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Abstract

In this thesis, a mathematical model for HIV and TB co-infection with TB

treatment among populations of Ethiopia is developed and analyzed. The

TB model includes an age of infection. We compute the basic reproduction

numbers RTB and RH for TB and HIV respectively, and the overall repro-

duction number R for the system. We find that if R < 1 and R > 1, then

the disease-free and the endemic equilibria are locally asymptotically stable,

respectively. Otherwise these equilibria are unstable. The TB-only endemic

equilibrium is locally asymptotically stable if RTB > 1, and RH < 1. How-

ever, the symmetric condition, RTB < 1 and RH > 1, does not necessarily

guarantee the stability of the HIV-only equilibrium, but it is possible that

TB can coexist with HIV when RH > 1. As a result, we assess the impact of

TB treatment on the prevalence of TB and HIV co-infection.

To derive and formulate the nonlinear differential equations models for HIV

and TB co-infection that accounts for treatment, we formulate and analyze

the HIV only sub models, the TB-only sub models and the full models of HIV

and TB combined. The TB-only sub model includes both ODEs and PDEs

in order to describe the variable infectiousness and effect of TB treatment

during the infectious period.

To analyse and solve the three models, we construct robust methods, namely

the numerical nonstandard finite difference methods (NSFDMs). Moreover,

we improve the order of convergence of these methods in their applications

to solve the model of HIV and TB co-infection with TB treatment at the

population level in Ethiopia. The methods developed in this thesis work

and show convergence, especially for individuals with small tolerance either

to the disease free or the endemic equilibria for first order mixed ODE and
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PDE as we observed in our models.

Keywords and expressions: HIV, TB, Nonstandard finite difference meth-

ods, Basic reproduction number, Stability, Co-infection.
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Notations and definitions of some terms

• AIDS: Acquired Immunodeficiency Syndrome;

• ARV: Antiretroviral Virus;

• CPT: Cotrimoxazole prophylactic treatment;

• DOTS: Directly Observed Treatment, Short-Course;

• DR-TB: drug resistant TB;

• DS-TB: drug-sensitive TB;

• EDHS: Ethiopian Demographic Health Survey;

• IPT: Isoniazid Preventive Therapy;

• MOH: Federal Ministry of Health;

• MTB: Mycobacterium tuberculosis;

• NSFDMs: Nonstandard finite difference methods;

• ODEs: ordinary differential equations;

• PDEs: partial differential equations;

• PLWHA: People Living with HIV/AIDS;

• TB: Tuberculosis;

• UNAIDS: United Nations Joint Program on HIV and AIDS;

• WHO: World Health Organization;

• SI: susceptible, infectious;
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• SIS: susceptible, infectious, susceptible epidemiological compartments;

• SEE: stable epidemic equilibrium;

• SDFE: stable disease free equilibrium;

• UEE: unstable epidemic equilibrium;

• UDFE: unstable disease free equilibrium;

• Age of infection is the time lapsed since infection;

• Antiretroviral therapy (ART) is the recommended treatment for HIV

infection. ART involves taking a combination (regimen) of three or

more anti-HIV medications daily. ART prevents HIV from multiply-

ing and destroying infection-fighting CD4 cells. This helps the body

fight off life-threatening infections and cancer. ART can not cure HIV,

but anti-HIV medications help people infected with HIV live longer,

healthier lives;

• Co-infection is the infection of a host by at least two different types of

pathogens. TB and HIV dynamics have a correlation, as HIV weakens

the immune system of the host, which creates a proper medium for

MTB to infect the host. Therefore, in areas with high HIV prevalence,

TB is one of the main causes of death;

• Drug resistant TB (DR-TB) is a disease (usually pulmonary) caused by

Mycobacterium Tuberculosis strains resistant to one or more anti-TB

drugs. TB organisms resistant to the antibiotics used in its treatment

are widespread and occur in all countries surveyed. Drug resistance
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emerges as a result of inadequate treatment and once TB organisms

acquire resistance. They can spread from person to person in the same

way as drug-sensitive TB;

• Human Immunodeficiency Virus (HIV) is the virus that causes HIV

infection. During HIV infection, the virus attacks and destroys the

infection-fighting CD4 cells of the bodys immune system. Loss of CD4

cells makes it difficult for the immune system to fight infections;

• HIV-1 is a type of HIV which has been classified into three groups:

M (major), O (outlier) and N (non-M and non-O). The global AIDS

epidemic is currently dominated by the group M HIV-1 virus. Group

M can further be divided into subtypes or clades, of which nine have

been designated A to K (M clades) and O. M and O show 55-70;

• Macrophages- are white blood cells within tissues, produced by the di-

vision of monocytes;

• Multi-drug-resistant TB (MDR-TB) is caused by organisms that are re-

sistant to the most effective anti-TB drugs (isoniazid and rifampicin).

MDR-TB results from either infection with organisms which are already

drug-resistant or may develop in the course of a patient’s treatment.

This form of TB does not respond to the standard six month treatment

with first-line anti-TB drugs and can take two years or more to treat

with drugs that are less potent, more toxic and much more expensive;



• Resistant strains are those that differ from sensitive strains in their

capacity to grow in the presence of higher concentrations of a drug;

• Sensitive strains (sensitive strains of Mycobacterium TB) are those

that have never been exposed to the main anti-tuberculosis drugs (wild

strains) and respond to these drugs, generally in a remarkably uniform

manner;

• TB incidence and prevalence are central to the rate of tuberculosis

transmission. TB incidence is defined as the rate of appearance of new

TB cases per unit time. TB prevalence is the proportion of infected

individuals at one point in time, or over a short time period. The

measurement of incidence and prevalence is often based on stratifica-

tion of the population by a variety of factors, such as age, ethnicity, etc;

• Treatment: control of tuberculosis is managed by two types of treat-

ment. The treatment of latent TB is called chemoprophylaxis and

treatment of active TB is called therapeutics. Treatment of TB lasts

long; therefore control strategies have been developed for compliance

to TB treatment. DOTS (Directly Observed Treatment, Short-Course)

are a treatment program used for compliance with treatment of drug-

sensitive TB. Another control program is DOTS-plus, which is devel-

oped for compliance with treatment of drug-resistant TB. A good public

health treatment strategy combines different control strategies to con-

trol all types of TB infections.

viii
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Chapter 1

General introduction

The spread of human immunodeficiency virus/acquired immune deficiency

syndrome (HIV/AIDS), tuberculosis (TB) and malaria across the world poses

major global health challenges of this time [29, 56, 60].

In [52], according to the recent estimates by the United Nations Program

on HIV/AIDS (UNAIDS) global report, 35.3 (32.2–38.8) million people were

living with HIV/AIDS, worldwide in 2012; more than a half of them in

Sub-Saharan Africa and nearly about a fifth in South and South-East Asia.

According to MOH office report [23, 28], the overall prevalence of HIV infec-

tion was 2.4 percent and 1, 216, 908 people were living with HIV/AIDS in

Ethiopia.

Globally, in 2013, an estimated nine million people developed TB and 1.5

million died from the disease [59]. In Ethiopia, TB has been recognized as a

major public health problem for more than half a century, and claiming the

lives of thousands of Ethiopians every year. In 2011 WHO global TB report,

Ethiopia ranks 7th among the 22 high TB burden countries in the world and

one of the top three in Africa, with regard to the prevalence of TB [58, 60].

MDR-TB is an emerging challenge for TB control globally. Ethiopia is among
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these countries, at the end of February 2012, a total of 437 cases of MDR-TB

patients were enrolled on treatment in three MDR-TB centers in Ethiopia.

Regarding their outcome of treatment, success was documented in 72 pa-

tients while 43 died and 6 defaulted from treatment [26, 29, 30, 58, 59, 60].

An estimated 1.1 million (13 percent) of the nine million people who devel-

oped TB were HIV-positive. The African region accounts for about four out

of every five HIV-positive TB cases and TB deaths among people who were

HIV positive [56, 59]. Among people with active TB, more than 22 percent

of them are HIV positive. Co-infection of HIV with TB greatly increases the

probability for an individual to progress from latent to active TB and TB is

also the most common cause of AIDS-related deaths [45, 61].

In this thesis; firstly, we focus on considering the age of infection in TB when

modeling the dynamics of TB with treatment from a mathematical point

of view. Lastly, we include the age of infection on the dynamics of HIV

and TB co-infections with TB treatment. Hence, the mathematical models

considered or developed are described by autonomous systems of non-linear

partial and ordinary differential equations. Therefore, we design a special

class of numerical methods, known as Nonstandard Finite Difference Meth-

ods (NSFDMs) as is mentioned in [32] and others fail to investigate the

applicability of such methods for non-linear PDE models and to improve the

order of convergence of these methods (both for ODE and PDE models) in

biology and ecology.

As far as possible, most of the terminologies considered in this thesis are

adopted from MOH, WHO and UNAIDS in Ethiopia. We have been work-

ing in collaboration with the staffs of MOH to access the data made.

A concise background for HIV-TB co-infection with TB treatment is pre-

sented in the next section.
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1.1 HIV-TB co-infection with TB treatment

in Ethiopia

The global adoption of WHO has enabled more than 55 million people in-

fected with TB to receive treatment. It also prevented up to 7 million deaths

between 1995 and 2010. In 2013, an estimated 9.0 million people developed

TB and 1.5 million died from the disease in this year alone and 2.5 million

new HIV infections annually [4, 39, 56, 58].

In Ethiopia, the number of notified TB cases has been steadily increasing

since 1996 from 79,095 to reach a peak of 159,017 cases in 2011. However,

the number of notified TB cases has shown a marked decline over the last

three successive years as shown in the table 1.1 below. It is shown a decline

of 8 percent and 13 percent over the next two successive years (2012 and

2013) and the last one year, respectively [26, 29].

Number of notified TB cases in Ethiopia: 1996 - 2014

yearNumber of notified TByear Number of notified TB

1996 79,095 2005 125,135

1997 59,611 2006 123,009

1998 70,714 2007 129,743

2000 92,759 2008 141,909

2001 95,826 2009 149,146

2002 110,998 2010 154,406

2003 118,276 2011 159,017

2004 124,223 2012 146,367

2013 130,614 2014 115,821

Table 1.1: Trend in the number of notified TB cases over 19 years, Ethiopia.

In 2011, a total of 159,017 cases of TB were registered for treatment. The
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TB cure rate for new smear positive pulmonary TB registered is 66.5 percent

in 2011. A death rate of 2.6 percent among TB patients registered for treat-

ment in a year would imply the need to strength quality of TB patient care

along with fostering early diagnosis and treatment. Similarly the death rate

(proportion of TB cases who died while on anti-TB treatment among TB

cases registered for treatment during same time period) among the notified

new smear positive pulmonary TB (PTB+) cases in 2012 is 2.8 percent at

national level. In 2013, a total of 130,614 TB cases were reported with a

TB case notification rate of 152 per 100,000 populations. Out of 130,614

cases reported in the year; 33.4 percent were smear positive pulmonary TB,

34.5 percent were smear negative pulmonary TB and 32.1 percent were extra

pulmonary TB [26, 29]. The HIV pandemic presents a massive challenge to

the control of tuberculosis at global and national level. It is evidenced that

the synergy between TB and HIV/AIDS is strong, especially in high HIV

prevalence settings. TB is the leading cause of morbidity and mortality, and

HIV is driving the TB epidemic in many countries, especially in Sub-Saharan

Africa including Ethiopia [29].
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Figure 1.1: Trend in the number of people living with HIV/AIDS who ac-

cessed chronic HIV care (2006-2013) [26,29].

From the above figure, a linear increase has been observed in the number of

people living with HIV/ADIS (PLWHA) ever enrolled, ever started and cur-

rently on ART over the past seven years; in particular, there was an increase

between Ethiopian fiscal year (EFY) 2004 and EFY 2005 from 666,147 to

744,339 for PLWHA ever enrolled in HIV/AIDS care (+78,192), from 379,190

to 439,301 for those ever started (+60,111), and from 274,708 to 308,860 for

those currently on ART (+34,152).

To understand the epidemiology of TB and HIV co-infection in Ethiopia,we

cross-matched incident TB cases reported to routine surveillance data during

2007-2010 with cases in the HIV/AIDS registry [4]. Of 176,739 TB case-
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patients 35,140 (20 percent) had known HIV infection. TB rates for persons

with HIV declined from 31 to 15 percent for the first four years and slightly

increased fom 17 to 20 percent for the last two years during 2007-2012. In

2010, 69 and 39 percent of patients co-infected with TB-HIV were put on

CPT and ART respectively in the same registry [10, 11, 12]. In Ethiopia,

the overall prevalence of HIV infection is 2.4 percent and Minister of Health

office reported 1,216, 908 people were living with HIV/AIDS.

In 2010, of 66,955 TB cases 9,809 (15 percent) patients had known HIV in-

fection [21, 26]. Of 68,169 TB cases 9,285 (14 percent) patients had known

HIV infection in 2013/2014. When a person is infected with HIV, they are at

an increased risk of also contracting TB. Co-infection with TB can also mean

an accelerated progression to AIDS. Most leading international bodies, such

as the WHO and UNAIDS, agree on the importance of a collaborative ap-

proach to dealing with TB-HIV co-infection, including testing and treatment

[33]. TB/HIV collaborative activities are essential to reduce the burden of

TB among people living with HIV/AIDS and to reduce the burden of HIV

among TB patients. These activities include establishing mechanisms for

collaboration between TB and HIV programs; infection control in health-

care and congregate settings; HIV testing and counseling of TB patients and

to refer TB patients infected with HIV to HIV services such as CPT and

ART [8, 26, 41].

In 2011, among people with active TB, more than 22 percent of them are

HIV positive. Co-infection of HIV with TB increases greatly the probability

of progressing from latent to active TB [23].

The following table shows the number/proportion of TB patients tested for

HIV, HIV-TB co-infection and their co-infection rate 2007-2014.
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Number of people tested for TB and co-infected with HIV

YearTB patients tested for HIVHIV-TB co-infectedco-infection rate

2007 20,723 6,342 31

2008 33,021 7,891 24

2009 56,040 11,098 20

2010 66,955 9,809 15

2011 68,169 9,285 14

2012 75,137 11,271 15

2013 82,802 11,592 14

2014 90,034 11,705 13

Table 1.2: Sources [8, 26, 41].

Some of the important associations between the epidemiology of HIV and

TB co-infections are:

• TB is harder to diagnose and treat in HIV positive people,

• TB facilitates the progression of HIV to AIDS,

• TB progresses faster in HIV positive infected people,

• HIV accelerates TB from latent to active and had impact on the preva-

lence of TB diseases,
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• HIV facilitates the progression of TB to MDR-TB.

1.2 Literature review

Many literatures relevant to this research were reviewed, developed and an-

alyzed through mathematical models by different researchers. The NSFD

methods were explored by many researchers to solve problems in the biolog-

ical sciences and other areas. This section gives an overview on some chosen

models on HIV, TB (including drug resistant TB) and their co-infections.

Maliyoni [41] formulated and analyzed a two-strain TB model with diagnosis,

treatment, and health education. Their theoretical study was assessed the

impact of the control strategies on the transmission dynamics of MDR-TB

(with Malawi as a case study). They noted that the results presented were

general and could be applied to other settings because neither the model,

nor the parameters values represent characteristics unique of Malawi. The

effective reproduction number was computed and used to compare the effect

of each intervention strategy on the MDR-TB dynamics.

In [31, 76] as most traditional compartmental models in mathematical epi-

demiology descend from the classical Susceptible Infecected Recovered(SIR)

model and epidemic model with fractional derivative and non-linear incidence

advance in difference equations of Kermack-McKendrick, where the popula-

tion is divided into the classes of susceptible, infected, and recovered individ-

uals. All of the models cited assumed the homogeneity of the infected class

and individuals in that compartment share the same epidemiological param-

eters. In reality, however, as time elapses and the disease develops within the

host, its infectivity might continuously change. The purpose of their paper

was to incorporate this feature into the Susceptible Exposed Infecected Re-
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covered (SEIR) model. Models keeping track of an individuals infection age

had existed for particular diseases, for instance TB and HIV/AIDS. However,

their general SEIR was formulated as a system of delay differential equations

with infinite delay. The novelty of their model was that they allowed varying

infectivity of the infected individuals as a function of the age of infection.

This assumption leads to a system of differential equations with distributed

infinite delay. They have shown that several standard theorems in mathe-

matical epidemiology can be extended to this kind of SEIR model, and the

basic reproduction number has been calculated. In the future, it would be

interesting to prove the global stability of the endemic equilibrium.

Phillips [36] explained, TB infection can be latent or active. In the latent

form it was held at bay by the immune system, did not cause illness, and

could not be spread from one person to another. In the active state it can be

transmitted to others, and severe illness and death could result if it was not

diagnosed and effectively treated. Anyone who is latently infected is at risk

of developing active TB later in life if his or her immune system fails. Unlike

HIV infection, which is not spread by casual contact, TB infection can be

acquired by healthy individuals who inhale mycobacterium tuberculosis. TB

is more likely to be spread in crowded living conditions (such as homeless

shelters, prisons, or crowded homes) and areas of high prevalence in which

uninfected individuals were in close proximity with persons with active TB.

Several studies [9, 10] have presented a two-strain model, in which the drug-

resistant strain was not treated, and latent, infectious and treated individuals

might be re-infected with the drug-resistant strain. Each strain has a different

basic reproduction number, and there were three equilibrium points (no dis-

ease, coexistence of both strains, and only the drug-resistant strain). Without

acquisition of drug resistance, there was an additional equilibrium with only
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the drug-sensitive strain. The authors discussed stability of the equilibria

and found, interestingly, areas of parameter space of positive measure where

coexistence of the strains was possible; they reported that coexistence was

rare when drug resistance was mainly primary (resulting from transmission)

but almost certain if the resistant strain was the result of acquisition, for

example under poor treatment. Neglecting disease-induced death and set-

ting the transmission parameter equal for the two strains, they were able

to prove that the disease-free equilibrium is globally asymptotically stable if

both basic reproduction numbers are less than unity.

Although TB is currently well-controlled in most countries, recent data in-

dicated that the overall global incidence of TB was rising as a result of

resurgence of disease in Africa and parts of Eastern Europe and Asia (Dye,

2006). In these regions, the emergence of drug-resistant TB and the conver-

gence of the HIV and TB epidemics have created substantial new challenges

for disease control.

TB treatment was long and hard to complete. Therefore, there was a need

for a program to force tuberculosis patients to complete their treatment. For

this purpose, DOTS (Directly Observed Treatment, Short-Course) was used

as an effective strategy for controlling TB epidemics [7].

Blower et al [6]. developed a model for designing effective control strategies

to determine levels of eradication of TB. Treatment failure can lead to drug

resistance, which is a challenge to control programs, as these drug-resistant

strains are more difficult to treat. One-strain models account only for drug-

sensitive cases only. To account for drug resistance, Blower et al [6]. built a

two-strain model, a linked control model, by integrating drug resistance.

Mathematical models for the dynamics of multi-drug resistant tuberculosis

in Mali; assessing the impact of control strategies was developed by Maliyoni
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[40]. In their thesis, they have presented and analyzed a basic tuberculosis

model which was modified into a two-strain TB model with diagnosis, treat-

ment and health education in Malawi. The main objective of their study was

to assess the impact of the control strategies mentioned above on the trans-

mission dynamics of MDR-TB only in Malawi. Qualitative analysis of the

models shows that the model has two equilibria; the disease free equilibrium

and endemic equilibrium. It was found out that whenever reproductive num-

ber is less than unity, the disease free equilibrium is locally asymptotically

stable and becomes unstable whenever the reproductive number becomes

greater than unity.

There were a lot of mathematical models describing tuberculosis, but only

few of them concerning drug resistance. They were often deterministic al-

though some stochastic models, such as Markov chain models, were also

used in general cases. Two leading experts in this field, Castillo-Chavez and

Song [9], contributed to a better understanding of the tuberculosis dynamics

and drug resistance. In transmission model, several authors [6, 8, 9, 11, 57]

have developed ordinary differential equation models with drug-sensitive and

drug-resistant strains.

E.F. du Toit [19] proposed a linear differential equations model for showing

the co-infection dynamics of HIV-1 and Mycobacterium tuberculosis. In the

research, a model is proposed to indicate the populations of both pathogen

as well as key information factors, such as the overall infected cell popula-

tion and antigen-presenting cells. Their treatment simulation showed both

the effect that changes in HIV has on TB, and the effect that changes in

TB has on HIV. Finally, they listed new research possibilities stem from this

co-infection model that can be extended as to be the latest knowledge on

TB and HIV. For TB, this would mean the effect of drug resistant TB would
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have to be considered and the model must be adjusted for the specific types

of TB accordingly.

Santosh Ramkissoon et.al. [50] developed a modeling HIV and MTB co-

infection including combined treatment strategies. They had presented a new

model which was able to simulate HIV and TB co-infection and test various

combined treatment strategies. They also tested combined treatment with

different timings for each therapy. In their conclusion, they recommended

that further work could address mechanisms of HIV disease progression, sup-

pressed, latent and active MTB infection, and tubercle formation and TB of

drug resistant could be modeled. As a step toward multi-scale simulation the

host pathogen model could be embedded in a population-level of epidemio-

logical model.

Kirschner [16] designed Dynamics of Mycobacterium tuberculosis and HIV-1

co-infection. Here a simple mathematical model was developed to describe

the interaction of the immune system’s key players, T cells and macrophages,

with the pathogens HIV and Mycobacterium tuberculosis. It showed that

the presence of Mycobacterium tuberculosis in the HIV-infected individual

worsens the clinical picture and therefore, treatment of TB in HIV-infected

individuals could have been a profound effect on their progression to AIDS.

When designing treatment, a drug that suppresses bacterial growth, as op-

posed to enhancing the bacterial death rate, would likely be more effective.

They recommended screening HIV-infected individuals at high risk for TB

(or showing any clinical signs of TB), and then initiation of a complete course

of treatment for TB positive individuals. They concluded that further inves-

tigation will be needed to examine the role of development of drug-resistance

in both TB (MDR-TB) and TB-HIV infections.

Roeger [38] proposed mathematical modeling of TB and HIV co-infections.
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Their model consisted of a system of eight differential equations that was

introduced to model the joint dynamics of TB and HIV by dividing the to-

tal population in to different epidemiological subgroups, which allowed the

incorporation of both infections. The simulation results showed that the pro-

gression of latent to active TB is faster in people with HIV than in people

without. The presence of HIV could lead to the co-existence of TB and HIV.

The numerical results suggested that to reduce (control) the impact of TB,

investing more in reducing the prevalence of HIV could be an effective option.

In the conclusions, they recommended that detailed models that take into

accounts various forms of TB treatment (latent and active TB), the danger

of increasing the prevalence of antibiotic resistant TB and their relation to

HIV treatment must be incorporated into models of HIV/TB co-infection if

further progress is to be made.

The mathematical analysis of the transmission dynamics of HIV and TB

co-infection in the presence of treatment was developed by Sharomi et al

[44]. By combining some assumptions and definitions, the realistic determin-

istic model for the transmission dynamics of HIV and TB in a population

is designed and rigorously analyzed using fifteen linear ordinary differential

equations with treatment strategies using burification methods. Their study

showed that the prospect of effectively controlling the spread of HIV and TB

in a community, using effective treatment for both diseases, is bright.

Villanueva et al. [56] developed NSFD schemes to solve the numerical so-

lution of a mathematical model of infant obesity with constant population

size. Their model consists of a system of coupled nonlinear ordinary differen-

tial equations. The numerical results showed that their methods have better

convergence properties as compared to the classical Euler or the fourth-order

Runge-Kutta methods and the Matlab routines in the sense that these rou-
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tines give negative values for some of the state variables.

Construction and analysis of efficient numerical methods to solve mathemat-

ical models of TB and HIV co-infection was conducted by Obaid Ahmed [32].

In his study competitive unconditionally stable NSFDMs were proposed for

solving a TB-only sub-model and a full HIV-TB co-infection model repre-

sented by a nonlinear system of ordinary differential equations. Numerical

results presented, confirmed the applicability of the proposed NSFDMs for

the biological systems. These methods preserved the positivity of solutions

and converging to stability properties of the equilibria for arbitrary step-sizes

while the solutions obtained by other numerical methods experience difficul-

ties in either preserving the positivity of the solutions or in converging to the

correct equilibria. Finally they suggested that investigating the applicability

of their methods for partial differential equation models in biology, and im-

proving the order of convergence of these NSFDMs (both for ODE and PDE

models) still needs further study.

According to the best of our knowledge, we could hardly find research on

mathematical modeling of HIV and TB co-infections that incorporate TB

treatment in nonlinear ordinary and partial differential equations models.

But from biological and medical perspectives, the reader who wishs to look

at the work of HIV and TB co-infections may refer to the works in [14, 19,

31, 32, 34, 36, 38, 39, 43, 44, 45, 51, 50, 56, 92, 96, 97, 98, 99, 100, 101, 102,

104] and the reference there in.

Some other works dealing with the dynamics of TB only can be found in [4,

5, 6, 7, 8, 9, 10, 11, 15, 17, 18, 34, 35, 39, 40, 41, 42, 43, 52, 53, 54, 57, 65,

90, 91, 93, 94, 95, 103] whereas works dealing with the dynamics of HIV only

are available in [1, 34, 39, 40, 43, 61].

From this background our study investigates the applicability of NSFD meth-
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ods for partial differential equation models in epidemiology and improves its

order of convergence by improving the mathematical model of [32].

1.3 Outline of the thesis

This thesis deals with the construction and analysis of nonstandard finite

difference numerical methods for solving HIV-TB co-infection with TB treat-

ment models. The case of Ethiopian population is considered. At the be-

ginning, we studied the sub-models (HIV-only and TB-only) and then the

full model (HIV-TB co-infection). More specific details are provided in the

following lines.

Chapter 1 deals with the general introduction on the main goal of this thesis

where a global literature review on HIV /TB co-infection with TB treatment

and the NSFD methods have been thoroughly detailed. In chapter 2, we de-

velop and analyze a mathematical model describing the dynamics of TB with

age of infection. The model accounts for one-strain distributed-delay model

at the age of infection with drug sensitive TB. The analysis presented in this

chapter introduces a function p(α) (0 ≤ p(α) ≤ 1 ) as the small proportion

of the sensitive strain that is active at the infection age α to distinguish ac-

tive TB and inactive TB. The drug resistant strain accounts for active TB

only. Drug-resistant and drug-sensitive strains are modeled, but only the age

of the infection with drug-sensitive strain is considered. Here, the density

function is(α, t) is a function of two independent continuous variables that

has a PDE in the model which makes the model more complicated than the

models based on ODE. In this chapter, we also try to analyse the effect of

p(α) and the per-capita contact rate on the dynamics of the TB model in

both strains.
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Chapter 3 investigates the above approach by studying a co-infection of the

HIV-TB model. In this chapter, the TB model developed in chapter 2 is com-

bined with the HIV model to formulate the model of the HIV-TB co-infection.

Therefore, we study the stability of the steady states. In particular, we study

the stability of the disease-free equilibria, and the endemic equilibria. To this

end, the effects of TB treatment on the dynamics of HIV-TB co-infections

are investigated.

In chapter 4, we propose effective numerical methods (NSFDMs) that solve

the TB models with both TB strains as proposed in chapter 2. We also con-

struct and analyze the NSFDMs that solve the HIV-TB co-infection model

presented in chapter 3. We show the stability and applicability of the meth-

ods for biological systems and for the systems presented here.

Finally some conclusions are drawn from this study. These are also men-

tioned in chapter 5 where scope of some future research are indicated.
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Chapter 2

Analysis of the TB model with

the age of infection

In this chapter, we develop and analyze a mathematical model describing the

dynamics of TB with the age of infection. In this model, the dynamics of

both drug-sensitive and resistant strains of TB are considered. The model

accounts for a one-strain distributed-delay model at the age of infection with

drug sensitive TB.

2.1 Introduction

Mathematical models have played a key role in the formulation of TB control

strategies and the establishment of interim goals for intervention programs.

Most of these models are of the SEIR or SIS type in which ndividuals in the

host population are categorized by their infection status such as susceptible,

exposed (infected but not yet infectious), infectious and recovered (here a re-

covered individual can become susceptible again). One of the main attributes

of these models is that the force of infection (the rate at which a susceptible
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individual leaves the susceptible class and moves into an infected category,

i.e. become infected) is a function of the number of infectious hosts in the

population at any time t and is thus a nonlinear term. Other transitions,

such as the recovery of infectious individuals and the death of others, are

modeled as linear terms with constant coefficients [9, 10].

Globally, 3.5 percent of new TB infections and 20.5 percent of previously

treated TB cases were estimated to have had MDR-TB in 2013. However,

much higher levels of resistance and poor treatment outcomes are of major

concern in some parts of the world. There is a case of MDR-TB that is

resistant to the first two lines of drugs, namely: isoniazid and rifampicin.

For most patients diagnosed with MDR-TB, the WHO recommends treat-

ment for 20 months with a regimen that includes second line anti-TB drugs.

Hence, among the estimated 480 000 people having developed MDR-TB that

year, a total of 97 000 patients were put on MDR-TB treatment [59].

In [52], M.R. Silvia’s analysis provides new insights for the interpretation of

epidemiological estimates of fitness of MDR-TB strains. Their results im-

plied that the potential for the spreading of the drug-resistant strain cannot

be evaluated simply by measuring its relative fitness value, but should be

evaluated within the context of several others factors, including the treat-

ment, healing rates, treatment efficacy and relative fitness.

Zhilan Feng, Wenzhang Huang, and Carlos Castillo-Chavez proved the global

stability of the endemic equilibrium of an ODE model of TB that were de-

veloped previously (see Castillo-Chavez and Feng, 1997a) [8, 65] . They also

constructed a TB model with a distributed delay to study the effect of vari-

able periods of latency on the transmission dynamics of TB at the population

level. The purpose of their paper was to look at the effects of variable (rather

than exponentially distributed) periods of latency on the dynamics of TB.
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M. Maliyoni [41] formulated and analyzed a two-strain TB model in Malawi

with diagnosis, treatment, and health education as their main objective was

the theoretical study (as a case study). They noted that the results pre-

sented were general and could be applied to other settings because neither

the model nor the parameter values did not represent characteristics unique

to Malawi. The effective reproduction number was computed and used to

compare the effect of each intervention strategy on the MDR-TB dynamics.

Traditional compartmental models in mathematical epidemiology descend

from the classical SIR model of Kermack and McKendrick, where the popu-

lation is divided into the classes of susceptible, infected, and recovered indi-

viduals as already mentioned here above. Most of the model used assumed

the homogeneity of the infected class and individuals in that compartment

share the same epidemiological parameters [31]. In reality, however, as time

elapses and the disease develops within the host, its infectivity might contin-

uously change. The purpose of their paper was to incorporate this feature

into the SEIR model. Models that keep track of an individual’s infection age

had existed for some particular diseases, for instance TB and HIV/AIDS.

However, their general SEIR model was formulated as a system of delay

differential equations with infinite delay. The novelty of the model was to

consider varying infectivity of the infected individuals as a function of the age

of infection. They had shown that several standard theorems in mathemati-

cal epidemiology can be extended to this kind of SEIR model, and the basic

reproduction number was calculated. In the future, it would be interesting

to prove the global stability of the endemic equilibrium.

Moualeu in their thesis [15] presented a nonlinear extended deterministic

model for the transmission dynamics of TB, based on realistic assumptions

and data collected from the WHO. This model enables a comprehensive qual-
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itative analysis of various aspects in the outbreak and control of TB in Sub-

Saharan Africa countries and successfully reproduces the epidemiology of TB

in Cameroon for the period of 1994 to 2010. Some particular properties of

the model and its solution have been presented using the comparison theo-

rem applied to the theory of differential equations. The existence and the

stability of a disease free equilibrium has been discussed using the Perron-

Frobenius theorem and Metzler matrices.

The drug-resistant phenotype may be acquired among those treated for drug-

sensitive active disease, or directly transmitted to susceptible individuals. TB

is affecting everyone no matter the sex or age group. Poverty is a risk factor

for developing TB, which places Ethiopia as a high-risk environment. The

country is one of the least developed in the world. Among the total smear

positive TB cases reported in 2009-2010, 55.5 percent were males, 7.5 per-

cent were children of age less than 14 years old, and 2 percent were above

the age of 65. The group age between 15 to 34 was found to be the most

affected with TB, accounting for 62 percent of notified new smear positive

TB cases [54]. The disproportionately large burden of TB in this age group,

which comprises a large part of the total workforce in the country, could be

contributing to poverty. Some people of the same age group are parent of

young children and this can also be heavily contributing to the transmis-

sion of TB in the household and to the overall burden of childhood TB in

the country [28, 54]. C. Colijn reviewed the literature on the mathematical

modeling of tuberculosis dynamics [10]. Multiple models exist, encapsulating

different assumptions about the dynamics of progression from latent infec-

tion to active disease, the nature of re-infection and the subsequent partial

immunity, and the complexities of different TB strains as well as HIV. They

described results from two new models of TB: a spatial stochastic model and

20



a delay differential equation model. The stochastic model indicates that if

the disease transmission is indeed local, this may reduce the effectiveness of

widely applied preventative treatment. Both models allow us to examine the

portion of new disease that is due to exogenous re-infection without having

to specify the portion of new infections destined to be fast progressors. The

specific implementation of partial immunity does not affect the estimated

contribution of re-infection to disease levels, but spatial effects do.

Although TB is currently well-controlled in most countries, recent data indi-

cated that the overall global incidence of TB is rising as a result of resurgence

of disease in Africa and parts of Eastern Europe and Asia (Dye, 2006). In

these regions, the emergence of drug-resistant TB and the convergence of the

HIV (human immunodeficiency virus) and TB epidemics have created sub-

stantial new challenges for disease control. TB treatment is long and hard

to complete. Therefore, there is a need for a program to force TB patients

to complete their treatment. For this purpose, DOTS (Directly Observed

Treatment, Short-Course) is used as an effective strategy for controlling TB

epidemics [7]. One-strain models account only for drug-sensitive cases only.

Blower et al. developed a model for designing effective control strategies to

determine levels of eradication of TB. Treatment failure can lead to drug

resistance, which is a challenge to control programs, as these drug-resistant

strains are more difficult to treat. To account for drug resistance, Blower

et al. built a two-strain model, a linked control model, by integrating drug

resistance [7, 53].

There were a lot of mathematical models describing tuberculosis, but only

few of them concerning drug resistant. They were often deterministic al-

though some stochastic models, such as Markov chain models, were also

used in general cases. Two leading experts in this field, Castillo-Chavez and
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Song, contributed a review. In transmission model several authors developed

ordinary differential equation models with drug-sensitive and drug resistant

strains, such as Blower et al, Castillo-Chavez and Feng in [6, 9, 11, 57].

In [9], drug sensitive and resistant strains were modeled, but only the age

of the infection with drug sensitive strain was considered. They introduce a

function p(α) as the proportion of the sensitive strain that is active at the

infection age α to distinguish TB and inactive TB. For the drug resistant

strain, they only account active TB. MDR-TB is an emerging challenge for

TB control programs globally; Ethiopia ranks the 7th among the 22 high

burden countries in the world and one of the top three in Africa, with regard

to the prevalence of TB [26, 58]. At the end of February 2012, from a total of

870 cases of MDR-TB only 437 patients were enrolled on treatment in three

MDR-TB centers in Ethiopia. Regarding their outcome of treatment, success

was documented in 72 patients while 43 died and 6 defaulted from treatment.

The estimated annual number of MDR-TB patients was 1500-2500 cases in

2013-2014. The prevalence of MDR-TB is increasing at an alarming rate

from a baseline rate of 1.6 percent among new TB cases in 2005 to current

level of 2.3 percent in 2014 [30].
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The following table shows the prevalence, incidence and mortality rate of

TB in Ethiopia for 19 years from 1990 to 2014.

Number of notified TB cases per 100,000 in Ethiopia: 1996 - 2014

YearIncidence of TBPrevalence of TB Mortality rate of TB

1990 425 367 49

1995 480 419 48

2000 430 421 41

2005 330 342 29

2006 314 324 27

2007 296 308 25

2008 280 293 23

2009 265 280 21

2010 251 261 20

2011 237 258 18

2012 172 181 24

2013 154 170 29

2014 200 210 30

Table 2.1: Number of notified TB cases per 100,000 in Ethiopia: 1996 - 2014

[26, 29, 58].

The following figure shows that the prevalence, incidence and mortality rate

of TB (sensitive strain) cases in Ethiopia.
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Figure 2.1: Trend of TB prevalence, incidence and mortality rates in

Ethiopia: 1990-2014 [26, 29].

This figure shows the prevalence, incidence, and mortality rate of TB per

100,000 of population.

The estimates of TB prevalence rate in Ethiopia had increased during the

first five years and declined for the second 18 years and start to increasing

the last one year since 1990 from 425 per 100,000 population per year and

reached a peak value of 482 per 100,000 population per year in 1994. Since

1995 onwards however, the estimates for TB prevalence rate have shown a

steady decline at an average rate of 4 percent per year, with an increased rate

of decline for the last 5 years (5.5 percent per year) and reached a level of

154/100,000 population and increased rate 30 percent for the last year that

reached a level of 200/100,000 population.
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Figure 2.2: Number of notified TB cases in Ethiopia (1996-2014).

The above figure shows that the number of TB cases has been steadily in-

creasing since 1996 from 79,095 to reach a peak of 159,017 cases in 2011.

However; the number of notified TB cases has shown a marked decline over

the last three successive years and reach a level of 115,821 cases in 2014 which

as shown in this figure.

According to the Federal Democratic republic of Ethiopia Ministry of Health,

the documented MDR-TB patients for years shown below [26, 29, 58].
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Figure 2.3: The trend of notified MDR-TB for three successive years.

In the view of the above discussion, we develop and analyze a mathematical

model (2.2.1) below describing the dynamics of TB with age of infection. This

model accounts for the data obtained from the Federal Democratic Republic

of Ethiopia Ministry of Health, in particular, from Health Promotion and

Diseases Prevention Directorate, Ministry of Health Directorate and Police

Planning Offices. The data indicated that both drug sensitive TB and drug

resistant TB strains did recover in Ethiopia. Epidemiological modeling led

to the analysis of ordinary differential, discrete/stochastic/ or partial differ-

ential systems. Age-structured models comprise partial differential equations

models whose dynamics depend on whether the age of the population and

the age of infection are taken to account or not.

We show that the stability of the system equilibria is completely determined

by the basic reproduction number of TB, RTB. The system is shown to

exhibit the existence of a disease free and the endemic equilibria.
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2.2 Description of a TB model with age of

infection

The total population in our model is divided into three epidemiological classes

SIS-model according to their diseases status as in [73]: Susceptible class

ST (t), infectious class with drug sensitive strain Is(t) and infectious class

with drug resistant strain Ir(t). Susceptible individuals are recruited into the

population at a contact rate c. These individuals are infected with the force

of infections λs and λr respectively for drug sensitive and drug resistant TB

and due to their contact with active TB. Drug sensitive and resistant strains

were modeled, but only the age of the infection with drug sensitive strain

was considered [9, 73].
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The flow diagram is expressed as:

Figure 2.4: Flow diagram of the SIS compartments of the TB with treatment

model.

Letting is(α, t) be the infection density of infected individuals of age α with

the drug sensitive strain at the current time t, the model framework indicates

the following system of nonlinear ordinary and partial differential equations:

dST
dt

= Λ− (λs + λr + µ)ST + ηIr + (1− r)θIas ,
∂is
∂α

(α, t) + ∂is
∂t

(α, t) = −((1− r + qr)p(α)θ + µ+ ds)is(α, t)

dIr
dt

= λrST − (dr + µ+ η)Ir + qrθIas

(2.2.1)

where, Ias =
∮∞

0
p(α)is(α, t)dα is the total number of active TB with drug
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sensitive strain. These are infected individals individuals with the strain

that can transmit the disease only to others at the age of their infection.

Is(t) =
∮∞

0
is(α, t)dα is the total number of infected individuals with drug

sensitive TB. These include the infectious individuals that transmit the dis-

ease (active TB) and the latent individuals that do not transmit it. Here,

as already pointed in the introduction most of the infected individuals with

drug-sensitive TB remains latent, but only a small portion of them develop

and show the disease, becoming infective. To account for this, we assume the

function p(α) ( 0 ≤ p(α) ≤ 1 ) as the proportion of sensitive -strain-infected

individuals which are active at infection-age α. In the case of drug resistant

TB, it accounts for active TB only. Other related parameters are defined as

follows: λs = βsc
Is
NT

is the force of infection of drug sensitive TB,

λr = βrc
Ir
NT

is the force of infection of drug resistant TB,

c=per-capita contact rate,

θ=per-capita TB treatment rates for infected(infectious),

βs =the probability that a susceptible individual becomes infected by one

infectious individual with drug sensitive,

βr =the probability that a susceptible individual becomes infected by one

infectious individual with drug resistant TB,

ds= The disease induced mortalities for drug-sensitive,

dr=the disease induced mortalities drug-resistant TB.

It is assumed that a fraction r of the treated individuals with drug-sensitive

strain does not recover due to incomplete treatment, and the remaining (1−r)

is successfully treated and become susceptible again. It is also assumed that

a fraction q of those who do not finish their treatment will generate drug re-

sistant TB and the remaining fraction (1− q) of them will keep as infectious.

The data obtained from ministry of health in Ethiopia indicated that drug
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resistant TB strains were cured and then treated like drug-sensitive strain TB

[23, 26, 28]. Therefore, according to our assumptions the cured strains be-

come susceptible again. Hence we introduce that η is the fraction of treated

individuals with drug resistant TB that is cured and becomes susceptible

again and that the remaining fraction (1 − η) does not recover nor become

latent since individuals who are not cured die after acquiring drug resistant

TB. The total population considered for this compartment model is given by

NT = ST + Ir +

∮ ∞
0

is(α, t)dα = ST + Ir + Is (2.2.2)

The following table gives the values of the parameters used in our analysis.

ST (0) = 178, 445, Ethiopia total population=87,989,000.

Symbol Value Sources

Λ 33.3/1000[46, 56, 59]

µ 0.0165 [46, 56, 59]

c 0.7 [32, 69]

(1− r) 0.921 [26, 56]

βs 0.653 [26, 46, 58]

ds 0.024 [58, 59]

q 0.270 [26, 58, 59]

η 0.178 [26]

βr 0.013 [26, 46, 59]

dr 0.011 [26, 58]

Table 2.2: The values of the parameters used in the system (2.2.1) [12, 13,

48].
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2.3 A Well-posed problem

2.3.1 Definition: (Well-posed problem)

A mathematical problem is said to be a well-posed problem if its solution

exits, is unique and depends continuously on the data, initial conditions on

the (finite) boundary of the domain.

The other most important concepts in epidemiological models is the basic

reproduction number (R) for a given parasite strain that is defined below.

2.3.2 Definition: (Basic reproduction number)

The basic reproduction number is defined as the expected number of new in-

fections from one infected individual in a fully susceptible population through

the entire duration of the infectious period. If R < 1, then on average an

infected individual produces less than one new infected individual over the

course of its infectious period, and the infection cannot grow. Conversely, if

R > 1, then each infected individual produces, on average, more than one

new infection, and the disease can invade the population in [1, 32, 37, 39, 43,

51].

We can now move to the mathematical analysis of the model.

2.4 Analysis of the model

In this section, we discuss the mathematical analysis of the TB model given in

the systems (2.2.1) to show the stability equilibria of the system according to

the basic reproduction number we computed. We determine all these things

first by considering the models well-posed and its positivity of solutions.

In this analysis, we consider the drug resistant only sub-model when Is = 0.
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This is done in the following section.

2.4.1 Analysis of drug resistant TB only sub-model

Here, we highlighted the drug resistant TB sub-model with simple concepts

but more details are shown in the next subsection. when Is = 0, the systems

of equations (2.2.1) reduces to:

dST
dt

= Λ− (λr + µ)ST + ηIr,

dIr
dt

= λrST − (η + dr + µ)Ir.
(2.4.1)

where, NT = ST + Ir which implies that ST = NT − Ir.

Hence we have

dNT
dt

= Λ− µNT − drIr,
dIr
dt

= βrc(1− Ir
Nr

)Ir − (µ+ dr + η)Ir
(2.4.2)

For this system of equation, by applying the next generation matrix approach

[82], where F and V are represented as matrices respectively for the new

infections generated and the transition terms is then obtained as,

z = βrcIr and

ϑ = (µ+ dr + η)Ir.

Here, F = (βrc) and

V = (µ+ dr + η).

Rr, the basic reproduction number of drug resistant TB only sub-model is

given by spectral radius, ρ of FV −1, i e Rr = ρ(FV −1) = βrc
(µ+dr+η)

.

Before showing the proofs of the theorems stated below, it it better to recall

Routh Hurwitz Criteria [86] are used to determine local asymptotic stability

of an equilibrium for nonlinear systems of differential equations. The Routh-

Hurwitz Criteria are stated in the next theorem.
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Theorem 2.4.1. ([86]) Routh-Hurwitz Criteria. Given the polynomial,

P (λ) = λn + a1λ
n−1 + a2λ

n−2 + ...+ an−1λ+ an,

where the coefficients ai are real constants, i = 1, 2, ..., n, define the n Hur-

witz matrices using the coefficients ai of the characteristic polynomial:

H1 =
(
a1

)
,

H2 =

 a1 1

a3 a2

 ,

H3 =


a1 1 0

a3 a2 a1

a5 a4 a3

 ,



a1 1 0 0 . . . 0

a3 a2 a1 1 . . . 0

a5 a4 a3 a2 . . . 0

a7 a6 a5 a4 . . . 0

. . . . . . . .

. . . . . . . .

. . . . . . . .

0 0 0 0 . . . an



,

where aj = 0 if j > n. All of the roots of the polynomial P (λ) are negative or

have negative real part if and only if the determinants of all Hurwitz matrices

are positive:

detHj > 0, j = 1, 2, ..., n.

When n = 2, the Routh-Hurwitz criteria simplify to
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detH2 = det

 a1 1

0 a2

 = a1a2 > 0 or a1 > 0 and a2 > 0.

For polynomial of degree n = 2, 3, 4 and 5, the Routh-Hurwitz criteria are

summarized as shown below.

For

n = 2 : a1 > 0 and a2 > 0.

n = 3 : a1 > 0, a2 > 0 and a1a2 > a3.

n = 4 : a1 > 0, a2 > 0, a3 > 0, a4 > 0 and a1a2a3 > a2
3 + a2

1a4.

n = 5 : ai > 0, i = 1, 2, 3, 4, 5, a1a2a3 > a2
3 + a2

1a4, and

(a1a4 − a5)(a1a2a3 − a2
3 − a2

1a4) > a5(a1a2 − a3)2 + a1a
2
5.

Proof. For n = 2, the Routh-Hurwitz criteria are just a1 > 0 and a2 > 0.

The characteristic polynomial in the case n = 2 is

P (λ) = λ2 + a1λ+ a2.

The eigenvalues satisfy

λ1,2 =
−a1±
√
a2

1−4a2

2
.

Suppose a1 and a2 are positive, it is easy to see that if the roots are real, they

are both negative, and if they are complex conjugates, they have negative

real part.

Next, to prove the converse, suppose the roots are either negative or have

negative real part. Then it follows that a1 > 0. If the roots are complex

conjugates, 0 < a2
1 < 4a2, which implies that a2 is also positive. If the roots

are real, then since both of the roots are negative it follows that a2 > 0.

Corollary 2.4.2. Suppose the coefficients of the characteristic polynomial

are real. If all of the roots of the characteristic polynomial
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P (λ) = λn + a1λ
n−1 + a2λ

n−2 + ...+ an−1λ+ an,

are negative or have negative real part, then the coefficients ai > 0 for i =

1, 2, ..., n.

Proof. The corollary is a direct consequence of the Routh-Hurwitz criteria

but can be verified separately. The characteristic equation can be factored

into the form

(λ+ r1)...(λ+ rk1)(λ2 + 2c1λ+ c2
1 + d2

1)...(λ2 + 2ck2λ+ c2
k2

+ d2
k2

) = 0,

where the roots are −ri < 0 for i = 1, 2, ..., k1 and the complex roots are

cj ± dj for j = 1, 2, ..., k2 and k1 + k2 = n. If all the roots are either negative

or have negative real part, then ri > 0 and cj > 0 for all i and j. Thus the

coefficients in the factored characteristic equation are positive.

The disease free equilibrium of the system in (2.4.1) is given by E0 =

(Λ
µ
, 0) is locally asymptotically stable if Rr < 1 and otherwise unstable if

Rr > 1.

By considering the following theorems, we investigate whether the system

(2.4.1) is stable or not.

Theorem 2.4.3. ([32, 66]) Drug resistant TB dies out whenever Rr < 1

and persists whenever Rr > 1.

Proof. By substituting the disease free equilibrium of the system in (2.4.1)

and using next generation matrix methods [82] for:

z = βrcIr

and ϑ =

 βrc
Ir
NT
Ir + (µ+ dr + η)Ir

µNT + drIr

 .
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We obtained F = (βrc),

V = (µ+ dr + η),

Rr = ρ(FV −1) = βrc
(µ+η)+dr

.

We found the corresponding Jacobian matrix as follows:

J(E0) =

 −µ −dr
0 βrc− (µ+ η + dr)


.

Hence, the eigenvalues of the matrix are:

λ1 = −µ,

λ2 = βrc(1− 1
Rr

).

Thus, the first eigenvalue, λ1 is always negative. The second eigenvalue, λ2

is negative if Rr < 1 and is positive if Rr > 1.

Hence, the disease free equilibria is stable if Rr < 1 and unstable if Rr > 1.

Thus , this completes the proof this theorem. Similarly, the endemic equi-

librium theorem stated as follows.

Theorem 2.4.4. ([32]) The endemic equilibrium of drug resistant TB is

locally asymptotically stable if Rr > 1 and it is unstable if Rr < 1.

Proof. We can denote the endemic equilibrium of the system in (2.4.1) as

E1 = (N1
T , I

1
r ) is given by

E1 = ( Λ
µ+dr(1− 1

Rr
)
,

Λ(1− 1
Rr

)

µ+dr(1− 1
Rr

)
)

Then its corresponding Jacobian matrices becomes

J(E1) =

 −µ −dr
βrc(1− 1

Rr
)2 −βrc(1− 1

Rr
)


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.

The characteristic equation associated with the above matrix is given by

λ2 + C1λ+ C2 = 0.

Where,

C1 = µ+ βrc(1− 1
Rr

),

C2 = µβrc(1− 1
Rr

) + βrcdr(1− 1
Rr

)2.

As we observed the coefficients C1 and C2 are both greater than zero if

Rr > 1. And all the roots of the above characteristic equations are negatives

or have negative real parts. Hence using these results and Routh Hurwitz

Criteria:

• When λ = −1, 1− C1 + C2 > 0,

1 + C2 > C1,

• When λ = 1, 1 + C1 + C2 > 0,

• When λ = 0, |C2| < 1.

Therefore, the endemic equilibrium is locally asymptotical stable if Rr > 1,

and unstable if Rr < 1.

2.4.2 Analysis of the full TB model

In this section, we discuss some of the highlights of the mathematical analysis

of the TB model given in the systems of equations (2.2.1) to show positivity

of solution, its existence of invariant set and the stability equilibria of the
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system according to the basic reproduction number we computed.

To find the basic reproduction number of our model, first we rewrite the

systems in (2.2.1) as a linear form and integrate both sides of the second

equation using a Cauchy problem and compatibility condition in the system

along the characteristics line t− α=constant. After we linearize the system

we can easily find the basic reproduction number as defined in different lit-

eratures.

The density age function which is given in (2.2.1) recalled as follows:

∂is
∂α

(α, t) +
∂is
∂t

(α, t) = −((1− r + qr)p(α)θ + µ+ ds)is(α, t) (2.4.3)

subject to the initial condition is(0, t) = λsST (t). This is the PDE that has

the cauchy problem form, can be solved by considering the rate of change

of is(α, t) with arbitrary variable parameter-σ as we move along this curve

has the form dis
dσ

= ∂is
∂α

+ ∂is
∂t

and is equivalent to the equation in (2.4.3) at

point (α, t) below, which is the solution of a quasi-linear first order partial

differential equation involving unknown function is(α, t). Consequently it is

only necessary to consider the solution of a Cauchy problem for quasi-linear

equations that is written in the form:

U(α, t, is)
∂is
∂α

+ V (α, t, is)
∂is
∂t

= f(α, t, is) (2.4.4)

,

where U, V and f are assumed to be continuously differentiable functions of

their arguments.

Let is(σ) = is(σ, α(σ), t(α)), the total derivative of is(α, t) in terms of arbi-

trary variable parameter-σ is
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dis
dσ

=
∂is
∂α

dα

dσ
+
∂is
∂t

dt

dσ
(2.4.5)

From equations of (2.4.4) and (2.4.5) above, we have the following:

dα

dσ
= U(α, t, is)and

dt

dσ
= V (α, t, is) (2.4.6)

The PDE in (2.4.4) can be expressed as the ODE dis
dσ

= f(α, t, is) provided

that α and t satisfy (2.4.6) with respect to σ.

From the equations (2.4.4) to(2.4.6) in the above, we have

is(α, t) = λs(t)ST (t)e−(µ+ds)α−
∮ α
0 δ(s)ds,

where, δ(s) = (1−r+qr)θp(s) is obtained from the initial value in the system

(2.2.1).

By letting λs(t)ST (t) = m(t) and considering the initial conditions of the

above PDE, we have:

iso(0, t) = λs(t)ST (t) = m(t)

iso(α, 0) = iso(α)
(2.4.7)

Therefore, we have

is(α, t) =
m(t− α)e−(µ+ds)α−

∮ α
0 δ(s)ds, for t > α,

iso(α− t)e−(µ+ds)α−
∮ α
α−t δ(s)ds, for α > t.

(2.4.8)

From equation (2.4.8), we computed that limt→∞ is(α, t) = 0, since the func-

tion of α and t is non-increasing as observed above.

And again by integrating both sides of (2.4.3) with respect to α, we obtained

dIs
dt

= λs(t)ST (t)− (µ+ ds)Is −
∮ t

0

m(t− α)p(α)e−(µ+ds)α−
∮ α
0 δ(s)dsdα

(2.4.9)
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After obtaining the derivatives of m(t) in equations (2.4.7) and according to

[73], we have:

dm

dt
=
βsc

NT

(NT − Ir −
∮ t

0

m(t− α)p(α)

∮ t

0

p1(α)m(t− α)p2(α) = m(t)

(2.4.10)

where, the notations,

p1 =
∮ t

0
e−(µ+ds)α−

∮ α
0 δ(s)dsdα,

p2 =
∮ t

0
p(α)e−(µ+ds)α−

∮ α
0 δ(s)dsdα.

Here we can get p2m =
∮∞

0
p2(α)m(t− α)dα.

Let us consider the equilibrium at E∗(N∗T ,m
∗, I∗r ) at α = 0 and when it

exists , must be constant solution of the limiting system associated with it,

thus from (2.4.10) and (2.2.1 ), the system of equations reduced to

dNT
dt

= Λ− µNT − drIr − ds
∮ t

0
m(t− α)e−(µ+ds)α−

∮ α
0 δ(s)dsdα,

dm
dt

= βsc(1− p1

NT
m− Ir

Nt
)p2m,

dIr
dt

= βrc(1− p1

NT
m− Ir

Nt
)Ir − (µ+ η + dr)Ir + qrθp2m.

(2.4.11)

By taking the of the above system, we search for solutions at equilibrium

(N∗T ,m
∗, I∗r ) of the system,

Λ− µN∗T − drI∗r − dsp1m
∗ = 0,

βsc(1− p1

N∗T
m∗ − I∗r

N∗t
)p2m

∗ = m∗,

βrc(1− p1

N∗T
m∗ − I∗r

N∗t
)I∗r − (µ+ η + dr)I

∗
r + qrθp2m

∗ = 0.

(2.4.12)
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The solutions of the systems are related to the distribution of infected indi-

viduals with drug-sensitive TB at the steady state as

iso(α, 0) = iso(α) = p1m
∗.

Moreover, when we take Ir = 0 (the infected individuals do not develop drug-

resistant TB, i.eq = 0). Thus, particularly, the above system of equations

(2.4.12) becomes the mathematical model of drug-sensitive TB as follows:

Λ− µN∗T − dsp1m
∗ = 0,

βsc(1− p1

N∗T
m∗)p2m

∗ = m∗.
(2.4.13)

Hence from the systems equations (2.2.1) and (2.4.12), using next generation

matrix methods [82] for:

z = βscp2m
∗ and ϑ = m∗, we obtained F = (βsc)p2,

V = 1,

Rs = ρ(FV −1) = (βsc)p2 (the basic reproduction number of with drug-

sensitive TB). In addition to this by solving the equations, we obtained the

endemic equilibrium of drug-sensitive TB, denoted as E∗ = (N∗T ,m
∗) as

shown below:

m∗ =
N∗T (1− 1

Rs
)

p1
,

N∗T = Λ
µ+ds(1− 1

Rs
)
.

Theorem 2.4.5. ([32, 66, 73]) Drug-sensitive TB dies out whenever Rs < 1

and persists whenever Rs > 1 given that q = 0.

Proof. By substituting the disease free equilibrium of the drug-sensitive sys-
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tem in (2.2.1) and (2.4.12), we found the corresponding Jacobian matrix as

follows:

J(E0) =

 −µ −dsp1

0 βscp2 − 1


.

Hence, the eigenvalues of the matrix are:

λ1 = −µ,

λ2 = βscp2(1− 1
Rs

).

Thus, the first eigenvalue, λ1 is always negative. The second eigenvalue, λ2

is negative if Rs < 1 and is positive if Rs > 1.

Hence, the disease free equilibrium of drug-sensitive TB dies out if Rs < 1

and persists if Rs > 1.

Similarly, the endemic equilibrium theorem stated as follows.

Theorem 2.4.6. ([32]) The endemic equilibrium of drug-sensitive TB is

locally asymptotically stable if Rs > 1 and it is unstable if Rs < 1.

Proof. The proof of this theorem is direct since we obtained the endemic

equilibrium as shown above.

Hence,

Rs = βscp2 = βsc
∮∞

0
p(α)e−(µ+ds)α−

∮ α
0 δ(s)dsdα

and

Rr = βrc
µ+η+dr

are the basic reproduction number of drug sensitive and drug-resistant TB

of the system (2.2.1), respectively.
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Therefore, for the total population, the basic reproduction number of TB of

the model (2.2.1), denoted by RTB, is given by RTB = max(Rs, Rr).

Rs is the product of the probability of a susceptible individual infected by

one infectious individual with drug sensitive TB during his or her contact

βsc and the total active drug-sensitive TB.

Rr is the product of the probability of susceptible individual infected by one

drug-resistant TB infectious individual βrc and the average infectious period

1
µ+dr+η

.

Therefore, Rs measures the number of secondary drug-sensitive TB infec-

tious cases produced by a TB infectious individuals during his or her effec-

tive contact when introduced in a susceptible population of TB. Similarly Rr

gives the number of secondary drug-resistant TB infectious cases produced

by TB infectious due to incomplete treatment of drug-sensitive TB individ-

uals during his or her infectious period when introduced in a population of

TB susceptible.

In the next section, we consider positivity of solutions and existence of in-

variant set model (2.2.1).

2.4.3 Positivity of solutions and existence of invariant

set

Most delay differential equations that arise in population dynamics and epi-

demiology models logically have nonnegative quantities. It is important to

establish that nonnegative initial data give rise to nonnegative solutions. The

model system (2.2.1) above describes the dynamics of a human population.

Therefore, it is important to prove that the state variables susceptible ST (t),

infectious with drug sensitive Is(t), and drug-resistant TB Ir(t), are non-

negative for all time t ≥ 0. For this, we state and prove the next theorems.
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Theorem 2.4.7. The feasible region in the set D = {(ST , is, Ir)εR3/NT ≤ Λ
µ
}

is positively-invariant for system (2.2.1).

Proof. The rate of change of the total population computed from the equa-

tions of models (2.2.1), (2.2.2) and the first equation of (2.4.11) is given by

dNT

dt
= Λ− µNT − drIr − ds

∮ t

0

m(t− α)p1(α)dα ≤ Λ− µNT . (2.4.14)

Where, p1 = e−(µ+ds)α−
∮ α
0 δ(s)ds.

Which shows the feasible region D = {(ST (t), is(α, t), Ir(t))εR
3/(ST (t) +∮∞

0
is(α, t)dα+ Ir(t) = NT ≤ Λ

µ
} and we observed that lim supt→∞NT ≤ Λ

µ
}.

It is clear that dNT
dt
≤ Λ

µ
, since NT (0) ≤ Λ

µ
.

And also from equation (2.2.1) and equation (2.3.2.8), we find that

dS
dt

= Λ− (λs + λr + µ)ST + (1− r)θIas + qrηθIas ≥ (λs + λr + µ)ST ,

which implies that ST (t) ≥ ST (0)e−(λs+λr+µ)t , for all t ≥ 0.

Similarly; Is(t) ≥ Is(0)e−(µ+ds)t for all t ≥ 0.

Ir(t) ≥ Ir(0)e−(µ+dr)t for all t ≥ 0.

Thus, all the above shows that the solution of the system (2.2.1) is greater

or equal to zero for all t ≥ 0.

Therefore, the limits of the system in (2.2.1) with initial conditions remain

in D and all the variables and parameters of it are non-negative for all t ≥ 0.

Hence, D is positivity of invariant. And the mathematical model in (2.2.1)

in the region D is epidemiologically well-posed.

In the next section, we study the equilibria and stability properties of our

model in (2.2.1).
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2.4.4 Stability properties of the equilibria

In this section, we find the equilibria and determine the stability properties

of the epidemiology model in (2.2.1). The details of the disease free and the

endemic equilibria of the system (2.2.1) are shown in the following theorems

(2.4.8) and (2.4.9) as stated.

Theorem 2.4.8. ([65, 66, 73]) The disease free equilibrium of both drug sen-

sitive and drug resistant TB die out (locally asymptotically stable) whenever

RTB < 1 and persist whenever RTB > 1.

Proof. The disease free equilibrium, denoted by E0 of the system (2.2.1) is

E∗ = (Λ
µ
, 0, 0).

By substituting this to the system (2.2.1), we obtained the corresponding

Jacobian matrix as follows:

J(E∗) =


−µ −dsp1 −dr
0 p2βsc− 1 0

0 qrθp2 βrc− µ− η − dr


.

Thus, the eigenvalues of the matrix are:

λ1 = −µ,

λ2 = p2βsc− 1 = Rs − 1 ,

λ3 = βrc− µ− dr = (µ+ η + dr)(Rr − 1).

Hence, the first eigenvalue, λ1 is always negative.

The second and third eigenvalues, λ2 and λ3 are negatives when both Rs and

Rr are less than one , respectively. Otherwise they are positive if both Rs

and Rr are greater than one.

Using Rouths stability criterion [84-86], we have RTB = max(Rs, Rr) < 1
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while all eigenvalues are negatives.

Therefore, the disease free equilibrium is locally asymptotically stable if

RTB < 1 and unstable if RTB > 1.

The following theorem shows the stability of endemic equilibria of our model.

Theorem 2.4.9. ([32, 65, 66, 73]) The endemic equilibrium of the epidemic

model (2.2.1) is locally asymptotically stable whenever RTB > 1 and it is

unstable whenever RTB < 1.

Proof. In our previous sections we had shown the endemic properties of drug-

resistant TB while no drug-sensitive TB and vice versa. So showing when

both TB strains are endemic is enough consideration of this case.

The endemic equilibrium denoted by E∗ = (N∗T ,m
∗, I∗r ) of the model (2.2.1),

which was further expressed and rewritten as in the system (2.4.12) solved

below to investigate whether Rs > 1 and Rr < 1 or Rs < 1 and Rr > 1 or

Rs > 1 and Rr > 1.

we obtained:

N∗T = Λ

µ+dsχ+
dr(1− 1

Rs
)

1+χ

,

m∗ =
Λχ(1− 1

Rs
)

µ+dsχ+
dr(1− 1

Rs
)

1+χ

= N∗Tχ
(1− 1

Rs
)

(1+χ)p1
,

I∗r =
Λ(1− 1

Rs
)

(µ+dsχ+
dr(1− 1

Rs
)

1+χ
)(1+χ)

= N∗T
(1− 1

Rs
)

(1+χ)
.

Where,

χ =
p1(µ+η+dr)(1−RrRs )

qrθp2
. However, when we checked the positivity of our so-

lutions, we found the relationships of the basic reproduction numbers and

other constants as follows:

• χ > 0 implies that (1− Rr
Rs

) > 0 as a result Rs > Rr.
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• The endemic equilibrium is positive when both χ > 0 and (1− 1
Rs

) > 0,

which is equivalent to Rs > 1.

As we did the endemic equilibrium of drug-sensitive TB above (i.e when

Ir = 0), it is true if there is no infected individuals who develop drug-

resistant TB which is q = 0. But here, it is not the case we consider in

our purpose. Therefore, from the these cases and with generally truth, our

model is endemic at the endemic equilibrium when both Rs and Rr greater

than one since Rs > 1 and Rs > Rr.

2.5 Numerical results and simulations

In this section, we perform some numerical simulations in order to study

the epidemiology model of the system (2.2.1). For our purpose we take the

values of the parameters from the table 2.2.1 and the prevalence, incidence

and notifications of drug-sensitive and MDR-TB considered in above sections.

In the following sections, we consider the numerical simulations at the disease

free and endemic equilibria.

2.5.1 The numerical simulations at the disease free

equilibria

In the figures (2.5) and (2.6) below, the first two figures showed solutions of

susceptible to TB on the left side and infected individual with drug-sensitive

TB on the right side. But the last one shows the solution of infected indi-

viduals with drug-resistant TB of the disease free equilibrium of the model

(2.2.1) at different initial values when RTB < 1.
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Figure 2.5: These are solutions of TB model with initial solutions

(S(0), Is(0), Ir(0)) = (178000, 40, 5).
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Figure 2.6: These are solutions of TB model with initial solutions

(S(0), Is(0), Ir(0)) = (130000, 48400, 45).

2.5.2 The numerical simulations at endemic equilibria

Here, we discuss solutions of the endemic equilibrium of the model (2.2.1) at

different initial values when RTB > 1. The numerical simulations as shown in

the following figures (2.7, 2.8 and 2.9), first two figures showed solutions of

susceptible to TB on the left side and infected individual with drug-sensitive
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TB on the right side. But the last one shows the solution of infected indi-

viduals with drug-resistant TB in all cases.

Figure 2.7: These are solutions of TB model with initial solutions

(S(0), Is(0), Ir(0)) = (100000, 70000, 8445).
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Figure 2.8: These are solutions of TB model with initial solutions

(S(0), Is(0), Ir(0)) = (100000, 70000, 2000).

The following figure shows the region of equilibria stability of TB models

discussed in our previous sections .
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Figure 2.9: Basic reproduction number of drug-sensitive TB.

This figure shows the region of unstable disease free equilibrium and stable

endemic equilibrium points lie when the basic reproduction number greater

than unity, but the stable disease free equilibrium and unstable endemic

equilibrium lie in the region when the basic reproduction number less than

unity.
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Chapter 3

Description of the HIV-TB

co-infection model

We develop and analyze a mathematical model describing the dynamics of

HIV-TB co-infection. In this model, the dynamics of both drug-sensitive and

resistant strains TB discussed in chapter two and HIV are considered. It is

the combination of the model presented in chapter 2 and the HIV model

presents in this chapter. We develop and analyze a mathematical model

describing the dynamics of HIV-TB co-infection. In this model, the dynamics

of both drug-sensitive and resistant strains TB discussed in chapter two and

HIV are considered. It is the combination of the model presented in chapter

2 and the HIV model presents in this chapter.

3.1 Introduction

In recent history, the paths of HIV and Tuberculosis have come to a critical

intersection. Combined, these two diseases are the leading cause of mortality

due to infectious disease [71]. In Sub Saharan African countries including
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Ethiopia, there were 24.7 million people living with HIV and 1.1 million

people died from AIDS-related causes in 2013 (UNAIDS, Fact sheet 2014).

In 2013, the worldwide percentage of identified HIV-positive tuberculosis

patients who started or continued the anti-retro-viral treatment reached 70

percent (up from 60 percent in 2012) [55, 59, 64].

It is estimated that one third of the worlds population is host to tuberculosis

and among the estimated 9 million people who developed TB, an estimated

1.1 million (13 percent) were HIV positive. There were also 360,000 deaths

from HIV associated TB equivalent to 25 percent of all TB deaths, and

around 25 percent of the estimated 1.5 million deaths from HIV/AIDS in

2013 [59].

What links these two diseases so intimately is their common substrate of

poverty; both are concentrated in resource-limited areas, exposing the social

determinants of the diseases [69, 71]. Despite the fact that these diseases

remain rampant in developing countries like Ethiopia, a lack of resources

dedicated to co-infection has resulted in little progress being made at their

intersection [55-68].

In the year 2012, the total number of new TB cases detected by TB DOST

(Directly Observed Treatment, Short-Course ) program represents a popula-

tion of 92531. The data also described that 46869 of them were the number

of new smear positive pulmonary TB cases detected by the program. In

the same year, there were 74048 TB patients enrolled in DOST and tested

for HIV in the quarter. From those population 9280 number of TB patients

were co-infected with HIV (enrolled in DOTS who were HIV positive). In the

year 2012, a total of 5641830 clients received HIV test and from them 81415

clients were testing positive for HIV. The number of PLWHA ever enrolled

in HIV care who ever started the ART and who are currently receiving ART
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were 432232, 244454 and 183249 respectively [21, 22, 29, 30].

HIV infection and infection with TB bacteria are though completely differ-

ent infections. If you have HIV infection you will not be infected with TB

bacteria unless you are in contact with someone who also is infected with

TB bacteria. Although if you live in a country with a high prevalence of TB

this may have happened without you realize it. Similarly if you have TB you

will not be infected with HIV unless you carry out an activity with someone

who already has HIV infection, which results in you getting the HIV from

them. TB also occurs earlier in the course of HIV infection than many other

opportunistic infections. The risk of death in co-infected individuals is also

twice that of HIV infected individuals without TB, even when CD4 cell count

and antiretroviral therapy are taken into account [69].

The figures and tables presented in the previous chapters showed the preva-

lence and incidence of TB as well as HIV-TB co-infection in Ethiopia. Ac-

cording to the best of our knowledge discussed at the general introduction of

first chapter, we could hardly find research on mathematical modeling of HIV

and TB co-infections that incorporate TB treatment in nonlinear ordinary

and partial differential equations models. But from biological and medical

perspectives, the reader who wishes to have more information on HIV and

TB co-infections may consult the following works and also the references

there in [14, 19, 31, 32, 34, 36, 38, 39, 43, 44, 45, 51, 50, 56]. Therefore, we

will provide some concepts and models that fills these gaps in the following

sections.
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3.2 Formulation of HIV-sub model

Before we combine the models considered in this chapter, we first consider

the HIV only sub model. The total population divided into S susceptible

individuals, IH HIV infectious individuals in the SI model.

.
dS
dt

= Λ− λHS − µS
dIH
dt

= λHS − (µ+ dH)IH
(3.2.1)

dH =per-capita HIV-induced death rate.

βH= probability of HIV infection per contact with a person who is HIV in-

fectious and c is the per-capita contact rate for HIV,

λH = cβH
IH
N

-the force of infection.

The above model is also expressed using diagram as follows:

Figure 3.1: Flow diagram of the SI compartments of the HIV model.
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Symbol Value Sources

βH 0.28 [26]

dH 0.05 [26]

Table 3.1: The values of the parameters used in (3.2.1)

The well-posed and positivity solution of this model is similar as we discussed

in the previous chapter. In the next sections, we discuss the stability and

epidemic equilibria of the the systems in (3.2.1).

3.2.1 Analysis of HIV sub-model

In this section, we discuss some of the points of mathematical analysis of

the HIV sub-model given in the systems of equations (3.2.1) to obtain the

basic reproduction number and to show the stability and unstably of the

equilibria and epidemic of the system according to the basic reproduction

number computed. The problems considered in our analysis are well-posed

problem as observed in the second chapter and viewed in different literatures

[32, 37, 39, 71].

3.2.2 Basic reproduction number

Recall that the basic reproduction number is defined as the expected number

of new HIV infections from one infected individual in a fully susceptible pop-

ulation through the entire duration of the infectious period. If RH < 1, then

an infected individual produces, on average, less than one new infected indi-

vidual over the course of its infectious period, and the infection cannot grow.

Conversely, if RH > 1, then each infected individual produces, on average,

more than one new infection, and the disease can invade the population as

we saw in the second chapter. By rearranging and substituting S in terms
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of N (S = N − IH)and IH into the system in (3.2.1), we obtained

dN
dt

= Λ− µN − dHIH
dIH
dt

= cβH
IH
N

(N − IH)− (µ+ dH)IH
(3.2.2)

For this system of equation, by applying the next generation method ap-

proach [82], F and V are represented as matrices respectively for the new

infections generated and the transition terms is then obtained as,

z = βHcIH and

ϑ = (µ+ dH)IH .

Here, F = (βHc) and

V = (µ+ dH).

RH , the basic reproduction number of HIV only sub-model is given by spec-

tral radius, ρ of FV −1, i e RH = ρ(FV −1) = βHc
µ+dH

.

3.2.3 Positivity of solutions and existence of invariant

set

Most delay differential equations that arise in population dynamics and epi-

demiology model intrinsically nonnegative quantities. It is important to es-

tablish that nonnegative initial data give rise to nonnegative solutions. The

model system (3.2.1) above describes the dynamics of a human population.

Therefore; it is important to prove that the state variables susceptible S(t),

and IH(t), HIV infected individuals are non-negative for all time t ≥ 0.

For this, we state and prove the following proportion.

Theorem 3.2.1. The feasible region in the set D = {(S, IH)εR2/N ≤ Λ
µ
} is

positivity-invariant for system (3.2.1).
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Proof. The proof of this theorem is the same as the theorem 2.4.7 proved in

the previous chapter.

3.2.4 Stability and equilibria properties of HIV

In this section, we find the equilibria and determine the stability properties

of our model in (3.2.1).

Theorem 3.2.2. The disease free equilibrium of HIV in (3.2.1) is locally

asymptotically stable (will die out) if RH < 1 while it is unstable if RH > 1.

Proof. By substituting the disease free equilibrium of the system in (3.2.1)

is given by E0 = (Λ
µ
, 0) and using next generation matrix methods [82] for:

z = βHcIH

and ϑ =

 βHc
IH
NT
IH + (µ+ dH)IH

µNT + dHIH

 .

By taking their partial derivatives with respect to the given variables, we

obtained

F = (βHc) and V = µ+ dH .

We also found the corresponding Jacobian matrix at the disease free equilib-

rium E0 = (N0, I0
H) as follows:

J(E0) =

 −µ −dH
0 βHc− (µ+ dH)


.

Hence, the eigenvalues of the matrix are:

λ1 = −µ,

λ2 = βHc− (µ+ dH) = βHc(1− 1
RH

).
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Thus, the first eigenvalue, λ1 is always negative. The second eigenvalue, λ2

is negative while RH < 1.

Hence, the disease free equilibria in the system (3.2.1) is locally asymptoti-

cally stable if RH < 1 while it is unstable if RH > 1.

Thus , this completes the proof this theorem. Similarly, the endemic equi-

librium theorem stated as follows.

Theorem 3.2.3. The endemic equilibrium of HIV in the system (3.2.1) is

locally asymptotical stable if RH > 1 and it is unstable whenever RH < 1.

Proof. : Here, we can denote the endemic equilibrium E1 = (N1, I1
H) and

by solving (3.2.2), from the second equation we have I1
H = (1− 1

RH
)N1. By

substituting this in the first equation of our system, we obtained

E1 = ( Λ
µ+dH(1− 1

RH
)
,

Λ(1− 1
RH

)

µ+dH(1− 1
RH

)
) and its corresponding Jacobian matrices as

J(E1) =

 −µ −dH
cβH(1− 1

RH
)2 −cβH(1− 1

RH
)


.

The characteristic equation associated with the above matrix is given by

λ2 + C1λ+ C2 = 0.

Where,

C1 = µ+ βHc(1− 1
RH

),

C2 = µβHc(1− 1
RH

) + βHcdH(1− 1
RH

)2.

As we observed the coefficients C1 and C2 are both greater than zero if

RH > 1. And all the roots of the above characteristic equations are neg-

atives or have negative real parts. Hence using these results and Routh

60



Hurwitz Criteria [84, 85, 86]:

• When λ = −1, 1− C1 + C2 > 0,

1 + C2 > C1,

• When λ = 1, 1 + C1 + C2 > 0,

• When λ = 0, |C2| < 1.

Therefore, the epidemic equilibrium of the system (3.2.1) is locally asymp-

totical stable if Rr > 1, and it is unstable if Rr < 1.

By combining the above HIV sub-model (3.2.1) and models (2.2.1) in

chapter 2, we formulate the HIV-TB co-infection model in the following sec-

tion.

3.3 Formulation of HIV-TB co-infection model

In this model, we divide the total population into five sub-populations of SIS

epidemiological classes, Susceptible S(t), TB only infectious (i.e infectious

with drug sensitive strain Is(t) and infectious with drug resistant strain Ir(t),

HIV only infectious IH(t), and infectious with both HIV and TB, IHTB(t).

It is assumed that susceptible population are recruited into the population at

a constant rate Λ. They either acquire infection with TB following effective

contact with infected population (at rates λs and λr) and move to the TB in-

fectious class (Is(t) and Ir(t)) or acquire infection with HIV following effective

contact with infected population (at a rate λH) and move to the HIV infec-

tious class (IH(t)). Infected individuals with TB only are either successfully
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treated and move into susceptible class (at a rate (1 − r)θ + η) or acquire

infection with HIV following effective contact with infected population(at

rates σsλH and σrλH) for drug sensitive and drug resistant respectively. The

parameters 0 < σs ≤ 1 and 0 < σr ≤ 1 models the expected decrease in sex-

ual activity (contact) by individuals with TB infection (because of ill health)

[35, 51, 66] who move to the HIV-TB co-infectious class (IHTB). They die

from the disease (at rates ds and dr).

Infected individuals with HIV only either acquire infection with TB following

effective contact with infected individuals (at rates γsλs, γrλr) and move to

the HIV-TB co-infectious class (IHTB) or die from HIV (at a rate dH). Here

γs > 1 and γr > 1 accounts for the assumed increase in susceptibility to TB

infection (drug sensitive and resistant) as a result of HIV infection [45].

Co-infected individuals either recover with partial immunity and move into

HIV only infectious class (at a rate υ) or die from TB (drug sensitive and

drug resistant TB) (at rates κsds andκrdr). Here κs > 1; κr > 1 account for

the increased mortality of the IHTB individuals in comparison to individuals

with TB infection but not infected with HIV [45] or from HIV (at a rate

κhdH , κH > 1 accounts for the increased mortality of the IHTB individuals

in comparison to individuals with HIV infection but not infected with TB)

[17, 25, 45]. The death due to natural causes occurs in all population classes

at rate µ.
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The flow diagram is expressed as shown below:

Figure 3.2: Flow diagram of HIV-TB co-infection with TB treatment.

Using the flow diagram for their interconnection, the above assumptions and

notations, the HIV and TB co-infection with TB treatment model is written

as follows:

dS
dt

= Λ− (λs + λr + λH)S − µS + ηIr + (1− r)θIas
( ∂
∂t

+ ∂
∂α

)is(α, t) = −[((1− r + qr)θ + σsλH)p(α) + µ+ ds]is(α, t)

dIr
dt

= λrS − σrλHIr − (dr + µ+ η)Ir + qrθIas
dIH
dt

= λHS + υIHTB − (γsλs + γrλr)IH − (dH + µ)IH
dIHTB
dt

= σsλHI
a
s + σrλHIr + (γsλs + γrλr)IH − ωIHTB

(3.3.1)

where, is(0, t) = βscS
Ias
N

,

Ias (t) =
∮∞

0
p(α)is(α, t)dα, total number of active TB of drug-sensitive strain,
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Is(t) =
∮∞

0
is(α, t)dα, total number of infected individuals with TB of drug-

sensitive TB(both latent and active TB are included),

ω = µ+ ν + κsds + κrdr + κHdH .

3.4 Analysis of the HIV-TB co-infection model

In this section, we discuss some of the concepts of mathematical analysis of

the HIV-TB co-infection model given in the system of equations (3.3.1). The

aim is to obtain the basic reproduction number(s), to show the stability of

equilibria of the system according to the basic reproduction number.

3.4.1 Well-posed problem

The definition of well-posed problem and its properties considered in chapter

2 are also true here too. Therefore, in the next sections we consider the

stability, equilibria properties and numerical simulations of the model.

3.4.2 Basic reproduction number

By integrating the second equation with respect to α that runs between 0

and ∞ and expressing

dN

dt
=
dS

dt
+
dIs
dt

+
dIr
dt

+
dIH
dt

+
dIHTB
dt

(3.4.1)

We can also express S in terms of other variables as

S = N − Is − Ir − IH − IHTB.

Hence the system of equation in (3.3.1) can be rewritten as
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dN
dt

= Λ− µN − dsp1m− drIr − dHIH − dIHTB
dm
dt

= βsc(1− p1
m
N
− Ir

N
− IH

N
− IHTB

N
)p2m−m

dIr
dt

= βrc(1− p1
m
N
− Ir

N
− IH

N
− IHTB

N
)Ir−

(σrλH + µ+ dr + η)Ir + qrθp2m

dIH
dt

= βHc(1− p1
m
N
− Ir

N
− IH

N
− IHTB

N
)IH + υIHTB−

(γsλs + γrλr)IH − (dH + µ)IH
dIHTB
dt

= σsλHp2m+ σrλHIr + (γsλs + γrλr)IH − ωIHTB

(3.4.2)

where, is(0, t) = βscS
Ias
N

,

Ias (t) =
∮∞

0
p(α)is(α, t)dα, total number of active TB of drug-sensitive strain,

Is(t) =
∮∞

0
is(α, t)dα, total number of infected individuals with TB of drug-

sensitive TB (both latent and active TB are included)

Since the system of equations in (3.3.1) is non-linear, we take the linearized

one for our purpose as follows:

d = κsds + κrdr + κhdH ,

ω = µ+ υ + d,

p2 is the same as computed in chapter 2 and given as

p1 =
∮ t

0
e−(µ+ds)α−

∮ α
0 δ(s)dsdα ; which implies

p2 =
∮ t

0
p(α)e−(µ+ds)α−

∮ α
0 δ(s)dsdα.

Using the generating matrix approaches as [82] and from the above system

(3.4.2), we have:

z =



βscp2m

βrcIr + qrθp2m

βHcIH + νIHTB

(σsβHcp2 + σrβHc+ (γsλs + γrλr))IH

0


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ϑ =



m

(σrλH + µ+ η + dr)Ir

(µ+ dH)IH

(µ+ dH)IHTB

µN + dsp1m+ drIr + dHIH + (ω − µ− ν)IHTB


Hence, the matrices F and V for the new infection and the remaining transfer

terms are respectively given below:

F = ∂zi
xj

=



βscp2 0 0 0 0

qrθp2 βrc 0 0 0

0 0 βHc ν 0

0 0 0 σsβHcp2 + σrβHc 0

0 0 0 0 0



V = ∂ϑi
xj

=



1 0 0 0 0

0 µ+ η + dr 0 0 0

0 0 µ+ dH 0 0

0 0 0 ω 0

µ dsp1 dr dH d


From this we obtained the determinant of V and its inverse as follows:

det(V ) = ωd(µ+ dH)(µ+ η + dr),

V −1 =



1 0 0 0 0

0 1
µ+η+dr

0 0 0

0 0 1
µ+dH

0 0

0 0 0 1
ω

0

µ
ω−µ−ν

dsp1

d
dr
d

dH
d

1
d


.
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From the above, we have:

FV −1 =



βscp2 0 0 0 0

qrθp2
βrc

µ+η+dr
0 0 0

0 0 βHc
µ+dH

ν
ω

0

0 0 0 d
ω

0

0 0 0 0 0



=



Rs 0 0 0 0

qrθp2 Rr 0 0 0

0 0 RH
ν
ω

0

0 0 0 d
ω

0

0 0 0 0 0


.

Therefore, the eigenvalues of this is

det



(Rs − λ) 0 0 0 0

qrθp2 (Rr − λ) 0 0 0

0 0 (RH − λ) ν
ω

0

0 0 0 ( d
ω
− λ) 0

0 0 0 0 −λ


= (Rs − λ)(Rr − λ)(RH − λ)( d

ω
− λ)(−λ) = 0.

The dominant eigenvalues are the basic reproduction of TB,RTB = max(Rs, Rr)

as we did in chapter 2 for the system (2.2.1), basic reproduction of HIV, RH

that is obtained the HIV sub-model in the system (3.2.2). Thus, the basic re-

production of the system (3.3.1) denoted by R is given byR = max(RH , RTB)

which are the spectral radius of the operator FV −1.
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3.4.3 Positivity of solution

As we did in the previous chapter, the model system (3.3.1) above describes

the dynamics of a human population. Therefore; it is important to prove that

the state variables susceptible S(t), TB only infectious (i.e infectious with

drug sensitive strain Is(t) and infectious with drug resistant strain Ir(t), HIV

only infectious IH(t), and infectious with both HIV and TB, IHTB(t) infected

individuals are non-negative for all time t ≥ 0. For this model analysis, we

state and prove the next theorem.

Theorem 3.4.1. The feasible region in the set D = {(S, is, Ir, IH , IHTB)εR5/N ≤
Λ
µ
} is positivity-invariant for system (3.3.1)

Proof. The rate of change of the total population computed from equation

of model (3.3.1) computed in the system of equations (3.3.2) is given by

dN
dt

= Λ− µN − drIr − dHIH − dIHTB − ds
∮ t

0
m(t− α)e−(µ+ds)α−

∮ α
0 δ(s)dsdα ≤

Λ− µN

which implies the feasible regionD = {(S(t), is(α, t), Ir(t), IH(t), IHTB)(t)εR
5/(S(t)+∮∞

0
is(α, t)dα + Ir(t) + IH + IHTB = N ≤ Λ

µ
} and from equation(3.4.1) we

observed that lim supt→∞N ≤ Λ
µ

. It is clear that dN
dt
≤ Λ

µ
, since N(0) ≤ Λ

µ
.

And also from equation(3.3.1), we find that

dS
dt

= Λ− (λs + λr + λH)S − µS + (1− r+ ηqr)θIas ≥ (λs + λr + λH)S, which

implies that S(t) ≥ S(0)e−(λs+λr+λH+µ)t , for all t ≥ 0,

Similarly ;Is(t) ≥ Is(0)e−(µ+ds)t for all t ≥ 0,

Ir(t) ≥ Ir(0)e−(µ+dr+η+σrλH)t for all t ≥ 0,

IH(t) ≥ IH(0)e−(γsλs+γrλr+(dH+µ)t ,

IHTB(t) ≥ IHTB(0)e−ωt for all t ≥ 0.

Thus, all the above shows that the solution of the system(3.3.1) is greater or
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equal zero for all t ≥ 0.

Therefore, the limits of the system in (3.3.1) with initial conditions remained

in D and all the variables and parameters of it are non-negative for all t ≥ 0

in its interval of existence feasible region D.

Hence, D is positivity invariant and attracting. Thus the mathematical

model in(3.3.1) in the region D is epidemiologically well-posed.

In the next section, we study the equilibria and stability properties of our

model in (3.3.1).

3.4.4 Equilibria and stability properties of the model

In this section, we try to find the equilibria and determine the stability prop-

erties of the model in (3.3.1).

The disease free equilibria of the system in (3.3.1) is given by E0 = (Λ
µ
, 0, 0, 0, 0).

is asymptotically stable if R < 1 and unstable if R > 1,

where R = max(RTB, RH). Therefore, all the following diseases free and

epidemic equilibria satisfies the above.

Theorem 3.4.2. The disease free equilibrium of the model (3.3.1) is locally

asymptotically stable (both HIV and TB diseases will die out) if R < 1 oth-

erwise it is unstable if R > 1.

Proof. By substituting the diseases free equilibrium point to the system of

equations in (3.4.2) which is the reduced form of (3.3.1), and using theorem

2.4.3, we obtained the corresponding Jacobian matrix as shown below:
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J(E0) =



−µ −dsp1 −dr −dH −d

0 Rs − 1 0 0 0

0 qrθp2 βrc(1− 1
Rr

) 0 0

0 0 0 βHc(1− 1
RH

) ν

0 0 0 0 −ω


Here, the eigenvalues of this matrix are

λ1 = −µ,

λ2 = −ω,

λ3 = Rs − 1,

λ4 = βrc(1− 1
Rr

),

λ5 = βHc(1− 1
RH

).

Hence, the first,λ1 and the second, λ2 eigenvalues are always negative. The

third, λ3, fourth, λ4 and fifth, λ5 eigenvalues are negative if all Rs, Rr and RH

are less than unity, respectively. That means when both basic reproduction

numbers of TB and HIV are less than one (R = max(RTB, RTB) < 1). There-

fore, the disease free equilibrium of the model (3.3.1) is locally asymptotically

stable if R < 1 and it is locally asymptotically unstable if R > 1.

Similarly the endemic equilibria of the system (3.3.1) are shown in the

theorem 3.4.3 below.

Theorem 3.4.3. The endemic equilibrium of the model (3.3.1) is locally

asymptotically stable if R > 1 otherwise it is unstable if R < 1.

Proof. The endemic equilibria are obtained by equating the system (3.4.2)

which is the reduced form of (3.3.1) equals to zero.
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Λ− µN − dsp1m− drIr − dHIH − dIHTB = 0

βsc(1− p1
m
N
− Ir

N
− IH

N
− IHTB

N
)p2m−m = 0

βrc(1− p1
m
N
− Ir

N
− IH

N
− IHTB

N
)Ir − (σrλH + µ+ dr + η)Ir + qrθp2m = 0

βHc(1− p1
m
N
− Ir

N
− IH

N
− IHTB

N
)IH + υIHTB − (γsλs + γrλr)IH − (dH + µ)IH = 0

σsλHp2m+ σrλHIr + (γsλs + γrλr)IH − ωIHTB = 0.

From the second, and third equations of the system (3.4.2) respectively, we

obtained

(1− 1
Rs

)N = p1m+ Ir + IH + IHTB.

m = µ+η+dr
qrθp2

(1− Rr
Rs

+ σrλH
µ+η+dr

)Ir.

Again after solving the fourth, and fifth equations of the above system, we

found

IHTB = µ+dH
ν

(1− RH
Rs

+ γsλs+γrλr
µ+dH

)IH ,

(σsλHp2m+ σrλHIr + (γsλs + γrλr)IH = ωIHTB.

By substituting m as we expressed in terms of Ir above, which gives us

(σrλH + γsλHp2x)Ir = (ωy − (γsλs + γrλr))IH ,

which is equivalent to

IH = (σrλH+γsλHp2x)
(ωy−(γsλs+γrλr))

Ir.

Where,

x = µ+η+dr
qrθp2

(1− Rr
Rs

+ σrλH),

y = µ+dH
ν

(1− RH
Rs

+ γsλs+γrλr
µ+dH

),

x
′
= σrλH+γsλHp2x

ωy−(γsλs+γrλr)
,

m = xIr,
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IH = x
′
Ir,

IHTB = x
′
yIr = yIH .

Here by substituting these values into the simplified form of the second equa-

tion of the system above, we found

(1− 1
Rs

)N = p1xIr + Ir + x
′
Ir + yx

′
Ir,

(p1x+ 1 + x
′
+ yx

′
)Ir = (1− 1

Rs
)N,

Ir =
(1− 1

Rs
)

(p1x+1+x′+yx′ )
N = x

′′
N,

Where, x
′′

=
(1− 1

Rs
)

(p1x+1+x′+yx′ )
.

Finally we substituted all the values that we obtained in terms of N above

into the first equations of our system (3.4.2) and obtained the endemic equi-

librium denoted by E
′
= (N

′
,m

′
, I
′
r, I

′
H , I

′
HTB) is given as follows:

N
′
= Λ

µ+x′′ (dsp1x+dr+x
′ (dH+dx))

,

I
′
r = x

′′
N,

m
′
= xx

′′
N,

I
′
H = x

′
x
′′
N,

I
′
HTB = yx

′
x
′′
N.

As we observed the system, according to the nature of equations, it is difficult

to solve the endemic equilibrium analytically as we did the disease free equi-

librium. Therefore we solve it numerically as shown in the following tables

using the parameters values used in tables (2.2.1) and (3.2.1).
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p(α) N
′

m
′

I
′
r I

′
H I

′
HTB

0.01 9884 1783.6 126.6 0 0

0.02 9912 1765.9 188.0 0 0

0.03 9939 1748.6 248.2 0 0

0.04 99656 1731.7 307.2 0 0

0.05 9991 1715.0 365.1 0 0

0.06 10017 1698.7 421.9 0 0

0.08 10042 1682.7 447.6 0 0

0.09 10066 1667.0 532.3 0 0

0.1 10090 1651.5 585.9 0 0

0.2 10308 1511.7 1072.6 0 0

0.3 10493 1393.7 1483.4 0 0

0.4 10650 1292.7 1834.6 0 0

0.5 10786 1205.5 2138.4 0 0

0.6 10905 1129.2 2403.7 0 0

0.7 11010 1062.0 2637.5 0 0

0.8 11103 1002.4 2845.0 0 0

1 11261 901.2 3197.2 0 0

Table 3.2: The solution of the endemic equilibrium when γs = γr = 1.5 with

initial solution (N
′
,m

′
, I
′
r, I

′
H , I

′
HTB) = (9856, 1801.6, 63.9, 0, 0) for RTB >

1, RH < 1.
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RH N
′

m
′

I
′
r I

′
H I

′
HTB

2.2 506.7 0 276.4 0

3 416.9 0 0 277.9 0

5 348.8 0 0 279.1 0

7 326 0 0 279.5 0

9 314.6 0 0 279.8 0

11 307.7 0 0 279.8 0

12 305.2 0 0 279.8 0

13 303.2 0 0 279.9 0

25 291.7 0 0 280.0 0

30 289.7 0 0 280.1 0

Table 3.3: The solution of the endemic equilibrium with initial solution

(N
′
,m

′
, I
′
r, I

′
H , I

′
HTB) = (1551.7, 0, 0, 258.6, 0) for RTB < 1, RH > 1.
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γs = γr N
′

m
′

I
′
r I

′
H I

′
HTB

2 11241 478.9 239.4 62.3 78.8

3 12351 486.6 243.3 42.2 80.1

4 13010 478.8 239.4 31.2 78.8

5 13473 463.5 231.7 24.1 76.3

7 14085 428.2 214.1 15.9 70.4

8 14297 411.7 205.9 13.4 67.8

9 14470 396.5 198.2 11.5 65.2

10 14626 380.3 190.1 9.9 62.5

13 14963 341.1 170.6 6.8 56.1

16 15207 307.2 153.6 5 50.5

18 15333 288.3 144.1 4.2 47.4

19 15386 280.0 140.0 3.8 46.1

20 15437 271.7 135.9 3.5 44.7

Table 3.4: The solution of the endemic equilibrium when γs = γr = 1.5

with initial solution (N
′
,m

′
, I
′
r, I

′
H , I

′
HTB) = (9465.3, 435.4, 217.7, 98, 93.1) for

RTB > 1, RH > 1.
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The above tables showed the endemic equilibrium of the system (3.3.1) and

(3.4.2) a result of the following three alternative cases.

• Table (3.2) showed the endemic equilibrium of TB with the basic re-

production of TB is greater than one while the basic reproduction of

HIV is less than one.

• Table (3.3) showed the endemic equilibrium of HIV with the basic re-

production of HIV is greater than one while the basic reproduction of

TB is less than one.

• Table (3.4) showed the endemic equilibrium of the system since both

basic reproductions of TB and HIV are greater than one.

Generally, all these cases implied the endemic equilibrium of HIV-TB

co-infection model (3.3.1) and (3.4.2), since basic reproduction num-

ber of the system is R = max(RTB, RH) > 1. Therefore, the endemic

equilibrium of the model in (3.3.1) judged and depended on the values

of the basic reproduction numbers of either TB disease in both drug-

sensitive and resistant strains or the basic reproduction of HIV or the

basic reproduction of both HIV and TB.

The following figures also showed the graph of the system (3.4.1) above at

the endemic equilibrium with different initial solutions or values of the com-

partments:
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Figure 3.3: The first two figures in the above showed, solution of sus-

ceptible to either TB or HIV on the left side and infected individual

with drug-sensitive TB on the right side. The second two figures showed

the solution of infected with drug-resistant TB on the left and HIV on

the right sides, respectively. The last one showed the solution of in-

fected with both HIV and TB (i.e infected with their co-infection). All

of the solutions are with initial value (S(0), is(0, 0), Ir(0), IH(0), IHTB(0)) =

(73171, 36277, 51640, 12623, 4734) and step sizes h = 0.01.
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Figure 3.4: The first two figures in the above showed, solution of suscep-

tible to either TB or HIV on the left side and infected individual with

drug-sensitive TB on the right side. The second two figures show the

solution of infected with drug-resistant TB on the left and HIV on the

right sides, respectively. And the last one shows the solution of infected

with both HIV and TB (i.e infected with their co-infection) with initial so-

lutions (S(0), is(0, 0), Ir(0), IH(0), IHTB(0)) = ((8201, 4065, 5788, 1415, 531))

and step sizes h = 0.5.
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Figure 3.5: The first two figures in the above showed, solution of suscep-

tible to either TB or HIV on the left side and infected individual with

drug-sensitive TB on the right side. The second two figures show the so-

lution of infected with drug-resistant TB on the left and HIV and the

right sides, respectively. The last one shows the solution of infected with

both HIV and TB (i.e infected with their co-infection) with initial so-

lutions (S(0), is(0, 0), Ir(0), IH(0), IHTB(0)) = (20000, 20, 3, 25, 5) and step

sizes h = 2.5 for R > 1.
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Generally, all the figures we observed in chapter 2 and chapter 3 showed the

convergence of the initial solution of the compartments with the tolerance

of susceptible, infected with drug-sensitive TB, infected with drug-resistant
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Figure 3.6: The first two figures in the above showed, solution of suscep-

tible to either TB or HIV on the left side and infected individual with

drug-sensitive TB on the right side. The second two figures that are in

between the first two and the last one show the solution of infected with

drug-resistant TB and HIV on the left and the right sides, respectively.

And the last one shows the solution of infected with HIV and TB (i.e in-

fected with their co-infection). All of the solutions are with initial value

(S(0), is(0, 0), Ir(0), IH(0), IHTB(0)) = (6827, 3385, 4818, 1178, 442) and step

sizes h = 0.05.

TB, infected with HIV only, and infected with both HIV and TB ( their

co-infection) individuals are 40%,25%, 20%, 30% and 25%, respectively.
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Chapter 4

Formulation and analysis of

nonstandard finite difference

methods for HIV and TB

co-infection models

In this chapter, we construct the NSFDMs and this is done in two separate

sections. In the first section we construct the NSFDM for the sub-models

(HIV only sub-model and TB-only sub-models) while the numerical method

of the HIV-TB co-infections model is constructed in the second section of this

chapter. The positivity of the solutions considered in the previous chapters

are also shown in this method. In addition to these, comparison of other

literatures approach are also reviewed in this chapter.
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4.1 Introduction

In this chapter, the full model (3.3.1) of HIV and TB co-infection that ac-

counts for TB treatment will be formulated and analyzed, by considering sub

models (the TB and HIV only sub models) with their qualitative properties.

To come up with this, first we analyze and construct the NSFD numerical

methods for the sub models. The TB only sub model (2.2.1) accounts for

TB treatment that shows treatment impacts on TB with the age of infection

done in chapter 2 and (3.2.1) of HIV-only sub-models in chapter 3. Secondly

we check whether these numerical methods converge to the theoretical equi-

libria of the full model, by checking the convergence of numerical methods

for the sub models.

These methods were explored by many researchers to solve problems in the

biological science and other fields. A few of them are mentioned as follows:

In 2005 [48], Ronald E. Mickens introduced the concept of elementary sta-

bility, the property which brings correspondence between the local stability

at equilibria of the differential equation and the numerical method. In [33],

the NSFD methodology was used to constructed numerical method that is

dynamically consistent for a large class of dynamical systems used in epi-

demiology. The method was elementary stable and preserved some properties

including positivity solution, dissipative and globally asymptotic stability of

the disease free equilibrium. Villanueva et al. [56] developed NSFD schemes

to solve the numerical solution of a mathematical model of infant obesity

with constant population size. Their model consists of a system of cou-

pled nonlinear ordinary differential equations. The numerical results showed

that their methods have better convergence properties as compared to the

classical Euler or the fourth-order Runge-Kutta methods and the Matlab

routines in the sense that these routines give negative values for some of the
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state variables. Construction and Analysis of Efficient Numerical Methods

to Solve Mathematical Models of TB and HIV Co-infection was conducted

by Obaid Ahmed [32]. In their study competitive unconditionally stable

NSFDMs were proposed for solving a TB-only sub-model and a full HIV-TB

co-infection model represented by a nonlinear system of ordinary differential

equations. Numerical results presented, confirmed the applicability of the

proposed NSFDMs for the biological systems. These methods preserved the

positivity of solutions and converging to stability properties of the equilibria

for arbitrary step-sizes while the solutions obtained by other numerical meth-

ods experience difficulties in either preserving the positivity of the solutions

or in converging to the correct equilibria. As we observed from the literature

review in chapter 1 of this paper, several NSFDMs have been constructed for

specific ODEs and PDEs [32, 48, 49, 66, 68, 72, 92].

To summarize all the above, in this chapter, we develop and investigate the

applicability of the NSFDMs for numerical solution of systems of differential

equations in biology, and improve the order of convergence of these methods

both for ODE and PDE models expressed in (2.2.1), (3.2.1) and (3.3.1).

4.2 Formulation of nonstandard finite differ-

ence methods (NSFDMs)

To construct the NSFDMs for HIV-TB co-infections model and other sub-

models mentioned in the previous chapters, we begin with time domain [0,T]

which is partitioned as 0 = t0 < t1 < t2 < ... < tn−1 < tn = T (i.e. tn = nh,

where h > 0 is the time step-size).

In general, solving the systems of differential equations (2.2.1), (3.2.1) and

(3.3.1) by a finite difference method consists of the following four steps:
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• Discretizing the domain:

The time domain [0, T] is represented by a mesh: a finite number of

n+1 points. 0 = t0 < t1 < t2 < ... < tn−1 < tn = T.

• Fulfilling the systems of equation at discrete time points:

The differential equations being valid for t” ∈ ”[0, T ] at mesh points

only.

• Replacing derivatives by finite differences:

Here, it is time for the finite difference approximation of derivatives.

• Formulating a recursive algorithm:

We seek the solution of our problem at the mesh points using the initial

value at one of the mesh point, then we get the computational formula

which is called recursive algorithm.

4.3 Formulation and analysis of NSFDMs for

HIV -only sub-model

In this section, we construct the NSFDMs for HIV-only sub-model (3.2.1).

The derivative is replaced by the finite difference as

dS
dt

= S(t+h)−S(t)
φ(h)

+O(φ(h)) as h→ 0.

Where φ(h) is a denominator function [32] which is a real valued function

and satisfies φ(h) = h+O(h2), for all h > 0.

We denote S(nh) by Sn, where

n = 0, 1, 2, ...., then the NSFDMs applied to the model (3.2.1) reads as:
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Sn+1−Sn
φ1(h)

= Λ− λHSn+1 − µSn+1

In+1
H −InH
φ2(h)

= λHS
n+1 − (µ+ dH)In+1

H

(4.3.1)

where,

φ1(h) = eµh−1
µ

,

φ2(h) = e(µ+dH )h−1
µ+dH

.

After simplifying the equations in (4.3.1), we obtained

Sn+1 = Sn+Λφ1(h)

1+φ1(h)(µ+cβH
In
H

Sn+In
H

)

In+1
H =

InH(1+φ2(h)cβHS
n+1 Sn

Sn+In
H

)

1+φ2(dH+µ)

(4.3.2)

Remark 4.1: If the values of φ1(h)=h= φ2(h), then the numerical method is

called NSFDM-I [48, 72]. However, the numerical method is called NSFDM-

II when the values of φ1(h) and φ2(h) are different from h as shown in (4.3.1)

above.

We recall that the disease free equilibrium of the system (4.3.1) is given by

E0 = (Λ
µ
, 0) that was proved to be locally asymptotically stable if RH < 1

and unstable if RH > 1.

In the following subsections, we see the disease free and the endemic equilib-

ria of system (4.3.2) which is the simplified form of (4.3.1).

4.3.1 The numerical results and stability properties

of HIV at the disease free equilibria

In this subsection, we see the properties of the disease free equilibrium using

the following theorem.
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Theorem 4.3.1. The disease free equilibrium of HIV in (4.3.1) is locally

asymptotically stable if the basic reproduction of HIV, RH < 1 while it is un-

stable if RH > 1 for real valued denominator functions φi(h) = h+O(h2), i =

1, 2 and for all h > 0.

Proof. Here, we found the the partial derivatives of these functions of the

system (4.3.1) with respect to the given variables (Sn, InH) at the disease free

equilibrium E∗ = (S∗, I∗H) = (Λ
µ
, 0) and the matrix entries as follows:

Let, J(X) =

 Sn+Λφ1(h)

1+φ1(h)(µ+cβH
In
H

Sn+In
H

)

InH(1+φ2(h)cβHS
n+1 Sn

Sn+In
H

)

1+φ2(dH+µ)

,

where, X = (Sn, InH).

Then,

∂J
∂X11

=
1+φ1(h)(µ+cβH

InH
Sn+In

H
)+(Sn+Λφ1(h))(

InH
(Sn+In

H
)2

)

(1+φ1(h)(µ+cβH
In
H

Sn+In
H

))2

= 1+φ1(h)µ
(1+φ1(h)µ)2

= 1
1+φ1(h)µ

,

∂J
∂X12

=
−(Sn+Λφ1(h))(φ1(h)cβH(

InH+Sn−InH
(Sn+In

H
)2

))

(1+φ1(h)(µ+cβH
In
H

Sn+In
H

))2

= −φ1(h)cβH(Sn)2−(φ1(h))2cβHΛSn

(Sn)2(1+φ1(h)µ)2

= −φ1(h)cβH(1+φ1(h)µ)
(1+φ1(h)µ)2

= −φ1(h)cβH
1+φ1(h)µ

,

∂J
∂X21

= φ2(h)cβH
1+φ2(µ+dH)

(
InH((1+φ1µ)(Sn+InH)+cβHI

n
H)−(1+φ1µ)InH(Sn+InH)

((1+φ1µ)(Sn+InH)+cβHI
n
H)2

= 0( φ2(h)cβH
1+φ2(µ+dH)

)

= 0,
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∂J
∂X22

=
1+φ2(h)cβH(

(Sn+φ1(h)Λ)((1+φ1µ)(Sn+InH )+cβHI
n
H )−InH (Sn+InH )(1+φ1µ+φ1cβH )

((1+φ1µ)(Sn+In
H

)+cβHI
n
H

)2
)

1+φ2(µ+dH)

=
1+φ2(h)cβH(

Sn+φ1Λ
(1+φ1µ)Sn

)

1+φ2(µ+dH)

= 1+φ2(h)cβH
1+φ2(µ+dH)

.

(i. e, ∂J
∂Xij

=

 1
1+φ1(h)µ

−φ1(h)cβH
1+φ1(h)µ

0 1+φ2(h)cβH
1+φ2(µ+dH)

), i = 1, 2 and j = 1, 2 for Sn and

InH , respectively.

Therefore, the Jacobian matrix of the system (4.3.1) at the disease free equi-

librium is

J(E0) =

 1
1+φ1(h)µ

−φ1(h)cβH
1+φ1(h)µ

0 1+φ2(h)cβH
1+φ2(µ+dH)


Therefore, the eigenvalues of this matrix are obtained by solving

det


1

1+φ1(h)µ
− λ −φ1(h)cβH

1+φ1(h)µ

0 1+φ2(h)cβH
1+φ2(µ+dH)

− λ

 = 0

( 1
1+φ1(h)µ

− λ)( 1+φ2(h)cβH
1+φ2(µ+dH)

− λ) = 0

implies that

λ1 = 1
1+φ1(µ+cβH)

,

λ2 = 1+φ2cβH
1+φ2(µ+dH)

.

As observed from these eigenvalues the first one is less than while the second

is also less than one(unity) if and only if cβH < µ+dH , which is RH < 1.

89



The following figures show the solutions of susceptible, S(t) for HIV on

the left sides and the infected individuals,IH(t) with HIV on the right sides

with initial values (S(0), IH(0)) = (178445, 0) at different step sizes h indi-

cated with the individual figure.

Remark 4.2 : Time(t) in all cases are measured in years.

Figure 4.1: This shows the solution of HIV with initial solution

(S(0), IH(0)) = (178440, 5) and step-size h = 0.125.
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Figure 4.2: This figure shows the solution of HIV with initial solution

(S(0), IH(0)) = (178000, 445) and step-size h = 0.5.

Figure 4.3: This shows the solution of HIV with initial solution

(S(0), IH(0)) = (178440, 5) and step size h = 1.5.

Figure 4.4: This shows the solution of HIV with initial solution

(S(0), IH(0)) = (120445, 50000) with step size h = 5.

As we observed in the above figures, when the values of h approaches to

zero, the solution of NSFDM of HIV in (4.2.1) approaches to the disease free
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equilibrium for different initial solution at different step sizes h as RH < 1 ).

Therefore, the system in (3.2.1) is locally asymptotically stable at the en-

demic equilibrium when RH < 1.

4.3.2 The numerical results and stability properties of

HIV at the endemic equilibria

In this subsection, we check the stability properties of our system above when

the equilibrium is endemic. Before we are going to prove the stability of the

endemic equilibrium of HIV model (4.3.1) equivalent to (4.3.2), we first see

the lemma’s of [87] as shown below.

Lemma 4.3.2. The quadratic equation f(λ) = λ2 − αλ + β = 0 has two

roots that satisfy |λi| < 1, i = 1, 2, if and only if the following conditions are

satisfied:

1. f(0) = β < 1,

2. f(−1) = 1 + α + β > 0,

3. f(1) = 1− α + β > 0.

Theorem 4.3.3. The epidemic equilibrium of HIV in (4.3.1) is locally asymp-

totically stable if RH > 1 while it is unstable if RH < 1 for real valued

denominator function φi(h) = h+O(h2), i = 1, 2 and for all h > 0.

Proof. Here, we found the the partial derivatives of these functions of the

system (4.3.1) with respect to the given variables (Sn, InH) for
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J(Xij) =


Sn+Λφ1(h)

1+φ1(h)(µ+cβH
In
H

Sn+In
H

)

InH(1+φ2(h)cβH
Sn+Λφ1(h)

(1+φ1(h)µ)(Sn+In
H

)+φ1(h)cβHI
n
H

)

1+φ2(h)(dH+µ)

,

where, Xij = (Sn, InH),

are,

∂J
∂X11

=
1+φ1(h)(µ+dH)(1− 1

RH
)

1+φ1(h)µ+φ1(h)cβH(1− 1
RH

)
,

∂J
∂X12

= −φ1(h)(µ+dH)
(1+φ1(h)µ)RH+φ1(h)cβH(RH−1)

,

∂J
∂X21

= φ2(h)cβH(RH−1)

R2
H(1+φ2(h)(µ+dH))

(
R2
H+φ1(h)βHc(RH−1)

RH(1+φ1(h)µ)+φ1(h)βHc(RH−1)
− 1),

∂J
∂X22

=
1+

φ2(h)(µ+dH )(1+φ1µ)

(1+φ1(h)µ)RH+φ1(h)cβH (RH−1)

1+φ2(h)(µ+dH)
.

THus at the epidemic equilibriumE1 = (S1, I1
H) = ( Λ

µ+cβH(1− 1
RH

)
, Λ(RH−1)

µ+cβH(1− 1
RH

)
),

its jacobian matrix becomes:

J(E1) =


1+φ1(h)(µ+dH)(1− 1

RH
)

1+φ1(h)µ+φ1(h)cβH(1− 1
RH

)

−φ1(h)(µ+dH)
(1+φ1(h)µ)RH+φ1(h)cβH(RH−1)

φ2(h)cβH(RH−1)

R2
H(1+φ2(h)(µ+dH))

(
R2
H+φ1(h)βHc(RH−1)

RH(1+φ1(h)µ)+φ1(h)βHc(RH−1)
− 1)

1+
φ2(h)(µ+dH )(1+φ1µ)

(1+φ1(h)µ)RH+φ1(h)cβH (RH−1)

1+φ2(h)(µ+dH)


Therefore, the eigenvalues of this matrix are obtained by solving the charac-

teristics as shown below.
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det

 x
′ − λ x

′′

x
′′′

x
′′′′ − λ

 = 0,

f(λ) = λ2 − αλ+ β = 0,

where,

x
′
=

1+φ1(h)(µ+dH)(1− 1
RH

)

1+φ1(h)µ+φ1(h)cβH(1− 1
RH

)
,

x
′′

= −φ1(h)(µ+dH)
(1+φ1(h)µ)RH+φ1(h)cβH(RH−1)

,

x
′′′

= φ2(h)cβH(RH−1)

R2
H(1+φ2(h)(µ+dH))

(
R2
H+φ1(h)βHc(RH−1)

RH(1+φ1(h)µ)+φ1(h)βHc(RH−1)
− 1),

x
′′′′

=
1+

φ2(h)(µ+dH )(1+φ1µ)

(1+φ1(h)µ)RH+φ1(h)cβH (RH−1)

1+φ2(h)(µ+dH)
,

α = x
′
+ x

′′′′
,

β = x
′
x
′′′′

+ x
′′
x
′′′
.

From these Jacobian entries above, we observed the following for any step-

size h:

|x′ | < 1, since dH < cβH for RH > 1 and |x′′′′ | < 1, immediate for RH > 1.

where as −x′′ and x
′′′

are both greater than zero for RH > 1.

As a result of these,

x
′
+ x

′′′′
= α > 0,

x
′
x
′′′′−x′′x′′′ = β > 0, since x

′
,−x′′ , x′′′ and x

′′′′
are all greater than zero (0).

Therefore, according to lemma 4.2.2 above, we have:

f(0) = β = x
′
x
′′′′ − x′′x′′′ < 1,

f(−1) = 1 + α + β > 0,

f(1) = 1− α + β > 0. This completes the proof of the theorem.
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In the following table, we can see the corresponding values of

the susceptible and infected individuals at the time step-sizes, h.

h S∗ I∗H λ1 λ2

0.5 117664 21010 0.992 1.064

3 107808 25919 0.957 1.352

5 83941 32154 0.921 1.551

8 52276 36494 0.876 1.804

10 25425 33731 0.848 1.946

15 7985 20905 0.781 2.230

Table 4.1: The following figures show the solutions of susceptible for HIV on

the left sides and the infected individuals with HIV on the right sides with

different initial solutions at different step sizes h indicated with the individual

figure.
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Figure 4.5: Solution of HIV with initial solutions with (S(0), IH(0)) =

(80445, 900000) and step size h = 0.05.

Figure 4.6: Solution of HIV with initial solutions with (S(0), IH(0)) =

(178440, 5) and step size h = 0.1.

Figure 4.7: This is the solution with of HIV with initial solution

(S(0), IH(0)) = (120445, 50000) and step size h = 0.1.
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Figure 4.8: This shows the solution of HIV with initial solution

(S(0), IH(0)) = (120445, 50000) and step size h = 0.5.

Figure 4.9: Solution of HIV with initial solution (S(0), IH(0)) =

(120445, 50000) and step size h = 1.5.

Remark 4.3: As the values of h approaches to zero, the solution of NSFDM

of HIV in (4.3.1) as we observed in the above figures approaches to the en-

demic equilibrium (i.e RH > 1).

Therefore, the system in (3.2.1) is locally asymptotically stable at the en-

demic equilibrium when RH > 1.
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4.4 Formulation and analysis of NSFDMs for

TB -only sub-model

In this section, we construct NSFDMs for the TB-sub-model in (2.2.1).

Following the same notations and approach as in the previous sections, the

NSFDMs of the model is written as follows:

Sn+1−Sn
φ1(h)

= Λ− (λs + λr + µ)Sn+1 + ηInr + (1− r)θi(n,j)s

(i
(n+1,j)
s −i(n,j)s )

φ2(h)
+ (i

(n,j+1)
s −i(n,j)s )

φ3(h)
= −z′i(n,j)s

(In+1
r −Inr )
φ4(h)

= λrS
n+1 − (µ+ dr + η)In+1

r + qrθi
(n,j)
s

(4.4.1)

The simplified form of (4.2.2.1) becomes

Sn+1 = Sn+φ1(h)(Λ+ηInr +(1−r)θi(n,j)s )
1+φ1(h)(µ+λr+λs)

i
(n+1,j)
s = (1 + z − φ2(h)z

′
)i

(n,j)
s − zi(n,j+1)

s

In+1
r = Inr +φ4(h)(λrSn+1+qrθi

(n,j)
s )

1+φ4(h)(µ+dr+η)

(4.4.2)

Where,

z = φ2(h)
φ3(h)

,

z
′
= (1− r + qr)θp(α) + µ+ ds,

φ1(h) = eµh−1
µ

,

φ2(h) = e(µ+ds)h−1
µ+ds

,

φ3(h) = e(µ+dsρ(α))h−1
µ+dsρ(α)

,

φ4(h) = e(µ+dr+η)h−1
µ+dr+η

.

In the following subsection we see the numerical results and the stability

properties of TB at diseases free and endemic equilibria.
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4.4.1 The numerical results and stability properties of

TB at the disease free equilibria

This section shows the numerical results and stability properties of (4.4.1)

above. We obtained the Jacobian matrix of TB sub-model at the disease free

equilibrium by taking the partial derivatives of the model (4.4.1) as follows:

Theorem 4.4.1. The disease free equilibrium of TB in (4.4.1) is locally

asymptotically stable if RTB < 1 while it is unstable if RTB > 1 for real

valued denominator functions φi(h) = h + O(h2), i = 1, 2, 3, 4 and for all

h > 0.

Proof. To find the jacobian matrix of the system in (4.4.2) which is the sim-

plified form of (4.4.1) first we obtained the partial derivatives of the system

at the disease free equilibrium E∗ = (S∗(0), i∗s(0, 0), I∗r (0)) = (Λ
µ
, 0, 0) as fol-

lows:

Let

G(X) =

(S
n+φ1(h)(Λ+ηInr +(1−r)θi(n,j)s )

1+φ1(h)(µ+λr+λs)
, (1+z−φ2(h)z

′
)i

(n,j)
s −zi(n,j+1)

s , I
n
r +φ4(h)(λrSn+1+qrθi

(n,j)
s )

1+φ4(h)(µ+dr+η)
),

where,

X = (Sn, injs , I
n
r ).

∂G
∂X11

= 1
1+µφ1(h)

,

∂G
∂X12

=
φ1(h)((1−r)θ−Rs

p2
)

1+µφ1(h)
,

∂G
∂X13

= φ1(h)(η−βrc)
1+µφ1(h)

,

∂G
∂X21

= 0,

∂G
∂X22

= 1 + z(1− p(α))− z′φ2(h),
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∂G
∂X23

= 0,

∂G
∂X31

= 0,

∂G
∂X32

= qrθφ4(h)
1+(µ+η+dr)φ4(h)

,

∂G
∂X32

= 1+βrcφ4(h)
1+(µ+η+dr)φ4(h)

.

And its jacobian matrix is

J(E∗) =


1

1+µφ1(h)

φ1(h)((1−r)θ−Rs
p2

)

1+µφ1(h)
φ1(h)(η−βrc)

1+µφ1(h)

0 1 + z(1− p(α))− z′φ2(h) 0

0 qrθφ4(h)
1+(µ+η+dr)φ4(h)

1+βrcφ4(h)
1+(µ+η+dr)φ4(h)


The characteristic of this matrix becomes

det


1

1+µφ1(h)
− λ

φ1(h)((1−r)θ−Rs
p2

)

1+µφ1(h)
φ1(h)(η−βrc)

1+µφ1(h)

0 1 + z(1− p(α))− z′φ2(h)− λ 0

0 qrθφ4(h)
1+(µ+η+dr)φ4(h)

1+βrcφ4(h)
1+(µ+η+dr)φ4(h)

− λ


= ( 1

1+µφ1(h)
− λ)(1 + z(1− p(α))− z′φ2(h)− λ)( 1+βrcφ4(h)

1+(µ+η+dr)φ4(h)
− λ)

= 0.

Hence,

λ1 = 1
1+µφ1(h)

,

λ2 = 1 + z(1− p(α))− z′φ2(h),

λ3 = 1+βrcφ4(h)
1+(µ+η+dr)φ4(h)

,

and

|λi| < 1, for i = 1, 2, 3 when Rr < 1 and 1 < p(α) + z
′
φ3(h).

Therefore, the disease free equilibrium of the system (4.4.1) is locally asymp-

totically stable if RTB < 1 while it is unstable if RTB > 1.
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The following figures showed the solution of the system (4.4.1) at the

disease free equilibrium when RTB < 1.

Figure 4.10: The first on the left side shows the susceptible population for

TB and right on the infected individuals with drug-sensitive TB. The last

one shows the infected one with dug-resistant TB. The solution of NSFDM

of TB with initial solution (S(0), is(0, 0), Ir(0)) = (178400, 40, 5) and step

size h = 0.05.
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Figure 4.11: The first on the left side shows the susceptible population for

TB and right on the infected individuals with drug-sensitive TB. The last one

shows the infected one with dug-resistant TB. That is, this shows the solution

of the disease free equilibrium of TB with initial value (S(0), is(0, 0), Ir(0)) =

(178400, 40, 5) and step size h = 0.5 for n.

In general, the solution of NSFDM of TB sub-model in (4.4.1) (the solution of

the susceptible, infected with drug-sensitive TB, infected with drug-resistant

TB individuals), in the above figures converge to the solution at disease free

equilibrium for different initial solutions with different step-size h; particu-

larly when h approaches to zero and RTB < 1.
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Therefore, the system in (2.2.1) of chapter 2 and (4.4.1) in the above is locally

asymptotically stable at the disease free equilibrium when RTB < 1.

4.4.2 The numerical results and stability properties

of TB at the endemic equilibria

To find the Jacobian matrix of our system in (4.4.1) at the endemic equilib-

rium, we used the endemic equilibrium E∗ = (S∗,m∗, I∗r ) of TB model (2.2.1)

of chapter two which is given as

S∗ = ( Λ

µ+dsχ+
dr(1− 1

Rs
)

1+χ

)(1− (1− 1
Rs

)( χ+p1

(χ+1)p1
)),

m∗ =
Λχ(1− 1

Rs
)

µ+dsχ+
dr(1− 1

Rs
)

1+χ

,

I∗r =
Λ(1− 1

Rs
)

(µ+dsχ+
dr(1− 1

Rs
)

1+χ
)(1+χ)

,

where,

χ =
p1(µ+η+dr)(1−RrRs )

qrθp2
,

m∗ = λsS
∗. Therefore, the partial derivatives of the system (4.4.2) at the

this endemic equilibrium are:

X = (Sn,mn, Inr ).

∂G
∂X11

= 1
1+φ1(h)(µ+λs+λr)

+ φ1(h)(λs + λr)(1 + µφ1(h) + χdsφ1(h) +
1− 1

Rs

1+χ
(dr +

η + (1−r)θχ
p1
− χ+p1

(1+χ)p1
)),

∂G
∂X12

= φ1(h)(1−r)θ
1+φ1(h)(µ+λs+λr)

+ φ1(h)
(1+φ1(h)(µ+λs+λr))2 (

(1− 1
Rs

)

1+χ
(χβsc + βrc − βsc)(1 +

µφ1(h) + φ1(h)dsχ+
(1− 1

Rs
)

1+χ
(η + dr + (1−r)θχ

p1
− χ

p1
− 1)),

∂G
∂X13

= φ1(h)η
1+φ1(h)(µ+λs+λr)

+
λs+λr+

µ
N
−βrc

(1+φ1(h)(µ+λs+λr))2 (1+µφ1(h)+φ1(h)dsχ+φ1(h)
(1− 1

Rs
)

1+χ
(η+

dr + (1−r)θχ
p1
− χ

p1
− 1)),

∂G
∂X21

= 0,
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∂G
∂X22

= 1 + z(1− p(α))− z′φ2(h),

∂G
∂X23

= 0,

∂G
∂X31

=
φ4(h)λr(

∂G
∂X11

− 1
N

)

1+φ4(h)(µ+η+dr)
,

∂G
∂X32

=
φ4(h)(qrθ+λr(

∂G
∂X12

−S
n+1

N
))

1+φ4(h)(µ+η+dr)
,

∂G
∂X33

=
1+φ4(h)λr(

∂G
∂X13

+
Sn+1(Sn+mns )

N
)

1+φ4(h)(µ+η+dr)
.

Therefore, the jacobian matrix of the NSFDMs (4.4.1) of TB model at the

endemic equilibrium becomes

J(E1) = ( ∂G
∂Xij

)3
i,j=1

=


∂G
∂X11

∂G
∂X12

∂G
∂X13

0 1 + z(1− p(α))− z′φ2(h) 0

∂G
∂X31

∂G
∂X32

∂G
∂X33


The characteristic of this matrix is

det


∂G
∂X11
− λ ∂G

∂X12

∂G
∂X13

0 1 + z(1− p(α))− z′φ2(h)− λ 0

∂G
∂X31

∂G
∂X32

∂G
∂X33
− λ

 = 0

(1+z(1−p(α))−z′φ2(h)−λ)(λ2− ( ∂G
∂X11

+ ∂G
∂X33

)λ+ ∂G
∂X11

∂G
∂X33
− ∂G

∂X13

∂G
∂X31

) = 0

, which implies that

1 + z(1− p(α))− z′φ2(h)− λ = 0 or

λ2 − ( ∂G
∂X11

+ ∂G
∂X33

)λ+ ∂G
∂X11

∂G
∂X33
− ∂G

∂X13

∂G
∂X31

) = 0

Thus, we have the following:

• λ = 1 + z(1− p(α))− z′φ2(h),
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• λ2 − ( ∂G
∂X11

+ ∂G
∂X33

)λ+ ∂G
∂X11

∂G
∂X33
− ∂G

∂X13

∂G
∂X31

= 0

By rearranging the second equation above we obtained the simplified one as

∂G
∂X11

∂G
∂X33
− ∂G

∂X13

∂G
∂X31

=
∂G
∂X11

+
φ1(h)λr
Nn

∂G
∂X13

+φ4(h)λrSn+1 ∂G
∂X11

( 1
Inr
− 1
Nn

)+ ∂G
∂X11

∂G
∂X13

λr(φ4(h)−φ1(h))

1+φ4(h)(µ+η+dr)
.

Using lemma 4.3.2, we have

f(λ) = λ2 − ( ∂G
∂X11

+ ∂G
∂X33

)λ+ ∂G
∂X11

∂G
∂X33
− ∂G

∂X13

∂G
∂X31

= 0,

f(0) =
∂G
∂X11

+
φ1(h)λr
Nn

∂G
∂X13

+φ4(h)λrSn+1 ∂G
∂X11

( 1
Inr
− 1
Nn

)+ ∂G
∂X11

∂G
∂X13

λr(φ4(h)−φ1(h))

1+φ4(h)(µ+η+dr)
< 1 for

φ4(h) > φ1(h),

f(−1) = 1 + ∂G
∂X11

+ ∂G
∂X33

+ ∂G
∂X11

∂G
∂X33
− ∂G

∂X13

∂G
∂X31

> 0,

f(1) = 1− ( ∂G
∂X11

+ ∂G
∂X33

) + ∂G
∂X11

∂G
∂X33
− ∂G

∂X13

∂G
∂X31

> 0.

Thus, this completes the proof of the theorem and it is true when Rs > 1 as

shown in the first two partial derivatives. Therefore, the endemic equilibrium

is locally asymptotically stable when RTB > 1 otherwise it is unstable when

RTB < 1.

In the following, we see that figures show the solutions of susceptible, infected

with drug-sensitive and drug-resistant TB at some points of different initial

solutions for different step-sizes h.
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Figure 4.12: The first on the left side shows the susceptible individu-

als for TB and right on the infected individuals with drug-sensitive TB.

The last one shows the infected one with dug-resistant TB initial solution

(S(0), is(0, 0), Ir(0)) = (178000, 20, 5) and step size h = 0.05.
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Figure 4.13: The first on the left side shows the solutions of susceptible

individuals for TB and right one the infected individuals with drug-sensitive

TB. The last one shows the infected one with dug-resistant TB with initial

solution (S(0), is(0, 0), Ir(0)) = (178000, 20, 5) and step size h = 0.5.
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Figure 4.14: The first on the left side shows the susceptible individuals for

TB and right on the infected individuals with drug-sensitive TB. The last one

shows the infected one with dug-resistant TB. Generally, this shows the so-

lution of endemic equilibrium of TB with initial value (S(0), is(0, 0), Ir(0)) =

(80000, 90000, 8445) and step size h = 0.5.
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Figure 4.15: The first on the left side shows the susceptible individuals

for TB and right on the infected individuals with drug-sensitive TB. The

last one shows the infected one with dug-resistant TB with initial solution

(S(0), is(0, 0), Ir(0)) = (80000, 90000, 8445) and step size h = 2.

In general, the solution of NSFDM for the TB sub-model in (4.4.1)(the solu-

tion of the susceptible, infected with drug-sensitive TB, infected with drug-

resistant TB individuals), as shown in the above figures converge to the

solution at the endemic equilibrium for different initial solutions with differ-

ent step-size h, and for RTB > 1.

Therefore, the system (2.2.1) in chapter 2 which is equivalent to the system

(4.4.1) in chapter 4 is locally asymptotically stable at the endemic equilib-

rium when RTB > 1.

4.5 Formulation and analysis of NSFDMs for

HIV-TB co-infection full model

In this section, we construct NSFDMs for the co-infection model of HIV

and TB as observed the individual sub-models in the previous sections. The
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figures below show the NSFDMs of the co-infection of HIV and TB model

(3.3.1) indicated above.

The NSFDMs of the model is written as follows:

Sn+1−Sn
φ1(h)

= Λ− (λH + λr + λs)S
n+1 − µSn+1 + (1− r + ηqr)θi

(n,j)
s

(i
(n+1,j)
s −i(n,j)s )

φ2(h)
+ (i

(n,j+1)
s −i(n,j)s )

φ3(h)
= −(((1− r + qr)θ + δsλH)p(α) + µ+ ds)i

(n,j)
s

(In+1
r −Inr )
φ4(h)

= λrS
n+1 − δrλHIn+1

r − (µ+ dr)I
n+1 + (1− η)qrθi

(n,j)
s

(In+1
H −InH)

φ5(h)
= λHS

n+1 + νInHTB − (γsλs + γrλr)I
n+1
H − (µ+ dH)In+1

H

(In+1
HTB−I

n
HTB)

φ6(h)
= δsλHi

(n,j)
s + δrλHI

n+1
r − (γsλs + γrλr)I

n+1
H − ωIn+1

HTB

(4.5.1)

where

λs = βsi
(n,j)
s

Sn+i
(n,j)
s +Inr +InH+InHTB

,

λr = βrInr

Sn+i
(n,j)
s +Inr +InH+InHTB

,

λH =
βHI

n
H

Sn+i
(n,j)
s +Inr +InH+InHTB

,

φ1(h) = eµh−1
µ

,

φ2(h) = e(µ+ds)h−1
µ+ds

,

φ3(h) = e(µ+dsρ(α))h−1
µ+dsρ(α)

φ4(h) = e(µ+dr)h−1
µ+dr

,

φ5(h) = e(µ+dH )h−1
µ+dH

,

φ6(h) = e(µ+ω)h−1
µ+ω

,

ω = ν + κsds + κrdr + κHdH .

The above equations are simplified and written as:
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Sn+1 = Sn+φ1(h)Λ+φ1(h)(1−r+ηqr)θi(n,j)s

1+φ1(h)(µ+λH+λr+λs)

i
(n+1,j)
s = (1 + φ2(h)

φ3(h)
− φ2(h)(((1− r + qr)θ + δsλH)p(α) + µ+ ds)i

(n,j)
s

−φ2(h)
φ3(h)

i
(n,j+1)
s

In+1
r = Inr +φ4(h)(λrSn+1+(1−η)qrθi

(n,j)
s )

1+φ4(h)(δrλH+µ+dr)

In+1
H =

InH+φ5(h)(λHS
n+1+νInHTB)

1+φ5(h)(γsλs+γrλr+µ+dH)

In+1
HTB =

InHTB+φ6(h)(λH(δsi
(n,j)
s +δrInr )+(γsλs+γrλr)I

n+1
H )

1+φ6(h)(µ+ω)

(4.5.2)

For n = 0, 1, 2, ... and j = 0, 1, 2, ....

Here, we determine the numerical simulation and stability properties of the

system (4.5.2) and the simplified form of (4.5.1) both at the disease free and

endemic equilibrium in the following subsections.

4.5.1 The numerical results and stability properties

of the full model at the disease free equilibria

From the Jacobian matrix of the system in (4.5.2) above, we obtained the fol-

lowing Jacobian matrix of it at the disease free equilibrium E0(S0, i0s, I
0
r , I

0
H , I

0
HTB) =

(Λ
µ
, 0, 0, 0, 0).

Let G(X) =



Sn+φ1(h)Λ+φ1(h)(1−r+ηqr)θi(n,j)s

1+φ1(h)(µ+λH+λr+λs)

(1 + φ2(h)
φ3(h)

− φ2(h)(((1− r + qr)θ + δsλH)p(α) + µ+ ds)i
(n,j)
s − φ2(h)

φ3(h)
i
(n,j+1)
s

Inr +φ4(h)(λrSn+1+(1−η)qrθi
(n,j)
s )

1+φ4(h)(δrλH+µ+dr)

InH+φ5(h)(λHS
n+1+νInHTB)

1+φ5(h)(γsλs+γrλr+µ+dH)

InHTB+φ6(h)(λH(δsi
(n,j)
s +δrInr )+(γsλs+γrλr)I

n+1
H )

1+φ6(h)(µ+ω)


,

where X = (Sn, ins , I
n
r , I

n
H , I

n
HTB).
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From the system (4.5.2) which is the simplified form of (4.5.1) at the disease

free equilibrium, first by deriving the partial derivatives of the matrix with

respect to the component variables, we have:

J(E0) = ( ∂G
∂Xij

)5
i,j=1 =



∂G
∂X11

∂G
∂X12

∂G
∂X13

∂G
∂X14

∂G
∂X15

∂G
∂X21

∂G
∂X22

∂G
∂X23

∂G
∂X24

∂G
∂X25

∂G
∂X31

∂G
∂X32

∂G
∂X33

∂G
∂X34

∂G
∂X35

∂G
∂X41

∂G
∂X42

∂G
∂X43

∂G
∂X44

∂G
∂X45

∂G
∂X51

∂G
∂X52

∂G
∂X53

∂G
∂X54

∂G
∂X55


=



1
1+µφ1(h)

φ1(h)((1−r)θ)−βsc
1+µφ1(h)

φ1(h)(Rr+
1−η

µ+η+dr
)

1+µφ1(h)
φ1(h)βHc
1+µφ1(h)

0

0 a 0 0 0

0 φ4(h)qrθ
1+φ4(h)(µ+η+dr)

1+φ4(h)(1+µφ1(h))βrc
φ4(h)(µ+η+dr)

0 0

0 0 0 1+φ5(h)βHc
1+φ5(h)(µ+dH)

φ5(h)
1+φ5(h)(µ+dH)

0 0 0 0 1
1+φ6(h)ω


a = 1 + z(1− p(α))− z′φ2(h)− λ,

b = 1+φ4(h)(1+µφ1(h))βrc
φ4(h)(µ+η+dr)

,

d =
φ1(h)(Rr+

1−η
µ+η+dr

)

1+µφ1(h)
. Then the characteristic equation of this model is

det



1
1+µφ1(h)

− λ φ1(h)(θ−rθ−βsc)
1+µφ1(h)

d φ1(h)βHc
1+µφ1(h)

0

0 a− λ 0 0 0

0 φ4(h)qrθ
1+φ4(h)(µ+η+dr)

b− λ 0 0

0 0 0 1+φ5(h)βHc
1+φ5(h)(µ+dH)

− λ φ5(h)
1+φ5(h)(µ+dH)

0 0 0 0 1
1+φ6(h)ω

− λ


= 0
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Hence, the eigenvalues of this matrix are:

λ1 = 1
1+µφ1(h)

,

λ2 = 1 + z(1− p(α))− z′φ2(h),

λ3 = 1+φ4(h)(1+µφ1(h))βrc
φ4(h)(µ+η+dr)

,

λ4 = 1+φ5(h)βHc
1+φ5(h)(µ+dH)

,

λ5 = 1
1+φ6(h)ω

.

We observed that all the eigenvalues are less than unity (|λi| < 1 for i =

1, 2, 3, 4, 5) and when both RTB < 1 and RH < 1. Therefore, the system in

(4.5.2 ) above is locally asymptotically stable at the disease free equilibrium

if R < 1 since R = max(RTB, RH) and otherwise it is unstable.
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4.5.2 The numerical results and stability properties of

the model at the endemic equilibria

In this subsection, we check the stability and convergence of the NSFDM

of the full-model (HIV-TB co-infection model) according to the value of the

tolerance of each of the compartment and the figures as observed at the end

of this section. At the nd of this section we generalize the convergency of the

NSFDM compared to the convergency of the system we discussed in chapter

3 section at the endemic equilibrium.

Let recall the simplified system of nonstandard finite methods equation (4.5.2)

and

G(X) =



Sn+φ1(h)Λ+φ1(h)(1−r+ηqr)θi(n,j)s

1+φ1(h)(µ+λH+λr+λs)

(1 + φ2(h)
φ3(h)

− φ2(h)(((1− r + qr)θ + δsλH)p(α) + µ+ ds)i
(n,j)
s − φ2(h)

φ3(h)
i
(n,j+1)
s

Inr +φ4(h)(λrSn+1+(1−η)qrθi
(n,j)
s )

1+φ4(h)(δrλH+µ+dr)

InH+φ5(h)(λHS
n+1+νInHTB)

1+φ5(h)(γsλs+γrλr+µ+dH)

InHTB+φ6(h)(λH(δsi
(n,j)
s +δrInr )+(γsλs+γrλr)I

n+1
H )

1+φ6(h)(µ+ω)


,

By substituting the solution of model we obtained in theorem 3.4.3 at the

endemic equilibrium, we obtained the following partial derivatives at the en-

demic in terms of N above of the system (3.4.2) and obtained the endemic

equilibrium denoted by E
′

= (N
′
,m

′
, I
′
r, I

′
H , I

′
HTB) is expressed in terms of

E
′
= (S

′
, i
′
s, I

′
r, I

′
H , I

′
HTB) is given as follows:

∂G
∂X11

=
1+φ1(µ+λs+λr+λH)+(Sn+φ1(Λ+ηInr +(1−r)mn))

φ1(λs+λr+λH )

Nn

(1+φ1(µ+λs+λr+λH))2 ,

∂G
∂X12

=
φ1(1−r)(1+φ1(µ+λs+λr+λH))+(Sn+φ1(Λ+ηInr +(1−r)mn))

φ1(λs+λr+λH−βsc)
Nn

(1+φ1(µ+λs+λr+λH))2 ,

∂G
∂X13

=
ηφ1(1+φ1(µ+λs+λr+λH))+(Sn+φ1(Λ+ηInr +(1−r)mn))

φ1(λs+λr+λH−βrc)
Nn

(1+φ1(µ+λs+λr+λH))2 ,
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∂G
∂X14

=
(Sn+φ1(Λ+ηInr +(1−r)mn))

φ1(λs+λr+λH−βHc)
Nn

(1+φ1(µ+λs+λr+λH))2 ,

∂G
∂X15

= (Sn+φ1(Λ+ηInr +(1−r)mn))φ1(λs+λr+λH)
Nn(1+φ1(µ+λs+λr+λH))2 ,

∂G
∂X21

= φ2σspαλH i
n,j
s

Nn ,

∂G
∂X22

= 1 + φ2

φ3
− φ2(((1− r + qr)θ + σsλH)p(α) + µ+ ds) + φ2σspαλH i

n,j
s

Nn ,

∂G
∂X23

= φ2σspαλH i
n,j
s

Nn ,

∂G
∂X24

= φ2σspα(λH−βHc)in,js
Nn ,

∂G
∂X25

= φ2σspαλH i
n,j
s

Nn ,

∂G
∂X31

=
φ4λr(

∂G
∂X11

−S
n+1

Nn
)

1+φ4(µ+η+dr+σrλH
+ φ4σrλH(Inr +φ4λrSn+1+φ4qrθi

n,j
s )

Nn(µ+η+dr+σrλH)2 ,

∂G
∂X32

=
φ4λr(

∂G
∂X12

−S
n+1

Nn
)+qrθ

1+φ4(µ+η+dr+σrλH
+ φ4σrλH(Inr +φ4λrSn+1+φ4qrθi

n,j
s )

Nn(µ+η+dr+σrλH)2 ,

∂G
∂X33

=
1+φ4βrc

(N−Inr )Sn+1

(Nn)2
+φ4λr

∂G
∂X13

(µ+η+dr+σrλH)2 + φ4σrλH(Inr +φ4λrSn+1+φ4qrθi
n,j
s )

Nn(µ+η+dr+σrλH)2 ,

∂G
∂X34

=
φ4λr(

∂G
∂X14

−S
n+1

Nn
)

1+φ4(µ+η+dr+σrλH
+ φ4σrλH(Inr +φ4λrSn+1+φ4qrθi

n,j
s )

Nn(µ+η+dr+σrλH)2 ,

∂G
∂X35

=
φ4λr(

∂G
∂X15

−S
n+1

Nn
)

1+φ4(µ+η+dr+σrλH)
+ φ4σrλH(Inr +φ4λrSn+1+φ4qrθi

n,j
s )

Nn(µ+η+dr+σrλH)2 ,

∂G
∂X41

=
φ5λH( ∂G

∂X11
−S

n+1

Nn
)

1+φ5(µ+dH+λsλs+λrλr)
+

φ5(λsλs+λrλr)(InH+φ5InHTB+φ5λHS
n+1)

Nn(1+φ5(µ+dH+λsλs+λrλr))2 ,

∂G
∂X42

=
φ5λH( ∂G

∂X12
−S

n+1

Nn
)

1+φ5(µ+dH+λsλs+λrλr)
+

φ5(λsλs+λrλr)(InH+φ5(InHTB+λHS
n+1))

Nn(1+φ5(µ+dH+λsλs+λrλr))2 ,

∂G
∂X43

=
φ5λH( ∂G

∂X13
−S

n+1

Nn
)

1+φ5(µ+dH+λsλs+λrλr)
+

φ5( γsλs
Nn

+
γrβsc(N

n−in,js )

(Nn)2
)(InH+φ5(InHTB+λHS

n+1))

Nn(1+φ5(µ+dH+γsλs+γrλr))2 ,

∂G
∂X44

=
1+φ5λH( ∂G

∂X14
+Sn+1

Nn
)

1+φ5(µ+dH+λsλs+λrλr)
+

φ5(γsλs+γrλr)(InH+φ5(InHTB+λHS
n+1))

Nn(1+φ5(µ+dH+γsλs+γrλr))2 ,

∂G
∂X45

=
φ5(1+λH( ∂G

∂X15
+Sn+1

Nn
))

1+φ5(µ+dH+λsλs+λrλr)
+

φ5(γsλs+γrλr)(InH+φ5(InHTB+λHS
n+1))

Nn(1+φ5(µ+dH+γsλs+γrλr))2 ,

∂G
∂X51

=
φ6((γsλs+γrλr)InH−(σsi

(n,j)
s +σrInr )λH)

Nn(1+φ6ω)
,

∂G
∂X52

=
φ6(

σsλHi
(n+1,j)
s
Nn

+σsλH
∂G
∂X22

+
σrλHI

n+1
r

Nn
+

(γsλs+γrλr−βsc)In+1
H

Nn
)

(1+φ6ω)
,

∂G
∂X53

=
φ6(
−(σsλHi

(n+1,j)
s )+σrλHI

n+1
r

Nn
+σrλH

∂G
∂X33

+
(γsλs+γrλr−βrc)In+1

H
Nn

)

(1+φ6ω)
,
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∂G
∂X54

=
φ6((γsλs+γrλr)(

In+1
H
Nn
− ∂G
∂X44

)+(σsi
(n+1,j)
s +σrI

n+1
r )(λH−βHc))

Nn(1+φ6ω)
,

∂G
∂X55

=
1+φ6((γsλs+γrλr)I

n+1
H −(σsi

(n+1,j)
s +σrI

n+1
r )λH)

Nn(1+φ6ω)
,

For,

x = µ+η+dr
qrθp2

(1− Rr
Rs

+ σrλH),

y = µ+dH
ν

(1− RH
Rs

+ γsλs+γrλr
µ+dH

),

x
′
= σrλH+γsλHp2x

ωy−(γsλs+γrλr)
,

x
′′

=
(1− 1

Rs
)

(p1x+1+x′+yx′ )
.

N
′
= Λ

µ+x′′ (dsp1x+dr+x
′ (dH+dx))

,

Sn = N
′ − x′′N − xx′′N − x′x′′N − yx′x′′N

= (1− x′′ − xx′′ − x′x′′ − yx′x′′) Λ
µ+x

′′
(dsp1x+dr+x

′ (dH+dx))
,

m
′
= xx

′′
N,

I
′
r = x

′′
N,

m
′
= xx

′′
N,

I
′
H = x

′
x
′′
N,

I
′
HTB = yx

′
x
′′
N.

Using the above information, we obtained the following Jacobian matrix at

the endemic equilibrium E1(S1,m1, I1
r , I

1
H , I

1
HTB) =

((1− x′′ − xx′′ − x′x′′ − yx′x′′)N, xx′′N, x′′N, x′x′′N, yx′x′′N)

J(E1) = ( ∂G
∂Xij

)5
i,j=1 =
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

∂G
∂X11

∂G
∂X12

∂G
∂X13

∂G
∂X14

∂G
∂X15

∂G
∂X21

∂G
∂X22

∂G
∂X23

∂G
∂X24

∂G
∂X25

∂G
∂X31

∂G
∂X32

∂G
∂X33

∂G
∂X34

∂G
∂X35

∂G
∂X41

∂G
∂X42

∂G
∂X43

∂G
∂X44

∂G
∂X45

∂G
∂X51

∂G
∂X52

∂G
∂X53

∂G
∂X54

∂G
∂X55


Then its characteristics becomes

det


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− λ ∂G
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∂X43

∂G
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∂G
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∂G
∂X55
− λ


= 0

Here, since to find the eigenvalues of the Jacobian matrix in terms of the

given variables is to large and somewhat difficult so that it better to find

its eigenvalues by taking specific (fixed) values for the variables. Hence we

obtained the following eigenvalues of the above characteristics at the endemic

equilibrium for (i.e R = max(RH , RTB) > 1 or RH > 1 and RTB > 1).

h S(0) is(0, 0) Ir(0) IH(0) IHTB(0) λ1 λ2 λ3 λ4 λ5

0.05 8201 4066 5788 1415 531 -4.4050 -0.0020 -0.1801 -0.9637 -2.2002

8 73171 36277 51640 12623 4734 -7.9196 -0.0204 -0.9153 -1.7013 -3.2034

15 2945 1941 686 158 41 -1.2934 -1.2934 -0.0020 -0.7820 -2.0002

Table 4.2: This table showed the negative eigenvalues of the above character-

istics equation as we did in theorem 2.4.1 and corollary 2.4.2 with different

initial solutions at the endemic equilibrium for RTB > 1, RH > 1.
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The following figures (4.16, 4.17, 4.18, 4.19, 4.20 and 4.21) showed the

solutions of susceptible to either TB or HIV, infected individuals with drug-

sensitive and drug-resistant to TB, infected with HIV, and infected with

both HIV and TB at the endemic equilibria with different initial solutions

and step-sizes h.
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Figure 4.16: The first two figures in the above show, solutions of suscep-

tible to either TB or HIV on the left side and infected individual with

drug-sensitive TB on the right side. The second two figures that are in

between the first two and the last one show the solutions of infected with

drug-resistant TB and HIV on the left and the right sides, respectively. The

last one shows the solution of infected with HIV and TB or infected with

their co-infection with initial solutions (S(0), is(0, 0), Ir(0), IH(0), IHTB(0)) =

((8201, 4065, 5788, 1415, 531)) and step sizes h = 1.5.
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Figure 4.17: The first two figures in the above show, solutions of susceptible

to either TB or HIV on the left side and infected individual with drug-

sensitive TB on the right side. The second two figures that are in between the

first two and the last one show the solutions of infected with drug-resistant

TB and HIV on the left and the right sides, respectively. The last one

shows the solution of infected with their co-infection) with initial solutions

(S(0), is(0, 0), Ir(0), IH(0), IHTB(0)) = (7317, 3627, 30000, 8000, 4734) and at

the step sizes h = 0.8.
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Figure 4.18: The first two figures in the above showed, solution of suscep-

tible to either TB or HIV on the left side and infected individual with

drug-sensitive TB on the right side. The second two figures that are in

between the first two and the last one show the solution of infected with

drug-resistant TB and HIV on the left and the right sides, respectively.

The last one shows the solution of infected with HIV and TB and with ini-

tial value (S(0), is(0, 0), Ir(0), IH(0), IHTB(0)) = (20000, 20, 3, 25, 5) and step

sizes h = 0.1.
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Figure 4.19: The first two figures in the above showed, solution of susceptible

to either TB or HIV on the left side and infected individual with drug-

sensitive TB on the right side. The second two figures that are in between

the first two and the last one show the solution of infected with drug-resistant

TB and HIV on the left and the right sides, respectively. But the last one

shows the solution of infected with both HIV and TB. These are the solutions

of the individuals with initial solution (S(0), is(0, 0), Ir(0), IH(0), IHTB(0)) =

(1500, 30000, 1000, 20000, 4734) and step sizes h = 8.
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Figure 4.20: The first two figures in the above showed, solution of suscep-

tible to either TB or HIV on the left side and infected individual with

drug-sensitive TB on the right side. The second two figures that are in

between the first two and the last one show the solution of infected with

drug-resistant TB and HIV on the left and the right sides, respectively.

The last one shows the solution of infected with HIV and TB. All of

the solutions are with initial value (S(0), is(0, 0), Ir(0), IH(0), IHTB(0)) =

(73171, 36277, 51640, 12623, 4734) and step sizes h = 0.1.
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Figure 4.21: The first two figures in the above showed, solution of susceptible

to either TB or HIV on the left side and infected individual with drug-

sensitive TB on the right side. The second two figures that are in between the

first two and the last one show the solution of infected with drug-resistant TB

and HIV on the left and the right sides, respectively. The last one shows the

solution of infected with HIV and TB (i.e infected with their co-infection). All

of the solutions are with initial value (S(0), is(0, 0), Ir(0), IH(0), IHTB(0)) =

(6827, 3385, 4818, 1178, 442) and step sizes h = 0.05.

Generally, we summarized the solutions of NSFDM for HIV only sub-

model is locally asymptotically stable at the disease free equilibrium and

unstable at the endemic equilibrium when RH < 1. Otherwise it is vicev-

ersa. It is equivalent to the stability and unstably of HIV model in (3.2.1).

Similarly, the NSFDM formulated for TB only sub-model in this chapter has

equivalent locally asymptotically stability property at the endemic equilibria

and unstable at the disease free equilibrium when RTB > 1, respectively as

we computed for TB model in (2.2.1).

Lastly, the NSFDM of the full model of HIV-TB co-infection in (4.5.1) and

(4.5.2) has the same stability and unstability property as we did in the HIV-

TB co-infection model (3.3.1) in chapter 3. The solutions of the susceptible,

infected with drug-sensitive and drug-resistant TB, infected with HIV, and

infected with both HIV and TB individuals) in the above figures converge

to the equilibria for different initial solutions at different step-size h. As

we observed from the figures all above, particularly when h approaches to

zero,the initial solutions more converges to their equilibria with the tolerance

of susceptible, infected with drug-sensitive TB, infected with drug-resistant

TB, infected with HIV and infected with both HIV and TB ( their con-
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fection) individuals are 2%, 1%,1%,7% and 2% respectively. Compared to

the convergency of our model in chapter 2 and 3, the (NSFDM ) numerical

method developed in this thesis converges the solutions with less tolerance

either to the disease free or the endemic equilibria as shown in all the fig-

ures throughout the chapters. In case of the positivity of its solution all the

solutions were showing positive values. Therefore, the system in (3.3.1) and

our NSFDM of the system (4.5.1) are locally asymptotically stable at the

endemic equilibrium when R > 1. Otherwise it is unstable.
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Chapter 5

Conclusion, recommendations

and future work

In this thesis, we constructed and analyzed the nonstandard finite difference

numerical method for HIV-TB co-infection with treatment model. Here first

we studied the sub-models (HIV-only and TB-only) and then the full model

HIV-TB co-infection.

In chapter 2, we developed and analyzed a mathematical model describing

the dynamics of TB with age of infection. The model accounts for one-strain

model at the age of infection with drug sensitive TB. By assuming the pro-

portion of the sensitive strain, p(α) (which active at the infection age (α)

that has of form 0 ≤ p(α) ≤ 1 which is neither negative nor increasing func-

tion. The drug resistant strain accounts active TB only. Drug-resistant and

drug-sensitive strains are modeled, but only the age of the infection with

drug-sensitive strain is considered. Since is(α, t) is a function of two inde-

pendent continuous variables we have a PDE in the model which makes the

model more complicated than the models based on ODE.

Chapter 3 investigated the above approach to study HIV sub-model and a co-
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infection of HIV-TB model. In this chapter, the model developed in chapter

2 is combined with HIV model to formulate tuberculosis and a deterministic

model of HIV and TB co-infection. In this section, we study the stability

of the disease-free equilibrium, and the endemic equilibrium. To this end,

the effects of TB treatment on the dynamics of HIV-TB co-infections were

investigated.

In Chapter 4, at the first stage we constructed and analyzed robust numerical

methods (NSFDMs) that solve TB sub-model with both strains in chapter

2 and HIV sub-model in chapter 3. At the second stage, we constructed the

NSFDM that solve the HIV-TB co-infection model presented in chapter 3.

The models we formulated the first two chapters were investigated using the

NSFDM of numerical method developed in the chapter 4 in detail.

The solution of the HIV only sub-model, TB only sub-model and the full

model of HIV-TB co-infection were transferred to the NSFDM in the fourth

chapter, (the solutions of the susceptible, infected with drug-sensitive and

drug-resistant TB, infected with HIV, and infected with both HIV and TB

individuals) in the above figures converge to the equilibria for different ini-

tial solutions at different step-size h. In addition to this, the positivity of its

solutions were also shown through the whole chapters which is coincide with

epidemiological concepts of the positivity of human beings. The NSFDM

more converges the initial solutions to their equilibria with tolerance of sus-

ceptible, infected with drug-sensitive TB, infected with drug-resistant TB,

infected with HIV and infected with HIV-TB co-infection individuals are 2%,

1%,1%,7% and 2% respectively. Compared to the convergency of our model

in chapters 2 and 3, the numerical method (NSFDM )developed in this thesis

converges the solutions with less tolerance either to the disease free or the

endemic equilibria as shown in all the figures considered.
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Moreover, we computed the basic reproduction numbers for TB, RTB and

HIV,RH and the overall reproduction number for the systemR = max(RH , RTB).

After the computation was over according to the values of the overall basic

reproduction number if R < 1 then the disease-free equilibrium is locally

asymptotically stable and the endemic equilibria is asymptotically unstable

respectively. Otherwise it is viceversa. The TB-only endemic equilibrium is

locally asymptotically stable if RTB > 1, and RH < 1. However, the sym-

metric condition, RTB < 1 and RH > 1, does not necessarily guarantee the

stability of the HIV-only equilibrium, but it is possible that TB can coexist

with HIV when RH > 1, due to the inactive (latent) existence of TB in the

human beings, particularly the HIV-TB co-infection with TB treatment in

Ethiopia.

Furthermore, the asymptotically stable and unstable properties of the mod-

els of TB only sub-model (2.2.1), HIV only sub-model (3.2.1) and the full

model of HIV-TB co-infection (3.3.1) were equivalent to the NSFDM of TB

only sub-model (4.4.1), the HIV only sub-model (4.3.1) and the NSFDM of

the full model of HIV-TB co-infection (4.5.1), respectively.

The method developed in this thesis works for first order mixed ODE and

PDE as we observed in our model. Hence some of the scope our future re-

search become the order of convergence of the method, the applicability of

the method for second and above order ODE and PDE of epidemiological

models.
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