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ABSTRACT  

 

This study was conducted to evaluate the effect of microbial feed additives 

Megasphaera elsdenii NCIMB 41125 and Saccharomyces cerevisiae 1026, 

individually and combined on rumen pH,ammonia-N and volatile fatty acids (VFAs) 

fermentation.  

 

An in vitro batch fermentation was conducted using rumen fluid from two early lactating 

Holstein cow donor fed the TMR for lactating cows which was evaluated under two 

diets, differing in concentrate to forage ratio. The diets were high concentrate, a 60:40 

concentrate to forage ratio diet (HC) and low concentrate, a 40:60 (LC) concentrate to 

forage ratio diet. The treatments were; Control (diet with no additives), Me (diet with 

M. elsdenii NCIMB 41125 10mm (108 CFU/ml)), LY (diet with live yeast, S. cerevisiae 

1026), and Me+LY (diet with mixture of M. elsdenii and S. cerevisiae). 

 

The average rumen pH was 5.8 and ammonia nitrogen was not affected by Me and 

LY supplemented separately or in combination (Me+LY) in both low and high 

concentrate diets. Total VFAs were increased with the addition of LY alone and in 

combination Me+LY+Me) in high concentrate diet only but the addition of Me had no 

effect in both diets.  

 

Acetate, lactate and A: Pr were decreased (P<0.05) by all the treatments (Me and LY 

alone and in combination) on both diets, except in high concentrate diet where the 

addition of Me tended to decrease (P<0.07) acetate and had no effect on lactate. 

Propionate was increased by all the treatments in low concentrate diet and tended to 



xi 
 

increase (P<0.08) by addition of Me and Me+LY in high concentrate diet. In a low 

concentrate diet, butyrate was increased by LY but tended to be decreased by Me, 

however, all the treatments lacked effects on high concentrate diet. 

 

Live yeast appears to act differently compared to Me by showing two times more 

effects on high than low concentrate diets.This in vitro study showed that both Me and 

LY had a tendency to modify rumen fermentation and that might indicate their potential 

to mitigate the metabolic challenges and improve energy status of Holstein dairy cows 

during the transition and early lactation period. However, there is a need for further 

research that will include in vivo study. 

 

Keywords: Dairy, Holstein cows, Microbial feed additives, Ruminant nutrition, 

Transition period, VFAs 

 



1 
 

CHAPTER 1  INTRODUCTION 

 

1.1. Background 

The period starting at parturition and ending 70 days post-partum, early lactation is a 

very challenging production phase in dairy nutrition (Erasmus et al. 2000). It is the 

phase when peak milk production is expected (Erasmus et al. 2000) and occurs 

concurrently with the majority of metabolic health disorders (Mulligan & Doherty 2008) 

and negative energy balance (NEBAL) (Erasmus et al. 2000, Opsomer 2015,).  

 

Metabolic disorders result from the cow’s inability to cope with the metabolic demands 

of high production (Mulligan & Doherty 2008). Their occurrence during the early 

lactation production phase has adverse financial implications (Mulligan & Doherty 

2008) that extend to mid lactation lactation phase, 70 to 140 days post partum.  

 

However, studies have shown that the use of feed additives have the potential to 

mitigate some metabolic challenges and improve feed efficiency (Mutsvangwa et al. 

1992, Meissner et al. 2010, McAllister et al. 2011). This was achieved by manipulating 

rumen fermentation. Some examples of these additives are Megasphaera elsdenii (M. 

elsdenii) and live yeast Saccharomyces cerevisiae (S. cerevisiae). These additives 

are direct-fed microbials (DFM) additives and have been used for years in ruminant 

production (McAllister et al. 2011).  

 

The rumen bacteria M. elsdenii is a gram-negative coccus bacterium native to the 

rumen of cattle and sheep (Marounek et al. 1989, Rossi et al. 2004). It is a strictly 

anaerobic lactic acid-utilizing bacteria (LUB) that is able to convert lactate to weaker 
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acids (volatile fatty acids) and hence increase pH (Horn et al. 2009, Meissner et al. 

2010). Carbohydrates and organic acids can be utilised by M. elsdenii and it is one of 

the principal organisms that catabolise lactic acid and deaminate amino acid 

(Marounek et al. 1989). It is able to convert lactate to propionate and butyrate 

(Marounek et al. 1989, Drouillard et al. 2012) and glucose to butyrate (Henning et al. 

2010, Muya et al. 2015). 

 

On the other hand, S. cerevisiae, is a single cell eukaryotic fungal microorganism 

(Sontakke 2012) with properties that are very different from M. elsdenii. The S. 

cerevisiae has been reported to decrease methane production by reducing hydrogen 

available for methanogenesis based on stoichiometric principles (Bakker et al. 2001). 

Observed effects that would reduce hydrogen availability to methanogens include a 

shift in fermentation towards butyrate or propionate (Erasmus et al. 2005), reduction 

in protozoal numbers (Newbold et al. 1998) and promotion of acetogenesis as a sink 

for hydrogen (Chaucheyras et al. 1995).  

 

A higher production of total volatile fatty acids (VFAs) especially propionate was 

observed in bulls fed barley diet with S. cerevisiae than those fed the same diet without 

S. cerevisiae (Mutsvangwa et al. 1992). Furthermore, the ruminal ammonia production 

was not affected but the ruminal pH was highly depressed by the addition of S. 

cerevisiae (Mutsvangwa et al. 1992). 

 

Alteration of rumen fermentation is expressed by the change of VFAs, the end 

products of carbohydrate fermentation in the rumen and the cow’s main energy source 
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(Siedlecka et al. 2008). The changes also affect rumen microbe population and the 

breakdown of rumen protein as well as the resulting ammonia. 

 

1.2. Justification  

 

Feed additive, M. elsdenii is able to control the accumulation of lactic acid and the 

decline of rumen pH in adult ruminants fed high level of dietary concentrate (Meissner 

et al. 2010). Through its lactate utilising ability, M. elsdenii facilitates the rate and 

direction of lactic acid fermentation to predominantly propionate and other VFAs. On 

the other hand, S. cerevisiae has the ability to stabilise ruminal pH (Chaucheyras-

Durand & Fonty 2002) and the potential to reduce hydrogen availability for 

methanogenesis which may lead to reduced production of methane. 

 

It is speculated that the effects of M. elsdenii and S. cerevisiae would positively affect 

the rate and pattern of rumen fermentation. The lactate utilising ability of M. elsdenii 

with the potential of S. cerevisiae to stabilise pH and reduce hydrogen availability 

would increase production of propionate in the rumen. Propionate will then be 

converted to blood glucose in the liver, proving energy in early lactation (Ishler et al. 

1996). This is beneficial to early lactating cows by improving energy status due to 

propionate’s glucogenic properties. 

 

There is relatively extensive research on using M. elsdenii and S. cerevisiae in 

ruminant nutrition separately, however, research on their synchronous use is limited. 

The current research will contribute knowledge to the synchronous use and interaction 

between M. elsdenii and S. cerevisiae which can potentially address some of the 
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challenges of early lactation in dairy cattle. Taking into account that the effects of 

additives on ruminant performance can vary with the type of diet being fed (Ruiz et al. 

2001). It is therefore, important to evaluate M. elsdenii , S. cerevisiae and their 

synergetic offect on different feeding scenarios, for instance, concentrate to forage 

ratio. 

 

1.3. Objectives 

 

To evaluate the effect of M. elsdenii and/or S. cerevisiae on rumen fermentation rate 

and patterns in different diet concentrate levels 

1. To evaluate the effects of M. elsdenii NCIMB 41125 and S. cerevisiae 1026 on the 

rumen pH, production of ammonia nitrogen and volatile fatty acids in a high 

concentrate diet. 

2. To evaluate the effects of M. elsdenii NCIMB 41125 and S. cerevisiae 1026 on the 

rumen pH, production of ammonia nitrogen and volatile fatty acids in a low concentrate 

diet. 

 

1.4. Hypotheses 

 

I There are no effect of M. elsdenii and S. cerevisiae on rumen pH, ammonia nitrogen, 

and volatile fatty acids in a high concentrate diet. 

II There are no effect of M. elsdenii and S. cerevisiae on rumen pH, ammonia nitrogen 

and volatile fatty acids in a low concentrate diet. 
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CHAPTER 2  LITERATURE REVIEW  

 

2.1. Challenges in early lactating dairy cows 

 

One of the most important factors in dairy production is operating at optimum milk 

production levels if it is to be profitable (Harrison et al. 1990). This has led to biased 

intensive selection for high milk yield, without equivalent selection for dry matter intake 

capacity and feed efficiency (Opsomer 2015). High milk yielders are able to produce 

large quantities for a prolonged time by 1) breaking down more body energy stores to 

support milk yield, 2) efficiently partitioning ME from feed to milk production and/or 3) 

acquiring more metabolizable energy (ME) from feed (Bell 1995, Opsomer 2015). 

 

According to Goff (1999), the dry cow is fed a high forage, less energy dense diet 

which is higher in neutral detergent fibre than the lactation diet. The rumen 

physiological adaptation to dry period diet identified in (Goff 1999) are firstly, increment 

of the cellulolytic and methane-producing bacteria due to the high forage content and 

secondly, the reduction of the lactate producing bacteria due to reduced readily 

fermentable starches. Consequently reducing the lactic acid-utilizing bacteria (LUB) 

mainly M. elsdenii and Selenomonas ruminantium which convert lactate to VFAs. 

Lastly,  reduction of papillae length and ruminal mucosa absorptive capacity of VFAs 

because of a low energy diet in early dry period.  

 

The change from the dry cow diet to a lactation diet low in forage and high in rapidly 

fermentable carbohydrates is necessary at parturition although it disrupts the rumen 

microbial population (DeVries et al. 2009). Naturally, adaption to the high energy-
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yielding lactation diet is imperative for the success in coping the metabolic challenge 

it presents, failure of which can lead to metabolic disorders (discussed in section 2.3) 

which are catastrophic to the health and productivity of the dairy cow. 

 

During the early lactation phase, the lactating cow requires more energy for milk 

production and maintenance than for the gravid uterus and maintenance during the 

preceding late pregnancy (Bell 1995, Remppis et al. 2011). Lactating cows like all 

mammal prioritise mammary energy supply over maintenance of body functions for 

the sake of the newborn’s nutrition (Opsomer 2015). Although this is desirable for milk 

yield it usually leads to health complications e.g ketosis mostly for high yielders’ cow 

(Opsomer 2015). 

 

The high energy demand of early lactation exceeds the energy that can be consumed 

and this gives rise to a state of negative energy balance (NEBAL) (Baumgard et al. 

2006, Remppis et al. 2011). This energy state is further reinforced by reduced feed 

intake (Grummer 1995) caused by parturition inducing endocrine changes, parturition 

and other factors that influence feed intake. 

 

After parturition dry matter intake increases slowly while the nutrient requirements are 

on a rapid increase due to milk synthesis (Reynolds et al. 2003). The NEBAL tends to 

be a common condition in this phase of lactation. Thus, other ways of availing more 

energy and avoiding loss have to be explored. Persistent NEBAL can be a cause of 

the drop in milk yield, fertility problems and occurrence of metabolic diseases 

(Remppis et al. 2011). 
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According to Baumgard et al. (2006) the approaches that have been attempted to deal 

with energy balance (EBAL) are 1) supplemention with fats, 2) addition of 

concentrates, 3) reduced milking frequency (i.e. 1x/d), 4) propylene glycol, 5) 

monensin and 6) conjugated linoleic acid-induced milk fat depression (CLA-MFD). 

Limitations observed from the first four approaches were palatability, acidosis and 

mammary functions that created difficulties when their effect on EBAL was evaluated. 

 

The energy loss in ruminants can occur through methane eructation. The energy lost 

as methane (CH4) in ruminants can range from 2-12 % of the gross energy intake 

(Johnson & Johnson 1995). Factors that influence rate of CH4 production include level 

of feed intake, type of dietary carbohydrate, feed processing, dietary addition of lipids 

or ionophores, organic acids, and changes in ruminal microbial flora plus microflora 

(Johnson & Johnson 1995, Boadi et al. 2004, Khampa & Wanapat 2007). In addition, 

CH4 emission has a huge impact on global warming which is an issue causing a lot of 

public concern. According to Nguyen et al. (2013), CH4 emissions from cows are the 

main contributor (52%) to the climate change impact of milk production. 

 

2.2. Rumen fermentation and animal performance  

 

The rumen is the largest of the four compartments in the adult ruminant stomach (other 

compartments are; reticulum, omasum and abomasum) (Figure 2.1). The inside lining 

of the rumen consists of tiny projectiles and papillae which increase the surface area 

and allow better absorption of nutrients (Moran 2005). The rumen and reticulum are 

collectively referred to as the reticulorumen because their functions are very similar 

and anatomically they are only separated by a small muscular fold of tissue (Parish et 
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al. 2009). The inside lining of the reticulum mirrors the honeycomb (Parish et al. 2009). 

The reticulorumen is home to billions of microorganisms (bacteria, fungi, protozoa) 

(Moran 2005), some of which digest starch and sugars while others digest cellulose. 

 

 

Figure 2.1: Digestive system of the dairy cow (Moran 2005) 

 

The rumen functions include: 1) Behaving as a fermentation vat which is the primary 

host of microbial fermentation (Moran 2005). 2) Fermentating and breaking down of 

fibrous feed portions (plant cells) to their carbohydrate functions. They are then used 

to produce VFAs such as propionate, acetate, and butyrate which are used as the 

main energy source for animal (Parish et al. 2009, Moran 2005). This is achieved 

through the action of rumen microorganisms (Moran 2005). 3) Digestion of a large 

percentage of starch and soluble sugars (50-65%) by the ruminant (Parish et al. 2009). 

4) Lastly, the syntheses of protein from non-protein nitrogen and B vitamins and 

vitamin K take place in the rumen (Parish et al. 2009).  
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The nutrients and VFAs produced in the rumen are absorbed straight into the 

bloodstream by rumen papillae lining the rumen wall (McDonald et al. 2011). Fibrous 

feedstuffs can remain in the rumen for up to 48 hours for further fermentation (Parish 

et al. 2009). The primary function of the reticulum is collecting smaller particles from 

the rumen and move them to the omasum. Heavy objects, primarily non-food objects 

consumed by the ruminant are confined in the reticulum.  

 

The omasum has many folds resembling pages of a book and are called laminae 

(Moran 2005). These folds increase the surface area for the efficient absorption of 

nutrients from digested feed and fluids (Parish et al. 2009) and to grind the feed further 

(Moran 2005). The abomasum is the true stomach because it is similar, the stomach 

of monogastric or nonruminants (Parish et al. 2009)., Similary, the abomasum 

produces hydrochloric acid and digestive enzymes (Parish et al. 2009, Moran 2005). 

 

It is of importance to take care of rumen microorganisms for the sake of the ruminant’s 

nutrition. They are responsible for the fermentation of almost all of the soluable sugars 

and startch in the feed of adult ruminants fed high forage diet as well as being a source 

of protein (microbial protein) (Ishler et al. 1996). Without rumen microbes, the 

ruminant’s digestive system would shut down leading to starvation and death. The 

rumen is a complex ecosystem that is anaerobic in nature.  

 

The normal rumen pH is 6.5>pH<7.0 and is a good indicator of the rumen condition 

(Penner 2015). It is influenced by type and size of feed, type of fermentation end 

product, rate of VFAs production and absorption and saliva flow rate. When rumen pH 
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drops to between 5.2 and 5.6, clinical signs of subacute ruminal acidosis (SARA) may 

manifest (Chiquette 2009). This may impair proper ruminal and physiological functions 

(Meissner et al. 2010). 

 

Probiotics are defined as live microbial feed supplements which beneficially affect the 

host animal by improving its microbial balance (Fuller, cited in Jouany & Morgavi 

2007). They can be used to enhance the establishment of rumen flora and fauna in 

calves (Jouany & Morgavi 2007). In mature ruminants, probiotics can be used to 

mitigate adverse consequences (e.g metabolic disorders) of metabolic challenging 

phases such as diet change from forage-based to a cereal-rich diet where the 

microbial population balance could be disrupted (Jouany & Morgavi 2007). 

 

2.3. Metabolic disorders 

 

Despite extensive research on the physiology and nutrition of cows in the transition 

period, production and metabolic challenges remain a perplexing and problematic 

management aspect of dairy farms (Erasmus et al. 2008). The energy requirements 

of an early lactation dairy cows exceed the energy obtainable from the diet (Goff 2001, 

Goff 1999) due to low dry matter intake. The sudden increase in nutrient demand for 

milk synthesis brought by parturition (Erasmus et al. 2008), necessitates the feeding 

of a high energy-yielding concentrate diet.  

 

Metabolic disorders mainly occur in early lactation when peak production is expected 

(Erasmus et al. 2000). This have a significant negative effect on productivity and 

profitability of a dairy enterprise (Opsomer 2015). Even with good farming practices 
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metabolic disorders still occur warranting scientific intervention. Metabolic disorders 

are a major challenge in early lactation (Bell 1995) when feed efficiency and production 

efficiency are of paramount importance.  

 

The metabolic and production related diseases perceived as important in dairy 

populations include rumen acidosis, ketosis and fatty liver disease,  laminitis, 

hypocalcemia/milk fever, displaced abomasums, and reproductive inefficiency (Garry 

2001). Milk fever, ketosis, retained placenta and displaced abomasum occur within 

two weeks of the onset of lactation (Goff 1999). 

 

Ruminal acidosis is a digestive disorder when the rumen pH is more acidic (pH<5.8) 

than normal rumen pH of 6.5>pH<7.0 (Penner 2015). There are two types of ruminal 

acidosis; namely acute acidosis/clinical acidosis and subacute acidosis/subclinical 

acidosis. Acute acidosis is usually experienced in the first 2 to 3 days of concentrate 

feeding in unadapted cows while subacute acidosis is experienced for longer periods 

with adverse metabolic and productivity outcomes. Subclinical acidosis is more 

prevalent than clinical and has more economic impact by reducing milk fat content, 

feed conversion efficiency, fibre digestion and compromising the animal health (Lean 

et al. 2007, Meissner et al. 2010, Penner 2015).  

 

Acidosis can be instigated by one or a combination of the following: sudden dietary 

change, high-energy diet coupled with insufficient good roughages, rapid switch to 

high grain rations, rapid intake of high quality forages and low fibre in the diet (Lean et 

al. 2007, Meissner et al. 2010, Penner 2015). Symptoms of acidosis include reduced 

milk yield, laminitis , liver abscessation (Owens et al. 1998), scouring , a higher 
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incidence of left and right displacements of the abomasum, damage to the hooves 

tissue and ridges as well as weight loss (Penner 2015).  

 

The use of direct-fed microbials (DFM) feed additive M. elsdenii and S. cerevisiae, 

which can reduce the accumulation of lactic acid in the rumen through fermentation 

can prevent ruminal acidosis (Nagaraja & Titgemeyer 2007, Meissner et al. 2010, Al 

Ibrahim et al. 2012). Penner (2015) identified the inclusion of prebiotics, probiotics, 

and/or yeasts as viable methods of preventing acidosis by introducing or stimulating 

the growth of good rumen microorganisms that mitigate the accumulation of strong 

acids. Ionophores can inhibit the growth of acid producing bacteria in the rumen, hence 

preventing acidosis (Penner 2015).  

 

Ketosis is the accumulation of ketones in the blood, urine and/or milk of a cow and 

that is usually coupled with reduced blood glucose (Goff 2001). The occurrence of 

ketosis is predominant in the first month of lactation followed by the second month and 

most rare in the third month of lactation (Ingvartsen 2006). 

 

To supplement energy obtained from feed, dairy cows are predestined mobilise body 

fat as an energy source in order to meet lactation energy requirements (Erasmus et 

al. 2000, Kokkonen 2005). The liver through the tricarboxylic acid cycle is able to 

completely oxidise a limited amount of fatty acids (Goff 1999). Thereafter remaining 

fatty acids are converted to ketones (Goff 2001). The appearance of these ketones 

enables diagnosis of ketosis. The fats that cannot be burned for energy start to 

accumulate in the liver as triglyceride (Goff 2001).  
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The primary treatment of ketosis is an injection of glucose intravenously coupled with 

an adjusted diet (Goff 2001, McDonald et al 2011). Another effective method is oral 

administration of propionate salts or propylene glycol (Goff 2001), which the liver can 

readily convert to glucose. 

 

It is better to prevent metabolic diseases than opting for treatment once they manifest. 

The prevention of ketosis can be achieved by avoiding excessive lipid mobilization 

through increasing nutrient density 2-3 weeks prepartum, close up diet, overfeeding 

or feeding high starch diet for a limited period (Ingvartsen 2006, Mulligan & Doherty 

2008). Another prevention measure is supplemental fat which works by suppressing 

mobilisation (Dreckley 1999). 

 

2.4. Dairy cows nutrients requirement 

 

Ruminants are able to consume fibrous feeds that are not suitable for humans and 

monogastric animals (Ishler et al. 1996) and convert them to milk and meat through 

the activity of rumen microbes. When non-structural carbohydrates are part of the diet 

lactic acid becomes readily available in the rumen (Ishler et al. 1996). This lactic acid 

should not accumulate in the rumen of dairy cattle fed a balanced diet. However, it 

accumulates due to slow absorption from unadapted cows having poorly developed 

rumen epithelia (Goff 1999). 

 

Abrupt introduction of grains or high energy feed stimulates the proliferation of lactic 

acid producing bacterium so that it exceeds the growth rate of LUB (Bevans et al. 

2005), this circumstances lead to lactic acid accumulation. The LUB are rumen 
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microbes specialising in the fermentation of lactate to VFAs such as acetate, 

propionate, butyrate, isobutyrate, valerate, isovalerate, and traces of various other 

acids (Ishler et al. 1996). The VFAs proportions are largely influenced by the ratio of 

forage and concentrate in the diet. According to Ishler et al. (1996), the forage to 

concentrate ratio decrease is positively correlated to the acetate propionate ratio.  

 

Acetate, the most abundant VFA predominates in high forage diets (Ishler et al. 1996). 

It is the main end product of fibre fermentation (Moran 2005). Acetate is essential for 

the production of milk fat (Moran 2005). Propionate concentration is favoured by a high 

grain diet (Ishler et al. 1996). Fermentations favouring propionate production produce 

less methane and carbon dioxide, hence propionate is considered to the more efficient 

energy source (Moran 2005). Butyrate is metabolised into ketones in the liver which 

are used as an energy source (Moran 2005). It provides energy for thickening the 

rumen wall and formation of papillae in calves (Muya et al. 2015) and fatty acid 

synthesis (Moran 2005). 

 

The microbial degradation of dietary protein and nonprotein nitrogen, degradation of 

microbial crude protein and hydrolysis of recycled urea are ways through which 

ammonia is derived in the rumen (Ishler et al. 1996). This rumen ammonia can then 

be used by rumen bacteria as a source or nitrogen, absorption through rumen wall 

and flushing to the omasum (Ishler et al. 1996). 

 

The recommended dairy cow nutritional requirements are designed to meet all the 
lactation and body functions maintenance nutritional demands during lactation. 
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Table 2.1: Nutritional requirements in early lactation 

Nutrient Quantity  

Water 45% moisture of TMR 

Non-structural carbohydrates  35-40% of dietary DM 

Fibre  >18% ADF, 28% NDF 

Protein >18-19% of diet DM 

Metabolizable energy 11.3 MJ ME per kg DM 

Fat <7% of total diet DM, of which 

<4% from supplemental fat 

Roughage  >1.5kg of roughage DM 

Minerals ~1% of concentrate mix 

Urea  < 1% of concentrate mix 

Salt  0.5% of diet or 1%of grain mix 

Vitamins  Supplement with A, D and E 

Adapted from (Erasmus et al. 2000)  

 

2.5. The use of feed additives in dairy cows  

2.5.1. Direct-fed microbial  

 

Direct-fed microbials (DFM) are source of live naturally occurring microorganisms as 

defined by the US Food and Drug Administration (FDA). There are two types of DFM 

namely: bacterial (Megasphaera elsdenii and Selenomonas ruminantium) and fungal 

cultures (Saccharomyces cerevisiae and Aspergillus oryzae). Bacterial DFM are 

further classified as LUB and lactate producing bacteria. The main use of DFM in 
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ruminant nutrition is to manipulate the rumen microbial ecosystem to maximise 

production efficiency and minimise metabolic challenges (Yoon & Stern 1995). 

 

Direct-fed microbials have been used as a safe alternative to antibiotics. The adoption 

of natural, growth-promoting feed additives has been due to increased public concern 

about safety, quality of animal products and environmental issues (Sontakke 2012). 

Thus, feed additives now have to at least meet the three standards (Sontakke 2012); 

1) increase productivity, 2) reduce the risk of ruminant digestive carriage of human 

pathogens, and 3) decrease excretion of polluting outputs like nitrogen-based 

compounds and methane. 

 

2.5.2. M. elsdenii NCIMB 41125 

2.5.2.1. Background and mode of action 

 

The Megasphaera elsdenii (strain CH4), is a biologically pure bacterial culture 

deposited at NCIMB, Aberdeen, Scotland. UK under NCIMB 41125 (Horn et al. 2009) 

commonly known as M. elsdenii NCIMB 41 125. It occurs naturally in the rumen and 

this particular strain was obtained and selected from the rumens of concentrate feed 

adapted dairy cows (Meissner et al. 2010). It is an efficient LUB that is able to 

proliferate at low pH (5.0 and as low as 4.5). It is resistant to ionophores inhibition and 

catabolite repression by the presence of sugars (Counotte et al. 1981). Methods used 

for the isolation of this strain of bacteria are modified pH-Auxostat, and spread plate 

method (Horn et al. 2009). The isolates were identified using phylogenetics based on 

16S rRNA gene sequences.  
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The ability of M. elsdenii to utilise 40-90% lactate in the presence of sugars makes it 

ideal in facilitating the adaptation from a roughage diet to a high energy concentrate 

diet in ruminants (Horn et al. 2009). The invention of M. elsdenii was aimed at finding 

a treatment for acidosis that can be commercialised. The shortcoming preventing other 

strains of M. elsdenii from being commercialised were overcome through the invention 

of M. elsdenii NCIMB 41125 (Horn et al. 2009).  

 

2.5.2.2 Actions of M. elsdenii in dairy cows 

 

Feed additive M. elsdenii is an efficient LUB that converts lactate to weaker acids 

(Meissner et al. 2010). It has shown ability to convert lactate to propionate and butyrate 

(Marounek et al. 1989, Drouillard et al. 2012), convert glucose to butyrate in mature 

ruminants (Henning et al. 2010) and calves (Muya et al. 2015). This process helps to 

control the build-up of lactic acid in the rumen during early lactation when dairy cows 

are fed high concentrate diet to support milk production (Meissner et al. 2010, 

Drouillard et al. 2012). In beef cattle, dosing with M. elsdenii at the commencement of 

the adaptation period has shown the reduction on the occurrences of subacute ruminal 

acidosis (SARA), other digestive disturbances, morbidity and mortalities (Leeuw et al. 

2009, Meissner et al. 2010, Drouillard et al. 2012). 

 

2.5.3. The S. cerevisiae 1026 

2.5.3.1 Background and mode of action 

 

The S. cerevisiae strain is deposited in both the National Collection of Yeast Cultures 

(UK) with a designation NCYC 1026 and the Centraalbureau voor Schimmelcultures 
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(NL) with the accession number CBS 493.94.11 (Aquilina et al. 2014). For the purpose 

of this study, the designation NCYC 1026 will be used. The live yeast S. cerevisiae 

1026, is a single cell eukaryotic fungal microorganism with properties that are very 

different from bacteria (Sontakke 2012). The method used to produce yeast cells is 

batch fermentation in a medium based on molasses mineral salts, the final medium 

includes hop oil as an excipient (Aquilina et al. 2014). Centrifugation is used to recover 

the cells to produce yeast cream, which is further dried and granulated to produce the 

final additive. 

 

The S. cerevisiae is authorised by the European Union to be used in dairy cows, 

calves, cattle for fattening and horses as a feed additive. According to Sontakke 

(2012), the Food and Drug Administration (FDA) has considered S. cerevisiae as 

generally recognized as safe (GRAS) hence appropriate to use in animal feed. The 

ability of S. cerevisiae to convert sugars (i.e. glucose, maltose) into ethanol and carbon 

dioxide has made it an industrially important yeast (Sontakke 2012). Sontakke (2012) 

stated that the S. cerevisiae ”nutritive value is high and rich in enzymes, fatty acids, 

vitamin B complex, unknown growth factors and amino acids (more than 40% of total 

dry matter)” making desirable for use in ruminant nutrition. 

 

2.5.3.2 Action of S. cerevisiae in ruminants 

 

The S. cerevisiae has been reported to decrease methane production by reducing 

hydrogen availability for methanogenesis based on stoichiometric principles (Bakker 

et al. 2001). Observed effects that would reduce hydrogen availability to methanogens 

include a shift in fermentation towards butyrate or propionate (Erasmus et al. 2005), 
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reduction in protozoal numbers (Newbold et al. 1998) and promotion of acetogenesis 

as a sink for hydrogen (Chaucheyras et al. 1995).  

 

A significantly higher production of total VFAs and propionate were observed in bulls 

fed a barley diet with S. cerevisiae than those fed the same diet without (Mutsvangwa 

et al. 1992). The in vitro studies using Menke gas test (Menke et al. 1979) showed a 

reduced methane production after 12 hours of adding S. cerevisiae. Furthermore, the 

ruminal ammonia production was not affected but the ruminal pH was significantly 

depressed by the addition of S. cerevisiae (Mutsvangwa et al. 1992). 

 

The ability of S. cerevisiae to alter rumen microorganisms (bacteria, protozoa and 

fungi) has been observed in several studies (Wallace & Newbold 1995, Hučko et al. 

2009). According to Callaway & Martin (1997), S. cerevisiae stimulated the growth of 

LUB and cellulolytic bacteria by providing soluble growth factors (organic acids, B 

vitamin and amino acids) which stimulate their growth. Hučko et al. (2009) also 

observed an increase in the number of cellulolytic bacteria. Furthermore, Newbold et 

al. (1998) observed an increase of 38% in total variable bacterial count, 48% increase 

in the cellulolytic population and an increase in LUB Selenomonas ruminantium in a 

medium containing ruminal fluid and sugars in vitro.  
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Figure 2.2: Mode of action of an active dry yeast on lactate metabolism and rumen pH 

(Sontakke 2012). 

 

According to Harrison et al. (1988) an increase in the variable bacterial count is 

preferential to cellulolytic bacteria. However, Newbold et al. (1998), showed a 

reduction in rumen ciliate protozoa while Wallace & Newbold (1995) observed a 

reduction in protozoal numbers. Erasmus et al. (2005) observed an increase in 

propionate production leading to a decrease in the ruminal acetate to propionate ratio. 

Contrary to Newbold et al. (1998) where propionate production decreased in favour of 

acetate.  
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The S. cerevisiae has been used to mitigate methane production by increasing 

propionate production, which competes with methanogenesis for hydrogen 

(Mutsvangwa et al. 1992). The mitigation was also possible through enhancing 

acetogenesis by stimulating acetogenic utilisation of hydrogen (Chaucheyras et al. 

1995). Furthermore, by reducing the number of protozoa Newbold et al. (1998) and 

Wallace & Newbold (1995), which are assumed to have a symbiotic relationship with 

methanogens (Boadi et al. 2004). Johnson & Johnson, (1995) and Mutsvangwa et al. 

(1992) stated that mainly, the fraction of propionic acid produced relative to acetic acid 

has a major impact on methane production. 

 

In ruminant nutrition and management of S. cerevisiae been used to prevent rumen 

microorganisms disorders and disturbances, especially when high energy 

concentrates feed is consumed (Sontakke 2012). The desired outcomes of yeast 

inclusion in ruminant diets are: an increase of dry matter consumption, utilization of 

fibre and other nutritive substances resulting in increase daily gains. Yeast can also 

improve digestibility and absorption of minerals such as phosphorus, magnesium, 

calcium, copper, potassium, zinc and manganese. 

 

2.6. Limitations and application of an in vitro fermentation study in 

ruminants 

 

The in vitro batch fermentation experiment simulate rumen fermentation 

patterns/pathways. The results can be used to assess and gauge the effects or 

impacts of feed type and/or feed additives in vivo. The usefulness of the results are 

limited due to lack of animal factors such as disappearance ratios, dilution rate and 
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passage from the rumen present in vivo (Meissner et al. 2010; 2014). The major 

advantages of in vitro experiments are that they provide an affordable alternative to in 

vivo experiments and that they mitigate adverse effects on the animal welfare. 
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CHAPTER 3  MATERIALS AND METHODS  

 

3.1. Study site 

 

The study was conducted at the Agriculture Research Council-Animal Production 

Institute (ARC-API). Ethical approval was obtained from ARC-API Irene and the 

University of South Africa (Unisa) animal ethics committee (2016/CAES/009).  

 

3.2. Additives 

An existing commercial product containing M. elsdenii NCIMB 41125 was used. It was 

supplied by Afrivet, Newmark Estate/Office Park, 195 Dawie Street, Silver Lakes 

Road, Hazeldean 0081, South Africa. The product was provided in sachets with two 

compartments separated by a breakable seal, one contained 50 mL of inoculum and 

the other 200 mL of sterile growth medium. The preparation was done according to 

the manufacturer by breaking the seal between the compartments and mixing the 

contents, making sure the outer seal of the sachet remained intact to maintain 

anaerobic conditions. The final mixture contained 108 CFU/mL of M. elsdenii NCIMB 

41125. The bag was then incubated for 24h at 39 °C an incubator. The bag inflated 

during incubation to indicate the increase in the bacteria population. A syringe was 

used to withdraw 0.5 mL of the contents (106 CFU of M. elsdenii NCIMB 41125) from 

the bag. This was immediately added to the serum bottle containing diet and 100mL 

of rumen fluid/buffer solution under CO2.  

 

The product containing live yeast culture S. cerevisiae 1026 (LY) was commercially 

available as Levucell, the live yeast product contained 108 CFU/g of S. cerevisiae, 
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supplied by VITAM, 142 South Street, Centurion, 0157, South Africa. Preparation was 

achieved by adding to the basal diet 0.25g of Levucell per kg of feed, to make diet+live 

yeast. 

 

3.3. Diet and treatments 

 

The effects of M. elsdenii NCIMB 41125 and S. cerevisiae 1026 and combination 

thereof were evaluated separately on two basal diets (High and low concentrate) 

formulated to fulfil the minimum nutrient requirement of an early lactating 600 kg 

Holstein cow producing 40 kg of milk with 3.5% fat and 3.3% protein (NRC, 2001). The 

formulated basal diets comprised of lucerne hay, ground maize, cottonseed meal, 

whole cottonseed (linted), sunflower meal, soybeans roasted, cane Molasses, brewers 

grains, Megalac, sodium chloride and vitamin/mineral premix. Their chemical 

compositions are shown in Table 3.1.  

 

Treatments were:  

 

1) Con: Basal diet with no additives (Control) 

2) Me: Basal diet + 106 CFU of M. elsdenii NCIMB 41125)  

3) LY: Basal diet + 0.25 g/kg of S. cerevisiae 1026 

4) Me +L Y: Basal diet + Me + LY  
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Below is the nutrient composition of the high concentrate and low concentrate diets 

used in the evaluation M. elsdenii and S. cerevisiae individually and in combination 

during batch fermentation. 

 

Table 3.1: Chemical composition of the diets used in this study. 

Items 
High concentrate diet low concentrate diet 

60:40 C:F 40:60 C:F 

Dry matter, (g/kg) 695 598 

Organic matter  940 933 

Crude protein 173 173 

Readily undegradable protein 372 331 

Neutral detergent fibre (NDF) 337 303 

Forage NDF  169 254 

Starch 280 293 

Non-fibre carbohydrate (NFC) 388 416 

Net energy for lactation (NEL), 

Mcal/kg  

16 162 

Calcium 10 9.8 

Phosphorus 0.36 0.35 

Magnesium 0.25 0.25 

Potassium 1.26 1.40 
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3.4. Rumen fluid donor 

 

The ruminal fluid was obtained from rumen fistulized lactating Holstein cows fed total 

mixed ration once daily in the morning (08:00) at the University of Pretoria 

Experimental farm. The rumen fluid was collected two hours after feeding, squeezed 

through four layers of cheesecloth into pre-warmed flasks. The flask was closed tight 

and immediately transported to the lab. The rumen fluid was transferred into a pre-

warmed blender (Waring blender; Waring Products, New Hartford, CT, USA) under 

continuous flushing with CO2, and then blended at high speed for ten seconds, then 

placed in a 39 °C water bath ready to be used (Holden 1999). 

 

3.5. Reduced buffer 

 

The reduced buffer solution was constituted of the macro and micro mineral, the 

buffer and reducing solution (Table 3.2). 
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Table 3.2: Buffer composition 

Macro mineral Reagents  1L volume  

 Distilled water (mL)  1000  

 Na2HPO4 anhydrous (g)  5.7  

 KH2PO4 anhydrous (g)  6.2  

 MgSO4.7H2O (g)  0.59  

 NaCl (g)  2.22  

Micro mineral Reagents  100mL volume  

 Distilled water (mL)  100  

 CaCl2.2H2O (g)  13.2  

 MnCl2.4H2O (g)  10  

 CoCl2.6H2O (g)  1  

 FeCl3.6H2O (g)  8  

Buffer solution Reagents  1L volume  

 Distilled water (mL)  1000  

 NH4HCO3 (g)  4  

 NaHCO3 (g)  35  

 Resaruzin 0.1% (w/v)  

 Dissolve 0.1 g resaruzin  100 ml dH20 

Reducing solution Reagents  100mL volume  

 Distilled water (mL)  100  

 Cysteine hydrochloric acid (g)  0.625  

 KOH pellets (g)  10  

 Sodium sulphide non hydrate(g) 0.625  

Adapted from (Goering, Van Soest 1970) 
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3.6. In vitro ruminal fermentation 

 

In vitro batch fermentation was used to evaluate the effect of Me, LY and Me+LY on 

rumen microbial fermentation of diet (Lila et al. 2004). The feed samples (0.5 g) was 

poured into 250 mL serum bottles. The buffered rumen fluid was prepared by mixing 

the reduced solution to rumen fluid at 4:1 ratio. Hundred mL of the buffered rumen 

fluid was then added to the serum bottles while flushing with CO2. The bottles were 

closed tightly with rubber stoppers, crimp sealed to contain gas pressure and placed 

at 30 °C in a shaking water bath for 0; 12; 24 and 48 hours of incubation period. For 

each incubation period, 3 bottles of each treatment were prepared, the pH was 

measured and samples collected for the determination of ammonia nitrogen and 

volatile fatty acids as affected by the treatments. Immediately the samples were 

labelled and stored at -20 °C, they were kept at this temperature until they were sent 

to the lab for analysis.  

 

3.7. The determination of rumen pH, ammonia nitrogen and volatile 

fatty acids 

 

Immediately after each incubation time, the pH was measured using a standard pH 

meter and recorded. A sample from each bottle was collected immediately and stored 

at -20°C.pending analysis. At the laboratory, the ruminal fluid was thawed, centrifuged 

(15,000 x g, 4 °C for 15 min) and analysed for ammonia nitrogen and VFAs. Ammonia 

nitrogen was measured by phenol-hypochlorite reaction as described by 

(Weatherburn 1967) and total and individual VFAs analysed by gas chromatography 

(Hofirek & Haas 2001). 
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3.8 Data analysis 

 

Mean values for low concentrate and high concentrate diets were subjected to analysis 

of variance (ANOVA) separately as a complete randomised design using the GLM 

procedures (SAS, 2009). The model included the fixed effects of treatments (additives) 

as main effects. Rumen pH, ammonia nitrogen and volatile fatty acids were variables. 

Significance if P≤ 0.05. 

 

Yit = μ + αi + βt + Tit + ecit,  

 

where Yit = an observation value for pH, ammonia nitrogen, total VFAs and molar 

molar proportion of individual VFAs obtained from treatment i at time t; 

μ = overall mean for the population;  

αi = fixed effect of treatment i, where i = CON, Me, LY, or Me+LY;  

βt = fixed effect of time t, where t = 0, 12, 24 or 48 hours;  

Tit = fixed interaction of effect of treatment i and time t;  

ecit = error associated with each Yit. 

 

Significance was declared at P<0.05 and tendency was accepted if 0.10 >P> 0.05.  
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CHAPTER 4  RESULTS 

 

4.1. The effects of M. elsdenii and S. cerevisiae on rumen pH, ammonia 

nitrogen, volatile fatty acids in a high concentrate diet 

 

The effects of Me, LY and Me+LY on rumen pH, ammonia-N and individual VFAs 

concentration and molar proportions in high concentrate diet (60:40) are presented in 

Tables 4.1 and 4.2. 

 

4.1.1 The effects of addition of M. elsdenii 

 

There were no effects of Me on rumen pH, ammonia-N and total VFAs (Table 4.1). 

However, acetate concentration (µmol) was decreased (P=0.0003) while molar % 

showed a tendency to decrease (P=0.07). Propionate and butyrate concentrations 

were not affected by Me, but their molar % tended (P=0.08) to decrease with Me. 

Isobutyrate and valerate concentrations and molar % were not affected by Me. Lactate 

concentration tended to decrease (P=0.07) with Me, but its molar % was not affected. 

The acetate to propionate ratio (A: Pr) was also decreased (P=0.02) with Me, but the 

Acetate to propionate plus butyrate (A: Pr+B) ratio was not affected.  

 

When evaluated per incubation period in comparison with control (Table 4.2), the 

addition of Me did not affect rumen pH and the molar % of propionate at all incubation 

periods. The rumen ammonia-N was higher (P=0.002) at 0h with addition of Me, 

however, it showed a tendency to decrease (P=0.06) at 24h while a decrease 

(P<0.0001) was observed at 48h. The addition of Me lowered (P≤0.02) the molar % of 
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acetate from 0h to 48h, except at 24h where a tendency to decrease (P=0.06) was 

observed. The molar % of lactate showed a tendency to decrease (P=0.08) and a 

decrease (P=0.0003) at 24h and 48h, respectively. 

 

4.1.2 The effects of addition of S. cerevisiae 

 

The LY had no effects on rumen pH, ammonia-N and propionate (µmol) and molar %. 

The addition of LY increased (P=0.005) total VFAs concentration, Butyrate 

concentration and molar % (P=0.009 and P=0.02), respectively and decreased 

(P<0.0001) the acetate concentration and molar %. There were no effects of LY on 

valerate and lactate concentration, but their molar % tended to be decreased (P=0.05). 

Isobutyrate concentration showed a tendency to decrease (P=0.08) while molar % 

decreased (P=0.007) with LY. The addition of LY decreased (P<0.002) A: Pr and A: 

Pr+B ratios. 

 

The rumen pH was lower (P=0.0002) with LY at 0h, but higher (P=0.008) at 48h, when 

evaluated per incubation period in comparison with control (Table 4.2). The rumen 

ammonia-N was lower at 48h with the addition of LY. The molar % of acetate was 

lower (P≤0.0002) from 0 to 48 h with the addition of LY. The molar % of propionate 

was lower (P=0.03) and (P=0.02) with LY at 24h and 48h, respectively. The addition 

of LY lowered (P<0.0001) the lactate molar % at 24h and 48h. 

 

   



32 
 

4.1.3 The effects of the combination of M. elsdenii and S. cerevisiae (Me+LY) 

 

The combination of feed additives Me+LY had no effects on rumen pH, ammonia-N. 

and butyrate (µmol) and molar %. The lactate concentration and molar % was 

decreased (P<0.01) with addition of Me+LY. The addition of Me+LY significantly 

increased (P=0.0007) and decrease (P=0.0001) the total VFAs and acetate (µmol and 

molar %), respectively. There were no effects of Me+LY on valerate and isobutyrate 

and propionate concentration, but the molar % of valerate and isobutyrate were 

decreased (P=0.009) while the molar % of propionate, tended to decrease (P=0.09). 

The A: Pr and A: Pr+B ratios were decreased (P=0.005) and (P=0.03), respectively, 

with Me+LY. 

 

When evaluated per incubation period (Table 4.2) and compared to the control, the 

addition of Me+LY had no effects on rumen pH at all incubation periods. Ammonia-N 

was higher (P=0.0005) at 0h but lower (P=0.01) at 48h, with Me+LY addition. The 

molar % of acetate and lactate were lowered (P<0.0001) and (P≤0.002), respectively 

from 0 to 48h with the addition of Me+LY. The addition Me+LY tended to lower 

(P=0.07) and lowered (P=0.01) the molar % of propionate at 0h and at 24h, 

respectively. 
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Table 4.1: Effects of Megasphaera elsdenii (Me) and Saccharomyces cerevisiae live yeast (LY) on rumen fermentation of high 

concentrate dairy cattle diet.  

Parameter Additives SEM¹ Contrast, p 

 Control Me LY Me+LY Control vs. Me Control vs. LY Control vs. Me+LY 

pH 5.78 5.74 5.77 5.76 0.064 0.64 0.86 0.82 

Ammonia-N, mg/L 7.31 7.01 7.20 7.13 0.244 0.39 0.75 0.60 

total VFAs, µmole/L 129.56 128.67 137.01 138.71 1.767 0.69 0.005 0.0007 

Acetate, µmole/L 78.94 74.18 72.28 73.78 0.865 0.0003 <0.0001 0.0001 

Propionate, µmole/L 42.63 43.60 44.11 44.25 0.753 0.37 0.17 0.13 

Butyrate, µmole/L 10.08 8.37 13.06 10.77 0.77 0.12 0.009 0.53 

Isobutyrate, µmole/L 2.51 2.30 2.18 2.24 0.133 0.28 0.08 0.16 

Valerate, µmole/L 0.81 0.71 1.08 0.84 0.133 0.57 0.16 0.86 

Lactate, µmole/L 6.88 6.46 6.46 5.89 0.156 0.07 0.17 <0.0001 

Acetate, % 61.00 57.74 53.23 53.24 1.249 0.07 <0.0001 <0.0001 

Propionate, % 32.88 33.91 32.23 31.89 0.405 0.08 0.27 0.09 

Butyrate, % 7.75 6.48 9.45 7.72 0.499 0.08 0.02 0.96 

Isobutyrate, % 1.93 1.79 1.58 1.58 0.088 0.29 0.007 0.009 

Valerate, % 1.93 1.79 1.58 1.58 0.088 0.29 0.007 0.009 

Lactate, % 5.30 5.03 4.73 4.27 0.155 0.22 0.01 <0.0001 

A:Pr² 1.86 1.71 1.65 1.67 0.045 0.02 0.002 0.005 

A:Pr+B³ 1.51 1.44 1.28 1.35 0.049 0.30 0.002 0.03 

¹Standard error of mean 
²Acetate to Propionate ratio 
³Acetate to propionate +butyrate ratio  
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Table 4.2: Change in selected rumen parameters as affected by addition of Megasphaera elsdenii (Me) and Saccharomyces 

cerevisiae live yeast (LY) to dairy cow’s diet high (60:40) in concentrate to forage ratio.  

Parameter Additives
SEM¹ 

Contrast, p
 Control Me LY Me+LY Control vs. Me Control vs. LY Control vs. Me+LY 

Rumen pH  0.09  
0h 6.0 5.9 5.5 6.1  0.40 <0.001 0.90 
12h 5.8 5.9 5.7 5.7  0.64 0.49 0.28 
24h 5.7 5.6 5.9 5.7  0.55 0.13 0.96 
48h 5.6 5.5 6.0 5.6  0.72 0.008 0.8 
Rumen ammonia-N, mg/L         
0h 6.0 7.4 6.0 7.3 0.24 0.002 0.92 <0.001 
12h 6.7 7.1 7.0 7.2  0.33 0.43 0.17 
24h 7.4 6.7 7.5 7.1  0.06 0.84 0.43 
48h 9.1 6.8 8.4 6.9  <.0001 0.04 0.01 
Rumen acetate, %         
0h 67.1 60.9 62.4 55.9 0.80 <.0001 <0.001 <0.001 
12h 60.2 57.6 54.8 55.0  0.02 <0.001 <0.001 
24h 59.0 56.8 51.1 51.5  0.06 <0.001 <0.001 
48h 57.7 55.7 44.6 50.5  0.01 <0.001 <0.001 
Rumen proionate, %         
0h 32.4 33.5 33.4 30.7 0.62 0.21 0.27 0.07 
12h 31.2 32.6 31.9 32.3  0.11 0.46 0.22 
24h 33.6 33.9 31.6 31.3  0.74 0.03 0.01 
48h 34.4 35.6 32.1 33.3  0.16 0.02 0.24 
Rumen lactate, %         
0h 5.5 5.5 5.5 4.9 0.13 1.00 0.72 <0.001 
12h 5.5 5.4 5.1 4.8  0.86 0.05 <0.001 
24h 5.1 4.7 4.2 3.8  0.08 <0.001 <0.001 
48h 5.1 4.4 4.1 3.6  0.0003 <0.001 <0.001 

¹Standard error of mean 
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4.2. The effects of M. elsdenii and S. cerevisiae on rumen pH, ammonia 

nitrogen and volatile fatty acids in a low concentrate diet 

 

Tables 4.3 and 4.4 presented the effects of Me, LY and Me+LY on rumen pH, 

ammonia-N and individual VFAs concentrations (µmol) and molar proportions (%) in 

low concentrate diet (40:60). 

 

4.2.1 The effects of Me 

 

The mean rumen pH, ammonia-N and total VFAs were not affected with addition of 

Me (Table 4.3). The addition of Me increased (P=0.001) and (P=0.009) the propionate 

concentration (µmol) and molar proportion (%), respectively. There was no effect of 

Me on the concentration of acetate and lactate, but their molar % were decreased 

(P<0.05). There were no effects on the concentration and molar % of butyrate, 

isobutyrate, valerate with Me. The addition of Me decreased the A: Pr (P=0.005) and 

A: Pr+B (P=0.03) ratios. 

 

When evaluated per incubation period (Table 4.4) and compared to the control, rumen 

pH was lower (P=<0.0001) at 0h with addition of Me but, higher (P=0.004) and 

(P=0.003) at 24h and 48h, respectively. The addition of Me did not affect ammonia-N 

at all incubation periods. The molar % of acetate was higher (P<0.0001) at 0 h with 

addition of Me but was lower at 12h (P=0.03), 24h (P<0.0001) and 48 h (P<0.0001) 

compared to the control. The molar % of propionate was higher than the control at 12 

h (P=0.02), 24h (P=0.01) and 48h (P=0.03) with Me. At 48h, the addition of Me lowered 

(P=0.03) the molar proportion of lactate. 
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4.2.2 The effects of addition of LY 

 

The addition of LY did not affect mean rumen pH, ammonia-N and total VFAs 

concentration. The concentration and molar % of propionate increased (P<0.05) with 

addition of LY. The concentration of acetate and lactate were not affected by LY, but 

their molar % were decreased (P<0.05). The addition of LY did not affect the 

concentrations and molar % of butyrate, isobutyrate and valerate. The A: Pr and A: 

Pr+B ratios decreased (P<0.05) with LY. 

 

The rumen pH was lower (P=0.0002) at 0 h with addition of LY but, was higher 

(P=0.009) at 12h compared to the control when evaluated per incubation period (Table 

4.4). The molar proportion of acetate was lower (P<.0001) from 12h to 48h with LY. At 

12h the molar % of propionate was higher (P=0.01) with addition of LY while the molar 

% of lactate was lower (P<0.05) at 24h and 48h with LY. 

 

4.2.3 The effects of the combination of Me+LY 

 

The addition of Me+LY increased (P=0.05) the rumen ammonia-N (mg/L) and total 

VFAs. The concentration and molar % of propionate were increased (P<0.001) by 

Me+LY. The addition of Me+LY did not affect rumen pH and valerate concentration 

(µmol) and molar %. However, increased (P=0.01) isobutyrate and tended to increase 

(P=0.07) butyrate concentrations while there was no effect on their molar proportions. 

The concentration of acetate and lactate were not affected with Me+LY, but, their 

molar proportions were decreased (P<0.05). The ratios A: Pr and A: Pr+B were also 

decreased (P<0.0001) with Me+LY. 
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When evaluated per incubation period (Table 4.4) rumen pH was lower (P=<.0001) at 

0 h with addition of Me+LY but, higher at 12 h (P=0.04) and 24 h (P=0.01) compared 

to the control. The rumen ammonia-N was higher (P<0.05) at 0 h and 48h with addition 

of Me+LY. The molar proportion of acetate was higher (P=0.01) only at 0h with addition 

of Me but was lower (P<.0001) from 12h to 48h. The molar proportion of propionate 

was higher at 0 h (P=0.01), 12h (P=0.0006) and 48h (P=0.04) and, the molar 

proportion of lactate was lower at 24h (P=0.04) and 48h (P=0.006) with addition of LY. 
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Table 4.3: Effects of Megasphaera elsdenii (Me) and Saccharomyces cerevisiae live yeast (LY) on rumen fermentation of low 

concentrate dairy cow’s diet.  

Parameter Additives SEM¹ Contrast, p 

 Control Me LY Me+LY Control vs. Me Control vs. LY Control vs. Me+LY 

pH 5.84 5.93 5.77 5.81 0.092 0.47 0.63 0.87 

Ammonia-N, mg/L 5.93 6.03 6.13 6.57 0.225 0.76 0.53 0.05 

total VFAs, µmole/L 119.93 124.63 131.38 132.06 0.925 0.76 0.53 0.05 

Acetate, µmole/L 74.08 74.13 74.63 72.90 0.788 0.96 0.62 0.88 

Propionate, µmole/L 32.05 35.83 37.15 39.00 0.781 0.001 <0.0001 <0.0001 

Butyrate, µmole/L 9.30 9.61 9.24 10.53 0.466 0.64 0.93 0.07 

Isobutyrate, µmole/L 1.53 1.73 1.52 1.86 0.092 0.12 0.95 0.01 

Valerate, µmole/L 0.83 0.83 0.92 0.86 0.092 0.95 0.49 0.8 

Lactate, µmole/L 5.23 4.54 4.70 4.75 0.288 0.1 0.2 0.2 

Acetate, % 61.78 59.54 56.80 56.04 0.788 0.05 <0.0001 <0.0001 

Propionate, % 26.75 28.72 28.27 29.50 0.512 0.009 0.04 0.0004 

Butyrate, % 7.76 7.70 7.03 7.94 0.337 0.90 0.13 0.70 

Isobutyrate, % 1.28 1.39 1.14 1.40 0.07 0.28 0.16 0.24 

Valerate, % 1.28 1.39 1.14 1.40 0.07 0.28 0.16 0.24 

Lactate, % 4.36 3.64 3.60 3.62 0.236 0.04 0.03 0.03 

A:Pr² 2.32 2.10 2.02 1.90 0.052 0.005 0.0002 <0.0001 

A:Pr+B³ 1.80 1.65 1.62 1.51 0.468 0.03 0.008 <0.0001 

¹Standard error of mean 
²Acetate to Propionate ratio 
³Acetate to propionate +butyrate ratio  
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Table 4.4: Change in selected rumen parameters as affected by addition of Megasphaera elsdenii (Me) and Saccharomyces 

cerevisiae live yeast (LY) to dairy cow’s diet with low (40:60) concentrate to forage ratio.  

Parameter Additives
SEM 

Contrast, p
 Control Me LY Me+LY Control vs. Me Control vs. LY Control vs. Me+LY 

Rumen pH  1.00  
0h 6.6 5.9 6.05 5.8  <.0001 0.0002 <.0001 
12h 5.6 5.8 5.99 5.9  0.13 0.009 0.04 
24h 5.5 5.9 5.65 5.9  0.004 0.34 0.01 
48h 5.6 6.0 5.40 5.6  0.003 0.16 0.90 
Rumen ammonia-N, mg/L     0.32    
0h 5.0 5.0 5.40 6.3 1.00 0.35 0.007 
12h 6.9 6.9 6.97 6.8  0.94 0.94 0.72 
24h 5.9 6.0 5.93 6.2  0.83 0.88 0.47 
48h 5.9 6.3 6.20 7.0  0.47 0.56 0.02 
Rumen acetate, %     0.59    
0h 57.6 63.7 56.40 59.9 <.0001 0.15 0.01 
12h 62.2 60.4 57.23 56.7  0.03 <.0001 <.0001 
24h 63.3 59.3 57.03 55.6  <.0001 <.0001 <.0001 
48h 64.0 54.7 56.53 52.0  <.0001 <.0001 <.0001 
Rumen proionate, %     0.74    
0h 25.3 26.3 26.60 28.13 0.33 0.21 0.01 
12h 25.2 27.8 28.10 29.27  0.02 0.01 0.0006 
24h 28.4 30.2 29.40 30.30  0.01 0.33 0.08 
48h 28.1 30.5 29.00 30.30  0.03 0.42 0.04 
Rumen lactate, %     0.34    
0h 4.5 4.1 4.3 4.10 0.41 0.78 0.45 
12h 4.7 4.0 4.5 4.53  0.18 0.78 0.78 
24h 4.2 3.5 3.0 3.20  0.14 0.01 0.04 
48h 4.1 3.0 2.5 2.63  0.03 0.003 0.006 
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4.3. Effect of M. elsdenii, S. cerevisiae and their combination on the 
lactate in high and low concentrate diets  
 

Live yeast and Me were able to control the build-up of lactate and influence the 

concentration of rumen lactate and determine the development of acidosis. Figures 

4.1; 4.2 and 4.3 show the decreasing effects of Me, Ly and Me+LY comparing it 

between high and low concentrate diets.  

 

 

Figure 4.1: The effects of Me on lactate in low and high concentrate diets 

 

Addition of Me decrease significantly the molar percentage of rumen lactate in low 

concentrate compared to high concentrate diet, see Figure 4.1. 
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Figure 4.2: The effects of LY on lactate in low and high concentrate diets 

 

As opposed to the effects of Me, addition of LY had a more decreasing effect on the 

molar % of rumen lactate in high compared to low concentrate diet, see Figure 4.2. 

 

 

Figure 4.3: The effects of Me+LY on lactate in low and high concentrate diets 

 

Addition of Me+LY decrease the molar percentage of rumen lactate almost similarly in 

high and low concentrate diets.  
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4.4. The linear relationship between additives and control evaluated in 

high and low concentrate diets and presented  

 

In the high concentrate diet, there was a strong negative relationship between LY and 

Me+LY compared to the control for lactate molar percentage. 

The equations were: 

 

1) LY = -1.032 x + 11.956 (R²= 0.84 ; P = 0.03) 

2) Me+LY= -1.432 x + 13.735 (R²= 0.78; P= 0.002) 

 

While the addition of Me presented a strong but not significant relationship with the 

control. The equation was: 

Me= -0.965 x + 10.843 (R²= 0.69; P = 0.23)  

 

 

 

Figure 4.4: Relationship between additives and the control for lactate in high 

concentrate diet. 
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There was a strong negative correlation between LY and Me+LY compared to the 

control in the low Concentrate diet. 

The equations were: 

 

1) LY=-0.642 x + 8.786 (R²= 0.63; P= 0.04) 

2) Me+LY= -0.536 x + 8.432 (R²= 0.78; P=0.01) 

 

While the addition of Me presented a moderate but significant negative correlation with 

the control. 

The equation was: Me= -0.543 x + 7.893 (R²= 0.59; P=0.02) 

 

 

Figure 4.5: Relationship between additives and the control for lactate in low 

concentrate diet. 
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CHAPTER 5  DISCUSSIONS 

 

5.1. The effects of additives on pH and ammonia nitrogen 

 

In the present study, the average rumen pH and ammonia nitrogen in both low and 

high concentrate diets was 5.8 and was not affected by Me and LY supplemented 

separately or in their combination (Me+LY). This lack of effects of Me on the pH is in 

agreement with previous studies (Aikman et al. 2009; 2011, Hagg et al. 2010, Zebeli 

et al. 2012), but contradicts with results of Henning et al. (2010). The latter author 

reported that M. elsdenii increased and decreased the rumen pH in vivo in Bonsmara 

steers and lambs, respectively. The M. elsdenii did not affect rumen pH in pre-weaned 

calves (Muya et al. 2015) and in steer (Henning et al. 2010). A 48 – 96 hours 

adaptation period has been suggested as critical for noticeable effects on stabilising 

pH with the strain M. elsdenii 41125 (Meisser et al. 2014). The noticeable competitive 

advantages of the strain M. elsdenii 41125 on pH and outgrowing other lactate utilising 

organisms have been reported more after a sudden increase in concentrate (McDaniel 

et al. 2009), which was not the case in the present study. The absence of effects of 

LY on pH agrees also with previous in vitro studies (, Zeleňák et al. 1994, Newbold et 

al. 1995, Newbold et al. 1998, Lila et al. 2004). Mutsvangwa et al. (1992) and Al 

Ibrahim et al. (2012) observed no effect of S. cerevisiae in the first period (morning) 

but in the second period (afternoon) decrease and increase , respectively. Contrary to 

our observations, a specific strain, S. cerevisiae 1026 decreased pH in Holstein cows 

(Angeles et al. 1998, Chung et al. 2011), which is attributed to the stimulation of 

metabolism and growth of bacteria that utilise lactate, such as M. elsdenii or S. 

ruminantium (Chevrauillard et al. 1996; Rossi et al. 2004). No critical pH condition was 
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prevailing in order to allow for these two additives to express their potential on 

stabilising pH. The increase in pH at 24 and 48 h by Me at 0 and 12 h by LY in low 

concentrate diet only is difficult to explain. 

 

5.2. The effects of additives on total volatile fatty acids  

 

The lack of effects of addition of Me alone in both high and low concentrate diets agree 

with Aikman et al. (2009) and Hagg et al. (2010). The changes in rumen VFAs after 

dosing early lactating cows with Me were not observed. In the present study, early 

lactating cows were used as rumen fluid donors. However, caution should always be 

taken when interpreting rumen VFAs concentration results, because the rumen VFAs 

level varies over time.  

 

In high concentrate diet, total VFAs were increased with the addition of LY alone and 

in combination with Me (LY+Me). The increase in total VFAs in the present study with 

addition of LY to high concentrate diet is in agreement with some reports (Al Ibrahim 

et al. 2012, Arcos-Garcı́a et al. 2000, Lila et al. 2004) but not with other researchers 

(Chung et al. 2011, Angeles et al. 1998). The observed increased VFAs by Me+LY 

was probably due to the increasing effect of LY since Me alone did not show an effect.  

 

The lack of effects of these three additives on the mean total VFAs concentration in 

low concentrate diet is difficult to explain. A contrasting report by (Meissner et al. 2014) 

reported an increase in total VFAs. 
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5.3. The effects of additives on major volatile fatty acids  

 

The concentration of VFAs produced in the rumen and the proportions (molar 

percentage) in which they are produced are important determinants of a ruminant's 

metabolism. However, the molar percentages are more appropriate and have greater 

utility for evaluation of treatments because it is not sensitive to ruminal liquid amount, 

which has great variability in rumen digesta liquid amounts (Hall et al. 2015). For this 

reason, the discussion on VFAs will focus mainly on molar percentage of individual 

VFAs. 

 

As also reported previously by Aikman et al. (2009; 2011), in lactating cows, the 

acetate tended to decrease with Me as it is observed in the present study with both 

low and high concentrate diets. No effects were observed by other authors in young 

calves (Muya et al. 2015) and steer (Henning et al. 2010), suggesting that Me may act 

differently depending on the age and animal breed probably due to the stage of rumen 

development dynamic in the rumen. The tendency of increase in propionate in both 

diets, is concurring with observation by Aikman et al. (2011). In contrast, Henning et 

al. (2010) reported a decrease in the molar percentage of propionate. Generally, when 

pH decreases with Me, the fermentation shifts from propionic acid to butyric and valeric 

acid (Marounek et al. 1989). The change in fermentation observed in the present study 

is more favourable for dairy cows, as more propionic can enter the tricarboxylic cycle 

and generate more glucose.  

 

As a result of the tendency to decrease and increase of acetate and propionate, 

respectively, in the present study, the A: Pr was reduced. Although the molar 
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percentage of VFAs at different incubation times was not statistically compared within 

treatments, numerically more propionate was produced with time at the expense of 

acetate. The decrease in the molar percentage of lactate in high concentrate diet by 6 

and 14 % at 24 and 48 h, respectively, and by 26 % at 48 h in low concentrate diets, 

confirm the action of Me on converting lactate to others VFAs. The M. elsdenii is 

reported to be a major role player in the generation of branched chain of VFAs in the 

rumen (Wallace 1986) and converting lactate to propionate and butyrate as well as 

converting glucose to butyrate (Henning et al. 2010). This is supported by the 

decrease in lactate with Me. The decrease in the ratio of acetate to propionate (A: Pr) 

with Me was also reported by Aikman et al. (2009; 2011). However, Meissner et al. 

(2014) reported an increase but (Hagg et al. 2010) reported no effect. The current 

study shows that M. elsdenii NCIMB 41125 alters rumen fermentation patterns 

supportive of glucogenic propionate, which can potentially benefit energy balance, 

animal health and animal production (Aikman et al. 2009; 2011) in early lactation. 

However, Aikman et al. (2011) and Henning et al. (2010) reported a decrease in the 

production and molar proportion of propionate, respectively. 

 

Addition of LY decreased acetate in both diets as observed by Chung et al. (2011) but 

not by Lila et al. (2004) and Al Ibrahim et al. (2012). Erasmus et al. (2005) reported an 

increase in acetate and Zeleňák et al. (1994) observed no effects of LY. This increase 

in acetate, increase in propionate in low concentration diet but not affected in high 

concentrate diet with LY also resulted in reduced A: Pr ratio. In addition to the 

increased butyrate in both diets, hence the A: Pr+B was also reduced. The general 

and well known effects reported in many studies with LY is the stimulation of increase 

in propionate at the expense of acetate (Erasmus et al. 2005), which was also 
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observed in the present study in both low and high concentrate diets. Lactate is not 

used as a substrate by S. cerevisiae (Williams et al. 1991). Therefore, it was suggested 

that the decrease in rumen lactate may be, amongst other, the result of the inhibition 

of lactate production or stimulation of lactate utilisation by other microbes (Williams et 

al. 1991). For Me, numerically more propionate was produced with time at the expense 

of acetate with LY. As observed in the present study, lactate was also reported to be 

decreased by yeast (Lila et al. 2004).  

 

When added in combination, the two additives increased propionate (although only 

tendency was observed in high concentrate diet) at the expense of acetate, reducing 

the A: Pr. This effects were more pronounced in low than high concentrate diet. The 

decreasing effect of lactate appears to be greater when the two additives were added 

in combination.  

 

In high concentrate diet, ruminal lactate is expected to increase and cause acidosis. 

In the present study, no cases of clinical acidosis were observed. All treatment groups 

had rumen pH >5.6 (a commonly used threshold to define subacute ruminal acidosis). 

Lactate level was elevated in high concentrate diet, which was expected because large 

amounts of starch and sugar stimulate bacteria that make lactic acid. This can also 

partially explain the greater extent of lactate decrease in low compared to high 

concentrate. In the presence of more LUB, more moles of existing lactate could have 

been converted to other VFAs.  

 

Live yeast appears to act differently compared to Me by having a double the effects 

on high than low concentrate diets. The exact mechanism by which the yeast culture 
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exerts its potential in stimulating rumen bacteria is not well understood . Nonetheless, 

it is could be through the removal of oxygen from the rumen environment or the 

presence of unidentified growth factor delivered by the active live yeast cells (Jouany 

& Morgavi 2007). However, the greater effects on high concentrate diet in the present 

can be attributed to a selective stimulation of LUB as suggested by Callaway and 

Martin (1997).  

 

When added separately to the diet, Me and LY acted differently on rumen lactate in 

low and high concentrate diets, but the decreasing effects of Me+LY on rumen lactate 

was almost similar in both low and high concentrate diets, which suggest a modest 

complementarity effect between the two additives. Associative effects of LY and other 

additives was previously reported (Erasmus et al. 2005). The general decrease in 

lactate by all additives observed in this study indicate their beneficial effect in early 

lactation period of dairy cows when animals are fed high concentrate and are at high 

risk of developing acidosis. 
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CHAPTER 6  CONCLUSIONS AND RECOMMENDATIONS  

 

The use of feed additives and rumen modifiers in ruminant production will continue to 

play an essential role in improving nutrient efficiency and alleviating metabolic 

disorders, which more often occur in high producing animals. Improved energy 

metabolism and animal performance with feed additives as rumen manipulators are 

the main benefits reported in dairy production. Specific rumen condition appears to be 

the key driver of the expression on different additives and has led to different effects.  

 

The present results support that dietary addition of M. elsdenii and S. cerevisiae, can 

shift the rumen fermentation patterns of a dairy cow’s diet, mainly towards the 

production of more propionate and decrease of acetate molar proportion. The 

interaction of the two additives showed more pronounced effects on this shift with low 

concentrate diet. This is particularly important and can improve the energy balance 

health and productivity of cows fed low concentrate diets, which are known to provide 

less energy due to the glucogenic properties of propionate. A decrease in lactate was 

also found as a result of interaction between the two additives and was similar in both 

low and high concentrate diets. The control of lactate build-up is critical in high 

producing early lactating dairy cows. As reported in other studies, understanding these 

associative or complementary effects are important and can help animals and feed 

producers in decision making.  

 

More research is warranted to document effects of these two additives in vivo and 

different feeding conditions.  
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