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SUMMARY 

It is a fundamental Human-Computer Interaction problem to design a tangible programming 

environment for use by multiple persons that can also be individualised. This problem has its 

origin in the phenomenon that the meaning an object holds can vary across individuals. The 

Semiotics Research Domain studies the meaning objects hold. This research investigated a 

solution based on the user designing aspects of the environment at a time after it has been 

made operational and when the development team is no longer available to implement the 

user’s design requirements. 

Also considered is how objects can be positioned so that the collection of objects is 

interpreted as a program. I therefore explored how some of the principles of relative 

positioning of objects, as researched in the domains of Psychology and Art, could be applied to 

tangible programming environments. This study applied the Gestalt principle of perceptual 

grouping by proximity to the design of tangible programming environments to determine if a 

tangible programming environment is possible in which the relative positions of personally 

meaningful objects define the program. I did this by applying the Design Science Research 

methodology with five iterations and evaluations involving children. 

The outcome is a model of a Tangible Programming Environment that includes Gestalt 

principles and Semiotic theory; Semiotic theory explains that the user can choose a physical 

representation of the program element that carries personal meaning whereas the Gestalt 

principle of grouping by proximity predicts that objects can be arranged to appear as if linked 

to each other. 

 

Keywords: 

Gestalt principles, grouping by proximity, perception, personally meaningful, programming, 

programming languages, Semiotic theory, Signs, tangible program, tangible user interface. 

  



ii 
 

  

  

  



iii 
 

  

  

PUBLICATIONS FLOWING FROM THIS RESEARCH 

I published research results during the course of this project. Papers included in peer reviewed 

conference and workshop proceedings since 2010 are listed here and cited in the thesis body. 

 

Reitsma, L., Smith, A. & Hoven, E. van den, 2013. StoryBeads: Preserving indigenous 

knowledge through tangible interaction design. In International conference on 

culture and computing. IEEE, pp. 79–85. 

Smith, A.C., 2010a. Dialando: Tangible programming for the novice with Scratch, Processing 

and Arduino. In 6th International workshop on technology for innovation and 

education in developing countries (TEDC). Available at: 

http://hdl.handle.net/10204/4048. 

Smith, A.C., 2010b. Tangible interfaces for tangible robots. In E. Hall, ed. Advances in robot 

manipulators. Croatia: InTech, pp. 607–624. Available at: 

http://www.intechopen.com/books/advances-in-robot-manipulators/tangible-

interfaces-for-tangible-robots. 

Smith, A.C., 2014a. Cluster-based tangible programming. In Fourth international conference on 

digital information and communication technology and it’s applications (DICTAP). 

IEEE, pp. 405–410. Available at: http://ieeexplore.ieee.org/. 

Smith, A.C., 2014b. Rock garden programming: Programming in the physical world. In Fourth 

international conference on digital information and communication technology and 

it’s applications (DICTAP). IEEE, pp. 430–434. Available at: 

http://ieeexplore.ieee.org/. 

Smith, A.C., Dlodlo, N. & Jere, N., 2016. Towards an internet of things tangible program 

environment supported by indigenous African artefacts. In Proceedings of the first 

African conference on human computer interaction. AfriCHI’16. Nairobi, Kenya: ACM, 

pp. 176–181. Available at: http://doi.acm.org/10.1145/2998581.2998599. 

Smith, A.C. & Gelderblom, J.H., 2013a. The building is the program. In Peripheral interaction: 

Embedding HCI in everyday life, A volume in the workshop proceedings series of the 

INTERACT 2013 conference. Workshop at INTERACT 2013. Available at: 

http://www.peripheralinteraction.com/interact/paper/Workshop_PI_Smith.pdf. 



iv 
 

  

  

Smith, A.C. & Gelderblom, J.H., 2013b. Towards a tangible web: Using physical objects to 

access and manipulate the Internet of Things. In Proceedings of the 15th annual 

conference on World Wide Web applications. Available at: 

http://hdl.handle.net/10204/7367. 

Smith, A.C. & Gelderblom, J.H., 2016. End user programming with personally meaningful 

objects. In L. Church, ed. Proceedings of the 27th annual workshop of the psychology 

of programming interest group - PPIG 2016. St. Catharine’s College, University of 

Cambridge, UK. Available at: https://drive.google.com/file/d/0B-

7G3GOHucdiMTNjdEtyMC1qWjQ/view. 

Smith, A.C. & Kotzé, P., 2010. Indigenous African artefacts: Can they serve as tangible 

programming objects? In IST-Africa 2010 conference proceedings. IEEE Conference 

Publications. Available at: 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5753043. 

Smith, A.C., Kotzé, P. & Gelderblom, H., 2011a. General design methodology applied to the 

research domain of physical programming for computer illiterates. In Design, 

development & research conference. Faculty of Informatics and Design, Cape 

Peninsula University of Technology. Available at: http://hdl.handle.net/10204/5423. 

Smith, A.C., Reitsma, L., Hoven, E. van den, Kotzé, P. & Coetzee, L., 2011b. Towards preserving 

indigenous oral stories using tangible objects. In 2011 Second international 

conference on culture and computing. Kyoto, Japan: IEEE Conference Publications, 

pp. 86–91. Available at: 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6103215. 

Smith, A.C., Springhorn, H., Mulligan, S.B., Weber, I. & Norris, J., 2011c. tactusLogic: 

Programming using physical objects. In IST-Africa 2011 conference proceedings. IEEE 

Conference Publications. Available at: 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6107337. 

 

  



v 
 

  

  

Table of contents 

 

 INTRODUCTION ................................................................................................................ 1 CHAPTER 1

1.1 Introduction ........................................................................................................................ 2 

1.2 Problem statement and purpose of this research .............................................................. 3 

1.3 Rationale of this study ........................................................................................................ 5 

1.4 Research thesis statement .................................................................................................. 5 

1.5 Research aim ....................................................................................................................... 6 

1.6 Research objectives ............................................................................................................ 6 

1.7 Research questions ............................................................................................................. 6 

1.8 Definition of terms .............................................................................................................. 7 

1.9 Assumptions ........................................................................................................................ 7 

1.10 Methodology overview ....................................................................................................... 7 

1.11 Literature summary ............................................................................................................ 9 

1.11.1 Objects and their meaning .............................................................................................. 9 

1.11.2 Personally meaningful objects ...................................................................................... 10 

1.11.3 Gestalt ........................................................................................................................... 10 

1.11.4 Tangible objects and computing systems ..................................................................... 11 

1.11.5 Tangible programming .................................................................................................. 12 

1.12 Delineations and limitations ............................................................................................. 13 

1.13 Organisation of the remainder of the thesis .................................................................... 13 

1.14 Conclusion ......................................................................................................................... 14 

 THEORETICAL BACKGROUND ......................................................................................... 15 CHAPTER 2

2.1 Introduction ...................................................................................................................... 16 

2.2 Perceptual organisation .................................................................................................... 16 

2.2.1 The general Gestalt principles of perceptual organisation ........................................... 19 

2.2.2 Gestalts ......................................................................................................................... 20 



vi 
 

  

  

2.2.3 Parts and wholes ........................................................................................................... 21 

2.2.4 Gestalt principle of Prägnanz ........................................................................................ 22 

2.2.5 Gestalt principle of figure-ground separation .............................................................. 23 

2.2.6 Gestalt principles of perceptual grouping .................................................................... 24 

2.2.6.1 The principle of perceptual grouping by proximity ...................................................... 25 

2.2.6.2 The principle of perceptual grouping by similarity ...................................................... 26 

2.2.6.3 The principle of perceptual grouping by good continuation........................................ 26 

2.2.6.4 The principle of perceptual grouping by closure.......................................................... 26 

2.2.6.5 The principle of perceptual grouping by common fate ................................................ 27 

2.2.6.6 The principle of perceptual grouping by synchrony ..................................................... 27 

2.2.6.7 The principle of perceptual grouping by parallelism .................................................... 28 

2.2.6.8 The principle of perceptual grouping by symmetry ..................................................... 28 

2.2.6.9 The principle of perceptual grouping by uniform connectedness ............................... 28 

2.2.6.10 The principle of perceptual grouping by common region ............................................ 28 

2.2.7 Conclusion to this section ............................................................................................. 28 

2.3 Signs .................................................................................................................................. 29 

2.3.1 Semiotics ....................................................................................................................... 30 

2.3.2 Saussure and Peirce ...................................................................................................... 30 

2.3.3 Peirce’s model ............................................................................................................... 31 

2.3.3.1 The sign-representamen .............................................................................................. 31 

2.3.3.2 The semiotic object ...................................................................................................... 32 

2.3.3.3 The interpretant ........................................................................................................... 33 

2.3.3.4 Phenomenological categories of experience ............................................................... 34 

2.3.3.5 Ontological categories of being .................................................................................... 34 

2.3.3.6 Peirce’s first trichotomy ............................................................................................... 35 

2.3.3.7 Peirce’s second trichotomy .......................................................................................... 36 

2.3.3.8 Peirce’s third trichotomy .............................................................................................. 36 

2.3.4 Conclusion to this section ............................................................................................. 37 



vii 
 

  

  

2.4 Programming .................................................................................................................... 37 

2.4.1 Psychology of programming ......................................................................................... 38 

2.4.2 Classification of programmable systems ...................................................................... 39 

2.4.3 Generations of languages ............................................................................................. 40 

2.4.3.1 First-generation languages ........................................................................................... 41 

2.4.3.2 Second-generation languages ...................................................................................... 42 

2.4.3.3 Third-generation languages ......................................................................................... 42 

2.4.4 Language format ........................................................................................................... 43 

2.4.5 Conclusion to this section ............................................................................................. 44 

2.5 Perceptual organisation, signs, and programming ........................................................... 45 

2.5.1 Perceptual organisation and semiosis .......................................................................... 46 

2.5.2 Saussure’s linguistic sign model applied to program code ........................................... 47 

2.5.3 Gestalt principles and program code ............................................................................ 48 

2.5.4 Peirce’s sign model and Gestalt principles applied to tangible program elements ..... 48 

2.5.5 Conclusion to this section ............................................................................................. 49 

2.6 Conclusion ......................................................................................................................... 50 

 LITERATURE REVIEW: TANGIBLE OBJECTS ..................................................................... 51 CHAPTER 3

3.1 Introduction ...................................................................................................................... 52 

3.1.1 Nomenclature ............................................................................................................... 52 

3.2 Tangible objects and computer interaction ...................................................................... 53 

3.2.1 Ishii’s tangible user interface model ............................................................................. 53 

3.2.2 The meaning that objects hold ..................................................................................... 57 

3.2.3 Supportive technologies ............................................................................................... 59 

3.2.3.1 Technologies that support untethered passive tangible systems ................................ 61 

3.2.3.2 Technologies that support untethered active tangible systems .................................. 62 

3.2.4 Supportive gesture modalities ...................................................................................... 63 

3.2.4.1 Gestures for binding data ............................................................................................. 64 

3.2.4.2 Gestures for unbinding data ......................................................................................... 64 



viii 
 

  

  

3.2.4.3 Gestures for modifying data ......................................................................................... 65 

3.2.5 Tangible objects and data ............................................................................................. 66 

3.2.5.1 Tangible objects for generating data ........................................................................... 67 

3.2.5.2 Tangible objects for interacting with data ................................................................... 67 

3.2.5.3 Tangible objects as containers of data ......................................................................... 70 

3.2.5.4 Tangible objects as pointers to data ............................................................................ 71 

3.2.5.5 Tangible objects as representations of data ................................................................ 71 

3.2.6 Tangible objects and digital models .............................................................................. 72 

3.2.7 Conclusion to this section ............................................................................................. 72 

3.3 User-created tangible objects ........................................................................................... 73 

3.3.1 Motivation for user-created tangible objects ............................................................... 74 

3.3.2 Craft materials for, and methods of, constructing tangible objects ............................. 75 

3.3.3 Environments for creating personally meaningful tangible objects ............................. 76 

3.3.4 Conclusion to this section ............................................................................................. 78 

3.4 Discussion .......................................................................................................................... 78 

3.5 Conclusion ......................................................................................................................... 79 

 LITERATURE REVIEW: TANGIBLE PROGRAMMING ........................................................ 81 CHAPTER 4

4.1 Introduction ...................................................................................................................... 82 

4.2 Distinguishing between physical and tangible programming ........................................... 83 

4.2.1 Physical programming ................................................................................................... 83 

4.2.2 Tangible programming .................................................................................................. 84 

4.2.2.1 The tangible programming environment ..................................................................... 84 

4.2.2.2 Useful characteristics of tangible programs ................................................................. 85 

4.2.2.3 Tangible programming styles ....................................................................................... 85 

4.2.2.4 Tangible programming modalities ............................................................................... 87 

4.2.3 Conclusion to this section ............................................................................................. 87 

4.3 Tangible programming environments .............................................................................. 88 

4.3.1 Environments that incorporate supplied objects ......................................................... 88 



ix 
 

  

  

4.3.1.1 Objects utilised for their one dimensional property .................................................... 88 

4.3.1.2 Objects utilised for their two dimensional properties ................................................. 96 

4.3.1.3 Objects utilised for their three dimensional properties ............................................... 97 

4.3.2 Environments that incorporate objects with personal meaning .................................. 98 

4.3.2.1 StoryRoom .................................................................................................................... 98 

4.3.2.2 Quilt Snaps .................................................................................................................. 105 

4.3.2.3 Diorama Table ............................................................................................................ 107 

4.3.3 Conclusion to this section ........................................................................................... 108 

4.4 Discussion ........................................................................................................................ 109 

4.4.1 The Gestalt principle of good continuation ................................................................ 109 

4.4.2 The Gestalt principle of grouping by common region ................................................ 110 

4.4.3 The Gestalt principle of grouping by proximity .......................................................... 110 

4.4.4 Personally meaningful objects .................................................................................... 112 

4.5 Conclusion ....................................................................................................................... 113 

 RESEARCH METHODOLOGY ......................................................................................... 115 CHAPTER 5

5.1 Introduction .................................................................................................................... 116 

5.2 Philosophical stance ........................................................................................................ 116 

5.2.1 Ontological nature of reality ....................................................................................... 116 

5.2.2 Epistemological assumption ....................................................................................... 117 

5.2.3 Human nature ............................................................................................................. 117 

5.3 Methodology and methods ............................................................................................ 118 

5.3.1 The nature of Design Science Research outputs......................................................... 119 

5.3.2 The basic activities of Design Science Research ......................................................... 119 

5.3.3 Vaishnavi and Kuechler’s process model overview .................................................... 119 

5.3.4 Vaishnavi and Kuechler’s Knowledge Flows and Process steps .................................. 121 

5.3.4.1 Awareness of Problem ............................................................................................... 122 

5.3.4.2 Suggestion step .......................................................................................................... 122 

5.3.4.3 Development step ...................................................................................................... 123 



x 
 

  

  

5.3.4.4 Evaluation step ........................................................................................................... 123 

5.3.4.5 Conclusion step .......................................................................................................... 126 

5.3.5 Data collection and analysis ........................................................................................ 126 

5.3.5.1 Science fairs ................................................................................................................ 126 

5.3.5.2 TekkiKids ..................................................................................................................... 128 

5.3.5.3 Kindergartens ............................................................................................................. 129 

5.3.5.4 Interactive exhibition ................................................................................................. 129 

5.3.5.5 Laboratory with children ............................................................................................ 129 

5.3.5.6 Laboratory without children....................................................................................... 129 

5.3.6 Ethical procedures ...................................................................................................... 130 

5.4 Conclusion ....................................................................................................................... 131 

 DESIGN, IMPLEMENTATION, AND EVALUATION .......................................................... 133 CHAPTER 6

6.1 Introduction .................................................................................................................... 134 

6.2 Iteration one: GameBlocks I ............................................................................................ 137 

6.2.1 System design ............................................................................................................. 138 

6.2.2 Tangibles design .......................................................................................................... 138 

6.2.3 Evaluation.................................................................................................................... 139 

6.2.3.1 Evaluation design ....................................................................................................... 140 

6.2.3.2 Evaluation results ....................................................................................................... 141 

6.2.4 Discussion .................................................................................................................... 141 

6.3 Second iteration: GameBlocks II ..................................................................................... 142 

6.3.1 System design ............................................................................................................. 143 

6.3.2 Technical description .................................................................................................. 144 

6.3.3 Evaluation.................................................................................................................... 145 

6.3.3.1 Evaluation design ....................................................................................................... 145 

6.3.3.2 Evaluation results ....................................................................................................... 148 

6.3.4 Discussion .................................................................................................................... 148 

6.4 Design iteration three: RockBlocks ................................................................................. 149 



xi 
 

  

  

6.4.1 Design considerations ................................................................................................. 150 

6.4.2 System design ............................................................................................................. 151 

6.4.3 Tangibles design .......................................................................................................... 151 

6.4.4 Evaluation.................................................................................................................... 152 

6.4.4.1 Evaluation design ....................................................................................................... 152 

6.4.4.2 Evaluation results ....................................................................................................... 153 

6.4.5 Discussion .................................................................................................................... 153 

6.5 Fourth iteration: Dialando ................................................................................................... 155 

6.5.1 System design ............................................................................................................. 155 

6.5.2 Tangibles design .......................................................................................................... 157 

6.5.3 Discussion .................................................................................................................... 157 

6.6 Design iteration five: T-Logo ........................................................................................... 158 

6.6.1 Design process ............................................................................................................ 158 

6.6.2 Evaluation methodology ............................................................................................. 159 

6.6.3 Tangible program concepts......................................................................................... 160 

6.6.3.1 Physical and digital constructions .............................................................................. 160 

6.6.3.2 Mapping between objects, actions, and parameters ................................................. 161 

6.6.3.3 Clustering, Cluster Marker, and Cluster Marker Zone................................................ 162 

6.6.4 Clustering topologies .................................................................................................. 163 

6.6.4.1 Topology #1: Grouping by common region ................................................................ 163 

6.6.4.2 Topology #2: Grouping by proximity .......................................................................... 166 

6.6.5 Language and system usage ....................................................................................... 166 

6.6.6 Programming rules ...................................................................................................... 167 

6.6.7 System components .................................................................................................... 167 

6.6.8 Information transfer from the physical to digital domain .......................................... 167 

6.6.9 Software modes .......................................................................................................... 167 

6.6.9.1 Map mode .................................................................................................................. 168 

6.6.9.2 Program Construct mode ........................................................................................... 171 



xii 
 

  

  

6.6.9.3 Program Interpret and Execute modes ...................................................................... 171 

6.6.10 Program example ........................................................................................................ 172 

6.6.11 Evaluation.................................................................................................................... 173 

6.6.11.1 Laboratory evaluation design ..................................................................................... 174 

6.6.11.2 Laboratory evaluation results .................................................................................... 175 

6.6.11.3 Comparison to the TERN language ............................................................................. 176 

6.6.11.4 TERN language elements ............................................................................................ 178 

6.6.11.5 T-Logo language elements ......................................................................................... 178 

6.6.11.6 Logic expression using the T-Logo language .............................................................. 179 

6.6.12 Critical discussion ........................................................................................................ 181 

6.7 Conclusion ....................................................................................................................... 182 

 RESEARCH CONTRIBUTION: A MODEL FOR A TANGIBLE PROGRAMMING CHAPTER 7

ENVIRONMENT ........................................................................................................... 185 

7.1 Introduction .................................................................................................................... 186 

7.2 Programming environment model ................................................................................. 186 

7.2.1 Language architect ...................................................................................................... 187 

7.2.2 Software developer ..................................................................................................... 188 

7.2.3 User ............................................................................................................................. 189 

7.2.4 Computing system ...................................................................................................... 191 

7.3 Applying the model ......................................................................................................... 192 

7.3.1 First scenario ............................................................................................................... 192 

7.3.2 Second scenario .......................................................................................................... 194 

7.3.3 Third scenario .............................................................................................................. 195 

7.3.4 The derived language .................................................................................................. 196 

7.4 Conclusion ....................................................................................................................... 196 

 FINAL DISCUSSION AND CONCLUSIONS ....................................................................... 197 CHAPTER 8

8.1 Introduction .................................................................................................................... 198 

8.2 Summary of findings ....................................................................................................... 199 



xiii 
 

  

  

8.3 Conclusions ..................................................................................................................... 200 

8.4 Summary of contributions .............................................................................................. 202 

8.4.1 New knowledge........................................................................................................... 202 

8.4.2 Implications of the new knowledge ............................................................................ 203 

8.5 Suggestions for further research .................................................................................... 204 

REFERENCES 207 

APPENDIX A Research ethics training ............................................................................................. 231 

APPENDIX B Second iteration ethical clearance form: SciFest Africa 2008 .................................... 233 

APPENDIX C Participant instructions and consent form: SciFest Africa 2008 ................................ 239 

APPENDIX D TekkiKids: Statement regarding informed assent and consent ................................. 241 

APPENDIX E TekkiKids: Invitation to participate and consent form ............................................... 243 

APPENDIX F Second iteration workshop invitation pamphlet: SciFest Africa 2008 ....................... 245 

APPENDIX G Second iteration partial evaluation form: Meraka Institute 2007 ............................. 247 

APPENDIX H Second iteration evaluation form:  SciFest  Africa and Science Unlimited 2007 ....... 249 

APPENDIX I Third iteration user evaluation forms: CSIR and SciFest Africa 2008 ......................... 251 

 

 

ACSmith
Stamp

ACSmith
Stamp

ACSmith
Stamp

ACSmith
Stamp



xiv 
 

  

  

  



xv 
 

  

  

 

List of figures 

Figure 1-1  Document structure ............................................................................................................... 1 

Figure 2-1  Document structure ............................................................................................................. 15 

Figure 2-2  Relevant research domains and their relationships ............................................................ 16 

Figure 2-3  An arrangement of coloured pencils is perceived as a butterfly when viewed from a 

particular angle .................................................................................................................. 18 

Figure 2-4  The general Gestalt principles of perceptual organisation, with examples ........................ 20 

Figure 2-5  Juxtaposed parallelograms appear to differ in size ............................................................. 20 

Figure 2-6  Parts and wholes .................................................................................................................. 21 

Figure 2-7  Perceiving a simple image .................................................................................................... 23 

Figure 2-8  Grouping perception varies according to rotation angle..................................................... 25 

Figure 2-9  Peirce’s trichotomies of signs in context ............................................................................. 35 

Figure 2-10  Programmable systems ..................................................................................................... 41 

Figure 2-11  Solving a problem using first, second, and third-generation programming 

languages ........................................................................................................................... 43 

Figure 2-12  A comparative example of a fixed-format language ......................................................... 43 

Figure 2-13  Two examples of valid vertical allignment ........................................................................ 44 

Figure 2-14  Two examples of programmer-applied discretion in the case of a free-form 

language ............................................................................................................................ 44 

Figure 2-15  Interplay between perceptual organisation and semiosis ................................................ 46 

Figure 2-16  The perceptual organisation of a single stimulus can lead to multiple interpretants ....... 46 

Figure 2-17  Saussure’s linguistic sign model applied to three generations of computer 

program languages ............................................................................................................ 47 

Figure 2-18  Examples that demonstrate perceptual grouping by common region, common 

fate, and closure ................................................................................................................ 49 

Figure 2-19  Coding a program element by grouping a qualisign with an icon sign .............................. 49 

Figure 3-1  Document structure ............................................................................................................. 51 

Figure 3-2  Chapter outline .................................................................................................................... 52 

Figure 3-3  Ishii’s basic tangible user interface model ........................................................................... 54 

Figure 3-4  A selection of mappings between graphical user interfaces and tangible user 

interfaces ........................................................................................................................... 56 

Figure 3-5  A continuum of the meaning that objects hold ................................................................... 57 



xvi 
 

  

  

Figure 3-6  The SurfaceWare drinking glass ........................................................................................... 58 

Figure 3-7  Three objects represent three nouns .................................................................................. 58 

Figure 3-8  Digital Dream Lab objects interlock to form a tangible programming object ..................... 59 

Figure 3-9  My stack and system perspectives on the relationships that exist in tangible 

interaction systems ........................................................................................................... 60 

Figure 3-10  My classification matrix of mechanisms in tangible systems mapped according to 

data exchange, and identity encoding/position encoding ................................................ 61 

Figure 3-11  The Siftables interaction language .................................................................................... 64 

Figure 3-12  Three SenseTable mechanisms to bind physical objects to data ...................................... 65 

Figure 3-13  A SenseTable puck and rotation knob combination .......................................................... 65 

Figure 3-14  The distance between two physical objects alters data .................................................... 66 

Figure 3-15  A battery serves as a mental reminder to its user ............................................................. 66 

Figure 3-16  Krippendorff’s model of the user and the designer’s view of an artefact ......................... 73 

Figure 3-17  Krippendorff's adapted model reflects the case where and individual is both the 

designer and the user ........................................................................................................ 74 

Figure 3-18  An improvisational interface.............................................................................................. 75 

Figure 3-19  A marker as an improvisational program element interface............................................. 75 

Figure 3-20  A simple character design supports observer self-identification better than a 

realistic character design ................................................................................................... 76 

Figure 3-21  Masks with little intrinsic character ................................................................................... 77 

Figure 3-22  StoryKits integrates high-tech and low-tech items ............................................................ 78 

Figure 4-1  Document structure ............................................................................................................. 81 

Figure 4-2  Chapter outline .................................................................................................................... 83 

Figure 4-3  An example of a tangible database query ........................................................................... 86 

Figure 4-4  The Gestalt principle of perceptual grouping applied to the tangible database query 

style ................................................................................................................................... 86 

Figure 4-5  Gestalt principles applied in an arrangement...................................................................... 90 

Figure 4-6  The Turtan system incorporates the Gestalt principle of good continuation ..................... 93 

Figure 4-7  The ReacTable and the Gestalt principle of perceptual grouping by proximity .................. 94 

Figure 4-8  The SiteView tangible programming environment .............................................................. 94 

Figure 4-9  My application of the Gestalt principle of perceptual grouping by proximity to 

SiteView ............................................................................................................................. 95 

Figure 4-10  The instance block is functionally an exact copy of the component block ....................... 97 

Figure 4-11  A selection of StoryRoom physical programming elements .............................................. 99 



xvii 
 

  

  

Figure 4-12  A combined iconic and symbolic depiction of the first program rule ............................. 100 

Figure 4-13  A combined iconic and symbolic expression of program Rule 1 and Rule 2 ................... 100 

Figure 4-14  Temporal, iconic, and symbolic grouping identified in Rule 1 ......................................... 101 

Figure 4-15  Overlap implies relationships between objects ............................................................... 102 

Figure 4-16  Alternative Rule 1 sequences .......................................................................................... 103 

Figure 4-17  Alternative Rule 1 groupings ........................................................................................... 103 

Figure 4-18  Three conceptual iconic sentences .................................................................................. 104 

Figure 4-19  My depiction of Montemayor's conceptual iconic sentence using non-descript 

symbols ............................................................................................................................ 104 

Figure 4-20  My depiction of Montemayor's conceptual iconic sentence with tangible objects ........ 105 

Figure 4-21  A Quilt Snaps patch with its associated information flow ............................................... 106 

Figure 4-22  Three Quilt Snaps program examples and their information flow .................................. 106 

Figure 4-23  Diorama Table with everyday objects and projected animation .................................... 107 

Figure 4-24  Grouping-by-temporal-common-region and grouping-by-temporal-proximity .............. 112 

Figure 5-1  Document structure ........................................................................................................... 115 

Figure 5-2  The Design Science Research process model with associated cognition .......................... 120 

Figure 5-3  The generic design iteration process as applied in the current research .......................... 122 

Figure 5-4  The role of children in this study ....................................................................................... 125 

Figure 5-5  My evaluation strategy in context of the Framework for Evaluation in Design 

Science (FEDS) ................................................................................................................. 125 

Figure 6-1  Document structure ........................................................................................................... 133 

Figure 6-2  The five design iterations and their properties ................................................................. 135 

Figure 6-3  The five iterations in context of the Design Science Research methodology ................... 136 

Figure 6-4  The knowledge that informed the first iteration and the results ...................................... 137 

Figure 6-5  Cube, programming tray, and toy robot ............................................................................ 138 

Figure 6-6  The sign, colour, function, and magnet placement for each cube type ............................ 139 

Figure 6-7  A seven-part program and the associated result of each instruction ............................... 139 

Figure 6-8  Evaluations in Pretoria and Grahamstown ........................................................................ 139 

Figure 6-9  Evaluation aids and activity ............................................................................................... 140 

Figure 6-10  Suggested design improvements ..................................................................................... 142 

Figure 6-11  The knowledge that informed the second iteration and the results ............................... 143 

Figure 6-12  Programs constructed using Tortis, Turtle Talk, and GameBlocks II ............................... 143 

Figure 6-13  The sign set that defines the language elements ............................................................ 144 

Figure 6-14  A program, its TURTLE TALK equivalent, and execution results ...................................... 144 



xviii 
 

  

  

Figure 6-15  Foam cube, active square under construction, and toy car ............................................ 145 

Figure 6-16  The physical configuration, the challenge, and two solutions ........................................ 147 

Figure 6-17  Program design, construction, and debugging activities ................................................. 148 

Figure 6-18  “Turn-and-go” signs ......................................................................................................... 149 

Figure 6-19  “Turn-and-stop” signs ...................................................................................................... 149 

Figure 6-20  Zulu fertility doll and beaded apparel.............................................................................. 150 

Figure 6-21  The knowledge that informed the third iteration and the results .................................. 150 

Figure 6-22  Natural rock and hand tools, the processed rock, programming objects, and 

Sensing Tiles .................................................................................................................... 151 

Figure 6-23  A program that exhibits the sign set ................................................................................ 152 

Figure 6-24  Constructing a RockBlock program .................................................................................. 153 

Figure 6-25  A tangible program object crafted from clay and the associated conceptual 

programming environment ............................................................................................. 154 

Figure 6-26  System components......................................................................................................... 156 

Figure 6-27  The fourth iteration artefact in use and a program example in execution ..................... 156 

Figure 6-28  The knowledge that informed the fourth iteration and the results ................................ 157 

Figure 6-29  The knowledge that informed the fifth iteration and the results ................................... 159 

Figure 6-30  The four key steps involved in constructing a text-based computer program................ 160 

Figure 6-31  Four steps in constructing a tangible program ................................................................ 161 

Figure 6-32  The general case of defining the object’s position on the two dimensional 

construction surface ........................................................................................................ 161 

Figure 6-33  Physical clustering ............................................................................................................ 162 

Figure 6-34  The relationship between the Cluster Marker, its radius, and the Cluster Marker 

Zone ................................................................................................................................. 163 

Figure 6-35  Hoops and markers .......................................................................................................... 163 

Figure 6-36  Algorithm ambiguity in the case of infinitely narrow rings ............................................. 165 

Figure 6-37  Three wide hoops with markers ...................................................................................... 165 

Figure 6-38  Wide hoops eliminate the initial ambiguity ..................................................................... 165 

Figure 6-39  Apparent ambiguity in the case of three wide hoops ..................................................... 166 

Figure 6-40  The T-Logo physical components..................................................................................... 168 

Figure 6-41  The four T-Logo software modes ..................................................................................... 169 

Figure 6-42  An example of a T-Logo mapping activity ........................................................................ 169 

Figure 6-43  The on-screen appearance of the seven user-selectable mapping options .................... 170 

Figure 6-44  The sequence in which objects on the construction surface are processed ................... 172 



xix 
 

  

  

Figure 6-45  A program, the interpretation order, and the corresponding Processing language 

statements ....................................................................................................................... 173 

Figure 6-46  An example to illustrate how the logical values of two parameter objects are 

totalled ............................................................................................................................ 174 

Figure 6-47  A Processing language software routine and resultant graphics .................................... 174 

Figure 6-48  Objects and the commands and values they represent .................................................. 174 

Figure 6-49  A tangible program with annotations and the execution result ..................................... 175 

Figure 6-50  TERN puzzle and cubes examples .................................................................................... 178 

Figure 6-51  Example of a linear program ............................................................................................ 180 

Figure 6-52  Example of a conditional statement in a loop ................................................................. 180 

Figure 6-53  Example of the logic AND conditional statement ............................................................ 181 

Figure 6-54  Design iterations, their target groups, and the nature of their outputs ......................... 183 

Figure 7-1  Document structure ........................................................................................................... 185 

Figure 7-2  Model of a tangible programming environment ............................................................... 187 

Figure 7-3  Language architect in the model ....................................................................................... 188 

Figure 7-4  Software developer in the model ...................................................................................... 189 

Figure 7-5  User in the model .............................................................................................................. 190 

Figure 7-6  Computing system in the model ........................................................................................ 192 

Figure 7-7  Examples of objects and a program to control the temperature ...................................... 194 

Figure 7-8  Examples of objects and a program to make coffee ......................................................... 194 

Figure 7-9  Examples of objects and a program to control a security light ......................................... 195 

Figure 8-1  Document structure ........................................................................................................... 197 

Figure 8-2  Figurines as programs ........................................................................................................ 205 

 

  



xx 
 

  

  

 

  



xxi 
 

  

  

List of tables 

Table 1-1  Definition of terms .................................................................................................................. 7 

Table 1-2  Research objectives and applicable methods ......................................................................... 8 

Table 3-1  A selection of mappings between Graphical User Interfaces and Tangible User 

Interfaces ............................................................................................................................. 56 

Table 4-1  Summary table of physical .................................................................................................... 89 

Table 4-2  Summary table of physical strings ........................................................................................ 90 

Table 4-3  Summary table of Electronic Blocks ...................................................................................... 91 

Table 4-4  Summary table of TORTIS ..................................................................................................... 91 

Table 4-5  Summary table of Robo-Blocks ............................................................................................. 92 

Table 4-6  Summary table of Turtan ...................................................................................................... 93 

Table 4-7  Summary table of ReacTable ................................................................................................ 94 

Table 4-8  Summary table of SiteView ................................................................................................... 95 

Table 4-9  Summary table of Media Cubes ............................................................................................ 96 

Table 4-10  Summary table of Digital Dream Lab .................................................................................. 97 

Table 4-11  Summary table of roBlocks ................................................................................................. 98 

Table 4-12  Summary table of StoryRoom ........................................................................................... 105 

Table 4-13  Summary table of Quilt Snaps ........................................................................................... 106 

Table 4-14  Summary table of Diorama Table ..................................................................................... 107 

Table 6-1  Tern actions and T-Logo objects ......................................................................................... 176 

Table 6-2  Tern and T-Logo control structures..................................................................................... 177 

Table 6-3  TERN sensing elements and their T-Logo equivalents ........................................................ 177 

Table 6-4  Miscellaneous TERN and T-Logo elements ......................................................................... 177 

  



xxii 
 

  

  

 



1 
 

  

  

 CHAPTER 1

INTRODUCTION 

 

   

Chapter 1
Introduction

Chapter 2
Theoretical background

Chapter 5
Research methodology

Chapter 6
Design, implementation, and evaluation

Chapter 7
Primary research contribution

Chapter 8
Conclusion

Chapter 4
Literature review: Tangible programs

Chapter 3
Literature review: Tangible objects

 
 
 

Figure 1-1  Document structure  

 
 

  



2 
 

  

  

1.1 Introduction 

Human beings have the ability to create almost any object to their liking and have practiced doing so 

for millennia. By the twentieth century, we had acquired sufficient knowledge to create 

electromechanical computational devices. Vacuum valve technology, the discreet transistor, and the 

integrated circuit have subsequently replaced most of the electromechanical components in the 

computer. The modern computational device is colloquially referred to as a computer and the logic 

that determines its operation is called a program. The act of creating a program is called 

programming and the person doing the programming is called a programmer. 

The first tool with which the computer could be programmed was designed by the small community 

of scientists for their own use. As computer technology changed, so too did the tools for 

programming them. The collection of tools used in the creation of a program is called the 

programming environment. Programming in the 1940’s was done by manually toggling electrical 

switches and changing wired connections on a panel. Switches were later replaced with the 

invention of the punch card. Using this environment, a single program instruction took the form of a 

symbol comprising holes in a sheet of card stock, and a program consisted of a collection of cards. By 

the early 1980’s computer technology had evolved to the point where a combination of computer 

keyboard and visual display unit provided all the computer interaction a programmer needed to 

program. Symbols like those on a typewriter could now be projected onto a display and a program 

would comprise of a carefully constructed collection of these symbols. In contrast to the card-based 

programming environment, the keyboard and visual display programming environment did not 

require a tangible medium to contain the program; rather, the program had no physical form. An 

alternative programming environment was made possible with the introduction of the mouse and 

graphic display. This resulted in an expanded symbol set with line drawings. Again, the program had 

no intrinsic physical form. More recently, researchers started exploring programming environments 

in which the program takes the form of a static arrangement of tangible objects; such a program is 

called a tangible program. These programming environments all incorporate fixed, predefined signs 

with which the programmer constructs his program.  

Instead of using signs designed by someone else, I am interested in an environment in which the 

programmer can use signs of which the designs are based on his personal experience. The Merriam-

Webster (Merriam-Webster n.d.) and American Heritage (Patwell 1992) dictionaries describe the 

word “personally” as being something that involves only the individual’s experience, excluding 

others. Using this adjective, I can state that I am interested in designs that involve the programmer 

personally. These dictionaries also define “meaningful” as something that conveys a significant idea. 
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By combing these two definitions, I can use the terminology “personally meaningful” to describe an 

idea that is the result of an individual’s experience. 

This study explored the combined application of signs that are personally meaningful and the Gestalt 

principle of perceptual grouping by proximity to the design of tangible programming environments. 

My aim was therefore to develop a model that guides tangible programming environment designs in 

which the programmer is free to use signs of his own choice and based on his own experience. 

1.2 Problem statement and purpose of this research 

Fischer (2001) notes that the research domain of Human-Computer Interaction (HCI) not only 

studies the interaction between humans and computers but also the relationships that exist 

between humans and computers. In my study, this relationship takes the form of signs (realised as 

tangible programming objects) that hold personal meaning to the programmer. I refer to these as 

personally meaningful signs. Without this relationship, the computer is unable to correctly interpret 

a program that has been constructed using a collection of personally meaningful signs. Therefore, 

the combined application of personally meaningful signs and grouping by proximity in tangible 

programming environments is an HCI problem. 

Fischer also argues that determining the design requirements for the typical user (or the 

programmer as is the case in this study) is not possible since such a user does not exist. Rather than 

designing for the non-existing typical user, Fischer reports that designers have developed techniques 

to gain an understanding of the user. Some of these techniques employ the preferences as set by 

the user, while other techniques draw inferences from the user’s actions. Fischer concludes that one 

of the fundamental HCI design problems is that of designing a system that will be used by multiple 

persons, but which must also seem to have been individually designed for each user. As an 

alternative attempt to address this fundamental HCI design problem, Fischer and Scharff (2000) 

propose that the user be afforded an opportunity to design aspects of the system at a time after the 

system has been made operational and when the product development team is no longer available 

to implement the user’s own design requirements. I call this Fischer’s proposal but the problem is 

that no tangible programming environment model exists that can guide its application. 

Whereas Fischer discusses mechanisms for designing a system according to a user’s requirements, 

Boradkar (2010) considers the meaning an object holds for an individual. Boradkar observes that the 

meaning an object holds for an individual is not always the same meaning that the same object holds 

for someone else. I call this Boradkar’s observation. To illustrate the point, Boradkar recalls a 

personal interview he conducted with an executive who is responsible for product development. 
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This executive observed that his own perception of a product is influenced by his knowledge of the 

journey that the product travelled during the research, design, and development processes. The 

executive’s view of the finished product is coloured by these processes and therefore differs from 

the view held by those individuals who are not aware and are not part of the production processes. 

As an example of how knowledge of the production process may influence an individual’s perception 

of the product, consider one of the production steps in the production of deep fried chicken. Here, a 

naïve view of the product is that the deep fried chicken is a spicy meal. Yet, to a person 

knowledgeable of the steps followed in producing this product (Boyd 1994), it may be true that the 

deep fried chicken product does not bring to mind a spicy meal but instead an act of cruelty.  

As explained in the preceding paragraph, the meaning an object holds for one person may be 

different to the meaning the same object holds for another person. Consequently, if one assumes 

that the object (deep fried chicken in this case) is a sign, then it would be reasonable to describe it as 

a personally meaningful sign because the meaning that the object holds for one person may differ 

from the meaning the same object holds for another person.  

As is the case for keyboard, mouse, and screen–based programming environments, tangible 

programming environments are based on the working relationship that exists between the 

programmer and the computer, and specifically where this relationship is formed by the common 

understanding of the signs used in a program constructed by the programmer. Even though the 

available literature (Anderson, Frankel, Marks, Agarwala, Beardsley, Hodgins, Leigh, Ryall, Sullivan & 

Yedidia 2000; Blackwell & Hague 2001b; Buechley, Elumeze, Dodson & Eisenberg 2005; Camarata, 

Do, Johnson & Gross 2002; Do & Gross 2007; Gallardo, Julia & Jorda 2008; Horn 2009; Kitamura, Itoh 

& Kishino 2001; McNerney 1999; Perlman 1974; Schweikardt & Gross 2007; Sipitakiat & Nusen 2012; 

Suzuki & Kato 1995a; Wang, Zhang & Wang 2011; Wyeth & Wyeth 2001; Zuckerman 2004) indicate 

that there exists an interest amongst researchers to develop tangible programming environments, 

there seems to be little or no research conducted that simultaneously addresses Fischer’s proposal 

and Boradkar’s observation. Studies that do report on the design of programming environments in 

which tangible objects are used in the construction of a tangible program (I call such objects tangible 

programming objects) either do not explicitly report on the user’s participation in the design of the 

objects, or rely on user group participation. No current literature guides the design of tangible 

programming objects when the individual programmer is given an opportunity to determine what 

the objects should be or what these should look like. Tangible programming objects that have been 

derived without the direct input of the particular user are often intended for use by multiple 

individuals and accompanied by explanations of their meaning. The problem therefore is that no 
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tangible programming environment model exists in which the individual can decide what the objects 

should look like. Semiotics is a research domain that considers the meaning that objects hold for 

humans. I therefore addressed this problem by including aspects of Semiotics in my research. 

My discussion thus far has only considered the creation of the tangible programming objects. 

Another dimension worthwhile considering in the design of tangible programming environments is 

how objects should be placed so that the collection of objects is viewed as a program. Literature on 

tangible programming environments treats the relative positioning of objects as an engineering 

challenge. Nonetheless, research domains that consider the significance that relative object 

positions hold for the individual do exist and these include Psychology and Art. The problem is that 

no guidelines exist on how to explicitly include relative object positions in the design of tangible 

programming environments. It would therefore be interesting to explore how some of the principles 

of relative positioning of objects, as researched in these domains, could be applied to tangible 

programming environments. Consequently, this study also explored the application of Gestalt 

principles to the design of tangible programming environments. 

To conclude, this study applied Gestalt principles and Semiotic theory to address the problem of 

deriving a model that can guide the design of tangible programming environments that 

simultaneously implement Fischer’s proposal and address Boradkar’s observation. 

1.3 Rationale of this study 

Although tangible programming environments exist in which the objects are designed with input 

from users and in which objects are placed in close proximity to each other, no known models exist 

in which a) the programmer can independently decide on the nature of the objects and b) the 

Gestalt principle of perceptual grouping by proximity is explicitly applied to the design of tangible 

programming environments. A study that investigates how a programming environment can be 

created (within which programmers construct physical programs by applying aspects of the 

established Gestalt principle of perceptual grouping by proximity as they place objects) could benefit 

the domain of Computer Science because it will show by means of a model how designers of 

tangible programming environments can incorporate the Gestalt principle of perceptual grouping by 

proximity together with personally meaningful programming objects into their own designs.  

1.4 Research thesis statement 

With this study, I defend the following assertion: 

It is possible to derive a model for a tangible programming environment in which the relative 

positions of personally meaningful objects define the program. 
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1.5 Research aim 

I deduced the following research aim from the research thesis statement: 

To derive a model of a tangible programming environment that guides a developer to create an 
environment in which an arrangement of objects that hold personal meaning to the user defines 
the program.  
 

1.6 Research objectives 

A set of research objectives were derived from the research aim. The research objectives are:  

Research 
Objective 

1 

To determine a set of program elements suited to a programming 
environment that incorporates personally meaningful tangible objects. 

 

Research 
Objective 

2 

To devise a mechanism by which a personally meaningful tangible  
object can be used as a program element. 

 

 

Research 
Objective 

3 

To devise a method by which an arrangement of one or more 
personally meaningful tangible objects can define a program statement. 

 

 

Research 
Objective 

4 

To devise a programming environment in which an arrangement of 
personally meaningful tangible objects can be interpreted as a program. 

 

Research 
Objective 

5 

To develop a model that guides the creation of tangible programing 
environments where an arrangement of personally meaningful objects 
defines the program.  

1.7 Research questions  

I derived the following primary research question from the research objectives:  

In the context of existing tangible programming environments and considering how tangible 
objects are currently used when interacting with data, what are the constructs to incorporate into a 
model for creating tangible programming environments in which the relative positions of 
personally meaningful objects define the program, and how do these constructs interact and relate 
to one another?  

 

I next derived secondary research questions from the primary research question: 

a. What program elements are suitable for a tangible programming environment in which the 
programmer can incorporate personally meaningful tangible objects?   
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b. How can a user associate personally meaningful tangible objects with program elements?  
How can the arrangement of these personally meaningful objects be interpreted as program 
statements? 

c. 

1.8 Definition of terms 

The following is a description of terms used in this thesis that are unusual or not widely understood, 

including those I developed. Some terms may have meaning in this thesis that differ from that in 

common use. The list below is provided to ensure uniformity throughout the thesis. 

Table 1-1  Definition of terms 

Term Definition 

Developer A person who creates a tangible programming environment. 

Meaningful Something that conveys a significant idea. 

Personally 
Something that involves only the individual’s experience, excluding 
others. 

Personally meaningful 
Something that conveys a significant idea and involves only the 
individual’s experience, excluding others. 

Personally meaningful 
tangible object 

A tangible object that holds personal significance to the user due to 
their perceptions and interpretations.  

Tangible object A physical object that has no digital counterpart. 

Program element A sign that represents an action, state, or parameter. 

Tangible Program Element 
A physical object that is programmatically meaningful and is realised 
when the object is linked to a digital counterpart. 

User The person who constructs a tangible program. 

User-defined 
The user is empowered to make certain decisions. For example, the 
user chooses which object to use and what information to associate 
with the object.  

1.9 Assumptions 

I assume that Gestalt principle of perceptual grouping by proximity, as well as the notion of a sign as 

described by the research domain of semiotics, are valid. Based on the notion of a sign as described 

by the Semiotics research domain, I therefore assume that the meaning an object holds for a person 

may differ from the meaning the same object holds for someone else. I also assume that the 

difference in these meanings is amplified by the object’s situation relative to other objects. Semiotics 

theory and the Gestalt school of thought are discussed in Chapter 2. 

1.10 Methodology overview 

The study was conducted iteratively using a qualitative (Patton 2002) approach within the Design 

Science (Hevner, March, Park & Ram 2004) research paradigm, and specifically applied as described 

by Vaishnavi and Kuechler (2013). I completed five iterations (one in the laboratory and four outside 

the laboratory) and derived a model based on the new knowledge that emerged. I provide in 

Chapter 5 details of the research methodology. 
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The methods applied in achieving the various research objectives, as stated in Section 1.6 and 

repeated here, are given in Table 1-2. 

Table 1-2  Research objectives and applicable methods 

Research 
Objective 

1 

To determine a set of 
elements suited to a 
programming environment 
that incorporates personally 
meaningful tangible objects. 

A desktop literature survey of tangible 
programming paradigms identified generic 
program elements. Two tangible programming 
environments were designed, implemented, and 
evaluated to test the suitability of object 
materials and object sizes. 
 
Craft materials and methods of construction 
were identified from the literature on tangible 
programming environments and matched to 
generic program elements. 
 
Using the identified craft materials and methods 
of construction, I crafted physical objects to 
represent a subset of the generic program 
elements according to my interpretation.  

 

Research 
Objective 

2 

To devise a mechanism by 
which a personally 
meaningful tangible  
object can be used as a 
program element. 

A programming environment consisting of a 
program and physical installation was created 
that allows an individual programmer to make an 
association between a tangible object and a 
program element. 

 

 

Research 
Objective 

3 

To devise a method by which 
an arrangement of one or 
more personally meaningful 
tangible objects can define a 
program statement. 

A programming environment consisting of a 
software interpreter and physical installation 
was created that allows a user to make an 
association between the perceptual grouping by 
proximity of objects and a program action. 

 

 
 

Research 
Objective 

4 

To devise a programming 
environment in which an 
arrangement of personally 
meaningful tangible objects 
can be interpreted as a 
program. 

A programming environment consisting of a 
software interpreter and physical installation 
was created. The environment can identify 
program elements and interpret them as 
statements. The environment was compared to 
another prominent tangible programming 
system. 

 

Research 
Objective 

5 

To develop a model that 
guides the creation of 
tangible programing 
environments where an 
arrangement of personally 
meaningful objects defines 
the program.  

The theory and principles that describe and 
predict how individuals assign personal meaning 
to objects were identified and combined with 
the constructs that flowed from Research 
Objective 4.  
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1.11 Literature summary 

I approached the literature review from five viewpoints. First, I considered how humans interpret 

the objects in their environment. The personal significance an object may hold was the second point 

of view. I then reflected why humans sometimes perceive objects as interacting with each other. For 

the fourth viewpoint, I deliberated how physical objects can represent, contain, and manipulate 

data. Finally, I studied systems in which physical objects are used to construct programs.  

1.11.1 Objects and their meaning 

Objects surround us and the study of how we interpret them is the research field called Semiotics. 

Peirce (1935) developed a three-component model to describe the relation between the object, the 

individual, and the meaning. He referred to these as the representamen, interpreter, and semiotic 

object respectively. Saussure (1959) proposed an alternative model consisting of a signifier and the 

signified. He called the object being observed the signifier and the meaning that results he called the 

signified. In contrast to Peirce, Saussure did not explicitly link the resulting meaning to an individual. 

Peirce’s model is useful when the individual’s background is relevant whereas Saussure’s is more 

compact.  

Peirce puts it that an object does not carry meaning in itself but meaning is instead constructed in 

the observer’s subconscious mind based on his past experiences (Chandler 2007; Martin & Ringham 

2000), experiences with the object (Fiske 1990) or experience with the object type (Palmer 1999). 

Yet the meaning can change (Souza 2005) over time. The individual’s interpretation can also differ 

from other members of the same cultural group (Barthes 1982). The result is that even if the object 

has a common meaning within a cultural group, the individual may associate a different meaning 

with the object. This was my motivation for exploring how the user can make his objects and use 

them for programming. 

Saussure’s model is useful when there is little risk that meaning will differ between individuals. For 

example, when used to describe the C (Kernighan, Ritchie & Ejeklint 1988) programming language 

where a word such as ‘while’ is very well defined and no ambiguity can exist. In contrast, Peirce’s 

model is useful when the research topic relates to how the meaning of words and objects can vary 

from one person to another. In this study, I used Saussure’s model to illustrate that a single concept 

can be expressed in more than one way whereas Peirce’s model was useful to show that the 

meaning conveyed by an object can vary across individuals. 

Underkoffler and Ishii (1999) demonstrated that an object’s meaning can include attributes, nouns, 

and verbs. Oh, Deshmane, Li, Han, Stewart, Tsai, Xu and Oakley’s (2013) Digital Dream Lab objects 
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are examples of nouns, adjectives, and verbs. I identified that objects can also serve to mean a 

quantity, adjective, and an adverb. Finally, objects can represent discreet quantities or continuous 

values as in Dietz and Eidelson‘s (2009) glass.  

1.11.2 Personally meaningful objects  

Objects are most often designed by persons other than the user and consequently the meaning 

objects hold can vary according to the user. Design methodologies such as Druin’s (2002) do attempt 

to personalise the designed object but the result remains a compromise of all the participants’ 

inputs. Another result is that the meaning of an object may not be obvious and Patten (2005) reports 

on an instance where the user modified the appearance of an object to better represent a given 

concept for him. Krippendorff’s (1989) model illustrates the problem by highlighting that the user 

and the designer are often distinct persons. I addressed this problem by letting the user design 

personalised programming objects. To this end I found McCloud’s (1994) comment useful. He states 

that a simple object design is better suited than a feature-rich option when the objective is for the 

user to identify with it. From this, I deduced that personally meaningful objects are best made using 

materials that hold little intrinsic meaning. I therefore based my final artefacts on wooden blocks, 

dowels, clay, and paper. 

Published research describes systems in which the user designs his objects. For example, Sanders 

(2000) created tools with which the user may fashion tangible representations of ideas while 

Sherman, Druin, Montemayor, Farber, Platner, Simms, Porteous, Alborzi, Best, Hammer, Kruskal, 

Matthews, Rhodes, Cosans and Lal (2001) report on having users create objects with which to 

interact with data. Story Room (Alborzi, Druin, Montemayor, Platner, Porteous, Sherman, Boltman, 

Taxén, Best, Hammer, Kruskal, Lal, Schwenn, Sumida, Wagner, et al. 2000), Quilt Snaps (Buechley 

n.d.), and Diorama Table (Oizumi, Mikami, Sasada & Ubukata 2007) do the same for programming 

environments. My research differs in that I explicitly incorporate Gestalt principles into the 

programming environment.  

1.11.3 Gestalt 

What we perceive is sometimes different to what our senses detect and Gestalt principles help 

describe this phenomenon. For example, when we observe two objects close together we tend to 

group them together (principle of grouping by proximity). In addition, when we drive along a long 

road and there appears a junction to the right, we do not consider the path to the right as a 

continuation of the current one. Gestaltists call this the principle of good continuation and I 

incorporated this principle in my artefact designs. 
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Objects are not always observed separate from their environment, including other objects. The way 

they are viewed along with other objects can be explained by Gestalt principles. We often consider 

the placement of one object relative to another as significant, for example in board games including 

chess. The arrangement can also affect the way a system behaves. Some HCI systems are based on 

the notion that the meaning an object holds depends on their positions relative to other objects 

(Gorbet & Orth 1997b; Marco 2011). Beckmann and Dey’s (2003) SiteView include examples of 

objects that do not hold individual value. The distance between objects can also hold meaning and 

Patten, Recht and Ishii (2006) use the distance between objects to represent a numerical value. Yet 

some objects can hold value independent of others. For example, Dietz and Eidelson‘s (2009) 

SurfaceWare drinking glass indicates a numerical value and Mazalek’s (2001) genie bottles can 

function on their own or be combined with others.  

Two objects can be used together to modify data and Patten, Ishii, Hines and Pangaro (2001) and 

Patten et al. (2006) combine a data container with a rotating knob to modify digital data. Also, a 

physical object can be associated with its digital counterpart or another object by considering the 

position of objects relative to projected text, an area, or the other object (Oh et al. 2013; Patten et 

al. 2001). Associations like these are predictable using the Gestalt principle of grouping by proximity 

and my final artefact design is based on this property. Finally, physical gestures can also be used to 

group data associated with multiple objects and assign data from various sources to a single object 

(Merrill, Kalanithi & Maes 2007).  

Gestalt principles can be identified in most tangible programming environments but none of the 

reviewed environments was designed explicitly with these principles is mind. Of the environments 

reviewed, most only incorporate one Gestalt principle. Only Story Room and Diorama table combine 

more than one principle with these being grouping by proximity and good continuation. My research 

explicitly consideres the relationships between objects and I use Gestalt principles to explain the 

relationships. Consequently, my work differs from others in that I make explicit reference to Gestalt 

principles to describe my programming environment.  

1.11.4 Tangible objects and computing systems 

As far as it concerns using physical objects to represent data or manipulate data, Ishii (2009) 

developed a model that both illustrates tangible objects as being distinct to digital data and also how 

one can represent the other in the digital and physical domains, respectively. According to the 

model, data can have both digital and physical representations. This is similar to a computer 

program that can take form as text on paper and also be a series of 1’s and 0’s in a computer’s 

electronic store. Ishii’s model therefore proposes that a dataset’s representation can vary according 
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to the domain in which it is applied. My research takes Ishii’s model one step further by 

demonstrating that a dataset’s physical representation can vary according to the individual. I also 

identified that Ishii’s model does not address the design of the physical representation. In contrast 

to Ishii’s model, my model highlights the origin of the object’s design. 

Machine readable identification markings can help establish a link between the data and the object 

(Ullmer 2002). My literature analysis of how data and their representations are linked concluded 

that the identification may be classified as either electrically active or passive whereas the 

identification information can be transferred between the digital and physical worlds using 

mechanisms that are either tethered or untethered. I captured these options as a two dimensional 

model. 

A common design approach is to develop functional objects without concern what meaning a user 

may attach to the object. Krippendorff (1989) proposes an alternative approach in which the form of 

the object also conveys meaning. My research is aligned with Krippendorff’s proposal and considers 

how individuals may choose diverse physical representations for data.  

1.11.5 Tangible programming  

Tangible programming environments rely on supporting technologies that range from active circuitry 

to passive sensing mechanisms. Passive sensing offer benefits that include a wider selection of 

materials to choose from, reduced cost, improved robustness, and more design options (Horn, 

Solovey & Jacob 2008). These benefits inspired me to design artefacts based on passive sensing 

technology. 

Some tangible programming environments like SiteView (Beckmann & Dey 2003) dictate the object 

placement order along with their positions. These constraints are similar to those found in textual 

programming environments such as those developed for the C (Kernighan et al. 1988) language. In 

these environments the sequence in which symbols may be placed is often fixed and prescribed. To 

illustrate the point, consider the scenario in which a user assigns the numerical value of 10 to a 

symbol named “decade”. The correct sequence to do this is “decade = 10” and not “10 = decade”. I 

considered this an unnecessary constraint on the user and addressed it using the Gestalt principle of 

grouping by proximity.  

SiteView places similar constraints on the user. For example, when the user wants to indicate the 

three conditions ”rain”, morning”, and “Monday” in a program rule he has to place each 

representative objects at prescribed positions. I argue that these conditions represent distinct data 

types (being the weather state, time of day, and day of the week). I developed software that can 
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make this distinction without human intervention and interpret the objects appropriately. The result 

is that the three conditions in this example can now equally well be placed in different sequences 

including the two arrangements “Monday, morning, rain” and “rain, morning, Monday”. From this, I 

concluded that the symbol sequence is not important; instead, it is the combination of words that 

should be considered. Therefore, as long as the user places the words in close proximity to each 

other he does not have to be concerned about their order. This is another example of the Gestalt 

grouping by proximity principle.  

Programming language designs often include the option for the user to determine how actions and 

parameters are represented. Yet, with these systems, the user has to base his designs on language 

elements such as parameters and actions previously determined by the language designer. For 

example, in the C (Kernighan et al. 1988) language, the user can choose to use the sign ”decade” to 

represent the quantity 10 and does this using the symbol sequence “#define decade 10”. Some 

tangible programming environments also include this feature (along with its limitation) and 

examples are Story Room (Alborzi et al. 2000), Quilt Snaps (Buechley n.d.), and Diorama Table 

(Oizumi et al. 2007). In Story Rooms, the user is constrained to using the designer’s physical signs but 

has the choice to combine these with personally meaningful objects. With Quilt Snaps, the user can 

embellish squares yet the size and shape are determined by the system designer. Finally, when 

choosing his objects for the Diorama Table, the user has to keep in mind that the way the shapes will 

be interpreted by the system has also been predetermined by another person. It is, therefore, 

possible for the user to choose what programming signs look like but this must be done within 

constraints determined by a system designer. I considered a different approach and demonstrated a 

system in which the user is free to choose the physical representations of program actions and 

parameters. 

1.12 Delineations and limitations 

This study explored the design of programming environments that support personally meaningful 

objects positioned according to the Gestalt principle of perceptual grouping by proximity. The scope 

of this study was limited to the creation of stored (as opposed to interactive) programs. Due to the 

interpretative epistemological assumptions made in this study, the results may not be useful in 

programming environments in which more than one person collaborate on the same program. I 

discuss my epistemological assumptions in Chapter 5. 

1.13 Organisation of the remainder of the thesis 

The remainder of this thesis is organised as follows. Chapter 2 provides the theoretical foundations 

that support this thesis. Chapter 3 captures the results of a literature study on tangible objects and I 
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discuss Tangible Programming Environments in Chapter 4. Chapter 5 (Research methodology) 

presents the research design and details on the Design Science Research methodology as applied in 

this study. Chapter 6 (Design, implementation and evaluation) describes the design cycles of the 

tangible programming environment developed in support of the thesis statement as presented 

elsewhere in this chapter. I completed five design cycles of which three were evaluated with the 

help of children. Design decisions are discussed and the completed designs presented. Chapter 6 

also documents the field evaluation data and the results of the data analysis. I present in Chapter 7 

(Research contribution) a model of tangible programming environments that includes the user, 

language architect, system developer, tangible objects, Gestalt principles, and Semiotic theory. 

Chapter 8 (Conclusion) summarises my findings and contributions and suggests how the current 

study can be extended. 

1.14 Conclusion 

My literature search revealed that only three tangible programming environments allow the user to 

select the objects that represent programmatic elements. It also emerged that no model exists to 

inform the design of such environments. This thesis reports on a study that shows how designers of 

tangible programming environments can incorporate both personally meaningful objects and the 

Gestalt principle of perceptual grouping by proximity into their designs.  

My two primary contributions to the body of knowledge are as follows: First, I demonstrate a 

programming environment that incorporates the Gestalt principle of perceptual grouping by 

proximity and Semiotic theory that allows the user to select personally meaningful objects to 

represent program elements. Second, I present a model for this environment that highlights the 

relationships between the language architect, system developer, user, tangible objects, Gestalt 

principles, and Semiotic theory.  
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THEORETICAL BACKGROUND 
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2.1 Introduction 

In this chapter, I provide a theoretical framework to this study based on visual semiotics and the 

Gestalt principle of perceptual grouping. To recap, this study develops a model to guide the creation 

of tangible programming environments in which an individual can arrange objects in such a manner 

that, when the objects are combined, a product emerges that represents to its creator something 

more than the sum of the individual objects and at the same time constitutes a computer program. 

The model will combine certain Gestalt principles of perceptual organisation and Semiotic theory 

with programming. This chapter is guided by the scoping of Chapter 3 (Literature study: Tangible 

objects), Chapter 4 (Literature study: Tangible programs) and Chapter 5 (Research methodology). 

Figure 2-2 illustrates the hierarchical relationships that exist between the four main sections in this 

chapter. 

Signs
Section 3

Programming
Section 4

Tangible objects
Chapter 3

Perceptual organisation
Section 2

Perceptual organisation, signs, and programming
Section 5

Tangible programming
Chapter 4

Programming with personally meaningful objects
Chapter 6

 
Figure 2-2  Relevant research domains and their relationships 
 

The three research domains of perception, signs, and programming are discussed in this chapter for 

the following reasons: Perceptual organisation (Section 2.2) explains how individuals interpret a 

collection of elements, the section on signs (Section 2.3) considers how meaning is assigned to 

elements, while programming (Section 2.4) is discussed because the goal of this research is to derive 

a tangible program model. Section 2.5 illustrates the close relationships that exist between 

perception, signs, and programming. I conclude this chapter with Section 2.6. 

2.2 Perceptual organisation 

 A group of early twentieth-century German psychologists developed the Gestalt principles in an 

effort to explain why stimulated discrete sensory receptors sometimes result in strong connected 

perceptions (Bregman 1994). According to Henle (1985), Wertheimer’s (1912) publication on the 

perception of motion is the official onset of the Gestalt movement. Although Steinman, Pizlo and 

Pizlo (2000) and others cite Wertheimer as the founder of the Gestalt School of Psychology, Shepard 
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and Levitin (2002) consider Wertheimer to be only one of three principal founders of this school. 

According to Blackburn (1996) and Gordon (2004), the other two principles founders of the Gestalt 

School of Psychology are Koffka and Köhler. The Gestalt theory of perception did not receive much 

attention from the research community after the demise of some of the original conceptualisers in 

the early 1940’s; instead, the theory attracted negative critique in the 1950’s and 1960’s (Blackburn 

1996). However, Blackburn states that the research community did continue to support the 

particular Gestalt theory proposal that states that higher-level cognitive processes (such as 

remembering and interpretations) are responsible for the way we experience the world. Blackburn’s 

statement is corroborated by Matlin (1988) who emphatically puts it that psychologists with an 

interest in perception are still supportive of Gestalt psychology. According to Blackburn, the 

philosophical importance of the Gestalt theory lies in revealing the complexity of how we perceive 

three-dimensional spatial objects. The late 1970’s and early 1980’s witnessed a revived interest in 

Gestalt and its influence towards the understanding of visual perception (Wagemans, Elder, Kubovy, 

Palmer, Peterson, Singh & Heydt 2012). Henle (1989) confirms the renewed interest in the 1980’s by 

Gestalt psychologists. This renewed interest in Gestalt is evidenced by a number of articles that 

make direct reference to the Gestalt theory of perception, for example, Tonder and Lyons’ (2005) 

study on visual perception in Japanese design, Leyton’s (2006) study on the structure of paintings, 

Desolneux, Moisan and Morel’s (2008) study on computer image analysis, and Overvliet, Krampe 

and Wagemans’ (2012) study on perceptual grouping in haptics.  

The meaning that results from the perception process is due not only to individual sensations 

(Kasschau 2003; Wagemans et al. 2012) and their configuration (Palmer 1980), but is also influenced 

by the individual’s knowledge, experience, assumptions, and understanding of the world (Bernstein 

& Nash 2008; Gregory & Zangwill 1987). The Gestalt theory of perception holds that sensations are 

not perceived in isolation but are assembled by the human brain to result in something that is 

different to the individual sensations, nor is the result (as assembled by the brain) the sum of these 

sensations; instead the result is a different perceptual experience called a Gestalt (Kasschau 2003). 

To illustrate this perceptual experience, Figure 2-3 (a) presents a stack of coloured pencils that can 

be perceived as a butterfly (Figure 2-3b) when viewed from an appropriate angle.  

Although the German word “Gestalt” can be translated as pattern or shape in the English language, 

Rock and Palmer (1990) suggest that the word configuration better describes the intended meaning. 

In addition to the word Gestalt, Gordon (2004) also uses the word wholes to describe the result of 

the spontaneous tendency for humans to organize sensations.  
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(a) (b)  
Figure 2-3  An arrangement of coloured pencils is perceived as a butterfly when viewed from a particular angle 

 

Chandler (2007) puts it that the Gestalt theory of perception supports the notion that reality, as 

perceived by an individual, is not objective but is instead constructed by his perception process. Asch 

(2002) adds that Gestalt psychologists argued that the experience produced by complex patterns 

cannot always be predicted by considering their parts in isolation. According to Asch, the relations 

that exist between patterns are essential when considering the resultant experience.  

In this study, I consider the above notion that reality (as perceived by the individual) is constructed 

by the individual’s perception process. I further consider, as stated by Asch above, the relations that 

exist between patterns due to the optical observation of tangible objects (as opposed by patterns 

that form due to auditory inputs), and specifically those tangible objects that are in close proximity 

to each other. The relations that exist due to tangible objects in close proximity to each other are 

discussed in Section 2.2.6.1.  

According to Leymarie (2006), Gestalt psychologists noted that humans sometimes perceive visual 

relationships in situations where no optical relationships exist and at other times visual patterns are 

perceived where no optical patterns exist. Here, “optical” refers to the phenomenon of light rays 

falling in on the optical sensors in the eye, and “visual” refers to the physiological processing of the 

electrical signals that result from the light rays falling in on the optical sensors in the eye. In addition 

to a Gestalt that may result from visual processes, Köhler (1938) states that a Gestalt may also result 

from the summation of spatial, auditory, and intellectual processes. Wagemans et al. (2012) 

corroborate Köhler’s statement and adds that Gestalt principles are also applicable to virtually all 

perceptual experiences, including auditory (Bregman 1994) and tactile perception, amongst others.  
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Textual, graphical, and (as will be shown in Chapter 4), tangible programming environments rely on 

visual elements to represent the program. The balance of this section therefore focusses on Gestalts 

that result from visual processes. 

2.2.1  The general Gestalt principles of perceptual organisation 

Matlin (1988) comments that researchers do not agree on the number of Gestalt laws, with this 

number ranging between one and 114. Gestalt laws are also referred to as Gestalt heuristics, Gestalt 

principles (Goldstein 2010) and Wertheimer’s Laws. Goldstein (2010) motivates that the Gestalt 

principles should not be referred to as laws because the predictions they make are not sufficiently 

‘strong’. Instead, Goldstein proposes that Gestalt principles should be referred to as heuristics 

because the Gestalt principles provide rules that work most of the time but not all the time. Palmer 

(1999), too, prefers to use terms such as principles and factors when referring to Wertheimer’s Laws. 

Palmer defends his choice of terminology based on the idea that the laws described by Wertheimer 

are weaker than those usually considered to be scientific laws. Finally, Verstegen (2005) refers to 

Wertheimer’s Laws as general Gestalt principles of organization. Based on Goldstein’s motivation, 

Palmer’s preference, and Verstegen’s terminology, I will refer to Wertheimer’s Laws as principles.   

In this thesis I discuss 12 Gestalt principles with these being the principle of Prägnanz, the principle 

of figure-ground perception, the seven classical principles of perceptual grouping, and three 

additional classifications of perceptual grouping that have been proposed towards the end of the 

1990’s. The seven classical principles of perceptual grouping are proximity, similarity, common fate, 

symmetry, parallelism, continuity, and closure. The three additional perceptual grouping 

classifications are enclosure/common region, connectedness, and synchrony. Figure 2-4 illustrates 

examples of the nine general Gestalt principles of perceptual organisation in addition to examples of 

the three additional classifications of perceptual grouping. 

Shepard and Levitin (2002) state that the Gestalt principles of perceptual grouping by proximity, 

similarity, symmetry, good continuation, and common fate are innate to humans and need not be 

learned. Figure 2-4 illustrates examples of the Gestalt principles of perceptual grouping by proximity, 

similarity, symmetry, good continuation, and common fate. I now give an overview of Gestalts in 

general and focus on the Gestalt principles of parts and wholes, Prägnanz, figure-ground separation, 

and perceptual grouping. 



20 
 

  

  

Principles of perceptual grouping
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Figure 2-4  The general Gestalt principles of perceptual organisation, with examples 
Based on Palmer (1999, 2002a, 2003) and Rock and Palmer (1990) 

2.2.2 Gestalts  

Physiologically, the human eye receives light to form an optical image on the retina at the back of 

the eye (Young, Freedman & Ford 2007). The way we perceive the visual world is not the same as 

the collection of various light intensities and colours projected onto the retina (Kimchi, Behrmann & 

Olson 2003). Kimchi, Behrmann and Olson (2003) add that we instead perceive the world as 

consisting of individual objects that are logically located in space. They therefore argue that an 

internal process is responsible for transforming the collection of various light intensities and colours 

into objects that are perceived to be related to each other. Shepard and Levitin (2002) give an 

example of how the optical image received from the world is not the same as the way we perceive 

the world. In their example (Figure 2-5), a parallelogram is copied, rotated, and then placed next to 

the original parallelogram. Table legs were then added to the parallelograms to result in a completed 

drawing.  

 

 

Figure 2-5  Juxtaposed parallelograms appear to differ in size 
Based on Shepard and Levitin (2002) 
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When viewed, two tables of differing sizes and orientation are perceived. As explained by Shepard 

and Levitin, the pattern formed on the retina consist only of a series of lines and dots (I colour to 

highlight the parallelogram), yet the representation in the brain is that of two tables that differ in 

size.  

According to Kimchi et al. (2003), the Gestalt school of thought attributes perceptual organization to 

processes that group and segregate the stimuli. Blackburn (1996) states that the Gestalt quality is 

separate from the individual sensations. From the preceding, I deduce that perception is not simply 

the result of physiological mechanisms (these being electrical pulses sent to the brain), but that 

some mechanism inside the brain influences the experience. Indeed, according to Helm (2014), a 

neuro-cognitive process known as perceptual organisation enables humans to interpret an optical 

image on the retina as objects that are arranged in physical space. Helm continues that we interpret 

some of these objects as being part of structured wholes. In his discussion on perceptual 

organisation, Palmer (2002b) excludes Helm’s cognitive component of the process; Palmer instead 

ascribes this perceptual organisation to an activity of the visual nervous system. In my study, it is not 

important whether the perceptual organisation is due to the visual nervous system as described by 

Palmer, or Helm’s neuro-cognitive process. What is important is that some mechanism does exist by 

which Gestalts are formed when light enters the retina but I will not investigate the mechanism. 

2.2.3 Parts and wholes  

When an individual interprets an experience the experience itself changes (Blackburn 1996). Gordon 

(2004) offers a set of two dimensional graphic lines as an example of a visual experience that is 

changed when it is interpreted. In his example of Figure 2-6, the experience comprises a 

combination of circles and straight lines. Considered individually, no interaction seems to exist 

between these entities and they simply represent themselves (the parts).  

 

 

 

 

 

Figure 2-6  Parts and wholes  
(Gordon 2004) 

However, when these are assembled in a specific manner they are no longer experienced as 

individual sensations but are instead experienced as part of a whole (a pictorial representation of a 

face in this example). In addition, the circles and lines no longer represent themselves; they now 

acquire new meaning (a whole) in that they now represent two eyes, a nose, and a mouth. Another 
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interesting example of how the experience changes can be found in Saussure’s (2011) discussion on 

how we read the written word. He highlights that we read a word that we have not previously 

encountered by spelling out each letter in sequence, but once the same word has become common 

to the individual the group of letters are no longer experienced individually but rather as a single 

symbol.  

Yet another illustration of how the combined individual parts results in something more than sum is 

Saussure’s (2011) reference to the game of chess. Chess is a board game in which two opponents 

take turns in positioning objects on the board (Mason 1946). The significance (Saussure(2011) calls it 

value) of a chess piece is determined by its placement relative to other pieces. As an example of 

changing significance according to position, consider the pawn piece: the pawn is perceived as 

having considerable significance when positioned immediately and diagonally in front of the 

opposing king chess piece. In contrast, when the same piece is positioned behind the opposing king, 

the pawn is perceived as having little significance. Its relation to other pieces therefore determines 

the significance of a chess piece. 

According to Gordon (2004), Wertheimer applied the phi phenomenon to demonstrate the part-

whole interaction (the phi phenomenon is the perceived - but unpredictable - interaction between 

two light sources determined by the spatial and temporal relationship between the sources.) By 

varying the switching times of the two light sources, Wertheimer created a perceived movement 

located in the space between the two light sources with the ‘parts’ being the two light sources and 

the ‘whole’ being the combined flashing lights and perceived movement. 

2.2.4 Gestalt principle of Prägnanz  

The principle of Prägnanz was formulated by Koffka (1935). This principle is also referred to as the 

law of Prägnanz (see for example Helm (2014) and Rock & Palmer (1990)), goodness (Gordon 2004), 

pattern goodness (Kubovy, Holcombe & Wagemans 1998), and the minimum principle (Palmer 

1999). As applied to perceptual organisation, the principle of Prägnanz holds that when the human 

visual system is stimulated, the visual system tends to settle into states that reflect the stimulation 

as a combination of the simplest and most stable shapes (Helm 2014) that are based on sensory 

information received from the retina (Rock & Palmer 1990). According to Helm, the principle of 

Prägnanz was inspired by a principle in physics that holds that dynamic systems tend to adjust in 

order to minimise the energy in the system. Indeed, Tyler (2002) reports that it is assumed that the 

human visual system shows preference for interpretations that are the simplest of all alternative 

interpretations. Rock and Palmer (1990) describe Prägnanz as being, when faced with an ambiguous 

shape, the tendency for observers to perceive the most basic organization of shapes. Palmer (1999) 
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presents Figure 2-7 as an example. In this figure, the circle is most often perceived to be behind the 

square. This perception is explained by the Gestalt principle of Prägnanz as follows: When one 

considers the likely alternatives (a closed circle versus a three-quarter circle), the closed circle is the 

simplest alternative since it is more regular and symmetrical when compared to the three-quarter 

circle. Put another way, the closed circle is perceived as a more basic shape when compared to the 

three-quarter circle. Gordon (2004) suggests yet another description of Prägnanz: According to 

Gordon, Prägnanz implies that the retinal image is processed so as to remove details that may be 

distracting. Gordon describes the principle of Prägnanz as a process that is inclined to simplify the 

perception by maximising the resultant symmetry and wholeness.  

 
 
 
 
 
 
Figure 2-7  Perceiving a simple image 

Based on Palmer (1999) 

2.2.5 Gestalt principle of figure-ground separation 

Chandler (2007) states that individuals tend to separate what they perceive to be a figure from what 

they perceive to be the background. He calls the processes foregrounding and backgrounding 

respectively and the combination of these two processes figure-ground separation. According to 

Chandler, individuals seem to identify a dominant shape from the background when presented with 

a visual image. This dominant shape is called a figure and it often has a definite outline that can be 

discerned from the rest of the image, called the ground (Chandler 2007). Although the Gestalt view 

is that figure-ground perception is innate (Wagemans et al. 2012), Matlin (1988) comments that it is 

prone to influence from hints and suggestions. Figure-ground separation is not limited to visual 

experiences but is also applicable to inputs from other sensors such as auditory input from the ears 

and touch sensations from the skin. Gordon (2004) provides two examples of figure-ground 

separation in auditory and touch sensing modalities respectively as being an individual’s ability to 

extract the voice of a single speaker amidst multiple voices at a noisy cocktail function, and to 

perceive an insect crawling on the arm. He also states that all human sensory modalities are subject 

to figure-ground separation. Chandler (2007) puts it that we tend to perceive smaller areas (that 

have been placed against a larger background) as figures against the ground. He refers to this as the 

principle of smallness. Finally, Chandler refers to the principle of symmetry as being an individual’s 

tendency to perceive a symmetrical area as a figure when this is observed against asymmetrical 

Which configuration on the 
right best explains the 

configuration on the left? 
1                                    2   
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backgrounds. The principle of symmetry is also discussed in Section 2.2.6.8 in the context of the 

Gestalt principles of perceptual grouping. 

2.2.6 Gestalt principles of perceptual grouping 

According to Wagemans et al. (2012), the concept of perceptual grouping was first investigated and 

reported in Wertheimer’s seminal work as published in 1923. An English translation (Wertheimer 

1938) is also available. Wagemans et al. (2012) discuss seven principles of perceptual grouping that 

they refer to as the classical principles of perceptual grouping. These are perceptual grouping by 

proximity, similarity, common fate, symmetry, parallelism, continuity, and closure. Figure 2-4 

illustrates examples of the classical principles of perceptual grouping. 

Following an extended period of limited advances in the field of perceptual grouping after the 

passing away of the original Gestalt researchers, Palmer and others were the first to suggest three 

additional classifications of perceptual grouping (Rock & Palmer 1990). The first suggestion was what 

Palmer called the law of enclosure/common region. The second is known as the law of 

connectedness (Rock & Palmer 1990). Finally, Lee and Blake (1999) suggested a third new principle of 

perceptual grouping called temporal synchrony. Figure 2-4 illustrates the three additional 

classifications of perceptual grouping as suggested by Rock and Palmer (1990) and Lee and Blake 

(1999). 

Gordon (2004) describes perceptual grouping as being spontaneous and reliable phenomena 

whereas Hochberg (2007) puts it that perceptual grouping follows organizational rules. Palmer 

(1999) states that the visual system mixes multiple grouping factors and it is therefore not easy to 

predict which perceptual grouping will result when an individual is exposed to a particular scenario; 

rather, the perceived grouping depends on the scenario. To illustrate the problem of predicting 

perceptual grouping, Palmer and Rock (1994) present a scenario comprised of coloured dots 

uniformly dispersed along a line while their colour and spacing are adjusted. In this example, the 

dots are perceived to be grouped by proximity when the distance between the dots is large and the 

difference in colour small. Conversely, when the difference in colour is increased and the difference 

in spacing is almost uniform, the perceived grouping was by colour.  

The outcome due to perceptual grouping may vary (Palmer 1999). For example, at times the 

perceptual grouping may appear to be a confederation of objects in which the confederation 

appears not to be a strong one and even though the elements in the group are interrelated, they 

maintain a level of perceptual independence. Palmer (1999) calls this element aggregation. 

Perceptual grouping operations that often produce element aggregations are proximity, similarity, 

common region, and certain common fate operations. In addition to the phenomenon of element 
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aggregation, Palmer (1999) states that unit formation is an alternative phenomenon due to 

perceptual grouping. Unit formation means that multiple elements could be perceived as a single 

object. Perceptual grouping operations that may result in unit formation are element 

connectedness, good continuation, and certain common fate operations.  

The perceptual grouping of line-like elements is influenced by factors such as symmetry, parallelism, 

good continuation, and closure. In general, predicting the outcome due to grouping is not a trivial 

exercise. However, when only a single grouping factor is relevant in a scenario, the outcome of 

grouping can indeed be predicted with certainty (Palmer 1999). In the following discussion on 

perceptual grouping, the assumption is that only a single grouping factor is relevant and where I do 

compare perceptual grouping, the assumption is that everything else is equal. The strength of 

grouping is not constant and can be influenced by various factors. One factor is the angle through 

which elements are rotated while others remain unchanged. Palmer offers a set of L-shaped 

elements in Figure 2-8 to illustrate the point with the perceived grouping being the strongest in the 

second row. I next describe Wertheimer’s seven classical principles of perceptual grouping and three 

recently proposed principles.  

 

Figure 2-8  Grouping perception varies according to rotation angle 
(Palmer 1999) 

2.2.6.1 The principle of perceptual grouping by proximity 

Even though Wertheimer (1938) used the terminology factor-of-proximity to describe perceptual 

grouping by proximity, I shall instead use Wagemans et al.’s (2012) contemporary phrase perceptual 

grouping by proximity. Palmer (1999) puts it that relative closeness describes the intended meaning 

well. Figure 2-4 applies dots to illustrate perceptual grouping by proximity. According to Kubovy et 

al. (1998), grouping by proximity is the most fundamental form of perceptual grouping. Wagemans 

et al. (2012) report that it is possible to measure the strength of perceptual grouping by proximity 

without the measurement being influenced by another form of perceptual grouping. Bregman 

(1994) comments on the strength of grouping by proximity by stating that the strength of the 

grouping tends to be inversely proportional to the distance between the visual elements; that is, the 

closer the elements, the stronger the tendency is to group them perceptually. Palmer (1999) argues 
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that perceptual grouping by either connectedness or common region is stronger than perceptual 

grouping by proximity.  

Kubovy et al. (1998) conducted a study to measure the strength of perceptual grouping by proximity 

and to determine the effect that the element configuration has on the strength of this grouping. 

Their study required an instrument in which the proximity and configuration of the stimuli could be 

varied independently. Kubovy et al. chose a dot pattern for this purpose. The results revealed that 

the relative grouping strength between the dots could be modelled as a decaying exponential 

function of distance.  

2.2.6.2 The principle of perceptual grouping by similarity 

Wertheimer (1938) uses the terminology factor-of-similarity to describe perceptual grouping by 

similarity but I will use the more contemporary phrase (Wagemans et al. 2012) of perceptual 

grouping by similarity. According to Chandler (2007), humans associate features with each other if 

they look similar and consequently group them together. Wagemans et al. (2012) give examples of 

similarity measurements and these are colour, size, and orientation. Figure 2-4 illustrates perceptual 

grouping by similarity with the aid of dots. Because similarity covers multiple properties, Palmer 

(1999) suggests that similarity can be considered to be the general principle of grouping. Wagemans 

et al. (2012) suggest that common fate and proximity (two classifications of perceptual groupings 

that I also discuss) may be viewed as special instances of grouping by similarity. In the case of 

perceptual grouping by common fate, the property to be deliberated is the object velocities whereas 

the object positions are relevant to grouping by proximity.  

2.2.6.3 The principle of perceptual grouping by good continuation 

Elements arranged in such a manner that they appear to continue on each other tend to be 

perceptually grouped together. Even though Wertheimer (1938) uses the terminology factor-of-

good-curve to describe perceptual grouping by good continuation, I shall use Wagemans et al.’s 

(2012) more modern phrase perceptual grouping by good continuation. Good continuation is 

sometimes also referred to as continuity, see for example Palmer (1999). Chandler (2007) states that 

contours that exhibit gradual direction changes are preferred over ones that are sudden. Figure 2-4 

illustrates perceptual grouping by good continuation with the aid of two intersecting lines. 

2.2.6.4 The principle of perceptual grouping by closure 

Gordon (2004) describes perceptual grouping by closure as the tendency for individuals to perceive a 

completed figure even if it is not. Closure is sometimes referred to as closedness (Palmer 1999) while 

Weiten (2011) prefers the term completeness. He describes completeness as the tendency for 

individuals to group parts so that, together, they create the perception of a completed object. 
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Weiten adds that individuals are able to perceptually ignore gaps in a figure. Figure 2-4 illustrates 

perceptual grouping by closure with the aid of right and left facing square brackets. In this figure, 

perception tends to pair right facing brackets with those facing left. Chandler (2007) states that our 

interpretations favour “closed” as opposed to “open” figures. Palmer (1999) offers an alternative 

explanation by stating that we tend to group elements together if they form a closed region. He also 

gives an example illustrating that closure supersedes continuity.  

2.2.6.5 The principle of perceptual grouping by common fate 

Even though Wertheimer (1938) uses the terminology factor-of-uniform destiny to describe 

perceptual grouping by common fate, I shall use perceptual grouping by common fate which is 

Wagemans et al.’s (2012) more modern terminology. Shepard and Levitin (2002) state that it is very 

improbable that things that move in a highly correlated way in the physical world are not connected 

to each other in some way. Figure 2-4 illustrates perceptual grouping by common fate with the aid of 

alternating dots where the alternating dots are shown as moving in the same direction. Wagemans 

et al. (2012) state that the perceptual grouping by common fate does not seem to be limited to 

motion in three dimensions, but also applies to luminance changes. As an example, Wagemans et al. 

recall an experiment conducted by Sekuler and Bennett (2001) that points to a tendency for 

observers to group elements of a visual scene perceptually when the elements in the scene become 

brighter or darker at the same time, irrespective of the individual luminances of the elements. 

According to Shepard and Levitin (2002), perceptual grouping by common fate is a much stronger 

grouping principle than the principles of perceptual grouping by proximity, similarity, symmetry, and 

good continuation. If the speed and direction of element movement is considered, Palmer (1999) 

argues that grouping by common fate is a special case of perceptual grouping by similarity. 

2.2.6.6 The principle of perceptual grouping by synchrony 

Palmer (1999) puts it that perceptual grouping by synchrony is not limited to visual events but also 

applicable to auditory perception. According to Palmer, the phenomenon of synchrony is similar to 

that of common fate in that both phenomena are due to the dynamics of the observed elements. 

However, the phenomenon of synchrony differs from common fate in that synchrony does not 

require the elements to change in the same way. Another difference is that synchrony does not have 

to include motion; it only requires synchronised changes (Palmer 2003). To illustrate grouping by 

synchrony that does not involve motion, Palmer (2002a) offers two rows of dots in which the dots 

alternate in colour between black and white. Irrespective of the colour change in a particular dot, all 

dots that change at the same time are perceived as belonging together. Figure 2-4 illustrates 

perceptual grouping by synchrony using dots that change in colour as indicated by the arrows. 
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2.2.6.7 The principle of perceptual grouping by parallelism 

Palmer (1999) observes that parallelism (parallel contours) in a physical object is not affected when 

it is moved. He explains that parallelisms between objects are primarily by coincidence and are often 

eliminated when the arrangement is disturbed. 

2.2.6.8 The principle of perceptual grouping by symmetry 

All stimuli humans receive are subject to symmetry detection and the symmetry need not be perfect 

to be detected (Helm 2011). According to Shepard and Levitin (2002), if objects are not related to 

each other then it is unlikely that there are any symmetric relationships between them. Therefore, if 

a symmetric relationship between objects is observed then we tend to perceptually group these 

objects together (Shepard & Levitin 2002).  

2.2.6.9 The principle of perceptual grouping by uniform connectedness 

According to Rock and Palmer (1990), the visual system tends to perceive connected uniform areas 

as a single unit. They call this connectedness. Examples of uniform areas include spots, lines, and 

larger areas. In 1994, Palmer and Rock published a comprehensive description of perceptual 

grouping by connectedness and called this uniform connectedness. According to this description, the 

initial perception of closed regions with no variation in their visual properties are at first perceived as 

a single unit. Visual properties include lightness, chromatic colour, motion, and texture (Goldstein 

2010; Palmer & Rock 1994). Refer to Figure 2-4 for an illustration of perceptual grouping by uniform 

connectedness. In this figure, two spots that are joined by a horizontal line are perceived as a single 

unit. 

2.2.6.10 The principle of perceptual grouping by common region 

Palmer (1999) states that perceptual grouping by common region is the phenomenon that elements 

could be perceived as belonging together if they are enclosed within a common spatial region. Figure 

2-4 illustrates an example of the principle of perceptual grouping by common region. In this figure, 

solid dots are distributed in a manner similar to those in the perceptual grouping by proximity 

example. However, the closely spaced dots are not perceived as belonging together and the 

common regions “rearrange” the perceived grouping so that it appears as if the dots in the common 

region belong together. This illustration demonstrates that the principle of perceptual grouping by 

common region supersedes the principle of perceptual grouping by proximity. 

2.2.7 Conclusion to this section 

Psychologists have observed that humans do not perceive sensory inputs as discrete entities but 

rather that perceptions are created based on multiple simultaneous inputs from various senses. 

Sensory inputs therefore influence how we experience the world. The way we experience the world 
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differs from one person to the next. Experience is therefore subjective. Reality is also not universal 

but constructed by the individual based on sensory inputs. Gestalt describes the experience that 

results from multiple concurrent inputs. This experience does not equate to the sum of the inputs 

but instead is something different. It is also known that humans organize sensations with little or no 

conscience effort and the way in which we organise sensations are often predictable. Hence, we are 

constantly subjected to experiences based on our sensory inputs and the experiences differ between 

individuals even when the inputs are the same. The sensory inputs therefore hold a personal 

meaning for an individual. For individuals to function in a society it is necessary that its members 

agree to common meanings for specific sensory inputs. Road users should for example agree on road 

markings and programmers on program symbols. Section 2.3 considers sensory inputs and how their 

associated meanings are determined. 

2.3 Signs  

Communication in all its forms rely on signs (Hall 2007) and we interpret our world through a 

structure mediated and supported by signs (Deely 1990). The context in which we observe signs is 

also central to the way we interpret them; in addition, as the context changes so too does our 

interpretation of a sign (Hall 2007). Of particular relevance to my study is Andersen’s (1997) view 

that a sign is afforded its property by virtue of the way it is treated by someone; that is, a sign has 

personal meaning.  

A sign is any element that carries meaning; however, whatever the sign represents need not actually 

exist (Bopry 2002; Eco 1976). Signs can take form as the artificial, the natural, the verbal, the non-

verbal, an artefact, and an act (Fiske 1990; Larsen 1994). Examples include visual text, literature, 

images, colours, sounds, utterances, physical objects, pictures, facial expressions, gestures, body 

language, odours, flavours, mathematical equations, whatever is on the stage in a theatre 

performance, and works of art including movie pictures and television programs (Andersen 1997; 

Berger 2012; Chandler 2007; Danesi 2004; Larsen 1994).  

Physical objects that serve as signs are central to this study. An object on its own can be a sign or the 

object itself can be a combination of signs. For example, a book can be a sign in itself or it can be 

considered to be a collection of signs (Larsen 1994). Another example is a city that is either a sign 

itself or a collection of signs. Of particular interest to my study is Larsen’s view that an exhibition of 

physical objects can be a sign. Based on this view and guided by certain Gestalt principles, in Chapter 

6 I interpret an exhibition of personally meaningful objects as a collection of signs that together 

define a program. 



30 
 

  

  

2.3.1 Semiotics 

Semiotics is an interdisciplinary research domain (Morris 1964) that studies sign systems (Fawcett 

1992), sign processes (Krampen, Oehler, Posner, Sebeok & Uexkull 1987) and the creation of signs 

(Aghaei 2015); in particular, it studies the meaning that signs hold for humans. Semiotics consists of 

sign and semiosis components where the sign component represents something other than itself 

and the semiosis component describes how signs are created and used (Andersen 1997). 

Almost all human artefacts incorporate some aspect of semiotics (Fawcett 1992). Because semiotics 

encompasses all things that are made, used, or adopted by people with the purpose of conveying 

meaning, the following are relevant to semiotics: artefacts, architecture, art forms, visual 

communication, linguistics, tone of voice, body posture, gestures, a person’s attire and the vehicle 

he drives (Chandler 2007; Danesi 2004; Fawcett 1992).  

Semiotics considers inter and intra communication involving persons, machines, and natural living 

things such as organisms, plants, and animals (Krampen et al. 1987). In particular, a computer is also 

a semiotic system (Rapaport 2012). Computer semiotics is a branch of semiotics concerned with 

computer-based signs and Nadin (1988) put it that the science of the computer interface is a science 

of semiotics. Referring to Peirce’s model that I will discuss in Section 2.3.3, Nadin considered the 

interface to be the sign representamen, the type of computer system as the sign object, and context 

and the values that result to be the sign interpretant (Andersen 1997). 

Of specific interest to my research is the study of how humans and machines communicate. Fawcett 

(1992) refers to this as computational semiotics. In Chapter 6 I develop a tangible programming 

environment that allows the user to communicate her intensions to the computer using personally 

meaningful objects.  

2.3.2 Saussure and Peirce  

Saussure (2011) and Peirce (1935) are the founders of modern semiotics (Chandler 2007; Danesi 

2004) and even though their approaches differed, both are applicable to computer systems 

(Andersen 1997). Saussure’s sign is a dyadic model consisting of a signifier and a signified (Saussure 

1916, 1959). Independent of Saussure (Mick 1986), Peirce developed his triad that consists of a 

representamen, its semiotic object, and an interpretant.  

Although both models describe a stimulus that leads to an accompanying meaning, Peirce’s 

description of the mechanism by which this happens is more detailed (Cohn 2013). The added detail 

provides a sound theoretical foundation for my subsequent argument on the meaning personal 

objects hold for an individual; consequently, the discussion below focusses on Peirce’s triadic model.  
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Even though the Saussurean model is not as comprehensive as Peirce’s, it is compact which makes it 

useful in discussions regarding multiple representations that hold the same meaning. To this end and 

in Section 2.5.2, I will apply Saussure’s linguistic sign model to three program language generations. 

2.3.3 Peirce’s model 

Semiology literature refers to the word sign in its various incarnations (for example SIGN, Sign, and 

sign) along with their significantly diverse associations. It would therefore be prudent to clarify this 

word before discussing Peirce’s model.  

First, confusion may ensue in the use of the Saussurian signifier, the Peircean representamen, and 

the word sign (Chandler 2007). To clarify, Chandler explains that sign vehicle independently refers 

to both the Saussurean signifier and the Peircean representamen. Second, the word sign can be 

ambiguous since it refers to the Saussurean signifier/signified duality while in the Peircean 

framework it refers to the representamen correlate (Chandler 2007). Therefore, it follows that in 

the Saussurean model the sign vehicle and the sign are distinct correlates whereas both refer to the 

Peircean representamen. Finally, Souza (2005) uses SIGN to refer to Peirce’s triad and to 

differentiate it from the representamen that is sometimes also referred to as a sign (Section 2.3.3.1 

elaborates on this). Therefore, in addition to adopting Souza’s SIGN I will use the term sign-

representamen when referring to the SIGN representamen correlate.  

Having clarified the various meanings of the word sign and their associations, I next discuss the 

three correlates of Peirce’s model. This is followed by an explanation of the phenomenological 

categories of experience and the ontological categories of being. Finally, these two categories 

support the subsequent description of Peirce’s three trichotomies. 

2.3.3.1 The sign-representamen 

Peirce composed 76 definitions of the sign-representamen (Marty 2015). For the purpose of this 

study I consider the following definition to be suitable: 

“A sign, or representamen, is something which stands to somebody for something 

in some respect or capacity. It addresses somebody, that is, creates in the mind of 

that person an equivalent sign, or perhaps a more developed sign. That sign which 

it creates I call the interpretant of the first sign. The sign stands for something, its 

object. It stands for that object, not in all respects, but in reference to a sort of 

idea which I have sometimes called the ground of the representamen. ” (Peirce 

1935) 
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From this it is evident that Peirce considered the sign-representamen as something that represents 

something to somebody (Sebeok 2001). In particular, a sign-representamen is anything that brings 

about a triadic relation between itself, the associated object, and the associated interpretant (Lee 

1997; Merrell 1997). The representamen is also referred to as a sign vehicle (Chandler 2007) and 

representation (Souza 2005).  

Sign-representamens are not limited to physical objects (Chandler 2007) but are most often thought 

processes (Peirce 1935). Although anything can be a representamen (Chandler 2007) not all 

representamens are correlates in Peirce’s (1935) model. This is because a sign-representamen is a 

specific type of representamen that is interpreted and results in an interpretant known as a 

cognition of the mind (Peirce 1935) or a mental interpretant (Lee 1997). I discuss Peirce’s 

interpretant in Section 2.3.3.3. 

With the semiotic object initially veiled and the interpretant non-existent, the representamen is the 

first SIGN correlate that is noticed; therefore, a sign-representamen is both the origin of a SIGN and 

its form (Chandler 2007; Merrell 1997). The semiotic object is subsequently revealed and the 

interpretant formed (Chandler 2007). At this point it becomes appropriate to refer to the 

representamen as a sign-representamen.  

It is not in all respects that the sign-representamen stands for the semiotic object but only in the 

context (Sheriff 1989) in which the sign-representamen relates to the interpretant. This context is 

called the sign-representamen’s ground (Peirce 1935) or the source of meaning (Cantor 2003). In 

relating the above to Saussure’s signifier/signified model, Sheriff (1989) states that it is due to both 

the sign-representamen’s quality and the sign-representamen’s relations that the sign-

representamen serves as a signifier. 

2.3.3.2 The semiotic object 

The semiotic object (also referred to as referent (Chandler 2007; Souza 2005)) has three attributes 

(Peirce 1935). First, the object may exist, or have previously existed, or be expected to exist, or be a 

combination of these conditions. This includes abstract ideas, physical things, and things that do not 

actually exist (Chandler 2007). Second, the object may be a known quality, a relation, or a fact. 

Finally, the object may be a collection of things or the result of parts assembled to form a single 

entity.  

For the interpreter, the sign-representamen does not stand for the whole semiotic object but only in 

certain aspects (Peirce 1935) and to fully understand the semiotic object one needs to consider a 

collection of multiple sign representamens (Sáenz-Ludlow 2007). Peirce (1935) referred to this as a 
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complex object. Also, the relation between the sign-representamen and the semiotic object is not 

necessarily one-to-one; instead, a single semiotic object may be associated with multiple sign-

representamens and conversely a single sign-representamen may have multiple semiotic objects 

associated with it (Peirce 1935; Sáenz-Ludlow 2007). From this I deduce that both the sign-

representamen and semiotic object may be correlates in multiple SIGNs.  

2.3.3.3  The interpretant 

Peirce used the term interpreter when referring to somebody while others use person (Souza 2005), 

sign-user (Sebeok 2001) and translator (Liszka 1996). Of particular interest is that anything or 

anybody that does the interpretation is called an interpreter (Liszka 1996). Liszka uses as example a 

bee and a person that each interprets the same flower differently. In this research I investigate the 

application of a computer program to interpret an arrangement of personally meaningful objects. 

The meaning that results when the interpreter responds to (or perceives (Sheriff 1989)) the sign-

representamen within his social, personal, and contextual environment is called the interpretant 

(Danesi 2009; Sabre 2012; Sebeok 2001) and this process is called interpretation (Souza 2005) or 

semiosis (Larsen 1994). The result is that the interpretant “binds” the representamen to the 

corresponding semiotic object (Souza 2005). Alternative terminology for the interpretant include 

mental effect (Fiske 1990), a sign of the mind (Sheriff 1989) and meaning (Nam & Kim 2010; Souza 

2005). 

A sign-representamen does not inherently hold meaning or transmit meaning; rather, an observer 

subconsciously constructs meaning and the result is influenced by the observer’s cultural 

background (Chandler 2007; Martin & Ringham 2000). I therefore deduce that meaning varies 

amongst observers due to differing cultural backgrounds.  

In addition to the environment, the interpreter’s previous experiences with the semiotic object also 

determines the interpretant (Fiske 1990). Even when previous experience is not with the particular 

object but rather with the same object category, the interpretant can respond appropriately based 

on stored experiences with objects from this category (Palmer 1999). Souza (2005) explains that the 

meaning changes according to the individual and the available information; that is, as the 

information available to the interpreter changes so too does the meaning. The interpreter’s 

interpretive process eventually stabilises on a final meaning (Souza 2005).  

Also, an individual belonging to a certain culture may interpret a sign-representamen in a manner 

different to the general cultural interpretation (Barthes 1982). Computer programmers have their 

own culture (Raymond 2000) and Andersen (1997) suggests that meanings intended by these system 



34 
 

  

  

developers are not necessarily the same meanings experienced by the users. Therefore, semiosis 

during system development may differ from semiosis when used. Barthes (1982) introduces the 

terms stadium and punctum to describe these differences, with the stadium being the cultural 

interpretation of the sign-representamen and the punctum being the individual’s interpretation. The 

distinction between stadium and punctum is highlighted in Chapter 6 where I discuss my RockBlocks 

tangible programming environment. The above supports Liszka’s (1996) comment that the 

interpretant is specific to the interpreter and I therefore conclude that a SIGN is personally 

meaningful to the interpreter. 

2.3.3.4 Phenomenological categories of experience 

Phenomenology is the thinking style (Merleau-Ponty 1962) in which the subject is considered to be a 

person that lives inseparably in the world, himself, and with other persons (Farina 2014). Describing 

our experiences this way assumes that everything’s perceived value is dependent on the person’s 

lived experience (Merleau-Ponty 1962). In applying this thinking style to the representamen, Peirce 

(1935) identified three categories with these being the nature of the representamen in itself, its 

relation to the semiotic object, and the relation to its interpretant. These are respectively also 

referred to as the presentative, the representative, and interpretative character of the 

representamen (Liszka 1996). Additional categories were later added (Sheriff 1989) but Peirce’s will 

suffice for this discussion. 

2.3.3.5 Ontological categories of being 

Peirce (1935) categorised the nature of being according to the way one entity relates to others. An 

entity can be an idea, a physical object, or a phenomenon and the three categories are Firstness, 

Secondness, and Thirdness.  

For Peirce, Firstness is an entity’s mode of being that is independent of another. It is simply the 

appearance, an idea, a quality, a sensation, a sentiment, a perception, or a “gut feeling” (Merrell 

2015; Peirce 1935; Souza 2005). Secondness exhibits a property of actual existence and is a mode of 

being where one entity is in relation to another. Finally, Thirdness exhibits the property of a general 

law and is the mode of being in which an entity brings a second and a third entity into relation with 

each other and itself. The following example illustrates the three categories of being: The quality of 

pain is an example of Firstness, the association of pain with a tooth is Secondness and Thirdness is 

the thought that a dentist must be visited (Sarbo & Farkas 2013).  

Peirce applied his three ontological categories to each of his phenomenological categories by 

defining three trichotomies. Figure 2-9 supports the following discussion on Peirce’s trichotomies.  
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 Figure 2-9  Peirce’s trichotomies of signs in context 
Based on Merleau-Ponty (1962), Sheriff (1989) and Liszka (1996) 

2.3.3.6 Peirce’s first trichotomy  

Peirce’s first trichotomy considers the presentative character of the sign-representamen itself 

without considering how it relates with its semiotic object (Liszka 1996). These features can be 

known without requiring mental interpretation.  

A sign-representamen is a qualisign due to a feature it possesses that is known directly without 

requiring cognition; for example, a red object is a qualisign simply because it is red (Liszka 1996). A 

sinsign is a sign representamen that is unique in its once-off (Jappy 2013) occurrence in time or in 

space; for example, a buzzer flashes and makes a sound at a particular instance of it being observed 

(Liszka 1996). In this example, it is not important that the buzzer is red and can make a sound but 

rather that it makes the sound and flashes at a particular instant in time. Finally, a sign 

representamen is considered to be a ligisign due to its predictive tendency, a developed convention, 

or a lawlike property bestowed upon it; for example, the colour red signals danger (Liszka 1996).  
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2.3.3.7 Peirce’s second trichotomy  

This trichotomy considers the extent to which the presentative properties of the sign-

representamen correlates with the semiotic object (Liszka 1996) according to likeness, connection, 

and convention. Peirce named these icons, indices, and symbols respectively and Bopry (2002) states 

that they are not mutually exclusive; rather, all representamens include elements of the three 

classes and their application depends on the context in which the observer encounters the sign-

representamen.  

If some character of the sign-representamen coincides with a character of the semiotic object, it is 

an icon. For example, a photograph of Churchill is an icon of this individual. When the primary 

correlation between the representamen and the semiotic object is due to a reference that the 

representamen makes to an actual, a physical, or an imagined contiguous property of the semiotic 

object then the representamen is called an index (Liszka 1996; Merrell 1997). For example, smoke is 

an index of a fire. Finally, when the relation between the sign-representamen and the semiotic 

object is not primarily due to a presentative property of the representamen but instead due to 

either convention, being natural, or determined by an authority, then the representamen is called a 

symbol. The interpretation of a symbol is determined a-priori by social convention or posteriori by 

cultural habit and therefore the reference is by virtue of a law where law refers to social convention 

or cultural habit (Everaert-Desmedt 2011). The wagging tail of a dog is an example of a natural 

symbol of friendliness (Liszka 1996). 

Unlike the index where a natural link exists between the representamen and its semiotic object and 

interpretant, and unlike the icon where there exists similarity or resemblance, only a cognitive link 

exists between a symbol, its semiotic object, and interpretant. Merrell (1997) explains that due to 

the socially attributed relation between the symbol, its semiotic object, and the interpretant 

communication within the social group will be functional but communication outside the group 

could be problematic. Chapter 6 discusses an encounter with this problem when I evaluated my 

GameBlocks tangible programming environment. 

2.3.3.8 Peirce’s third trichotomy  

The third trichotomy considers the power of the sign-representamen to guide the formation of the 

interpretant (Liszka 1996). When the qualitative properties (and not the existential or lawlike 

qualities) of a sign-representamen tend to dominate the focus of the interpretant then the sign-

representamen is called a rheme (Liszka 1996). A rheme brings an image to the interpreter’s mind 

that consists of generic characteristics of the semiotic object and yet no specifics of the semiotic 

object (Peirce 1935). According to Liszka, the term human being is an example of a rheme that 
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produces an interpretant that brings to mind some general properties of the semiotic object but 

does not refer to a specific instance of the object.  

Peirce (1935) described a decisign as a unambiguous instance of a rheme. To clarify, whereas the 

rheme refers to a generic class of semiotic object, a decisign brings to the interpreter’s mind a 

specific object that actually exists; that is, an existential object. All sign-representamens in Chapter 6 

are decisigns. 

The sign-representamen as argument has a lawlike effect on the interpreter to apply one of three 

mental argumentative processes that Peirce referred to as deductive, inductive, and abduction 

arguments. Peirce’ deductive argument is the making explicit of something that already exists in a 

collection of connected sign-representamens but nonetheless remains unnoticed (Liszka 1996). For 

example if ‘S’ is ‘M’ and ‘M’ is ‘P’, then ‘S’ is ‘P’ (Peirce 1935). Liszka explains that both the induction 

and the abduction arguments add to the information that is already present in a SIGN system; 

specifically, the abduction argument introduces new hypotheses based on unexpected events in a 

system of SIGNs whereas the induction argument produces a conclusion that can be drawn from 

observed results. Finally, the result of the abduction argument is a theory that can explain the 

observation.  

2.3.4 Conclusion to this section 

Individuals can attach different meanings to the same perceived inputs. To survive in a community, 

individuals must communicate and in order to do so, the parties must agree on how meanings 

should be represented. The combination of representation and the associated meaning is referred to 

as a SIGN. The representation can be categorised according to the mechanism by which meaning is 

associated with it. For example, the icon is a representation that requires little cognitive effort to 

recall the associated meaning. In contrast to the icon, the symbol is a representation that is agreed 

on by society and typically requires significant cognitive effort when the associated meaning is 

recalled. SIGNs are not only used when individuals and societies communicate but also when 

individuals communicate with computers. Section 2.4 considers how SIGNs are applied when 

programming. 

2.4 Programming 

A computer is a reconfigurable tool that can serve diverse purposes (Kay 1984; Morgado 2006) with 

its behaviour determined by the program being executed (Newell, Shaw & Simon 1958). 

Programming is both a specialist and non-specialist human activity that changes the functionality of 

a system (Roy & Haridi 2004). A program consists of language symbols arranged according to pre-
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determined rules and together they describe the algorithm that will be interpreted (Brookshear 

2012; Kelleher & Pausch 2005; Ko, Abraham, Beckwith, Blackwell, Burnett, Erwig, Scaffidi, Lawrance, 

Lieberman, Myers, Rosson, Rothermel, Shaw & Wiedenbeck 2011; Morgado 2006; Touretzky 1984).  

A language is a means to express intent (Bentley 1986) and a programming language can take 

several forms including text, spatial movements, and temporal events (Bentley 1986). In particular, a 

programming language is a communication system (Tanaka-Ishii 2010) with which a user expresses 

intent (Fernaeus 2007; Morgado 2006) in the form of a program. In Chapter 6, I explore the 

application of personally meaningful tangible objects in this communication system. 

The program instructions that a programmer passes to a computer is the start of a process 

consisting of multiple steps that are often not visible to the programmer. This is because the 

programmer uses an environment that shields him from the details of how the program is converted 

into a form suitable for execution. The mechanism that accomplishes this is called abstraction. 

Abstraction helps the programmer by presenting a model that suits the programmer’s operating 

level, thereby separating the programmer from lower-level details (Philipose, Fishkin, Perkowitz, 

Patterson, Fox, Kautz & Hahnel 2004).  

A program is a collection of instructions that are to be processed by the central processing unit (CPU) 

and the program is often in text format. When textual, a program is an arrangement of well-selected 

alphanumeric characters. At the time when a programmer composes a computer program, he relies 

on a design by which the programmer and the computer have settled on both the meaning of each 

symbol as well as the rules by which the symbols may be combined. My T-Logo programming 

environment in Chapter 6 provides mechanisms to make each symbol personally meaningful and to 

identify where prescribed Gestalt-based rules have been applied.  

2.4.1 Psychology of programming  

Computer programming involves significant abstract thinking effort because it requires abstraction 

at three levels. These are the programming language, the computer program, and the algorithm 

(Katai, Juhász & Adorjáni 2008). Blackwell (2002) lists three cognitive features of programming: First, 

the programmer loses direct manipulation because programming abstracts situations, entities, and 

time. Second, the user applies abstraction as a means to express common features of system 

behaviour. Finally, notational elements represent abstract program concepts. I discussed notational 

elements in Section 2.3. 

In the human brain, each of the two cerebral hemispheres tends to facilitate different functions 

(Eysenck & Keane 2000; Hugdahl & J.Davidson 2003; Kimura 1993; Kosslyn 1996). For right-handed 
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persons the left hemisphere tends to be analytical whereas the right side tends towards the 

perceptual and intuitive (Franks 2006; Groome, Dewart, Esgate, Kemp, Towell & Gurney 1999; Katai 

et al. 2008). In order to reduce the significant cognitive load that abstract thinking places on the 

programmer’s working memory, Katai et al. (2008) proposes a multiple-senses approach to 

programming called dual coding. Dual coding includes text, images, and sensations in the coding 

activity to balance the cognitive load between the two brain hemispheres (Katai et al. 2008). 

The Psychology of Programming research domain focusses on the cognition of the programmer 

(Sajaniemi 2008) and it identified that individual computer programmers have unique cognitive 

styles (Weinberg 1998). Blackwell (2006) observed that usability of both the programming language 

and the programming environment are relevant to professional and end-user programmers alike. 

Programming is a creative process (Dollery 2003) that includes a wide range of cognitive resources 

and multiple programming environments have consequently been engineered to support varying 

cognitive styles (Blackwell 2006). Based on Sajaniemi, Weinberg, Blackwell, and Dollery’s 

observations, my research on tangible programming environments aims to address individual 

cognition styles by providing a mechanism through which the user can incorporate personally 

meaningful elements. Research indicates that certain parts of the brain process certain information 

better than do other parts; in particular, the left hemisphere is better at analytical processing and 

the right is better suited to spatial information (Banich & Heller 1998). At the onset of this study, my 

programming elements relied almost exclusively on the “analytical” left hemisphere. These evolved 

over numerous design iterations to the point where the artefact design accommodates the user’s 

creativity, thereby also incorporating the “perceptual” and “intuitive” right hemisphere. 

Consequently, my T-Logo incorporates dual coding and the user determines the distribution of the 

programming cognitive load to suit his own style. The design evaluation discussion in Chapter 6 

begins with GameBlocks and concludes with the T-Logo programming environment. 

2.4.2 Classification of programmable systems  

In contrast to general-purpose languages (GPL’s) such as C and Java that are not optimised for a 

particular application domain, Domain Specific Languages (DSL’s) address specific domains including 

domestic appliance programming (Bentley 1986; Mernik, Heering & Sloane 2005). Even though DSL’s 

are not as feature rich as GPL’s and therefore not as universally applicable, a DSL offers a number of 

benefits (Mernik et al. 2005). For example, it simplifies the programming activity in the associated 

application domain, provides greater domain specific expressiveness and it makes the applicable 

domain more accessible to users. The FORTRAN and COBOL programming languages are examples of 

DSL’s designed for scientific and business computing, respectively (Bentley 1986). More recent 

examples are the statistical computation language R (Gardener 2012), Processing (Greenberg 2007) 
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for data visualisation, and the Hyper Text Markup Language (HTML) (Aronson 2011) and TeX 

(Syropoulos, Tsolomitis & Sofroniou. 2003) for visual effect.  

Programming has diversified from its original focus of solving mathematical problems to include 

programmable domestic appliances (Blackwell 2002), each with their own DSL. Blackwell (2002) puts 

it that, in general, the programming actions of the user who fully exploits these devices are similar to 

those of a professional programmer. He explains that both face challenges that include deriving the 

correct program specification, using notations, and the risk of the program not executing as 

expected due to programming errors. Also, both share abstraction over time and class with 

abstraction over time referring to the programmer configuring an action to take place in the future 

and abstraction over a class is the ability of a programmable system to address multiple entities 

simultaneously (Blackwell & Hague 2001a).  

Although somewhat dated, Nardi’s (1993) classification remains a useful instrument to plot 

programmable systems according to their expressiveness level of interactive construction. Although 

Nardi does not define “expressiveness” and “interactive construction”, I deduce from Patwell’s 

(1992) descriptions that expressiveness is a measure of how effectively an idea can be conveyed 

whereas interactive construction refers to how direct and continual the system’s response is when a 

user interacts with it. I have adapted Nardi’s classification representation Figure 2-10 to include 

tangible programming environments and programmable domestic appliances. Tangible 

programming environments are discussed in Chapter 4. I highlight programmable domestic 

appliances since that application domain will benefit when personally meaningful objects are part of 

the programming activity. The position of my T-logo tangible programming environment (discussed 

in Chapter 6) on this graph reflects the user’s ability to express his individuality by using personally 

meaningful objects as program elements.  

2.4.3 Generations of languages 

Certain languages separate the programmer from the central processing unit‘s (CPU) peculiarities. 

The degree to which languages address this separation can be plotted on a discrete linear scale 

(Brookshear 2012) where the lower end of this scale are first-generation languages and the upper 

end are higher order generations. Brookshear explains that when a programmer applies a first-

generation programming language he must conform to the computer’s characteristics whereas 

higher generations progressively separate him from CPU constraints.  
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Figure 2-10  Programmable systems 

Based on Nardi (1993) 

While first and second-generation programming languages consider the CPU to be a collection of 

unchangeable elements (data pathways and data registers are examples), third-generation 

programming languages view it as an abstract device of which the detailed operation and elements 

can be disregarded. My research approach shares the latter view. Therefore, the programmer does 

not have to burden himself with the CPU’s specific characteristics. Although Brookshear (2012) does 

not mention tangible programming languages in his discussion, I consider these to be an extension 

of his scale beyond third-generation languages. My motivation is that first, second, and third-

generation languages are limited to symbols that can be created using a keyboard. Tangible 

programming languages overcome this constraint by including physically instantiated symbols. My 

work as presented in Chapter 6 extends this by making it possible for the programmer to use 

personally meaningful symbols and other sign-representamens.  

2.4.3.1 First-generation languages 

A program is comprised of numeric symbols (Brookshear 2012) and a modern CPU can directly 

interpret these symbols. The language that prescribes the symbols and their valid combinations is 

called machine language. Machine language is often referred to as a first-generation programming 

language. By convention, these symbols are written and displayed using hexadecimal notation. An 
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example of a numeric symbol that can be directly interpreted by a particular CPU is the four-symbol 

sequence [4056]. For this CPU, this sequence indicates that the contents of register six will be 

copied to register five. A different CPU will interpret this symbol sequence in another way. 

Consequently, a program written using a first-generation programming language may not always 

produce the same result on another CPU. A first-generation programming language is therefore CPU 

specific. 

2.4.3.2 Second-generation languages 

Creating programs using machine language can be slow, error prone and tedious (Aho, Lam, Sethi & 

Ullman 2007) and not suitable for a CPU other than the original. A mnemonic system was developed 

in the 1940s to address these problems (Brookshear 2012). The result was a descriptive character 

sequence to replace hexadecimal symbols. For example, the symbol sequence [MOV R5,R6] is a 

more legible representation of the [4056] hexadecimal sequence. However, the CPU cannot 

interpret mnemonic sequences and therefore the sequence of mnemonics is changed into machine 

language instructions using a converter. Such a converter is also called an assembler program and 

the system of mnemonics is called an assembly language. Assembly language is generally considered 

a second-generation language. For a certain CPU, the difference between a first generation 

programming language and a second-generation programming language lies primarily in the symbols 

used with a one-to-one mapping between the symbols of the two languages. To illustrate the 

mapping principle, consider the above example where [40] maps to [MOV], [5] maps to [R5], and 

[6] maps to [R6]. Even though better suited to the user, a second-generation language remains 

CPU dependant.  

2.4.3.3 Third-generation languages 

Programming using either a first or a second-generation programming language requires the 

programmer to explicitly state each step the CPU has to take by using the elementary CPU primitives 

such as [MOV]. Brookshear (2012) argues that program design is simpler when high-level primitives 

replace the lower-level CPU ones found in first and second-language generations. To illustrate the 

difference, compare the solutions to the typical problem of determining the total cost of a shipped 

product. In this example, the total cost equates to the price of the item plus the cost of shipping. In 

pseudo code and using high-level primitives, the calculation can be expressed as [TotalCost = 

Price + ShippingCharge]. Languages that include high-level primitives like these are called third-

generation programming languages of which the C (Kernighan et al. 1988) language is an example.  
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Figure 2-11 illustrates how a computation problem is solved using first, second, and third-generation 

languages. From this, it is clear that comprehension improves in tandem with the generation of the 

language.  

Solution  1
Using a first 
generation 
language:

Solution  2
Using a second 
generation language:

Solution  3
Using a third generation language:

156C

166D

5056

306E

C000

LD R5,Price

LD 

R6,ShippingCharge

ADDI R0,R5 R6

ST R0,TotalCost

HLT

int TotalCost (int Price, int ShippingCharge) 

{

   return (Price + ShippingCharge);

}

Problem statement      
“Calculate the total cost, being the price of the item plus the cost of shipping the item to the buyer.”

 

Figure 2-11  Solving a problem using first, second, and third-generation programming languages 
Based on Brookshear (2012) 

2.4.4 Language format 

A lexical analyser determines which symbols in the source program constitute a meaningful 

sequence and it then classifies the meaningful sequence as being, for example, an arithmetic 

operator or a numeric value. These meaningful sequences are called lexemes (Aho et al. 2007) and 

grammar is the set of rules that prescribe the way these may be combined (Hein 1996). For text-

based source-programs, the symbols are alphanumerical characters and a lexeme is a grouping of 

alphanumerical characters separated by spaces. In Chapter 6, I apply Gestalt principles of perception 

to identify and classify lexemes in a program written using my T-Logo programming language. 

To simplify the parsing process, third-generation language designers often delineate lexemes 

according to a fixed format. These are called fixed-format languages (Brookshear 2012) of which 

Python (Gift & Jones 2008; Rossum 2012) is an example. When writing a program using this 

language, consecutive line indentations indicate that statements belong together. For example, the 

two instructions in Figure 2-12 (left) are executed as a set. In contrast, the same instructions on the 

right are not interpreted as a set. Shading in this figure highlights the difference. 

Functionally different

if Cost < CashOnHand : 

pay for goods 

take goods home

if Cost < CashOnHand : 

pay for goods 

take goods home

 

Figure 2-12  A comparative example of a fixed-format language 
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Free-format languages use special symbols such as punctuation and key words for parsing which 

means that the programmer has discretion to manipulate the visual appearance according to his 

interpretation of the task at hand (Brookshear 2012). Indeed, a recent study found that variations in 

horizontal and vertical spacing in written programs as illustrated in Figure 2-13 and Figure 2-14 

affect a programmer’s comprehension (Hansen, Goldstone & Lumsdaine 2013). The two sequences 

in each figure are functionally equivalent yet those on the right are more comprehensible. The 

sequence on the right in Figure 2-13 is easily perceived as one group nested within another but the 

grouping on the left is not so obvious. In addition, the perception is that the sequence on the left in 

Figure 2-14 is a single group while that on the right is one group encapsulated within another. The 

two Gestalt principles of perceptual grouping by common region and proximity explain this 

phenomenon. In Chapter 6, I apply these Gestalt principles to my T-Logo programming environment. 

Functionally the same

if {Cost < CashOnHand}

{ 

pay for goods; 

take goods home;

}

if (Cost < CashOnHand)

{ 

pay for goods; 

take goods home;

} ?
 

Figure 2-13  Two examples of valid vertical allignment 

 
 

if Cost < CashOnHand 

      then use cash 

      else use ccard

if Cost < CashOnHand then use cash else use ccard

Functionally the same

 

Figure 2-14  Two examples of programmer-applied discretion in the case of a free-form language 
Based on Brookshear (2012) 

2.4.5 Conclusion to this section 

I have shown that a computer is a general-purpose tool that can be programmed to perform certain 

tasks. However, for the computer to perform as expected the user must use SIGNs that both the 

computer and the individual agree on. To achieve this, layers of abstraction provide an interface 

between the computer’s discrete electrical signals and the user’s tangible representation of the task. 

These layers therefore make it possible to use personally meaningful objects for this purpose. 

Section 2.5 ties together the above discussion on perceptual organisation, signs, and programming. 
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2.5 Perceptual organisation, signs, and programming 

For Saussure (2011), the sign has no inherent value yet it gains value when considered in relation to 

other signs. The relation between signs can be sequential (as for written texts) or concurrent as 

observed in visual images, dance movements, and orchestral performances (Chandler 2007).  

To illustrate the value of signs and how these values can change, Saussure used as example positions 

that chess pieces occupy on the playing surface. The value of the pawn game piece is due to the 

threat it poses to the opponent’s pieces and its defensive property to shield pieces from attack. In 

addition, this value changes according to the position the piece holds relative to other board pieces. 

Not only does one piece hold a position relative to another piece, but concurrent relations exist 

between all game pieces. Therefore, when the player contemplates his next move he does not 

consider each piece in isolation but instead studies the board holistically. 

Not only are spatial relations important in board games, but according to Chandler (2007) they are 

also key in drawings, paintings, photography, and written language due to the way text is laid out in 

shape poems, magazines, newspapers, and notices. Chandler adds that these relations communicate 

culturally important concepts. Smith (1952) explains the importance of spatial relations in African 

cultures by using the example of positions relative to the human body; that is, the right side of the 

body signifies strength and the left side signifies weakness. Additional examples of spatial relations 

include direction (North, South, East, and West) and position (in front of, behind, close to, far away 

from, to the left of, to the right of, at the centre of, at the peripheral of) (Chandler 2007).  

The axis and the direction in which members of a culture interpret texts influence the sequence in 

which visual images are interpreted (Chandler 2007). For example, societies that generally use the 

English language for communication interpret text from left to right and from top to bottom (I refer 

to these as Western societies). Other societies include Arabic, Hebrew, and Chinese and their 

interpretations differ from those of Western societies. To Western societies, past events that include 

something old or already given, or something that the reader already knows are usually associated 

with a position to the left of the centre (Chandler 2007). Chandler contrasts this with future events 

(for example something new or not yet known) that are usually often with a position to the right of 

the centre. He adds that a position to the right of the centre could also represent something yet to 

be contested, something that could be a problem, something surprising, or something that the 

viewer has not yet agreed upon. The vertical dimension is also significant: Up or higher positions 

along the vertical axis signify the ideal, having control, being rational, or the concept of “what may 

be”. Lower positions are often associated with someone being subjected to power, death, emotions, 

being practical, something informative, and reality. 
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2.5.1 Perceptual organisation and semiosis 

Tangible programming environments are based on an arrangement of physical objects. How the 

individual and the interpreting program view objects respectively determine the way the individual 

will arrange the objects and the program executes.  

The Gestalt principles of perceptual organisation have a direct bearing on the individual’s semiosis 

process and it is only after perceptual organisation has stabilised that semiosis can happen. A 

representamen is the result of perceptual organisation while an interpretant forms due to semiosis. 

Figure 2-15 illustrates this concept. 

Perceptual 
organisation

SemiosisRepresentamen InterpretantStimulus

 

Figure 2-15  Interplay between perceptual organisation and semiosis 
 

To illustrate this interplay, consider the visual stimulus (Chandler 2007) in Figure 2-16 (left). The 

viewer perceives either a white goblet on a black background (labelled Representamen A), or the 

silhouette of two faces (Representamen B).  

 

Interpretant A

Interpretant B

A concept of wine

A concept of 
friends

Stimulus

Representamen A

Semiosis

Semiosis

Perceptual
organisation

Representamen B

 
Figure 2-16  The perceptual organisation of a single stimulus can lead to multiple interpretants 

Based on Chandler (2007)  

As I discussed in Section 2.2.5, Gestalt psychologists describe this phenomenon as figure and ground 

perceptual organisation. Only once the perceptual organisation is complete can semiosis begin and 

ultimately produce an interpretant. In this example, Representamen A could result in an interpretant 

that reminds the interpreter of wine whereas Representamen B could result in an interpretant that 

reminds the interpreter of two men. Chandler (2007) explains that the result depends on the context 

within which the stimulus is perceived. 
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2.5.2 Saussure’s linguistic sign model applied to program code  

Section 2.4.3 demonstrated how first, second, and third-generation programming languages can be 

applied to produce three equivalent coded solutions to a problem. For each language demonstrated, 

a segment of the solution calculates the answer to the question “what is the cost?”.  

In the context of Saussure’s (2011) linguistic sign model, the phrase “what is the cost?” is the 

signified and the signifier is the code segment. The signifier varies according to the language 

generation. In the case of the first-generation language, the signifier is 5056. For the second, it is 

ADDI R0,R5 R6 and for the third the signifier is Price + ShippingCharge. Figure 2-17 

depicts Saussure’s linguistic sign model applied to these code segments.  

5056 ADDI R0,R5 R6 Price + ShippingCharge

What is the cost? What is the cost? What is the cost?

 
 

Figure 2-17  Saussure’s linguistic sign model applied to three generations of computer program languages 
 

Another example is the design of a programming language where designers are individually or 

collectively responsible to determine the elements that constitute program language signifiers. In 

the case of the third-generation language the individual has almost unlimited choice to determine 

these elements. This choice is possible because third-generation compilers can process user-created 

program elements as-if they are native to the language itself. For example, using the C language the 

user can compose a sequence of characters to represent a program element of which a numerical 

value is an example. The user achieves this by combining predefined keywords and a custom 

sequence of characters. Predefined keywords include int, char, and float. Respectively, these 

indicate a whole number, a character, and floating-point elements. An example of a user-created 

element that stands for the price of a soft drink is PriceOfSoftdrink and the mechanism to 

create it is by adding the following line to the program code: int PriceOfSoftdrink. To 

illustrate the versatility of user-created program elements, consider the following example that 

serves the same purpose: int price_of_softdrink. This demonstrates that the user can 

choose program elements according to his preference.  

The question “what is the cost?” can be phrased in multiple ways. Alternatives include “how much 

do I have to pay?” and “what must I budget?”. In the context of Saussure’s linguistic sign model, 

each alternative is a signified. Nine valid combinations result when the three generations are 

combined with the three English phrases. The alternatives are virtually unlimited and to some extent 

depend only on the user’s expressiveness. The user is also not limited to the English language nor 
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required to use Western characters. For example, three alternative symbol sequences to the 

question “how much does it cost” are “hoeveel kos dit” (Afrikaans), 它要多少钱 (Chinese), and এটা 

কত টাকা লাগে (Bengali). In addition to written text, the user could express the signified by means of 

a pencil drawing, a sculpture, or a woodcarving.  

The preceding illustrates that no universal rule determines what the signifier or the signified is; 

rather, the user community decides on the Saussure sign composition. I extend this concept to the 

programmer community and put it that individuals within that community should be at liberty to 

choose the signifier. In Chapter 6, I contemplate what a tangible programming environment could 

look like if the individual constructs program elements using personally meaningful signifiers. 

2.5.3 Gestalt principles and program code 

Figure 2-18 depicts three Gestalt principles present in program segments written respectively in the 

C (Kernighan et al. 1988), Python (Rossum 2012), and Excel (Jones, Blackwell & Burnett 2003) 

languages. The first is perceptual grouping by common region where the horizontal offset on the left 

indicates the common region. The second example illustrates grouping by common fate. This 

grouping occurs because it appears to the observer that successive lines of code are increasingly 

shifted to the right. The last example is that of perceptual grouping by closure where the “( )” 

symbol pair seems to enclose the space in-between. 

2.5.4  Peirce’s sign model and Gestalt principles applied to tangible program elements 

My research considers tangible programming environments based on a combination of the 

representative and representational characters of representamens, the power of representamens to 

direct, and the Gestalt principles of perceptual grouping of tangible objects. For example, when the 

user groups an icon sign with a qualisign, she is coding a program element (the icon sign) that takes 

on the given property (the qualisign). Figure 2-19 illustrates how this is done in the case of a wooden 

toy car and a red cloth swatch.  

An appropriate interpreter program can associate the car with the red swatch and process the pair 

as a single program element. The result is a coloured car. My T-logo tangible programming 

environment in Chapter 6 incorporates an interpreter that will deduce an appropriate program 

element when a qualisign is placed in close proximity to an icon sign. 
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Perceptual grouping by common fate in the Python language.

Perceptual grouping by closure in the Excel language.

Perceptual grouping by common region in the C language

switch(letter) {

   case ' ': printf("A space,\n"); break;

   case 'a': printf("First letter,\n"); break;

   case 'e': printf("Fifth letter,\n"); break;

   case 'i': printf("Ninth letter,\n"); break;

   case 'o': printf("15th letter,\n"); break;

   case 'u': printf("21st letter,\n"); break;

   default: printf("Something else.\n");

}

for a in range(1,n):

    for b in range(a,n):

        c_square = a**2 + b**2

        c = int(sqrt(c_square))

        if ((c_square - c**2) == 0):

            print(a, b, c)

=IF  (A2>B2,"Over Budget","OK")

 

Figure 2-18  Examples that demonstrate perceptual grouping by common region, common fate, and closure 

 

Icon signQualisign Program element

Perceptual grouping by proximity

 
Figure 2-19  Coding a program element by grouping a qualisign with an icon sign 
 

2.5.5 Conclusion to this section 

This section illustrated the link that exists between visual perception, SIGNs, and program code. In 

particular, it is evident that perception must occur before a Peircian sign-representamen or a 

Saussurian signifier emerges. I also showed that program code is a collection of sign-

representamens. I therefore conclude that program code relies on perception. However, perception 

is not sufficient to create usable program code; instead, a prior agreement on the meaning of the 

perceived phenomenon must also exist. As I showed, the role of the sign-representamen is to 

connect whatever is perceived with its associated program code. 
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2.6 Conclusion 

This chapter established the theoretical foundation for this study and includes aspects of perception, 

signs, and programming. This research considers the development of a model that can be used to 

guide the design of tangible programming environments. The premise is that the Gestalt principle of 

perceptual grouping by proximity, together with user attributed tangible SIGN properties, can 

simultaneously be applied to an arrangement of tangible objects so that the arrangement represents 

a program. Therefore, by combining some of Saussure and Peirce’s insights of signs (specifically the 

attributions a user makes to objects) with some of the Gestalt psychologists’ insights (the 

phenomenon of perceptual grouping of objects in particular), my study investigates the use of 

physical objects as a representation of a program. My investigation requires the user to choose or 

construct objects of his choice and associate them with a predetermined list of program instructions. 

The user then groups the objects to form the program. In Chapter 6, I discuss a mechanism with 

which the user associates the objects with computer instructions and I present my model in 

Chapter 7. 
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3.1 Introduction 

This chapter discusses literature on user-created tangible objects and how tangible objects support 

interaction between humans and computers. Section 2 covers the concept of tangible objects as 

these relate to humans and computers. It also considers existing technologies shown to support the 

use of tangible objects in human-computer interaction activities. Particular attention is given to 

tangible objects that contain, point to, detect, measure, manipulate, and generate data. Systems are 

then discussed in which the relative positions of tangible objects are of particular significance. 

Finally, tangible object systems used in generating digital models are listed. Section 3 covers 

environments in which the user creates personally meaningful tangible objects. Motivation is also 

given for the user to create her own tangible objects. Having deliberated tangible objects in relation 

to data and computer interaction and having highlighted the need for user-created tangible objects, 

I then reiterate in Section 4 Ishii’s (2009) omission of the object’s origin in his basic TUI model. I also 

restate McCloud (1994) and Jacucci’s (2007) opinions that can serve as system design guidelines 

when the objective is for the user to create personally meaningful objects. Section 5 concludes this 

chapter. 

Introduction

Section 1

Section 2

Tangible objects and 
computer interaction

 

Section 3

User-created 
tangible objects

Discussion

Section 4

Conclusion

Section 5

 

Figure 3-2  Chapter outline 
 

3.1.1 Nomenclature 

In the literature, one physical object may be referred to as a three-dimensional (3D) object and 

elsewhere another object may be referred to as a spatial object. The question I address here is: 
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“when should a physical object be referred to as a 3D object, and when should it be referred to as a 

spatial object?” The answer to this question depends on the context in which the reference is made.  

When only the physical properties of an object are considered, referring to the object in terms of its 

3D parameters is sufficient and the object itself as well as its position in space is then sufficiently 

described in terms of three orthogonal axes. However, it may be more appropriate to refer to the 

object as a spatial entity when the object is discussed in relation to living organisms. When an object 

is considered in the context of living organisms, it is not sufficient to only describe the relative 

position and orientation of the object to the subject. Other properties of the objects, such as its 

texture and colour, should also be described (Lannoch & Lannoch 1989). When the spatial nature of 

an object has been acknowledged, then, in the context of tangible user interfaces (TUIs), such an 

object is called a spatial TUI and thereby the importance of not only the shape of the object but also 

its location in space and its structure is highlighted (Jacoby, Josman, Jacoby, Koike, Itoh, Kawai, 

Kitamura, Sharlin & Weiss 2006).  

Since the current study considers an object in relation to an individual, the object is mostly referred 

to as a spatial entity. Therefore, the answer to the question: “when should a physical object be 

referred to as a 3D object, and when should it be referred to as a spatial object?” is that in this 

study, it is appropriate to refer to a physical object as a spatial object. 

3.2 Tangible objects and computer interaction 

 I discuss in Subsection 3.2.1 Ishii’s (2009) TUI model that describes personal interaction with a 

computer using tangible objects. The varieties of meanings that objects hold are covered in 

Subsection 3.2.2. Subsection 3.2.3 differentiates between active and passive identity and encoding 

mechanisms and data exchange mechanisms as either tethered or untethered. Subsection 3.2.4 then 

gives an overview of gesture modalities that have been applied in support of human-computer 

interaction. Relationships that exist between data and tangible objects are discussed in Subsection 

3.2.5. Subsection 3.2.6 concludes with a discussion on using tangible objects when creating digital 

models. 

3.2.1 Ishii’s tangible user interface model 

Dix, Finlay, Abowd and Beale (2004) describe human-computer interaction as being concerned with 

the interaction that the user has with a computer in order to accomplish a task. According to Ghaoui 

(2005), and Sears and Jacko (2009), HCI is an interdisciplinary and multidisciplinary research domain 

that emerged from computing and includes contributions from (amongst others) computer science, 

psychology, cognitive science, ergonomics, sociology, engineering, education, graphic design, and 



54 
 

  

  

industrial engineering. Ishii (2008a, 2009) reminds us that human-computer interaction design 

principles have progressed from requiring the user to remember commands and typing these 

commands (as is the case of the so-called command user interface, also written as CUI), to pointing 

at a visible rendition of the command using a computer mouse and selecting the rendition by the 

press of a mouse button (as is the case of the so-called graphical user interface, also written as GUI).  

The TUI provides an alternative to both the CUI and GUI by taking form as tangible objects that both 

represent digital data and operate as tools for direct manipulation of digital data. The TUI is in sharp 

contrast to the GUI in that the GUI multiplexes the interface mechanism (mouse) in both space and 

time whereas the TUI makes provision for a dedicated interface for the data being manipulated. 

Another contrast is that the GUI is limited to intangible data representation whereas the TUI 

supports tangible representation.  

Figure 3-3 depicts Ishii’s basic TUI model. This model associates tangible representations of data, 

digital data, or digital computations with physical objects. The model also makes provision for 

changes to the associated digital entities through manipulation of the physical objects (Ishii 2009). 

 

Figure 3-3  Ishii’s basic tangible user interface model 
(Ishii 2009) 

He extended the model to include three feedback loops. The first is passive and exists between the 

user and the object that the user manipulates. This feedback is in immediate tactile form and exists 

independently of a computer. A second and active feedback loop is between the user and a 

computer program. The output of the computer program changes as the user manipulates the 

physical objects. Changes are fed back to the user in (for example) visual form. The third active 

feedback loop is between a physical object and data. This data may represent a digital model or it 

may be the result of computation and can be used to affect physical properties of the object (Ishii 

2009). 

What Ishii’s (2009) TUI model does not reflect is how the tangible representation is conceived and by 

whom. Indeed, the majority of the literature discussed in this study does not indicate the user’s 
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involvement in determining the tangible representation. It is therefore reasonable to assume that, in 

the majority of TUI-based systems, the user is not involved in the design of the tangible 

representation and has to adapt to a predetermined representation.  

An alternative approach extensively investigated in this thesis considers the scenario where the user 

decides on the tangible representation. To this end, Ishii (2008b) describes an “organic” tangible 

representation that allows the user to shape material supplied by a system designer. Systems that 

incorporate organic tangible representation make provision for the TUI system designer to prescribe 

the basic properties of the tangible representation yet also allow the user to change the tangible 

representation. Piper, Ratti, and Ishii’s (2002) Illuminating Clay and Ishii, Ratti, Piper, Wang, 

Biderman, and Ben-Joseph’s (2004) SandScape are examples of TUI systems that include endlessly 

malleable materials to facilitate organic representations.  

Chapter 6 describes my T-logo tangible programming system that includes certain aspects of Ishii’s 

organic tangible representation. When using the T-logo programming environment, the user is free 

to decide what materials to use when constructing the programming objects.  

Fitzmaurice, Ishii and Buxton’s (1995) Graspable User Interfaces and Ishii and Ullmer’s (1997) 

Tangible Bits explored mechanisms that allow a person to directly “touch” data using graspable 

media. Ishii and Ullmer’s research categorised a user’s attention as being in either a “foreground” or 

“background” state. They argued that when the user’s attention is in the foreground the user 

focusses on the task. Conversely, they argued that when a user’s attention is in the background then 

his attention is not centred on the task and the user remains aware of her immediate surroundings 

(the periphery). Ishii and Ullmer viewed the two states as being mutually exclusive. Their graspable 

media was designed to be used at the centre of a user’s attention and their ambient media was to 

be used at the periphery of the user’s attention. They also aimed to develop a type of human-

computer interface that allows the user to “touch” data stored within the computer. They dubbed 

this type of human-computer interface a tangible user interface (Ishii & Ullmer 1997). Not only did 

they consider solid objects as potential tangible user interfaces but they also considered fluid-like 

mediums such as audio waves, visible light, flow of air, liquid, and gas that Ishii (Ishii 2009) called 

ambient media. These fluid-like mediums were recognised as possible TUIs and specifically for use in 

the background of a user’s attention. Ishii refers to objects that are both physical and graspable as 

tangible objects (Ishii 2009). My research considers a programming environment that requires 

focussed attention and the manipulation of solid objects. 
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A mapping between specific GUI elements and TUI elements emerged from research conducted 

during the 1990’s. Table 3-1 gives a selection of these mappings while Figure 3-4 illustrates them. 

Table 3-1  A selection of mappings between Graphical User Interfaces and Tangible User Interfaces 

Graphical User 
Interface 
element 

Tangible User 
Interface 
element 

Description 

window lens 
The GUI window is mapped to a tangible frame, called a lens. The lens can be 
positioned in physical space, with a display within the frame changing its 
projection under software control.  

icon phicon 
The GUI icon is mapped to a tangible object that represents specific digital data 
and can be positioned in space.  

menu tray 
The GUI menu is mapped to a physical tray that may contain one or more 
physical objects, with each object a selectable item.  

handle phandle 
The GUI handle (used in changing the size of a GUI window) is mapped to a 
tangible object called a phandle.  

widget instrument 
The GUI widget (that is often used in adjusting linear quantities) is mapped to a 
tangible slider mechanism called an instrument. 

  (Ishii & Ullmer 1997) 
  

 

Figure 3-4  A selection of mappings between graphical user interfaces and tangible user interfaces  
(Ishii & Ullmer 1997) 

According to Ishii (2008b), researchers developed TUIs that incorporate tangible materials of which 

the shape is integral to the role of the TUI. An example of a TUI of which the shape is significant to its 

meaning is the tangible equivalent of the GUI widget (see Figure 3-4, bottom right). In addition to 

the research into fluid-like TUIs for use at the background of a user’s attention, second generation 

fluid-like TUIs were also developed for applications at the centre of the user’s attention. Examples of 

second generation TUIs include sand and clay. These fluid-like TUIs can be reshaped, with their 

digital representation changing at the same time. In addition to some TUIs that can be reshaped by 

the user, other TUIs can be reshaped by software through a process called actuation. Lumen 

(Poupyrev, Nashida, Maruyama, Rekimoto & Yamaji 2004) and Ohkubo, Ooide, and Nojima’s (2013) 

“smart hairs” are examples. 

Of particular interest to my own study is Ishii’s consideration of objects that can be grasped and are 

found in the home or office environments. Ishii suggested that such objects can be used at the 

centre of a user’s attention. He and Ullmer were particularly interested in exploiting the rich 

affordances that physical objects offer. Ishii also considered the potential of architectural surfaces 

serving as tangible user interfaces, dubbing these interactive surfaces. Such surfaces were to be used 

at the centre of a user’s attention. Examples of interactive surfaces include those found as part of a 
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building structure (an office wall is an example) and those that serve as furniture (the office desk, for 

example). Having now established that physical objects can represent and manipulate data, it is 

worthwhile to consider what meanings can be attributed to physical objects. 

3.2.2 The meaning that objects hold 

For a user, an object may hold personal meaning in that it facilitates the recall of a particular 

memory. Ullmer (1997) calls these “physical objects with embedded memories”. Ullmer and Ishii 

(2000) offer a seashell as an example of an personally meaningful object that helps its owner recall a 

holiday experience. They coined the term associative tangible user interfaces to describe objects 

used independently of others to represent digital information. The advantage of using a personally 

meaningful object as opposed to an object selected by another person is that the user does not have 

to form a new mental model associating the object with the information (Hoven & Eggen 2004). 

Streitz et al.’s (1999) InteracTable is an example of systems that represent information using 

personally meaningful objects. 

To describe the multiple meanings an object may hold, Underkoffler and Ishii (1999) proposes the 

design space as illustrated in Figure 3-5. They view this object design space as a continuum. Positions 

along this continuum are identified where an object can be interpreted as being a pure object, an 

attribute, a noun, a verb, and a reconfigurable tool. In addition to these interpretations, I propose 

that an object may represent a quantity (a numeric value). Such an object represents more than 

itself and yet it does not exist in relation with another object. I therefore locate such an object in this 

design space at a position between the object as a pure object and the object as an attribute. This 

location describes an object that serves to represent a quantity that is optionally part of a set of 

discrete values. The following are examples of physical objects that represent discrete and 

continuous quantities, nouns, adjectives, and a verb. 

Object as quantity

Object as adjective

Object as adverb

Additional 
meanings 
identified 
in my 
research

 

Figure 3-5  A continuum of the meaning that objects hold 
Based on Underkoffler and Ishii (1999) 
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A glass marble is an example of an object that represents a quantity in a set of discrete values. Here, 

the set of discrete values consists of a bag filled with glass marbles and one or more marbles 

represent a quantity. A quantity described by an object may also be from a set of continuous values. 

An example of an object that represents a quantity from a set of continuous values is Dietz and 

Eidelson‘s (2009) SurfaceWare drinking glass. This drinking glass design varies the light reflected 

through the bottom surface according to the quantity of water in the glass. The system can 

determine the quantity of water when combined with an appropriate sensing surface. Figure 3-6 

illustrates the operating principle: When the content is below a predetermined level, light that 

enters from the bottom reflects back to a sensor. Conversely, no light returns when the water is 

above this level. 

Light Light
 

Figure 3-6  The SurfaceWare drinking glass 
 (Dietz & Eidelson 2009) 

The three fictitious genies (Mazalek 2001) Opo, Junar, and Seala are examples of objects that 

represent nouns. Glass bottles in Figure 3-7 represent the genie characters. Each design highlights 

the colour, texture, and form of the respective genie personality to help the user associate a bottle 

with a genie. The short and round Opo object is coloured yellow and green with a matte finish. This 

form, texture, and colour combination reflects the dull and depressive Opo personality. Junar’s 

representation is angular and cackled with pink and bright orange colours that reflect his abrasive 

personality. Seala is a water genie and her physical representation is blue, smooth, and tall. This 

combination creates an impression of flowing water. 

Opo

Junar Seala

 

Figure 3-7  Three objects represent three nouns 
(Mazalek 2001) 

Tangible program elements interlock in Oh et al.’s (2013) Digital Dream Labs programming 

environment to express a program action. The elements on the left in Figure 3-8 represent program 
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elements of a noun, two adjectives, and a verb. These can be mapped on a continuum as shown in 

Figure 3-5. A user constructs a program action by interlocking these elements as shown on the right 

and the physical constraints limit a program action to this combination of program elements. My T-

logo programming environment as discussed in Chapter 6 removes this constraint by 

accommodating multiple simultaneous instances of an object that represents a quantity. For 

example, when a quantity of 10 is called for in a program, the user is free to use a combination of 

objects that add up to this number. 

 

Object as noun

Object  as verb

Object as adjective

Object as adjective

 

Figure 3-8  Digital Dream Lab objects interlock to form a tangible programming object 
(Oh et al. 2013) 

My research considers objects that hold personal meaning for the user and are applied to computer 

programming. The two preceding subsections considered how objects represent data and the 

meanings that objects hold for the user. Still missing from the discussion is how the computer 

determines the object position. To address this, Subsection 3.2.3 provides an overview of 

technologies that feeds this data to the computer. 

3.2.3 Supportive technologies 

Tangible interaction systems include mechanisms that exchange data between the system 

components and other mechanisms that encode both the identity and position of tangible objects. A 

range of technologies support these mechanisms. Figure 3-9 illustrates my stack and system 

perspectives on the role of supportive technologies within a three-component tangible interaction 

system. The data exchange mechanisms, and identity and position encoding mechanisms (as shown 

in Figure 3-9) are discussed below.  
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Tangible interaction system

Data exchange 
mechanism

Identity/position 
encoding mechanism

System 
component

Technologies

System 
component

System 
component

System
component

Data 
exchange 

mechanism

Tangible 
interaction 

system

 

Figure 3-9  My stack and system perspectives on the relationships that exist in tangible interaction systems 
 

I classify mechanisms by which system component data are exchanged as tethered and untethered 

and I refer to the respective tangible systems that incorporate them as tethered and untethered 

tangible systems. Tethered tangible systems are characterised by wires or direct physical contact to 

interconnect components. Examples of tethered tangible systems are Horn & Jacob’s (2007) Tern 

and Suzuki & Kato’s (1995a) AlgoBlock. Untethered tangible systems incorporate objects that 

have no wires leading to other objects and neither is it a requirement that an object be in physical 

contact with other objects. Examples of untethered tangible systems are Bricks (Fitzmaurice et al. 

1995) and musicBottles (Ishii 2004) .  

In addition to classifying the mechanisms according to how data are exchanged, I also classify 

mechanisms on whether or not either the identity or the position of an object is encoded. Horn et al. 

(2008) proposed passive tangible interface terminology to describe physical objects that neither 

require a constant source of electricity nor maintain a continuous link to a digital system. Applying 

their terminology, I classify mechanisms by which data is exchanged between system components as 

either active or passive. I interpret Horn et al.’s use of the word “passive” as comprising two 

independent mechanisms. The first is the provision (or absence) of electricity supply to the tangible 

objects whereas the second considers the provision (or absence) of a link to a digital system. Figure 

3-10 illustrates my interpretation of the relationships between the mechanisms. 

To conclude, I refer to the respective tangible systems that incorporate active or passive 

mechanisms as active tangible systems and passive tangible systems. By applying my classification 

scheme, I can state that an active tangible system relies on embedded electronics to encode either 

the identity or the position of a tangible object. Examples of active tangible systems include 

Schiettecatte and Vanderdonckt’s (2008) AudioCubes and Reitsma’s (2011) StoryBeads. 

Conversely, a passive tangible system does not rely on embedded electronics to encode either the 

identity or the position of a tangible object. An example of a passive tangible system is the Marble 

track music sequencer (Fischer & Lau 2006). These examples do not consider the 
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mechanisms by which data are exchanged. Date exchange mechanisms as applied to untethered 

passive and untethered active tangible systems are discussed in the following sections. 
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Figure 3-10  My classification matrix of mechanisms in tangible systems mapped according to data exchange, and 
identity encoding/position encoding 
 

3.2.3.1 Technologies that support untethered passive tangible systems 

I map technologies that simultaneously support untethered data exchange and passive 

identity/position encoding mechanisms of the bottom-left corner in Figure 3-10. As reported in the 

literature, magnet and vision based technologies are pervasive in untethered passive tangible 

systems. Examples of untethered passive tangible systems that include magnet and vision based 

technologies are described next.  

The following illustrate magnet based technologies that support untethered passive tangible 

systems. My GameBlocks (Smith 2007b) and Dialando (Smith 2010a) systems use static 

magnetic fields to sense object position and orientation. Mazalek, Davenport and Ishii’s (2002) 

Tangible Viewpoints applies electromagnetic resonant circuits to detect objects on a 

horizontal interaction surface while Tangible Viewpoints uses loop antennas inside the 

surface to determine the position and identity of objects on top. The latter is possible by embedding 

a coil and capacitor resonator circuit inside each object. Actuated Workbench (Pangaro, 

Maynes-Aminzade & Ishii 2002; Pangaro 2003) is an interaction system in which a table top contains 

embedded electromagnets and these move objects in two dimensions under software control. The 

software also determines when the user disturbs an object. Some systems, such as those developed 
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by Ishii, Fletcher, Lee, Choo, Berzowska, Wisneski, Cano, Hernandez and Bulthaup (1999), Mazalek, 

and Lee (2001) and Ishii (2004) combine glass bottles and electromagnetic resonant circuits to detect 

the presence of bottle stoppers.  

Examples of vision-based technologies that support untethered passive tangible systems are the 

following: Jorda, Kaltenbrunner, Geiger, and Bencina’s (2005) reacTable incorporates Bencina, 

Kaltenbrunner and Jorda’s (2005) reacTIVision vision software to detect and track optical 

markers in two dimensions. The system senses the position of objects placed on the table in real 

time and gives user feedback by means of a visual display projected onto the translucent surface. 

Tangible Object Placement Codes(TopCodes) (Horn 2007, 2009) is another vision-based 

detect-and-track system based on optical markers that generates data similar to that of 

Kaltenbrunner and Bencina’s (2007) reacTIVision. Underkoffler and Ishii (1998), Underkoffler et 

al. (1999), and Underkoffler’s (1999b) I/O Bulb integrates image capturing and projection 

technology into a single object. Using I/O Bulb, objects on a flat surface are sensed and 

processed with the result then projected onto the surface. Coloured dots on the objects enable 

tracking. In the Diorama Table (Takahashi & Sasada 2005; Takahashi 2007a), a camera and 

projector are mounted above the table on which the user positions everyday objects. The visioning 

system then detects and analyses the objects and projects animated images onto the table. Another 

vision-based tangible system is Tseng, Bryant and Blikstein’s (2011) Mechanix that consists of 

magnetised tangible objects, a video camera and projector and a semi-transparent vertical screen 

with an embedded ferromagnetic mesh. The screen supports rear-projection and serves as a surface 

onto which magnetised tangibles can be attached. The camera detects optical markers on the 

tangibles and sends this data to a system for processing. Results are then projected onto the surface. 

3.2.3.2 Technologies that support untethered active tangible systems 

I map technologies that simultaneously support untethered data exchange mechanisms and active 

identity/position encoding mechanisms to the bottom-right quadrant in Figure 3-10. Inductive, 

electromagnetic, optical, and acoustic wave are examples of relevant technologies. Systems that 

incorporate these technologies are described next. 

Topological data is exchanged between tangible cubes by means of infrared light in Schiettecatte 

and Vanderdonckt’s (2008) AudioCubes. In addition to supporting inter-object communication, 

optical technologies can also be applied to position sensing. For example, infrared beacons can be 

used to associate a physical object to the room in which it is located (Want, Fishkin, Gujar & Harrison 

1999).  
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Fernaeus (2007) also applies the electromagnetic spectrum in Patcher by integrating radio 

frequency identification (RFID) tags with a reader to track the positions of objects on a floor mat. In 

addition to tracking objects, RFID-based systems can also associate physical objects with data. Want 

et al. (1999) offer two examples of RFID-based systems that associate physical objects with data. 

First, photographs on the sides of a cube contain RFID tags with the addresses of associated web 

sites. Second, an RFID tag inside a wristwatch triggers the computer to display the wearer’s diary.  

Keeping to the electromagnetic spectrum, albeit at a much lower frequency, SenseTable (Patten 

et al. 2001) incorporates inductive coupling between a sensing surface and the objects placed on the 

surface. A wire grid below the sensing surface conducts low-frequency alternating current while 

objects contain resonant circuits. These circuits absorb maximum energy at a pre-set frequency and 

by varying the frequency of the signal within the wire grid, the identity of the object can be 

determined. The object coordinates are determined by constantly alternating the row and column in 

which the current flows.  

Systems such as TViews (Mazalek 2005) rely on pulsed acoustic waves that travel along a 

horizontal surface from predetermined fixed positions. When the waves reach an object the 

detection circuitry inside the object sends infrared signals to a common receiver. In turn, the 

receiver applies triangulation techniques to calculate the position of the object on the surface. 

I conclude this subsection on supportive technologies with a comment by Horn et al. (2008). They 

comment that (when compared to an active tangible system) a passive tangible system offers the 

system designer a wider choice of materials and designs with which to implement a solution. 

Additional benefits include improved durability, improved robustness, and reduced cost. In the 

research reported on in this thesis users partially assume the role of the system designer in that the 

users are encouraged to create their own tangible objects. Having considered the above, I base my 

designs in Chapter 6 on untethered passive tangible systems. 

This section discussed mechanisms for connecting objects to the computer. Section 3.2.4 considers 

how gestures can manipulate data and associate objects with data. 

3.2.4 Supportive gesture modalities 

According to Pedersen, Sokoler and Nelson (2000), any physical object may represent a digital 

“object” and I consider data to be examples of digital objects. From this, I deduce that any physical 

object can represent data. I use the terms binding and unbinding to describe the mechanisms by 

which a physical object is respectively associated with data and disassociated from data. 
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Merrill et al.’s (2007) Siftables system uses gesture modalities to bind and unbind object to 

data. They use the term interaction language to describe these gesture modalities. The Siftables 

gesture modalities are illustrated in Figure 3-11. SenseTable (Patten et al. 2001, 2006) also 

demonstrates binding and unbinding mechanisms and the description of these are included in the 

following subsections along with Siftables.  

(e) Yes/No(d) Sugar pack snap

Gestures to bind digital information
Gesture to unbind 
digital information

Gesture to modify 
digital information

(c) Gather(b) Thump(a) Group
 

Figure 3-11  The Siftables interaction language 
 Based on Merril et al. (2007) 

3.2.4.1 Gestures for binding data 

Discrete tangible objects in the Siftables (Merrill et al. 2007) system are called squares. The 

Siftables interaction language comprises of three gesture modalities by which a square interacts 

with data. Interaction includes binding, unbinding, and modification. Binding is discussed here while 

the unbinding and modification modalities are covered in Subsections 3.2.4.2 and 3.2.4.3. 

Figure 3-11 depicts the binding gestures dubbed group, thump, and gather. Using the grouping 

gesture, the user gathers squares together to indicate that squares have something in common. The 

thump gesture assigns new data to all affected squares while the gather gesture associates a 

particular square with the aggregated data of other squares. In Chapter 6, I explore grouping 

tangible objects in my T-logo tangible programming environment.  

Three mechanisms in the SenseTable (Patten et al. 2001) system bind a puck to data and Figure 

3-12 illustrates these. The first is to place a puck nearby the projected data. An alternative is to 

position the puck within a demarcated area. Finally, the blue puck is associated with another puck 

when they are in close proximity to each other.  

3.2.4.2 Gestures for unbinding data 

To gesture that a particular Siftable (Merrill et al. 2007) should be disassociated from data the 

user holds the square and makes a swift downwards motion. Merril et al. refers to this as a sugar 

pack snap motion and Figure 3-11 (d) illustrates the action. 
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placement within a demarcated area

proximity to another object

cat proximity to projected information(a)

(b)

(c)
 

Figure 3-12  Three SenseTable mechanisms to bind physical objects to data 
 

Using the SenseTable system, the user can use any of three actions to unbind a puck from data. 

The first is to execute a series of rapid left-right puck motions whilst keeping the puck in contact with 

the sensing surface. An alternative is to remove the puck from the sensing surface. The third 

mechanism is to bind the puck to alternative data; a puck is alternatively bound and unbound to 

data when the puck is moved into a demarcated position as shown in Figure 3-12 (b).  

3.2.4.3 Gestures for modifying data 

In addition to representing data, a physical object can also modify data. Examples are Merril et al.’s 

(2007) Siftables and Patten et al.’s (2001, 2006) SenseTable systems that can associate 

objects with data and use the same objects to modify data.  

Using Siftables, a user modifies data by executing the Yes/No gesture illustrated in Figure 3-11 

(e). In the SenseTable system, a combination of three modifier objects and gestures can change 

data that has previously been associated with a puck. The first modifier object is a rotation knob that 

plugs into a puck as illustrated in Figure 3-13. Data changes when the user turns the knob. 

Cavity

Puck

Rotating knob

 

Figure 3-13  A SenseTable puck and rotation knob combination 
Based on Patten et al. (2001) 

A push button is the second modifier. Data changes when the user slides the puck-button 

combination across the input surface while depressing the button. This button also selects data. The 

third gesture is to vary the distance between two pucks. Figure 3-14 depicts two pucks that each 

represents a microphone and a music track. The music volume level changes according to the 

distance between the pucks.  



66 
 

  

  

SenseTable “Microphone” puck

“Music track” puck
Visual rendering of the 
volume level.  

Distance between pucks

Volume level

Distance between pucks
 

Figure 3-14  The distance between two physical objects alters data 
Based on Patten et al. (2006) 

Figure 3-15 is a photograph of a puck that a user has augmented with a battery. The added battery 

reminds this user what the function of this puck is. This modification inspired the design of my T-logo 

tangible programming environment in which the user assumes some of the responsibility to design 

the object. Having considered how gestures can be combined with physical objects to modify data, I 

next discuss the broader application of tangible objects to data representation. 

Battery

Puck

SenseTable

 

Figure 3-15  A battery serves as a mental reminder to its user 
Based on Patten (2005) 

3.2.5 Tangible objects and data 

According to Holmquist, Redström and Ljungstrand (1999), the combination of tangible objects along 

with their relative positions convey meaning. I now explore this concept by considering the 

semantics of representational mappings, the use of tangible objects for generating data, the 

application of tangible objects for interacting with data, detection/measurement of data, and the 

manipulation of data.  

Tangible objects can be used to interact with data and Holmquist et al. (1999) applies the following 

terminology to describe such tangible objects: container represents one or more datum, token 

describes an object that has a property that directly maps to data, and tool describes an object used 

to manipulate data. O’Malley and Fraser (2004) refer to these descriptions as the “semantics of the 

physical-digital representational mappings”.  
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3.2.5.1 Tangible objects for generating data  

In addition to tangible objects being metaphors of physical objects, they can also serve as metaphors 

of physical events and thus “generate” data. Underkoffler (1999b), Ishii (2008a, 2009), and 

Underkoffler and Ishii (1999) give examples of such metaphors in their Urban Planning Workbench 

(Urp). These are a “laser” object that generates a digital laser beam, a “wind tool” object that 

generates a digital wind, a “clock tool” object that sets the time of day in a digital model, and a 

“material wand” object that sets the “material” from which a digital model is constructed. 

3.2.5.2 Tangible objects for interacting with data  

According to Underkoffler (1999b), physical metaphors of mirrors, lenses, beam splitters, film, 

tweezers, wipers, and scrapers are examples of tangible objects that have either been applied to, or 

proposed for, affording interaction with data. In the following sections, I discuss systems that 

incorporate tangible objects that serve as data representations and systems that incorporate 

tangible objects with which to manipulate data. 

Detecting/measuring data  

Some tangible objects serve as metaphors of physical objects to “detect” and “measure” data. An 

example of such a tangible object is Ishii’s (2009) “anemometer” that measures the projected “wind 

speed” of his table-top digital modelling system.  

Manipulating data  

Ishii (2009) states that Fitzmaurice et al. (1995) founded Tangible User Interfaces (TUI) research 

when they referred to their Bricks system as a physical handle with which to manipulate a virtual 

object. What follows are examples of systems that afford data manipulation. 

Spatial compositions can be created by grouping two or more cubes, with Jacucci’s (2007) 

Videoblocks system being an example. The system interprets the resultant spatial composition 

as an edited version of an original video. Jacucci uses the term ordering by spatial association to 

describe the composition creation process, and the terminology special places to describe locations 

in space where objects are interpreted. Here, the user is given a construction kit containing items 

such as wooden building blocks and modelling clay. This construction kit is part of the video-card 

authoring system. Jacucci, Jacucci, Wagner, and Psik (2005) and Jacucci, Pain and Lee (2006) explain 

how the users craft their own tangible objects to represent video scenes. She then arranges the 

objects to form a pathway through the arrangement. This pathway determines the composition of 

the edited video. Various video clip combinations are possible by varying the pathway. The 

researchers identified that the term architectural patterns describes the arrangement well and 
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borrowed terminology from the field of architecture to label these arrangements. Examples include 

museum format, town format, geometric format, and abstract format. The museum format 

describes an arrangement in which the space is divided into themes, with each space having a single 

point of entry and exit, respectively. The town format describes a layout that resembles streets 

while the geometric or abstract format describes layouts such as circles and radial arms.  

Another example of a system that relies on an arrangement of physical blocks is Task Blocks 

(Terry 2001). These blocks are arranged to form a pipeline sequence. Certain blocks manipulate the 

data as it passes through while others set parameters that determine how data are to be 

manipulated.  

Ullmer’s (2002) mediaBlocks are physical objects of arbitrary shape and size. Embedded circuitry 

uniquely identifies each object when electrical contact is made with an interrogation circuit. Digital 

media is not stored inside mediaBlocks; instead, Ullmer, Ishii and Glas (1998) explain that digital 

media is associated with the block by means of a block’s identity. mediaBlocks serves as a 

mechanism to exchange data and also provide a physical reference to the data. When combined 

with physical constraints, mediaBlocks may be used to capture, retrieve, and edit digital media 

sequences. One mediaBlocks implementation is called the mediaBlocks sequencer. The 

mediaBlocks slots is another implementation that supports data transportation and the 

media browser device affords the browsing of the data represented by a mediaBlock. Five 

physical constraints are used in conjunction with mediaBlocks to form physical controls. Ullmer et al. 

(1998) refer to the constraints as racks, stacks, chutes, and pads.  

By combining tangible disks with a query rack, Ullmer’s (2002) system of parameter wheels and bars 

allows a user to construct database queries. Rotating the disk changes the value that it represents on 

the query rack. Physical bars can also represent database query parameters, with the distance 

between the bars setting the logical interpretation of the query parameters. A visual display 

provides user feedback. 

The Media Cubes (Blackwell & Hague 2001a) programming language incorporates tangible cubes 

that are dynamically associated with appliances when these are placed next to each other. The user 

can then control the appliance by pressing a button on the cube. 

The tangible interfaces in Patten, Recht, and Ishii (2002) and Patten et al.’s (2006) Audiopad is a 

set of circular pucks and four-sided selector pucks. The circular pucks represent data while the 

selector pucks help the user manipulate data. Both the puck position and orientation are tracked to 
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provide representation and manipulation functionality. A puck is associated with data when it is 

placed on top of a data projection. The user manipulates the associated data by rotating the puck.  

Camarata et al.’s (2002) Navigational Blocks queries a database and navigates the results. A 

query is compiled when two block types are manipulated. The first represents a time span (for 

example, “1850’s to 1890’s”). The second represents people (for example “founding fathers”). A 

block can be rotated to expose sides with various representations. A query is compiled by placing 

one of each block type next to the other thereby composing a query with time and person variables. 

Embedded electromagnets are system controlled, making it possible for one block to attract or repel 

another. These electromagnets also provide tactile user feedback. A third block type acts as a “host” 

and serves as a mechanism with which the user can navigate the search results. Navigation is 

possible by sliding the host block across the interaction surface, similar to using a computer mouse. 

As far as artefact-representation relationships are concerned, Price (2008) reports that data can be 

exposed when objects are moved in relation to each other. Mazalek et al.’s (2002) Tangible 

Viewpoints demonstrates this method when they calculate the distance between tangible 

objects to determine what data to expose to the user. In general, Tangible Viewpoints 

retrieves data associated with a tangible object when the object is placed on an interaction surface. 

Multiple objects may be used simultaneously to retrieve data associated with each object. However, 

when two objects are in close proximity to each other the retrieved data is the data common to both 

objects.  

Triangles (Gorbet & Orth 1997b) is a set of two-dimensional equilateral triangles that can be 

configured as either two or three dimensional structures. The triangular shape supports complex 

structures including decision trees. A decision tree is implemented by providing input on one side of 

a triangle and detecting the result at the other two sides. What makes Triangles particularly 

interesting to my study is that its designers considered the meaning embedded within objects and 

the meaning that emerges when these objects approach each other.  

Tangible objects and their relative positions  

According to Gorbet and Orth (1997b) and Marco (2011), the board games of chess, Monopoly, 

backgammon, dominoes, and checkers are examples of systems that embed meaning in the relative 

positions of the game pieces. In addition to these well-known systems, some computer-based 

tangible systems also rely on the relative position of the pieces. Three examples are Gorbet and 

Orth’s (1997b) Triangles and their Digital Veil, and Ullmer’s (2002) Parameter 

wheels and bars. 
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Triangles (Gorbet & Orth 1997b) exploits the meaning attached to objects by distributing 

images across triangles for the purpose of storytelling. The system produces a result when matching 

triangles are joined. According to Gorbet, Orth and Ishii (1998), the system’s behaviour is 

determined by the proximity of the TriMediaManager to the display triangle as well as 

the sequence in which the remaining triangles have been joined. In Chapter 6, I explore inter object 

spacing and their sequence in a programming context.  

Gorbet et al. (1998) and Gorbet and Orth (1997a) explain that the Digital Veil system user 

attaches personally meaningful narratives to a single or group of interlinked triangles. The narratives 

are retrieved and played back when the original triangle (or group of triangles) are attached either 

directly or indirectly to the display triangle.  

As Ullmer (2002) explains, the parameter wheels and bars tangible system is used to 

compose database queries. In this system, physical bars represent database queries and the spacing 

between the bars represents Boolean operations such as logical AND and logical OR. The AND 

operation is implied when the bars are close together while the OR operation is assumed otherwise.  

3.2.5.3 Tangible objects as containers of data 

The application of bottles as containers and controls for digital data was co-invented by Ishii (2004). 

As described by Gorbet (1998), metaphorical objects such as information eyedroppers, information 

tweezers, and information funnels are used to “place” data inside such containers. The following 

paragraphs discuss systems that incorporate glass bottles. 

The musicBottles (Ishii et al. 2001) system is an example of glass bottles used to contain data. 

Mazalek (2001) and Mazalek, Wood and Ishii’s (2001) genieBottles not only contains data but 

also controls it. Mazalek explains that a spirit is “released” when the container is opened and 

multiple spirits “interact” with each other. Replacing the stopper on a bottle confines the spirit to 

the bottle.  

Ishii, Wisneski, Brave, Dahley, Gorbet, Ullmer and Yarin’s (1998) ambientROOM is another example 

of a system in which glass bottles contain data. When the bottle is uncorked digital content such as 

internet traffic is rendered as motorcar sounds. They elaborate that when the cork is removed the 

data is “set free” to “fill” the room.  

In Lee, Vargas, Tang and Ishii’s (2012) rainBottles system a glass bottle “fills up” with a virtual 

liquid that represents network data. The tangible water bottle in Underkoffler’s (1999a, 1999b) data 
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container implementation “holds” and “transports” data. The data “inside” is visualised when the 

bottle interacts with a video projection system.  

Finally, Blackwell and Hague (2001a) explains that, within the ontological paradigm of the Media 

Cubes programming language, an open box serves as a data container. They call the box an 

Aggregate Cube.  

3.2.5.4 Tangible objects as pointers to data 

Ljungstrand, Björk and Falk (1999) and Ljungstrand and Holmquist (1999) describe by means of 

examples how tangible objects can point to data. The first is a coffee mug with a barcode sticker that 

directs the user to a particular web site. When the barcode is detected, the owner’s web browser 

opens at the site. The second example is a physical dictionary that is “tied” to an online 

encyclopaedia. The encyclopaedia is accessed when the physical dictionary does not provide 

satisfactory information.  

3.2.5.5 Tangible objects as representations of data 

Bishop’s (Moggridge 2006; Shaer, Leland, Calvillo-Gamez & Jacob 2004) Marble Answering 

Machine associates data (in the form of voice messages) with marbles. Metaphorically, the 

marbles “contain” the data but in reality serve as proxies for data residing within the answering 

machine. 

The method followed in the StoryBeads (Reitsma 2011; Reitsma, Smith & Hoven 2013) system is 

similar to Bishop’s approach and incorporates hand-crafted beads to “contain” data in the form of 

stories. Reitsma’s beads serve as proxies for the data and the stories are not contained inside the 

beads but instead in a device called the bead reader. 

Pedersen and Hornbæk ‘s (2009) mixiTUI uses loop tokens to represent sound clips and effect 

tokens to manipulate parameters. Effect tokens are dynamically associated with a loop token by 

proximity when the user places these on an interaction surface. A computer program associates loop 

and effect tokens with digital media.  

Data can be associated with positions in a garment using the Spyn (Rosner & Ryokai 2009, 2010) 

system that incorporates a specially prepared yarn. As knitting progresses, the crafter decides what 

data to associate with selected positions in the garment. Then, once the garment is completed, the 

user can retrieve the data “captured” within the garment.  

Marco’s (2011) NIKVision tabletop and ToyVision (Marco, Cerezo, Baldasarri, Mazzone & 

Read 2009; Marco, Cerezo & Baldassarri 2012) systems allow the user to apply existing and custom 
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crafted tangible objects as tokens to represent and manipulate data. User feedback is either by 

bottom-up projection onto the interaction surface or a separate computer display. These systems 

are based on Kaltenbrunner’s (2009) reacTIVision Toolkit and can be programmed to 

respond when tangible objects are in close proximity to each other. 

3.2.6 Tangible objects and digital models 

Some systems arrange tangible objects to form shapes that are then interpreted as digital models. 

Examples of physical tools that rely on their spatial properties to capture digital models are 

ActiveCube (Jacoby et al. 2006; Kitamura et al. 2001; Watanabe, Itoh, Asai, Kitamura, Kishino & 

Kikuchi 2004a, 2004b; Watanabe, Itoh, Kawai, Kitamura, Kishino & Kikuchi 2004c), Cognitive 

Cubes (Sharlin, Itoh, Watson, Kitamura, Sutphen & Liu 2002), Computational Building 

Blocks (Anderson et al. 2000), Universal Constructor (Frazer 1995), and MERL Block 

(Aish, Frankel, Frazer & Patera 2001). What sets these systems apart from others already discussed is 

that the shapes are not limited to two dimensions. The ability to capture three-dimensional shapes is 

due to their mechanical interlocking design. The computer analyses the data path that results and 

from this constructs a corresponding virtual model. Although programs that take form as three-

dimensional shapes are interesting, I limit my study to planar constructions and do not consider 

these systems further. 

3.2.7 Conclusion to this section 

In this section, I highlighted that Ishii’s(2009) basic tangible interface model does not address the 

origins of the object. My research addresses the object origin by focussing on the personal meaning 

the object holds. This section thus focussed on the meaning of objects and how these interface to 

the computer. I identified three categories of meanings to add to those already published by 

Underkoffler and Ishii (1999) and these are an object as a quantity, an adjective, and a verb. I then 

considered the technologies that connect objects to the computer and classified these according to 

how data are exchanged between the system components and how the identity and position of the 

object are encoded. My classification scheme identified two prominent categories in tangible 

systems and these are what I call untethered passive tangible systems and untethered active 

tangible systems. I next addressed gesture modalities for manipulating data and identified that the 

most prevalent measurement methods are based on the proximity between objects or the distance 

between an object and a specific position on an interaction surface. Having now considered the 

meaning an object holds, I next investigate how these objects are created. 
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3.3 User-created tangible objects 

Krippendorff (1989) discussed the relationship that exists between form and function. He considered 

the relevance of the slogan “form follows function” (an approach that abstracts the user out of the 

design process and disregards the meaning that a user attaches to the form) and argued that this 

slogan was, at the time, no longer the best approach to design. Instead, Krippendorff proposed 

“form follows meaning” as an alternative design process. Using this approach the user participates in 

the design process so that the meaning assigned by the user is captured in the final design.  

He considered form to be an objective description of something that does not consider the user. In 

contrast to the objective description, meaning always considers the user. In addition, the user makes 

sense of the artefact within the context it is considered. As Krippendorff’s model in Figure 3-16 

illustrates, an artefact has both form and meaning. According to this model, the designer primarily 

considers the form of the artefact whereas the user is concerned with its meaning. In my research, I 

consider the scenario where an individual is both the artefact designer and user. 

Product semantics

DesignerDesigner

Artefact

Form

Seen as Seen in context

Creates Acts on

Informs

Makes sense

UserMeaning

 

Figure 3-16  Krippendorff’s model of the user and the designer’s view of an artefact 
(Krippendorff 1989) 

I propose that when the artefact designer and user are the same person, then Krippendorff’s model 

can be adapted as shown in Figure 3-17.  

In the adjusted model, the user views the artefact as a form and makes sense of the form. The result 

is a form that holds meaning for the user. Because the user can also create the artefact, he can alter 

the form by either changing the current form or by creating a new one. This ability to alter the form 

can be used to the advantage of the user because he can make minor adjustments to the form over 

time, thereby refining and adjusting it to better fit the meaning that he attaches to the artefact. 
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Product semanticsProduct semantics
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Designer-cum-User

Meaning

 

Figure 3-17  Krippendorff's adapted model reflects the case where and individual is both the designer and the user 
Derived from Krippendorff (1989) 

3.3.1 Motivation for user-created tangible objects 

The meaning that individuals attach to objects may differ from one person to the next and the 

meaning may be influenced by, for example, the point in the object’s life cycle at which the person 

first encountered the object (Boradkar 2010). According to Simmel (2004), the value that two 

individuals attach to the same object may also differ. I therefore argue that it is not only the object’s 

own life cycle that influences the attached meaning but also the point in an individual’s life at which 

the object is encountered. An example of this phenomenon is the meaning that an adult attaches to 

a banknote compared to the meaning an infant attaches to it. In this example, the adult attaches a 

meaning of prosperity to the banknote whereas the infant views it as a play object. 

According to Fischer and Scharff (2000) and Nardi (1993) it is not possible for the designer to 

determine all the user’s requirements in advance. The result is a design that lacks certain desired 

properties. Keeping in mind that the designer is often physically, cognitively, or emotionally 

distanced from the target user it can be argued that the meaning that the designer attaches to an 

object may not be the same as the meaning that the user attaches to it. Krippendorff (1989) offers 

as an example the design (and use) of a motorcar and highlights the varied meanings that the 

designer and the user assign to the same artefact: Whereas the designer assigns a meaning of 

transportation to the car the user may view the car as a status symbol. The result is that the vehicle 

has two meanings simultaneously attached to it. It is therefore interesting to consider systems in 

which the individual is not only the user of an object but also the designer and creator of the object. 

As alluded to in the preceding paragraph, it is at times the responsibility of the user to define what 

the tangible interface to a system should look like and then create the tangible interface. When the 

interface design responsibility shifts from the designer to the user the result is an improvisational 
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interface (Patten 2005). In creating an improvisational interface, the interface designer is no longer 

responsible for incorporating physical affordances and metaphors into the interface. Instead, the 

user is empowered to incorporate materials at hand and change the interface to improve it. An 

example of an interface designed to accommodate the user’s preference is the hole in the common 

household key. With this design, the user is free to choose from a host of options when deciding 

what to attach to the key. As shown in Figure 3-18, options include a functional metal wire loop with 

no personal significance, personally meaningful memorabilia, and a motivational tag. 

Improvisational interface Personally meaningful objectsFunctional object

 

Figure 3-18  An improvisational interface 
 

In Chapter 6, I discuss my T-logo programming environment in which I have defined a set of digital 

program elements but have left the physical representation to the user. I have also selected markers 

to represent each program element. The marker serves as an improvisational interface to which the 

user may attach a personally meaningful object to remind him of its function as a program element. 

Figure 3-19 illustrates six examples of what the user may construct to tangibly represent a program 

element that depicts the concept of speed. The user establishes a physical representation of the 

program element by attaching the assigned marker to the object of choice. 

The concept of 
speed

Program 
element

Improvisional 
interface

Optical marker

Ink sketch Painting Greeting card Photograph Card game Ornament

Tangible 
representation

 

Figure 3-19  A marker as an improvisational program element interface 
  

3.3.2 Craft materials for, and methods of, constructing tangible objects 

Ullmer (2002) states that a strong association exists between a tangible interface and the physical 

object that embodies it. Grounded in this statement, he advocates for artefact designs that are 

aesthetically plausible to the user. My research builds on Ullmer’s assertion and gives the user an 

opportunity to construct the program elements of a tangible programming environment. 
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He investigated tools for creating tangible interfaces, including objects that are in everyday use (a 

key ring is an example), construction kits (such as LEGO (Griffin 2010)), handcrafting material like 

cardboard, traditional professional prototyping methods such as machining, and more recent 

prototyping methods that include laser cutting and 3D printing. According to Ullmer, the user faces 

two challenges when everyday objects are appropriated as tangible interfaces. The first is that the 

user may find it difficult to grasp that one object can have multiple meanings according to the 

context in which it is used. However, I am of the opinion that Ullmer’s concern will dissipate if the 

user is given the opportunity to appropriate everyday objects as tangible interfaces. 

The second challenge relates to the engineering effort required to integrate the everyday object 

with the system in which it will be used. As far as using construction kits as tangible interfaces is 

concerned, Ullmer concedes that these are useful for rapid prototyping yet have limited potential 

once the intended tangible interface concept has been demonstrated. He found the tangible 

interfaces crafted by hand to lack mechanical stability and precision if compared to traditional 

professional prototyping methods such as machining. Ullmer is of the opinion that these methods 

can be time consuming and do not support rapid design iterations. He however considers recent 

prototyping methods such as laser cutting and 3D printing to be useful in creating tangible interfaces 

due to the ease with which the design can be modified and the process repeated. 

3.3.3 Environments for creating personally meaningful tangible objects 

McCloud (1994) states that simple visual character designs are sometimes favoured over realistic 

designs. Figure 3-20 depicts two designs in adjacent panels that support the following discussion.  

A “realistic” character 
design objectifies the 
character.

A “simple” character 
design supports observer 

self-identification well.

 

Figure 3-20  A simple character design supports observer self-identification better than a realistic character design 
Based on McCloud (1994) 

The absence of strong character-forming features in the simple design on the left allows the 

observer to identify with the character. This design can be compared to a blank canvas to which the 

observer applies imaginary markings so-as to reflect his personalised character. In contrast, a 
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realistic character design on the right is rich in character-forming features that objectify the 

character; in other words, the character has its own identity that is separate from that of the 

observer.  

In theatre, performers wear masks to express a particular character. A neutral mask (Figure 3-21) 

can be used for the opposite effect, that is, to depersonalise the performer by not forcing a 

particular character but rather let the character develop as the performance progresses (Jacucci 

2007). From this, I deduce that if the system designer’s objective were for the system user to create 

personalised artefacts, it would be appropriate to provide the user with materials that have little 

intrinsic “character”. I am of the opinion that Sanders (2000) and Sherman et al. (2001) had this in 

mind when they designed paper and crayons into their toolkits. I will now discuss their research. 

 
Figure 3-21  Masks with little intrinsic character 
  (Jacucci 2007) 

In applying McCloud’s view on character design to artefacts it is plausible that an individual will best 

identify with an artefact that has few features. Sanders (2000) aligned with McCloud’s distinction 

between simple and realistic character design when he assembled his workshop toolkit. Using the 

toolkit, a participant can create an artefact to express an idea. According to Sanders, the toolkit was 

purposefully designed to include a range of simple and ambiguous parts so that the user can create 

an artefact that reflects his personal aspirations. He calls this the projective quality of the toolkit. It 

consists of tangible visual components such as stickers, photographs, sketches, coloured paper of 

various shapes, and other spatial forms. Hook-and-loop pieces on spatial forms support quick and 

simple artefact extensions. Markers and crayons are also included in this toolkit. Instructions to the 

workshop participants are simple with the only requirement being that the crafted artefact must 

hold personal meaning and that the artefact must express the way the participant feels about a 

given experience. 

In contrast to Sanders’ passive two dimensional artefact toolkit, StoryKits (Sherman et al. 2001) 

is a collection of high-tech and low-tech objects that can be combined to create tangible objects. 

High-tech items include sensors and actuators such as an electrical switch, radio frequency 

identification (RFID) technologies, a loudspeaker, and a light emitting diode (LED). Low-tech items 

include crayons, paper, boxes, and glue. Sherman et al. refer to the created objects as physical icons 

because these represent the task performed in the StoryRoom (Alborzi et al. 2000) programming 

environment. Figure 3-22 shows two objects used in the StoryRoom and these are a camera model 
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constructed using low-tech materials and a high-tech RFID system item that can trigger the model. I 

elaborate on the StoryRoom in Chapter 4.  

Low-tech item

High-tech item

 

Figure 3-22  StoryKits integrates high-tech and low-tech items 
Based on Montemayor, Druin, Farber, Simms, Churaman and D’Amour (2002) and Sherman et al. (2001) 

 

Quilt Snaps (Buechley, Elumeze & Eisenberg 2006), Spyn (Rosner & Ryokai 2008, 2009, 2010), 

and RockBlocks (Smith 2009a, 2009e) are further examples of user-crafted artefacts made 

according to personal preference. These artefacts respectively incorporate the crafts of sewing, 

knitting, and sculpting. I chose construction materials in my T-logo programming environment based 

on McCloud’s observation that the absence of strong features makes it easier for an individual to 

form personally meaningful objects. Chapter 6 discusses the materials used. 

3.3.4 Conclusion to this section 

This section considered the origins of tangible objects as applied to computer interaction. I proposed 

a modified Krippendorff model to reflect the scenario when an individual is both the designer and 

user. I also demonstrated that the improvisational interface is appropriate when personally 

meaningful objects are crafted. Based on McCloud’s discussion regarding simple character designs in 

book drawings, I identified that researchers apply similar criteria when selecting construction 

materials for research on user-created objects. 

3.4 Discussion 

Ishii’s (2009) basic TUI model describes how a user can apply a physical object to interact with data. 

However, Ishii does not include the origin of the object in his model and this is a problem since, 

according to Krippendorf (1989), the meaning that an object designer attaches to the object may not 

be the same as that of the user. Underkoffler and Ishii (1999) support Krippendorf’s view. 

Krippendorf therefore advocates that meaning should be embedded within an object instead of 

designing the object only according to the function it will serve. However, since users do not always 

associate the same meaning to an object (Simmel 2004), a single object design will not suit multiple 
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individuals. There is thus a need for individualised objects. Yet, it is not always possible for the 

object’s designer to anticipate who the users will be (Fischer & Scharff 2000; Nardi 1993) and it is 

therefore worthwhile to design systems with improvisational interfaces (Patten 2005) that allow the 

user to customise the object. 

Having now motivated for the design of systems that will allow the user to create personally 

meaningful objects, the next problem to consider is what materials to provide to the user. The 

problem lies in that these can already hold meaning. It is for this reason that McCloud (1994) and 

Jacucci (2007) explain that in order for the user to assign her own meaning to an object, it is best to 

use objects that do not already include strong meaning forming elements. This may explain why 

Jacucci et al. (2005, 2006), Alborzi et al. (2000), Buechley, Elumeze and Eisenberg (2006), Sanders 

(2000), Rosner and Ryokai (2008, 2009, 2010), and Sherman et al. (2001) supply to their users 

meaning-neutral resources including crayons, wood, clay, cloth, wool, paper, and glue . 

3.5 Conclusion 

This chapter focussed on tangible objects, how these are used, and where they originate. I adapted 

Krippendorff’s object creation model to reflect the case where the designer and user is the same 

person. I then reported on literature that describes instances where the user either modifies or 

creates objects that hold personal meaning. The materials and mechanisms employed to this end 

were also discussed. Having now considered user-created tangible objects and how these are used 

for computer interaction, Chapter 4 will focus on tangible objects that serve as program elements 

and those programming environments that incorporate user-created objects. 
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4.1 Introduction 

Chapter 2 covered the theoretical background to this study by considering how programs are used 

to control the behaviour of computers thereby making the general-purpose computer a task-specific 

instrument. That chapter also discussed the meaning signs hold for humans (semiotics) and that 

programs serve as sign containers. Fundamental to semiotics is the way in which the brain 

perceptually organises stimuli. Signs will not be recognised and the stimuli will hold no value if the 

received stimuli is not properly organised. Gestaltists have identified principles that describe this 

organisation and I explored some of these.  

In Chapter 3, I considered how tangible objects are used to interact with the computer. I also 

presented Ishii’s (2009) model and identified that his model does not include the origin of physical 

objects. Also covered is how the object designer’s view differs from the user’s view of the same 

object. I proposed an adapted version of Krippendorff’s (1989) model in which the designer and the 

user are the same person thereby eliminating possible misunderstanding between the two parties as 

far as the significance of the object is concerned.  

Programming, as discussed in Chapter 2, is mostly based on text and graphics. Some researchers 

have developed physical signs that form programs while other researchers include the user in the 

design of the signs. However, the design of signs by explicitly considering Gestalt principles of visual 

organisation remains unexplored.  

Having discussed in preceding chapters how computer programming incorporates signs, how the 

formation of signs can be expressed by certain Gestalt principles, and how physical objects can serve 

as signs in general, I now consider those environments in which the program consists of physical 

signs. Therefore, the objectives of this chapter are twofold. First, to identify literature that reports 

on tangible object programming environments. Second, to investigate literature where the user is 

the creator of the objects that comprise a tangible program.  

Section 2 considers the difference between physical and tangible environments and I offer 

definitions for their respective programming environments. Section 3 debates tangible programming 

environments, making a distinction between environments in which the user is given objects and 

environments in which the user designs and constructs objects. The discourse also covers the Gestalt 

principles of perceptual grouping. In Section 4, I discuss Gestalt principles present in tangible 

programming systems and I suggest how personally meaningful objects can be included in systems 

not designed for this purpose. Section 5 concludes this chapter. 
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Figure 4-2  Chapter outline 
 

4.2 Distinguishing between physical and tangible programming 

Tangible programming refers to the act of manipulating graspable objects with the purpose of 

creating a structure or an arrangement that will be interpreted as a program. Such computer 

programs take form as structures or arrangements of physical elements. Systems developed by Bers 

and Horn (2010) and McNerney (1999) are examples of structures and arrangements that serve as 

programs. The act of creating a program this way has also been referred to as physical programming 

(Mukherjee, Sharma & Prakash 2002).  

Even though the terminology tangible programming and physical programming are used 

interchangeably, I view them as distinctly separate and different activities. I consider the term 

tangible programming most fitting to this study and therefore limit my discussion on physical 

programming to Section 4.2.1 and elaborate on tangible programming in Section 4.2.2.  

4.2.1 Physical programming 

Physical programming has been described as the act of defining the interactions between objects 

within a room (Sherman et al. 2001). In turn, Montemayor et al. (2002) defines physical 

programming as “the creation of computer programs by physically manipulating computationally 
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augmented (or aware) objects in a ubiquitous computing environment”. Montemayor et al.’s 

definition has been applied to a programming environment that comprised of a room in which 

objects were scattered and programming was done by demonstrating what actions must be taken 

when an event occurs (also called programming-by-demonstration). Based on Montemayor et al.’s 

definition of physical programming, I define a physical programming environment as follows:  

 Physical Programming Environment  
A physical programming environment is an omnipresent computing environment in 
which computationally augmented or aware objects are manipulated to create a 
program. 

4.2.2 Tangible programming 

The term tangible programming was coined in 1994 to describe the AlgoBlock system (McNerney 

2004). For the purpose of this study, I will use tangible programming to describe the activity of 

constructing a program consisting of physical objects that can be grasped by hand and manipulated 

using the fingers. Used in this way, tangible programming excludes virtual objects such as visual 

symbols rendered on a computer screen. 

Suzuki and Kato (1995b) describe a tangible programming language as being a program language 

with physical presence. A tangible programming language also serves as a mechanism with which to 

instruct a computer to take action (Bers & Horn 2010) and is comprised of elements. Wyeth & 

Purchase (2002) use the term tangible programming elements to describe their stackable blocks that 

both form the computing structures and interact with the physical world.  

According to McNerney (1999), the origins of tangible programming remains unresolved and it has 

been suggested that Perlman’s (1976) TORTIS system’s Slot Machine was the first implementation of 

a tangible programming language. In Chapter 6, I use the terminology tangible programming and 

tangible program elements to discuss my tangible programming environments.  

4.2.2.1 The tangible programming environment 

I base my distinction between physical and tangible programming environments on three concepts. 

The first is what McNerney (1999) calls the graspable property of a tangible programming 

environment. The second is the nature of the (at times immovable) objects in the physical 

programming environment, and Montemayor et al.’s (2002) ubiquitous computing environment in 

the third. Based on these concepts, I now define a tangible programming environment as follows: 

 Tangible Programming Environment 
A tangible programming environment is a computing environment in which a static 
arrangement of graspable objects constitute the program. 
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4.2.2.2 Useful characteristics of tangible programs 

Using tangible objects as a computer program presents interesting characteristics, with some 

already explored by Fernaeus and Tholander (2006). Two characteristics of particular relevance to 

my study are the persistence of physical code and how humans interpret it. 

Some tangible programming systems reuse the same object to create a program, yet others such as 

AlgoBlock (Suzuki & Kato 1994) dedicate a particular object to a specific position in the program. In 

the case where an object is dedicated to a specific position within the program the result is a 

program composed of physical artefacts (Suzuki & Kato 1995b) and the composition is referred to as 

graspable software (Montemayor 2001). To the user, a tangible program takes form as a collection 

of physical objects (Fernaeus & Tholander 2006) and often on a flat surface such as a table top. In 

contrast to text and graphic programs, the user is able to view the complete program at a glance 

without relying on technology to interpret an intangible program and render it as symbols on a video 

monitor. 

In this study, I am interested in applying personally meaningful tangible objects as program elements 

that remain in place once the program has been constructed. Chapter 6 explores this concept 

further where I discuss the evolution of my T-logo programming environment. 

4.2.2.3 Tangible programming styles 

McNerney (1999) discusses programming styles that have successfully been applied to tangible 

programming environments. These include the imperative, functional, rule-based, behaviour mixing 

(with priorities), and database query programming styles.  

A program constructed in the imperative style is evaluated sequentially with only one instruction 

being executed at a time (McNerney 1999, 2004). The program also has states and side effects due 

to its modifiable variables, data structures, and objects. The application of this style results in an 

algorithm that provides systematic instructions (also known as imperatives) for execution. 

In contrast, a program constructed in the functional style is not evaluated sequentially, nor has side 

effects (McNerney 1999). When applying this style, the user only states what is to be computed but 

not how it should be done. An electronic spreadsheet is an example of a system that applies this 

style (McNerney 2004).  

A program constructed in the rule-based style consists of separate rules, each of which can be 

modified independently of the others. McNerney (McNerney 1999) suggests that the rule-based 

style is suitable to tangible programming environments. I explore this style further in Chapter 6. 
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The behaviour mixing (with priorities) tangible programming style combines various behaviours and 

these are prioritised as part of the program definition. An arguable example of a tangible 

programming system using this style is Schweikardt and Gross’s (2006) roBlocks system as discussed 

in Section 4.3.1.3. 

Finally, an example of a program constructed in the tangible database query style consists of stacks 

of physical query parameters: A single stack represents the logical AND statement in which all the 

conditions in the particular stack are evaluated as a group whereas multiple linearly aligned stacks 

represent the logical OR operation. Figure 4-3 illustrates this concept by means of a database query 

that considers eye colour, hair colour, and height.  
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Figure 4-3  An example of a tangible database query 
Based on McNerney (1999) 

In Chapter 6, I continue to explore groups of tangible program elements by considering certain 

Gestalt principles of perception. For example, I propose that the stacks in Figure 4-3 need not lie 

along an imaginary line and that it is sufficient for the stacks to be perceptually grouped as Figure 

4-4 illustrates.  
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Figure 4-4  The Gestalt principle of perceptual grouping applied to the tangible database query style 
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4.2.2.4 Tangible programming modalities 

Lund (2003, 2004) describes programming-by-building as the assembling of discreet tangible blocks 

into a single machine. In such systems, the three-dimensional topology of linked objects defines the 

program. These links are either mechanical or inferred. An example of a programming-by-building 

system with mechanical links is Ngo and Lund’s (2004) I-BLOCKS.  

The term tangible programming-by-example describes a programming modality by which the user 

manipulates tangible objects and instructs the system to store this interaction sequence. When 

using this modality, the user manipulates the objects whilst the system simultaneously monitors the 

manipulation sequence and object topology. This modality is also referred to as programming by 

tangible demonstration (Frei, Su, Mikhak & Ishii 2000), programming-by-demonstration (Knoll, Weis, 

Ulbrich & Brändle 2006), and gestural programming-by-example. 

Some systems that incorporate the programming-by-example modality can animate user-generated 

manipulation and I call these kinetic-kinetic systems. Topobo (Raffle, Ishii & Yip 2007; Raffle, Parkes, 

Ishii & Lifton 2006; Raffle, Parkes & Hiroshi 2004; Raffle 2008) is an example and includes objects 

with embedded sensors and actuators. Using Topobo, the user creates a program by interconnecting 

the objects and physically manipulating them. This system then re-enacts the movements when 

instructed. Chung, Shilman, Merrill, and Ishii (2010) states that the kinetic-kinetic programming 

modality was pioneered by the Topobo project. However, this statement does not consider the 

CurlyBot project that predates Topobo. To program CurlyBot, a user gestures motions while 

simultaneously pressing the record button. Programmed motions are later re-enacted (Frei et al. 

2000) when activated.  

Certain programming-by-example systems do not animate physically and I refer to these as kinetic-

passive systems. Chung et al.’s (2010) OnObject is an example of a kinetic-passive system with which 

the user associates auditory responses to his manipulations. The associated auditory responses are 

later replayed when the manipulations are repeated. Active Surfaces (Grönvall, Marti, Pollini & Rullo 

2006) and StoryRooms (Alborzi et al. 2000; Montemayor, Druin, Chipman, Farber & Guha 2004; 

Montemayor et al. 2002) combined with StoryKit (Sherman et al. 2001) objects are two more 

examples of kinetic-passive systems. 

4.2.3 Conclusion to this section 

In this section, I made a distinction between physical and tangible programming by highlighting the 

differentiating aspects of each: First, physical programming requires a computationally ubiquitous 

environment whereas in a tangible programming environment this is not a requirement; instead, it is 

only the tangible object that requires computational abilities. Second, a physical program includes 
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immovable objects whereas tangible programming objects can be grasped and manipulated by 

hand.  

The following section focusses on existing tangible programming environments. In particular, it 

distinguishes between those environments in which programming objects are given to the user 

(Section 4.3.1) and those in which the user designs personally meaningful objects (Section 4.3.2). 

4.3 Tangible programming environments 

Having discussed the general concepts of programming and programmable systems in Chapter 2, I 

now re-examine these concepts by focussing on environments in which tangible objects define a 

program.  

4.3.1 Environments that incorporate supplied objects 

In this section, I discuss the group of tangible programming environments in which the user 

incorporates existing objects in the construction of a program. I categorise such environments 

according to the number of dimensions required to describe the program.  

4.3.1.1 Objects utilised for their one dimensional property 

All physical objects occupy space in three dimensions yet a single dimension sufficiently describes 

the properties of some objects. The dressmaker’s tape is an example of such an object with only the 

distance between the markings a being relevant. When in use, the tape does not have to lie along a 

straight line and may follow the contours of the object measured. Similarly, a single dimension 

sufficiently describes some tangible programs. What follows are descriptions of programming 

systems in which a single dimension is sufficient to describe the program.  

 Physical macros 

De Guzman and Hsieh’s (2003) physical macros system is a collection of tangible cardboard 

rectangles that are arranged to manipulate digital images. These transformations include rotating, 

horizontal and vertical flipping, resizing, and changing the colour depth of the image. To use this 

system, the user chains physical icons (also called phicons as already discussed in Chapter 2) 

together and optionally replaces this chain with a single phicon. The approach to replace a group of 

phicons with a single phicon (as is done in this system) is particularly appropriate to programming 

environments in which the elements that comprise the program (such as symbols on a computer 

display, or tangible objects on a horizontal surface) remain in place when the program is complete. 

This is because better use is made of the available programming area when a single representative 

phicon replaces multiple phicons. This approach is similar to the gather gesture applied in the 

Siftables (Merrill et al. 2007) interaction language already discussed in Chapter 3. Oh et al.’s (2013) 
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instance block is another example of how a single phicon can be applied as a substitute for multiple 

objects. In Chapter 6, I further consider phicon grouping by highlighting the Gestalt principle of 

grouping by proximity.  

Table 4-1  Summary table of physical  

Programming style 
Programming 

modality 
Persistent 
program? 

Gestalt principles 
Number of physical 

program dimensions 
Functionality 

Imperative 
Programming-

by-building 
Yes Good continuation 1 Image editing 

 

 Physical strings 

Patten, Griffith, and Ishii’s (2000) physical strings programming system is based on the way physical 

strings are configured to connect events with actions. Timers, light sensors, and pressure sensors 

generate events. Actions can pause program execution and control the behaviour of a robot such as 

forward and backward movements and turning. A program is constructed when the user maps 

events to actions by attaching one end to a board listing all expected events and the other end to a 

second board with all possible actions. Actions may be strung together so that one action flows into 

another. Program statements are executed concurrently when a single event is connected to 

multiple actions in parallel. Although not considered by the authors, it is conceivable for the user to 

customise the appearance of the string and thereby signify the logical relationship that exists 

between an event and the programmed action. An example is to attach a written note or diagram 

that depicts the cause and effect rule to the string.  

Inspired by Patten et al.’s (2000) physical strings programming system, I present in Figure 4-5 a 

tangible programming concept in which the Gestalt principles of good continuation and perceptual 

grouping by proximity are explicitly applied. At the top in this figure, six artefacts represent actions 

and one artefact represents an event. The bottom portion of this figure shows the same objects but 

now arranged according to two Gestalt principles. The first principle perceived on the left is grouping 

by proximity and this is due to the close arrangement of the yellow, orange, and blue artefacts. The 

second Gestalt principle is that of good continuation. Two instances of good continuation are 

evident in this figure with an imaginary line seemingly stretching from the left to the top right and 

another from the left to the bottom right. For the observer it is as-if the two imaginary lines stem 

from the yellow “event” artefact. When considered in the context of a program, the artefacts that lie 

along these imaginary lines represent a sequence of program instructions. The overall effect is that 

an event simultaneously triggers instruction sequences A and B. 
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In Chapter 6, I extend this concept by providing the user with an opportunity to customise artefacts 

that represent events and actions. I also explore how the simultaneous application of the Gestalt 

principles of good continuation and grouping by proximity link events with actions.  

Table 4-2  Summary table of physical strings 

Programming style 
Programming 

modality 
Persistent 
program? 

Gestalt 
principles 

Number of physical 
program dimensions 

Functionality 

Imperative 
Programming-

by-building  
Yes 

Good 
continuation 

1 
Image 

transformations 

 

Parallel execution

Sequence A

Sequence B

Grouping by 
proximity

Principle of good 
continuation

Principle of good 
continuation

“Event” artefact “Action” artefacts

Event and action representations

Grouping and good continuation

 

Figure 4-5  Gestalt principles applied in an arrangement 
 

 

 Electronic Blocks 

Electronic Blocks (Wyeth & Wyeth 2001) is a set of interlocking plastic blocks with which the user 

constructs a program by stacking the blocks. The user identifies a block’s function by either 

memorising the function according to the block colour, by interpreting the sign on the block side, or 

by inferring the function based on the protrusions. Yellow sensing blocks incorporate icons that 

indicate their sensing modalities. For example, an eye icon represents a block that can “see” and the 
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& symbol represents the logic AND operation. An action block produces a physical output with light 

and sound being two examples of this. A movement block is equipped with four wheels and an 

electric motor. Logic blocks perform computational operations based on their inputs and include 

logical NOT, AND, signal inversion, and signal delay. Again, attached symbols indicate the function of 

a logic block; for example, the & symbol represents the logic AND operation (Wyeth 2008).  

In Chapter 6, I explore the design of an environment in which program element functionality is 

encoded in a personally meaningful manner. In such an environment personally meaningful program 

elements is the result of the user choosing the appearance and construction material. 

Table 4-3  Summary table of Electronic Blocks 

Programming style 
Programming 

modality 
Persistent 
program? 

Gestalt principles 
Number of physical 

program dimensions 
Functionality 

Imperative 
Programming-

by-building  
Yes 

Good 
continuation 

1 
Mechanical 
animation 

 

 TORTIS 

Although primary sources are limited, good secondary sources such as Kahn (1996), Morgado, Cruz 

and Kahn (2006), and Jetsu (2008) describe Perlman’s (1974, 1976) TORTIS slot machine component 

design and operation. To create a program, the user places cards sequentially along a horizontal slot 

and the result is interpreted from left to right.  

The user can also program subroutines by adding a directive card to the sequence. This card is of 

uniform colour and directs program execution to another slot where a matching card in the left-

most position indicates the continuation point. Control returns to the first sequence when the 

second sequence ends. Although not explicitly stated by Perlman, the combination of mechanical 

constraints and the Gestalt principle of good continuation serve to guide the user in program 

construction. I incorporate the Gestalt principle of good continuation in all my design iterations as 

discussed in Chapter 6. My final design completely negates the need for mechanical constraints and 

instead relies only on the Gestalt principle of good continuation.  

Table 4-4  Summary table of TORTIS 

Programming style 
Programming 

modality 
Persistent 
program? 

Gestalt 
principles 

Number of physical 
program dimensions 

Functionality 

Imperative 
Programming-

by-building  
Yes 

Good 
continuation 

1 
Image 

transformations 
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 Robo-Blocks 

Sipitakiat and Nusen’s (2012) Robo-Blocks controls a floor robot based on a program constructed 

from command blocks and a master block. This is done by aligning command blocks with the master 

block. All blocks contain embedded electronic circuitry while magnets on the sides provide 

mechanical stability and electrical communication pathways. The master block interrogates the line 

of command blocks to determine their sequence. The robot can be programmed to turn left and 

right, move forward and back, prepare to draw, stop drawing, and make sounds. Rotation knobs can 

set program parameters.  

In Chapter 6, I incorporate similar instructions in my T–Logo tangible programming environment. 

However, instead of setting a parameter value by means of a rotation knob, T-Logo derives the value 

from a set of grouped objects. 

Table 4-5  Summary table of Robo-Blocks 

Programming style 
Programming 

modality 
Persistent 
program? 

Gestalt principles 
Number of physical 

program dimensions 
Functionality 

Imperative 
Programming-

by-building  
Yes 

Good 
continuation 

1 
Image 

transformations 

 

 Turtan 

When constructing a program using Turtan (Gallardo et al. 2008), the user positions program objects 

along an imaginary line on top of the programming surface. A program can incorporate seven 

elements referred to as move without painting, move and paint, rotate, scale, change colour, repeat, 

and start. Elements that take numerical parameters derive these from the direction in which the 

object points.  

Objects need not actually touch to indicate the sequence in which they should be interpreted; 

instead, implicit links are created based on the distance between objects. I use the terminology 

implicit linking to describe the mechanism by which such connections are made. Implicit linking may 

be either dynamic or static and Gallardo et al. (2008) experimented with both. In general, linking is 

determined by finding the geometrically shortest distance between a newly introduced object and 

existing program objects. If this object is later moved its closest object may no longer be the original 

to which it was linked. In the case of static links, the existing link is not severed when the object is 

moved. However, for dynamic linking, the link is severed and the object is then linked to one that is 

geometrically the closest. Although not stated explicitly, the dynamic linking mode incorporates the 

Gestalt principle of grouping by proximity.  
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Also inferred is that the Turtan design relies on the user’s ability to place objects according to the 

Gestalt principle of good continuation. Figure 4-6 illustrates the Gestalt principle of good 

continuation by superimposing a dashed line onto a representation of a Turtan program. In Chapter 

6, I not only incorporate the Gestalt principles of good continuation in the design of my T-logo 

programming environment but also add grouping by proximity.  

Tangible object

Good continuation trajectory

 

Figure 4-6  The Turtan system incorporates the Gestalt principle of good continuation 
Adapted from Gallardo et al. (2008) 

 

Table 4-6  Summary table of Turtan 

Programming 
style 

Programming 
modality 

Persistent 
program? 

Gestalt principles 
Number of physical 

program dimensions 
Functionality 

Imperative 
Programming-

by-building  
Yes 

Good 
continuation 

1 Image transformations 

 

 ReacTable 

Jorda et al.’s (2005) ReacTable is a dynamic tangible programming environment in which the objects 

are placed on a horizontal surface. The function of the program is determined by the relative 

positions of the objects and their pre-assigned functions. No physical links exist between the objects 

and associations are dynamically created and destroyed as the relative positions change. An object 

can take the form of a cube, thereby exposing one of six sides for interpretation. Manual rotation 

around the axis perpendicular to the table surface adjusts an associated parameter.  

Of interest to my research is the mechanism by which objects are associated with each other. To 

make an association between objects, the user applies the Gestalt principle of perceptual grouping 

by proximity and places the relevant objects in close proximity to each other in such a way that they 

appear to form a group that is separate from any other objects close by. Once the ReacTable system 

has identified this grouping, the user is free to move the objects apart while still keeping the 

grouping intact. Figure 4-7 is a photographic depiction of the ReacTable programming surface. 
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Figure 4-7  The ReacTable and the Gestalt principle of perceptual grouping by proximity 
Jordà, Julià and Gallardo (2010) 

 

Table 4-7  Summary table of ReacTable 

Programming 
style 

Programming 
modality 

Persistent 
program? 

Gestalt principles 
Number of physical 

program dimensions 
Functionality 

Functional 
Programming-

by-building  
Yes 

Grouping by 
proximity 

2 
Waveform generation 

and transformation 

 

 SiteView 

SiteView (Beckmann & Dey 2003) is a system that combines interactors, a world-in-miniature 

(Stoakley, Conway & Pausch 1995), and a condition composer. Figure 4-8 is a photograph with 

descriptive annotations of a typical SiteView programming environment. A program is comprised of 

user-defined rules that include actions and conditions. Action interactors determine how the 

physical world should change while condition interactors represent real world states.  

Action 
interactor

Condition 
interactors

 

Figure 4-8  The SiteView tangible programming environment 
Based on Beckmann and Dey (2003) 

Program rules are recorded when the user demonstrates what actions follow when certain 

conditions hold. The user does this by placing action and condition interactors in their respective 

designated positions on the table. The programming interface design is such that the action and 

condition interactors remain spatially separated. Using as an example the control of a light, Figure 
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4-8 illustrates the SiteView programming environment that demarcates to the user the areas where 

to place the condition interactors. These areas are: on the left for the weather condition, in the 

centre for the time of day, and to the right for the day of week.  

In Chapter 6, I consider an alternative approach to setting the program rules: Instead of assigning 

four spatially separated areas respectively for three condition interactors and one action interactor, I 

apply the Gestalt principle of perceptual grouping by proximity. Figure 4-9 demonstrates how the 

rule in Figure 4-8 can be implemented using my approach. 

Action interactor

Condition interactor

Perceptual grouping by proximity

 

Figure 4-9  My application of the Gestalt principle of perceptual grouping by proximity to SiteView 
 

 

Table 4-8  Summary table of SiteView 

Programming 
style 

Programming 
modality 

Persistent 
program? 

Gestalt principles 
Number of physical 

program dimensions 
Functionality 

Rule-based 
Programming-

by-example 
No  None 1 

Environmental 
control 

 

 Media Cubes 

Blackwell and Hague’s (2001a) Media Cubes is a programming-by-demonstration system that 

consists of cubes. Images and text labels embellish the sides and these represent objects, states, and 

actions in the physical world. A program rule is comprised of a “when” part and a “do” statement 

(Hague, Robinson & Blackwell 2003). The “do” statement is executed if the “when” world state holds 

true.  

To create a rule the programmer selects cubes with representative faces of the object, the world 

state, and an action. The user then holds together two cube faces representing “when” and the 

requisite world state, respectively. She also presses a button on each of the two cubes to indicate 

that this configuration should be recorded (Blackwell & Hague 2001b). This action sets the “when” 

part of the program rule. The “do” part is set when cube faces representing the object and desired 

action are pressed together.  
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The authors envisaged a version in which the controlled object is not only represented by a cube, 

but can be directly incorporated into the programming activity. For example, to set the  

“do” part of a program that turns a coffee maker machine on, the user holds the cube face 

representing a “power on” action directly to a suitably augmented coffee making machine and then 

presses a button on the cube and one on the machine to record the action.  

Of particular interest to my research is the aggregate cube. An aggregate cube represents all the 

objects placed inside it. It can therefore represent a collection of objects, events, or actions. 

Conceptually, an aggregate cube is similar to Oh et al.’s (2013) Digital Dream Lab instance block as 

described elsewhere in Section 4.3.1.2. When viewed in context of the Gestalt principles, the 

aggregate cube can be regarded as a physical constraint that affords grouping by common region. In 

Chapter 6 I discuss the use of physical constraints as a means to group program elements. 

Table 4-9  Summary table of Media Cubes 

Programming style 
Programming 

modality 
Persistent 
program? 

Gestalt principles 
Number of physical 

program dimensions 
Functionality 

Rule-based 
Programming-

by-example 
No 

Grouping by 
proximity 

1 
Environmental 

control 

 

4.3.1.2 Objects utilised for their two dimensional properties 

A notation incorporating two dimensions is sufficient to describe certain tangible programs such as 

the Digital Dream Lab (Oh et al. 2013). This puzzle block system implements a token-and-constraint 

metaphor. Tokens include a character, animation type, colour, and size. These tokens are 

respectively referred to as character, animation, color [sic], and size blocks.  

Blocks are shaped as puzzle pieces and constrain placement so-as to guide the user. The size block 

affords a mechanism with which the user can change the character’s size. Jacucci (2007) refers to 

such an element as a utensil. This block is disk-shaped and fits in a circular cutout of the character 

block. The animation block determines the action the character performs and the colour block sets 

its appearance. A component block is another optional constraint that is used to hold tokens. 

Instance blocks are compact virtual copies of the component block and its tokens. A user may apply 

the instance block in the program as-if it is an exact copy of the associated component block. 

Multiple copies of the component block may therefore exist simultaneously in a program. The 

relevant attributes of all copies are affected when the user changes or adjusts the tokens of a 

component block. Figure 4-10 illustrates a component block with tokens and its associated instance 

block.  
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Instance block

Component block

Colour block

Animation block

Size block

Character block Tokens

 

Figure 4-10  The instance block is functionally an exact copy of the component block 
Based on Oh et al. (2013) 

The Gestalt principle of grouping by common region is evident in a system that constrains multiple 

tokens to the same area. In Chapter 6, I explore the token-and-constraint metaphor using wooden 

hoops to define the constraining area. However, instead of restricting the number of tokens and 

their positions within the common region as Oh et al. (2013) do, the user is free to place multiple 

tokens of the same type in the same region. In addition, the user may adjust the relative orientations 

of the tokens according to personal preference. 

Table 4-10  Summary table of Digital Dream Lab 

Programming style 
Programming 

modality 
Persistent 
program? 

Gestalt principles 
Number of physical 

program dimensions 
Functionality 

Functional 
Programming-

by-building  
yes 

Grouping by 
common region 

2 Animation 

4.3.1.3 Objects utilised for their three dimensional properties 

Some tangible programs can only be described using a system comprising of three dimensions. 

Examples include Schweikardt and Gross’s (2006) roBlocks and Marti and Lund (2004) and Ngo and 

Lund (2004) and Nielsen and Lund (2008) and Nielsen’s (2002, 2008) I-BLOCKS. These also happen to 

be physical programming systems in which the configuration of the physical artefact serves as both 

the program and the object being controlled. Both systems consist of discrete cubes that are 

physically and electronically interconnected. The cubes sense the physical world, perform 

calculations based on what has been sensed, and control actuators according to the calculation 

results. Data flow through these cubes according to their physical typology. 

In the case of roBlocks, the flow of data does not simply originate at a cube and terminate at 

another; instead, the data propagate throughout the structure and reaches all cubes. The priority 

with which a cube deals with data varies according to the distance data have propagated through 

the structure. Priority decreases in direct proportion to the distance. Therefore, when multiple data 

streams reach a cube the data that has propagated along the short distance has the greatest effect. 
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Table 4-11  Summary table of roBlocks 

Programming style 
Programming 

modality 
Persistent 
program? 

Gestalt principles 
Number of physical 

program dimensions 
Functionality 

Mixed behaviour with 
priorities 

Programming-
by-building 

Yes 
Good 

continuation 
3 

Mechanical 
animation 

 

4.3.2 Environments that incorporate objects with personal meaning 

In this section, I discuss the group of tangible programming environments in which the user creates 

or uses objects of choice when constructing a tangible program. The space allocated here to the 

StoryRoom environment reflects its contributions to this thesis. One contribution is to base rules on 

the Gestalt principle of perceptual grouping by proximity. Another is that the order of objects within 

the group is not significant.  

4.3.2.1 StoryRoom 

Brainstorming activities helped define Montemayor et al. (2002), Montemayor (2003), and 

Montemayor et al.’s (2004) StoryRoom physical programming environment in which the user 

combines low-tech and high-tech objects to create program elements. Brainstorming transpired at 

the University of Maryland’s Human-Computer Interaction Lab where adults and elementary school 

children participated. Two visual language designs emerged from the brainstorming activities and 

these served as inputs to the final StoryRoom design. The third and final programming language 

involves spatial gestures and takes no physical form. All designs use grouping to define a program.  

The following discussion first addresses the final programming language design and then the initial 

and second designs. This unusual approach allows the narrative to develop useful examples that are 

subsequently applied to describe important concepts that emerged from the initial and second 

design iterations. 

 The final programming language 

StoryRoom is a room-sized area that contains passive props and active physical icons (phicons). In 

this space, phicons sense the environment and act according to the user’s program rules. To tell a 

story, the user combines props with phicons and creates program rules. The user designs and 

constructs props according to his personal preference. Placing a phicon and a prop close together 

establishes a mental bond between the two. 

The final StoryRoom programming environment incorporates a wand, actuator phicons, and sensor 

phicons. Figure 4-11 depicts the wand, two light actuator phicons, and three pressure sensing 

phicons. The wand has two ends: the star shaped ‘yes’ end signifies a constructive action and the 
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cross-shaped ‘no’ end corresponds to a destructive action. A program rule is defined when the user 

touches the wand to one or more phicons. Corresponding actions are added to the program when 

either end touches the phicon. For example, when the user touches a light phicon using the ‘yes’ 

wand end, an action to turn the light on is added to the current rule. Conversely, touching the same 

phicon with the ‘no’ wand end sets a rule to turn off the light. Like textual and graphic programs, 

rules do not manifest as tangible entities and exist only in computer memory.  

Sensor phiconsActuator phicons

A B CX Y

Button

Wand

‘No’

‘Yes’

 

Figure 4-11  A selection of StoryRoom physical programming elements 
Based on Montemayor (2003) 

The user indicates the start of a new rule by briefly pressing the button on the wand. This button 

press is a temporal activity that serves to group phicon events into a single program rule and rules 

can include multiple phicon events. A rule is finalised when either the programming mode is exited 

or when the button is pressed again at the onset of a new rule. 

Sensing phicons in a rule are interpreted as if they are combined with a logical AND operation. Rules 

function independently of each other much like the logical OR operation. To elaborate, when a rule 

contains multiple sensing phicons the rule only executes when all have been triggered 

simultaneously. Likewise, all actuating phicons in a rule execute together when it triggers.  

The following two programs demonstrate how the wand, sensors, and actuators are used. The first 

demonstrates the creation of a rule that will result in the actuation of object X when objects A and B 

are triggered together. To construct the program, the user momentarily depresses the button and 

then touches objects A, B, and X using the ‘yes’ end of the wand. Now, the programed rule dictates 

that object X will be activated when both objects A and B are triggered. The rule can be expressed 

verbosely as in Expression 1 and by using a combination of icons and symbols as in Figure 4-12. 

Rule 1:   when object A and object B are triggered then actuate object X      (1) 
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A B X

&

 

Figure 4-12  A combined iconic and symbolic depiction of the first program rule 
 

Assuming that the & symbol signifies a logic AND operation, then the following is a concise symbolic 

representation of this rule: 

  Rule 1:   A & B    →     X                                       

The second example extends the first by adding the logic OR condition and this is done as follows: 

Having already used the wand to touch objects A, B, and X, the user again briefly depresses the 

button on the wand. This action indicates to the SmartRoom programming system that the current 

rule has been concluded and that a second rule is about to be defined. The user now manipulates 

the wand so that the ‘yes’ end touches objects C and X in sequence. By removing the wand from the 

programming area, the user indicates to the SmartRoom programming system that the 

programming activity has ended and that the program is ready to be executed. The second program 

can be expressed using icons and symbols as in Figure 4-13 and verbosely as follows: 

Rule 1:  when object A and object B are triggered then actuate object X                          

Rule 2:  when object C is triggered, then actuate object X                            

A B X

&

C X
 

Figure 4-13  A combined iconic and symbolic expression of program Rule 1 and Rule 2 
 

Object X is therefore actuated if objects A and B are triggered together, or if object C is triggered. 

Using the|symbol to signify the logic OR operation, the following is a concise expression of both 

rules: 

(A & B)  |   C    →    X                              

For the programming activity, all actions that happen between the first and second button presses 

are grouped together. I call this temporal grouping. Both the StoryRoom programming activity and 
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the symbolic/iconic expressions that represent this activity employ the Gestalt principle of 

perceptual grouping of a temporal or proximity variety. As far as the symbolic/iconic expressions 

that represent this activity are concerned, symbols and icons to the left of the → symbol are 

perceptually grouped together due to both convention and their close proximity. Figure 4-14 

highlights the correspondence between temporal and proximity grouping for Rule 1. 

 

&

 A      &      B                 → X

Button press Button press

Touch object A                   

Touch object B                   

Touch object X                   

Time
t0

t1 t2 t3

A B X

Temporal grouping in 
space

Proximity grouping of 
icons and symbols on 

the page

Proximity grouping of 
symbols on the page

t4

 

Figure 4-14  Temporal, iconic, and symbolic grouping identified in Rule 1 
 

The above programming language emerged from a workshop in which two visual languages were 

initially considered. Although the final language incorporates some elements of the initial designs, 

some undeveloped concepts warrant further investigation and I discuss these in the following two 

subsections. 

 The first visual language  

The first visual language to emerge in the workshop incorporates words in boxes that represent 

objects, events, and branching decisions (the final StoryRoom design does not include branching). 

Overlapping boxes indicate that a relationship exists between the objects, yet this relationship is not 

explained. In other words, what matters is the proximity of the boxes to each other and not the 

order nor the direction in which they are stacked. Figure 4-15 is an example of a program 

constructed using this visual language. The group of encircled overlapping boxes (labelled door, if, 

and button pushed) represents the following program statement: “if the button on the door is 

pushed”.  
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Overlapping boxes 
indicate that a 
relationship exists 
between the boxes.

 

Figure 4-15  Overlap implies relationships between objects 
Based on Montemayor (2003) 

The discussion of the final StoryRoom language above follows the Western left-to-right reading 

convention. This convention dictates that logic expressions (such as those depicted in Figure 4-12 

and expression (1)) are interpreted from left to right. Also, the → symbol distinguishes between the 

‘before’ and the ‘after’ portions of an expression. However, the ‘boxes’ visual language of Figure 

4-15 suggests a notation that is interpreted as a whole and at once and is not interpreted along any 

particular direction. I explore such a notation next. 

Prompted by the first StoryRoom visual language design in which some expressions are orientation 

independent, I put it that the → symbol can be omitted in cases where there exists no risk of the 

before and after portions in an expression being interchanged. Consider for example a before 

portion that is comprised of camping commodities (matches and wood are examples) and an after 

portion representing the concept of fire. One of the possible logic relations that exist between these 

three nouns can be expressed as follows: 

matches & wood → fire      (2) 

However, I propose that even when the → and & symbols are omitted from this expression, the 

interpretation of this group of nouns remains the same. Therefore, the following three symbol 

sequences are valid representations of Expression 2: 

 matches,wood,fire    wood,fire,matches    fire,matches,wood  

This notation can be applied to rule Rule 1 and therefore the following sequences represent this rule 

equally:  

A, B, X         A, X, B       B, X, A       B, A, X       X, B, A       X, A, B.  
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The preceding shows that certain symbols are redundant in programming environments such as 

StoryRoom and that physical icons alone can sometimes adequately express program rules. 

Therefore, Figure 4-16 illustrates four alternative iconic representations of Rule 1 while Figure 4-17 

illustrates four more representations of Rule 1.  

 

Figure 4-16  Alternative Rule 1 sequences 
 
 

 

Figure 4-17  Alternative Rule 1 groupings 
 

 The second visual language  

The second visual language includes only iconic sentences and no words. Instead of words, workshop 

participants used icons of which the meanings had been agreed on. They designed these icons to 

hold personal significance. For example, the wavy lines that separate the camera and cup icons in 

Figure 4-18 represent close physical proximity between these objects.  

Figure 4-18 depicts three program rules constructed using the second language. Of interest is the 

third sentence that represents the instruction “when the camera and the cup are near each other, 

the light comes on and the ear will listen.” This sentence defines program Rule 3 which states that 

the light and ear artefacts are triggered when the camera is close to the cup. 
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Rule 3:  when camera and cup are close together,  
then actuate the ear and light        

Light 
“comes on”

Ear  
“listens”

First conceptual 
iconic sentence

Second conceptual 
iconic sentence

Third conceptual 
iconic sentence

CupCamera

 

Figure 4-18  Three conceptual iconic sentences 
Based on Montemayor (2003) 

While applying my notation introduced in Section 4.3.1.1 and illustrated in Figure 4-5, Figure 4-19 

illustrates the third conceptual iconic sentence shown in Figure 4-18. This figure highlights two 

Gestalt grouping types. The first is perceptual grouping by proximity and a yellow background 

highlights the associated components. The second perceptual Gestalt principle is grouping by good 

continuation. One grouping is highlighted using an orange background and the other grouping has a 

purple background. I use tangible objects in Figure 4-20 instead of the non-descript symbols of 

Figure 4-19. 

Sequence A

Sequence B

Camera representamen

Ear artefact “listens”

Light artefact “comes on”

Cup representamen

 

Figure 4-19  My depiction of Montemayor's conceptual iconic sentence using non-descript symbols 
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Sequence B

Sequence A

Cup artefact

Camera artefact

Light artefact “comes on”

Ear artefact “listens”

 

Figure 4-20  My depiction of Montemayor's conceptual iconic sentence with tangible objects 
 

In Chapter 6, I incorporate the observations above in the design of a tangible programming 

environment. First, I use the Gestalt principle of grouping by proximity to determine which objects 

constitute a program rule. Second, the user can design and create personally meaningful physical 

icons and use these to construct a program. 

Table 4-12  Summary table of StoryRoom 

Programming style 
Programming 

modality 
Persistent 
program? 

Gestalt principles 
Number of physical 

program dimensions 
Functionality 

Rule-based 
Programming-

by-
demonstration 

Yes 
Grouping by 
proximity. 

1 Storytelling 

 

4.3.2.2 Quilt Snaps 

Quilt Snaps (Buechley et al. 2005, 2006) consists of a square quilt patch (Figure 4-21a) that contains 

electronic circuitry. The red dot in Figure 4-21b represents the electronic circuit and the program 

that it executes, while the three smaller dots represent available touch and light sensing modalities, 

and light output. The blue lines indicate the flow of information as it moves from the inputs, through 

the circuit, and finally to the outputs. Sensing strips on the sides detect touch whereas software 

controls circuitry that turns the embedded light on and off.  

Inputs feed from adjacent quilts and outputs send signals to adjacent quilts. Press-studs serve as 

keyed connecters and indicate to the user which sides receive inputs and which ones generate 

outputs. A quilt can either behave independently or interact with others in a quilt network.  

Each patch is already assembled and programmed by the time it reaches the user. The user then 

adds the embellishments according to personal preference and connects the patches to create a 

larger program. Figure 4-22 shows three larger programs created when individual patches are 

combined. Also shown is the flow of information through the programs.  
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Figure 4-21  A Quilt Snaps patch with its associated information flow  
 (a) is based on Buechley et al. (2005) 

 

    

Figure 4-22  Three Quilt Snaps program examples and their information flow  

Based on Buechley (n.d.) 

The functionality of an individual quilt is predetermined by the circuit designer and cannot be 

altered by the user. However, the behaviour of a system that comprises multiple quilts is determined 

by the configuration in which the user has connected the quilts. Since each quilt is a stand-alone 

computational entity and since multiple quilts can be reconfigured to produce predictable results, 

the Quilt Snaps system can be classified as a programmable machine. 

Table 4-13  Summary table of Quilt Snaps 

Programming style 
Programming 

modality 
Persistent 
program? 

Gestalt principles 
Number of physical 

program dimensions 
Functionality 

Imperative 
Programming-

by-building 
Yes Good continuation 2 Decoration 
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4.3.2.3 Diorama Table 

Diorama Table (Takahashi & Sasada 2005; Takahashi 2007c) is a system in which the user places 

everyday objects on a surface. The position and shape of the objects determine the nature of the 

animation that is projected onto the surface. Examples of objects used this way include shoestrings, 

knives, forks, and cups with saucers.  

To demonstrate how the relative position of two objects influences system behaviour, consider the 

following four scenarios. First, when a single string is placed on the input surface the projected 

animation is centred on this. Second, when two (non-touching) strings are placed on the input 

surface, the animations are centred on each string and independent of the other. Third, when the 

two strings are made to touch each other the animation incorporates both pieces as if they were a 

single string. Finally, when a string forms a loop, an animated projection fills the enclosed area. 

Objects such as a knife and cup-with-saucer have yet other effects on the system. Figure 4-23 shows 

the Diorama Table in use. 

Projected animation

Cup and saucer

String

Table cloth

Fork

 

Figure 4-23  Diorama Table with everyday objects and projected animation 

Based on Takahashi (2007b) 

From this description, it is evident that the user can control system behaviour by placing everyday 

objects on the input surface. Diorama Table can therefore be considered to be a user programmable 

system in which a program is defined by the outlines and positions of the objects.  

Table 4-14  Summary table of Diorama Table 

Programming style 
Programming 

modality 
Persistent 
program? 

Gestalt principles 
Number of physical 

program dimensions 
Functionality 

Functional 
Programming-

by-building 
Yes 

Good continuation 
and grouping by 

proximity 
2 Animation 
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4.3.3 Conclusion to this section 

Of particular interest to this study are programs that can be viewed in their entirety at a single 

glance. Physical persistence is therefore relevant and visual Gestalt principles describe how the user 

experiences the completed program. Of the programming environments considered, the principles 

of visual perceptual grouping by proximity and visual perception of good continuation are the most 

prolific. 

This section also investigated the origin of programming objects. I first considered tangible 

programming environments in which the user is given pre-made programming objects that are then 

arranged and combined to create a program. The second part is the most interesting and addressed 

systems that incorporate user-defined programming objects.  

Story Room, Quilt Snaps, and Diorama Table let the user determine (within certain constraints) the 

appearance of objects incorporated into a program: StoryRoom combines previously made physical 

icons with user-crafted tangible objects to provide a programming environment with which the user 

can tell a story. The system designer determines the set of physical icons and their appearance. 

However, the user is free to combine the physical icons with objects of his own design and thereby 

create a personally meaningful programming environment. Although the user is constrained by Quilt 

Snaps’ fixed form (a square patch), input and output locations, and embedded program, the user is 

free to embellish each patch according to personal preference. The Diorama Table constrains the 

user through the a-priori mapping of object outlines to predetermined animation types. However, 

the user can still create and decorate these objects.  

On their own, the user-created objects in StoryRoom and the embellishments in Quilt Snaps are not 

sufficient to define a computer program. Instead, these objects are used in conjunction with items 

made by the system designer. The user-created objects of the Diorama Table also hold no inherent 

significance; rather, the value of these objects are determined by their outlines and the functions 

assigned by the system designer.  

From the preceding it is evident that, on their own, user-created objects are insufficient to create a 

computer program. This is because the objects have not yet been mapped to their digital 

counterparts by means of a sensing system. However, when used in conjunction with a pre-existing 

programming system the result is a programming environment in which the user can incorporate 

personally meaningful objects.  
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4.4 Discussion 

In the previous sections, I examined tangible programming systems to identify their underlying 

Gestalt properties. I also determined the mechanisms by which the user can incorporate personally 

meaningful objects into their programs. I found that designers do not explicitly incorporate Gestalt 

principles, yet certain Gestalt principles are evident in their designs. In addition, I identified that in 

general designers do not explicitly make provision for the incorporation of personally meaningful 

objects. In this section, I discuss the Gestalt principles I identified and I make suggestions regarding 

the inclusion of personally meaningful objects into systems not designed for this purpose. 

4.4.1 The Gestalt principle of good continuation  

Although not explicitly discussed in the literature and not previously identified as such, Electronic 

Blocks (Wyeth & Wyeth 2001), TORTIS (Perlman 1974, 1976), Turtan (Gallardo et al. 2008), and 

Diorama Table (Takahashi & Sasada 2005; Takahashi 2007c) incorporate the Gestalt principle of good 

continuation. I identified this shared Gestalt principle across these systems and I highlight its utility 

by making it explicit as a Gestalt construct in my model in Chapter 7. I next discuss the underlying 

Gestalt principle of good continuation that I identified in these systems as well as the mechanisms 

that support the principle. Of the three mechanisms covered, the vision-based option affords the 

user the most choices when constructing a program. 

The Gestalt principle of good continuation is evident in Electronic Blocks where vertically stacked 

and interlocking plastic cubes form a sequence of program instructions. Instructions are interpreted 

from top to bottom along an imaginary line. Instead of a vertical configuration, the user places 

TORTIS, Robo-Blocks, and Turtan objects in a horizontal plane. The TORTIS design is based on a linear 

arrangement of program statements that the user places side-by-side along a straight track. The 

track implicitly incorporates the Gestalt principle of good continuation. Robo-Blocks (Sipitakiat & 

Nusen 2012) is also implicitly based on this principle and incorporates magnets to keep the objects in 

a straight line. 

Turtan and the Diorama Table do away with need for mechanical and magnetic constraining 

mechanisms as used in Electronic Blocks, TORIS, and Robo-Blocks. Instead, they use an optical 

system to identify the programming objects and this affords the user an opportunity to adjust the 

object arrangement while retaining the original program logic. The user option to feely adjust 

relative object positions is not possible in programming environments that rely on physical 

constraints. In addition, the Turtan design implicitly assumes that the distances between the objects 

are an integral part of the program logic.  
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As far as Quilt Snaps (Buechley et al. 2005) is concerned, I propose that it is possible to visualise four 

imaginary data flow lines that connect a square’s inputs to its outputs as illustrated in Figure 4-21. 

These lines merge at the embedded electronic circuitry where the data are interpreted and new 

data generated. Once the user has linked the squares to each other, I put it that it is possible to 

imagine routes along which data can flow across the resultant structure. I also posit that the 

imaginary data lines continue from one quilt edge to the next thereby forming in the user’s mind a 

network of data paths. Based on this, I conclude that the Gestalt principle of good continuation 

describes the imaginary data paths that form across the quilt structure as shown in Figure 4-22. 

4.4.2 The Gestalt principle of grouping by common region 

Digital Dream Lab (Oh et al. 2013) applies physical constraints to limit the number of positions in 

which the user can place objects. The purpose of this design is to guide the inexperienced user 

during the program construction activity. A problem with this design is that it only supports one 

instance of any given object type in a program statement. Furthermore, the user is not free to adjust 

the relative positions of the objects according to personal preference.  

I put it that systems similar to Digital Dream Lab can be improved by giving users an opportunity to 

include more than one object of a given type in a statement. For example, a statement can contain 

an object that will make the character wave its arm and another object to make it walk. The result 

would be a character that waves its arm while walking.  

Another problem with token-and-constraint systems such as Digital dream Labs is that these do not 

allow the user to adjust the relative orientation of objects in a program. One solution to this problem 

is to substitute the token-and-constraint approach with another mechanism that supports changes 

to object orientations without altering their relative positions. To this end, I will explore In Chapter 6 

the application of wooden hoops to define a common region. Using this approach, a programming 

environment assumes that all objects within the common region belong together and interprets the 

group as a program instruction. A user of a system based on this design is then free to place multiple 

tokens of the same type in the common region. In addition, the user may now also adjust the 

relative orientations of the tokens according to personal preference while preserving the program 

logic. 

4.4.3 The Gestalt principle of grouping by proximity 

Some programming environments like Oh et al.’s (2013) Digital Dream Lab dictate the relative 

positions in which objects have to be placed to constitute a proper program instruction. Other 

environments do not prescribe the relative positions of objects and instead leave that to the user’s 

discretion. An example is Media Cubes. Although this system requires that the programming objects 
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make physical contact with each other to be considered an instruction, the object order is not 

relevant. A benefit of Media Cubes’ design over that of Digital Dream Lab’s is therefore that it 

affords the user with an opportunity to arrange the objects according to her personal preference. 

For example, if one cube represents a desk lamp and a second cube represents the time to turn on 

the lamp, then the sequence in which the user arranges the cubes is irrelevant. This approach 

dictates that the relative positions of objects need not be prescriptive and can instead be left to the 

user’s discretion. The consequence it that the user no longer needs to remember the sequence in 

which objects have to be placed and can instead position the objects according to personal 

preference. 

Whereas Media Cubes only considers instructions comprising two objects, the Story Room (Alborzi 

et al. 2000) designs explore instruction compositions comprising multiple objects. To this end, its 

designers considered the meaning conveyed both by three overlapping squares (Figure 4-15) and 

closely spaced physical objects (Figure 4-18). I concluded that the Story Room designs implicitly 

depend on the Gestalt principle of grouping by proximity. However, Story Room does not fully 

explore object arrangements and I argued that a group of objects can maintain its meaning when the 

parts are rearranged. I supported my argument using eight arrangements comprised of Story Room 

sensor and actuator objects. 

In addition to considering physical arrangements, Story Room follows an approach that I call 

grouping-by-temporal-common-region. I put it that when items are selected in a period demarcated 

by two previously well-defined events this action can be considered as grouping by common region, 

albeit temporal common region and not spatial common region. To elaborate, grouping by common 

region assumes a physical region demarcated using, for example, a coloured area or physical barrier. 

In contrast, I propose that two successive button presses can define a temporal common region 

group. I label in Figure 4-24 (a) the time interval between the presses as temporal-common-region. 

The first press in this example demarcates one temporal boundary while the second button press 

defines the end of the temporal area. The result is that all actions between these two events are 

grouped together. Likewise, my argument for temporal grouping can be extended to grouping by 

proximity and the result will then be a new grouping category that I call grouping-by-temporal-

proximity (Figure 4-24b). Using the same scenario as for grouping-by-temporal-common-region, I 

base my argument on the time that transpires between events. That is, if the events are temporally 

close together then they are considered members of the same group. A challenge in using this 

grouping is in specifying the maximum time interval between two successive events to be viewed as 

belonging to a common group. A second problem is to determine the minimum interval between 
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events to consider them as belonging to two distinct groups. I do not explore temporal grouping 

further in this thesis.  

While Media Cubes and Story Room program instructions are not spatially confined, SiteView 

defines dedicated and spatially separate locations where the user must place objects. I propose that 

instead of dictating that the objects have to be kept separate, the system can be designed in a way 

that allows the user to place them in close proximity to each other. This will result in a system based 

on grouping by proximity. In Figure 4-9, I offered an example of what I propose a program can look 

like when arranged this way. In this example, the lamp will turn on if it rains on a Monday morning. I 

further posit that it is possible to include multiple condition interactors of the same type in a single 

program. For example, a logical OR condition is indicated when a Tuesday indicator is added. As 

directed by the new configuration, the light will be activated on both Monday and a Tuesday 

mornings but only when it rains on these days. Likewise, more action interactors may be added and 

they will be actuated when the conditional expression holds true. To illustrate by means of another 

an example, if a coffee maker is included in addition to the light actuator, the system will turn on 

both the coffee maker and the light on rainy Monday and Tuesday mornings.  
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Figure 4-24  Grouping-by-temporal-common-region and grouping-by-temporal-proximity 

 

4.4.4 Personally meaningful objects 

There exist programming environments purposefully designed to encourage object personalisation. 

Story Room and Quilt Snaps are examples of such environments. Using these systems, users can 

create personally meaningful objects by, for example, embellishing the objects using cardboard and 

cloth. 
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In contrast to environments in which the user can incorporate personally meaningful objects in their 

programs, a group of system designers prescribe the visual appearance of their objects. Examples 

include Electronic Blocks and TORTIS. Whether the designer’s decision to fix the appearance without 

the individual’s input is intentional or not, I argue that all physical programming environments can 

be modified to include personally meaningful objects. For example, even though the colour of the 

blocks and icons imprinted on the sides in Electronic Blocks serve to remind the user of their 

function, the designer does not give the user an opportunity to choose her own colours or other 

signs. It is therefore the user’s burden to memorise their meanings. Based on this argument, I put it 

that Electronic Blocks can be personalised using pictures and by writing on the plastic parts.  

TORTIS is another system that does not give the user an opportunity to create personally meaningful 

program objects, yet can be adapted for this purpose. Since the program objects are made of 

cardboard I posit that it is possible to add personally meaningful signs by drawing on the cards or by 

gluing pictures onto the cards. A final example is Patten, Griffith, and Ishii’s Physical Strings system 

that can be customised to better represent the purpose of each string. To illustrate, the user can 

attach to each string a written description or another sign to remind her of its purpose. This 

illustrates that physical strings can be adapted to include personally meaningful objects customised 

to the user.  

4.5 Conclusion 

This chapter focussed on programming environments in which a program is defined when the user 

manipulates physical objects not usually associated with programming. I made a distinction between 

physical and tangible programming with the former involving computationally ubiquitous 

environments and the latter defined by the grasp-ability of the objects. 

Central to the discussion was the user’s involvement in the creation of objects; that is, instead of 

using premade objects the user chooses personally meaningful objects with which to program. Of 

the literature studied, only three tangible programming systems explicitly include the user in the 

design and creation of the programming objects. These systems are StoryRoom, Quilt Snaps, and 

Diorama Table. Although some design methodologies do include end-user representation (Druin 

1999), the design outcome is usually a compromise and often does not afford the user the 

opportunity to design and create a personally meaningful interface. Of the systems identified in this 

study that do explicitly include the user in the design and creation of the objects, none explicitly 

incorporates Gestalt principles in their design approach. In Chapter 6 I apply the design science 

research methodology to develop a tangible programming environment in which the user is both the 
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designer and creator of programming objects and in which certain Gestalt principles are explicitly 

incorporated in the use of the environment. 
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5.1 Introduction 

A paradigm implies the assumptions and philosophical views on ontology, epistemology, and human 

nature that the researcher makes and these influence his chosen methodology and methods (Burrell 

& Morgan 2005; DeVilliers 2012; Schwandt 2007). I state my views on ontology, epistemology, and 

human nature in Section 5.2.  

Research is guided by the chosen methodology (DeVilliers 2012) while research methods describe 

the tools for collecting research data. One or more research methods may be applied simultaneously 

to a project (Dawson 2009). In order to answer the research questions tabled in Chapter 1 (and 

repeated in Section 5.3.4.4), I applied Vaishnavi and Kuechler’s (2008) general Design Science 

Research methodology and used the methods of laboratory work and direct observation. The 

methodology and methods are described in Section 5.3. 

5.2 Philosophical stance 

Research is a human activity and is hence not value-neutral; nor is research conducted without 

preconceptions that can influence the findings (UNISA 2007). Researchers have individualised views 

regarding ontology, epistemology, human nature, and methodology (Burrell & Morgan 2005). These 

should be considered when the results are interpreted because differing views can influence the 

outcome. I therefore present in the following subsections the ontological and epistemological 

stances and assumptions about human nature made in the design and execution of this study.  

5.2.1 Ontological nature of reality 

The ontological debate (Burrell & Morgan 2005; Roode 1993; Schwandt 2007) regarding reality 

relates to the separation between the individual and reality and is centred on the nominalist and the 

realist views. The nominalist view argues that the individual creates structures by defining concepts 

that are dynamic and recreated as the individual experiences the unstructured reality; that is, the 

individual adjusts the structures in an attempt to make sense of the unstructured reality. In contrast, 

the realist view argues that the individual and reality are separate in that the structures exist 

independently of the individual and that he “discovers” these structures through study.  

A nominalist view therefore recognises that individuals may differ in their interpretations. The result 

is that a system designed with a nominalist view accommodates users with differing views, such as is 

the case for my T-Logo system described in Chapter 6. In contrast, a system designed with realist 

views is prescriptive to the user.  

In this study, I considered the computer program to be a structure created by an individual that 

reflects his understanding of reality; therefore, the program does not exist independently of its 
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creator. My research explored this link by focussing on the individual and considered what a 

programming environment could look like in which he incorporates personally meaningful elements. 

This study therefore assumed a nominalist view of reality.  

5.2.2 Epistemological assumption  

The word epistemology is derived from the Greek word epistenie that means knowledge (Blackburn 

1996) and describes the branch of philosophy dealing with the theory of scientific cognition (Novikov 

& Novikov 2013). In particular, epistemology deals with the nature of knowledge; that is, whether 

knowledge can be separated from the individual investigating a phenomenon.  

Irrespective of the standpoint taken regarding the nature of knowledge, scientific research remains 

an activity undertaken by one or more individuals and is therefore a subjective process (Novikov & 

Novikov 2013). According to Novikov and Novikov, the knowledge generated contributes only 

partially to a view of reality with additional sections of reality created by other researchers, each 

following their own subjective process. 

Positivism and interpretivism are two research approaches in which the positivist epistemological 

standpoint holds that the observer can be separated from the object being studied and that the 

study results will be objective. In contrast, the interpretivistic epistemological standpoint states that 

reality is relativistic; that is, reality is studied from the individual’s point of view and can therefore 

not be objective (Roode 1993) as it is due to the observer’s subjective point of view that the world is 

understood (Niehaves 2007; Purao 2013). Whereas the positivist paradigm produces unbiased 

results that other scientists can reproduce, interpretivism is mediated by the researcher and 

produces findings that may not be reproducible (DeVilliers 2012).  

Both the positivist and interpretivist epistemological standpoints contribute to the body of 

knowledge by studying (what is assumed to be) an existing and unchanging world. A third and 

complementing perspective is Design Science Research (Vaishnavi & Kuechler 2013). This 

perspective contributes to the body of knowledge through its continuous influence and subsequent 

change of reality as the research project evolves (Purao 2013). The artefact creation process is a 

specific contribution integral to the Design Science Research process. I apply both the interpretivistic 

and Design Science Research perspectives to this study. 

5.2.3 Human nature  

Since my research considered how the user interprets and manipulates tangible objects, it was 

worthwhile to look at the assumptions one could make regarding human nature as it relates to the 
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link between humans and the environment in which they find themselves. The deterministic and the 

voluntaristic views are two extreme stances of this relationship (Burrell & Morgan 2005). 

The deterministic view of human nature considers human beings and their activities to be 

determined by the situation and environment within which they are located. In contrast, the 

voluntaristic view considers humans beings as autonomous and free-willed creators of their 

environment (Roode 1993). In this study, I assumed that the individual controls certain aspects of 

the world by creating and choosing personally meaningful artefacts and that the Gestalt principles of 

perception describe the way he perceives the objects.  

5.3 Methodology and methods 

It is not always possible to anticipate the outcome of an experiment by only applying theory. In such 

cases the only way to understand, develop, and improve a system is to construct and observe the 

system’s behaviour (Simon 1996). The iterative and incremental nature of Design Science Research 

paradigm (Hevner et al. 2004) supports this approach. Multiple descriptions of the Design Science 

Research methodology exist including the Information Systems Research Framework (Hevner et al. 

2004), March and Smith’s (1995) framework, and Vaishnavi and Kuechler’s (2008) general 

methodology.  

This study iteratively explored what a tangible programming environment could look like. According 

to the American heritage dictionary of the English language (Patwell 1992), knowledge includes all 

that is perceived, learned, and discovered and this includes principles and theories. I embarked on 

this study without knowing in advance what knowledge was required to achieve my research 

objective. What sets Vaishnavi and Kuechler’s (2008) methodology apart from Hevner et al.’s (2004) 

and March and Smith’s (1995) frameworks and which also made it particularly appropriate to the 

current study is that it highlights the fact that not all knowledge that could support an acceptable 

solution is known at the onset of the project. As my research progressed, I identified that the 

research objective can be attained using Gestalt principles and Semiotic Theory. These theories and 

principles (discussed in Chapter 2) were therefore part of the missing knowledge. I combined 

knowledge acquired from the first four iterations with these theories and principles to inform the 

fifth and final iteration. 

Therefore, guided by Vaishnavi and Kuechler’s (2008) general Design Science Research methodology, 

I applied methods of laboratory work, observation, and direct interaction with participants. Data 

collected at the end of each iteration was subjected to analysis and interpretation. I applied 

deductive logic based on the assumptions that a) personally meaningful objects can be used to 
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construct programs, and b) the principles of Gestalt are relevant to computer programs. 

Interpretation outcomes informed additional literature surveys and subsequent iterations. 

5.3.1 The nature of Design Science Research outputs 

In general, the output of Design Science Research is descriptive knowledge and can take form as 

artefacts, recommendations, constructs, models, methods, instantiations, and improved theories 

(March & Smith 1995; Purao 2002; Rossi & Sein 2003; Sonnenberg & Brocke 2012; Vaishnavi & 

Kuechler 2008). According to March and Smith (1995), an instantiation is the creation and 

deployment of an artefact in the environment for which it was designed. They add that instantiation, 

by applying intuition and experience, is possible even before the supporting constructs, models, and 

methods have been finalised. They put it that supporting constructs, models, and methods are then 

finalised by studying the artefact in its environment and this is also the approach I followed.  

5.3.2 The basic activities of Design Science Research 

The basic activities of Design Science Research are to build and evaluate one or more artefact 

versions to demonstrate its feasibility (March & Smith 1995). The artefact thus constructed then 

becomes the object of study and the artefact is evaluated in order to determine how well it 

performs. Venable, Pries-Heje, and Baskerville (2016) elaborate on the reasons for evaluating by 

stating (amongst others) that it should give evidence that the theory underpins the developed 

artefact that solves a given problem. In this study, the artefact is a programming environment and 

my primary research question states the problem being addressed.  

The Design Science Research evaluation process prescribes that metrics defining the aim of the 

research be developed against which the artefact will be assessed. Research efforts cannot be 

successfully judged without assessing the artefact against metrics (March & Smith 1995). Section 

5.3.4.4 discusses the evaluation metrics applied in this study. 

5.3.3 Vaishnavi and Kuechler’s process model overview 

Figure 5-2 illustrates Vaishnavi and Kuechler’s (2013) Design Science Research process model that I 

followed. The two key components in this model are Knowledge Flow and Process steps. Also shown 

are the cognitive processes involved in each activity and the nature of the outputs.  

The Process steps comprise five sequential activities of which the first four (Awareness of problem, 

Suggestion, Development, and Evaluation) are repeated in a research project. I refer to these as an 

iteration. The fifth and final activity (Conclusion) is executed at the end of a project.  

The following are the cognitive processes associated and their related activities: Once the problem 

has been identified (the Awareness of problem activity), a process of abduction leads to a design 
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(the Suggestion activity). The design is then realised by applying a process of deduction (the 

Development activity). Following this, the artefact is evaluated against predetermined metrics (the 

Evaluation activity). The Conclusion activity is the final step and it reflects on all the preceding 

iterations by extracting operational principles and design theories.  
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Figure 5-2  The Design Science Research process model with associated cognition  
Based on Vaishnavi and Kuechler (2013)  

No single knowledge base exists; instead, each profession (the Design, Architecture, and 

Aeronautical professions are examples) has its own base yet none of these is complete (Vaishnavi & 

Kuechler 2015). Knowledge bases are also specialised and well bounded (Schon 1983). In addition, a 

particular knowledge base may not sufficiently support a project and the researcher must 

incorporate methods such as experience, intuition, and trial-and-error (Hevner et al. 2004) to solve 

the research problem. I ultimately found theoretical support for my research problem by accessing 

the knowledge base used in the Psychology field. 

Since knowledge bases are characterised as just discussed, I understood that my initial assumptions 

may later be proven incorrect and therefore some of the conclusions drawn from the completed 

tasks will have to be retracted. Vaishnavi and Kuechler’s (2013) model explicitly includes 

circumscription as the mechanism available to the researcher to make reasonable assumptions 

regarding missing details about the state of the world. Circumscription is possible both when the 

analysis and interpretation of evaluation data are completed and when an iteration is terminated. I 

applied circumscription to the outcome of all iterations and the result informed subsequent 

iterations and literature surveys.  



121 
 

  

  

A description of the dashed line in Figure 5-2 concludes this overview of Vaishnavi and Kuechler’s 

(2013) process model. This line encloses the Proposal and Tentative Design outputs and illustrates 

the requirement of some research funding sources that a tentative design should be included with 

the research proposal submission (Vaishnavi & Kuechler 2013). The following section details 

Vaishnavi and Kuechler’s (2013) Knowledge Flow and Process steps as I applied them. 

5.3.4 Vaishnavi and Kuechler’s Knowledge Flows and Process steps 

I applied my intuition, experience, and the results of a preliminary literature study on tangible 

programming environments in the design and construction of an initial programming system. This 

approach is aligned with March and Smith’s (1995) observation in Section 5.3.1 regarding the origins 

of an instantiation. Studies of how children used the first and subsequent instantiations at science 

fairs informed the design of further artefacts.  

Each iteration incorporated three stages. First, one or more Gestalt principles and tangible 

programming environment design heuristics were selected based on an awareness of the problem 

and on the results of earlier iterations. A system that applies these principles and heuristics was then 

built and evaluated. Finally, the evaluation data was analysed and interpreted and the result 

informed both future iterations and, in applying the principle of circumscription, informed additional 

literature surveys.  

Figure 5-3 illustrates the generic design iteration process as applied to the current research. In this 

figure, I draw attention to the fact that the researcher’s knowledge base is 1) not as comprehensive 

as that of the research community and 2) contains knowledge not yet disseminated. This figure also 

highlights that new knowledge ascribed to circumscription guides ongoing literature surveys. I 

therefore refined my literature search between iterations when the interpreted results highlighted 

the need for additional information. After the fourth iteration and as part of my ongoing search for 

theories to underpin my evaluation results, I discovered that Semiotic theories and Gestalt principles 

fit my research problem well. These theories and principles are contained in the knowledge base 

used by psychologists. 

I disseminated the new knowledge that resulted from each iteration by means of oral presentations, 

a working exhibition at a conference, and publications in peer-reviewed conference proceedings. 

The front matter of this thesis includes a list of published peer-reviewed papers. The following 

subsections elaborate on the methods I applied when executing Vaishnavi and Kuechler’s Process 

steps. 
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5.3.4.1 Awareness of Problem  

In general, Vaishnavi and Kuechler’s (2008) Awareness of Problem step are prompted by either a 

problem that surfaced or by an opportunity to apply principles from other domains to the one in 

which the researcher is active. At the onset of the current project, an initial literature survey 

revealed that no tangible programming environment model existed in which the relative positions of 

personally meaningful objects define a program. This problem was formulated as a research thesis 

statement and from this were derived a research aim, the research objectives, and the research 

questions. Iterations were guided by the research questions as well as new knowledge, problems, 

and opportunities that emerged.  
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Figure 5-3  The generic design iteration process as applied in the current research 
Based on Vaishnavi and Kuechler (2013) 

5.3.4.2 Suggestion step  

Directed by Vaishnavi and Kuechler’s (2008) Suggestion step, I studied existing knowledge to 

propose a solution to the identified problem. From this study emerged design heuristics for tangible 

objects and tangible programming environments. It also emerged that the Gestalt principles of visual 

perception and the theories on semiotics are relevant to the current research. These design 

heuristics, principles, and theories seeded the design iterations. Chapter 2 discussed the Gestalt 

principles and theories on semiotics while the literature on tangible objects and tangible 

programming environments were discussed in Chapter 3 and Chapter 4, respectively.  

Drawing on Gestalt principles, this research reflected on the way in which individuals perceive 

objects that lie along an imaginary line and are closely spaced. The research domain of semiotics 

contributed to this study an understanding of the meanings an individual attaches to an object due 
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to its shape and markings. Design heuristics extracted from literature describing tangible objects and 

tangible programming environments guided the selection of materials incorporated into the artefact 

instantiation. Finally, the sequential interpretation and execution of instructions is rooted in the 

research domain of Computer Science. 

5.3.4.3 Development step 

The Development step included the design and implementation of the artefact and was guided by 

the output of the preceding Suggestion activity. I alone designed and implemented all the artefacts 

with the exception of the first iteration. For the first iteration, I designed the artefacts and 

implemented these with the assistance of an undergraduate university student and a mechanical 

engineer. Based on the results of the Evaluation activity, the resultant artefact of an iteration was 

superseded by another in subsequent iterations. As Hevner et al. (2004) put it, all my artefacts 

embody my knowledge of the problem and my solution.  

5.3.4.4 Evaluation step 

Venable et al. (2016) and Hevner et al. (2004) emphasise the importance of evaluation in Design 

Science Research and this subsection is accordingly more detailed than the others in this section. In 

Design Science Research, evaluation metrics are used to measure the performance of an artefact 

against previously established criteria thereby providing a means to judge the progress of the 

research efforts (March & Smith 1995). The metrics for the final artefact have been set in Chapter 1 

as a primary research question along with secondary research questions that elaborate on the 

former. The primary and secondary research questions are copied here from Chapter 1: 

 

Primary research question 
In the context of existing tangible programming environments and considering how 
tangible objects are currently used when interacting with data, what are the constructs to 
incorporate into a model for creating tangible programming environments in which the 
relative positions of personally meaningful objects define the program, and how do these 
constructs interact and relate to one another?  
 
Secondary research questions 
a.     What program elements are suitable for a tangible programming environment in 

which the programmer can incorporate personally meaningful tangible objects? 
b.     How can a user associate personally meaningful tangible objects with program 

elements?   
c.     How can the arrangement of these personally meaningful objects be interpreted as 

program statements? 

 
 

As Vaishnavi and Kuechler (2013) state, the initial assumptions made at the onset of a project may 

be incorrect. Therefore, as part of the Evaluation step I tentatively explained the reasons why the 

observations deviated from my initial assumptions. Additional information gained in the Evaluation 
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step was added to my knowledge base and guided further literature surveys. Finally, the additional 

knowledge together with the results from incremental literature surveys informed the Suggestion 

activity of the subsequent iteration. 

Evaluating the resultant artefact is an essential step when applying the Design Science Research 

methodology (Hevner et al. 2004) yet there is no agreement on how this evaluation is to be 

executed (Peffers, Rothenberger, Tuunanen & Vaezi 2012). Even though the Design Science Research 

community has not yet agreed on an evaluation method, evaluation criteria nonetheless do exist. 

According to Hevner et al. (2004) these criteria include the functionality of the artefact, the usability 

of the artefact, and the artefact’s fit within the organisation. For the purpose of this research, the 

organisations under consideration were science fairs together with their young participants. The 

reasons for choosing children as evaluation participants are given later in this section. Except for the 

final one, I evaluated all artefacts in this context according to their functionality, usability, and fit. 

The artefact that emerged from the final iteration was evaluated in the laboratory against a 

prominent tangible programming environment and using the secondary research questions as 

metrics.  

How an artefact gets evaluated, when the evaluation takes place, and the reason for the evaluation 

is project specific and is influenced by the resources available (Venable et al. 2016). Separate and 

independent entities hosted two science fairs primarily aimed at young people that suitably 

addressed these evaluation dimensions. These locations are respectively the city of Pretoria and the 

town of Grahamstown and are geographically separated by approximately 860km. Conducting the 

evaluations at geographically separated fairs was ideal since they provided access to participants 

from diverse backgrounds and different participants at each evaluation session. My decision to use 

fairs as evaluation opportunities exposed two challenges: Since I could not select the participants, no 

longitudinal study with a particular participant was possible and neither could I conduct inter-

artefact evaluations with the same participants.  

Children were ideal research participants for three reasons. First, I had easy access to a few hundred 

children through science fairs. Second, literature (Horn and Jacob (2006), Druin (2009), and Tarkan, 

Sazawal, Druin, Foss, Golub, Hatley, Khatri, Massey, Walsh, and Torres (2009) are examples) on the 

evaluation of tangible objects and tangible programming environments include child participants. 

Finally, Lucas, Bridgers, Griffiths and Gopnik (2014) and Gopnik, Griffiths and Lucas (2015) report 

that more knowledge may actually be a disadvantage when something new must be learned. They 

state that children are more tolerant to learning new concepts because they know less than adults 

do and are less biased by their existing knowledge.  
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Druin (2002) explains the four main roles that young children play in the design of new technology. 

These roles are as users, testers, informants, and design partners. Children assisted in the current 

research project as users, testers, and informants as highlighted in Figure 5-4.  

The child as ...

design partner

informant

tester

user

 

Figure 5-4  The role of children in this study 
Based on Druin (2002) 

Figure 5-5 illustrates the evaluation path followed in the context of Venable et al.’s (2016) evaluation 

strategies. Of the four evaluation strategies they describe, the current research most closely 

resembles their Human Risk & Effectiveness strategy. When considering their Framework for 

Evaluation in Design Science (FEDS), my evaluations were distributed across the axis that describes 

the functional purpose of the evaluation. Evaluations of the first, second and third iterations can be 

plotted in Figure 5-5 towards the naturalistic end on the evaluation study paradigm axis. The 

evaluation of the fifth artefact was conducted in my laboratory and can be plotted towards the 

artificial end. The fourth artefact was evaluated as a working exhibition at a conference reporting on 

the design of children’s technology. I place this evaluation on the graph below the first three and 

above the fifth data point.  
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Figure 5-5  My evaluation strategy in context of the Framework for Evaluation in Design Science (FEDS) 
Based on Venable et al. (2016) 
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5.3.4.5 Conclusion step  

The Conclusion activity is the final contribution in the form of a model that captures operational 

principles and design theories. Iteration outcomes are included in this thesis and were published in 

peer-reviewed conference proceedings. The papers describe the artefact that resulted from each 

completed iteration and the accompanying evaluation outcomes.  

5.3.5 Data collection and analysis 

I collected data for this qualitative study over a period of three consecutive years during which time I 

conducted evaluations at two national but independent annual science fairs, two kindergartens, a 

technology club, a conference, and my laboratory. The collaboration with the SciFest Africa (Scifest 

n.d.) and ScienceUnlimited (ScienceUnlimited n.d.) event organisers was mutually beneficial: For the 

organisers, our evaluation workshops added to the list of attractions while my research benefited by 

having access to a large number of children. For my research, the fairs provided access to children of 

mixed ethnicity and gender and from varying and undetermined social and financial standing. During 

these years, I was concurrently participating in the TekkiKids (Marais, Smith & Duveskog 2007) 

technology club research project that also had children as participants.  

Evaluation sessions conducted at the fairs were documented using both video and photographs. 

Sessions at the club, kindergartens, conference, and my laboratory were documented using 

photographs only. I archived all photographs and video recordings and later used these to compile 

conference papers.  

For the second and third iteration, I interacted with participants and directed their activities in 

person. This put me in immediate physical proximity with each child. I adjusted my interaction 

approach based on my instantaneous observations. For example, I would offer assistance when the 

user was uncertain on how to proceed with an activity. At other times when the participant was 

clearly confident in her actions, I would retreat so as not to influence her thinking process. I could 

thus immediately identify design problems and confirm which design aspects worked well.  

5.3.5.1 Science fairs 

Thousands of children attended the two fairs each year. Both hosted a series of lectures and 

workshops with the number of participants at my Grahamstown workshops being approximately 

double that of Pretoria. Teachers, parents, and children made group and individual bookings. Two 

workshops per day was the norm. Participants at the science fairs were mostly school children on a 

school outing. Some participants were home-schooled and only a few participants were adults.  
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The event organisers required that workshop attendees book their places but I did not enforce this 

rule. Instead, I encouraged everybody to participate irrespective if they had adhered to the policy or 

not. Latecomers were not turned away either. A limit was set on the number of participants that 

could attend a lecture or a workshop. The number was based on either the size of the venue or set 

by the presenter. For my workshops, I set an official limit of 20 participants but I did not enforce this 

rule either.  

Some sessions were oversubscribed yet at other times, as few as two children attended. I adapted 

the activities in all cases to accommodate the number of participants at a session. When only a few 

children attended the workshop, I adapted the activities to allow each more time to interact with 

the artefact. However, when a workshop was oversubscribed not all children had an opportunity to 

engage with the artefact or complete the questionnaires.  

On average, four children per workshop session directly engaged with the artefact. With eight 

sessions per event per year, the average number of direct interactions was thus 64 children for each 

of the first, second, and third designs respectively. As many as 20 adults per year interacted with the 

programming environments outside of the formal sessions.  

I set a time limit of one hour per workshop session. I considered this time to be a reasonable balance 

between mental and physical exhaustion for both the participants and researchers, and the time 

needed to 1) obtain written participant consent, 2) introduce the artefact, 3) for up to seven children 

to interact with the programming environment, and 4) for them to complete written questionnaires.  

Children attended the workshops either as individuals or in groups. Some were home schooled, 

others attended private schools, and yet others attended public schools. Often all the participants 

would be from the same school while at other times the attendee composition would be a mix. I had 

no control over the number of participants that attended the workshops nor their age, school 

category, gender, or ethnicity. The ages of child participants ranged from three to 18 years.  

I initially evaluated the first artefact at the Pretoria science fair. Based on the learning that emerged 

in Pretoria I adjusted the workshop format in anticipation of the workshops to be held in 

Grahamstown later that year. An assistant introduced the first programming environment to the 

participants and helped the children construct programs. 

I evaluated the second artefact in both Pretoria and Grahamstown. For this evaluation, participants 

were not only users and testers but they were now also informants. As informants and before 

introducing them to the programming environment, I requested the participants to sketch signs of 

their own design that represent car motions (the first iteration had identified a need for this 
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activity). Approximately 50 designs were legible and I classified and grouped those by hand 

according to similarities. Some designs were not processed as they included written text. The 

balance of the collected informant data are not usable for reasons that include unfinished drawings 

and incomprehensible markings. 

For both the second and third artefacts, I interacted directly with the participants by introducing the 

programming environment, directing the evaluation activities, and assisting the participants as they 

interacted with the system. This put me in immediate physical proximity with a participant. I also 

interacted with him and adjusted my approach based on my instantaneous observations. Not only 

was I able to immediately identify design problems using this approach but also confirm which ones 

were good. I thus had little need to access the videos and photos taken by research assistants.  

The evaluation conducted in the first iteration highlighted certain problems and my initial goal with 

the second analysis was to determine how well I had addressed those problems. The second artefact 

was therefore analysed according to three initial themes: First, I was interested in the way the user 

interpreted the signs. I also wanted to observe how the user manipulated the objects. The third 

theme was to gauge how successful the users were in constructing programs. I based my analysis of 

the third artefact on these themes. At the same time that I collected data on all the artefacts, I 

compared it with those already allocated to a theme and I created new themes when data did not fit 

an existing one.  

5.3.5.2 TekkiKids 

TekkiKids was a joint research project funded by the CSIR Meraka Institute, the University of 

Pretoria, and the University of Joensuu in Finland. It was modelled after the University of Joensuu’s 

Kids’ Club and focussed on primary school children aged nine to 12 years. The aim of this three-year 

project was to encourage children to follow a career in science, engineering, and technology. To this 

end, three groups of 12 children each were established on a voluntary basis. Six children from two 

schools respectively comprised one group. Participants were pre-selected by their respective schools 

and we requested that both well performing children and those who were not top performers be 

selected. Thirty-six children thus participated in the project activities. The fortnightly technology club 

sessions lasted two hours. In contrast to the science fairs, the children that participated in the club 

were selected based on their school’s recommendations. 

In addition to the science fairs, the second artefact was also evaluated at the club. The second 

artefact evaluations and design solicitations at the club followed the same format as for the science 

fairs. One noteworthy difference is that the same children attended the workshops over many 
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weeks and were thus at ease with the environment, each other, and me as session coordinator. 

Interactions were therefore informal and relaxed.  

5.3.5.3 Kindergartens 

In addition to the science fair evaluations, the third artefact was also evaluated with the help of 

approximately 40 children at two kindergartens. Two researchers accompanied me as we conducted 

evaluations in Pretoria and the Johannesburg area. The evaluation design differed from those at the 

science fairs in that only one evaluation was conducted per kindergarten and much more time was 

spent explaining the artefact to the children. 

5.3.5.4 Interactive exhibition  

The fourth artefact was evaluated using data collected during an interactive exhibition (Smith 2009c) 

at an interdisciplinary conference in Italy. I observed approximately 20 children and adults as they 

used the programming system. 

I did my analysis along four themes. The first considered how well the magnet-based positioning 

mechanism functioned. I considered the design to be a success if the user placed the disk on the 

surface and it remained centred. A second requirement was for the disk to return to its original 

orientation when slightly turned. I also wanted to determine if the repurposed materials remained 

functional: Had any artefact part come dislodged during use the event would have been recorded as 

a failure. Finally, I needed to confirm that the tangible program could produce a result on the 

computer screen.  

5.3.5.5 Laboratory with children 

Another opportunity to observe how children interacted with the third artefact presented itself 

when a group of about 100 children of ages 16 to 19 visited our institution. Of this group, 

approximately 10 directly participated in an informal evaluation session while the other children 

looked on. Since I was the only researcher at this event, I requested the children to take 

photographs using my still camera. This freed me from taking pictures and allowed me to direct the 

proceedings and interact with a participant as he constructed a program. My close interaction gave 

me an opportunity to detect design problems and identify which design aspects worked well. 

5.3.5.6 Laboratory without children 

In the laboratory, I compared the fifth and final artefact with a prominent tangible programming 

environment. I did this by identifying between the two environments language structures that 

coincided and those that differed. I then constructed program segments using both languages.  
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I analysed the data according to three criteria. First, I wanted to determine the user effort required 

when converting a personally meaningful object into a program element. To answer this question, 

my initial objects were constructed using cardboard pieces cut from household product packaging. I 

then printed markers and attached these. The software was then put in Mapping mode and the 

object mapped to either an action or a numerical value. I next experimented with small wooden 

cubes and dowels procured from an arts-and-crafts store. The cubes and dowels are from a child’s 

toy and fit together to form interesting structures. I again applied optical markers to the cubes. I also 

attached personally meaningful paper “flags” to the dowels. This and other tangible assemblies were 

then mapped to either functions or parameters. Finally, I constructed programs using the objects.  

The second criterion was to strike a balance between the object size and the number of objects that 

could fit the construction surface. A balance is important for two reasons: The marker must be large 

enough to be identifiable using the camera and yet the objects must be small so that many would fit. 

I found the balance by first fixing the size of the construction surface assembly and I then 

determined through inspection the smallest marker that could work with the image recognition 

software. 

Finally, I set out to determine if my artefact could be used to implement program structures of the 

prominent tangible programming environment. To this end, I chose instruction set elements from 

that environment and discovered that some constructs mapped directly to my own language and yet 

others had to be manipulated into a compatible structure. 

5.3.6 Ethical procedures 

The way in which experimental data is collected and the results reported can negatively impact 

humans, animals, organisations, and the physical world (Hofstee 2006; Olivier 2004; Welman & 

Kruger 2001). Guidelines to minimise the potentially negative impact of research are available and I 

list some of them here. First, research should be conducted in an honest manner (Olivier 2004). For 

example, research results are not to be fabricated, falsified or modified to fit the expected outcomes 

(Hofstee 2006). Second, human participants should not be subjected to physical harm, be 

embarrassed, or lose their privacy (Cooper & Schindler 2006). Cooper and Schindler (2006) also 

suggests that the potential benefits that the study holds and the rights of the participants should be 

explained to them and informed consent obtained. As shown in Appendix A, I completed a research 

ethics training course to familiarise myself with research ethics concepts and principles.  

Cooper and Schindler (2006) define ethics as the norms that direct the researcher’s moral choices. 

Yet, individuals may have differing and conflicting views on acceptable norms (Cooper & Schindler 

2006). Also, Olivier (2004) puts it that the researcher may conduct his work with the best of 
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intentions but at the same time not be aware of all the consequences that may follow. A researcher 

has an opportunity to identify and correct ethical issues by presenting the project objectives and 

methodology to experienced researchers. It is for these reasons (among others) that ethics 

committees are established at universities and research institutions (Olivier 2004). 

Participants were introduced to the researcher and research assistants at the onset of each science 

fair workshop. They were then briefed on the research objectives and the technology used, 

explained the activities to follow, and what their role was. Adults who assumed responsibility for the 

children then gave signed consent. I also ensured that the children assented to the activities. The 

responsible adults were invited to watch the workshop proceedings. I ensured that a teacher was 

always present during activities involving kindergarten children. Appendix B contains an ethics 

checklist with declaration, and the ethics committee’s approval to conduct the research. An example 

of the participant instructions and consent form is given in Appendix C. 

Participants remained with the TekkiKids study for two years. The research objectives were 

therefore explained once with this being at the initial introductions. On this occasion, the 

participants also assented to the research and informed consent was obtained. The objective of a 

particular session would occasionally deviate from the original plan. When this happened, the 

changes were explained to the children at the onset of a session. The TekkiKids project manager 

affirms in Appendix D that the children had assented to the research. He also states in it that the 

parents had given their consent. Appendix E shows the invitation to participate given to the children 

as well as the consent form completed by the child’s legal guardian. 

I endeavoured to maintain participant privacy by storing data separate from personally identifying 

information. Participant identifying information was captured on paper and filed in my locked office. 

I stored data on secure servers where my login credentials and password denied access to 

unauthorised persons. Participant information will be destroyed simultaneously with the publication 

of this thesis. Images and data were anonymised before being published in research literature.  

I was therefore careful to treat the participants with sensitivity and not isolate them physically from 

their peers. I also considered the psychological impact and the ethical implications of my actions. 

Finally, I kept participant identifying data confidential and strived to ensure their anonymity. 

5.4 Conclusion 

In this chapter, I presented the philosophical stance that underpinned my research. My ontological 

view was biased towards nominalism, my epistemological assumption that was biased towards 

interpretivism, and my assumptions regarding human nature was a balance between the 
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deterministic and voluntaristic views. I also discussed the Design Science Research methodology and 

my motivation for selecting Vaishnavi and Kuechler’s (2008) general methodology. I explained the 

methods applied to each process step in this methodology. I then distinguished between the 

evaluation metrics applied to the interim and the final artefacts. The inclusion of children as 

evaluation participants was motivated and I explained their roles as users, testers, and informants. I 

discussed the mechanisms by which I collected and analysed data. Finally, I motivated why ethical 

guidelines are necessary and how I addressed them. 
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 CHAPTER 6

DESIGN, IMPLEMENTATION, AND EVALUATION 

 

Chapter 1
Introduction

Chapter 2
Theoretical background

Chapter 5
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Chapter 7
Primary research contribution

Chapter 8
Conclusion

Chapter 4
Literature review: Tangible programs

Chapter 3
Literature review: Tangible objects

  

 

Figure 6-1  Document structure  
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6.1 Introduction 

In this chapter, I discuss the design, implementation, and evaluation of a series of tangible 

programming environments that were developed with the aim of answering the secondary research 

questions stated in Chapter 1. I reiterate them here: 

a. What program elements are suitable for a tangible programming environment in which the 
programmer can incorporate personally meaningful tangible objects?  

b. How can a user associate personally meaningful tangible objects with program elements?  
c. How can the arrangement of these personally meaningful objects be interpreted as program 

statements? 

 

I will apply the new knowledge gained here to answer in Chapter 7 the primary research question, 

namely: 

 

In the context of existing tangible programming environments and considering how tangible 
objects are currently used when interacting with data, what are the constructs to incorporate into 
a model for creating tangible programming environments in which the relative positions of 
personally meaningful objects define the program, and how do these constructs interact and 
relate to one another?  

 

The research reported here is my own. Portions of this chapter were presented at conferences and 

published in peer-reviewed proceedings. Page iii lists my publications since 2010. The papers 

published during the course of this research each addresses a particular problem. All papers were 

peer-reviewed and are included in conference proceedings. Smith (2008c) is an exception since it 

was presented at a conference but no proceedings were published. The relevant publications for the 

first iteration are Smith (2006, 2007a, 2007b, 2008c, 2010b) and Smith, Kotzé and Gelderblom 

(2011a). Results of the second iteration are reported in Smith (2008a, 2008c, 2009c, 2009d, 2010b), 

Smith, Foko and Van Deventer (2008), and Smith et al. (2011a). Knowledge gained in the third 

iteration are reported in Smith (2008c, 2009d, 2009e, 2010b, 2014b), Smith et al. (2008), Smith et al. 

(2011a), and Smith and Gelderblom (2013a, 2013b). Smith (2009b) gives an overview of the first four 

iterations. For the fourth iteration, the relevant publication is Smith (2010a). Smith (2014a) reports 

on the fifth iteration while my initial model for tangible programming environments is described in 

Smith and Gelderblom (2016).  

 I now describe two related projects to which I made intellectual contributions. These are the 

StoryBeads (Reitsma 2011; Reitsma et al. 2013; Smith, Reitsma, Hoven, Kotzé & Coetzee 2011b) 

research project and the Tactuslogic (Smith, Springhorn, Mulligan, Weber & Norris 2011c) tangible 

programming environment. The StoryBeads research project is relevant since it deals with personal 

and community-wide meaning that an object holds. The project outcome both confirmed and 

influenced my decision to use personally meaningful objects in a tangible program. Finally, the 
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Tactuslogic project served as a test bed for a tabletop tangible program and confirmed the artefact 

design approach I followed in the fifth iteration.  

The design of a tangible programming environment was refined through five iterations. Figure 6-2 

summarises this design progression. The first three iterations (these being GameBlocks I, 

GameBlocks II, and RockBlocks) interpret tangible programs and produce results that affect the 

physical domain. Iterations four and five (Dialando and T-Logo) produce results in the digital domain.  

Output
domain

Tangible 
program 

object

Association

First iteration
(GameBlocks I)

Second iteration
(GameBlocks II)

Third iteration
(RockBlocks)

Fourth iteration
(Dialando)

Fifth iteration
(T-Logo)

user-defined

static

user-defined

supplied

digital

physical

Gestalt 
principle

Grouping by 
proximity

Good 
continuation

 

Figure 6-2  The five design iterations and their properties 
 

Figure 6-3 graphically relates the five iterations to the section numbers in which they are discussed. 

This figure is based on the Design Science Research process model (Vaishnavi & Kuechler 2013) and 

makes explicit for each iteration the design knowledge that supported the Suggestion step and the 

new knowledge that emerged. I will use portions of this graphic to introduce each iteration and 

insert iteration-specific text in the Design Knowledge and New Knowledge blocks.  

I based my artefacts on three Gestalt principles as summarised in Figure 6-3. The Gestalt principle of 

good continuation was applied to the first, second, third, and fourth iterations. The Gestalt principle 

of grouping by common region was considered but discarded in the fifth iteration. For the fifth 
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iteration I designed and successfully implemented a tangible programming environment based on 

the Gestalt principle of grouping by proximity.  
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Figure 6-3  The five iterations in context of the Design Science Research methodology 

Based on Vaishnavi and Kuechler (2013) 
 

The initial design was informed by knowledge that the test participants would be children with 

abundant energy. I therefore designed the programming objects to be as large as possible and 

encourage whole body movement when the user constructed a program (Smith 2006). The result 

was that children had to use both hands to manipulate the object and they also had to constantly 

shift position around the programming area on the floor. However, evaluation results revealed that 

the children considered the objects as being too large. The object size was progressively reduced in 

consecutive iterations to the point where many objects can be held in the palm of the hand. Across 

the iterations, there was thus a progression from the floor-based design using large objects to a 

table-top version and smaller objects. 

This chapter is structured as follows: The sections each describe a single iteration where Section 2 

discusses the first iteration that I call GameBlocks I and Section 3 covers the second iteration called 

GameBlocks II. This is followed by Section 4 in which the RockBlocks (the third iteration) is explained. 
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The fourth iteration (Dialando) is covered in Section 5. The fifth and last iteration, called T-Logo, is 

discussed in Section 6. Section 7 concludes this chapter. 

6.2 Iteration one: GameBlocks I 

This was the first of five iterations aimed at answering the primary research question. The question 

is shown in Figure 6-4 and under the heading “Awareness of Problem”. The design knowledge on 

which this iteration is based had emerged from the literature study and I formulated this knowledge 

as follows: “An arrangement of physical objects can define a program.” 

Suggestion

Development

Evaluation

Awareness of Problem

In the context of existing tangible 
programming environments and considering 
how tangible objects are currently used when 
interacting with data, what are the constructs 
to incorporate into a model for creating 
tangible programming environments in which 
the relative positions of personally meaningful 
objects define the program, and how do these 
constructs interact and relate to one another? 

Incomplete -

knowledge base 

New 

knowledge

Publications

Issues to be considered when designing a tangible 
program environment include the construction 
material, the signs, the number of instructions, and 
the device being controlled.

An arrangement of physical objects can define  a 
program. 

Design Knowledge

New Knowledge

 
Figure 6-4  The knowledge that informed the first iteration and the results 
 

To answer the primary research question I retrieved from the scientific community’s knowledge base 

the fact that an arrangement of physical objects can define a computer program. Horn’s (2009) Tern 

is an example of a programming environment in which an arrangement of physical objects define a 

program. I then proceeded to design an initial tangible programming environment that incorporates 

colourful acrylic cubes and a toy robot. A team of research assistants evaluated the environment 

under my direction and with the help of children. Evaluations were done at two science festivals and 

also in our laboratory.  
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6.2.1 System design 

This artefact consists of coloured acrylic cubes, trays, a control circuit, and a humanoid robot (Figure 

6-5). A program is constructed by placing cubes on the 24 pre-arranged trays in the order in which 

the instructions should be executed. Five magnetic sensors in each tray detect magnets in the cube. 

When activated, the control circuit identifies the cubes and their sequence on the trays and sends 

corresponding instructions to the toy robot. The colour of a cube and the sign on top of the cube 

represent the cube’s function while a combination of magnets at the base encodes the function.  

 

                             
                                  Cube                                                              Tray                                                            Robot 
Figure 6-5  Cube, programming tray, and toy robot 

(Smith 2007b) 

The robot performs motions that include turning its head right and left, moving forward and 

backwards, and turning its body left and right. Figure 6-6 illustrates the range of signs (in yellow) on 

the cubes according to their functionality. It also shows the virtual grid that defines the location of 

magnets, the program function represented by a particular cube, and the colour of the cube that 

corresponds to that function. Red squares in this figure represent the position of the magnets in the 

grid. Programs with up to 24 steps are possible by combining 20 cubes and vacant spots. A tray with 

no cube on it delays program execution for a few seconds. Figure 6-7 is an illustration of a program 

that controls the toy robot. Shown below each sign is the effect the instruction has on the robot. 

6.2.2 Tangibles design 

The design allows for flat-pack transportation and easy assembly and disassembly using parts cut 

from sheets of acrylic material. An arrangement of up to five magnets inside each cube encodes the 

function (Figure 6-6). The placement of the magnets in Figure 6-6 was done based on the 

assumption that the cubes had only one valid orientation and therefore no provision was made to 

rotate the cubes and magnet placement symmetry is irrelevant.  

All trays each have five magnetic switches that sense the magnet configuration of the cube on top. 

The control circuit identifies the cubes and their sequence by sensing the switches in turn. A 

mechanical alignment mechanism ensures that a cube is placed securely onto the tray.  
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6.2.3 Evaluation  

This iteration was informally evaluated at the ScienceUnlimited (n.d.) fair in Pretoria (Figure 6-8a) 

while formal evaluations were conducted at the Grahamstown SciFest Africa (n.d.) fair (Figure 6-8b).  

Grey cube Green cube Orange cube

Clear cubeWhite cubeBlue cube

Turn head to the left Turn head to the right Move forwards

Move backwards Turn right Turn left

Sign

Magnet 
placement

Colour

Function

 
Figure 6-6  The sign, colour, function, and magnet placement for each cube type 

(Smith 2007b) 
 

Forward Right Forward Right Forward Right Forward

Cube sequence

Robot motion

Instruction sequence

Order of execution First Last
 

Figure 6-7  A seven-part program and the associated result of each instruction 
Based on Smith (2007b) 

 

                        
                                           (a)                          (Smith 2007b)                                                                 (b) 
Figure 6-8  Evaluations in Pretoria and Grahamstown 
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6.2.3.1 Evaluation design 

About 50 children participated in the informal evaluation sessions held in Pretoria. Then followed 

formal evaluation sessions in Grahamstown that involved approximately 30 children. Both types of 

evaluation sessions lasted approximately 45 minutes and participants were between 10 and 12 years 

of age. Parents or guardians (as applicable) gave written consent for all participants. Assistants used 

video and still cameras to capture all the evaluation sessions. Participants were asked to achieve a 

predetermined task by designing and constructing a program that controls the robot.  

For both formal and informal evaluations, participants were given an overview of the research 

project at the onset of each evaluation session. The overview included explaining the correlation 

between the graphic signs on the cubes and robot movements. Research assistants also 

demonstrated the programming process by placing cubes onto the trays and activating the system to 

illustrate how the robot responded to the program.  

Informal evaluation included observing how the participants interacted with the system and 

discussing the system design and operation with the children. Professional usability testers (Figure 

6-8b) assisted with the formal evaluations and documented their findings and recommendations in a 

report (Bekker & Kruger 2006). Preparations for the formal evaluations included attaching written 

program instructions (Figure 6-9a) to the venue wall using sticky putty and in no particular order. 

These instructions were Forward, Back, Left, and Right. Facial expression icons were also randomly 

stuck to the wall. Finally, a sheet of paper indicating the age of a participant was pinned to his 

clothing (Figure 6-9c). 

                               (a)                                                                                                    (b)                                                                  (c) 

Figure 6-9  Evaluation aids and activity 
 

Individual participants proceeded as follows: First, he arranged the sheets on the wall to imitate the 

desired robot movement sequence (Figure 6-9b). Copying this sequence, the participant then placed 

the corresponding cubes onto the trays (Figure 6-9c). He initiated program execution when he was 

satisfied that the cube sequence reflected the sequence on the wall. The robot then responded to 
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the instruction represented by each cube while the participant followed the sequence against the 

wall and placed a facial icon below the current instruction if the robot moved as programmed.  

6.2.3.2 Evaluation results 

My design decision to incorporate icons but no text on the cubes proved to be problematic. Both 

research assistants and participants found it hard to recall what these icons represented. The colour 

of a cube did not help a user recall the cube’s function. Instead, only the sign on the cube was of 

value in recalling the function. Another observation was that the physical properties of the cubes 

were not ideal. First, the smooth acrylic surfaces are slippery and difficult to grasp. Second, the 

material is fragile and breaks when dropped. Also, the corners of the cube are sharp and hard and it 

can cause injury if the cube falls onto an exposed foot. Finally, magnets came dislodged inside cubes. 

The result was that the system did not identify those cubes as expected. 

The Pretoria-based evaluations were informal and the participants provided verbal feedback. 

Participants at this venue commented on the following: Robot sounds were not loud enough to be 

heard over the ambient noise. Second, the cubes were too large. The final comment relates to the 

cubes on the trays and the direction in which the icon on the cube points: Participants expected the 

robot movements to follow world co-ordinates and not the robot’s own coordinate system. Put 

differently, participants expected the robot to move in the direction of the icon on the cube yet 

actual motion centred on the robot’s own co-ordinate system.  

6.2.4 Discussion 

The following discussion first covers the informal and then the formal evaluation. I observed that 24 

programming trays are too many for a novice user. The trays were configured as two parallel rows 

(Figure 6-8a) with 12 trays each. The program was interpreted one row at a time and from left to 

right. This interpretation sequence was not intuitive for either the users or me. An alternative 

execution sequence that I considered but did not implement is to interpret the first row from left to 

right and the second row from right to left. Subsequent to the informal evaluations I realised that a 

configuration consisting of two adjacent rows is needlessly challenging to the user and should be 

avoided in future iterations. 

In preparation of the formal evaluation in Grahamstown and informed by the Pretoria observations, 

I reduced the number of trays from 24 to eight. I also simplified the configuration from two rows to a 

single one while keeping the interpretation sequence from left to right. Although I only became 

aware of the Gestalt principle of good continuation after the completion of the fifth iteration, this 

principle predicts that users will not have trouble in grasping the left-to-right linear interpretation of 

a single row of objects. The second, third, and fourth iterations adopted configurations based on this 
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principle and the evaluation results confirm that the Gestalt principle of good continuation is 

applicable to tangible programs.  

The physical properties of the acrylic cubes make the cubes unsuitable for public use. Also, the signs 

are too abstract and this problem can be addressed using a set of four descriptive signs (Figure 6-10a 

through d) as Bekker and Kruger (2006) suggest. In this figure, a sign consists of an arrow indicating 

the direction of intended motion and an outline of the toy robot. Observations also confirmed that 

eight programming steps are appropriate for the novice user. Some participants commented that 

the cubes are too large. This observation relates to the comment that the cubes are slippery. Finally, 

the evaluators (Bekker & Kruger 2006) suggest that a physical hook-and-loop linking mechanism 

(Figure 6-10e) be added as highlighted. They put it that this mechanism would make the 

interpretation sequence explicit. 

 

         

  
                                                                                                                                                 

            (a)                         (b)                             (c)                         (d)                                                         (e)                    

                                                          
Figure 6-10  Suggested design improvements 

Based on Bekker and Kruger (2006) 

Based on the results of this iteration I added to my knowledge base the following factors to be 

considered when designing tangible program environments: The sequence in which objects are 

interpreted should be unambiguous and the construction material should be chosen with care. Also, 

the design of signs should consider the user and the number of instructions should match the time 

available to the user to become familiar with them. Finally, the device under control should execute 

clearly recognisable actions.  

The second design iteration incorporates a new sign set and smaller cubes. Compared to the acrylic 

cubes, these cubes are easy to grasp, lighter, smaller, and made using soft foam. They are also safe 

for public use since they will not shatter when dropped. Finally, I replaced the toy robot with a toy 

car that has exaggerated movements. 

6.3 Second iteration: GameBlocks II 

Evaluation results from the first iteration indicated that the choice of construction material, signs, 

number of instructions, and the device being controlled should all be considered when designing a 
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programming environment that has tangible inputs and outputs. Figure 6-11 captures these 

indicators in the block marked Design Knowledge and I used them to design the second artefact. 

6.3.1 System design 

This design incorporates the new knowledge that emerged from the first iteration: First, the signs 

are now more descriptive. Also, the cubes are smaller, easier to manipulate by hand and safe for use 

by children. Finally, the instruction set is smaller and confusing instructions have been removed.  

Suggestion

Development

Evaluation

Incomplete -knowledge 

base 

New 

knowledge

Publications

The following should be considered when designing a programming environment that has tangible inputs 
and outputs: the sequence of interpretation, the choice of construction material, the choice of signs, the 
number of instructions, and the device being controlled.

Design Knowledge

An individual can conceptualise and express signs that represent car actions.

New Knowledge

 
Figure 6-11  The knowledge that informed the second iteration and the results 
 

The choice of signs and overall design of the second iteration were guided by signs and designs in 

the literature: The Tortis (Perlman 1976) action card arrows and the TURTLE TALK (Papert 1980) text 

in Figure 6-12 (a) and Figure 6-12 (b) are two programs with comparable outcomes. Shown in Figure 

6-12 (c) is a sequence of my cubes with signs that are based on the TORTIS arrows and the Turtle 

Talk text. The cube sequence represents a program similar to those in Figure 6-12 (a) and Figure 6-12 

(b). 

RIGHT

FORWARD

BACK

LEFT
 

                                        (a)                                     (b)                                                                 (c)                              (Smith 2008b) 
Figure 6-12  Programs constructed using Tortis, Turtle Talk, and GameBlocks II 
 

The system incorporates two “mats”. The programming mat serves as the surface on which the 

program is constructed and it is composed of eight sensing squares that are interspaced by one or 

more passive foam squares. Together these form a linear programming surface that can be adjusted 

in length. A second, “execution” mat has an embedded pathway and the user creates a program that 
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directs the toy car along the path. All tangibles and mats are constructed using modular foam 

squares and the user can easily change the configuration. For example, the user may interchange 

squares to produce cubes of varying colour and height.  

This iteration defined six language elements and these are move forward, move backward, turn to 

the left, turn to the right, play the first tune, and play the second tune (Figure 6-13 a through f). The 

toy car moves a distance of one square for each forward or reverse instruction. A turn instruction 

causes the car to rotate 90 degrees on the spot and then stop.  

 

                     
                     (a)                            (b)                              (c)                              (d)                            (e)                             (f) 
 

Figure 6-13  The sign set that defines the language elements 
 

Programming involves placing cubes on the programming mat in a linear sequence and this row is 

then interpreted from left to right. Figure 6-12 (c) is a photograph of a program that instructs the car 

to turn to the right, then move forward, move backward, and finally turn to the left. Figure 6-14 

illustrates a program (a) with its TURTLE TALK equivalent (b) and the result (c) when the program is 

executed. 

 

FORWARD

RIGHT

FORWARD

RIGHT

FORWARD

RIGHT

FORWARD

 

                                                         (a)                                                                            (b)                                  (c) 
Figure 6-14  A program, its TURTLE TALK equivalent, and execution results 

Based on Smith (2009c) 

6.3.2 Technical description 

Cubes have soft foam sides and each contains between one and three magnets that are fixed along a 

diagonal line at the base (Figure 6-15a). The magnet configuration uniquely identifies the cube’s 

function to the electronic circuit and the sign (Figure 6-13) on the top serves to identify the function 

to the user.  
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                            (a)                                                                 (b)                                                                      (c) 
 

Figure 6-15  Foam cube, active square under construction, and toy car 
 

The programming mat is a combination of active and passive squares where the passive squares 

serve as aesthetic and structural elements. Active squares (Figure 6-15b) each contain three 

magnetic switches that are sandwiched between two foam squares. Electronic circuitry can identify 

the cube based on the magnet arrangement inside the cube. This circuitry is also connected to a 

Lego RCX “brick” (Knudsen 1999).  

The system interprets the line of squares from left to right and transmits one of six signals to the car 

(Figure 6-15c) corresponding to the cubes on the squares. The six signals represent each of the six 

language elements. Software executing in the car receives the signal and activates the electric 

motors and loudspeaker in response. The car then either adjusts its position, orientation, or plays a 

musical tune as is appropriate for the message received. 

6.3.3 Evaluation  

Formal evaluations provided insight to how well the artefact served as a tangible programming 

environment. The evaluations were integrated with workshops held at ScienceUnlimited (n.d.), 

SciFest Africa (n.d.), and TekkiKids (Marais et al. 2007): ScienceUnlimited in Pretoria and the 

Grahamstown based SciFest Africa are regional science fairs targeting the youth. TekkiKids was a 

multiyear research project that studied children’s interaction with technology through workshops in 

our laboratory and at a local school. Appendix F shows the workshop invitation extended to children 

at the SciFest Africa workshops in 2008. 

6.3.3.1 Evaluation design 

Workshop participants were school-going children, of mixed gender, mixed ethnicity, and 

undetermined social class. The workshops held at our laboratory and the school were part of a 

separate 24-month long research project conducted in collaboration with 10 to 13 year old 

participants. This research involved 36 children with six participants from each of four schools and 

12 children from a fifth school. The participants from the four schools visited our laboratories twice a 

month, being two schools per visit. Interaction with the participants of the fifth school was on the 
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school premises. Workshops at the science events were attended by groups ranging in size of 

between two and 20 children and aged four to 17 years.  

At the start of each science festivals workshop the research assistants solicited written consent from 

the parents and guardians who were legally responsible for the children. The same was done for the 

participants who were involved in our 24-month research project. The solicitation served to inform 

the parents, guardians, and participants of their rights. Appended E is an example of the consent 

form. The collected data included completed questionnaires, video recordings, and photographs. 

The video recordings and photographs informed our evaluation analyses.  

I introduced the participants to the programming environment and explained how the artefacts 

should be selected and positioned on the programming mats. The artefact components are the toy 

car, cubes, programming mat, and the execution mat. The functionality of each cube type was 

explained and demonstrated using the car.  

User responses were elicited during evaluation sessions using two questionnaires. The questions are 

included in this thesis as Appendix G and Appendix H. The first questionnaire (Appendix G) is 

associated with the workshops conducted in our laboratory. The second questionnaire (Appendix H) 

supported the workshops conducted at the two science festivals. At the onset of a workshop, the 

participants completed Appendix G (Section A) and Part 1 of Appendix H. Section C of Appendix G 

and the third part of Appendix H solicit design inputs on sign language element representation. 

Appendix G (Section B) and the second part of Appendix H were completed at the end of each 

workshop. Approximately 15 minutes were allocated to this activity.  

Two primary activities formed the basis of evaluation workshops. First, the participants had to solve 

two challenges using the artefact. For the second activity, the children suggested alternative 

language element representations. The following paragraphs elaborate on these activities. 

The two challenges required the participants to design and construct programs to guide the car to 

two rewards along a fixed route. The rewards are marked “Target object #1” and “Target object #2” 

in Figure 6-16 (a) and Figure 6-16 (b), respectively. These targets were toys for the participant to 

keep. The toy served as both a concrete programming objective and a token of our appreciation for 

participating. The two challenges differed in the way that the car moved. For the first challenge, the 

only requirement was for the car to reach both targets. For the second challenge, the car had to 

reach Target object #2 by reversing. Figure 6-16 (c) and Figure 6-16 (d) illustrate two solutions to 

these challenges. Participants were encouraged to design solutions using printed copies of cube 
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signs called programming aids. Programming aids are printed copies of the sign set (Figure 6-13) and 

Figure 6-16 (a) shows them in use.  

The programming activity went as follows: First, a participant was given a set of programming aids 

while at the same time I placed all the available programing cubes close to the programming mat 

and in no particular order. The child then placed the aids on the floor in the sequence (Figure 6-17a) 

that she envisaged would solve the challenge. I then helped her mentally execute each instruction in 

the compilation to validate the program against the set objective. When the participant was satisfied 

with the program design, she copied the design onto the programming mat by placing (Figure 6-17b) 

appropriate cubes onto corresponding active squares. The system was then activated and the car’s 

motions closely observed.  

 

Target object # 1

Target object # 2

Toy car

Programming aids

Programming cubes

Programming mat

(a)

(b)

(c)

(d)

Pathway

Target 

object 

#1

Target 

object 

#2

Start

position

 

Figure 6-16  The physical configuration, the challenge, and two solutions 
Based on Smith (2009c) 
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                              (a)                                                   (b)                                                    (c)                                                    (d) 
 

Figure 6-17  Program design, construction, and debugging activities 
 

Program debugging was done while the program ran. As the program executed, the user was 

encouraged to point (Figure 6-17c) at the cube being interpreted and simultaneously check if the 

car’s movement corresponded to the cube sign. A research assistant placed a smiling face icon on 

top of the cube (Figure 6-17d) when the car behaved as expected. When the execution did not 

correspond to the user’s intentions the discrepancy was resolved by inspecting the cube sequence 

and comparing the sequence to the car movements. The program was then modified, the car 

repositioned to the start of the route and the system reactivated. The debugging process was 

repeated until the car behaved as envisaged.  

Once all the children have had an opportunity to construct and execute their programs they were 

asked to suggest alternative signs. They were requested to draw pictures (without text) to illustrate 

the following car motions: “Move forwards and keep on going”, “move forward and stop”, “turn 

right and stop”, and “turn right and keep on going”. Copies of the activity worksheets are in 

Appendix G (Section C) and Part 3 of Appendix H.  

6.3.3.2 Evaluation results 

Figure 6-18 and Figure 6-19 show some of the participants’ suggestions. The diversity in the 

suggestions supported my emerging thinking that users can design their own signs. Three design 

themes emerged. First, abstract signs such as a dot or vertical bar are at times used to indicate a 

stopping action (Figure 6-19c and d). Other abstract signs include dotted lines and multiple parallel 

lines to indicate that the car continues its current motion (Figure 6-18b and c). Second, concrete 

signs as found on the road side or tarmac, and hand signals indicate the intended action (Figure 

6-18e and Figure 6-19a,b,e,f and g). Finally, a combination of abstract concepts and concrete objects 

were suggested and this is exemplified in the sketch (Figure 6-18a) as a car that changes shape as it 

passes through an intersection.  

6.3.4 Discussion 

Workshop observations established that individuals are able to conceptualise and express signs that 

represent car actions. A significant number of the suggested signs are similar to those already 
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incorporated into my artefact. The following may help explain this phenomenon: First, the 

participants were not motivated to generate original suggestions. Second, the participants did not 

understand the task and opted to imitate my signs.  

The program element signs in this iteration are an improvement over those used in the first 

iteration. Substituting the acrylic programming mat and cubes with foam material was another 

refinement that yielded positive results. 

 

          

    (a)                  (b)                  (c)                  (d)                       (e)                   (f)                           (g)                  (h)                     (i)                 
Figure 6-18  “Turn-and-go” signs 
 

 

 

                                                       
       (a)                             (b)                              (c)                       (d)                           (e)                           (f)                             (g)                  

Figure 6-19  “Turn-and-stop” signs 
 

6.4 Design iteration three: RockBlocks 

Experience gained using abstract signs in the first and second iterations together with visual 

perception tests conducted with the help of young children (Smith et al. 2008; Smith 2009a, 2009e) 

led me to conclude that a person may not always interpret signs as the sign designer had intended. 

Insights from the second iteration indicate that an individual can conceptualise and express signs to 

represent car actions. The problem of sign interpretation combined with the individual’s ability to 

conceptualise and construct signs (as determined in the second iteration) prompted me to 

investigate the use of personally meaningful artefacts as programming elements. I therefore 

explored if, and how, user-created artefacts can be appropriated as programming objects. My 

findings (Smith & Kotzé 2010) were encouraging and based on these I extended my research to 

include hand crafted objects as programming elements.  

Concurrent to this iteration, I also advised on a related study (Reitsma et al. 2013; Smith et al. 

2011b) that had an objective to determine the extent to which a rural African community would 

embrace objects that integrate digital technology with the community’s handcrafted artefacts. What 

emerged from that study and also of particular interest to my own is the fact that rural communities 

construct artefacts that hold community-specific meaning. Examples (Smith & Kotzé 2010) of 
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artefacts that hold personalised meaning include the Zulu fertility doll and beaded apparel (Figure 

6-20).  

 

 

Figure 6-20  Zulu fertility doll and beaded apparel 
(Smith & Kotzé 2010) 

6.4.1 Design considerations 

Results from the second iteration indicated that a user could conceptualise and produce hand-drawn 

signs to represent the actions of a toy car. I investigated in the third iteration whether a tangible 

program environment could be designed and implemented in which the user crafts personally 

meaningful program elements. Objects constructed in the first and second iterations incorporated 

only artificial materials. For the third iteration I wanted to explore the application of natural 

materials such as those used in stone sculptures (Colledge 1979; Patton 1985).  

Suggestion

Development

Evaluation

Incomplete -knowledge 

base 

New 

knowledge

Publications

Hand tools can shape soft rock.

Shaped soft rock can serve as signs. Signs created by one person are not 
always interpreted as intended by another person.

Design Knowledge

New Knowledge

 
Figure 6-21  The knowledge that informed the third iteration and the results 
 

As I show in Figure 6-21, the knowledge of applying hand tools to shape soft rock influenced the 

design of the third artefact. I therefore chose soft rock as the medium in which to craft personally 
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meaningful objects (Smith 2009b). If successful, this environment would fulfil Research Objective 2 

(copied here from Chapter 1) that states:  

 

Research 
Objective 

2 

To devise a mechanism by which a personally meaningful tangible object can be 
used as a program element. 

6.4.2 System design 

The RockBlocks tangible programming environment is comprised of handcrafted signs, electronic 

circuitry, sensing tiles, and a toy car. I shaped arrows (Figure 6-22b) from soft rock using hand tools 

(Figure 6-22a) and mounted them onto wooden squares. Two magnets were also embedded inside 

each square (Figure 6-22c top) in an ‘L’ shape. In contrast to the objects in the first and second 

iterations where each object type is unique, all third iteration objects are the same and differ only in 

their appearance and the way the user orientates them on the Sensing Tiles.  

Figure 6-22c (bottom) is a photograph of painted wooden blocks called Sensing Tiles. Each tile 

embeds three magnetic sensors in a ‘T’ configuration and every sensor is connected to circuitry that 

determines the orientation of the program object placed on top. The circuit also determines the sign 

sequence by decoding data received from all the Tiles.  

Unprocessed
soft rock

 
                                           (a)                                                                  (b)                                                          (c) 

Figure 6-22  Natural rock and hand tools, the processed rock, programming objects, and Sensing Tiles 
Based on Smith (2009a) 

 

The user constructs a program by placing signs on the tiles in the desired execution sequence. When 

activated, the electronic circuitry sends corresponding signals to the car for immediate execution. 

6.4.3 Tangibles design 

Program elements are comprised of arrows that I have previously carved from natural rock and 

mounted onto wooden substrates. An eyebolt with nut secures the processed rock and serves as a 
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handle with which the user can manipulate the element. I call the assembly consisting of rock, wood, 

magnets, and bolt, a RockBlock. The logical significance of this tangible program object lies in its 

orientation relative to the Sensing Tile on which it rests. The set of RockBlocks language signs is 

defined by the four directions in which a RockBlock may point. The four directions are relative to the 

user and as follows: pointing away from the user, pointing towards the user, to the left, and to the 

right. The signs represent the following corresponding logic functions: move forward, move 

backward, turn to the left, and turn to the right. 

I next elaborate on the signs and their effects by means of Figure 6-23. When the object is placed on 

top of the Tile in such a way that the object points away from the user, it signifies that the car should 

move forward. Conversely, if the arrow points towards the user, it denotes that the car should 

reverse. A sign that points to the left signifies that the car should turn 90 degrees to the left. The 

result is similar for a RockBlock pointing to the right. 

1
st 2

nd
3

rd
4

th

Move forward Move backwardTurn right Turn leftProgram instruction

Interpretation sequence

Program object

 
Figure 6-23  A program that exhibits the sign set 
 

6.4.4 Evaluation  

The third iteration was evaluated at two science events. The first evaluation was conducted at our 

Pretoria-based research institution with high school participants from the Giyani Science Centre, 

Limpopo Province. The learners were first introduced to the artefact and then invited to construct 

programs to achieve a predetermined objective (Figure 6-24a). The second evaluation took place in 

Grahamstown at the weeklong SciFest Africa (n.d.) event.  

6.4.4.1 Evaluation design 

At the onset of the workshop in Pretoria, participants received the evaluation form in Appendix I. 

Part 1 was filled out first while Part 2 was completed at the end of the workshop. 

For the workshop in Grahamstown, the participants were requested to complete Part 1 of the 

second evaluation form in Appendix I. The participants were then introduced to the programming 
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environment and given an opportunity to construct their own tangible programs to achieve a set 

objective. Finally, the participants completed Part 2. An average of 10 children contributed to each 

SciFest Africa workshop and the total number of participants for the week was approximately 100 

children. 

An evaluation of the RockBlocks program environment (including visual perception tests using these 

objects) was conducted with the assistance of pre-school children (Figure 6-24b) in the city of 

Pretoria and Putfontein town (Smith et al. 2008).  

   

(a) 

 
 
 
 
 

 

 

(b) 

Figure 6-24  Constructing a RockBlock program 
 

 

6.4.4.2 Evaluation results 

Some participants found it challenging to align the signs to tiles with the result that the object’s 

orientation or presence was not accurately sensed. One SciFest Africa participant’s interpretation of 

the direction in which a particular arrow was pointing differed from my own. Visual perception 

discrepancies were also observed during the evaluations with pre-school children.  

6.4.5 Discussion 

The problem that some participants experienced in aligning the program object to the Sensing Tray 

could be addressed by incorporating a mechanical keying mechanism in such a way that the object 
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easily aligns to the Sensing Tile (Smith et al. 2008). I have previously commented on my observation 

that individuals do not always perceive a sign in the same way. Observations at the Grahamstown 

workshops confirmed this problem. This supports my proposal to include the user in the design of 

the program object. The perception discrepancies led me to investigate further the meaning that 

individuals attach to signs and to let them choose or construct personally meaningful program 

elements.  

By having shaped the arrows myself using simple materials and hand tools, I confirmed that it is 

plausible for users to construct their own program objects (Figure 6-22). This design iteration also 

served to confirm that a tangible programming language could be created with the aid of 

handcrafted signs. To explore the idea of user-constructed objects further, I constructed a clay 

representation of a car. Figure 6-25 (a) and Figure 6-25 (b) are photographs of the unshaped clay and 

the resultant car, respectively. Also shown in this figure is a conceptual programming environment 

that incorporates the clay car. Using this environment, the user constructs a program by placing 

copies of the car on recessed tiles.  

The clay construction inspired future iterations by demonstrating another medium that the user can 

utilise when making her objects. My T-Logo system that is described later in this chapter is based on 

the results of this (RockBlocks) iteration and in particular the knowledge that a user can create her 

own objects. I will also I explicitly incorporate this knowledge in my model as presented in Chapter 7. 

 
                                                                                   (a)                                                  (b)  

 
(c)  

Figure 6-25  A tangible program object crafted from clay and the associated conceptual programming environment 
(Smith 2008b) 
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6.5 Fourth iteration: Dialando 

The first three iterations incorporated tangible objects into programs that affect the physical 

domain. The third iteration also confirmed that a user could construct a sign using natural materials. 

My objectives with the fourth iteration were to investigate what a tangible program environment 

could look like in which the program results where manifested in the digital domain and to 

determine if recycled materials can be used to construct program elements. To this end, I designed 

and implemented the Dialando programming environment in which the user applies five identical 

objects to code the movements of an on-screen character Figure 6-26 (c).  

The name Dialando was derived from the words “dial and do” that also hint at how the 

programming environment is applied: The user constructs a program by “dialling” five actions and 

then the screen character “does” the actions. 

The user interface is based on the orientation of five disks on top of five programming trays (Figure 

6-26d). The pattern sequence of these disks represents the sequence of actions that the character 

will execute. An object on a tray represents one program instruction. 

6.5.1 System design 

The Dialando language consists of four signs and these are Forward, Back, Right, and Left. A sign is 

encoded by the direction in which the object points and the language syntax is comprised of the four 

directions in which an object can point (Figure 6-26a). I call these directions North, South, East, and 

West, respectively with North being the direction pointing away from the user. An object pointing 

North encodes a forward motion and this sign is called Forward. Conversely, a South pointing object 

represents a backward motion and the associated sign is called Backward. For an East-pointing 

object the resultant sign represents a 90 degree turn to the right and I call this sign Right. A similar 

convention holds when the object points to the West and I call this sign Left. The interpretation of 

the Forward and Backward signs results in the character covering a fixed linear distance on the 

computer screen. The Right and Left signs cause the character to rotate through 90 degrees.  

Each programming surface can detect a sign and transmit this information to a program executing 

on an Arduino (Banzi 2009). The Arduino circuit in turn relays this information to a program 

executing on a computer and written using the Processing (Reas & Fry 2010) language. A second 

program, executing on the same computer and written in the Scratch (Resnick, Maloney, Monroy-

Hernández, Rusk, Eastmond, Brennan, Millner, Rosenbaum, Silver, Silverman & Kafai 2009) language, 

generates the on-screen character avatar in response to instructions received from the Processing 
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program. Figure 6-26b illustrates the flow of information from the tile, to the Arduino, to the 

Processing and Scratch programs, and finally the effect it has on the displayed image.  

 

                          

                           (a)                                                                                           (b)                                                                          (c) 

 

 
                                                                                                           (d) 

Figure 6-26  System components 
(Smith 2010a) 

The user programs a series of actions by placing (Figure 6-27a) signs onto the programming surfaces. 

Figure 6-27b illustrates an example of a program constructed with the aid of the Dialando 

programming environment. This figure captures the correlation that exists between the five program 

objects and the five on-screen actions. In this figure, objects A through E are interpreted at times t1 

through t5 while the character executes movements that correspond to the sign being interpreted.  

 

 

(a) (b) 

Figure 6-27  The fourth iteration artefact in use and a program example in execution 
(Smith 2010a) 
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6.5.2 Tangibles design 

Each tangible object holds two magnets that are sandwiched between recycled compact disks (CDs). 

A short length of salvaged electric cable was inserted between the disks on the circumference to add 

mechanical strength to this assembly and to improve the object’s aesthetic properties. A large 

printed arrow finishes the design.  

Evaluation of the first three iterations identified that the user had difficulty in aligning the tangible 

object to the sensing surface. I addressed this by adding magnets in the centre of both the 

programming trays and the program objects to help align the two. Using this mechanism, the user 

rotates the object by hand to select a sign while the magnets keep the object and the tray properly 

aligned. 

6.5.3 Discussion 

Even though I did not evaluate this iteration with the help of children I observed adults and children 

when they interacted with the artefact at a conference presentation (Figure 6-27a). The new 

knowledge I gained is therefore the result of my experience in designing and implementing the 

artefact and my observations of persons using the artefact. I concluded that it is possible to control 

aspects of the digital domain by combining a tangible program, Arduino-based hardware, the 

Processing programming language, and the Scratch programming language. Figure 6-28 reflects my 

conclusion within the block labelled New Knowledge.  

Suggestion

Development

Incomplete -

knowledge base 

New 

knowledge

Publications

It is possible to influence the digital world by using information derived from 
the physical world. 

Design Knowledge

It is possible to control aspects of the digital domain by combining a tangible 
program, Arduino-based hardware, the Processing programming language, 
and the Scratch programming language. 

New Knowledge

 
Figure 6-28  The knowledge that informed the fourth iteration and the results 
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As far as the objects are concerned, I confirmed that previously discarded everyday objects could be 

repurposed as tangible program elements. Finally, the simplicity of transporting this system across 

continents (as I had to do on one occasion) and setting it up at a conference for demonstration was 

an improvement over the same operation applied to the first iteration. This improvement can be 

ascribed to two factors. First, the results of tangible program execution can be observed without the 

addition of a physical toy that has to be transported. Second, the interface between the tangible 

program and the output device does not include custom-made electronic circuitry that can be 

damaged during transportation. These two observations prompted me to implement only digital 

outputs in my fifth iteration. 

6.6 Design iteration five: T-Logo 

This iteration addresses Research Objectives 2, 3, and 4 as stated in Chapter 1 and I repeat these 

here: 

 

Research 
Objective  

2 

To devise a mechanism by which a personally meaningful tangible object can be 
used as a program element. 

   

 

Research 
Objective 

3 

To devise a method by which the positions of one or more personally meaningful 
tangible objects can define a program statement. 

   

 

Research  
Objective 

4 

To devise a programming environment in which the relative positions of personally 
meaningful tangible objects are interpreted as a program. 

 

Iterations one through four produced artefacts in which programs are composed of objects arranged 

in a linear fashion. In contrast to linear arrangements, the fifth iteration explores how object 

groupings define a program. The Gestalt principles of perceptual grouping predicts that humans 

associate objects with each other when they are together and it is this prediction that forms the 

foundation of my final iteration. 

6.6.1 Design process 

This iteration still incorporates the Gestalt principle of good continuity as was applied to the 

previous iterations, but now also adds the principle of grouping by proximity (it does not replace the 

previous principle). Figure 6-45 illustrates both principles applied in a tangible program. 
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I use the word clustering to describe the action when the user places objects in close proximity to 

each other and at the same time removes objects that are to be excluded from those assembled this 

way. Clustering therefore considers the spatial relationship that exists between objects. Based on my 

experience with the fourth iteration I concluded that it is possible to control events in the digital 

domain by combining a tangible program, Arduino (Blum 2013)-based hardware, the Processing 

(Reas & Fry 2007) language, and the Scratch (Resnick et al. 2009) language. As indicated in Figure 

6-29, I applied this knowledge in the design of the fifth and final artefact. 

Conclusion

Operational principles 

and 

design theories
 

Suggestion

Development

Evaluation

Incomplete -

knowledge base 

New 

knowledge

Publications

It is possible to control aspects of the digital domain by combining a tangible program, Arduino-
based hardware, the Processing language, and the Scratch language. 

By applying the psychological principles of Gestalt and visual perception, it is possible to develop a 
tangible program environment in which the program is defined by the relative positions of personally 
meaningful objects. 

Design Knowledge

New Knowledge

 

Figure 6-29  The knowledge that informed the fifth iteration and the results 
 

6.6.2 Evaluation methodology 

I compared the artefact of this iteration with TERN, an often cited tangible programming 

environment. I did this in the laboratory by identifying both language structures that are the same 

for both environments, and structures that were not. Program segments were then designed using 

the two languages.  

Three criteria were used to analyse the evaluation data. The first criterion was formulated to 

determine how much effort the user has to exert when creating a program element from a 

personally meaningful object. I addressed this question by constructing objects using the cardboard 

packaging from household products and adding optical markers to their bases. In addition to the 

cardboard objects, I also constructed objects using wooden cubes and dowels used in children’s 

construction sets. Paper notes with personally meaningful signs were attached to the dowels. Using 
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the Mapping mode of the  software I wrote, I then assigned either an action or a numerical value to 

the marker’s identification number.  

The second criterion was to determine the maximum usable object size for a given construction 

surface while still accommodating a useful number of objects. This knowledge is important since, if 

the marker is too small, the visioning system cannot identify the marker and if the objects are too 

large then the number of objects that can fit onto the input surface is reduced. The balance was 

found by using a fixed construction surface of a certain size and determining the smallest 

recognisable marker through experimentation. 

Finally, I wanted to determine if my artefact could successfully implement program structures found 

in the TERN programming environment. I did this by selecting instruction set elements from the 

TERN environment. At the same time, I noticed that certain constructs mapped directly to my own 

language while other constructs did not. 

6.6.3 Tangible program concepts 

In this section, I discuss two concepts that are central to this iteration. The first considers the 

relationship that exists between user-created objects and a computer program. I then consider my 

approach to derive a digital representation of a tangible program. This section concludes with two 

implementations of this approach. 

6.6.3.1 Physical and digital constructions 

A text-based program depends on the existence of a programming language and a user to construct 

the program. Constructing a textual program therefore involves the following four key steps (Figure 

6-30): First, a programming language architect designs the language and a developer implements it. 

The developer then publishes the associated signs and rules for the benefit of the user. A user can 

now construct a program by arranging the signs according to the rules. Finally, an interpreter 

produces the result. 

printf(“Hello World”); Hello World

Step 1 Step 2 Step 3

Program interpreter
Programming language 

architect
Programming language 

developer
Programming language 

user

Step 4

 
Figure 6-30  The four key steps involved in constructing a text-based computer program 
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Computers interpret programs that are in digital form and cannot directly execute a program 

constructed using physical objects. Therefore, in order for a computer to interpret a tangible 

program and execute the result it is a requirement that a digital equivalent of the physical 

construction be determined first. Put succinctly, a set of digital instructions that represent the 

tangible program is necessary.  

Figure 6-31 illustrates the construction of objects for use in a tangible program. The construction of 

tangible programs involves four steps: First (Step 1), the user creates tangible objects using raw 

materials. This step is optional since pre-existing artefacts may also be used. The tangible objects are 

then paired (Step 2) with written program instructions. In Step 3, the tangible objects are arranged 

into a particular configuration to create the desired program. The final step (Step 4) is to interpret 

the program and produce the output. 

t.back≡ 

Step 1 Step 2 Step 3 Step 4

≡ 

 

Figure 6-31  Four steps in constructing a tangible program 
 

For the interpreter to function correctly it needs to know the position of each object on the 

construction surface. The program determines this position relative to a two-dimensional orthogonal 

axis in the plane of the construction surface. Figure 6-32 illustrates this concept. 

 
 

Figure 6-32  The general case of defining the object’s position on the two dimensional construction surface 
 

6.6.3.2 Mapping between objects, actions, and parameters 

Programming language architects often design sign sets with which the user can represent program 

actions and parameters. An example taken from the C (Kernighan et al. 1988) language lexicon is the 
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sign printf. A closely related sign in the JavaScript (Wootton 2001) language is document.write. 

A user can construct programs to render text using these signs. 

A coder implements the language design as software routines and permanently links them to signs 

of his choice. The coder also creates a permanent link between the routines and the signs that 

represent them. My approach is different: Instead of letting the coder decide which signs to use, I let 

the user choose personally meaningful objects. I use the term mapping to describe the process of 

associating objects with actions and parameters.  

6.6.3.3 Clustering, Cluster Marker, and Cluster Marker Zone 

The concepts of Clustering, Cluster Marker, and Cluster Marker Zone are useful when one wishes to 

describe an environment in which object clusters are interpreted as tangible programs. I distinguish 

between physical and digital clustering.  

Physical clustering is the gesture by which tangible objects are grouped together (Figure 6-33). I 

further use the word digital clustering to describe a software method that associates the discrete 

elements of grouped objects with each other. Optical markers attached to objects make digital 

clustering possible when all markers are embedded with identification (ID) numbers.  

 
Figure 6-33  Physical clustering 
 

A Cluster Marker (CM) is a predetermined tangible object that locates a point on a flat surface such 

as the glass construction surface used in this iteration. In this iteration, I have allocated an ID 

number of zero to any object that serves as a Cluster Marker. As is the case for all objects, the 

Cluster Marker is identified by using the combination of its position on the construction surface and 

ID. I use the notation CMX,Y  to uniquely describe a Cluster Marker where X and Y are the horizontal 

and vertical positions, respectively. 

I call the concentric area around the Cluster Marker with radius R, the Cluster Marker Zone (CMZ). 

The Cluster Marker Zone describes the Cluster Marker’s ‘area of influence’ (the shaded area in Figure 

6-34) and all objects that lie within the Cluster Marker Zone are associated with that particular 

Cluster Marker. 
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Cluster Marker Zone 
(CMZ)

Cluster Marker 
(CM)

R

 
 

Figure 6-34  The relationship between the Cluster Marker, its radius, and the Cluster Marker Zone 
 

6.6.4 Clustering topologies 

I next consider two clustering topologies called Clustering Topology #1 and Clustering Topology #2, 

respectively. I first developed Topology #1 and took it through two iterations but it was eventually 

abandoned due to an ambiguity problem and computational complexity. The second topology was 

eventually adopted and used to complete this research project. Section 6.6.4.1 and Section 6.6.4.2 

discuss these topologies, respectively. 

6.6.4.1 Topology #1: Grouping by common region 

The first topology was inspired by the hand gestures in Figure 6-33 and is based on the Gestalt 

principle of grouping by common region. Its design considers the application of hoops to define 

common regions. 

The topology assumes hoops with known radii are used and each has two identical markers at 

opposite ends. Physical clustering is achieved when objects are placed inside the hoop outline. The 

challenge is in developing an interpreter algorithm to correctly match markers to their 

corresponding hoops. Shown in Figure 6-35 (a) are examples of narrow and wide hoops. To get an 

idea of the theoretical limit of this topology I first discuss the theoretical case of infinitely narrow 

hoops. I then apply the algorithm to wide hoops. 

Wide hoop

Narrow hoop

 

                                    (a)                                                                                                    (b) 
Figure 6-35  Hoops and markers 
 

Figure 6-35 (b) is a schematic drawing of three hoops viewed from above where the red dots 

indicate markers along the circumference. Marker pairs delineate well-defined and mutually 

exclusive areas (highlighted) in this figure. The size of an area is directly proportional to the hoop 

radius and therefore also the distance between the two markers. My algorithm uses the radius with 
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marker positions to derive where the areas are located and then digitally clusters together all the 

objects that lie within this zone.  

The algorithm has two parts: The first step in identifying the clusters is to detect the markers and 

noting their positions. A unique uppercase letter is then assigned to each marker. The second step 

matches each marker with its companion and this is achieved as follows: For each marker, a virtual 

circle with radius R is constructed with its middle aligned with the marker. I call this marker the 

primary marker. This circle serves as the trajectory along which matching markers are searched. 

Markers that lie along this trajectory are called candidate matching markers and are assigned a 

lower case letter that corresponds to the letter assigned to the primary marker.  

It is not possible to match unambiguously the markers when the hoops have no width. I illustrate the 

problem using Figure 6-36. In this figure, C, D, E, and F are primary markers that each has two 

candidate matching markers. These markers cannot be matched unambiguously without additional 

information. In an effort to overcome the ambiguity, I considered a more realistic scenario in which 

the hoops have significant width. Figure 6-37 illustrates the same configuration but now with wide 

hoops.  

Again, I first determine whether a marker matching ambiguity could exist. Inspection of Figure 6-38 

reveals that wider hoops solve the ambiguity that exists in the case of infinitely narrow hoops. This is 

because the primary markers unambiguously match their candidate markers. However, a second 

ambiguity is evident when the wide hoop configuration is changed: Figure 6-39 illustrates the 

ambiguity when the hoop on the right is moved away from the other hoops. In this figure, marker B 

is a matching candidate for the markers labelled A, C, and D. The general solution when using wide 

hoops is to first match all primary markers that have a single matching candidate marker and 

remove these pairs from the pool of matching candidate markers. The primary markers are labelled 

A, E, and F in this example. These two steps are repeated until all the markers have been paired. 

Having considered Clustering Topology #1’s mechanical requirements and finding these to be 

acceptable but complicated, I considered an alternative topology that I call Clustering Topology #2.  
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Figure 6-36  Algorithm ambiguity in the case of infinitely narrow rings 
 

 

 

 
 

Figure 6-37  Three wide hoops with markers 
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Figure 6-38  Wide hoops eliminate the initial ambiguity  
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Figure 6-39  Apparent ambiguity in the case of three wide hoops 
 

6.6.4.2  Topology #2: Grouping by proximity 

The ambiguity problems of Topology #1 are due to identical markers on the rings. Topology #2 does 

not have this problem and it has the added benefit of simplified mathematical operations. The 

second clustering topology is based on objects assembled close to a Cluster Marker. This topology 

therefore relies on the Gestalt principle of grouping by proximity. My clustering algorithm is as 

follows: First, all Cluster Markers are identified and their Cluster Marker Zones calculated. The 

positions of all remaining markers are then compared with those of each Cluster Marker. Finally, 

markers are associated with a particular Cluster Marker if the marker is located within that particular 

Cluster Marker Zone. In the case where a marker lies within multiple Zones the marker is allocated 

to the first Cluster Marker candidate identified. My final iteration is based on this topology. 

6.6.5 Language and system usage 

The programming language consists of six actions with which on-screen drawings may be produced 

and these are Paint, No Paint, Forward, Backward, Left, and Right. Distances are specified in screen 

pixel units while angles are in degrees and whole numbers. 

I next describe how to use the programming environment: The user is initially given a list of actions 

(Paint, No Paint, Forward, Backward, Left, and Right) that can be used to construct a program. She 

then creates Tangible Program Objects by combining wooden blocks, dowels, and paper markers. 

Once these objects have been mapped to actions and values, the Tangible Program Objects are 

viewed as Tangible Program Elements. Third, the user now arranges the Elements on the 

Construction Surface according to simple rules as described in Section 6.6.6. Finally, the user 

instructs the computer to execute the tangible program at which time a series of software 
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applications interpret the Elements, create a text file containing computer executable code, and 

execute this code. 

6.6.6 Programming rules 

Ten programming rules apply when a program is constructed. First, an Element is ignored if it is not 

detected within a Cluster Marker Zone. Two, it is valid to have multiple command Elements in a 

cluster. Three, the numerical sum of all parameter Elements within a Cluster Marker Zone is 

calculated and used. Four, parameters are assumed to have a value of zero when no parameter 

object is detected within a Zone. Five, commands in a cluster share the parameter Elements 

detected in the cluster. Six, an object can be associated with multiple Zones when these overlap. 

Seven, the cluster is ignored if part of a command/parameter pair is missing. Eight, the program is 

executed repeatedly. Nine, the orientation and position of an Element within the Cluster Marker 

Zone are inconsequential. Finally, the interpretation sequence of the construction surface is from 

the top-left to the bottom-right.  

6.6.7 System components 

This design implementation consists of seven component types. The first is a tangible object with an 

attached marker (marked as ‘A’ in Figure 6-40). The rest are a flat translucent glass surface that I call 

the Construction Surface (B), a camera (C), a light source (D) to illuminate the surface from below, 

VCam (e2esoft 2012) camera control software, the reacTIVision (Kaltenbrunner & Bencina 2007) 

image analysis software, and my T-Logo application software. 

6.6.8 Information transfer from the physical to digital domain 

The following describes how tangible object (‘A‘ in Figure 6-40) information is copied to a digital 

representation of the program. First, the user places tangible objects with their markers onto the 

Construction Surface (‘B’ in Figure 6-40). Next, the camera captures images of these markers and the 

camera control software relays the images to the image analysis software. The image analysis 

software in turn determines the two-dimensional position and rotation angle of every marker. 

Finally, the position and orientation of all markers are sent to the T-Logo software for further 

processing. 

6.6.9 Software modes 

The T-Logo software operates in four modes and these are the Map, Construct, Interpret, and the 

Execute modes (Figure 6-41). This is also the sequence in which a user will initially interact with the 

T-Logo software. The user is the only person who interacts with the system depicted in this figure 

and may change the current mode by selecting an alternative one using the computer keyboard. 
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Construct is the default mode and from here the user can press ‘a’ to activate the Map mode, ‘i’ for 

Interpret, or ‘e’ for the Execute mode. 

A

B

CD

 

Figure 6-40  The T-Logo physical components 
 

6.6.9.1 Map mode 

The Mapping process combines a number of user actions and these entail selecting the Mapping 

mode, responding to on-screen prompts, providing computer input by means of the keyboard and 

mouse, and physically placing objects onto the Construction Surface. 

The Map mode is the initial mode a user interacts with extensively and subsequent interactions may 

bypass it. When in this mode, a tangible object may be mapped to a predefined action or parameter 

after which the object can be used in a program. I refer to an object that has been mapped as a 

Tangible Program Object. 

Tangible Program Objects are identified by their marker and a table is maintained in computer 

memory that maps markers to either an action or parameter. Mapping provides for multiple 

identities to be optionally mapped to a common action or parameter. However, a particular identity 

may be mapped to only one action or a single parameter. Figure 6-41 illustrates the states of the 

Map mode. States are shown using the sign Sn. The following paragraphs describe how a user applies 

the Map mode and Figure 6-42 illustrates the user actions. Transitions between states or modes are 

indicated using the sign Tn. These transitions correspond to those shown in Figure 6-41 and Figure 

6-42.  
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Figure 6-41  The four T-Logo software modes 
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Figure 6-42  An example of a T-Logo mapping activity 
 

To construct a program using T-Logo, the user activates the Map mode and maps objects to actions 

and parameters. First, the user sources or creates a tangible object that is a personally meaningful 

representation of the action or parameter. He then attaches a marker that contains a unique identity 

number to the bottom of this object, thereby creating a tangible object/marker pair. The identity 

number 10 is reserved for Cluster Markers. Third, the user selects the Map mode by pressing ‘a’ 
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(representing “assign”) on the keyboard (transition T1 ). The software is now in state S3 and the user 

can either exit the Map mode by pressing the ‘d’ key (for “done”) or continue with the mapping 

process by placing a tangible object with its marker onto the construction surface. The T-Logo 

system will attempt to identify any markers on the surface and present to the user seven options on 

the computer screen (transition T2 and state S4). The options represent six actions and one numerical 

parameter. The user can navigate the options and makes a selection (T4) using the mouse. 

Alternatively, he enters a numerical value using the keyboard (T5). Finally, he confirms the selection 

by pressing ‘d’ on the keyboard (T7) at which time the T-Logo software will update the mapping table 

according to the most recent selection and transit to state S6.  

The on-screen appearance of the seven options vary according to which of three selection states is 

active at the time. Selection states are Dormant, Has focus, and Active (Figure 6-43). Six of these 

options are Paint, No Paint, Forward, Backward, Left, and Right. The Paint and No Paint actions are 

equivalent to the Logo language’s (Papert 1980) Pen Down and Pen Up instructions while the 

Forward, Backward, Left, Right actions are equivalent to the Logo language’s Forward, Backward, 

Left, and Right instructions. The seventh option (‘Value’) is used when the keyboard is used to 

associate a numerical value with the tangible object/marker pair.  

Paint

Actions

Se
le

ct
io

n
 s

ta
te

Parameter

Active

Has Focus

Dormant 90

90

90

No
paint

Forward Backward Left Right Value

 
 

Figure 6-43  The on-screen appearance of the seven user-selectable mapping options 
 

 

I implemented the command choices using selectable images and as follows: The Paint action is 

represented by a woman holding two paint brushes and No Paint is depicted as a wall panel with all 

the brushes hanging in their allocated places. The Forward and Backward actions are represented by 

images of persons driving a car. Finally, Left and Right turn actions are represented by abstract 

images that create the impression of left and right rotation, respectively. 
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The following example illustrates the mapping activity. Figure 6-42 shows the various prompts to 

which the user has to respond. The default prompt instructs the user to press ‘a’ on the keyboard: 

Press ‘a’ to assign an object to a turtle function. 

 

When the user responds by entering  ‘a’ on the keyboard, the program changes state (transition T1) 

and the user is prompted as follows:  

Assigning signs to Turtle functions:(press ‘d’ on the keyboard to exit). 

Place the object you wish to assign onto the glass surface. 
 

The user then places an object (with ID=13 in this example) on the construction surface and the 

software changes state (transition T2) and confirms that an object is being assigned to a command or 

parameter, as appropriate:  

Assigning object with an ID of 13. 
 

In this example, the user selects (T4) the Backward graphic using the computer mouse. In 

response, the software changes to state S4 and highlights the selected option. The user may now 

choose a different option. Once the user is satisfied with the selection she presses the ‘d’ key and 

exits (T7) the Map mode. 

6.6.9.2 Program Construct mode 

The user has no access to any Tangible Program Objects when the environment is used for the first 

time. The reason being that the Map mode has to be activated first and the mapping activity 

completed before the Construct mode can be used. Once this has been accomplished, the user 

needs only to interact with the Construct, Interpret, and Execute modes. Once the user has created a 

number of tangible programming objects, he is now in a position to construct a tangible program 

and he does this by placing the objects onto the construction surface.  

6.6.9.3 Program Interpret and Execute modes 

The tangible program is interpreted when the user selects the Interpret mode by pressing the ‘i’ key 

while in the Construct mode. In brief, the T-Logo interpreter then locates all the Tangible Programing 

Objects, groups them by proximity, and creates a text file containing Processing (Greenberg 2007) 

language instructions. I now explain the interpretation process in more detail: First, clusters are 

sorted according to a top-bottom, left-right sequence. To illustrate, consider the Cluster Markers in 

Figure 6-44 where the sorting process produces the following Cluster Marker sequence: CM1 ⇨ CM2 

⇨ CM3. Two, a program pre-amble (written in the Processing language) is then sent to a target file. 

Each sorted cluster is then evaluated according to their sorted sequence. When multiple numerical 
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values are present in one cluster, the values are totalled and the result used in further operations. A 

Processing line of code is sent to the target file for each Action detected in a cluster. If the T-Logo 

language prescribes that a numerical value must accompany the Action, then all the parameter 

objects within the current cluster are totalled and sent to the target file. Parameter objects are 

ignored where none is required. A second fixed set of predefined Processing language instructions is 

then sent to the target file.  

 
Figure 6-44  The sequence in which objects on the construction surface are processed 
 

The system is reverted back to the Construct mode and the user can now press the ‘e’ key to select 

the Execute mode. A separate process is then activated and a new instance of the Processing 

environment is launched with the target file as command line parameter. The result is the execution 

of the target file as an independent software process. 

6.6.10 Program example 

I now give an example of a user constructed tangible program using the T-Logo environment. It 

explains the procedures to follow when constructing a tangible program that, when executed, 

results in an on-screen pattern. The steps follow the sequence detailed in Section 6.6.5.  

First, the user is given a list of actions. The user then creates tangible program elements by 

combining wooden blocks and dowels with paper markers and matches the program elements to 

the list. She then arranges the Tangible Program Objects on the construction surface according to 

simple rules, keeping cognisance of the desired result. Finally, the user instructs the computer to 

execute the program. A series of software applications then interpret the objects and create a text 

file containing computer executable code. This code is then executed and the result displayed. 

In the program example of Figure 6-45 (a), Cluster Marker Zones are shown using superimposed 

circles and mapped action/parameters are given next to each object. The order (1st, 2nd ... ) in which 

the clusters will be executed is as indicated outside the photograph borders. Figure 6-45b illustrates 

the results once the interpreter has processed the program. In this figure, clusters have been 
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replaced using equivalent Processing language statements. Figure 6-45 (c) shows the results 

formatted as is customary for text-based programs. 

                    

1st t.drawing = true;

t.forward(60);

t.left(15);

t.backward(10);

t.right(120);

2nd

3rd

4th

5th

t.drawing = true;

t.forward(60);

t.left(15);

t.backward(10);

t.right(120);

(a)
(b)

(c)

CM

CM

CM

CM

CM

Paint

Forward
Left

15

60

Backward

10

Right

30

90

1st

2nd

3rd

4th 5th

 
Figure 6-45  A program, the interpretation order, and the corresponding Processing language statements 
 

Of particular interest is the cluster highlighted at the bottom right in Figure 6-45 (a) and copied in 

Figure 6-46 (a). This cluster consists of three Tangible Programming Objects that together represent 

an action (‘Right’) and two parameters (30 and 90) as shown in Figure 6-46 (b). Figure 6-46 (c) 

illustrates that the value (120) of the combined parameters has been calculated and is now used as a 

parameter to the Processing language statement: t.right (120). The result is an executable 

program containing the Processing programming language code and is shown in Figure 6-47 (a). Also 

shown is the resultant graphic when this code is executed once (Figure 6-47b), and multiple times 

(Figure 6-47c), respectively. 

6.6.11 Evaluation  

The programming environment was designed to address research objectives 2, 3, and 4. I designed 

and executed a laboratory evaluation to determine the extent to which these objectives have been 

satisfied. I also compared my system with another prominent tangible programming environment 

called TERN. 
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t.right(120);

‘Right’

‘90’

‘30’

Cluster 
Marker

Right ( 30 + 90 ) ⇨⇨

                                       (a)                                                                        (b)                                                                  (c) 

Figure 6-46  An example to illustrate how the logical values of two parameter objects are totalled 
 

 

void draw() { 

   t.drawing = true;  // same as Pen Down in Logo  

   t.forward(60);   // go forward … units 

   t.left(15);   // turn left … degrees 

   t.backward(10);   // go backward … units 

   t.right(120);   // turn right … degrees 

 } 
                                                    (a) 

 
 
 
 
                                                         (b)                                (c) 

Figure 6-47  A Processing language software routine and resultant graphics  

 

6.6.11.1 Laboratory evaluation design 

To successfully evaluate the design, the four T-Logo modes were sequentially activated. First, using 

the Map mode, I associated tangible objects with program elements. The program elements are 

actions, parameters, and Cluster Markers. I mapped the objects to elements as annotated in Figure 

6-48.  

‘10’‘60’‘Forward’ ‘Right’

Cluster Marker

‘Paint’ ‘Left’ ‘Backward’

Marker‘90’ ‘15’

 

Figure 6-48  Objects and the commands and values they represent 
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Some objects were cut from cardboard stock while others were made using pens, scissors, paper and 

coloured wooden cubes and dowels. I then attached printed paper markers to the bottom of each 

object. Second, the T-Logo software Construct mode was activated. In this mode, I placed 10 

Tangible Programming Objects and five Cluster Markers onto the construction surface (marked B in 

Figure 6-40) and arranged these into clusters. Figure 6-49 (a) shows the completed construction and 

ready to be interpreted. Finally, I activated the Interpret and Execute modes. Figure 6-49  

(b) illustrates the visual output that resulted from this program. 

CM

CM

CM

CM

CM

Paint

Forward
Left

15

60

Backward

10

Right

30

90

         (a)                                                                                                                        (b) 

Figure 6-49  A tangible program with annotations and the execution result 
 

6.6.11.2 Laboratory evaluation results 

The size of the Cluster Marker Zone is defined using a pre-set value in the interpreter software and I 

adjusted the value by trial and error until I achieved a usable system. Three variables need to be 

considered when the zone is adjusted. First, the Zone should be large enough to encompass multiple 

objects placed on the construction surface. Second, the Zone should not occupy an excessively large 

portion of the surface but allow sufficient space for other zones. Third, the minimum marker size is 

determined by both the usable resolution of the camera and the prevailing lighting conditions. Using 

my laboratory setup, I was able to arrange five clusters on a surface of approximately 400 x 400mm 

in size. Figure 6-49 (a) is an example of a five-cluster arrangement. I marked the Backward, Left, and 

Paint objects with paper flags to identify their functions (Figure 6-48).  

The final observation is not a consequence of the T-Logo design but a result of the design 

implementation: A notable delay is evident between the time when the execution mode is activated 

and when the result is visible on the computer display. This is because my software makes multiple 

calls to the underlying computer operating system and every call delays the display update by 

approximately one second. I predict that this delay can be reduced by an order of magnitude if 

appropriate software engineering thinking is applied to the T-Logo implementation. 
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6.6.11.3 Comparison to the TERN language 

I now compare the TERN (Horn 2009) language to my T-Logo by demonstrating how programs 

written using TERN can be expressed using my language. I chose TERN because it has previously 

been evaluated with the assistance of children in both the classroom (Horn 2009) and at an 

interactive science museum exhibition (Horn et al. 2008). Horn (2009) explains that the Karel the 

Robot (Pattis 1995) programming language inspired his own TERN language syntax. T-Logo, in turn, 

was inspired by the Logo (Harvey 2000) language. Partly due to their simple syntax, educators often 

choose either Karel the Robot or Logo as the language with which to introduce children to computer 

programming. A second reason these languages are popular amongst novices is that visually 

engaging designs are possible with very few instructions. Figure 6-49 (a) is an example of how an 

intricate pattern (Figure 6-49b) can be created using only a few instructions. 

It is the user who decides what the T-Logo objects should look like. In the discussion that follows, I 

copied examples of personally meaningful objects from Smith and Gelderblom (2016) to illustrate 

how TERN sequences can be coded using T-Logo. I chose these objects because, to me, they 

represent the associated actions. For example, the toy giraffe’s head is attached to its body using a 

spring and when touched its head shakes. A second example is the head of a dog I constructed out of 

modelling clay. I associate this object with a growling sound. Other T-Logo users may substitute the 

objects with their own personally meaningful signs.  

Table 6-1 maps a subset of TERN actions to T-Logo objects whereas Table 6-2 does the same for the 

control structure in the examples. Table 6-3 illustrates how TERN sensors are mapped to their 

equivalents in the T-Logo language. Finally, Table 6-4 introduces TERN and T-Logo elements that do 

not fit the other tables. For example, I use a toy dog to indicate that the program should terminate.  

Table 6-1  Tern actions and T-Logo objects 

      

Description TERN faceplate T-Logo object Description TERN faceplate 
T-Logo 
object 

      

The programmed 
device will turn 
left.  

 

 

The programmed 
device will turn 
right. 

 
 

 
 

     

The programmed 
device will move 
forward.  

 

 

The programmed 
device will shake. 
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Description TERN faceplate T-Logo object Description TERN faceplate 
T-Logo 
object 

Make a growling 
sound. 

 

 

   

 

Table 6-2  Tern and T-Logo control structures 

   

Description TERN faceplate T-Logo object 
 

  

A conditional statement that tests the specified 
parameter.  

 

 
Not applicable 

 

 

Table 6-3  TERN sensing elements and their T-Logo equivalents 

      

Description 
TERN 

faceplate 
T-Logo object Description TERN faceplate T-Logo object 

      

The IR-beam 
is triggered.  

 

 

The IR-beam 
is not 
triggered.  

 

 
The bump 
sensor is 
triggered.  

 

 

The bump 
sensor is not 
triggered.  

 

 

 

Table 6-4  Miscellaneous TERN and T-Logo elements 

      

Description TERN faceplate 
T-Logo 
object 

Description TERN faceplate T-Logo object 
      

Indicates 
where the 
program 
begins. 

 

Not 
applicable 

 

The T-Logo Cluster 
Marker. 

Not 
applicable 

 

   Indicates that the 
program should 
terminate at this 
position. 

Not 
applicable 

 



178 
 

  

  

6.6.11.4 TERN language elements 

Horn (2009) adapted his TERN language and its physical design twice to suit his evaluation 

environments. For example, the TERN implementation used in a science museum comprises flat 

interlocking objects and includes control structures. In contrast, the classroom version is a simplified 

implementation consisting of cubes with dowels that push into each other. The dowel affords one 

cube to link with another. Not only did Horn adjust the physical appearance of the classroom version 

according to the user group but he also removed all control structures.  

A prominent difference between TERN and T-Logo is the requirement to add objects that indicate 

the beginning and end of the program. In his kindergarten version, Horn uses green Start and red 

Stop objects for this. T-Logo does not use such indicators and instead assumes that the program 

originates on the left and continues to the right until no more clusters are detected. Horn’s approach 

is arguably more robust as far as the interpreter is concerned and performs well in visually cluttered 

programming areas.  

TERN’s interlocking object design allows the image-processing algorithm to correctly identify the 

sequence in which objects are connected. The algorithm does this by searching for linked objects in 

the image. The examples given here do not explicitly show the puzzle-like physical constraints of 

Horn’s implementation. Figure 6-50 (a) and Figure 6-50 (b) illustrate the respective mechanisms 

Horn devised for his science museum exhibition and the classroom application. Both these 

mechanisms result in a chain of objects on which the vision algorithm is based. T-Logo does not rely 

on mechanical links to define the chain of objects. Instead, it uses the Gestalt principle of proximity 

and good continuation to determine the object sequence. 

 

                                              (a)                                                                                                 (b)                                  (Horn 2009) 
Figure 6-50  TERN puzzle and cubes examples 
 

6.6.11.5 T-Logo language elements 

The T-Logo interpreter produces executable code that implicitly repeats forever and is based on the 

Processing language’s interpreter operation. The result is that, by default, the user’s program 

executes repeatedly until stopped either explicitly by the user or by a programmed condition. In 

contrast, the TERN interpreter does not implicitly produce code that repeats but the user can code 

this behaviour into the program using statements such as REPEAT and WHILE along with their 
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associated termination parameters. T-Logo’s continuous execution design eliminates the need for an 

explicit over-all loop and therefore reduces the user’s coding burden. However, the user may include 

a termination instruction if he wants the program to terminate at a specified point. I assume that the 

advantage of reduced program complexity outweighs any disadvantages and therefore based the T-

Logo interpreter on an implied looped execution design.  

6.6.11.6 Logic expression using the T-Logo language 

Using the T-Logo language, all objects that represent logic conditions in a cluster must be true for 

actions in that cluster to be executed. Using pseudocode, this requirement can be expressed as 

IF  

(CONDITION-A = TRUE)  AND  (CONDITION-B = TRUE) AND  ...  

THEN  

do ACTION-1  and  do ACTION-2 and  .... 
 

Clusters are evaluated independently of each other and therefore the logic represented in each 

cluster is independent of the logic in other clusters. The logic in a cluster is assumed to evaluate to 

TRUE when no logic operators are present. For example, when a cluster contains only an action then 

that action will always be executed. Conversely, when a cluster consists of both an action and a logic 

condition, then the action will only be executed when the logic evaluates to TRUE. The following 

three examples illustrate T-Logo equivalents of programs written using the TERN language. 

Example 1 – Basic linear program 

The first example is a simple sequential program with the TERN sequence in Figure 6-51 (a) copied 

from Horn’s (2009) documentation where he includes a Start but not a Stop object. The absence of 

the red Stop object is consistent with the TERN language specification. The green Start element on 

the left indicates to the interpreter where the sequence starts and is followed by the Forward, 

Growl, Right, Forward, Shake, and Left instructions. The T-Logo sequence in Figure 6-51 (b) is 

interpreted from left to right and produces the same outcome as the TERN sequence but now using 

personally meaningful objects.  

Tern’s ‘Bump’ element detects if a bumper sensor has been activated. I use this to illustrate the T-

Logo equivalent of TERN’s ‘IF’ conditional statement. The TERN program in Figure 6-52 (a) loops 

indefinitely and instructs the toy to turn right if an obstacle is detected but move forwards 

otherwise. The same logic is implemented using my T-Logo language using two clusters (Figure 

6-52b). The first cluster instructs the toy to turn right when a bump is detected and the second 

causes the toy to move forward if no bump is detected. There is no need for an element comparable 

to TERN’s ‘REPEAT’ structure since the T-Logo interpreter always generates code that loops.  
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(a)

(b)

`

FORWARD 

FORWARD 

GROWL
RIGHT

SHAKE

LEFT END

 

Figure 6-51  Example of a linear program 
Based on Smith and Gelderblom (2016) 

 

Example 2 - Conditional execution 

 

                                           (a)                                                                                                          (b) 
 

Figure 6-52  Example of a conditional statement in a loop 
Based on Smith and Gelderblom (2016) 

 

 

Example 3 - The logic AND conditional statement 

The TERN AND expression in Figure 6-53 (a) can be written as follows using pseudocode: 

IF (IR-BEAM = TRUE)   AND   (BUMP = TRUE)  THEN  do RIGHT  

ELSE do FORWARD 

The expression can also be written using OR operators and implemented as shown in Figure 6-53 (b): 

IF (NOT-IR-BEAM = TRUE) AND (NOT-BUMP = TRUE) THEN do FORWARD  

IF (IR-BEAM = TRUE) AND (NOT-BUMP = TRUE) THEN do FORWARD  

IF (NOT-IR-BEAM = TRUE) AND (BUMP = TRUE) THEN do FORWARD  

IF (IR-BEAM = TRUE) AND (BUMP = TRUE) THEN do RIGHT  
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IF (IR-BEAM = TRUE) AND (BUMP = TRUE)

THEN do RIGHT 

ELSE do FORWARD

IF (IR-BEAM = TRUE)

    AND (BUMP = TRUE)

THEN do RIGHT 

IF (NOT-IR-BEAM = TRUE)

AND(NOT-BUMP = TRUE)

THEN do FORWARD 

IF (IR-BEAM = TRUE) 

  AND(NOT-BUMP = TRUE)

THEN do FORWARD

IF (NOT-IR-BEAM = TRUE)

    AND (BUMP = TRUE)

THEN do FORWARD 

(a)

(b)

 

Figure 6-53  Example of the logic AND conditional statement 
Based on Smith and Gelderblom (2016) 

6.6.12 Critical discussion 

T-Logo differs from other tabletop programming systems such as ReacTable (Jordà et al. 2010) and 

Turtan (Gallardo et al. 2008) in that users have a choice to either apply existing objects or create 

their own. I call these personally meaningful objects and I use the terminology personally meaningful 

association to describe the association action. Personally meaningful objects stand in contrast with 

other objects that already hold meaning in a community. I use the term objective objects to describe 

the latter.  

The following illustrate objective and personally meaningful objects: The Eiffel tower is an objective 

object since members of Western societies will positively identify it with the city of Paris when 

shown a photograph of this landmark. Vincent van Gogh’s 1886 oil-on-canvas painting titled “Shoes” 

is another example. Schapiro (1998) explores multiple interpretations of this painting, exemplifying 

the subjectivity an object can hold for the observer and thus supporting my own classification of this 

object. 

I have shown that it is possible create an environment in which a user can assign tangible objects to 

program commands and parameters, arrange these on a construction surface, and then activate a 

series of software processes to interpret and execute this arrangement as a computer program. The 

resultant image on the computer screen was a direct result of the arrangement itself, combined with 
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the meaning of the objects that constitute this arrangement. I have also given examples to illustrate 

that programs written using TERN (a prominent tangible language) can be coded using my T-Logo 

environment. 

Objective languages and their signs are often well documented with the result that it is possible for 

one person to understand programs written by another. Using personally meaningful objects can be 

problematic since a third party has to apply great effort to decode someone else’s program when it 

includes personally meaningful objects. I anticipate that the only person capable of deriving the logic 

of a program constructed using personally meaningful objects is the author of the program. On the 

positive side, when the need for programmatic confidentiality arises it is possible to obscure the 

program logic and use personally meaningful objects. 

Finally, The Design Science Research methodology allows for the discovery of new knowledge as 

iterations are completed. However, the methodology does not prescribe that the new knowledge 

generated from an iteration be incorporated into the immediate next iteration, or that the 

knowledge be incorporated at all. In my research, new knowledge from the first iteration was used 

to inform the second iteration. For example, the third iteration includes knowledge that emerged 

from the first two, but also incorporates additional knowledge with this being “Hand tools can shape 

soft rock”. The fourth iteration (Dialando) also incorporates further new knowledge that did not 

originate in the previous iterations. Therefore, it may appear that iterations do not “flow” from 

knowledge that emerged from the immediate previous iteration. However, knowledge from all 

iterations was “carried over” and informed the final iteration.  

6.7 Conclusion 

I applied the Design Science Research methodology to answer the three secondary research 

questions: 

 

a. What program elements are suitable for a tangible programming environment in which the 
programmer can incorporate personally meaningful tangible objects?  

b. How can a user associate personally meaningful tangible objects with program elements?  
c. How can the arrangement of these personally meaningful objects be interpreted as program 

statements? 
 

Although the overall research project was aimed at children of all ages, it emerged that each design 

iteration suits some users better than others. I base this on my observation that at the end of a 

particular design iteration it occasionally transpired that the user group that would derive most 

benefit from a design differs from the group initially considered at the onset of that particular 
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iteration. Figure 6-54 illustrates both the designed-for and a prediction on the appropriate user 

groups across the five iterations. The study did not include a test to confirm this prediction. 

At the onset of this research project, the tangible programming environment was conceptualised as 

using large objects with abstract signs. This original design concept was realised in Iteration 1 in the 

form of acrylic cubes and incorporated in the GameBlocks I programming environment. Evaluation of 

this programming environment revealed a number of problems. Most notable are the fragility of the 

acrylic material and the abstractness of the graphic signs. Knowledge thus gained informed the 

second iteration that I call GameBlocks II. Evaluation of the second iteration confirmed that the two 

problems with the first design had been satisfactorily addressed. Iteration 3 (RockBlocks) explored 

the application of handcrafted natural rock as a program object. Evaluation results revealed that 

individuals interpret objects differently. This observation was also made during the first evaluation 

sessions. The objective of the fourth (Dialando) design iteration was to confirm that it is possible to 

influence the digital domain using a tangible program.  
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Figure 6-54  Design iterations, their target groups, and the nature of their outputs 
 

The final design iteration that I call T-Logo introduced two design concepts that I call cluster-based 

tangible programming and user-defined mapping. It incorporates new knowledge that emerged 

from all the earlier iterations and in particular, the knowledge that fundamental Logo-like program 

elements can successfully be included in tangible programming environments. This confirmation 

resolves the first of the two secondary questions. I addressed individual interpretation differences in 

the final iteration through an association mechanism by which the user can incorporate personally 

meaningful objects. This mechanism is also the answer to the secondary research question that 

probes how a user can associate personally meaningful tangible objects with program elements.  

To conclude, I have shown by means of the final iteration that it is feasible to implement a system 

that will simultaneously interpret five tangible object groupings and produce a visual pattern on a 
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computer screen. I also confirmed that it is possible for a user to choose objects and then associate 

them with programmatic elements, have the user arrange the objects on a construction surface, and 

have a series of software processes interpret the arrangement as a program. Finally, I demonstrated 

a working system with which to construct tangible programs that incorporate both personally 

meaningful objects and the Gestalt principle of perceptual grouping by proximity. I will abstract in 

the Chapter 7 my findings as a model that reflects my derived constructs in a tangible program 

environment along with their relationships. 
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 CHAPTER 7

RESEARCH CONTRIBUTION: A MODEL FOR A 

TANGIBLE PROGRAMMING ENVIRONMENT 

 

Chapter 1
Introduction

Chapter 2
Theoretical background

Chapter 5
Research methodology

Chapter 6
Design, implementation, and evaluation

Chapter 7
Primary research contribution

Chapter 8
Conclusion

Chapter 4
Literature review: Tangible programs

Chapter 3
Literature review: Tangible objects

  

 

Figure 7-1  Document structure  
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7.1 Introduction 

In Chapter 6, I addressed the three secondary research questions: 

a. What program elements are suitable for a tangible programming environment in which the 
programmer can incorporate personally meaningful tangible objects?  

b. How can a user associate personally meaningful tangible objects with program elements?  
c. How can the arrangement of these personally meaningful objects be interpreted as program 

statements? 
 

I did this by iteratively designing, implementing, and evaluating tangible programming 

environments. The designs were informed both by outcomes of earlier iterations and by knowledge 

gained from my literature review and theoretical background chapters.  

I demonstrated in Chapter 6 a system that can interpret groupings of tangible objects as a program. 

This was achieved by showing how a user can choose personally meaningful objects and associate 

them with program elements, arrange the objects, and let the system interpret the arrangement 

based on Gestalt principles.  

I will now abstract the new knowledge that emerged in this study as a model to answer the primary 

research question as stated in Chapter 1: 

In the context of existing tangible programming environments and considering how tangible 
objects are currently used when interacting with data, what are the constructs to incorporate into 
a model for creating tangible programming environments in which the relative positions of 
personally meaningful objects define the program, and how do these constructs interact and 
relate to one another?  

 

The model identifies four actors, 16 constructs, and the interactions between the constructs. All 

actors share constructs but certain constructs relate to only a single actor. In the sections that 

follow, I will describe the model, demonstrate its application using three scenarios, and derive a 

programming language based on the scenarios. 

7.2 Programming environment model  

As I explained in Chapter 5, the Design Science Research process model (Vaishnavi & Kuechler 2013) 

includes operational principles and design theory as outputs of the research process. The output of 

this thesis is a tangible programming environment model. Figure 7-2 illustrates my model, including 

its actors, constructs and the relationships between the constructs. The four actors are the user, a 

language architect, a software developer, and a computing system. Constructs belong to one or 

more actors.  
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In the diagrams that follow, arrows indicate the direction of information flow between constructs 

and I apply Everest’s (1976) fork notation (also known as Crow’s Foot notation) to indicate when a 

construct relates to multiple instances of another construct. I next describe each actor and its 

constructs. 

 

Marker

Interpreter

Executable 
code

Tangible 
program

Gestalt 
principle

Semiotic 
theory

User’s 
problem

MeaningObject

Material

La
n

gu
ag

e
 

ar
ch

it
e

ct

U
se

r
C

o
m

p
u

ti
n

g 
sy

st
e

m
So

ft
w

ar
e

 
d

e
ve

lo
p

e
r

Narrative

Algorithm

Problem

Tool

Routine
action/
state/

parameter

 

Figure 7-2  Model of a tangible programming environment  
 

7.2.1 Language architect 

The model is based on the assumption that the language architect is aware of the user’s problem 

and interprets it. I further assume that the language architect is responsible for the design of 

algorithms that can help solve the problem. To illustrate the language architect’s role consider the 

scenario in which a student is studying a text book in his room. In this scenario, the sunlight through 

the window is sufficient to read a book but the problem the student faces is the lack of natural light 

after sunset. Since the language architect is aware of the problem, he formulates an algorithm to 
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turn on the desk lamp when the ambient light level drops below a set threshold. The role of the 

language architect is limited to formulating an algorithm that addresses the user’s problem while the 

implementation of the algorithm remains the developer’s responsibility. I define the algorithm and 

the problem as the first two constructs in my model (Figure 7-3).  

More than one algorithm can address the same problem. For example, consider the scenario when 

the user wants security lights around his home turned on to deter criminals at night. One solution is 

an algorithm that takes as input the time of day and the times the sun sets and rises. It then specifies 

that the light be turned on if the time of day is between sunset and sunrise. An alternative algorithm 

is to track the outdoor ambient light level and switch the lights on and off as appropriate. Two 

algorithms therefore address the same user problem. 
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Figure 7-3  Language architect in the model 
 

7.2.2 Software developer 

The software developer actor (Figure 7-4) interprets the language architect’s algorithm and he then 

derives a set of tools consisting of actions, states, and parameters. He also documents narratives 

that describe the tools. States reflect world reality while actions make changes to the world. 

Examples of states include room temperature and the time of day, while starting a line drawing and 

ending the drawing are examples of actions. Parameters refine the states of interest and give details 

on how actions should be applied to the world. For example, the software developer may decide to 

create a ‘drawing’ action that requires parameters to define the line colour, width, and texture. 

Another example extends the student scenario discussed earlier. In that scenario, the software 

developer may introduce parameters to control certain aspects of the desk lamp such as the 

switching threshold, the speed at which the light fades on and off, and the colour of the light.  

The software developer then codes software routines based on the actions, states, and parameters. 

He also creates narratives that describe the tools in a way that the user can understand. Finally, the 

software developer instantiates a programming environment with which the user can link tangible 

objects to actions, states, and parameters. The linking process involves two steps. First, the user 

attaches a marker to his chosen object. He then activates the mapping function and selects which 
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action, state, or parameter should be associated with the marker. The result is a tangible object that 

is linked to a tool.  
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Figure 7-4  Software developer in the model 
 

He also designs and implements an interpreter. The interpreter produces executable code by 

combining the routines. Routines are combined according to Gestalt principles, the particular tool an 

object represents, and the object sequence. 

7.2.3 User 

I discussed in Chapter 3 how objects are used to represent data. I also showed how data can be 

manipulated using tangible objects. In Chapter 4, I discussed systems that define programs by linking 

tangible objects. All these systems are rooted in knowledge bases originating from the domains of 

Engineering, Computer Science, and Information Technology.  

In my research, I add to these systems knowledge from the Psychology research domain and in 

particular Gestalt principles and Semiotic theory. This knowledge helps describe and predict the way 

humans interpret objects. In Section 2.5.2, I used Saussure’s linguistic sign model to demonstrate 

that a program element can be expressed in multiple ways. Based on the strength of Saussure’s 

model, I argue that more than one object can represent a single program element. Moreover, I put it 

that a representation can hold personal meaning for the user.  

By incorporating Gestalt principles and Semiotic theory into my model, I make it explicit that a user 

can either create a tangible object using available materials or choose an existing object to 

instantiate a personally meaningful tool representation. This establishes in the user’s mind an 
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association between the object and an action, state, or parameter. The user (Figure 7-5) therefore 

addresses his problem by constructing a program that incorporates personally meaningful objects 

that each represents a tool as described in the narrative.  
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Figure 7-5  User in the model 
 

I described Peirce’s second trichotomy in Section 2.3.3.7 and explained that the sign representamen 

can relate to the semiotic object as an icon, an index, or a symbol. In terms of Peirce’s sign model 

(Section 2.3.3), the tangible object in my model is the sign-representamen, the user is the 

interpretant, while the meaning that is attached to the object is Peirce’s semiotic object. I 

elaborated that the icon has some perceived resemblance to its semiotic object, the index has a 

direct connection, and the symbol has a learned connection to the semiotic object.  

However, and as I have elaborated in Section 2.3, the meaning that the user attaches to the object 

may not be the same for everybody. This could be the case if the user creates a symbol 

representamen, but less so when the representamen is an icon or index. This presents both an 

opportunity and a problem. An opportunity exists for the user to create confidential programs that 

are not trivial to decode by another person but the challenge is in maintaining a cohesive team when 

multiple users collaborate on a single program.  

Although the user is free to select his object, the computing system has no way to identify it. A 

mechanism to overcome this problem is to attach an identifying marker to the object. The user 
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therefore first attaches a marker to the object and then instructs the computing system to associate 

the marker with a narrative of his choice.  

Both an object and its relative position to other objects hold meaning for the user. For example, 

when an object that represents time is in close proximity to another object that represents a 

numerical value, then the combination may represent the time of day to a user. I next give three 

examples that elaborate on the association procedure. In the first example, the user associates an 

object with the narrative “select an object to represent 23 degrees Celsius”. When this has been 

done, the object serves as a physical representation of a temperature parameter. For the second 

example, an object will represent the action of turning the student’s desk lamp on, and another 

object will be used to represent the state of a setting sun. When used together, these objects 

indicate that the desk lamp should turn on (an action) at sunset (a state). Finally, the developer may 

decide to make provision for two additional objects that will serve to indicate the rate at which the 

lamp should fade from its off condition to its on condition. In this case, two narratives can prompt 

the user and these are respectively “select an object to represent a quick change” and “select an 

object to represent slow change”. The third and fourth objects then represent a parameter to 

specify the rate of fading. By combining the first two objects with one of the last two, the user can 

define two rules. One rule dictates that the lamp should turn on slowly when the sun sets, while the 

second rule states that the lamp should turn on quickly.  

7.2.4 Computing system 

I described in the previous section how a user applies a marker to establish a logical link between an 

object and a tool. The user and the computing system differ in their perspectives of the 

object/marker combination. Whereas the user views a tangible program as an arrangement of one 

or more objects, the computing system (Figure 7-6) instead considers the program to be a collection 

of one or more markers. Unlike Horn’s (2009) TERN that prescribes the programming object’s shape 

and appearance and thereby also the program’s shape and appearance, my approach separates the 

user and computing system views. The result is that, when using a programming environment based 

on my approach, the user is free to change the object’s shape and aesthetic qualities without 

affecting the logic of his program.  

In addition to fixing an object’s shape and appearance, TERN also dictates the relative positions in 

which objects should be placed. Horn’s designs often enforce these requirements using mechanical 

interlocking mechanisms. In contrast to these limitations, programming environments based on my 

model allow free-form object arrangements. This is possible since my model uses Gestalt principles 

to determine the sequence in which program elements are interpreted. The same principles help 
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identify which elements belong together. I demonstrated in Section 2.4.4 that the user may arrange 

within limits the textual program elements according to personal preference. In addition, my model 

does not dictate the exact arrangement of program elements. Based on this description, I classify 

tangible programming languages derived from my model as being free-format languages. 
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Figure 7-6  Computing system in the model 
 

Using information from a sensor that can detect markers, the interpreter identifies the markers that 

constitute the program and their relative positions. The interpreter segments the collection of 

markers using the Gestalt principle of good continuation and the principle of grouping by proximity. 

It then produces executable code by concatenating the routines already associated with the 

markers. The outcome is executable code that addresses the user’s problem. 

7.3 Applying the model 

I now demonstrate the model using three scenarios in a domestic environment. I first explain the 

user’s problem and then give the language architect’s algorithm. I then list the tool components and 

narratives that reflect the software developer’s interpretation of the algorithm. I use pseudocode to 

express the software routines based on the tool components and narratives. Later, I derive the 

tangible programming language by combining the individual narratives. Finally, I express the 

language using a notation that the user can understand.  

7.3.1 First scenario 

In the first example, the language architect knows that the house occupant wants to maintain the 

indoor temperature at a chosen level. The language architect first interprets this need and then 

designs a language that includes a variable to represent temperature. He further specifies that 

positive integer values can be assigned to the temperature variable. The language definition also 

states that when the ambient temperature exceeds the desired level then the environment must be 

cooled. On the other hand, when the temperature is below the user’s set value then the heater will 
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be turned on. Using pseudo language, the architect’s algorithm can be expressed as shown in Table 

7-1. 

Table 7-1  Programming the temperature 

Algorithm 
Drive the room temperature to the user’s set level. 

Tool components 
Action Set the temperature to <desired_temperature>. <desired_temperature> A natural number. 
Narrative   Routine 

Make or use an existing object to represent 

 The concept of temperature. Use this object to 
indicate that you want to set the room 
temperature. 

 1°C, 5°C, and 10°C respectively. 
Combine these objects to indicate the desired room 
temperature. 

 

TemperatureControl (desired_temperature) 

  IF current_temperature > desired_temperature  
  THEN turn_heater_off and turn_cooler_on  
  ELSE turn_heater_on and turn_cooler_off 

 

The software developer interprets the algorithm and creates a corresponding tool that has two 

components. The first component is an action and it represents the concept of setting the 

temperature. The second component represents the desired temperature value. This information is 

shared with the user by means of the given narrative. The components exist in both the physical and 

digital domains yet the user only interacts with the physical instances.  

The software developer creates a software routine that compares the desired temperature to the 

current ambient temperature and controls the cooler and heater using support routines. These 

routines are turn_heater_off and turn_heater_on. I do not show the details of these routines. 

The TemperatureControl routine and the desired_temperature parameter are digital domain 

components. The TemperatureControl routine is incorporated into the executable code only if both 

the action and the desired_temperature components are present in the tangible program.  

The user makes or chooses personally meaningful objects to instantiate the tool components. Figure 

7-7 displays objects I made for this example (the pencil sharpener has been included to show scale). 

She then attaches a marker to the object and activates the computing system’s mapping mode. This 

mode presents to the user a list of tool components as described in the narrative. The user now 

places the object onto the input surface and selects a component from the list. The computing 

system then associates the marker with the selected component. This action establishes a logical link 

between the marker and the tool component. The user repeats this procedure until all the 

components have matching objects. Figure 7-7 includes a user program that drives the temperature 

to 20° C. 
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Concept of temperature

A value of 10

A value of 1 A value of 5

A program to drive the temperature to 20° C.

 
 

Figure 7-7  Examples of objects and a program to control the temperature 

7.3.2 Second scenario 

For the second example, I assume that the language architect knows that the user wants a cup of 

coffee during the day. To address the user’s problem, the language architect designs an algorithm 

that will allow the user to specify the time when the coffee maker switches on. Table 7-2 captures 

the second algorithm, tool components, narrative, and routine. The tool consists of three 

components and these are the action to turn on the coffee maker, the state of the day, and the time 

of day (a parameter). A support routine that I call turn_coffee_maker_on interacts directly with the 

coffee maker. I do not elaborate on this routine. Figure 7-8 shows examples of objects I made for 

this scenario. It also demonstrates a program that turns on the coffee maker at 9 am. 

 

Figure 7-8  Examples of objects and a program to make coffee 

 

Table 7-2  Programming a coffee maker 

Algorithm 

Turn on the coffee maker at a time the user specifies. 

Tool components 

Action  Turn on the coffee maker when <state>. <state> 
<time_value> 

The hour of day is <time_value>. 
A natural number.  

Narrative  Routine 

“Make or use an existing object to represent  

Six

Three TenConcept of coffee

Concept of time
A program to make coffee at 9 am.
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 A coffee maker. Use this object when you want coffee. 

 The concept of time. Use this object and the hour-
indicators to set the time you want coffee. 

 3, 6, and 10 hours.  
Combine these objects to indicate the time of day you want 
coffee.” 

Coffee (state) 
  IF current_time = state  

  THEN turn_coffee_maker_on  
 

 

7.3.3 Third scenario 

The final example is an algorithm to control a security light. It turns on the light when the ambient 

light level is low. The algorithm also turns off the light at sunrise. Table 7-3 documents the algorithm. 

The software developer implemented the algorithm using the Light_on and Light_off routines. He 

also defined two states and these are sunrise and sunset. Two supporting routines interact directly 

with the light with these being turn_light_on and turn_light_off. I do not describe them further. I 

created a set of objects that can be used to construct a program. Figure 7-9a shows these objects 

while Figure 7-9b includes two programs that incorporate the objects.  

Table 7-3  Programming a security light 

Algorithm 

Turn the security light on or off at sunset or sunrise as specified by the user. 

Tool components 

Action  
Action  

Switch ON the light when <state>. 
Switch OFF the light when <state>. 

<state> 
 

sunrise | sunset 

Narrative  Routines 

“Make or use an existing object to represent 

 The security light in its ON state. 

 The security light in its OFF state. 

 Sunrise. 

 Sunset. 
Combine these objects to indicate when the security light should be 
switched ON and OFF.” 

 

Light_on (state) 
  IF current_state_of_the_sun = state  

  THEN turn_light_on 
 

Light_off (state) 

  IF current_state_of_the_sun = state  
  THEN turn_light_off  

 

 

A program to turn OFF 
the light at sunrise.

A program to turn ON 
the light at sunset.

Light is ON Light is OFF SunsetSunrise

(a)

(b)

 

Figure 7-9  Examples of objects and a program to control a security light 
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7.3.4 The derived language 

It is possible to derive a programming language that can address the three user problems by 

combining the tool components. The resultant language consists of four actions, two value types, 

and three state types. Table 7-4 summarises the language. Finally and for the benefit of the user, the 

language can be expressed as a set of narratives. The narratives are derived using Table 7-1, Table 7-

2, and Table 7-3 while Table 7-5 summarises the result. 

Table 7-4  Language summary 

Actions Values States 

Set the temperature to <temperature_value>. 
Turn the coffee maker ON when <state>. 
Switch light ON when <state>. 
Switch light OFF when <state>. 

temperature_value  
time_value 

The hour of day is <time_value>. 
Sunrise 
Sunset 

  

Table 7-5  The language as narratives 

To achieve this... Do this... 

Control the 
temperature 

Make or use an existing object to represent 

 The concept of temperature. Use this object to indicate that you want to set the room temperature. 

 1°C, 5°C, and 10°C respectively. 
Combine these objects to indicate the desired room temperature. 

Control the coffee 
maker 

Make or use an existing object to represent 

 A coffee maker. Use this object when you want coffee. 

 The concept of time. Use this object and the hour-indicators to set the time you want coffee. 

 3, 6, and 10 hours.  
Combine these objects to indicate the time of day you want coffee. 

Control the 
security light 

Make or use an existing object to represent 

 The security light when ON. 

 The security light when OFF. 

 Sunrise. 

 Sunset. 
Combine these objects to indicate when the security light should be switched ON and OFF. 

7.4 Conclusion 

I described in this chapter a model to guide the development of tangible programming 

environments. The model includes four actors and 16 constructs. The Gestalt principle and Semiotic 

theory constructs are particularly significant since this is the first programming model that explicitly 

incorporates these concepts. Finally, I demonstrated how the model may be applied using three 

scenarios in a domestic environment and I derived a tangible programming language to address the 

user’s problems. 
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 CHAPTER 8

FINAL DISCUSSION AND CONCLUSIONS 

 

Chapter 1
Introduction

Chapter 2
Theoretical background

Chapter 5
Research methodology

Chapter 6
Design, implementation, and evaluation

Chapter 7
Primary research contribution

Chapter 8
Conclusion

Chapter 4
Literature review: Tangible programs

Chapter 3
Literature review: Tangible objects

 

Figure 8-1  Document structure  
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8.1 Introduction 

In this research I set out to defend the following assertion: 

It is possible to derive a model for a tangible programming environment in which the relative 

positions of personally meaningful objects define the program. 
 

 

To test my assertion, I formulated in Chapter 1 five research objectives. I copy them here and 

describe how they were achieved. 

 

Research 
Objective 

1 

My first Research Objective was to determine a set of elements suited 

to a programming environment that incorporates personally 

meaningful tangible objects. 

Research Objective 1 was achieved by studying the language elements 
used in tangible programming environments for young children. I 
determined that directional commands to control motorised toys are 
often used. I then asked children to make personally meaningful 
drawings (Section 6.3) that represent some of these commands. The 
results confirmed that the same command can have different 
representations that are each personally meaningful to the individual. 
Finally, I shaped artist clay (Section 6.4) by hand to verify that the 
commands can be instantiated as tangible objects. 

 

Research 
Objective 

2 

This objective aimed to devise a mechanism by which a personally 
meaningful tangible object can be used as a program element. 
 
Research Objective 2 was achieved by attaching printed fiducials to the 
object and assigning it to one of six actions or assigning a numerical 
value to it. This is possible using the software I developed. 

 

 

Research 
Objective 

3 

Objective three was to devise a method by which an arrangement of 
one or more personally meaningful tangible objects can define a 
program statement. 
 
I achieved Research Objective 3 by applying the Gestalt principle of 
grouping by proximity. I calibrated my software to determine the 
distance between objects and a special object called a Cluster Marker. 
All objects detected within a pre-set distance of the Cluster Marker are 
considered belonging to one group. A program statement is then 
derived using all the action and value objects belonging to that group. 

 

 

Research 
Objective 

4 

My fourth objective was to devise a programming environment in 
which an arrangement of personally meaningful tangible objects can be 
interpreted as a program. 
 
This objective was achieved by writing program statements to a text file 
as they are detected. The symbols captured to the file were then 
interpreted using the Processing language interpreter. 
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Research 
Objective 

5 

Finally, I set out to develop a model that guides the creation of tangible 
programing environments where an arrangement of personally 
meaningful objects defines the program.  
 
I achieved this by identifying the theory and principles that describe and 
predict how individuals assign personal meaning to objects. I then 
combined this with the constructs that flowed from Research Objective 
4. 

 

8.2 Summary of findings 

These are the main findings of my research: 

1. I identified that parallel program threads can be constructed if the interpreter incorporates 

the Gestalt principle of good continuation when the objects are analysed. I illustrated the 

concept in Figure 4-5. 

2. It became evident from my interaction with children that the order in which the system 

interprets objects should be simple. This prompted me to modify the original two-row 

configuration to one with a single row. I also observed that children have no difficulty when 

the sequence is interpreted from left to right along a straight trajectory (Section 6.2.4). 

3. The meaning an object holds for an individual may not be the same as the meaning the same 

object holds for another person (Section 6.4). This observation prompted me to investigate 

programming environments in which the user chooses his objects. 

4. The camera resolution dictates that a compromise between the object size and the number 

of program elements must be reached. This means that the larger the items are the fewer 

objects can be included in a program. 

5. I determined that it is possible to create a system in which the user selects personally 

meaningful objects to represent program actions, parameters, and states as defined by 

another person. 

6. My experiments demonstrated that it is possible to construct a program using personally 

meaningful objects in a static arrangement. 

7. I confirmed in my workshops with children that it is possible to create programs using large 

objects that require both hands to manipulate. My final iteration confirmed that the same is 

possible using smaller objects that fit in the palm of the hand. 

8. It is feasible to design a programming environment that incorporates the Gestalt principles 

of grouping by common region and grouping by proximity, yet I found that grouping by 

proximity (Section 6.6.2) is the simplest to implement. 
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9. My experiments confirmed that it is realistic to group program actions, states, and 

parameters by proximity and that the order of objects within a group is inconsequential and 

can be left to the user. 

10. Text based environments prescribe that symbols are interpreted in a linear fashion. By 

design, the interpreters of these environments require that symbols that belong together 

are delimited using spaces or other predetermined symbols. Symbols cannot be arranged in 

an arbitrary fashion; instead, they must follow each other from left to right and top to 

bottom. Visual programming environments do not have this requirement and support free-

form placement of program objects on the screen. In these environments, connections to a 

particular object may approach it from multiple directions but the links between objects 

must be visually explicit. My research has shown that, by applying the Gestalt principle of 

grouping by proximity, objects that belong together may be placed in any configuration 

within an arrangement as long as they remain separate from other arrangements.  

My research also revealed a number of problems and I list them here: 

1. My T-Logo environment in Chapter 6 is based on the Gestalt principles of good continuation 

and grouping by proximity. The design assumes that clusters are interpreted independently 

of each other. In addition, a group is only executed if the logic it represents evaluates true. 

Therefore, all logic expressions using the T-Logo language are AND logic composites (Section 

6.6.9.6). All problems must therefore be expressed in this way. The result is that certain 

conditional expressions are cumbersome to express using T-Logo. Example 3 in Section 

6.6.9.6 demonstrates the problem. 

2. Having the user choose his objects is interesting since the result is a personalised program. 

However, this approach has the disadvantage that another person will find it challenging to 

decode a program that incorporates personally meaningful objects. I discuss this is Section 

6.6.10. 

3. Users were encouraged to express their thoughts while they used the system but 

participants found this uncomfortable and I subsequently abandoned this approach. 

8.3 Conclusions 

The purpose of my first secondary research question was to determine what program elements are 

suitable for a tangible programming environment in which the programmer can incorporate 

personally meaningful objects. To address this question, I derived a set of suitable program elements 

by combining my study of tangible programming environments in Chapter 4 with the knowledge I 

had gained from conducting tangible programming workshops with children in Chapter 6. This 
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approach revealed that sequential statements consisting of elementary instructions work well when 

a user constructs a program using personally meaningful objects. 

I formulated my next secondary research question to determine how a user can associate personally 

meaningful tangible objects with program elements. The way I answered this question was to 

develop in Chapter 6 software that links objects to program elements and then stores the links in a 

table. I explained the process in Section 6.6.7.1 and summarise it here. First, the software prompts 

the user with a narrative, thereby inviting her to select or construct an object that is personally 

meaningful. The user then attaches a marker to the bottom of the object and places the object onto 

a glass surface. Finally, the software detects the number embedded within the marker and updates 

the table. The result is a table that links tangible objects to program elements. Using this process, I 

was able to demonstrate in Chapter 6 how the user can associate personally meaningful objects with 

program elements.  

My final secondary research question considered how program statements can be derived from an 

arrangement of personally meaningful objects. I addressed this by using the answer to my previous 

secondary research question to link objects to actions, states, and parameters. I then developed 

interpreter software to identify objects that represent actions/states/parameters and group them 

according to the Gestalt principle of grouping by proximity as described in Section 2.2.6.1. I 

explained in Section 6.6.7.3 that for all objects within a group, the software first identifies the action 

program elements and outputs corresponding textual statements to a file. If an action requires 

states or parameters, the interpreter will search for these within the group and append the result to 

the file. The action is discarded when the required state or parameter cannot be located and the 

next action in the group is processed. The interpreter considers the next group once all the actions 

within the current group have been processed. The interpreter terminates when all groups have 

been considered.  

Having now answered my secondary research questions, I next addressed the primary question. My 

primary research question considered what constructs to include in a tangible programming 

environment model in which the relative positions of personal meaningful objects define the 

program, and how the constructs relate and interact with one another. The answer is contained in 

Chapter 2, Chapter 3, Chapter 4, and Chapter 6: I know from Chapter 2 that humans interpret 

objects differently and that the way objects are arranged influence the meaning we attach to them. 

This knowledge prompted me to include Semiotic theory and Gestalt principles in my model. 

Further, my study of tangible objects in Chapter 3 and tangible programming in Chapter 4 revealed 

that there is a need to link objects to program elements. A marker serves this purpose well and I 
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therefore include it in my model. At the time when I developed my final iteration as described in 

Chapter 6, I became aware that four actors could be identified in a tangible programming 

environment. For example, I realised that it is not always a single actor who analyses a user’s 

problem and develops a solution and I therefore distinguish between the language architect and the 

developer. My model appropriately differentiates between the architect, developer, and user actors. 

The computing system is the fourth actor and links the other three. Finally, I reflected that 

actions/states/parameters and narratives can independently describe program languages. I viewed 

actions/states/parameters and narratives as being two forms of the same tool but each with its own 

objective: The actions, states, and parameters are used by the interpreter whereas the narratives 

describe the language to the user. I therefore answered my primary research question by including 

in my model actors to represent the user, developer, architect, and computing system as well as 

primary constructs that include Semiotic theory, Gestalt principles, and tools.  

I also identified secondary constructs that are either supported by or feed into those already 

mentioned. Secondary constructs directly related to the user’s problem are the architect’s 

interpretation of the problem, a tangible program that addresses the problem, software routines 

that are combined to implement a solution to the problem, and executable code that addresses the 

problem. Constructs related to the tangible object but not yet listed are objects, the materials from 

which objects are crafted, and markers to identify the objects. The final constructs that complete the 

model are the architect’s algorithms, the narratives and the action/state/parameter sub-constructs, 

the meaning that a user attaches to the objects, and the interpreter. 

Based on the outcomes of the three secondary research questions, the primary research question, 

and the subsequent model that I created in Chapter 7, I can confirm that it is possible to develop a 

model of a tangible programming environment in which the relative positions of personally 

meaningful objects define a program. I was therefore able to assert my thesis statement as 

formulated in Chapter 1.  

8.4 Summary of contributions  

I first list the new knowledge that emerged from my research and then discuss the implications of 

this knowledge. 

8.4.1 New knowledge 

It emerged from my literature review that there exist in tangible systems mechanisms that may be 

used for data exchange and for identity/position encoding. I derived from this a classification matrix 

(Section 3.2.3) that maps tangible systems to four quadrants. The quadrants serve to classify systems 
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according to tethered/untethered data exchange mechanisms and passive/active encoding 

mechanisms. 

Krippendorff (1989) uses a model to differentiate between the role of the designer and that of the 

user. My research considered the individual as being both the object’s designer and its user. I 

adapted Krippendorff’s model in Section 3.3 to reflect this dual role. 

I proposed three new terminologies in Section 6.6.10 to describe tangible objects and how these are 

associated with digital counterparts. The first is “personally meaningful objects” and it refers to 

objects that have significance for the individual without influence from someone else. The second 

describes the process of associating a personally meaningful object to a specific digital counterpart, 

and I call this “personally meaningful association”. Finally, “objective objects” refers to objects that 

hold a common meaning within a community. An example is a red cross on a white background that 

is most often associated with a hospital. 

Ishii (2009) does not elaborate on the origin of the objects in his model as shown in Figure 3.3. My 

research extends his model by demonstrating that the user may design personally meaningful 

objects. 

Objects are by default not suitable for use in a tangible program since no inherent link exists 

between the physical object and its digital equivalent and therefore such an object has no 

programmatic purpose. However, I demonstrated that a physical object can serve as a program 

element if the user first associates the object with a digital element. Once the association has been 

done I call the physical object a Tangible Programming Object and the user may access the 

associated digital element using the physical object.  

I developed a Tangible Programming Environment model that includes Gestalt principles and 

Semiotic theory. Semiotic theory explains that the user may choose a physical representation of the 

program element that carries personal meaning whereas the Gestalt principle of grouping by 

proximity may be used to link program elements together. 

Finally, I explained how a tangible object may represent actions, states and values in programs. 

8.4.2 Implications of the new knowledge 

I have shown that it is possible to construct a program in which the Gestalt principle of grouping by 

proximity is applied to define a program rule. Since the object sequence and relative positions within 

the grouping are inconsequential, the user is free to decide on the relative positions of objects in a 

group and any change in the relative positions will not affect the program logic. 
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Grouping objects according to their relative proximity frees the user from using mechanical 

constraints when constructing a program. It also provides more room for expression by giving the 

user the option to orientate the objects to personal preference.  

Visually unique programs are possible if the user is given an opportunity to design the objects. A 

consequence is that programs can be visually interesting, distinct in appearance, and showcase the 

user’s creative ability while still expressing valid program logic. This may be useful when the same 

program logic is applied in different environments that each has specific aesthetic requirements. The 

physical appearance of the program can be adjusted to suit the decorative theme and the objects 

designed to be similar to other objects already present. This is possible since the language symbols 

can be designed to aesthetically fit the environment using shapes, colours, and materials familiar to 

the user. 

Objects can be tailored to persons with physical disabilities including arthritis and Parkinson’s 

disease whereas visually impaired users can use their sense of touch to construct programs. The 

shape, size, colour, and texture are customisable to the individual.  

The program construction process does not require electrical power at a time after an object has 

been associated with its digital counterpart. In addition, the program is not destroyed when power is 

removed and may be studied at a time when no power is available.  

8.5 Suggestions for further research 

My T-logo artefact in Chapter 6 does not exploit all the features that a fiducial marker offers. An 

example is the ability to derive the orientation of the object. If exploited, the program construction 

can be decoupled from the current optical scanning sequence as illustrated in Figure 6-43. It may 

then be possible for the tangible objects themselves to indicate the order of interpretation using 

their own orientation relative to other objects by “pointing” in the direction of the next object to be 

interpreted. I did not explore this concept further. 

My model is based on markers that establish links between objects and program elements. In 

Chapter 6, I used markers defined by black patterns printed on white paper. Instead of a paper 

marker, it may be possible to use intrinsic properties of the object itself. For example, the outline or 

texture of the object’s base may serve as an identifying marker.  

Although not implemented, I considered other hand crafted artefact options (Smith 2014b). These 

include a wire-frame bicycle and a canoe with three rowers, an arrangement of rocks in the garden, 

a table-top Zen garden, and decorated rocks in the garden. The wire-frame bicycle in Figure 8-2 (a) is 
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an abstraction of the program interpreter while the passenger is the program passing instructions to 

the cyclist. A similar abstraction holds for the canoe (Figure 8-2b) with its three rowers (the program) 

who direct the course of the canoe. These two concepts are in their infancy and need further 

exploration to determine their viability as programming metaphors. 

 
                                                                                  (a)                                                           (b) 
Figure 8-2  Figurines as programs 

(Smith 2014b) 

It may be possible to apply additional Gestalt principles when assigning actions, states, and 

parameters to objects. Based on Patten at al.’s (2001) suggested mechanisms that I describe in 

Section 3.2.4.1, it may be interesting to bind objects according to the Gestalt principle of grouping by 

proximity to another tangible object, grouping by proximity to a projected image, and grouping by 

common region when an object is placed within an area. 

It is possible to make objects that indicate a direction and my third iteration (discussed in Section 

6.4) is an example. It may be interesting to develop a programming environment in which a program 

rule “points” to the next object to be interpreted. That object would in turn point to another, and so 

on. Program environments designed in this way will not be based on the Gestalt principle of good 

continuation but instead on another principle still to be identified. 

My implementations do not consider all the physical properties that an object possesses. It may be 

worthwhile to consider how to apply additional object properties to guide the programming process 

by incorporating mechanical constraints and other Gestalt principles.  

Finally, I have shown that program elements include actions, states, and parameters. A suitable set 

of elements is most often determined by either the language architect or the developer who 

implements the programming language. Even though some programming environments allow the 

user to extend the element set, it remains the user’s burden to understand the meaning that the 

developer has associated with a sign. This research considered a programming environment that 

allows the user to choose personally meaningful objects to represent program elements thereby 

removing the requirement for the user to use another person’s signs. A question that remains 

unanswered is whether the language should be designed by a user who has personally experienced 
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the problems being addressed, or should this be done by a language architect? My model in Chapter 

6 is based on having the architect make language design decisions while a software developer 

expresses the result using narratives for the benefit of the user. The alternative is for the user to 

design the language and have a software developer implement it. 

To conclude, in this thesis I have shown that it is possible to develop a model of a tangible 

programming environment that includes Gestalt principles and Semiotic theory where Semiotic 

theory explains that the user can choose a physical representation of the program element that 

carries personal meaning while the Gestalt principle of grouping by proximity predicts that objects 

can be arranged to appear as if linked to each other. 

 

 



207 
 

  

  

REFERENCES 

Aghaei, M.B., 2015. Influence of Peirce’s semiotics on the signification of literary discourse. 
Linguistics and Literature Studies, 3(1), pp.24–30. 

Aho, A.V., Lam, M.S., Sethi, R. & Ullman, J.D., 2007. Compilers: Principles, techniques, and tools, 
Pearson Addison Wesley. 

Aish, R., Frankel, J.L., Frazer, J.H. & Patera, A.T., 2001. Computational construction kits for geometric 
modeling and design (Panel Abstract). Proceedings of the 2001 symposium on Interactive 3D 
graphics, pp.125–128. Available at: 
http://66.102.1.104/scholar?num=100&hl=en&lr=&safe=active&q=cache:1zrmpRP2VJgJ:pag
es.cpsc.ucalgary.ca/ saul/601.56.puis/marks-paper2.pdf+. 

Alborzi, H., Druin, A., Montemayor, J., Platner, M., Porteous, J., Sherman, L., Boltman, A., Taxén, G., 
Best, J., Hammer, J., Kruskal, A., Lal, A., Schwenn, T.P., Sumida, L., Wagner, R. & Hendler, J., 
2000. Designing StoryRooms: Interactive storytelling spaces for children. In DIS ’00 
proceedings of the conference on designing interactive systems. New York City, New York, 
United States: ACM Press, pp. 95–104. 

Andersen, P.B., 1997. A theory of computer semiotics: Semiotic approaches to construction and 
assessment of computer systems, Cambridge: Cambridge University Press. 

Anderson, D., Frankel, J.L., Marks, J., Agarwala, A., Beardsley, P., Hodgins, J., Leigh, D., Ryall, K., 
Sullivan, E. & Yedidia, J.S., 2000. Tangible interaction + graphical interpretation: A new 
approach to 3D modeling. In SIGGRAPH ’00 proceedings of the 27th annual conference on 
computer graphics and interactive techniques. New York, NY, USA: ACM Press/Addison-
Wesley Publishing Co., pp. 393–402. 

Aronson, L., 2011. HTML manual of style: A clear, concise reference for hypertext markup language 
(including HTML5) fourth., Tokyo: Addison-Wesley. 

Asch, M., 2002. Textbook of cognitive psychology, New Delhi: Ivy Publishing House. 

Banich, M.T. & Heller, W., 1998. Evolving perspectives on lateralization of function. Current 
directions in psychological science, 7(1), pp.1–2. 

Banzi, M., 2009. Getting started with Arduino, O’Reilly. 

Barthes, R., 1982. Camera Lucisa: Reflections on photography, New York: Hill and Wang. 

Beckmann, C. & Dey, A., 2003. Siteview: tangibly programming active environments with predictive 
visualization, Intel Research Berkeley. 

Bekker, A. & Kruger, C., 2006. Usability and educational review on: GameBlocks and Body PingPong, 
Test and Data Services. 

Bencina, R., Kaltenbrunner, M. & Jorda, S., 2005. Improved topological fiducial tracking in the 
reacTIVision system. Computer vision and pattern recognition workshop, p.99. 

Bentley, J., 1986. Programming pearls: Little languages. Communication of the ACM, 29(8), pp.711–
721. Available at: http://doi.acm.org/10.1145/6424.315691. 



208 
 

  

  

Berger, A.A., 2012. Media analysis techniques, California: Sage Publications. 

Bernstein, D. & Nash, P.W., 2008. Essentials of psychology, Boston: Houghton Mifflin Company. 

Bers, M.U. & Horn, M.S., 2010. Tangible programming in early childhood. High-tech tots: childhood in 
a digital world, p.49. 

Blackburn, S., 1996. The Oxford dictionary of philosophy: Oxford paperback reference, Oxford 
University Press. 

Blackwell, A.F., 2002. First steps in programming: A rationale for attention investment models. In 
Proceedings of the IEEE 2002 symposia on human centric computing languages and 
environments. IEEE, pp. 2–10. 

Blackwell, A.F., 2006. Psychological issues in end-user programming. In H. Lieberman, F. Paterno, & 
V. Wulf, eds. End user development. Human-computer interaction series. Springer 
Netherlands, pp. 9–30. 

Blackwell, A.F. & Hague, R., 2001a. AutoHAN: an architecture for programming the home. In Human-
centric computing languages and environments, 2001. Proceedings IEEE symposia on. IEEE, 
pp. 150–157. 

Blackwell, A.F. & Hague, R., 2001b. Designing a programming language for home automation. 
Proceedings of the 13th annual workshop of the psychology of programming interest group 
(PPIG 2001), pp.85–103. 

Blum, J., 2013. Exploring Arduino: Tools and techniques for engineering wizardry, Indianapolis: John 
Wiley & Sons, Inc. 

Bopry, J., 2002. Semiotics, epistemology, and inquiry. Teaching & learning, 17(1), pp.5–18. 

Boradkar, P., 2010. Designing things: A critical introduction to the culture of objects, Berg Publishers. 

Boyd, F., 1994. Humane slaughter of poultry: The case against the use of electrical stunning devices. 
Journal of agricultural and environmental ethics, 7(2), pp.221–236. Available at: 
http://dx.doi.org/10.1007/BF02349038. 

Bregman, A.S., 1994. Auditory scene analysis: The perceptual organization of sound, London: The 
MIT Press. 

Brookshear, J.G., 2012. Computer Science: An overview eleventh., Pearson Education, Inc. 

Buechley, L., Quilt Snaps. Available at: 
http://web.media.mit.edu/ leah/grad_work/projects/snaps/quilt_snaps.html. Accessed 18 
October 2013. 

Buechley, L., Elumeze, N., Dodson, C. & Eisenberg, M., 2005. Quilt Snaps: A fabric based 
computational construction kit. In IEEE international workshop on wireless and mobile 
technologies in education. IEEE Computer Society. 

Buechley, L., Elumeze, N. & Eisenberg, M., 2006. Electronic/computational textiles and children’s 
crafts. In Proceedings of the 2006 conference on Interaction design and children. 



209 
 

  

  

Burrell, G. & Morgan, G., 2005. Sociological paradigms and organisational analysis, Hants: Ashgate 
Publishing Limited. 

Camarata, K., Do, E.Y.-L., Johnson, B.R. & Gross, M.D., 2002. Navigational blocks: Navigating 
information space with tangible media. In IUI ’02 proceedings of intelligent user interfaces. 
San Francisco, California, USA: ACM Press, pp. 31–38. 

Cantor, R.M., 2003. Roentgen semiotic grammar. Semiotica, 146, pp.69–79. 

Chandler, D., 2007. Semiotics: The basics second., Abingdon, Oxon: Routledge. 

Chung, K., Shilman, M., Merrill, C. & Ishii, H., 2010. OnObject: gestural play with tagged everyday 
objects. In Adjunct Proceedings of the 23Nd Annual ACM Symposium on User Interface 
Software and Technology. UIST ’10. New York, New York, USA: ACM, pp. 379–380. Available 
at: http://doi.acm.org/10.1145/1866218.1866229. 

Cohn, N., 2013. The visual language of comics: Introduction to the structure and cognition of 
sequential images, London: Bloomsbury. 

Colledge, M.A.R., 1979. Sculptors’ stone-carving techniques in Seleucid and Parthian Iran, and their 
place in the “Parthian” cultural milieu: Some preliminary observations. East and West, 
29(1/4), pp.221–240. Available at: http://www.jstor.org/stable/29756517. 

Cooper, D.R. & Schindler, P.S., 2006. Business research methods ninth., New York, NY: McGarw-
Hill/Irwin. 

Danesi, M., 2004. Messages, signs, and meanings: A basic textbook in semiotics and communication 
theory M. Danesi, ed., Toronto: Canadian Scholars’ Press Inc. 

Danesi, M. ed., 2009. Dictionary of media and communications, London: M.E. Sharpe. 

Dawson, C., 2009. Introduction to research methods: A practical guide for anyone undertaking a 
research project fourth., Oxford: How To Books. 

Deely, J.N., 1990. Basics of semiotics advances in semiotics, Indiana University Press. 

Desolneux, A., Moisan, L. & Morel, J.-M., 2008. From Gestalt theory to image analysis: A probabilistic 
approach, Springer. 

DeVilliers, M.R., 2012. Research methodologies, innovations and philosophies in software systems 
engineering and information systems. In M. Mora, O. Gelman, A. Steenkamp, & M. S. 
Raisinghani, eds. Hershey: Information Science Reference. 

Dietz, P.H. & Eidelson, B.D., 2009. SurfaceWare: Dynamic tagging for Microsoft Surface. In 
Proceedings of the 3rd international conference on tangible and embedded interaction. TEI 
’09. Cambridge, United Kingdom: ACM, pp. 249–254. Available at: 
http://doi.acm.org/10.1145/1517664.1517717. 

Dix, A., Finlay, J., Abowd, G.D. & Beale, R., 2004. Human-computer interaction, Pearson Prentice Hall. 

Do, E.Y.-L. & Gross, M.D., 2007. Environments for creativity: A lab for making things. In C&C ’07 
proceedings of the 6th ACM SIGCHI conference on creativity & cognition. Washington, DC, 
USA: ACM, pp. 27–36. 



210 
 

  

  

Dollery, B., 2003. Understanding the psychology of programming. Available at: 
http://www.devx.com/DevX/Article/11659. 

Druin, A., 1999. Cooperative inquiry: developing new technologies for children with children. In CHI 
’99: Proceedings of the SIGCHI conference on Human factors in computing systems. 
Pittsburgh, Pennsylvania, United States: ACM Press, pp. 592–599. 

Druin, A., 2002. The role of children in the design of new technology. Behaviour and information 
technology, 21(1), pp.1–25. 

Druin, A., 2009. Mobile technology for children: Designing for interaction and learning, Morgan 
Kaufmann. 

e2esoft, 2012. Available at: http://www.e2esoft.cn/vcam/, accessed 20 January 2017. 

Eco, U., 1976. A theory of semiotics, Bloomington: Indiana University Press. 

Everaert-Desmedt, N., 2011. Peirce’s semiotics. In L. Hébert, ed. Signo. Rimouski (Quebec). Available 
at: http://www.signosemio.com/peirce/semiotics.asp. 

Everest, G., 1976. Basic data structure models explained with a common example. In Proc. Fifth 
Texas conference on computing systems (Austin, TX). Long Beach, CA: IEEE Computer Society 
publications office, pp. 39–45. 

Eysenck, M.W. & Keane, M., 2000. Cognitive psychology: A student’s handbook fourth., Psychology 
Press. 

Farina, G., 2014. Some reflections on the phenomenological method. Dialogues in philosophy, 
mental and neuro sciences, 2(7), pp.50–62. Available at: 
http://www.crossingdialogues.com/Ms-A14-07.htm. 

Fawcett, R.P., 1992. Review of “A theory of computer semiotics: Semiotic approaches to 
construction and assessment of computer systems” by P. B. Andersen. Cambridge University 
Press 1990. Computational linguistics, 18(4), pp.555–562. Available at: 
http://dl.acm.org/citation.cfm?id=176313.976487. 

Fernaeus, Y., 2007. Let’s make a digital patchwork: Designing for children’s creative play with 
programming materials. PhD thesis, Stockholm University. 

Fernaeus, Y. & Tholander, J., 2006. Finding design qualities in a tangible programming space. In CHI 
’06: Proceedings of the SIGCHI conference on Human Factors in computing systems. New 
York, NY, USA: ACM Press, pp. 447–456. 

Fischer, G., 2001. User modeling in human–computer interaction. User modeling and user-adapted 
interaction, 11(1-2), pp.65–86. 

Fischer, G. & Scharff, E., 2000. Meta-design: Design for designers. In Proceedings of the 3rd 
conference on designing interactive systems: Processes, practices, methods, and techniques. 
ACM, pp. 396–405. 

Fischer, T. & Lau, W., 2006. Marble track music sequencers for children. In IDC ’06: Proceeding of the 
2006 conference on interaction design and children. New York, NY, USA: ACM Press, pp. 141–
144. 



211 
 

  

  

Fiske, J., 1990. Introduction to communication studies second., London: Routledge. 

Fitzmaurice, G.W., Ishii, H. & Buxton, W.A.S., 1995. Bricks: Laying the foundations for graspable user 
interfaces. In CHI ’95 proceedings of the SIGCHI conference on human factors in computing 
systems. Denver, Colorado, United States: ACM Press/Addison-Wesley Publishing Co., pp. 
442–449. 

Franks, D.D., 2006. Handbook of the sociology of emotions: The neuroscience of emotions. In 
Springer, pp. 38–62. 

Frazer, J., 1995. An evolutionary architecture, London: Architectural Association. 

Frei, P., Su, V., Mikhak, B. & Ishii, H., 2000. Curlybot: designing a new class of computational toys. In 
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’00. The 
Hague, The Netherlands: ACM, pp. 129–136. Available at: 
http://doi.acm.org/10.1145/332040.332416. 

Gallardo, D., Julia, C.F. & Jorda, S., 2008. TurTan: A tangible programming language for creative 
exploration. In TABLETOP 2008. 3rd IEEE International workshop on horizontal interactive 
human computer systems. pp. 89–92. 

Gardener, M., 2012. Beginning R: The statistical programming language, Indianapolis, IN: John Wiley 
& Sons, Inc. 

Ghaoui, C. ed., 2005. Encyclopedia of human computer interaction, 

Gift, N. & Jones, J.M., 2008. Python for Unix and Linux system administration, O’Reilly Media, Inc. 

Goldstein, E.B., 2010. Sensation and perception eighth., Belmont: Wadsworth, Cengage Learning. 

Gopnik, A., Griffiths, T.L. & Lucas, C.G., 2015. When younger learners can be better (or at least more 
open-minded) than older ones. Current directions in psychological science, 24(2), pp.87–92. 

Gorbet, M.G., 1998. Beyond input devices: A new conceptual framework for the design of physical-
digital objects. Masters thesis, MIT Media Lab. 

Gorbet, M.G. & Orth, M., 1997a. Triangles and the digital veil. FleshFactor: Informationsmacschine 
mensch (Ars Electronica festival catalog), pp.280–283. 

Gorbet, M.G. & Orth, M., 1997b. Triangles: Design of a physical/digital construction kit. In DIS ’97 
proceedings of the conference on designing interactive systems. Amsterdam, The 
Netherlands: ACM Press, pp. 125–128. 

Gorbet, M.G., Orth, M. & Ishii, H., 1998. Triangles: Tangible interface for manipulation and 
exploration of digital information topography. In CHI ’98 proceedings of the SIGCHI 
conference on human factors in computing systems. Los Angeles, California, United States: 
ACM Press/Addison-Wesley Publishing Co., pp. 49–56. 

Gordon, I.E., 2004. Theories of visual perception third., Hove: Psychology Press. 

Greenberg, I., 2007. Processing: Creative coding and computational art, friendsofED. 



212 
 

  

  

Gregory, R.L. & Zangwill, O.L. eds., 1987. The Oxford companion to the mind, Oxford: Oxford 
University Press. 

Griffin, T., 2010. The art of Lego Mindstorms: NXT-G programming, No Starch Press. 

Grönvall, E., Marti, P., Pollini, A. & Rullo, A., 2006. Active Surfaces: a novel concept for end-user 
composition. In NordiCHI ’06: Proceedings of the 4th Nordic conference on Human-computer 
interaction. ACM Press, pp. 96–104. 

Groome, D., Dewart, H., Esgate, A., Kemp, R., Towell, N. & Gurney, K., 1999. An introduction to 
cognitive psychology, Psychology Press. 

De Guzman, E. & Hsieh, G., 2003. Function composition in physical chaining applications, Berkeley, 
CA: UC Berkeley. Available at: http://hci.stanford.edu/research/papier-
mache/pubs/cs260paper.pdf. 

Hague, R., Robinson, P. & Blackwell, A., 2003. Towards ubiquitous end-user programming. In Adjunct 
Proceedings of UbiComp. pp. 169–170. 

Hall, S., 2007. This means this, this means that: A user’s guide to semiotics, Laurence King. 

Hansen, M., Goldstone, R.L. & Lumsdaine, A., 2013. What makes code hard to understand? ArXiv e-
prints, (1304.5257). Available at: http://arxiv.org/abs/1304.5257. 

Harvey, B., 2000. Logo. In Encyclopedia of computer science. Chichester, UK: John Wiley and Sons 
Ltd., pp. 1035–1038. Available at: http://dl.acm.org/citation.cfm?id=1074100.1074558. 

Hein, J.L., 1996. Theory of computation: An introduction, London: Jones and Bartlett Publishers 
International. 

Helm, P.A. Van der, 2011. The influence of perception on the distribution of multiple symmetries in 
nature and art. Symmetry, 3(1), pp.54–71. Available at: www.mdpi.com/journal/symmetry. 

Helm, P.A. van der, 2014. Oxford handbook of perceptual organization. In J. Wagemans, ed. Oxford, 
United Kingdom: Oxford University Press. 

Henle, M., 1985. Rediscovering Gestalt psychology. In S. Koch & D. E. Leary, eds. A century of 
psychology as science. Washington: American Psychological Association, pp. 100–120. 

Henle, M., 1989. Some new Gestalt psychologies. Psychological Research, 51(2). 

Hevner, A.R., March, S.T., Park, J. & Ram, S., 2004. Design science in information systems research. 
MIS Quarterly, 28(1), pp.75–105. Available at: http://www.jstor.org/stable/25148625. 

Hochberg, J., 2007. In the mind’s eye: Julian Hochberg on the perception of pictures, films, and the 
world M. A. Peterson, B. Gillam, & H. A. Sedgwick, eds., New York: Oxford University Press, 
Inc. 

Hofstee, E., 2006. Constructing a good dissertation: A practical guide to finishing a Master’s, MBA or 
PhD on schedule, Sandton, South Africa: EPE. 

Holmquist, L., Redström, J. & Ljungstrand, P., 1999. Token-based access to digital information. In H.-
W. Gellersen, ed. Handheld and ubiquitous computing. Lecture notes in computer science. 



213 
 

  

  

Springer Berlin / Heidelberg, pp. 234–245. Available at: http://dx.doi.org/10.1007/3-540-
48157-5_22. 

Horn, M., 2007. Topcodes. Available at: http://users.eecs.northwestern.edu/ mhorn/topcodes/, 
Accessed 17 June 2014. 

Horn, M.S., 2009. Tangible computer programming: Exploring the use of emerging technology in 
classrooms and science museums. PhD thesis, Computer Science, Tufts University. 

Horn, M.S. & Jacob, R.J.K., 2006. Tangible programming in the classroom: A practical approach. In 
CHI ’06 extended abstracts on human factors in computing systems. New York, NY, USA: 
ACM Press, pp. 869–874. 

Horn, M.S. & Jacob, R.J.K., 2007. Tangible programming in the classroom with Tern. In CHI ’07 
extended abstracts on human factors in computing systems. San Jose, CA, USA: ACM Press, 
pp. 1965–1970. 

Horn, M.S., Solovey, E.T. & Jacob, R.J.K., 2008. Tangible programming and informal science learning: 
Making TUIs work for museums. In Proceedings of the 7th international conference on 
interaction design and children. IDC ’08. Chicago, Illinois: ACM, pp. 194–201. Available at: 
http://doi.acm.org/10.1145/1463689.1463756. 

Hoven, E. van den & Eggen, B., 2004. Tangible Computing in Everyday Life: Extending Current 
Frameworks for Tangible User Interfaces with Personal Objects. EUSAI, LNCS, 3295, pp.230–
242. 

Hugdahl, K. & J.Davidson, R., 2003. The asymmetrical brain, London, England: The MIT Press. 

Ishii, H., 2004. Bottles: A transparent interface as a tribute to Mark Weiser. IEICE Transactions on 
Information and Systems, E87-D(6), pp.1299–1311. 

Ishii, H., 2008a. Tangible bits: Beyond pixels. In TEI ’08 proceedings of the 2nd international 
conference on tangible and embedded interaction. Bonn, Germany: ACM, pp. xv–xxv. 

Ishii, H., 2008b. The tangible user interface and its evolution. Communications of the ACM, 51(6), 
pp.32–36. 

Ishii, H., 2009. Human-computer interaction: Design issues, solutions and applications. In A. Sears & 
J. A. Jacko, eds. CRC Press, pp. 141–159. 

Ishii, H., Fletcher, H.R., Lee, J., Choo, S., Berzowska, J., Wisneski, C., Cano, C., Hernandez, A. & 
Bulthaup, C., 1999. musicBottles. In SIGGRAPH ’99: ACM SIGGRAPH 99 conference abstracts 
and applications. Los Angeles, California, United States: ACM, p. 174. 

Ishii, H., Mazalek, A. & Lee, J., 2001. Bottles as a minimal interface to access digital information. In 
CHI ’01 extended abstracts on human factors in computing systems. CHI EA ’01. Seattle, 
Washington: ACM, pp. 187–188. Available at: http://doi.acm.org/10.1145/634067.634180. 

Ishii, H., Ratti, C., Piper, B., Wang, Y., Biderman, A. & Ben-Joseph, E., 2004. Bringing clay and sand 
into digital design: Continuous tangible user interfaces. BT technology journal, Volume 22, 
Number 4, pp.287–299. 



214 
 

  

  

Ishii, H. & Ullmer, B., 1997. Tangible bits: Towards seamless interfaces between people, bits and 
atoms. In CHI ’97 proceedings of the SIGCHI conference on human factors in computing 
systems. Atlanta, Georgia, United States: ACM Press, pp. 234–241. 

Ishii, H., Wisneski, C., Brave, S., Dahley, A., Gorbet, M., Ullmer, B. & Yarin, P., 1998. ambientROOM: 
Integrating ambient media with architectural space. In CHI 98 Conference Summary on 
Human Factors in Computing Systems. CHI ’98. Los Angeles, California, USA: ACM, pp. 173–
174. Available at: http://doi.acm.org/10.1145/286498.286652. 

Jacoby, S., Josman, N., Jacoby, D., Koike, M., Itoh, Y., Kawai, N., Kitamura, Y., Sharlin, E. & Weiss, P.L., 
2006. Tangible user interfaces: Tools to examine, assess and treat dynamic constructional 
processes in children with developmental coordination disorders. In Proceedings of the 6th 
international conference on disability, virtual reality & associated technology. 
ICDVRAT/University of Reading. 

Jacucci, C., 2007. Media literacy in responsive physical environments. PhD thesis, Institute for 
communicating and collaborative systems, School of Informatics, University of Edinburgh. 

Jacucci, C., Jacucci, G., Wagner, I. & Psik, T., 2005. A manifesto for the performative development of 
ubiquitous media. In Proceedings of the 4th decennial conference on critical computing: 
Between sense and sensibility. CC ’05. Aarhus, Denmark: ACM, pp. 19–28. Available at: 
http://doi.acm.org/10.1145/1094562.1094566. 

Jacucci, C., Pain, H. & Lee, J., 2006. Media co-authoring practices in responsive physical 
environments. In People and Computers XIX—The Bigger Picture. Springer, pp. 391–407. 

Jappy, T., 2013. Introduction to Peircean visual semiotics, London: Bloomsbury Academic. 

Jetsu, I., 2008. Tangible user interfaces and programming. University of Joensuu. Available at: 
ftp://ftp.cs.joensuu.fi/pub/Theses/2008_MSc_Jetsu_Ilja.pdf. 

Jones, S.P., Blackwell, A.F. & Burnett, M., 2003. A user-centred approach to functions in Excel. In 
Proceedings of the eighth ACM SIGPLAN international conference on functional 
programming. ICFP ’03. Uppsala, Sweden: ACM, pp. 165–176. Available at: 
http://doi.acm.org/10.1145/944705.944721. 

Jordà, S., Julià, C.F. & Gallardo, D., 2010. Interactive surfaces and tangibles. XRDS, 16(4), pp.21–28. 

Jorda, S., Kaltenbrunner, M., Geiger, G. & Bencina, R., 2005. The reacTable. In Proceedings of the 
International Computer Music Conference (ICMC 2005). Barcelona, Spain. 

Kahn, K., 1996. Drawings on napkins, video-game animation, and other ways to program computers. 
Commun. ACM, 39(8), pp.49–59. 

Kaltenbrunner, M., 2009. reacTIVision and TUIO: A tangible tabletop toolkit. In Proceedings of the 
ACM international conference on interactive tabletops and surfaces. ITS ’09. Banff, Alberta, 
Canada: ACM, pp. 9–16. Available at: http://doi.acm.org/10.1145/1731903.1731906. 

Kaltenbrunner, M. & Bencina, R., 2007. reacTIVision: A computer-vision framework for table-based 
tangible interaction. In TEI ’07 proceedings of the 1st international conference on tangible 
and embedded interaction. ACM, pp. 69–74. 

Kasschau, R.A., 2003. Understanding psychology, Glencoe/McGraw-Hill. 



215 
 

  

  

Katai, Z., Juhász, K. & Adorjáni, A.K., 2008. On the role of senses in education. Computers & 
Education, 51(4), pp.1707–1717. 

Kay, A., 1984. Computer software. Scientific American, 251(3), pp.53–59. 

Kelleher, C. & Pausch, R., 2005. Lowering the barriers to programming: A taxonomy of programming 
environments and languages for novice programmers. ACM computing surveys, 37(2), 
pp.83–137. 

Kernighan, B.W., Ritchie, D.M. & Ejeklint, P., 1988. The C programming language, Englewood Cliffs: 
Prentice-Hall. 

Kimchi, R., Behrmann, M. & Olson, C.R. eds., 2003. Perceptual organization in vision–behavioral and 
neural perspectives, Lawrence Erlbaum Associates, Inc. 

Kimura, D., 1993. Neuromotor mechanisms in human communication: Asymmetry. In New York, NY: 
University Press. 

Kitamura, Y., Itoh, Y. & Kishino, F., 2001. Real-time 3D interaction with ActiveCube. In CHI ’01 
extended abstracts on human factors in computing systems. Seattle, Washington: ACM 
Press, pp. 355–356. 

Knoll, M., Weis, T., Ulbrich, A. & Brändle, A., 2006. Scripting your home. In Location-and Context-
Awareness. Springer, pp. 274–288. 

Knudsen, J., 1999. The unofficial guide to Lego Mindstorms robots, Cambridge: O’Reilly & Associates, 
Inc. 

Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A.F., Burnett, M., Erwig, M., Scaffidi, C., Lawrance, J., 
Lieberman, H., Myers, B., Rosson, M.B., Rothermel, G., Shaw, M. & Wiedenbeck, S., 2011. 
The state of the art in end-user software engineering. ACM computing surveys, 43(3), 
pp.21:1–21:44. 

Koffka, K., 1935. Principles of Gestalt psychology, New York: Harcourt, Brace and Company. 

Köhler, W., 1938. A source book of Gestalt psychology. In W. D. Ellis, ed. London: Kegan Paul, Trench, 
Trubner & Company, pp. 17–54. 

Kosslyn, S.M., 1996. Image and brain: The resolution of the imagery debate, Bradford Books. 

Krampen, M., Oehler, K., Posner, R., Sebeok, T.A. & Uexkull, T. von eds., 1987. Classics of semiotics, 
New York: Springer Science+Business Media. 

Krippendorff, K., 1989. On the essential contexts of artifacts or on the proposition that design is 
making sense (of things). Design issues, 5(2), pp.9–39. Available at: http://0-
www.jstor.org.oasis.unisa.ac.za/stable/1511512. 

Kubovy, M., Holcombe, A.O. & Wagemans, J., 1998. On the lawfulness of grouping by proximity. 
Cognitive psychology, 35, pp.71–98. 

Lannoch, H. & Lannoch, H.-J., 1989. Toward a semantic notion of space. Design Issues, 5(2), pp.40–
50. 



216 
 

  

  

Larsen, S.E., 1994. The encyclopaedia of language and linguistics. In R. E. Asher, ed. Oxford: 
Pergamon Press, pp. 3821–3832. 

Lee, B., 1997. Talking heads: Language, metalanguage, and the semiotics of subjectivity, Durham: 
Duje University Press. 

Lee, J., Vargas, G., Tang, M. & Ishii, H., 2012. Rainbottles: Gathering raindrops of data from the 
cloud. In CHI ’12 extended abstracts on human factors in computing systems. CHI EA ’12. 
Austin, Texas, USA: ACM, pp. 1901–1906. Available at: 
http://doi.acm.org/10.1145/2212776.2223726. 

Lee, S.-H. & Blake, R., 1999. Detection of temporal structure depends on spatial structure. Vision 
research, 39(18), pp.3033–3048. Available at: 
http://www.sciencedirect.com/science/article/pii/S0042698998003332. 

Leymarie, F.F., 2006. Aesthetic computing and shape. In A. Bassi, M. Bauer, M. Fiedler, T. Kramp, R. 
van Kranenburg, S. Lange, & S. Meissner, eds. Aesthetic computing. The MIT Press, pp. 259–
313. 

Leyton, M., 2006. Aesthetic computing. In P. A. Fishwick, ed. The MIT Press, pp. 289–313. 

Liszka, J.J., 1996. A general introduction to the semeiotic of Charles Sanders Peirce, Bloomington: 
Indiana University Press. 

Ljungstrand, P., Björk, S. & Falk, J., 1999. The WearBoy: A platform for low-cost public wearable 
devices. The third international symposium on wearable computers, 1999. Digest of Papers. 

Ljungstrand, P. & Holmquist, L.E., 1999. WebStickers: Using physical objects as WWW bookmarks. In 
CHI ’99 extended abstracts on human factors in computing systems. CHI EA ’99. Pittsburgh, 
Pennsylvania: ACM, pp. 332–333. Available at: http://doi.acm.org/10.1145/632716.632916. 

Lucas, C.G., Bridgers, S., Griffiths, T.L. & Gopnik, A., 2014. When children are better (or at least more 
open-minded) learners than adults: Developmental differences in learning the forms of 
causal relationships. Cognition, 131(2), pp.284–299. 

Lund, H.H., 2003. Intelligent artefacts. In Proceedings of the 8 th International symposium on 
artificial life and robotics, ISAROB. Citeseer, pp. I11–I14. 

Lund, H.H., 2004. Modern artificial intelligence for human-robot interaction. Proceedings of the IEEE, 
92(11), pp.1821–1838. 

Marais, M.A., Smith, A.C. & Duveskog, M., 2007. TekkiKids: Technology clubs for children. In Meraka 
innovate conference. Pretoria, p. 8. Available at: http://hdl.handle.net/10204/2256. 

March, S. & Smith, G., 1995. Design and natural science research on information technology. 
Decision support system, 15(4), pp.251–266. 

Marco, J., Cerezo, E., Baldasarri, S., Mazzone, E. & Read, J.C., 2009. User-oriented design and 
tangible interaction for kindergarten children. In IDC ’09 proceedings of the 8th international 
conference on interaction design and children. Como, Italy: ACM Press, pp. 190–193. 

Marco, J., Cerezo, E. & Baldassarri, S., 2012. ToyVision: A toolkit for prototyping tabletop tangible 
games. In Proceedings of the 4th ACM SIGCHI symposium on engineering interactive 



217 
 

  

  

computing systems. EICS ’12. Copenhagen, Denmark: ACM, pp. 71–80. Available at: 
http://doi.acm.org/10.1145/2305484.2305498. 

Marco, R.J., 2011. Design, implementation and evaluation of tangible design intefaces for children. , 
PhD thesis, Zaragoza, Spain: Universidad de Zaragoza. 

Marti, P. & Lund, H.H., 2004. Novel tangible interfaces for physical manipulation, conceptual 
constructions and action composition. In Proceedings of intelligent manipulation and 
grasping (IMG04). 

Martin, B. & Ringham, F., 2000. Dictionary of semiotics, Casstell. 

Marty, R., 2015. 76 Definitions of the sign by C. S. Peirce, Available at: 
http://perso.numericable.fr/robert.marty/semiotique/76defeng.htm. 

Mason, J., 1946. Principles of chess in theory and practice, Kingsport: Kingsport Press. 

Matlin, M.W., 1988. Sensation and perception second., Allyn and Bacon, Inc. 

Mazalek, A., 2001. Tangible interfaces for interactive point-of-view narratives, Masters thesis, 
University of Toronto. 

Mazalek, A., 2005. Media tables: An extensible method for developing multi-user media interaction 
platforms for shared spaces, PhD thesis, Massachusetts Institute of Technology. 

Mazalek, A., Davenport, G. & Ishii, H., 2002. Tangible viewpoints: A physical approach to multimedia 
stories. In MULTIMEDIA ’02 proceedings of the tenth ACM international conference on 
multimedia. Juan-les-Pins, France: ACM, pp. 153–160. 

Mazalek, A., Wood, A. & Ishii, H., 2001. genieBottles: An interactive narrative in bottles. In SIGGRAPH 
2001: Sketches and applications. 

McCloud, S., 1994. Understanding comics: The invisible art, Harper Collins Publishers. 

McNerney, T.S., 1999. Tangible Programming Bricks: An approach to making programming 
accessible to everyone. Masters thesis, Massachusetts Institute of Technology. 

McNerney, T.S., 2004. From turtles to Tangible Programming Bricks: explorations in physical 
language design. Personal Ubiquitous Comput., 8(5), pp.326–337. 

Merleau-Ponty, M., 1962. Phenomenology of perception, Routledge & Kegan Paul Ltd. 

Mernik, M., Heering, J. & Sloane, A.M., 2005. When and how to develop domain-specific languages. 
ACM computing surveys, 37(4), pp.316–344. Available at: 
http://doi.acm.org/10.1145/1118890.1118892. 

Merrell, F., 1997. Peirce, signs, and meaning, University of Toronto Press. 

Merrell, F., 2015. Semiology meets semiotics: A case of lingering linguicentrism? Available at: 
http://web.ics.purdue.edu/ fmerrell/linguicentrism.htm. 

Merriam-Webster, Merriam-Webster dictionary. Available at: www.merriam-webster.com, accessed 
20 January 2017. 



218 
 

  

  

Merrill, D., Kalanithi, J. & Maes, P., 2007. Siftables: towards sensor network user interfaces. In 
Proceedings of the 1st international conference on Tangible and embedded interaction. ACM, 
pp. 75–78. 

Mick, D.G., 1986. Consumer research and semiotics: Exploring the morphology of signs, symbols, and 
significance. Journal of consumer research, pp.196–213. 

Moggridge, B., 2006. Designing interactions, MIT Press. 

Montemayor, J., 2001. Physical programming: software you can touch. In CHI ’01: CHI ’01 extended 
abstracts on Human factors in computing systems. New York, NY, USA: ACM Press, pp. 81–
82. 

Montemayor, J., 2003. Physical programming: Tools for kindergarten children to author physical 
interactive environments. PhD thesis, Department of Computer science, University of 
Maryland. 

Montemayor, J., Druin, A., Chipman, G., Farber, A. & Guha, M.L., 2004. Tools for children to create 
physical interactive storyrooms. ACM computers in entertainment, 2(1), pp.12–12. 

Montemayor, J., Druin, A., Farber, A., Simms, S., Churaman, W. & D’Amour, A., 2002. Physical 
programming: Designing tools for children to create physical interactive environments. In 
Proceedings of the conference on human factors in computing systems. Minneapolis, 
Minnesota, USA: ACM Press, pp. 299–306. 

Morgado, L., 2006. Framework for computer programming in preschool and kindergarten. 
Department of Engenharias, Universidade de Trás-os-Montes e Alto Douro. Available at: 
http://home.utad.pt/ leonelm/papers/tese/teseleonelmorgado.pdf. 

Morgado, L., Cruz, M. & Kahn, K., 2006. Radia Perlman - A pioneer of young children computer 
programming. FORMATEX. 

Morris, C., 1964. Signification and significance: A study of the relations of signs and values, 
Cambridge: The MIT Press. 

Mukherjee, A., Sharma, G. & Prakash, M., 2002. Programming using Stackable Bricks. 

Nadin, M., 1988. Interface design: A semiotic paradigm. Semiotica, 69(3-4), pp.269–302. 

Nam, Y. & Kim, J., 2010. A semiotic analysis of sounds in personal computers: Toward a semiotic 
model of human-computer interaction. Semiotica, 182(1/4), pp.269–284. 

Nardi, B.A., 1993. A small matter of programming, Cambridge, Massachusetts, USA: MIT Press. 

Newell, A., Shaw, J.C. & Simon, H.A., 1958. Elements of a theory of human problem solving. 
Psychological review, 65(3), pp.151–166. 

Ngo, T.D. & Lund, H.H., 2004. Modular artefacts. In ECOOP 2004 workshop: Components-oriented 
approaches to context-aware computing. Oslo, Norway. 

Niehaves, B., 2007. On epistemological diversity in design science: New vistas for a design-oriented is 
research? In Twenty eighth international conference on information systems. 



219 
 

  

  

Nielsen, J., 2002. Intelligent bricks. Masters thesis, Maersk McKinney Moller institute for production 
technology, University of Southern Denmark, Odense. 

Nielsen, J., 2008. Userconfigurable modular robotics: Design and use. PhD thesis, The Maersk Mc-
Kinney Moller Institute, University of Southern Denmark. 

Nielsen, J. & Lund, H.H., 2008. Modular robotics as a tool for education and entertainment. 
Computers in human behavior, 24(2), pp.234–248. 

Novikov, A.M. & Novikov, D.A., 2013. From philosophy of science to research design, Boca Raton: CRC 
Press. 

O’Malley, C. & Fraser, D.S., 2004. Literature review in learning with tangible technologies, NESTA 
Futurelab. 

Oh, H., Deshmane, A., Li, F., Han, J.Y., Stewart, M., Tsai, M., Xu, X. & Oakley, I., 2013. The Digital 
Dream Lab: Tabletop puzzle blocks for exploring programmatic concepts. In Proceedings of 
the 7th international conference on tangible, embedded and embodied interaction. TEI ’13. 
Barcelona, Spain: ACM, pp. 51–56. Available at: 
http://doi.acm.org/10.1145/2460625.2460633. 

Ohkubo, M., Ooide, Y. & Nojima, T., 2013. An interface composed of a collection of smart hairs. In 
Proceedings of the second international workshop on smart material interfaces: Another step 
to a material future. SMI ’13. Sydney, Australia: ACM, pp. 23–26. Available at: 
http://doi.acm.org/10.1145/2534688.2534692. 

Oizumi, T., Mikami, T., Sasada, S. & Ubukata, S., 2007. Diorama Table. In Goodbye privacy. Linz, 
Austria: Ars electronica, p. 51. Available at: 
http://90.146.8.18/en/festival2007/program/project.asp?iProjectID=13981. 

Olivier, M.S., 2004. Information technology research, Van Schaik Publishers. 

Overvliet, K.E., Krampe, R.T. & Wagemans, J., 2012. Perceptual grouping in haptic search: The 
influence of proximity, similarity, and good continuation. Journal of experimental 
psychology: Human perception and performance, 38(4), pp.817–821. 

Palmer, S.E., 1980. What makes triangles point: Local and global effects in configurations of 
ambiguous triangles. Cognitive psychology, 12(3), pp.285–305. Available at: 
http://www.sciencedirect.com/science/article/pii/0010028580900122. 

Palmer, S.E., 1999. Vision science: Photons to phenomenology, MIT Press. 

Palmer, S.E., 2002a. Organizing objects and scenes. In D. J. Levitin., ed. Foundations of cognitive 
psychology: Core readings. Cambridge: The MIT Press, pp. 189–212. 

Palmer, S.E., 2002b. Perceptual grouping: It’s later than you think. Current directions in psychological 
science, 11(3), pp.101–106. 

Palmer, S.E., 2003. Visual perception of objects. In A. F. Healy, R. W. Proctor, & I. B. Weiner, eds. 
John Wiley & Sons. 

Palmer, S.E. & Rock, I., 1994. Rethinking perceptual organization: The role of uniform 
connectedness. Psychonomic bulletin & review, 1(1), pp.29–55. 



220 
 

  

  

Pangaro, G., Maynes-Aminzade, D. & Ishii, H., 2002. The actuated workbench: Computer-controlled 
actuation in tabletop tangible interfaces. In UIST ’02 proceedings of the 15th annual ACM 
symposium on user interface software and technology. Paris, France: ACM Press, pp. 181–
190. 

Pangaro, G.A., 2003. The Actuated Workbench: 2D actuation in tabletop tangible interfaces. Masters 
thesis, School of Architecture and Planning, Massachusetts Institute of Technology. 

Papert, S., 1980. Mindstorms: children, computers, and powerful ideas, New York, NY, USA: Basic 
Books, Inc. 

Patten, J., Griffith, L. & Ishii, H., 2000. A tangible interface for controlling robotic toys. In CHI ’00: CHI 
’00 extended abstracts on Human factors in computing systems. The Hague, The 
Netherlands: ACM Press, pp. 277–278. 

Patten, J., Ishii, H., Hines, J. & Pangaro, G., 2001. Sensetable: a wireless object tracking platform for 
tangible user interfaces. In CHI ’01: Proceedings of the SIGCHI conference on Human factors 
in computing systems. Seattle, Washington, United States: ACM Press, pp. 253–260. 

Patten, J., Recht, B. & Ishii, H., 2002. Audiopad: A tag-based interface for musical performance. In 
NIME ’02 proceedings of the 2002 conference on new interfaces for musical expression. 
Dublin, Ireland: National University of Singapore, pp. 1–6. 

Patten, J., Recht, B. & Ishii, H., 2006. Interaction techniques for musical performance with tabletop 
tangible interfaces. In ACE ’06 proceedings of the 2006 ACM SIGCHI international conference 
on advances in computer entertainment technology. Hollywood, California: ACM Press, p. 27. 

Patten, J.M., 2005. Mechanical constraints as common ground between people and computers. PhD 
thesis, Massachusetts Institute of Technology. 

Pattis, R.E., 1995. Karel the robot: A gentle introduction to the art of programming, John Wiley & 
Sons. 

Patton, M.Q., 2002. Qualitative research & evaluation methods third., California: Sage Publications, 
Inc. 

Patton, S.F., 1985. Zimbabwe contemporary stone sculpture. African arts, 19(1), pp.78–78. Available 
at: http://www.jstor.org/stable/3336389. 

Patwell, J.M. ed., 1992. The American heritage dictionary of the English language third., Jonathan P. 
Latimer. 

Pedersen, E.R., Sokoler, T. & Nelson, L., 2000. PaperButtons: Expanding a tangible user interface. In 
DIS ’00 proceedings of the conference on designing interactive systems. New York City, New 
York, United States: ACM Press, pp. 216–223. 

Pedersen, E.W. & Hornbæk, K., 2009. mixiTUI: A tangible sequencer for electronic live performances. 
In Proceedings of the 3rd international conference on tangible and embedded Interaction. TEI 
’09. Cambridge, United Kingdom: ACM, pp. 223–230. Available at: 
http://doi.acm.org/10.1145/1517664.1517713. 



221 
 

  

  

Peffers, K., Rothenberger, M., Tuunanen, T. & Vaezi, R., 2012. Design science research in information 
systems: Advances in theory and practice. In K. Peffers, M. Rothenberger, & B. Kuechler, eds. 
Lecture notes in computer science. Berlin: Springer-Verlag, pp. 398–410. 

Peirce, C.S., 1935. The collected papers of Charles Sanders Peirce C. Hartshorne, P. Weiss, & A. W. 
Burks, eds., Cambridge: Harvard University Press. 

Perlman, R., 1974. TORTIS: Toddler’s own recursive turtle interpreter system. Technical report, MIT 
Artificial Intelligence Lab. 

Perlman, R., 1976. Using computer technology to provide a creative learning environment for 
preschool children. Technical report, MIT Artificial Intelligence Lab. 

Philipose, M., Fishkin, K.P., Perkowitz, M., Patterson, D.J., Fox, D., Kautz, H. & Hahnel, D., 2004. 
Inferring activities from interactions with objects. Pervasive computing, IEEE, 3(4), pp.50–57. 

Piper, B., Ratti, C. & Ishii, H., 2002. Illuminating Clay: A 3-D tangible interface for landscape analysis. 
In Proceedings of the SIGCHI conference on human factors in computing systems. CHI ’02. 
Minneapolis, Minnesota, USA: ACM, pp. 355–362. Available at: 
http://doi.acm.org/10.1145/503376.503439. 

Poupyrev, I., Nashida, T., Maruyama, S., Rekimoto, J. & Yamaji, Y., 2004. Lumen: Interactive visual 
and shape display for calm computing. In ACM SIGGRAPH 2004 emerging technologies. 
SIGGRAPH ’04. Los Angeles, California: ACM, p. 17–. Available at: 
http://doi.acm.org/10.1145/1186155.1186173. 

Price, S., 2008. A representation approach to conceptualizing tangible learning environments. In 
Proceedings of the 2nd international conference on tangible and embedded interaction. 
ACM, pp. 151–158. 

Purao, S., 2002. Design research in the technology of information systems: truth or dare. 

Purao, S., 2013. Truth or dare: The ontology question in design science research. Journal of database 
management, 24(3), pp.51–66. 

Raffle, H., 2008. Sculpting behavior: A tangible language for hands-on play and learning. PhD thesis, 
Tangible Media Group, MIT Media Lab. 

Raffle, H., Ishii, H. & Yip, L., 2007. Remix and Robo: sampling, sequencing and real-time control of a 
tangible robotic construction system. In IDC ’07: Proceedings of the 6th international 
conference on Interaction design and children. Aalborg, Denmark: ACM Press, pp. 89–96. 

Raffle, H., Parkes, A., Ishii, H. & Lifton, J., 2006. Beyond record and play: backpacks: tangible 
modulators for kinetic behavior. In CHI ’06: Proceedings of the SIGCHI conference on Human 
Factors in computing systems. Montreal, Quebec, Canada: ACM Press, pp. 681–690. 

Raffle, H.S., Parkes, A.J. & Hiroshi, I., 2004. Topobo: a constructive assembly system with kinetic 
memory. In CHI ’04: Proceedings of the SIGCHI conference on Human factors in computing 
systems. New York, NY, USA: ACM Press, pp. 647–654. 

Rapaport, W.J., 2012. Semiotic systems, computers, and the mind: How cognition could be 
computing. International journal of signs and semiotic systems, 2(1), pp.32–71. Available at: 
http://dx.doi.org/10.4018/IJSSS.2012010102. 



222 
 

  

  

Raymond, E.S., 2000. A brief history of hackerdom, Thyrsus Enterprises. Available at: 
http://www.immagic.com/eLibrary/ARCHIVES/GENERAL/AUTHOR_P/R000825P.pdf. 

Reas, C. & Fry, B., 2007. Processing: A programming handbook for visual designers and artists, The 
MIT Press. 

Reas, C. & Fry, B., 2010. Getting started with Processing, O’Reilly Media, Inc. 

Reitsma, E.S., 2011. StoryBeads: For the preservation of indigenous stories, Technical University of 
Eindhoven. 

Reitsma, L., Smith, A.C. & Hoven, E. van den, 2013. StoryBeads: Preserving indigenous knowledge 
through tangible interaction design. In International conference on culture and computing. 
IEEE, pp. 79–85. 

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., 
Rosenbaum, E., Silver, J., Silverman, B. & Kafai, Y., 2009. Scratch: Programming for all. 
Communications of the ACM, 52(11), pp.60–67. 

Rock, I. & Palmer, S.E., 1990. The legacy of Gestalt psychology. Scientific American, 263, pp.84–90. 

Roode, D., 1993. Implications for teaching of a process-based research framework for information 
systems. In L. Smith, ed. Proceedings of the international academy for information 
management conference. Orlando, Florida. 

Rosner, D. & Ryokai, K., 2008. Weaving memories into handcrafted artifacts with Spyn. In CHI ’08 
extended abstracts on human factors in computing systems. CHI ’08. Florence, Italy: ACM, 
pp. 2331–2336. Available at: http://doi.acm.org/10.1145/1358628.1358679. 

Rosner, D.K. & Ryokai, K., 2009. Reflections on craft: Probing the creative process of everyday 
knitters. In Proceedings of the seventh ACM conference on creativity and cognition. Berkeley, 
California, USA: ACM, pp. 195–204. Available at: 
http://doi.acm.org/10.1145/1640233.1640264. 

Rosner, D.K. & Ryokai, K., 2010. Spyn: Augmenting the creative and communicative potential of 
craft. In CHI 2010 cooking, classrooms, and craft. ACM. 

Rossi, M. & Sein, M.K., 2003. Design research workshop: A proactive research approach. Available at: 
https://people.aalto.fi/index.html?profilepage=isfor#!matti_rossi, Accessed 20 January 
2017. 

Rossum, G. van, 2012. The Python language reference F. L. Drake, ed., Python Software Foundation. 

Roy, P.V. & Haridi, S., 2004. Concepts, techniques, and models of computer programming, 
Cambridge, Massachusetts: The MIT Press. 

Sabre, R.M., 2012. Peirce’s ten trichotomies: Metaphor, hypothesis, and decision. Semiotica, pp.23–
39. 

Sáenz-Ludlow, A., 2007. Signs and the process of interpretation: Sign as an object and as a process. 
Studies in philosophy and education, 26(3), pp.205–223. Available at: 
http://dx.doi.org/10.1007/s11217-007-9028-4. 



223 
 

  

  

Sajaniemi, J., 2008. Psychology of programming: Looking into programmers’ heads. Human 
Technology, 4(1), pp.4–8. 

Sanders, E.B.N., 2000. Generative tools for co-designing. In Collaborative design proceedings of 
CoDesigning 2000. London: Springer, pp. 1–12. 

Sarbo, J.J. & Farkas, J., 2013. Towards meaningful information processing: A unifying representation 
for Peirce’s sign types. Signs: International journal of semiotics, 7, pp.1–41. Available at: 
http://vip.iva.dk/sis/index.php?journal=signs. 

Saussure, F. de, 1916. Cours de linguistique generale C. Bailly & A. Sechehaye, eds., Lausanne: 
Libraire Payot & Cie. 

Saussure, F. de, 1959. Course in general linguistics C. Bally & A. Sechehaye, eds., New York: 
Phylisophical Library, Inc. 

Saussure, F. de, 2011. Course in general linguistics P. Meisel & H. Saussy, eds., New York: Columbia 
University Press. 

Schapiro, M., 1998. The still life as a personal object: A note on Heidegger and van Gogh. In D. 
Preziosi, ed. The art of art history: A critical anthology. New York: Oxford University Press, 
pp. 427–431. Available at: http://dx.doi.org/10.1007/978-3-662-40265-8_14. 

Schiettecatte, B. & Vanderdonckt, J., 2008. AudioCubes: A distributed cube tangible interface based 
on interaction range for sound design. In Proceedings of the 2nd international conference on 
tangible and embedded Interaction. TEI ’08. Bonn, Germany: ACM, pp. 3–10. Available at: 
http://doi.acm.org/10.1145/1347390.1347394. 

Schon, D.A., 1983. The reflective practitioner: How professionals think in action, Basic Books. 

Schwandt, T.A., 2007. The Sage dictionary of qualitative inquiry third., California: Sage Publications, 
Inc. 

Schweikardt, E. & Gross, M.D., 2006. roBlocks: a robotic construction kit for mathematics and 
science education. In ICMI ’06: Proceedings of the 8th international conference on 
Multimodal interfaces. Banff, Alberta, Canada: ACM Press, pp. 72–75. 

Schweikardt, E. & Gross, M.D., 2007. A brief survey of distributed computational toys. In DIGITEL’07. 
The First IEEE international workshop on digital game and intelligent toy enhanced learning, 
2007. pp. 57–64. 

ScienceUnlimited, ScienceUnlimited. Available at: http://www.scienceunlimited.co.za, accessed 28 
May 2014. 

Scifest, Scifest Africa. Available at: http://www.scifest.org.za, accessed 28 May 2014. 

Sears, A. & Jacko, J.A. eds., 2009. Human-computer interaction. Design issues, solutions, and 
applications, London: CRC Press. 

Sebeok, T.A., 2001. Signs: An introduction to semiotics second., Toronto: University of Toron to 
Press. 



224 
 

  

  

Sekuler, A.B. & Bennett, P.J., 2001. Generalized common fate: Grouping by common luminance 
changes. Psychological Science, 12(6), pp.437–444. 

Shaer, O., Leland, N., Calvillo-Gamez, E.H. & Jacob, R.J.K., 2004. The TAC paradigm: Specifying 
tangible user interfaces. In Personal and ubiquitous computing. Springer-Verlag, pp. 359–
369. 

Sharlin, E., Itoh, Y., Watson, B., Kitamura, Y., Sutphen, S. & Liu, L., 2002. Cognitive cubes: A tangible 
user interface for cognitive assessment. In CHI ’02 proceedings of the SIGCHI conference on 
human factors in computing systems. Minneapolis, Minnesota, USA: ACM Press, pp. 347–
354. 

Shepard, R.N. & Levitin, D.J., 2002. Foundations of cognitive psychology: Core readings. In D. J. 
Levitin, ed. The MIT Press, pp. 503–514. 

Sheriff, J.K., 1989. The fate of meaning: Charles Peirce, structuralism, and literature, Princeton, N.J.: 
Princeton University Press. 

Sherman, L., Druin, A., Montemayor, J., Farber, A., Platner, M., Simms, S., Porteous, J., Alborzi, H., 
Best, J., Hammer, J., Kruskal, A., Matthews, J., Rhodes, E., Cosans, C. & Lal, A., 2001. StoryKit: 
tools for children to build room-sized interactive experiences. In CHI ’01 extended abstracts 
on Human factors in computing systems. Seattle, Washington: ACM Press, pp. 197–198. 

Simmel, G., 2004. The philosophy of money, New York: Routledge. 

Simon, H.A., 1996. The sciences of the artificial third., London: MIT Press. 

Sipitakiat, A. & Nusen, N., 2012. Robo-Blocks: Designing debugging abilities in a tangible 
programming system for early primary school children. In Interaction design and children. 
ACM Press, pp. 98–105. 

Smith, A.C., 2006. Tangible cubes as programming objects. In Proceedings of the 16th international 
conference on artificial reality and telexistence–workshops (ICAT’06). Hangzhou, China: IEEE 
Conference Publications, pp. 157–161. Available at: 
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4089231. 

Smith, A.C., 2007a. GameBlocks: An entry point to ICT for pre-school children. In Meraka innovate 
conference. CSIR Convention Centre, Pretoria South Africa. Available at: 
http://hdl.handle.net/10204/1778. 

Smith, A.C., 2007b. Using magnets in physical blocks that behave as programming objects. In TEI ’07 
proceedings of the 1st international conference on tangible and embedded interaction. New 
York, NY, USA: ACM Press, pp. 147–150. 

Smith, A.C., 2008a. A low-cost, low-energy tangible programming system for computer illiterates in 
developing regions. In 4th International workshop on technology for innovation and 
education in developing countries (TEDC). Available at: 
http://playpen.meraka.csir.co.za/ acdc/education/TEDC 2008 Proceedings - Technology for 
Innovation and Education in Developing Countries: 978-0-620-43087-6/Smith_08.pdf. 

Smith, A.C., 2008b. Handcrafted physical syntax elements for illetterate children: Initial concepts. In 
Proceedings of the 7th international conference on interaction design and children. IDC ’08. 



225 
 

  

  

Chicago, Illinois: ACM Press, pp. 157–160. Available at: 
http://doi.acm.org/10.1145/1463689.1463745. 

Smith, A.C., 2008c. Programming without a computer: Introducing young children to computer 
programming. Available at: 
http://www.conf2008.school.za/PresentationData/118/programming without a computer ac 
smith innovate 2008 v1’0.pdf. 

Smith, A.C., 2009a. Hand-crafted programming objects and visual perception. In IST-Africa 2009 
conference proceedings. IIMC International Information Management Corporation. 

Smith, A.C., 2009b. Leisure robotics: An African child’s gateway to programming. In 3rd Robotics & 
mechatronics symposium (ROBMECH 2009). Pretoria, South Africa. Available at: 
http://hdl.handle.net/10204/5360. 

Smith, A.C., 2009c. Simple tangible language elements for young children. In Proceedings of the 8th 
international conference on interaction design and children. IDC ’09. Como, Italy: ACM, pp. 
288–289. Available at: http://doi.acm.org/10.1145/1551788.1551860. 

Smith, A.C., 2009d. Symbols for children’s tangible programming cubes: An explorative study. In 
Proceedings of the 2009 annual conference of the Southern African computer lecturers’ 
association. SACLA ’09. Eastern Cape, South Africa: ACM, pp. 105–109. Available at: 
http://doi.acm.org/10.1145/1562741.1562755. 

Smith, A.C., 2009e. Visual perception skills testing: Preliminary results. In Proceedings of the 3rd 
international conference on tangible and embedded Interaction. TEI ’09. Cambridge, United 
Kingdom: ACM, pp. 207–208. Available at: http://doi.acm.org/10.1145/1517664.1517709. 

Smith, A.C., 2010a. Dialando: Tangible programming for the novice with Scratch, Processing and 
Arduino. In 6th International workshop on technology for innovation and education in 
developing countries (TEDC). Available at: http://hdl.handle.net/10204/4048. 

Smith, A.C., 2010b. Tangible interfaces for tangible robots. In E. Hall, ed. Advances in robot 
manipulators. Croatia: InTech, pp. 607–624. Available at: http://hdl.handle.net/10204/4351. 

Smith, A.C., 2014a. Cluster-based tangible programming. In Fourth international conference on 
digital information and communication technology and it’s applications (DICTAP). IEEE, pp. 
405–410. Available at: http://ieeexplore.ieee.org/. 

Smith, A.C., 2014b. Rock Garden Programming: programming in the physical world. In Digital 
Information and Communication Technology and it’s Applications (DICTAP), 2014 Fourth 
International Conference on. IEEE, pp. 430–434. Available at: http://ieeexplore.ieee.org/. 

Smith, A.C., Foko, T. & Van Deventer, A., 2008. Quantifying the visual perception skills of pre-school 
testees using a novel tangible electronic test instrument. In Science real and relevant: 2nd 
CSIR biennial conference. CSIR international convention centre, Pretoria, p. 11. Available at: 
http://hdl.handle.net/10204/2554. 

Smith, A.C. & Gelderblom, J.H., 2013a. The building is the program. In Peripheral interaction: 
Embedding HCI in everyday life, A volume in the workshop proceedings series of the 
INTERACT 2013 conference. Workshop at INTERACT 2013. Available at: 
http://www.peripheralinteraction.com/interact/paper/Workshop_PI_Smith.pdf. 



226 
 

  

  

Smith, A.C. & Gelderblom, J.H., 2013b. Towards a tangible web: Using physical objects to access and 
manipulate the Internet of Things. In Proceedings of the 15th annual conference on world 
wide web applications. Available at: http://hdl.handle.net/10204/7367. 

Smith, A.C. & Gelderblom, J.H., 2016. End user programming with personally meaningful objects. In 
L. Church, ed. Proceedings of the 27th annual workshop of the psychology of programming 
interest group - PPIG 2016. St. Catharine’s College, University of Cambridge, UK. Available at: 
https://drive.google.com/file/d/0B-7G3GOHucdiMTNjdEtyMC1qWjQ/view. 

Smith, A.C. & Kotzé, P., 2010. Indigenous African artefacts: Can they serve as tangible programming 
objects? In IST-Africa 2010 conference proceedings. IEEE Conference Publications. Available 
at: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5753043. 

Smith, A.C., Kotzé, P. & Gelderblom, H., 2011a. General design methodology applied to the research 
domain of physical programming for computer illiterates. In Design, development & research 
conference. Faculty of Informatics and Design, Cape Peninsula University of Technology. 
Available at: http://hdl.handle.net/10204/5423. 

Smith, A.C., Reitsma, L., Hoven, E. van den, Kotzé, P. & Coetzee, L., 2011b. Towards preserving 
indigenous oral stories using tangible objects. In Second international conference on culture 
and computing. Kyoto, Japan: IEEE Conference Publications, pp. 86–91. Available at: 
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6103215. 

Smith, A.C., Springhorn, H., Mulligan, S.B., Weber, I. & Norris, J., 2011c. tactusLogic: Programming 
using physical objects. In IST-Africa 2011 conference proceedings. IEEE Conference 
Publications. Available at: 
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6107337. 

Smith, E.W., 1952. African symbolism. The Journal of the Royal Anthropological Institute of Great 
Britain and Ireland, 82(1), pp.13–37. Available at: http://www.jstor.org/stable/2844037. 

Sonnenberg, C. & Brocke, J. vom, 2012. Design science research in information systems: Advances in 
theory and practice. In K. Peffers, M. Rothenberger, T. Tuunanen, R. Vaezi, K. Peffers, M. 
Rothenberger, & B. Kuechler, eds. Lecture notes in computer science. Berlin: Springer-
Verlag, pp. 381–397. 

Souza, C.S. de, 2005. The semiotic engineering of human-computer interaction, MIT Press. 

Steinman, R.M., Pizlo, Z. & Pizlo, F.J., 2000. Phi is not beta, and why Wertheimer’s discovery 
launched the Gestalt revolution. Vision research, 40(17), pp.2257–2264. 

Stoakley, R., Conway, M.J. & Pausch, R., 1995. Virtual reality on a WIM: interactive worlds in 
miniature. In Proceedings of the SIGCHI conference on Human factors in computing systems. 
ACM Press/Addison-Wesley Publishing Co., pp. 265–272. 

Streitz, N.A., Geissler, J., Holmer, T., Konomi, S., Müller-Tomfelde, C., Reischl, W., Rexroth, P., Seitz, 
P. & Steinmetz, R., 1999. i-LAND: an interactive landscape for creativity and innovation. In 
CHI ’99 proceedings of the SIGCHI conference on human factors in computing systems. 
Pittsburgh, Pennsylvania, United States: ACM, pp. 120–127. 

Suzuki, H. & Kato, H., 1994. AlgoBlock: A tangible programming language for collaborative learning. 
Ed-Media’94. 



227 
 

  

  

Suzuki, H. & Kato, H., 1995a. An educational tool for collaborative learning: AlgoBlock. Cognitive 
Studies, 2(1), pp.1_36–1_47. 

Suzuki, H. & Kato, H., 1995b. Interaction-level support for collaborative learning: AlgoBlock - an open 
programming language. In CSCL ’95: The first international conference on Computer support 
for collaborative learning. Indiana Univ., Bloomington, Indiana, United States: Lawrence 
Erlbaum Associates, Inc., pp. 349–355. 

Syropoulos, A., Tsolomitis, A. & Sofroniou., N., 2003. Digital typography using LaTeX, New York: 
Springer-Verlag. 

Takahashi, K., 2007a. Diorama table. In ACM SIGGRAPH 2007 art gallery. SIGGRAPH ’07. San Diego, 
California: ACM, p. 221–. Available at: http://doi.acm.org/10.1145/1280120.1280178. 

Takahashi, K., 2007b. Diorama table. In Ars Electronica. Ars Electronica, pp. 428–429. Available at: 
http://90.146.8.18/de/archiv_files/20071/081_FE_2007_Keiko_Takahashi.pdf. 

Takahashi, K., 2007c. Diorama table video. Available at: 
http://www.th.jec.ac.jp/ keiko/vimeo/dioramaT_vimeo.html. 

Takahashi, K. & Sasada, S., 2005. Diorama table. In Proceedings of the 13th annual ACM international 
conference on multimedia. MULTIMEDIA ’05. Hilton, Singapore: ACM, pp. 1077–1078. 

Tanaka-Ishii, K., 2010. The semiotics of programming, Cambridge University Press. 

Tarkan, G. S. Sazawal V. Druin A. Foss E. Golub E. Hatley L. Khatri T. Massey S. Walsh G. Torres, 2009. 
Designing a Novice Programming Environment with Children.Technical Report 2009-03, HCIL. 

Terry, M., 2001. Task blocks: Tangible interfaces for creative exploration. In CHI ’01 extended 
abstracts on human factors in computing systems. Seattle, Washington: ACM Press, pp. 463–
464. 

Tonder, G.J.V. & Lyons, M.B.J., 2005. Visual perception in Japanese rock garden design. Axiomathes, 
15, pp.353–371. 

Touretzky, D.S., 1984. LISP: A gentle introduction to symbolic computation, New York: Harper & Row. 

Tseng, T., Bryant, C. & Blikstein, P., 2011. Mechanix: An interactive display for exploring engineering 
design through a tangible interface. In Proceedings of the fifth international conference on 
tangible, embedded, and embodied interaction. TEI ’11. Funchal, Portugal: ACM, pp. 265–
266. Available at: http://doi.acm.org/10.1145/1935701.1935757. 

Tyler, C.W. ed., 2002. Human symmetry perception and its computational analysis, New Jersey: 
Lawrence Erlbaum Associates, Inc. 

Ullmer, B., Ishii, H. & Glas, D., 1998. mediaBlocks: Physical containers, transports, and controls for 
online media. In SIGGRAPH ’98 proceedings of the 25th annual conference on computer 
graphics and interactive techniques. New York, NY, USA: ACM Press, pp. 379–386. 

Ullmer, B.A., 1997. Models and mechanisms for tangible user interfaces. Massachusetts Institute of 
Technology. Available at: citeseer.ist.psu.edu/ullmer97model.html. 



228 
 

  

  

Ullmer, B.A., 2002. Tangible interfaces for manipulating aggregates of digital information. PhD 
thesis, Massachusetts Institute of Technology. Dept. of Architecture. Program in Media Arts 
and Sciences. 

Ullmer, B.A. & Ishii, H., 2000. Emerging frameworks for tangible user interfaces. IBM Systems 
Journal, 39(3-4), pp.915–931. 

Underkoffler, J.S., 1999a. Luminous Room ChessBottle 1999. Available at: 
http://vimeo.com/48602062, Accessed 19 January 2017. 

Underkoffler, J.S., 1999b. The I/O Bulb and the Luminous Room. MIT School of Architecture and 
Planning. 

Underkoffler, J.S. & Ishii, H., 1998. Illuminating light: An optical design tool with a luminous-tangible 
interface. In CHI ’98 proceedings of the SIGCHI conference on human factors in computing 
systems. Los Angeles, California, United States: ACM Press/Addison-Wesley Publishing Co., 
pp. 542–549. 

Underkoffler, J.S. & Ishii, H., 1999. Urp: A luminous-tangible workbench for urban planning and 
design. In CHI ’99 proceedings of the SIGCHI conference on human factors in computing 
systems. Pittsburgh, Pennsylvania, United States: ACM Press, pp. 386–393. 

Underkoffler, J.S., Ullmer, B. & Ishii, H., 1999. Emancipated pixels: Real-world graphics in the 
luminous room. In SIGGRAPH ’99 proceedings of the 26th annual conference on computer 
graphics and interactive techniques. New York, NY, USA: ACM Press/Addison-Wesley 
Publishing Co., pp. 385–392. 

UNISA, 2007. Policy on research ethics, Pretoria: UNISA. 

Vaishnavi, V. & Kuechler, W. eds., 2013. Design Science research in information systems. Available 
at: http://www.desrist.org/design-research-in-information-systems/. 

Vaishnavi, V.K. & Kuechler, W., 2008. Design science research methods and patterns: Innovating 
information and communication technology, Auerbach Publications. 

Vaishnavi, V.K. & Kuechler, W., 2015. Design science research methods and patterns: Innovating 
information and communication technology, CRC Press. 

Venable, J., Pries-Heje, J. & Baskerville, R., 2016. FEDS: A framework for evaluation in design science 
research. European journal of information systems. Available at: 
http://espace.library.curtin.edu.au/R?func=dbin-jump-full&local_base=gen01-
era02&object_id=203558. 

Verstegen, I., 2005. Arnheim, Gestalt and art: A psychological theory, Springer. 

Wagemans, J., Elder, J.H., Kubovy, M., Palmer, S.E., Peterson, M.A., Singh, M. & Heydt, R. von der, 
2012. A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-
ground organization. Psychological bulletin, 138(6), pp.1172–1217. 

Wang, D., Zhang, C. & Wang, H., 2011. T-Maze: A tangible programming tool for children. In 
IDC2011. ACM Press. 



229 
 

  

  

Want, R., Fishkin, K.P., Gujar, A. & Harrison, B.L., 1999. Bridging physical and virtual worlds with 
electronic tags. In CHI ’99 proceedings of the SIGCHI conference on human factors in 
computing systems. Pittsburgh, Pennsylvania, United States: ACM Press, pp. 370–377. 

Watanabe, R., Itoh, Y., Asai, M., Kitamura, Y., Kishino, F. & Kikuchi, H., 2004a. The soul of ActiveCube: 
Implementing a flexible, multimodal, three-dimensional spatial tangible interface. ACM 
computers in entertainment, 2(4), pp.1–13. 

Watanabe, R., Itoh, Y., Asai, M., Kitamura, Y., Kishino, F. & Kikuchi, H., 2004b. The soul of ActiveCube: 
Implementing a flexible, multimodal, three-dimensional spatial tangible interface. In ACE ’04 
proceedings of the 2004 ACM SIGCHI international conference on advances in computer 
entertainment technology. Singapore: ACM, pp. 173–180. 

Watanabe, R., Itoh, Y., Kawai, M., Kitamura, Y., Kishino, F. & Kikuchi, H., 2004c. Implementation of 
ActiveCube as an intuitive 3D computer interface. In Proceedings of 4th international 
symposium on smart-graphics. LNCS. Heidelberg: Springer-Verlag, pp. 43–53. 

Weinberg, G.M., 1998. The psychology of computer programming, New York: Van Nostrand 
Reinhold. 

Weiten, W., 2011. Psychology: Themes and variations, briefer version eighth., Belmont: Wadsworth. 

Welman, J. & Kruger, S., 2001. Research methodology for the business and admonistrative sciences 
second., Oxford: Oxford University Press Southern Africa. 

Wertheimer, M., 1912. Experimentelle studien über das sehen von bewegung. Zeitschrift für 
Psychologie, 61, pp.161–265. 

Wertheimer, M., 1938. A source book of Gestalt psychology. In W. Ellis, ed. London: Routledge & 
Kegan Paul, pp. 71–88. Available at: 
http://psychclassics.yorku.ca/Wertheimer/Forms/forms.htm. 

Wootton, C., 2001. JavaScript programmer’s reference, Wrox Press. 

Wyeth, P., 2008. How young children learn to program with sensor, action, and logic blocks. Journal 
of the learning sciences: a journal of ideas and their applications, 17(4), pp.517–550. 

Wyeth, P. & Purchase, H.C., 2002. Tangible programming elements for young children. In CHI ’02: CHI 
’02 extended abstracts on Human factors in computing systems. Minneapolis, Minnesota, 
USA: ACM Press, pp. 774–775. 

Wyeth, P. & Wyeth, G., 2001. Electronic Blocks: tangible programming elements for preschoolers. In 
Proceedings of the eighth IFIP TC13 conference on Human-Computer Interaction (INTERACT 
2001). IOS Press, pp. 496–503. 

Young, H.D., Freedman, R.A. & Ford, L., 2007. University Physics, Addison Wesley. 

Zuckerman, O., 2004. System blocks: Learning about systems concepts through hands-on modeling 
and simulation. Masters thesis, MIT Program in Media Arts & Sciences, School of 
Architecture & Planning. 

  



230 
 

  

  

 

 



231 
 

  

  

APPENDIX A ..............................................................  
Research ethics training  

 

 
 



232 
 

  

  

  



233 
 

  

  

APPENDIX B ..............................................................  
Second iteration ethical clearance form: SciFest 
Africa 2008 

 

 



234 
 

  

  

 
 

 

 

 



235 
 

  

  

 
 

 

 

 



236 
 

  

  

 
 

 

 

 



237 
 

  

  

 
 

  



238 
 

  

  

  



239 
 

  

  

APPENDIX C ..............................................................  
Participant instructions and consent form: SciFest 
Africa 2008 

 

 
Participant instructions and informed consent 

 

Dear Participants and parents/guardian, 
 

Thank you for your participation in this research. Your test session will be run by testers who will be glad to 

answer any questions you have about the test. 
 

The test: 

1. We are testing the prototype and are not in any way testing the children. 
2. The testing will last about an hour. 

3. There are no known risks associated with this test. 

4. Before and after completing the tasks, we would like the participants to complete a questionnaire to 
inform our research. 

5. The children will be asked to complete tasks with the aid of the prototype. 

6. While performing the tasks the will be required to “think aloud”. This means that they must try to 
verbalise their thoughts or feelings to themselves while they perform the tasks – just say what comes 

into their heads spontaneously. 

7. The children will be photographed and video recorded during the session. Please note that the names 

of the individual will be kept confidential and not be associated with any data that are collected. 

 

Participants rights are as follows: 
1. Participants have the right to withdraw from the session at any time for any reason. 

2. At the conclusion of the session participants may see their data, if they so desire. Any participant may 

decide to withdraw his/her data, but please inform the tester immediately. Otherwise, identification of 
your data might not be possible because because of our efforts to ensure anonymity. 

 

Finally, we greatly appreciate your time and effort for participating in this test. Remember, this test cannot be 
failed and there are no right or wrong answers. The session is to identify problems with the prototypes. 

 

Your signature below indicates that you have read this consent form in its entirety and that the participants 
voluntarily agree to participate. 

 

 

Name                                                                                    
 

 

Designation                                                                              
 

 

Name of child/group                                                                               

 

 

Phone                                                               

 

 

Date                                                               

 

 

Signature                                                               

 
 
 
This document is based on an original by Test And Data Services 
H:\My Documents\projects\projects 2008\SciFest\consent form v1'2.odt 
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APPENDIX D ..............................................................  
TekkiKids: Statement regarding informed assent 
and consent  

 

 

28 August 2009 

 

 

 

The Chairperson 

Ethics Committee 

University of Pretoria 

 

 

 

 

 

 

 

 

R.E: Informed assent pertaining to participation 

 

Relating to the TekkiKids programme, I hereby state and affirm that informed assent 

was obtained from the participants of said project. The parents of the participants 

also consented to their children’s participation. All available documentation in this 

regard is safely stored at The Mareka Institute, as it is the intellectual property of the 

CSIR. 

 

For further inquiries in this regard, please feel free to contact me. 

 

Yours sincerely, 

 

 

M A Marais 

TekkiKids Project Manager 

The Meraka Institute 

CSIR 

 

 

  

  P O Box 395 

  Pretoria 0001 

  South Africa 

tel :   +27 12 841 3028 

direct tel :  +27 12 841 3771 

fax :  +27 12 841 4720 

direct fax :  +27 12 841 4720 

e-mail :  mmarais@csir.co.za 

url :  www.meraka.org.za 
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APPENDIX E ..............................................................  
TekkiKids: Invitation to participate and consent 
form 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
26 August 2006 
 

 

Dear Parent 

 

The Meraka Institute (African Advanced Institute for ICT – managed by the CSIR) and Arcadia 

Primary School have selected your child to participate in the Kids’ Club project which gives children 

the opportunity to experiment with science and technology in a fun and relaxed atmosphere. As 

mentioned in the invitation letter, the Kids’ Club is a joint project between the Meraka Institute, the 

University of Pretoria and the University of Joensuu in Finland and is sponsored by the South African 

Department of Science and Technology and the Finnish Government. The project is a pilot which will 

be used for research in order to establish a much larger intervention.  It is part of the Young 

Engineers Programme at the Meraka Institute.  

 

Grade 5 and 6 learners are involved. The venue for the clubs will be at Arcadia Primary with some of 

the events being held at the CSIR. You will be informed beforehand of any events that take place 

outside the school premises. We plan to hold two-hour sessions every two weeks during the term, 

from 13h45 till 15h45 on Monday afternoons. The planned dates are:  

 
Term 3 - 28 August and 11 September. 
Term 4-  9 October, 23 October, 6 November, and 20 November. 

 

We are in the process of constructing a website which will provide additional information about the 

sessions and where the learners’ own reporting on their projects will be available. 

 

The school and the Meraka Institute hereby request you to make a long-term commitment to the 

project for the learners to derive maximum benefit from participation. Your commitment will also 

maximize the research component over a period of two years (or until the end of grade 7). We intend 

to video record the sessions as part of the research. The research plan will be vetted by the ethics 

committee of the University of Pretoria. Publicity material such as videos and photographs may also 

be developed, for use by the school, Department of Science and Technology and the Meraka 

Institute, but the names of the children will not be revealed. The consent form is on the next page. 

 

 

  

 P O Box 395 

 Pretoria 0001 

 South Africa 

 Tel. +27 12 841 3028 

 Direct Tel. +27 12 841 2952 

 Fax. +27 12 841 4720 

   

 E-mail. mmarais@csir.co.za 

 URL: www.meraka.org.za 

Arcadia Primary 

School Logo  



244 
 

  

  

We look forward to having a great time together with your children, while at the same time conducting  

research that will benefit the children of South Africa.  

 

 

Regards 

 

 

Mario Marais 

Researcher: ICTs in Education, Meraka Institute, CSIR, Pretoria, South Africa 

 

 

 

Consent for a learner to participate in the Kids’ Clubs project 

 

 

I,…………………………….…………………………………………, the parent (legal guardian) of  

 

………………………………………………………………….…….., hereby give my consent for the 

learner to participate in the Kids’ Club project.  I understand that any research to be done will be 

approved by the ethics committee of the University of Pretoria.  The research results may be 

published.  Publicity material may be developed, but the identity of the learners will be protected. 

 

Signature:…………………………… 

 

 

Signed at ………………………………………..on this day of ……………………………………………….. 

 

 

Your contact Number(s):  

 

 

Please indicate if there is any additional information that we must take note of (e.g. allergies, 

medication): 
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APPENDIX F ..............................................................  
Second iteration workshop invitation pamphlet: 
SciFest Africa 2008 
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APPENDIX G ..............................................................  
Second iteration partial evaluation form: Meraka 
Institute 2007 

 

 

 

1. Have you ever used a 

computer? 

2. Have you ever written a 

computer programme? 

3. Is there a computer in your 

home? 

Section A

Draw pictures for the 

following car actions, without 

using text: 

1. Move forwards and keep on 

going, 

2. Move forward and stop, 

Turn right and stop, 

3. Turn right and keep on 

going.

Section C

Section B

1. Did you like 

GameBlocks or 

did you find it 

boring/difficult to 

use? 

2. Do you think 

you can use it on 

your own, or 

would you like 

someone to help 

you next time? 

3. Would you like 

to play with 

GameBlocks 

again? 

4. What would 

you like to change 

about 

GameBlocks? 

 
 

(Smith 2009d) 
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APPENDIX H ..............................................................  
Second iteration evaluation form:  SciFest  Africa 
and Science Unlimited 2007 
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APPENDIX I ...............................................................  
Third iteration user evaluation forms: CSIR and 
SciFest Africa 2008 
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