and these findings 

are similar to that of (Kum, Krishnamurthy, Machanavajjhala, Reiter, & Ahalt, 2014). The 

features that were added include the following: valuerange, hastimeaspect, sameunits, 

patientgender, testtime, and the testrank. 

- valuerange: checks whether the recorded source observation value is in the 

same range as the target observation. 

- hastimeaspect: checks if the target observation is measured at certain intervals, 

for instance, whether blood pressure is being measured every hour, and there is 

specific LOINC code used for identifying such tests. 

- sameunits: removes the metric value on a unit of measure, e.g. mg/L would be 

g/L. Another test may use a different metric such as kg/L, and the “SameUnits” 

feature would register the two units as similar. 

- patientgender: captures the patient’s gender, where some tests differ by gender. 

- testtime: refers to the time when the source tests was taken. The value of this 

feature was calculated for a patient by specifying a test day, and then checking 

how often the same test occurs. If the test is done on every specific interval, then 

variable “TestTime” will store the value of the interval. If, for instance, a test is 

done every hour, then the “TestTime” features will store a value of “hourly”. 

- testrank: The LOINC top 2000 document includes 98% of the tests from three 

large institutions and the document ranks tests based on the observed usage. 

Other researchers have also seen the need to extend observation names. (Kim et al., 

2012) have discovered that extending the observation name improved LOINC mapping. 

The researcher has also extended the observation names, unit of measure, and test 

category. In fact, when the decision tree model was run, the expUomWeight and 
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UomWeight were the most dominant feature at the root of the tree (see Appendix C for 

the decision tree model). Existing literature in laboratory data standardization has 

shown that the unit of measure feature is important and necessary for identifying tests 

(Abhyankar et al., 2012; Fidahussein & Vreeman, 2014; Lin, Vreeman, & Huff, 2011). 

(Vreeman, Hook, & Dixon, 2015) discovered that LOINC-mappers find it informative 

when they learn how other mappers map from other organizations.  

 

They therefore introduced a ranking attribute, which was used to see how often other 

LOINC-mappers have mapped to the test in question. As a result, these features were 

used to disambiguate common tests that have the same observation name, which 

caused confusion about which one should be used for mapping. The tests were ran 

again for both SVM and decision tree, however this time for a small sample of 200 tests. 

The decision tree achieved an accuracy of 91%, while the SVM had achieved an 

accuracy of 92.50% (see Table 5.4A and Table 5.4B, respectively). 

 

Table 5. 4A Confusion matrix for a decision tree classifier with accuracy: 91.00% 
+/- 5.83% (mikro: 91.00%) 

 true false true true class precision 

pred. false 132 12 91.67% 

pred. true 6 50 89.29% 

class recall 95.65% 80.65%  

 
 

Table 5. 4B Confusion matrix for the SVM classifier with accuracy: 92.50% +/- 
5.12% (mikro: 92.50%) 

 true false true true class precision 

pred. false 135 12 91.84% 

pred. true 3 50 94.34% 

class recall 97.83% 80.65%  
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It is realised that the sample used in these figures is small, due to an extensive process 

of identifying extra features for disambiguating common tests. The idea of a small 

dataset was meant to remove complexity in the mapping process, so that one can easily 

identify what causes bias and variance or errors in the training data. The researcher 

tested the performance of the SVM classifier by adding 22 unlabelled records to be 

predicted by the classifier, where the classifier was able to correctly predict 62% of the 

unlabelled records. This was a good indication that the extra step of feature engineering 

was necessary, and this was a sign that on a bigger dataset the prediction accuracy 

would increase, since a greater amount of data has proven to reduce the classification 

error while improving the accuracy. 

 

5.6 SECOND EXPERIMENT DISCUSSIONS 

The results of the second experiment have shown that the annotations that were 

produced through the predefined rules have outperformed the rules that the researcher 

has written. The rules that were written by the researcher were able to differentiate 

between the “currentsmoker” and the “pastsmoker” based on the time frame. Meaning 

that if the date of quitting smoking for the patient is less than a year, then such a record 

is classified as a “currentsmoker”, otherwise it is classified as a “pastsmoker”. Although 

the predefined rules yielded the best classification performance for all the classes, these 

rules only looked for the occurrence of keywords such as “former”, “quit”, “no longer” for 

assigning the “pastsmoker” class. Also, word features that represent the past (such as 

history or used to) were used together with the smoking-based words (such as smoking, 

smokes, tobacco, or cigarette) for identifying various types of smokers. For instance, the 

phrase “Tobacco: 40 year history of smoking” would be classified as a “pastsmoker” 

because of the keyword “history” and “smoking” appearing together.  

 

The results from output “A” in Table 5.3 does not seem to have followed the 

classification rules that were defined by (Uzuner, Goldstein, Luo, & Kohane, 2008) This 

observation emanates from records that were classified incorrectly as shown in Figure 
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5.5A and Figure 5.5B. Therefore, it can be said that the annotation on Figure 5.5B is 

correct because someone that has quit smoking less than a week ago should be 

classified as a “currentsmoker” instead of as a “pastsmoker”.  

 

 

Figure 5. 5A: Annotations from CLAMP’s predefined rules 

 

 

Figure 5. 5B: Annotations from the custom developed rules 

 

However, the classifier from output B has performed poorly for the classification tasks, 

and the researcher also identified that within a single annotated corpus, there were 

sometimes more than one class. For illustration purposes see Figure 5.6. 

 

 

Figure 5. 6: A double class annotation where a record is classified as 
“currentsmoker” and “nonsmoker” at the same time. 
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Since there were many classes that were identified on a single record as shown in 

Figure 5.6, the accuracy of the produced model was reduced when a single annotated 

corpus was classified to more than a single class because the number of gold standard 

records would increase, which would result in more false negatives and ultimately make 

the recall value lower than it is supposed to be. Therefore, as part of data pre-

processing, the researcher had to rewrite the rules, and also improve the training time 

so that it becomes easier and more efficient to train the models. Also, one of the 

challenges that the researcher had experienced regarding the writing of rules was that 

he was not adept at UIMA RUTA for multi-class detection rules. Therefore, instead of 

writing rules for annotating the three classes at one go, he resorted to writing rules for 

identifying two classes at a time. Thus, the first rules were between “nonsmoker” class 

and “smoker” class, the “smoker” class includes both “currentsmoker” and 

“pastsmoker”. Then the second set was based on the “nonsmoker” and the 

“pastsmoker” class. The reason for these rules was to cover phrases such as “He has a 

history of tobacco use, but does not smoke currently.” Initially this was classified as both 

“currentsmoker” and “nonsmoker”. The classifier predicted that it is a “currentsmoker” 

because of the use of words such “history of smoking” without specifying the time frame 

when the person quit smoking, and it was classified also as “nonsmoker” because of the 

phrase “does not smoke”. Then the third and last set of rules were between the 

“currentsmoker” and the “pastsmoker” classes. 

 

Efficiency and error analysis 

The three hours of training the model was undertaken because a full corpus was loaded 

instead of only loading text that contained smoking information. Each annotated corpus 

contained approximately a minimum of 3500 words, and within that corpora, information 

that was of interest to the researcher was about 20 to 100 words. However, in order to 

only load the relevant information onto a file for training, one had to open each 

document and search for the required information, then copy and save the extracted 

text into a new file. Initially, the researcher used this method which was lengthy and 

cumbersome. However, because of this inefficient method, he then decided to write a 
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simple C#.net windows program that could read the clinical corpora and extract the 

relevant information and save it with a proper name that eases the process of 

annotation preparation and data training. (See Appendix D for the screenshots, and the 

code which has been shared on Google drive as shown in Appendix E). Extracting the 

relevant information did not only help with the inefficient processes, but it also gave the 

researcher the opportunity to train with more and relevant data, since it is known from a 

classic study by (Banko & Brill, 2001) that the algorithm’s performance improves as 

more relevant data is added. When the corpora were shortened into relevant text, the 

annotation process took less than 2 minutes for 195 records, and training and testing as 

well took less than 5 minutes which was a massive improvement. Therefore, the 

researcher took advantage of this and added more training and test data. 

 

Re-evaluating the model 

Following the CRISP-DM framework allowed one the flexibility to revisit the data 

collection and preparation process frequently, even after the model was tested and 

evaluated. One should remember that the model was tested on a gold standard that the 

researcher was satisfied with, which meant that when new training and test data was 

added, the rules that were used to generate the gold standard were not changed, 

however the ones that generated double classes (see Figure 5.6) were updated so that 

only one class was selected. Therefore, the researcher collected more training and 

testing data which amounted to a total of 1242 annotated corpus, and for training and 

testing the researcher continued with the k-fold cross validation method. The same word 

representation features were selected as discussed in section 4.6. 

 

The classifier was trained and tested and the summarized results for the F-measure 

score was 94.4% for “nonsmoker”, 54.1% for “pastsmokers” and 80.2% for 

“currentsmokers”, see Table 5.5. These results showed a sharp increase for both 

“nonsmoker” and “currentsmoker“ records, while the “pastsmoker” performance 

decreased. The performance of the “nonsmoker” class has surpassed that of (Liu et al., 
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2012) for document-level classification. (Liu et al., 2012) did a similar study where they 

focused on transferability of the smoking status detection module at different 

institutions, and their results for “nonsmoker” detection have shown an F-measure of 

97% for sentence-level classification, 93% for document-level classification and 87% for 

patient-level classification. However, the current study was not specific on the type of 

clinical notes, as all training and testing was done at a document level and each 

document represented a unique patient from the MIMIC-III database. 

 

Table 5. 5 An earlier test results for the Named Entity Extraction for the patient’s 
smoking status and other relevant information through a CRF sequence classifier 

  Output from customized rules 

 P R F1 TP Prd G 

CurrentSmoker 0.807 0.797 0.802 467 529 518 

NonSmoker 0.969 0.919 0.944 569 587 619 

PastSmoker 0.521 0.562 0.541 223 428 397 

Macro Avg. 0.7656 0.7593 0.7623    

Micro Avg. 0.815 0.821 0.818    

 

An earlier study by (Sohn & Savova, 2009) had obtained a much higher F-measure of 

97% for the “nonsmoker” detection class at a document-level, while a recent study by 

(Liu et al., 2012) obtained an F-measure of 93%. Getting more relevant training data 

has proven to have more influence on the performance of the algorithm. As the 

researcher added more training data, the F-measure of the “pastsmoker” increased 

from 0.54 to 0.657, while recall also increased to 0.669. Increasing precision means that 

false positives are reduced, and also increasing recall means that false negatives are 

also reduced, and the balance between precision and recall is important for improving 

the performance of the algorithm.  
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Table 5. 6 Later test results for the Named Entity Extraction for the patient’s 
smoking status and other relevant information through a CRF sequence classifier 

  Output from customized rules 

 P R F1 TP Prd G 

CurrentSmoker 0.839 0.821 0.830 439 523 535 

NonSmoker 0.973 0.925 0.948 613 630 663 

PastSmoker 0.646 0.669 0.657 410 635 613 

Macro Avg. 0.8193 0.805 0.8116    

Micro Avg. 0.838 0.807 0.822    

 

It should also be noted that these results were generated by the same rules that were 

used to build the gold standard, and when more new data was added for training and 

testing, the performance increased rather than decreased which might be a sign that the 

rules that the researcher had defined were robust to the change in data, which implies 

that they could be implemented for extracting smoking status from other institutions. 

However, the classifier produced poor performance for the “pastsmoker” even when 

more data was added, so one can see that from a total of 613 gold standard records for 

the “pastsmoker” class, only 410 were correctly predicted which resulted in a precision 

of 64.6% which was still poor. Apart from the “pastsmoker” results, it is worth 

mentioning that these results were as good as the data that was used, in this case the 

MIMIC-III data. Therefore, the results might be influenced or biased to the manner in 

which the health clinician captured the data. Furthermore, the performance of these 

rules could further be tested on different data from different institutions. Part of the 

output produced by CLAMP includes a “.jar” file, which could be reused for annotation 

purposes on other projects. In the following chapter, the researcher discusses the 

meaning of these results in terms of interoperability in healthcare. 

 

Mapping to a coding standard 
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The goal for extracting smoking status information was to organize this information so 

that it would be easier to search for and standardize how this information is represented 

and shared across different institutions and health systems. Also, once the information 

is extracted, more analysis could be made on the same information. In Figure 5.7 the 

researcher shows the predictions that were made by the classifier, and additional 

information was also extracted such as the smoking frequency and temporal 

information. Although the classifier was able to extract time-based information, it did not 

know that “since” could be used to identify the length of time that the patient has been 

smoking, therefore more research could be done for such cases.  

 

 

Figure 5. 7: Predicted Named Entities from the CRF classifier 

 

Figure 5.7 represents the resulting performance of the model that was produced from 

training the CRF classifier. Now on a production application, the produced model could 

be used to annotate data that has not been annotated without the need to go through 

the training and testing process again. Table 5.7 represents results from the annotated 

text that could further be mapped into a coding standard such as SNOMED-CT and 

LOINC, as mapping to a coding standard ensures that the data is exchangeable across 

different institutions and health systems. One can also observe from Table 5.7 that each 

entity that was extracted has been automatically mapped to CUI codes by the UMLS 

encoding algorithm. Now mapping to SNOMED-CT and LOINC would need one to write 
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a simple computer program that takes as input the predicted class name, e.g. 

“currentsmoker” and maps to coding standard code, see Table 5.8. 

Table 5. 7 Results from executing rules on clinical text data 

Start End Class CUI Entity 

Extracted 

112 118 CurrentSmoker C0037366 smokes 

123 126 Frequency C0032739 1.5 ppd 

133 139 Temporal C1850825 age 15 

179 184 Temporal C2302314 3 yrs 

 

Mapping to a coding standard helps during data exchange and data sharing, and the 

researcher suggests that Fast Healthcare Interoperability Resources (FHIR) can be 

used for exchanging a patient’s coded information between health care institutions. 

FHIR represents clinical data as resources and each resource contains data that is 

represented by coding standards. It uses RESTFul API to exchange messages between 

two parties, and the messages could be represented in JSON, XML (Mandel, Kreda, 

Mandl, Kohane, & Ramoni, 2016) and now also includes a Turtle format. FHIR also 

uses profiles to group common use cases that are defined together, and the profiles 

contain data constraints, Value Sets and examples. Box 1 shows the use of FHIR 

profiles where a coding standard is used together with the identified class name (current 

some day smoker). 

 

Table 5. 8 SNOMED-CT coding information according to the UMLS metathesaurus 
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Concept code Concept name Coding system 

428071000124103 Heavy tobacco smoker Current Heavy tobacco smoker 

428061000124105 Light tobacco smoker Current Light tobacco smoker 

428041000124106 Current some day smoker Current some day smoker 

8517006 Former smoker Former smoker 

266919005 Never smoked tobacco Never smoked tobacco 

77176002 Current smoker Current smoker 

449868002 Smokes tobacco daily Smokes tobacco daily 

266927001 Tobacco smoking 

consumption unknown 

Tobacco smoking consumption 

unknown 

 

Box 1- Smoking status profile in a JSON file format 
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{ 

   "resourceType":"Observation", 

   "id":"5-smokingstatus", 

   "meta":{ 

      "versionId":"1", 

      "lastUpdated":"2018-01-31T19:48:22Z" 

   },  "text":{ 

      "status":"generated", 

      "div":"<div xmlns=\"http://www.w3.org/1999/xhtml\">Tobacco smoking status: 

Current some day smoker</div>" 

   }, 

   "status":"final", 

   "category":{ 

      "coding":[ 

         { 

            "system":"http://hl7.org/fhir/observation-category", 

            "code":"social-history", 

            "display":"Social History" 

         } 

      ], "text":"Social History" 

   }, 

   "subject":{ 

      "reference":"Patient/1032702" 

   }, 

   "issued":"2016-03-18T05:27:04Z", 

   "valueCodeableConcept":{ 

      "coding":[ 

         { 

            "system":"http://snomed.info/sct", 

            "code":"428041000124106", 

            "display":"Current some day smoker" 

         } 

      ], "text":"She is a past smoker, quit five years ago. She has a 50 pack year 

history of tobacco usage." 

   } 

} 

 



  

160 
 

5.7 CONCLUSION 

In this chapter, the researcher reports the results of the two experiments that were 

conducted throughout the duration of this study. This chapter references the evaluation 

stage of the CRISP-DM model. All the sections in this chapter are meant to cover as 

much detail as possible about the results of the experiments. Multiple similarity measure 

functions were used to evaluate whether the source string matches with the target 

string. In section 5.2, the researcher evaluated the performance of Jaro-Winkler against 

Edit distance for laboratory data, and Jaro-Winkler outperformed Edit distance. Then in 

section 5.3 the researcher went on to compare the classifiers that were used namely 

SVM, Decision Trees and Logistic Regression. It was discovered that the Decision 

Trees classifier outperformed SVM and Logistic Regression, while SVM performed 

second-best. However, when more distinct features were added then the SVM 

performed better than the Decision Trees classifier. In section 5.4, the researcher 

covered experiments that involved the testing of annotations that have been identified 

from clinical text data (corpora). Results were reported, and in section 5.5 the 

researcher discussed results that were obtained from training the structured data. 

Section 5.6 discussed the results from the unstructured data, and also suggested the 

use of FHIR resources for data exchange and clinical message representation. 
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CHAPTER 6 

Conclusions and Recommendations 

 

6. IMPLICATIONS OF THE FINDINGS 

6.1 INTRODUCTION 

In this chapter, the researcher focuses on attempts made to address the interoperability 

problem, where in section 6.2, the researcher discusses the framework used. Section 

6.3 addresses the attempts made to solve the interoperability problem for both 

structured and unstructured data. Section 6.4 talks about the study limitations, outlook, 

and lessons learned.    

6.2 IMPLICATION OF THE FINDINGS BASED ON CRISP-DM PROCESS 

How can the process of data compliance across health care providers be 

automated through machine learning concepts? 

This question detailed the step-by-step process that the researcher used in order to 

address the research problem. The researcher has used the CRISP-DM framework 

(see Figure 6.1) as guideline for conducting this study. CRISP-DM was used because 

the researcher has sought to solve this problem through data science concepts. Firstly, 

the researcher has identified the actual problem that this study aims to address. 

Namely, the lack of interoperability between health care providers. If health care 

systems are operated in silos, then there is a high chance that the data will not be 

semantically and syntactically interoperable. In Chapter One, the researcher addressed 

the causes of the lack of interoperability, and the effects of this problem were also 

addressed in the same chapter. Chapter Two addressed the properties of the data, in 

terms of what prevents this data from being interoperable. Relevant data was collected 

from different sources in order to simulate the problem that currently exists in health 

care. It was indeed true that data from different sources is stored differently, and this 

causes the data to be loosely structured, where ultimately, the data becomes non-

interoperable. In Chapter Three, the researcher identified methods that could be used to 

normalize the data in such a way that it is easier to process on a computer. These 
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methods are data normalization, data cleaning and data preparation. In Chapter Four, 

the researcher identified the predictive models to be built for the data that has been 

identified for this study. 

 

Figure 6. 1: CRISP-DM process flow (Source: (Olson & Delen, 2008)) 

Before predictive models could be applied, feature engineering was applied on the data, 

where features were extracted, and for unstructured data (corpora), the researcher had 

built rules in order to formulate an annotated corpus for the purpose of training. A gold 

standard was established for both structured and unstructured data, and this 

establishment was achieved through testing and evaluating the coverage of the gold 

standard on the training data that was identified. Then in Chapter Five, models were 

built and evaluated through the test data using a v-fold cross validation. The whole 

execution of this study was guided by the CRISP-DM framework, although different 

types of data, tools and different feature extraction and selection methods were also 
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used. This study has followed the process as shown in Figure 6.1 with an exception of 

the last process depicted, which is not covered in this study because there is no system 

that will be implemented. However, the output from the produced models could further 

be used as input to other systems such as a Clinical Decision Support System or 

Analytical Systems, and it could also be used for research purposes because it would 

have simplified making the data comparable. The CRISP-DM framework has proven to 

be a useful guideline for performing all the data mining processes for health-based data, 

whether it is structured or unstructured. In addition, this study only covered the variety 

property of big data, meaning it has partially captured the use of big data in health care 

through the CRISP-DM guideline. However, (Li, Thomas, & Osei-Bryson, 2016) have 

proposed a new framework called a snail shell process model. This framework is said to 

be suitable for the challenges that come with big data, also it was built to improve 

problem formulation, monitor and update models, and move between phases in the 

Knowledge Discovery and Data Mining (KDDM) process. Therefore, in future one would 

like to explore this framework further when addressing a problem that fully captures all 

the properties (volume, velocity, veracity, variety) of big data. 

 

6.3 IMPLICATION OF THE FINDINGS 

The researcher has set out a goal to use machine learning for addressing the problem 

of syntactic and semantic interoperability in health care. This study was focused on 

clinical observation data that could be mapped to a standard. It has been mentioned 

previously that health coding or terminology standards could be used to achieve data 

interoperability. The researcher therefore learnt how to apply a coding standard from 

data that had already been standardized. For structured data, the researcher applied a 

machine learning algorithm to learn from the patterns of the already standardized data. 

While for unstructured data, due to the lack of clinical data annotation knowledge, and 

the lack of previously and freely available smoking status annotations, the researcher 

thus opted to write rules for creating the annotations. The annotated documents 

(corpus) were used as input to the sequence-based machine learning algorithm (CRF) 
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and the corpora were used for supervising the algorithm. In the following subsections, 

the researcher talks about the implications of his findings. 

6.3.1 INTEROPERABILITY FOR STRUCTURED DATA 

In South Africa, (Adebesin, Kotzé, et al., 2013) reflected on the lack of well-skilled 

standards developers as one of the reasons it is difficult to implement health standards. 

Standards change over time, they are expensive to implement, and as mentioned 

above, there are many to choose from.  Therefore, the researcher has identified 

common health standards that are prescribed by the Meaning Use program which is 

aimed at fixing the lack of interoperability in healthcare. The researcher has come up 

with an approach that uses machine learning in order to address the standards 

implementation problem. What the researcher proposed is an automated method for 

estimating the similarity between two potentially similar data objects. Data matching 

concepts were used as defined by (Bonifadi et al., 2011; Christen, 2008, 2012; Jahns & 

Veit, 2012) in order to identify similarities between related records. The objective was 

not to integrate one dataset to the next as it is done with record linkage and record 

matching but, it was about learning how one dataset (target) structures its data so that 

its patterns could be applied to one (source) whose data should be transformed. To the 

knowledge of the researcher, the approach that the researcher had used is unique, 

because it used record linkage and data matching concepts to compare data 

standardized data and unstandardized data so that the unstandardized data could be 

mapped to the one which is standardized. Also in this study, it is shown that 

standardized data implements the LOINC coding standard, while the unstandardized is 

the data to be transformed to LOINC. The researcher has experimented with the LOINC 

coding standard, because it is free and easy to use. Other researchers including 

(Abhyankar et al., 2012; Fidahussein & Vreeman, 2014; Kim et al., 2012; Lee et al., 

2013; Vreeman et al., 2015) have achieved a high accuracy while mapping to LOINC 

through the RELMA mapping tool. These researchers’ method loaded the data to be 

mapped into the RELMA tool, then the RELMA tool predicts the potential matching 

observation to which the data should be mapped. The core difference between the 

RELMA tool and the current study (for structured data), is that this study although it 
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used laboratory observation names and LOINC to conduct experiments, the approach 

that the researcher proposes could be used to standardize data of any form. It should 

be noted that this study was not aimed at creating another clinical observation mapping 

system or tool, but it was testing whether a standard could be learned, irrespective of 

whether it is SNOMED-CT, LOINC, CPT, ICD-10, RxNorm or any other coding 

standard.  

 

From mapping to LOINC, the researcher has learnt that other observations could not be 

mapped because the starting word of the observation name was completely different to 

the one it should be mapped to. For instance, “Blood Urea Nitrogen” from the MIMIC-III 

database could not be mapped to LOINC, because LOINC uses “Urea Nitrogen” 

instead. Therefore, n-gram could have been used to achieve such mapping. Mapping to 

LOINC also provides an educational platform that allows clinicians to learn new 

methods of referring to observation names, for instance there is no observation called 

“Lactic acid” in the LOINC database, however it is called as such in the MIMIC-III 

database, where LOINC has “lactate”. According to (Cormont et al., 2011), all acids 

should be written in the form of salts, and hence such information is vital when mapping 

to LOINC. It was also proven from this study that different databases use different 

naming to record the same information, the CareVue and the MetaVision HISs are an 

example of this.   

 

6.3.2 INTEROPERABILITY FOR UNSTRUCTURED DATA 

The goal for the classification of unstructured data was to address the standardization of 

behavioural or environmental data. This was required because patients are often 

affected by the environment. (Wild, 2012) mentions that chemical exposure such as 

arsenic or benzene result into epigenetic changes, and even the patient’s smoking 

status has a certain pattern in microRNA expression. Since environmental data is often 

recorded in an unstructured textual form, the aim was to extract meaningful concepts 

from this unstructured data, then standardize it so that the recording of it is not affected 

by location, time, institution or the person recording it. By standardizing this information, 
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it would then be structured in way that makes it easily comparable, searchable and 

exchangeable across disparate healthcare institutions. Firstly, information had to be 

extracted from unstructured text then mapped to a corresponding coding or terminology 

standard. However the process of extracting the data was different from previously 

related studies by (Liu et al., 2012; Sohn & Savova, 2009). These researchers 

attempted to address this problem through a customized cTakes program, which was 

applied at three different levels namely: sentence, document and patient. These 

researchers achieved a high performing model at both sentence and document-level. 

However, the annotations that were created in this study were also able to produce a 

high classification performance, especially for the classification of the “nonsmoker” 

class. This study had some similarities with the study by (Liu et al., 2012), since both 

have used a rule-based method and a machine learning method for training. However, 

(Liu et al., 2012; Sohn & Savova, 2009) had used SVM for learning how to annotate the 

given corpora, and in this study the researcher has used a CRF classifier. CRFs have 

previously outperformed non-structured SVM (Li, Kipper-Schuler, & Savova, 2008),  and 

they mainly focused on predicting a large number of variables that depend on one 

another such as English phrases and the parts of speech tags. This study has gone 

beyond the classification of a smoking status and has used word shape, random 

indexing and word embedding features for understanding the meaning in text data. A 

highly cited paper by (Kenter & de Rijke, 2015) has established that word embedding 

features allow one to find semantic similarities between words, since words that are 

syntactically or semantically similar appear close to one another in a semantic space. 

All the features that the researcher used were for achieving high performance, even 

though the results of the smoking status prediction were lower than expected especially 

for the prediction of the “pastsmoker” class. However, it was observed that as more data 

was added, the performance of the classifier was constantly improving even for the 

“pastsmoker” class. Additionally, the rules would need to be updated so that they are 

able to cover complex conditions on a given text data.  
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Now a high performing classifier for all the classes would imply that the generated 

annotated corpora would be reusable for other research projects for detecting smoking 

status in clinical text. In addition, (Albright et al., 2013) have also seen the potential that 

distributable clinical annotated corpora have in the improvement of clinical decision 

support systems; clinical research combining phenotype and genotype data, quality 

control, comparative effectiveness and medication reconciliation,  just to mention a few 

useful clinical applications. In this study, the researcher had to start from scratch 

building rules for annotating clinical documents for the purpose of identifying patient’s 

smoking status, then mapping it to a suitable coding standard. However, had these 

annotations been freely available for research purposes, it would have catalysed the 

annotation of other documents and the mapping process. Ultimately, the researcher 

was able to use NLP and machine learning methods to get the patient’s smoking 

information, such as the quantity and frequency of cigarettes smoked, and the dates 

associated with the usages. The extracted data was automatically mapped to UMLS 

CUI codes. Mapping to CUI codes helped to make the data interoperable because of 

common methods to identify and represent the data. The researcher also had 

suggestions on how to further map the predicted classes into a coding standard. 

However, despite what was achieved in this study, there were still limitations that were 

identified. 

   

6.4 LIMITATIONS, FUTURE AND ADVICE 

The selected databases were heterogeneous in structure because they were collected 

from two unrelated sources. MIMIC-III database contains both structured and 

unstructured data. Additionally, the data was not collected on a real-time basis, and it 

can be easily stored on a traditional database without needing a distributed processing 

framework such as Hadoop. This showed that the selected databases do not qualify to 

be labelled as big data. However, the data standardization technique that the 

researcher proposed can be applied on big data. This could be done in real-time where 

system A wants to exchange patient’s data with system B. The data to be exchanged 

would be formatted and standardized so that the receiving end is able to interpret it. 
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Furthermore, applying what the researcher proposes in a real-time database is still to be 

explored. This study has only explored the variety characteristic of big data, volume, 

velocity and veracity is still to be explored.  

 

The data to be mapped to the target dataset often comes from heterogeneous data 

sources, and dataset-based matching systems implement a wrapper (Fengguang, Xie, 

& Liqun, 2009). A wrapper helps compose the data so that it can be integrated to the 

target data source, where the data format could be “XML”, “CSV”, “HTML”, “RDF” and 

more. In this study, the researcher assumes that the structured data has already been 

composed in a readable format that can be queried through SQL. Therefore, the 

researcher has not used any wrappers for this data, even though it came from multiple 

sources. Further it was identified that LOINC has around 84868 observation names, and 

only a total of 1070 unique observation names were used in this study. The researcher 

has adapted the guidelines for mapping to LOINC from studies by (Abhyankar et al., 

2012; Kim et al., 2012). These researchers have advised that mapping ought to be 

supervised by an expert. Since mapping to coding standards in South Africa is still a 

research task, therefore the researcher did not consult an expert for the LOINC 

mapping tasks. An annotation expert is also required for the annotation of clinical data, 

in the case of this study this was smoking status. However, in future, the researcher will 

compile a detailed guideline as per the advice of (Pustejovsky & Stubbs, 2013) for the 

purposes of annotation, and then consult an expert for the annotation task.  

As for the unstructured data, the researcher used the predefined dictionaries that came 

with the CLAMP tool, this was done because of the lack of detailed documentation on 

how the dictionaries were created. It would have been more advantageous if the 

researcher had been able to use his own dictionaries and n-grams that were suitable for 

smoke status classification. The knowledge and the application of the UIMA RUTA rule 

language was an important component for the automatic annotations task. However, the 

researcher had spent a lot of time learning the scripting language which has a steep 

learning curve, and this was also the view of (Pablo, 2014). Furthermore, the storage of 
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the annotated data has not been thoroughly covered, but experts suggest the use of a 

NoSQL database such as CouchDB (Rea et al., 2012).  

 

As for the mapping tasks, this study suggested the use of UMLS CUI for each of the 

extracted concepts. However, for the purpose of mapping the smoking status classes, 

the researcher suggested the use of FHIR profiles which emphasizes the use of coding 

standards for clinical data.  However, other studies (Oniki et al., 2016; Pathak et al., 

2013; Wu et al., 2013) have also used the same coding standard, but instead of 

implementing them through FHIR profiles, they have used Clinical Element Models 

(CEM). According to (Oniki et al., 2016), CEMs were developed by Intermountain for the 

SHARPn project. The SHARPn project is also called Strategic Health IT Advanced 

Research Project. Through this project open-source tools were developed for the 

purpose of standardizing EHR data for secondary use. During the initial stages of this 

study, the researcher had tried to use one of tools (cTakes) for the standardization of 

unstructured data. However, he could not install the tool and then he resorted to finding 

other tools such as CLAMP which was useful for the purpose of this study. However, 

CLAMP is not open-source, and when the researcher used it, it was still in its infancy 

Version 1.3. Therefore in future, the researcher would like to explore more of the 

SHARPn tools for the problem of standardizing the timeline for long-lived patient’s data 

across multiple data sources, and scaling technologies such as Hadoop would come 

handy in addressing this problem. Key lessons were that a project of this nature needs 

a proper project plan, therefore project management skills are a necessity, hence the 

use of CRISP-DM provided a valuable guideline for conducting this study. The 

researcher has also discovered the importance of being agile and experimenting early 

in the project, while focusing on small data and less complex algorithms. Therefore, the 

use of RapidMiner was advantageous and beneficial for this study, because conducting 

experiments is quick and much clearer since it uses a visual representation of the 

classification processes, also it allowed one to extend the functionality of the algorithms 

by writing Python code. The first experiment of this study yielded results that show that 

the method that the researcher used could be used for finding errors in data. 
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Considering that one set of data is correct and standardized, comparing that set with 

another data set would show where these two sets match and where they do not match. 

The obvious application is the data mapping tool between disparate datasets.  

 

6.5 CONCLUSION 

This chapter presented a summarized version of the work that was done in this study. 

Firstly, on the introduction in section 6.1 the researcher identified what each section was 

meant to cover. In section 6.1 the researcher presented the implications that CRISP-DM 

framework had on this study, then in section 6.3 the researcher reflected on the findings 

of both experiments that were conducted, thereafter in section 6.4 the researcher 

mentioned limitations that were experienced while conducting experiments and he 

explores potential future studies and advises on lessons learned while carrying out the 

study.   
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APPENDIX A-1: ETHICAL CONSENT LETTER FROM UNISA 
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APPENDIX A-2: REPORT TO AUTHORIZE THE USE OF MIMIC-III DATABASE FOR RESEARCH 
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APPENDIX B: PROCESS FLOW FOR ROC RESULTS COMPARISON BETWEEN SVM, DECISION TREES 

AND LOGISTIC REGRESSION 
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APPENDIX C: DECISION TREE, SPLITTING CRITERION EVALUATION 
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APPENDIX D: SCREENSHOT OF THE PROGRAM THE RESEARCHER WROTE FOR THE PURPOSE OF 

EXTRACTING SMOKING INFORMATION FROM A LARGE TEXT FILE 

 

Code for this program is accessible as shown in Appendix E. 
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APPENDIX E: SETUP FILES AND RESULTS FROM EXPERIMENT 1 AND EXPERIMENT 2 

Accessible via google drive: https://drive.google.com/open?id=1iSXK-

CAJaSXbFbhmdpmmvFzaAEG8Nupq  

- Experiment 1 

o Setup files and executable files include, results are in a .txt file 

 Code for simialrity weight calculation (requires Octave or Matlab) 

 SVM files (requires RapidMiner) 

 Decision tree files (requires RapidMiner)  

 Logistic Regression (requires RapidMiner) 

 

- Experiment 2: 

o Setup files include (requires CLAMP software):  

 NegationDictionary 

 NamedEntityRecognizerLooku 

 PartOfSpeechTagger 

 UIMA Ruta rule scripts 

 Section Identifier 

 SentenceDetector 

 TemporalRecognizer 

 TemporalRelation 

 Tokenizer 

 UserDefinedRelations 

 All Word representation features  

o Program for extracting relevant content from text big files 

o Results and annotations (contains .txt and .xmi files) 
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