TRABAJO DE TESIS PARA OPTAR POR EL TÍTULO DE DOCTOR EN CIENCIAS NATURALES

ESTUDIO DE ADN ANTIGUO EN MUESTRAS PRECOLOMBINAS DE ARGENTINA

MARÍA BÁRBARA POSTILLONE

DR. SERGIO A. AVENA

DRA. VALERIA BERNAL

Universidad Nacional de La Plata Facultad de Ciencias Naturales y Museo

A mi familia.... En especial a Alfonsina

Agradecimientos

Mi primer agradecimiento es a mis directores Sergio y Cristina por abrirme las puertas de su equipo allá por 2009, y permitir mi desarrollo profesional.

A mi co-directora, la Dra. Valeria Bernal, por sus consejos, su gran apoyo y todo su esfuerzo para que este trabajo fuera posible. También un gran agradecimiento al Dr. Ivan Perez por el apoyo, la enseñanza diaria sobre los análisis estadísticos, su guía continua en el desarrollo de los resultados de este trabajo de investigación. Además, quiero agradecerles a ambos por su esfuerzo diario y dedicación en la reforma de esta tesis y por permitirme seguir en el campo del ADN antiguo para investigaciones futuras y poder implementar nuevas ideas para un continuo crecimiento académico.

Al Dr. Alfredo Vitullo por permitirme realizar mis investigaciones en el laboratorio del CEBBAD de la Universidad Maimónides. Además agradecer a las autoridades de la Fundación Científica Felipe Fiorellino por apoyar económicamente estas investigaciones y a Alejandra Fisz por haber estado siempre para resolver cualquier problema sobre temas institucionales, laborales y personales.

También quiero agradecer a la Dra. Ana Margarita Aguerre por cederme las muestras del sitio Puesto El Rodeo y del Alero Mazquiarán para esta investigación.

A la Lic. Gloria Arrigoni del Museo Regional de Rada Tilly por darme la posibilidad de analizar piezas dentales de individuos prehispánicos de Los Alerces y Rada Tilly.

Al Museo Etnográfico Juan Bautista Ambrosetti (FFyL, UBA) y a la encargada de la colección Claudia Aranda por darnos acceso a la extracción de piezas dentales de la colección de Puna para realizar estudios en bioantropología, en conjunto con los Drs. José Alberto Cocilovo y Hugo Varela y la Dra. Laura Fuchs.

A los Drs. Gustavo Martínez y Gustavo Flensborg por aportar las muestras del sitio arqueológico Paso Alsina 1, y al último por ayudarme a mejorar los aspectos arqueológicos.

A la Dra. Paula Gonzalez por sus aportes y ayuda desinteresada en la lectura y mejoramiento de la escritura de esta tesis.

El más sentido agradecimiento a mis compañeros de equipo: Gaby, Pacha, Fran y Cristian por estar día a día apoyándonos para llevar adelante los trabajos de cada uno de nosotros y por los días enteros de convivencia... ¡Gracias por el aguante diario, los mates, las risas, los consejos y tantas anécdotas! Sólo ustedes saben las dificultades que presenta y los altibajos que uno puede ir transitando a medida que se realizan este tipo de investigaciones.

El mayor de los agradecimientos es para mi familia que me aguantaron en todos mis años de formación, apoyándome y alentándome constantemente y con firmeza en cada decisión y paso que doy para superarme día a día. En especial a mis papás Silvia y José, por confiar siempre en mí, por guiarme, aconsejarme, enseñarme y sobre todo por permitirme ser libre en mis elecciones, nunca dejándome sola, apoyándome y acompañándome. A mis hermanos por enseñarme a dar siempre lo mejor siendo mis fieles compañeros en todo este tiempo. A todos los amo ©.

Un agradecimiento especial a mis amigos que me bancan siempre en todo, confían en mí y me alientan siempre. Gracias por estar presente en las buenas y en las malas, porque se bancan no verme seguido y por compartir con felicidad y alegría todos nuestros logros.

Por último mi agradecimiento más especial a la mejor persona que me eligió y a quién elegí para compartir nuestras vidas juntos, que se bancó y banca todo desde mis inicios en mi carrera como bióloga. Gracias Die por mantenerme siempre en pie y afrontando juntos todas las adversidades. Gracias por alentarme siempre a seguir, por ayudarme y estar siempre a la par para darme una mano en lo que sea. Gracias por brindarme tu amor y tu protección, sobre todo en esta etapa en que esperamos a Alfonsina, nuestro gran amor, para que pueda llevar adelante con salud e integridad el embarazo durante el desarrollo de esta nueva versión de la tesis. Te amo \odot .

Índice

Resumen	8
Abstract	13
Capítulo 1: Introducción	17
Capítulo 2: La ocupación humana del Nuevo Mundo: evidencias arqueológicas, lingüísticas bioantropológicas	-
2.1 Hipótesis y modelos acerca del poblamiento de América	23
2.2 El poblamiento inicial de Argentina en el contexto Sudamericano	34
2.3 Dinámica poblacional en Argentina durante el Holoceno medio-tardío	40
Capítulo 3: Características del ADN mitocondrial y la variación de los linajes maternos en América	46
3.1 Variantes genéticas y marcadores moleculares en poblaciones humanas	47
3.2 El ADN mitocondrial	48
3.2.1 Estructura genómica y características del ADN mitocondrial	49
3.2.2 ADN mitocondrial antiguo	51
3.2.3 Caracterización de variantes del ADN mitocondrial	53
3.3 Variación del ADN mitocondrial en América	56
3.3.1 Subhaplogrupos y haplotipos del ADN mitocondrial en América	56
3.3.2 Antigüedad de los subhaplogrupos fundadores americanos	59
3.3.3 Distribución geográfica de las variantes del ADN mitocondrial en Sudamérica	60
Capítulo 4: Objetivos e Hipótesis	68
4.1 Objetivos	69
4.2 Hipótesis	70
Capítulo 5: Descripción de las muestras	71
5.1 Selección de las estructuras esqueletales a analizar	72
5.2 Características de las muestras	73

	5.2.1 Muestras de Puna	75
	5.2.2 Muestras de la transición Pampa–Patagonia	77
	5.2.3 Muestras de Patagonia centro	80
į	5.3 Base de datos de secuencias comparativas del Cono Sur (BDSC)	85
į	5.4 Agrupamiento de las muestras analizadas	86
į	5.5 Consideraciones éticas y legales en el trabajo con restos óseos humanos	87
Cap	oítulo 6: Metodología empleada en el estudio del ADN antiguo	90
(5.1 Problemas y precauciones en el trabajo con el ADN antiguo	91
	6.1.1 Factores de daño en el ADN antiguo	91
	6.1.2 Medidas de prevención de contaminación del ADN antiguo en el laboratorio	92
	6.1.3 Criterios de control y autenticación de los procedimientos y resultados del ADN antiguo	93
6	6.2 Metodología empleada para la obtención y análisis del ADN antiguo	95
	6.2.1 Preparación de las muestras	95
	6.2.2 Extracción del ADN	97
	6.2.3 Tipificación de haplogrupos del ADN mitocondrial mediante RFLP	98
	6.2.4 Secuenciación de la HVR I de la región control del ADN mitocondrial	. 102
	6.2.5 Prueba de inhibición en las muestras no amplificadas	. 106
6	5.3 Determinación del sexo mediante un marcador molecular	. 106
(5.4 Análisis de las secuencias del ADN mitocondrial	. 107
	6.4.1 Alineamiento de secuencias y análisis preliminares	. 107
	6.4.2 Tipificación y corroboración de los subhaplogrupos y haplotipos del ADN mitocondrial empleando secuencias	. 108
6	5.5 Análisis estadísticos	. 110
	6.5.1 Análisis de la variabilidad dentro de las muestras	. 111
	6.5.2 Análisis de la variabilidad entre las muestras	. 112
	6.5.3 Asociación entre la distancia genética y la geográfica	. 113

Capítulo 7: Resultados de los análisis genéticos y estadísticos	114
7.1 Comparación del rendimiento de los métodos de extracción del ADN	115
7.2 Tipificación de haplogrupos por análisis de RFLP	117
7.3 Análisis de la determinación del sexo por amplificación del gen de la amelogenina	121
7.4 Secuenciación de la HVR I y tipificación de haplotipos	122
7.5 Resultados a escala regional y supra-regional	124
7.5.1 Resultados por región geográfica	124
7.5.2 Análisis de la variabilidad en el contexto supra-regional	132
7.5.3 Análisis de la variabilidad dentro de los subhaplogrupos	135
7.6 Análisis espacial y temporal de la varianza molecular	147
Capítulo 8: Discusión	152
8.1 Evaluación de los procedimientos para la obtención y análisis del ADN antiguo	153
8.1.1 Procedimientos para la extracción del ADN antiguo	153
8.1.2 Amplificación del ADN en muestras antiguas	155
8.1.3 Tipificación de la Región Hipervariable I a partir del ADN antiguo	156
8.2 Variabilidad intra e inter-grupo en el Cono Sur de Sudamérica	159
8.2.1 Diferencias en la variabilidad antigua y moderna en el ADN mitocondrial	159
8.2.2 Estructura geográfica de la variabilidad en el ADN mitocondrial	165
Capítulo 9: Consideraciones finales	170
Bibliografía	174
Anexo	197
A1. Descripción de protocolos de apartado 6.2.2 de extracción de ADN	197
A1.1Protocolo Kit QIAamp [®] DNA Investigator Kit (QIAGEN)	197
A1.2 Protocolo Kit Geneclean (MP Biomedicals)	198
A1.3 Protocolo de extracción con fenol – cloroformo- alcohol isoamílico	199

A1.4 Protocolo de extracción a partir del EDTA obtenido en el primer paso del protocolo	n a partir del EDTA obtenido en el primer paso del protocolo	
de extracción de fenol-clorofomo-isoamílico2	200	
A2. Soluciones utilizadas	201	
A3. Tablas Anexas	202	

Resumen

Las poblaciones del Cono Sur de Sudamérica, y en especial las de Argentina, han tenido un rol clave en el estudio de los procesos que dieron origen a los patrones de variación biológica observados en el continente. Esto se debe, en parte, a que en esta región se encuentran los fechados radiocarbónicos más antiguos que indican la presencia de poblaciones humanas al menos 14.000 años antes del presente. En este contexto, el análisis de la variación genética en el Cono Sur ha cobrado un gran interés en los últimos años, debido a que ésta representa una fuente única de información para la reconstrucción de la historia evolutiva de las poblaciones desde el poblamiento temprano del continente. La mayor parte de estos estudios se ha basado en marcadores moleculares de poblaciones actuales, sin embargo, aún resulta poco conocido en qué medida estos representan adecuadamente la variación antigua. En particular, la magnitud de la variación actual podría ser menor como consecuencia de la significativa disminución demográfica de la población local con posterioridad a la conquista europea. Asimismo, la distribución espacial de las variantes moleculares originarias de América pudo haberse modificado a través del tiempo debido a procesos migratorios ocurridos durante los últimos 500 años. Por lo tanto, el estudio del ADN antiguo (ADNa) de muestras arqueológicas resulta fundamental para obtener una mejor descripción de los patrones de variabilidad en el Cono Sur de Sudamérica, así como para comprender la historia evolutiva de las poblaciones humanas de la región.

Hasta el presente, sin embargo, son relativamente escasos los datos genéticos obtenidos a partir de muestras arqueológicas. Los estudios disponibles se han focalizado en la tipificación de variantes y secuencias del ADN mitocondrial (ADNmt) en poblaciones de las islas del extremo sur y de regiones geográficas acotadas. Los resultados preliminares señalan gran disparidad y complejidad regional: mientras que en algunos casos la variación observada en las poblaciones actuales de una región exhibe continuidad

respecto a las muestras antiguas, otras presentan lo contrario, con importantes discontinuidades. En este sentido, el objetivo general de este trabajo es describir y analizar los patrones de variación en el ADNmt antiguo de muestras osteológicas y dentales correspondientes a poblaciones originarias americanas que provienen de áreas geográficas y periodos temporales aún no explorados. En particular, se analizó la Región Hipervariable I (HVR I, por sus siglas en inglés) del ADNmt obtenida a partir de un total de 57 muestras antiguas procedentes de tres áreas: a) Puna en el Noroeste de Argentina -sitios Doncellas, Agua Caliente, Casabindo, Río Negro y Sorcuyo; n= 23-, b) transición Pampa-Patagonia -sitio Paso Alsina 1; n=20- y c) Patagonia centro - sitios Alero Mazquiarán, Puesto El Rodeo, Los Alerces y Rada Tilly; n=14-. Con fines comparativos se construyó una base de datos de secuencias de la HVR I integrada por 1796 secuencias correspondientes a muestras antiguas y modernas procedentes de Argentina, Brasil, Chile, Paraguay y Perú.

En primer lugar se exploraron tres métodos de extracción de ADNa, se realizó la tipificación por RFLP y secuenciación de la HVR I en tres fragmentos, y se evaluaron las potencialidades y limitaciones que presenta el análisis de material genético antiguo en los estudios de la historia poblacional del Cono Sur de Sudamérica. Los resultados obtenidos demostraron que el protocolo basado en la extracción por fenol-cloroformo-alcohol isoamílico, seguida de la secuenciación de la HVR I (al menos tres veces para cada fragmento), fue el que mostró los mejores resultados y permitió obtener secuencias para un 74% del total de los individuos analizados. Después de la secuenciación se aplicaron procedimientos bioinformáticos para la corroboración de las secuencias obtenidas. En particular se efectuó una primera tipificación empleando el programa HaploGrep y posteriormente se corroboraron las variantes empleando distancias multivariadas y árboles de Neighbor-joining. Un 18% del total de los individuos fueron excluidos debido a diversos problemas en los fragmentos secuenciados. Esto permitió obtener una base de secuencias de 32 individuos que fueron tipificadas y corroboradas con éxito. La secuenciación repetida de los fragmentos de la HVR I, junto con los procedimientos bioinformáticos de corroboración de los haplotipos, permitieron generar datos confiables para este estudio.

A partir de las secuencias tipificadas y corroboradas, así como de las muestras comparativas, se describió y analizó la variación molecular presente dentro y entre las regiones geográficas estudiadas en escalas regional y supraregional. En particular, se exploraron los patrones de variación intra e interpoblacional centrándose en las diferencias y similitudes entre las muestras arqueológicas y actuales. Para cada una de las muestras analizadas aquí se calcularon el número y diversidad haplotípica, así como el número de sitios segregantes y la diversidad nucleotídica. Asimismo, se llevó a cabo un análisis de la diversidad interna de cada uno de los subhaplogrupos descriptos empleando redes de haplotipos. Finalmente, se realizaron análisis espaciales y temporales de la varianza molecular utilizando AMOVA, distancias F_{ST}, escalamiento multidimensional y PROTEST.

El análisis comparativo de las muestras antiguas y modernas indicó la presencia de las mismas variantes haplotípicas, o variantes muy relacionadas, a través del tiempo. Esto sugiere la existencia de continuidad poblacional a escala regional. Sin embargo, entre el 11 y el 28% de los haplotipos presentes en las muestras arqueológicas no se encuentran representados en las muestras actuales. Esta pérdida de variación es mayor en Patagonia centrosur, pero pudo observarse en las tres regiones estudiadas. En particular, se observó una importante pérdida de variación en el subhaplogrupo D1 (28%) y en menor medida en el C1 (17%). El subhaplogrupo A2 es el que menos variación perdió (11%) en la región. Asimismo, las muestras actuales de Patagonia exhibieron haplotipos de A2 y B2 que no están representados en las muestras antiguas de la región hasta el momento. La pérdida de variantes haplotípicas desde el Holoceno tardío hasta el presente podría ser atribuida al impacto negativo que tuvo la conquista europea sobre la demografía de las poblaciones originarias, el cual fue mayor en los grupos de baja densidad como los cazadores-recolectores de Patagonia.

Por otro lado, se encontraron niveles de variación haplotípica similares en las tres áreas analizadas, correspondiendo el valor más bajo a la muestra de la transición Pampa-Patagonia. El análisis conjunto de las secuencias obtenidas en este trabajo con datos de muestras antiguas que abarcan una escala espacial regional indica que los Andes sur/Noroeste argentino exhibieron mayor variación haplotípica que las regiones transición Pampa-Patagonia y Patagonia centro-sur, mientras que la diversidad nucleotídica no difiere entre las mismas. En las muestras modernas de las mismas regiones se registró un patrón similar, caracterizado por la disminución de la variación haplotípica en sentido norte-sur. En coincidencia con estos resultados, se encontró una fuerte asociación entre las distancias genéticas y geográficas entre muestras. Por lo tanto, es posible afirmar la existencia de una fuerte estructuración espacial de la variación haplotípica del ADNmt a una escala supra-regional.

El patrón espacial descripto para las variantes haplotípicas del ADNmt es compatible con las expectativas derivadas del modelo de efecto fundador serial propuesto para el poblamiento inicial del Cono Sur de Sudamérica. Si bien es plausible que los patrones de variación observados en el Holoceno tardío se hayan establecido durante el poblamiento inicial, es importante tener en cuenta el amplio lapso transcurrido -alrededor de 12.000 años-. En este sentido, diversos procesos y eventos evolutivos podrían haber actuado sobre las poblaciones modelando la variación genética. Dos aspectos que requieren ser considerados son la existencia de densidades demográficas diferentes en las poblaciones de Andes sur y Patagonia, así como los niveles de interacción entre grupos dentro de cada una de estas regiones. Particularmente, la estructuración norte-sur de la variación podría ser resultado del mayor crecimiento demográfico que experimentaron las poblaciones de los Andes, el cual habría incrementado la probabilidad de surgimiento de nuevos linajes mitocondriales. Asimismo, el flujo génico diferencial -mayor dentro de las regiones que a escala supra-regional- podría haber conducido establecimiento de patrones de aislamiento por distancia durante el Holoceno

tardío tal como se ha planteado previamente. Establecer la contribución relativa de cada uno de estos procesos y eventos a la variación biológica de las poblaciones sudamericanas requiere de estudios futuros que cuenten con muestreos espaciales más detallados, amplíen la escala temporal y analicen múltiples marcadores moleculares.

En síntesis, los datos generados en este trabajo a partir de muestras antiguas aportan información relevante para comprender la historia evolutiva de las poblaciones humanas originarias de Argentina en el contexto de la variación de las poblaciones americanas.

Abstract

Populations from southernmost South America, and especially those from Argentina, have had a key role in the study of processes that shaped the patterns of biological variation across the continent. This is partly because the oldest radiocarbon dates, that confirm the presence of human groups around 14,000 years ago, were found in this region. Consequently, the analysis of genetic variation in South American populations has been of great interest as a relevant source of information for the reconstruction of the evolutionary history since the early peopling of the continent. Most studies have been based on molecular markers of modern populations, and thus, it is relatively unknown in which extent they represent the genetic variation of pre-Columbian populations. In Particular, the magnitude of variation might have decreased over time because of demographic reduction of local populations after the Spanish colonization. Additionally, the spatial distribution of molecular variants might have changed due to population displacements that took place over the last 500 years. Therefore, the analysis of ancient DNA (aDNA) from archaeological samples is of great interest to obtain a more accurate description of the patterns of variability and the evolutionary history of South American populations.

Despite of its relevance, there are relatively few genetic data from archaeological samples. Available studies have mainly focused on obtaining and analyzing mitochondrial DNA (mtDNA) in human populations from southern Patagonia. Preliminary results suggest great disparity among regions, while some regions display the same genetic variants along time; others are characterized by important changes in genetic composition between ancient and modern populations. The main objective of this study is to describe and analyze the patterns of variation in ancient mtDNA of American aboriginal populations from temporal periods and geographic areas that have remained yet unexplored. This study particularly is based on the analysis of the Hypervariable Region I (HVR I) of mtDNA obtained for 57 ancient samples from three geographic areas: a) Puna in Northwest Argentina –archaeological sites

Doncellas, Agua Caliente, Casabindo, Río Negro y Sorcuyo; n= 23-, b) Pampa-Patagonia transition –archaeological site Paso Alsina 1; n=20- and c) central Patagonia -archaeological sites Alero Mazquiarán, Puesto El Rodeo, Los Alerces y Rada Tilly; n=14-. A database comprising 1796 HVR I sequences was also built with comparative purposes. The database contains ancient and modern samples from Argentina, Brazil, Chile, Paraguay and Perú.

In first place, I assessed the performance of three different techniques for aDNA extraction. Then, the haplogroups A, B, C and D were identified by the RFLP technique, and finally, the HVR I was sequenced in three fragments. The phenol-chloroform extraction followed by DNA sequencing of HVR I proved to be the best procedure for recovering more information. By this procedure, sequences for 74% of the individuals were obtained. Several bioinformatics techniques were further applied to corroborate the validity of these sequences. Particularly, the HaploGrep algorithm was used to determine the affiliation of the HVR I sequences, which were then corroborated by multivariate distances and Neighbor-joining trees. From the total sample, 18% of the individuals were excluded after quality data control due to troubles with the sequenced fragments. Finally, the sequences of 32 individuals were successfully validated.

The validated sequences were analyzed along with the comparative database to assess the molecular variation within and among geographic areas at regional and supra-regional scales. Particularly, I focused on the similarities and dissimilarities between ancient and modern samples. For each sample, I calculated the number and diversity of haplotypes, number of segregating sites and nucleotide diversity. The internal diversity of each sub-haplogroup was assessed by using haplotype networks. Finally, I performed spatial and temporal analysis of molecular variance by AMOVA, F_{ST} distances, multidimensional scaling and PROTEST.

The comparative analysis of ancient and modern samples showed that they display the same or closely related variants throughout time, suggesting population continuity at regional scale. However, between 11 and 28% of the haplotypes found in archaeological samples are not represented in modern populations. The loss of variation was observed in the three regions although

was higher in center-south Patagonia. Important differences were found among sub-haplogroups, being the loss of variation larger in D1 and C1 (28% and 17%, respectively), while A2 only lost 11% of variation. It is worth mentioning that the modern samples from Patagonia display haplotypes corresponding to A2 and B2, which are not represented in ancient samples from this region. It is hypothesized that the reduction of haplotype variants could be related to the severe population decline after the Spanish colonization, which was more remarkable in among the hunter-gatherers from Patagonia.

The level of haplotype variation was similar among the three areas under study, corresponding the lowest value to the sample of the Pampa-Patagonia transition. When the sequences obtained here were analyzed at a larger scale, a clear latitudinal pattern emerged, with the samples from South Andes/Argentinean Northwest exhibited larger variation than those from Pampa and Patagonia, while the nucleotide diversity was similar among regions. Modern samples also displayed a North-South gradient in haplotype variation. In agreement with these results, the genetic distances among samples were strongly associated with the geographic distances. Overall, the evidence presented here support a strong spatial structure of the mtDNA variation at a supra-regional scale.

The spatial pattern found in the mtDNA variation is compatible with the expectations derived from the serial founder effect model of the initial peopling of South America. Even though the modern patterns could have emerged during the initial peopling, it should be kept in mind that these populations are separated by around 12,000 years. This means that several evolutionary processes and events that occurred during this period also modeled the genetic variation observed in the present day. Two of the main aspects that deserve attention are the discrepancies in demographic densities between South Andes and Patagonia and the differential interactions within and between regions. Particularly, the reduction of variation towards the South could be the result of the demographic expansion that took place in the Andean populations around 5,000 years ago, which might have increased the chances of origination of new mitochondrial lineages. The differential gene flow within and among regions

might have also contributed to a pattern of isolation by distance during the Late Holocene, as was previously suggested. Determining the relative contribution of each of these processes and events to the biological variation of South American populations requires future studies including multiple molecular markers based on more intensive spatial sampling and wider temporal scales.

In summary, the genetic data of ancient populations generated by this study will contribute to a deeper understanding of the evolutionary history of aboriginal populations from Argentina in the context of South American populations.

Capítulo 1: Introducción

Los patrones de variación biológica en el continente americano, así como los procesos que los originaron, han sido objeto de gran interés para numerosos estudios antropológicos durante los últimos 100 años (Hrdlicka et al., 1912; Imbelloni, 1937; Neves y Pucciarelli, 1991; Bonatto y Salzano, 1997; Fagundes et al., 2008; entre muchos otros). Estos trabajos sugieren que América fue poblada después del Último Máximo Glacial, entre 19.000 y 14.000 años atrás, por un grupo pequeño de Homo sapiens que se dispersó rápidamente a lo largo del continente (Goebel et al., 2008; Steele y Politis, 2009; Dillehay et al., 2015). Como consecuencia, las poblaciones actuales presentan reducida variación genética -en relación con la registrada en otros continentes- tal como lo muestran los datos de grupos sanguíneos, el cromosoma Y y el ADN mitocondrial (ADNmt), entre otros (Cavalli-Sforza et al., 1994; Bonatto y Salzano, 1997; Bianchi et al., 1998; Goebel et al., 2008). En particular, el Cono Sur de Sudamérica (y especialmente Argentina) ha sido clave en estos estudios debido a que los fechados radiocarbónicos más antiguos fueron registrados en sitios arqueológicos de esta región y a que en el nivel molecular las poblaciones presentan una notable reducción de la variación genética con respecto a otras regiones del continente (Moraga et al., 2000; Schurr, 2004; Steele y Politis, 2009; de Saint Pierre et al., 2012; Dillehay et al., 2015). Asimismo, diferentes variantes del ADNmt exhiben un gradiente en la frecuencia que sigue un eje norte-sur, apoyando la hipótesis de un efecto fundador serial durante el poblamiento inicial de la región (e.g., Moraga et al., 2000; Goicoechea et al., 2001; Avena et al., 2012; de Saint Pierre et al., 2015).

La caracterización de la variación genética en el Cono Sur del continente se ha basado principalmente en marcadores moleculares de poblaciones actuales. Sin embargo, los datos genéticos modernos podrían representar de manera parcial y sesgada los patrones de variación antigua (Schurr, 2004; Molak *et al.*, 2015). En este sentido, aún se desconoce en qué medida el patrón de variación observado en poblaciones actuales se encontraba presente en tiempos precolombinos. En particular, la magnitud de la variación actual podría ser menor que la antigua debido al ingreso de poblaciones europeas a la región

que resultó en una significativa disminución demográfica de la población local, por varias causas como la desestructuración de las comunidades locales que dificultó su reproducción biológica, conflictos armados y/o dispersión de enfermedades (Martínez Sarasola, 1992; Schurr, 2004). Por otro lado, la distribución espacial de las variantes moleculares originarias de América obtenida a partir del muestreo de poblaciones actuales podría no reflejar los patrones espaciales antiguos debido a movimientos poblacionales ocurridos en etapas precolombinas así como a las importantes relocalizaciones ocurridas desde la conquista europea -incluyendo el traslado forzoso a nuevos territorios y las migraciones posteriores a las grandes ciudades-. Por lo tanto, el estudio del ADN antiguo (ADNa) de muestras arqueológicas resulta relevante para describir los patrones de variabilidad en el Cono Sur de Sudamérica, así como para comprender la historia evolutiva de las poblaciones humanas de la región.

Hasta el presente, sin embargo, son relativamente escasos los trabajos que analizan la variación genética sobre muestras arqueológicas del Cono Sur. Estos estudios se han focalizado, principalmente, en la tipificación de variantes y secuencias del ADNmt en poblaciones de las islas del extremo sur (*e.g.*, Lalueza *et al.*, 1997; Garcia-Bour *et al.*, 2004; Moraga *et al.*, 2010; de la Fuente *et al.*, 2015) y de regiones geográficas acotadas (*e.g.*, Moraga *et al.*, 2005; Carnese *et al.*, 2010; Nores *et al.*, 2011; Figueiro, 2013; Mendisco *et al.*, 2014; Crespo, 2015). Los resultados preliminares señalan gran disparidad y complejidad regional, mientras que en ciertos casos la variación observada en las poblaciones actuales de una región exhibe continuidad respecto a las muestras antiguas, otras presentan importantes discontinuidades (*e.g.*, Moraga *et al.*, 2010; Nores y Demarchi, 2011).

En este sentido, en este trabajo se describen y analizan los patrones de variación en el ADNmt antiguo de muestras osteológicas y dentales correspondientes a poblaciones humanas de la Puna en el Noroeste de Argentina -sitios Doncellas, Agua Caliente, Casabindo, Río Negro y Sorcuyo-, de la transición Pampa-Patagonia -sitio Paso Alsina 1- y de Patagonia centro - sitios Alero Mazquiarán, Puesto El Rodeo, Los Alerces y Rada Tilly-. Las

muestras incluidas en este estudio permitirán incrementar el número de datos disponibles para poblaciones originarias americanas que provienen de áreas geográficas y periodos temporales no explorados hasta el presente. Es por ello que aportan información única que contribuirá a la comprensión de la historia evolutiva de las poblaciones precolombinas de Argentina en el contexto de la variación presente en las poblaciones americanas.

Capítulo 2: La ocupación humana del Nuevo Mundo: evidencias arqueológicas, lingüísticas y bioantropológicas

El continente americano fue el último en ser poblado por los humanos modernos. El número de poblaciones fundadoras, su origen, el lugar de entrada y las rutas seguidas, el o los momentos de llegada al Nuevo Mundo, las características de la dispersión a través del continente y las causas de los patrones de variación biológica encontrados dentro y entre los grupos humanos han sido objeto de intensa discusión desde comienzos del siglo XX.

En líneas generales, la mayor parte de los modelos planteados hasta el presente propone que la entrada a América se habría producido desde Asia y a través de Beringia entre 30.000 años y 13.000 años antes del presente (AP). Sin embargo, el momento preciso de arribo aún no fue establecido confiablemente. En los últimos años cobró importancia la postura que sostiene que habría sido luego del Último Máximo Glacial (LGM, por sus siglas en inglés – 26.500 a 19.500 años AP), entre 18.000 y 14.000 años AP (Goebel *et al.*, 2008; Clark *et al.*, 2009; Dillehay, 2009; Rothhammer y Dillehay, 2009; Steele y Politis, 2009; O'Rourke y Raff, 2010; Dillehay *et al.*, 2015). Asimismo, la mayoría de los investigadores postulan que la diversidad biológica observada en el continente se debe al ingreso de un número variable de grupos humanos en oleadas migratorias y/o a procesos microevolutivos (Neves y Pucciarelli, 1991; Anderson y Gillam, 2000; Goebel *et al.*, 2008; González-José *et al.*, 2008; Kitchen *et al.*, 2008; Perez *et al.*, 2009, 2011; Bernal *et al.*, 2010; Politis *et al.*, 2010).

Este tema de gran complejidad fue abordado desde diversas disciplinas como la arqueología, la lingüística, la antropología biológica, la genética de poblaciones y la ecología, entre otras. En este capítulo se hará una breve recopilación de los estudios publicados hasta el momento, siguiendo principalmente un orden cronológico, sobre los modelos e hipótesis más relevantes basados en datos arqueológicos, lingüísticos y bioantropológicos, así como sobre los debates y críticas generados a partir de los mismos.

2.1 Hipótesis y modelos acerca del poblamiento de América

Las variaciones climáticas que acontecieron en el planeta durante los últimos 30.000 años fueron unas de las principales condicionantes para la entrada y asentamiento de los primeros humanos anatómicamente modernos en el Nuevo Mundo debido a las variaciones en el nivel del mar y al avance y retroceso de los glaciares continentales (Brigham-Grette *et al.*, 2004; Mellars, 2006).

Alrededor de 21.000 años AP la mayor parte del actual territorio de Canadá y el norte de Estados Unidos estaba cubierta por el glaciar Laurentino, que se extendía desde la costa atlántica hasta los valles de las Montañas Rocosas, y el glaciar Cordillerano, desde la costa pacífica hasta el oeste del mismo cordón montañoso. Para ese entonces el nivel del mar se encontraba aproximadamente 120 metros por debajo del nivel actual, dejando al descubierto un puente terrestre que conectaba Asia con América, conocido como Beringia (Dixon, 2001; Marangoni et al., 2013). En esta zona, al igual que en el este de Siberia, sólo se encontraban bloques de hielo permanentes en las regiones montañosas. Las zonas bajas, al estar descubiertas y poseer distintos tipos de recursos, permitieron garantizar la subsistencia de las poblaciones humanas y de varias especies de grandes mamíferos (Politis et al., 2010), por lo que habrían funcionado como un refugio, y luego como un centro postglacial de dispersión para los humanos que poblaron América (Brigham-Grette et al., 2004; Hoffecker et al., 2014).

Los primeros pobladores, posiblemente mediante el uso de canoas, habrían utilizado una ruta de acceso al continente siguiendo la costa pacífica, la cual quedó libre de hielo alrededor de 15.000 años AP. Por otra parte, un corredor dentro del continente, denominado Alberta, quedó abierto al paso cuando las masas de hielo comenzaron a retirarse hace aproximadamente 13.500 años atrás (Fig. 2.1), aunque las condiciones en su interior eran seguramente hostiles para la supervivencia humana (Goebel *et al.*, 2008). Hasta el momento no existen evidencias confiables sobre cuál fue el momento exacto de uso del corredor de Alberta, en caso de haber ocurrido.

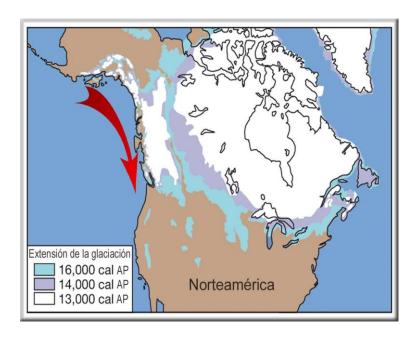


Figura 2.1. Extensiones de las masas glaciares de Norteamérica durante el final del Pleistoceno-inicios del Holoceno temprano. La flecha indica la zona libre de hielo de la costa pacífica. Imagen tomada y modificada de Rasmussen *et al.* (2014).

Una de las primeras hipótesis acerca del poblamiento de América sostuvo que el arribo a nuestro continente se produjo con posterioridad a los 10.000 años AP y que los grupos de cazadores-recolectores coexistieron con la megafauna. En las cercanías de la ciudad de Folsom, estado de Nuevo México (EE.UU.), se encontró evidencia de poco más de 10.000 años AP, de una punta de proyectil incrustada en la costilla de un bisonte pleistocénico. Ese tipo de punta con una acanaladura longitudinal en ambas caras también fue encontrada en sitios más antiguos que compartían características con el complejo Folsom, los cuales se consideraron como pertenecientes a otra cultura denominada Clovis y se convertirían en poco tiempo en el centro de debate del poblamiento (Jodry y Stanford, 1992). En 1937 Ales Hrdlička denominó a esta hipótesis como *Clovis First* o de origen único. Luego, Waters y Stafford (2007) analizaron las cronologías de los sitios Clovis y propusieron que su origen y dispersión inicial puede remontarse entre 11.080±40 y 10.765±25 años AP.

Los sitios pertenecientes a Clovis (Fig. 2.2) fueron localizados en diferentes puntos al sur de las masas de hielo que estaban presentes en el Pleistoceno final/ principios del Holoceno en el actual territorio de los Estados Unidos y sudeste de Canadá (Haynes, 2002; Hamilton y Buchanan, 2007). Además de sus típicas puntas de proyectil, la tecnología se caracterizaba por instrumentos líticos en forma de grandes hojas y la utilización de marfil y ocre rojo (Waguespack, 2007). La aparición y dispersión de los sitios Clovis por Norteamérica y la diversidad de fechados radiocarbónicos obtenidos no han permitido establecer hasta el momento un punto de origen o ruta de colonización para los humanos que confeccionaban estos tipos de punta de proyectil (Goebel et al., 2008). Bradley y Stanford (2004) propusieron la hipótesis de una migración desde Europa por la costa del océano Atlántico norte por ciertas similitudes entre el complejo Clovis y la cultura Solutrense del Paleolítico superior europeo, proponiendo que esta última habría dado origen a la primera. Sin embargo, su propuesta recibió numerosas críticas, entre ellas que ambas culturas se encontraban a una gran distancia geográfica y separadas por más de 6.000 años (Marangoni et al., 2013).

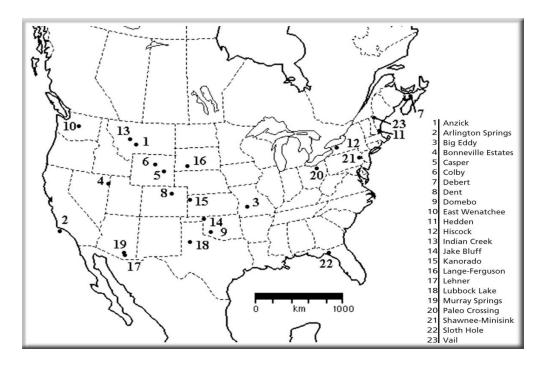


Figura 2.2. Ubicación de los sitios pertenecientes al complejo Clovis. Imagen tomada y modificada de Hamilton y Buchanan (2007).

Existen varios sitios en Sudamérica que presentan dataciones anteriores o contemporáneas a Clovis. De ellos, el más aceptado es Monte Verde, en el sur de Chile, datado en 12.800 a 12.300 años AP (Dillehay, 1997; Adovasio y Pedler, 1997; Dillehay *et al.*, 2008). Éste sumado a otros sitios de Sudamérica como Cueva Fell, Cueva Casa del Minero, Arroyo Seco 2, Cerro Tres Tetas, Cueva del Lago Sofía 1, Paso Otero 5, Tres Arroyos 1, Cerro La China, Cerro el Sombrero, Urupez 2, Cueva del Medio, Quebrada Santa Julia, Cueva de Pedra Pintada y Piedra Museo (Fig. 2.3) debilitaron la teoría *Clovis First (*Steele y Politis, 2009). En estos sitios se encontraron evidencias arqueológicas de varios tipos de herramientas de hoja, puntas bifaciales, y en algunos casos las distintivas puntas denominadas Cola de Pescado (Goebel *et al.*, 2008).

En 1986 el lingüista Joseph Greenberg, el especialista en antropología dental Christy Turner II y el genetista Stephen Zegura publicaron un trabajo donde teniendo en cuenta las bases establecidas en un trabajo previo por Turner II (1983) propusieron el modelo que se conoce como tripartito o de tres oleadas migratorias. A través del análisis de esas tres líneas de evidencia llegaron a una división de las poblaciones nativas del Nuevo Mundo en tres grupos: amerindios, na-dené y eskimo-aleutiano, cada uno representante de una migración diferente proveniente de Asia (Greenberg et al., 1986). Desde la perspectiva genética, con los marcadores disponibles en ese momento, el único sistema que apoyaba al modelo tripartito eran las inmunoglobulinas Gm, ya que no era suficiente la resolución de los otros marcadores (grupos sanguíneos, proteínas séricas y polimorfismos enzimáticos) para distinguir entre los tres grupos. Posteriormente, la información del ADNmt aportada por Wallace y Torroni (1992), además de apoyar el origen asiático de los nativos americanos, coincidió con la evidencia lingüística en la existencia de las tres oleadas migratorias, proponiendo que los amerindios provienen de dos migraciones distintas y a su vez se separan de los na-dené que entraron más tardíamente en una tercer migración, sin presentar información para los eskimo-aleutianos.

Figura 2.3. Ubicación geográfica de sitios arqueológicos de Sudamérica con dataciones más antiguas que 10.000 años AP.

A partir de estudios de morfometría craneofacial, Neves y Pucciarelli (1991) postularon otro modelo conocido como de cuatro oleadas migratorias, que incorpora una migración anterior a los amerindios (antes de los 12.000 años AP). A través de comparaciones de poblaciones antiguas y modernas de nativos americanos, primero utilizando métodos morfométricos tradicionales y luego incorporando herramientas de la morfometría geométrica (Neves et al., 2003), observaron que las muestras (sin considerar los grupos na-dené y eskimo-aleutiano) podían dividirse en dos grupos que corresponderían a migraciones diferentes. Los cráneos con una morfología generalizada que exhibían una forma dolicocéfala fueron asignados a los paleoamericanos, similares a australianos, melanesios y africanos sub-saharianos. Este grupo más antiguo tendría algunos representantes actuales como los yámanas de Tierra del Fuego (Argentina y Chile), los botocudos del centro-sur de Brasil, los pericúes de Baja California (México), así como los habitantes más antiguos de Lagoa Santa (Brasil). Se considera que su ingreso habría sido a través de la costa pacífica dispersándose rápidamente hacia el sur. Por el contrario, los amerindios habrían provenido de una migración posterior originada desde el este asiático. Esta suposición se basa en que presentan una morfología craneal braquicéfala (Fig. 2.4) similar a mongoloides antiguos y modernos del este de Asia (Neves y Hubbe, 2005; Hubbe, 2010) que podrían haber ingresado al continente a través del corredor de Alberta.

Sin embargo, en un trabajo posterior Powell y Neves (1999) plantearon la acción de procesos microevolutivos como alternativa plausible para explicar la variación descripta por el modelo de cuatro oleadas migratorias (Neves y Pucciarelli, 1991) o de dos componentes biológicos (Neves *et al.,* 2003), sobre todo si se considera un poblamiento relativamente rápido y con poblaciones pequeñas, como se ha sugerido con evidencia arqueológica y genética. Esta última proposición podría ser explicada por la acción local de mecanismos microevolutivos en América para dar cuenta de la variación observada en trabajos previos como el de Rothhammer y Silva (1990).

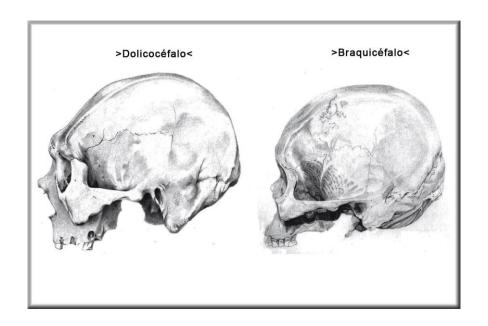


Figura 2.4. Esquematización de los tipos de cráneo que demuestra las diferencias en tamaño y forma. Imagen tomada y modificada de Perez (2011).

En discrepancia con esta postura, González-José et al. (2008) utilizando datos craneométricos y moleculares, señalan que sería más apropiado tomar a los grupos más representativos de los paleoamericanos y amerindios como extremos de la variación de un mismo componente poblacional. Por su parte, Perez et al. (2009) analizando muestras esqueletales del sitio Arroyo Seco 2 (sudeste de la provincia de Buenos Aires) encontraron diferencias a nivel craneométrico entre muestras del Holoceno medio y tardío inicial, con las del tardío final, coincidiendo con el patrón de diferencias entre paleoamericanos y amerindios. Sin embargo, ambas muestras presentaban los mismos linajes mitocondriales. Estos resultados sugieren que posiblemente la variación morfológica encontrada entre los nativos americanos antiguos y recientes, sea el resultado del efecto de factores microevolutivos azarosos (deriva génica) y no azarosos (selección natural o plasticidad fenotípica), antes que de distintas oleadas migratorias (Politis et al., 2010; Marangoni et al., 2013).

Más recientemente, O'Rourke y Raff (2010) propusieron un escenario novedoso -y especulativo- de poblamiento desde el norte de Asia a América.

En este marco la costa norte de Beringia habría sido poblada hace aproximadamente 30.000 años AP por grupos humanos que -guiados por la explotación de recursos costeros- habrían colonizado la costa norte de Alaska antes del LGM, ingresando luego hacia el interior del continente siguiendo el curso del río Mackenzie. Además, al existir áreas costeras libres de hielo la migración podría haber continuado por la bahía de Baffin y luego hacia el sur a lo largo de la costa este de Norteamérica (Fig. 2.5). Aunque esta puede ser una alternativa razonable para la ruta de entrada al continente, hasta el presente no se ha presentado evidencia que permita sustentarla (O'Rourke y Raff, 2010).

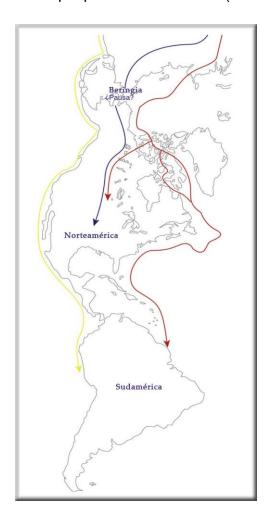


Figura 2.5. Rutas hipotéticas para el poblamiento de América tomada y modificada de O'Rourke y Raff (2010). En amarillo la ruta pacífica, en azul la entrada desde Beringia por el corredor libre de hielo, en bordó la entrada al continente por la costa norte.

Los modelos e hipótesis sobre el poblamiento de América expuestos hasta aquí se han basado en evidencia proveniente de fechados radiocarbónicos, tecnología lítica, morfología esqueletal y familias lingüisticas. Asimismo, diversas propuestas tienen sustento exclusivamente en datos moleculares del ADNmt. Estos modelos resultan especialmente relevantes para la presente tesis.

El primer intento de utilizar exclusivamente información genética para desarrollar un modelo para el poblamiento de América fue realizado por Foster et al. (1996) utilizando información de 571 secuencias de la región Hipervariable I (HVR I, por sus siglas en inglés) del ADNmt. En ese trabajo propuso la existencia de dos oleadas migratorias en lugar de las tres propuestas por Greenberg et al. (1986). La primera habría arribado de directamente desde el noreste Siberia hacia América aproximadamente 25.000-20.000 años atrás, dando origen a los amerindios. Luego de la última glaciación (Dryas temprano ~11.500 años atrás) se habría dado una segunda oleada a América por una rápida expansión desde Beringia que dio origen a los ancestros de los eskimo-aleutianos y los na-dené.

Otros investigadores también apoyan este modelo, aunque incluyen sólo a los na-dené -sin considerar a los eskimo-aleutianos- y propusieron que las primeras poblaciones que ingresaron al continente antes de 14.700 años atrás siguiendo la ruta pacífica, presentaron elevadas frecuencias de los haplogrupos A, B, C y D (Torroni *et al.*, 1992; Schurr y Sherry, 2004). Por otro lado, poblaciones representantes del haplogrupo X habrían seguido una ruta que atravesaba el corredor que se encontraba libre de hielo hace aproximadamente 12.500 años (Schurr y Sherry, 2004). Perego *et al.* (2010) apoyan esta teoría, ya que a partir del estudio de dos subhaplogrupos poco frecuentes (D4h3a y X2a) llegaron a la misma conclusión aunque con una pequeña variación en los momentos de entrada al continente.

Bonatto y Salzano (1997) analizaron la región control del ADNmt de 544 amerindios actuales y propusieron el modelo *Out of Beringia*. Según este

modelo las poblaciones ancestrales de los amerindios se habrían diferenciado genéticamente antes de colonizar el continente. Los autores proponen que un tiempo después de haber ocupado gran parte de Beringia, cruzaron el corredor de Alberta. El modelo sostiene que un grupo se habría abierto camino hacia el continente americano, pero la extensión de los hielos continentales entre los 14.000 a 20.000 años atrás, habría aislado a esta población al sur de las masas de hielo de la población que aún habitaba Beringia. De la primera población habrían surgido los amerindios y de la segunda, los na-dené y los eskimo-aleutianos.

Otro modelo con una propuesta similar, que incluye un período de incubación en Beringia, utilizó análisis estadísticos Bayesianos para estimar los períodos de coalescencia del ADNmt y los tamaños poblacionales aproximados que habrían tenido los grupos (Fig. 2.6) (Kitchen et al., 2008; Mulligan et al., 2008; Fagundes et al., 2008). En la primera fase se habría dado la expansión de los ancestros de los amerindios hacia el noreste asiático y su diferenciación del pool génico de las poblaciones del centro-este de Asia hace 43.000-36.000 años AP, sumado a un aumento poblacional (los autores suponen 640 mujeres iniciales a 4.400 mujeres al fin del periodo, aproximadamente). Este proceso habría sido precedido por un período de estabilidad demográfica y aislamiento de los proto-amerindios en Beringia entre los 36.000-16.000 años AP, donde pudo haber actuado la deriva génica y haberse originado nuevas variantes genéticas. La fase final se habría dado con la colonización de todo el continente americano, hace 16.000 años AP aproximadamente, lo que coincide con el final de la última era glaciar. En esta última etapa los grupos humanos habrían estado conformados por 1.000 a 5.400 mujeres aproximadamente, proponiendo además que habría sido más probable su migración por el corredor de Alberta. En estos estudios se sostiene que los eskimo-aleutianos y los na-dené provienen de la misma población fundadora de proto-amerindios de Beringia.

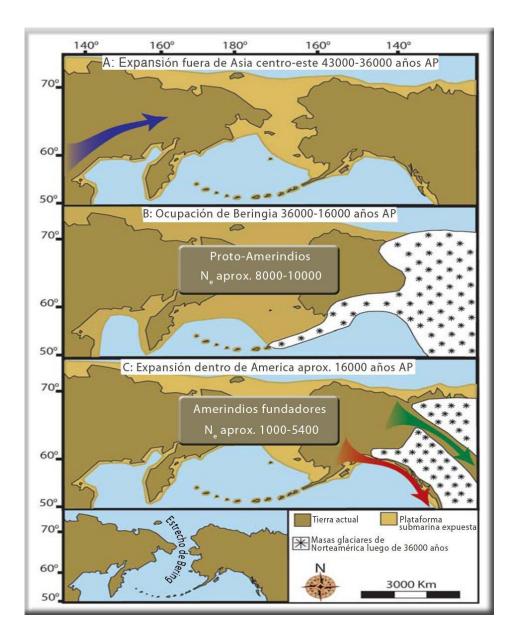


Figura 2.6. Mapa que describe los tres periodos del poblamiento de América y el número de mujeres involucradas. Imagen tomada y modificada de Kitchen *et al.* (2008)

Desestimando estas últimas propuestas, otros investigadores señalaron que ninguna de las explicaciones mencionadas era capaz de dar cuenta del nivel de variación biológica observado en las poblaciones amerindias y que la información disponible puede ser interpretada de una manera más adecuada si se considera la existencia de flujo génico entre las poblaciones de Asia y

América. Esta nueva hipótesis fue denominada modelo de flujo génico recurrente (Ray et al., 2010).

Entre las alternativas planteadas para dar cuenta de la mayor variación de linajes mitocondriales en América, puede incluirse también la hipótesis de un origen europeo para los pobladores de Norteamérica entre los que se ha encontrado el linaje mitocondrial X, presente también en poblaciones europeas (Schurr, 2004). El hallazgo en 1996 en la ciudad de Kennewick (Washington), de restos bien preservados de un esqueleto humano que presentó un alto grado de completitud y fue datado en 8.410±60 años AP, apoyó la idea de un origen europeo ya que la morfología esqueletal y craneal presentaba similitudes con poblaciones modernas del oeste del Viejo Mundo y no se correspondía con los amerindios, sobre todo del noroeste de Norteamérica. Sin embargo, Chatters (2000) realizó comparaciones morfométricas con paleoamericanos del mismo periodo y hasta más antiguos, no encontrando diferencias significativas y postuló que sus características dentales y craneofaciales poseen afinidad con los ainu y poblaciones isleñas del Pacífico. Recién en el año 2015 pudo determinarse que el "Hombre de Kennewick" presenta el subhaplogrupo X2a, el cual se encontraría con exclusividad en poblaciones actuales de Norteamérica (Rasmussen et al., 2015).

2.2 El poblamiento inicial de Argentina en el contexto Sudamericano

Para el poblamiento de Sudamérica, el istmo de Panamá se presenta como un cuello de botella geográfico que se abre a una amplia región, con una gran variedad de ambientes. La evidencia arqueológica y bioantropológica disponible ha permitido plantear diferentes escenarios para el poblamiento luego del ingreso a través del istmo. Entre los propuestos más recientemente se destacan dos modelos para la dispersión humana en el subcontinente. Uno de ellos propone que en el norte de Sudamérica se pudo haber dado una separación de la población, resultando en dos grupos que siguieron una ruta

costera pacífica y otra continental (Rothhammer y Dillehay, 2009; Fehren-Schmitz et al., 2011). Alternativamente, se ha hipotetizado que una población se expandió desde el norte y avanzó por el lado costero de los Andes, posiblemente mediante el uso de canoas y cruzó la cordillera en diferentes latitudes (Bodner et al., 2012; de Saint Pierre et al., 2012).

De acuerdo al primer modelo planteado, los cazadores-recolectores habrían llegado a estas tierras atravesando el istmo de Panamá, hacia la tierra alta de los Andes abriéndose paso a través de los valles de los ríos Cauca y Magdalena (Rothhammer y Dillehay, 2009). La orografía del área pudo haber dificultado su migración hacia al sur, por lo que un grupo podría haber migrado hacia el este siguiendo la costa de Venezuela, las Guyanas y el noreste de Brasil. Otro grupo podría haber llegado al interior de Venezuela y luego desplazarse hacia el sudeste y/o sudoeste por varios sistemas de ríos hasta la cuenca amazónica.

Por otro lado, también podrían haber migrado por la costa pacífica hacia el sur. Desde los Andes, un grupo se habría dirigido hacia el este y otro hacia la Pampa y la Patagonia. Por lo tanto, las poblaciones a los dos lados de la cordillera, en Chile y Argentina, pudieron haber mantenido una relación más cercana entre ellas que con aquellas de la misma latitud pero ubicadas a diferente longitud. Además, proponen que la cuenca amazónica podría haber funcionado como una barrera natural para el flujo génico en sentido norte-sur, con lo que las poblaciones ubicadas al norte de la misma derivarían de las poblaciones que siguieron la vía de poblamiento por las costas de Venezuela y aquellas que se encuentran al sur, provendrían de migraciones por dentro del continente, o desde el sur por Argentina (Rothhammer y Dillehay, 2009).

Por otro lado, a partir del análisis de datos genéticos actuales se ha postulado un poblamiento con dirección norte-sur a lo largo de la costa del Pacífico con múltiples migraciones trasandinas con dirección oeste-este (Bodner *et al.*, 2012). Coincidente con este modelo, de Saint Pierre *et al.* (2012) indican que las poblaciones nativas al sur del paralelo 40° tanto en Chile como

en Argentina comparten un origen común y pertenecen al mismo sustrato poblacional. Además, no han encontrado evidencias genéticas que demuestren que la ruta por la ladera este de la cordillera de los Andes, propuesta por Rothhammer y Dillehay (2009), haya llegado hasta la Patagonia. Por lo tanto, proponen que ésta ha sido poblada por migrantes que seguían la ruta pacífica. Una vez que llegaron a las cercanías de Monte Verde en Chile, no pudieron avanzar hacia el sur, posiblemente por la presencia de glaciares que cubrían la mayor parte de la costa pacífica; entonces pudieron haber cruzado los Andes y continuar hacia el sur por la ladera oriental. El flujo migratorio, por ende, pudo haber sido en esta región de oeste a este más que en sentido norte a sur. Por último, propusieron que las poblaciones habrían quedado aisladas con un débil intercambio genético con poblaciones localizadas más al norte, lo que también ha sido propuesto desde la evidencia arqueológica, por lo menos hasta la llegada de los europeos.

Los estudios tendientes a evaluar hipótesis sobre el poblamiento de Argentina desde una perspectiva bioantropológica han empleado, principalmente, evidencia morfológica, centrándose en el análisis del cráneo (Cocilovo y Di Rienzo 1984-1985; González-José et al., 2001; Pucciarelli et al., 2006; Perez et al., 2007; Fabra y Demarchi, 2011; entre otros). Aunque otros trabajos han empleado evidencia morfométrica dental y no métrica craneofacial (González-José et al., 2001; Fabra et al., 2005; Bernal, 2008; Del Papa, 2013). Estas hipótesis retoman en parte propuestas realizadas para el poblamiento de Sudamérica y se focalizaron en los aspectos geográficos de la dispersión, en algunos casos abarcando regiones acotadas mientras que en otros, los modelos han alcanzado regiones geográficas más amplias que incluyen toda la extensión del territorio de Argentina. Las hipótesis de base geográfica han permitido derivar expectativas acerca de los patrones de variación morfológica encontrados entre muestras asignables al Holoceno medio-tardío. En particular, los modelos formulados sugieren distintas rutas de dispersión de las poblaciones a lo largo del territorio argentino: a) modelo de dos rutas, una andina paralela a la cordillera de los Andes y otra costera a lo largo de la costa atlántica (Cocilovo y Di Rienzo, 1984-1985; González-José et al., 2001; Pucciarelli et al., 2006), b) una única ruta atravesando el interior del territorio (Imbelloni, 1938), c) una ruta atlántica a partir de la cual deriva un grupo que pobló el centro de Argentina, en sentido este-oeste y descendió en sentido norte-sur hacia Pampa y Patagonia (Demarchi et al., 2010), d) una ruta que puebla el centro de Argentina desde Patagonia (Demarchi et al., 2010), entre otras.

Se han propuesto diferentes procesos para explicar los patrones de variación encontrados tales como flujo y deriva génica en el contexto de un modelo de aislamiento por distancia, selección natural, el ingreso de diferentes grupos poblacionales temporalmente disociados y efecto fundador serial. Sin embargo, no puede descartarse que le patrón de variación morfológica responda, en parte, a otros factores como la plasticidad fenotípica (Perez y Monteiro, 2009).

Con relación al momento de ingreso de las poblaciones humanas al subcontinente por el istmo de Panamá, actualmente existe un consenso en que este se habría producido al menos entre 14.000-13.000 años AP (Steele y Politis, 2009; Borrero, 2016), y posiblemente antes, si se aceptan los fechados de los sitios arqueológicos más tempranos con evidencia humana. Estos sitios se localizan en Pampa y Patagonia (sitios Monte Verde, Arroyo Seco 2 y Piedra Museo), y presentan fechados radiocarbónicos calibrados entre 16.300-14.100 años AP (Steele y Politis, 2009; Dillehay *et al.*, 2015; Perez *et al.*, 2016a). Es importante destacar que estas dataciones tempranas son muy escasas, y que recién con posterioridad a 14.000 años AP se evidencia un incremento en la frecuencia de fechados en la región (Steele y Politis, 2009; Prates *et al.*, 2013; Perez *et al.*, 2016a).

Particularmente, en el actual territorio argentino se han documentado sitios tempranos, relativamente contemporáneos, en diversas áreas, desde el norte del país hasta Tierra del Fuego. La región del NOA (Fig. 2.7) habría sido ocupada a finales del Pleistoceno, cerca de los 12.500 años AP (Prates *et al.*,

2013; Muscio y López, 2016). El hallazgo de puntas de proyectil similares a las encontradas en Perú, ha permitido plantear un escenario dinámico con circulación de bienes y de artefactos, posiblemente relacionados a flujo génico con otras poblaciones andinas. Las Sierras Centrales (Fig. 2.7) presentan la misma temporalidad que el NOA según los fechados más tempranos del sitio El Alto 3 de 11.040 y 9.790 años AP (Rivero, 2007) y Candonga de 10.450 ± 50 años AP (Cornero et al., 2014), lo cual podría estar indicando un ingreso rápido al interior del continente. Este último hallazgo no brinda demasiadas evidencias sobre el modo de vida de los pobladores de la región serrana, pero se propone que no habría sido muy diferente a la del resto de las poblaciones del Cono Sur, es decir, poblaciones de baja densidad y amplio rango de acción (Rivero y Berberián, 2006; Borrero, 2008). Hacia el oeste, los focos de poblamiento y de paso desde la ladera occidental de los Andes hacia el actual territorio argentino habrían sido los sectores aledaños a los sitios Gruta del Indio (Gil et al., 2005) y Agua de la Cueva (Gil et al., 2011) fechada en 10.950 años AP (García, 1999).

Dentro de las llanuras pampeanas de Argentina, los sitios más antiguos son Arroyo Seco 2 (12.175 y 11.200 años AP), Cerro La China (11.150–10.525 años AP) y El Sombrero (10.725–10.270 años AP) (Fig. 2.3) (Prates *et al.*, 2013). Es importante mencionar que en esta área las dataciones son más tempranas que en el NOA y similares a las de Patagonia y además, esta región, presenta el mayor porcentaje de sitios tempranos del Cono Sur (32,1%) seguido por la Patagonia (31,6%) (Prates *et al.*, 2013). En la región Pampeana se encontraron puntas "Cola de Pescado" propias del Cono Sur americano. Como se ha dicho, éstas también fueron halladas en la Patagonia, valles centrales de Chile y costa de Perú, mostrando una amplia distribución y sosteniendo la idea de un sistema de intercambio y/o circulación de las poblaciones (Politis *et al.*, 2004; Flegenheimer *et al.*, 2013).

En Patagonia, a ambos lados de la cordillera, las primeras ocupaciones humanas se habrían establecido entre los 13.000 y 12.000 años AP, de acuerdo a los fechados tempranos obtenidos en sitios como Monte Verde (12.800 a 12.300 años AP) y Piedra Museo (12.500-11.500 años AP) (Borrero,

1999; Dillehay, 2000; Miotti y Salemme, 2004; Dillehay *et al.*, 2008; Prates *et al.*, 2013). Este periodo ha sido caracterizado por importantes cambios climáticos y geológicos que afectaron la composición y distribución de la flora y fauna de la región, generando un escenario de inestabilidad ambiental. Estos cambios habrían afectado los tamaños poblacionales de los asentamientos humanos a partir de la disponibilidad de recursos (Miotti y Salemme, 2004; Bernal, 2008).

Figura 2.7. División del actual territorio argentino en regiones arqueológicas. Mapa cedido por el Dr. Prates y modificado de su publicación en el 2013.

2.3 Dinámica poblacional en Argentina durante el Holoceno medio-tardío

Con posterioridad al ingreso y dispersión inicial de las poblaciones humanas en las diferentes regiones del actual territorio argentino, el período entre 8.000-200 años AP se caracterizó por una tendencia general al aumento en la densidad demográfica, al incremento en la ocupación del espacio y a la intensificación de las relaciones inter-poblacionales. Sin embargo, este proceso fue discontinuo temporal y espacialmente (Borrero, 2001; Miotti y Salemme, 2003; Gil et al., 2014; Martínez et al., 2015; Muscio y López, 2016; Perez et al., 2016a). El registro arqueológico muestra que mientras algunas regiones de Argentina fueron ocupadas de forma continua, otras fueron habitadas alternativamente o continuaron deshabitadas hasta momentos muy tardíos (Borrero, 2001; Muscio y López, 2016; Perez et al., 2016a, entre otros).

Ha sido propuesto que estos escenarios podrían estar condicionados, en parte, por cambios ambientales. En particular, entre 7.000-5.000 años AP tuvo lugar el período denominado Óptimo Climático (Masson et al., 2000) caracterizado por un incremento global de la temperatura y un alto nivel de precipitaciones. Asimismo, hace 1.150-600 años AP se registra otro momento de cambios climáticos marcados, la Anomalía Climática Medieval (Stine, 1994; Williams et al., 2004), descripta como un período en el que el descenso en los niveles de humedad y el incremento en las condiciones de aridez alcanzaron su expresión máxima. Si bien estos fenómenos han sido propuestos como de alcance global, diversos estudios arqueológicos y paleoclimáticos muestran que el comportamiento de los mismos varía significativamente en escala local a lo largo de Argentina y, por lo tanto, sostienen la existencia de ambientes heterogéneos (Agosta et al., 2006; Tchilinguirian y Morales, 2013). Estas condiciones ambientales podrían haber influido tanto en las tecnologías empleadas, como consecuencia de una adaptación a nuevos recursos y hábitats (Miotti, 2006; García, 2010), así como en los procesos biológicos que actuaron a nivel poblacional (Barrientos y Perez, 2004; Barberena et al., 2015). En particular, las mismas pudieron afectar la magnitud y el patrón de flujo y

deriva génica entre los grupos y los cambios demográficos durante el Holoceno medio-tardío.

Los estudios demográficos efectuados hasta el presente, con base en fechados radiocarbónicos, muestran patrones similares de cambio en el territorio argentino a lo largo del tiempo (Martínez *et al.*, 2013, 2015; Berón, 2015; Zubimendi *et al.*, 2015; Muscio y López, 2016). En general, se observa que las poblaciones humanas tuvieron tamaños pequeños, aunque variaron regionalmente, y que la ocupación del territorio fue dispersa hasta fines del Holoceno medio (Gil *et al.*, 2014; Barberena *et al.*, 2015; Muscio y López, 2016; Perez *et al.*, 2016a, 2016b). Para este período se propuso una pérdida de la señal antropogénica como resultado de una declinación demográfica, la extinción local o el despoblamiento de los espacios en algunas regiones geográficas particulares -*e.g.*, Puna de Jujuy, sur de Mendoza y sudoeste de la región Pampeana- (Barrientos y Perez, 2005; Salemme y Miotti, 2008; Neme y Gil, 2009; Zubimendi *et al.*, 2015; Muscio y López, 2016).

La disminución en el número de sitios detectados en el Holoceno medio ha sido intensamente discutida para algunas regiones. Barrientos y Perez (2004) basándose en patrones de variación morfométrica craneofacial e información arqueológica, plantearon un posible reemplazo poblacional de las poblaciones del sudeste de la región Pampeana, por poblaciones que provenían del norte de Patagonia (sector inferior de la cuenca de los ríos Colorado y Negro, y costa sur pampeana) o desde el río Chubut. Sin embargo, según lo propuesto por Martínez (2008-2009), las poblaciones del sudeste pampeano no necesariamente tienen que haberse extinguido sino que podrían haber interactuado con las del norte de Patagonia. Asimismo, para el territorio de la actual provincia del Neuquén, Barberena et al. (2015) propusieron que la discontinuidad ocupacional de los sectores norpatagónicos andinos se explicaría por la ausencia de adaptaciones al bosque, habiéndose utilizado durante los periodos más secos. Para la Puna argentina y el altiplano chileno hay dos eventos marcados de ausencia de fechados radiocarbónicos en el Holoceno medio, en el intervalo de ca. 8.500-7.500 años AP y de ca. 7.0006.300 años AP (Muscio y López, 2016), aunque hay una marcada disparidad geográfica en este proceso en los Andes Sur. Diversos trabajos sugieren que esta falta de evidencia arqueológica en diferentes regiones del noroeste Argentino y norte de Chile podría estar relacionada con procesos de despoblamiento de amplias áreas de las tierras altas o con la disminución demográfica como respuesta al aumento de las condiciones de desertificación ocurridas durante el Holoceno medio (Núñez, 1992; Muscio y López, 2016).

En el Holoceno medio el nivel del mar alcanza valores similares a los actuales y se conforma la actual costa atlántica. Durante el Óptimo Climático, entre 7.000 y 5.000 años AP, se produjo un ascenso en el nivel del mar que resultó en ingresiones en la costa de la región Pampeana y en áreas puntuales de la costa patagónica, como la ría del Deseado (Aguirre y Farinati, 1997). Este momento coincide con el fin de la formación del estrecho de Magallanes que habría restringido la dispersión y circulación de las poblaciones, limitando el flujo génico y favoreciendo la evolución relativamente independiente, tanto en aspectos biológicos como culturales, de los grupos ubicados al norte y al sur del estrecho (Borrero, 2008). Después de este momento aparecen los primeros registros arqueológicos en la actual costa atlántica de la Patagonia. El sitio más temprano registrado es Arroyo Verde 1, costa de Río Negro, con un fechado de 7.400 años cal AP (Favier Dubois, 2013).

En el curso inferior del río Colorado se han detectado ocupaciones humanas débiles desde los 5.600 años cal AP, volviéndose más intensas a partir de los 3.200 años cal AP. Los análisis isotópicos realizados han demostrado una dieta combinada con recursos terrestres y peces, lo que implicaría posiblemente circuitos de movilidad que incluían sectores de diferentes nichos ecológicos (Martínez, 2008-2009; Martínez *et al.*, 2013). La costa de Chubut posee una temporalidad de ocupación cercana a los 6.000 años AP, representada por el sitio Cabo Tres Puntas 1, en el golfo San Jorge, el cual evidencia el consumo de recursos marinos (Gómez Otero *et al.*, 1998).

Con posterioridad al Holoceno medio los patrones de distribución de fechados radiocarbónicos muestran un aumento demográfico marcado y sostenido, pero con variaciones en el momento de inicio según el área específica considerada. Para el Noroeste Argentino, particularmente en la Puna, un estudio reciente muestra evidencia de un aumento en la señal arqueológica, sugiriendo un crecimiento sostenido, después del 5.000 AP (Muscio y López, 2016). Esto coincide con el momento en que se produce la intensificación económica y la domesticación de camélidos, así como la reducción en la movilidad residencial y el agrupamiento residencial (Yacobaccio, 2001; Muscio y López, 2016). En Cuyo, los trabajos recientes, sugieren que este proceso de crecimiento demográfico fue más tardío, *ca.* 3.000-2.500 años AP, y coincidió con la adopción de cultivos (Gil *et al.*, 2014).

Más al sur, en Patagonia, los indicadores arqueológicos sugieren que el aumento demográfico ocurrió hace 2.000 o 1.000 años atrás (Martínez *et al.*, 2015; Zubimendi *et al.*, 2015), aunque algunos trabajos señalan que el proceso podría haber sido previo (Perez *et al.*, 2016a). En todos los casos el aumento demográfico parece coincidir con procesos de intensificación en el uso de recursos y en las técnicas disponibles para su explotación (Gil *et al.*, 2006; Stoessel y Martínez, 2014; Perez *et al.*, 2016a).

Durante el Holoceno tardío diferentes regiones del territorio argentino estuvieron inmersas en sistemas de interacción e intercambio a corta y larga distancia. Entre ellas es destacable el tráfico de caravanas en el noroeste Argentino, el cual fue aumentando hacia el período de Desarrollos Regionales, facilitando la obtención e intercambio de recursos (Tarragó, 1984; Albeck, 2003; Torres-Rouff *et al.*, 2012). Este periodo fue caracterizado por el surgimiento de estilos cerámicos regionales y el crecimiento de conglomerados habitacionales con la formación de espacios públicos, como vías de circulación, debido a la concentración demográfica. La ubicación de las comunidades agrarias del NOA en puntos estratégicos del gradiente andino, o en el cruce de antiguos caminos, les habría permitido aprovechar los productos de los distintos pisos ecológicos (ganadería en altura y cultivos en los valles fluviales),

así como la participación en el intercambio de bienes con aldeas próximas o grupos humanos que se encontraban a largas distancias (Tarragó, 2002). En particular, diversos estudios arqueológicos desarrollados en el NOA señalan que esta región recibió influencias en diferentes momentos y de magnitud variable desde el sur de Perú, el altiplano boliviano y la floresta tropical (González y Pérez, 1972; Berenguer y Dauelsberg, 1989; Rivera, 1991). Se ha señalado que la quebrada de Humahuaca habría sido utilizada como un corredor para el transporte de bienes, conectando la región andina de altura, con las regiones más selváticas hacia el sudeste, como valles, yungas y planicies chaqueñas (Cocilovo *et al.*, 2001).

La actividad agropastoril tuvo su apogeo en el periodo de Desarrollos Regionales con una economía basada en camelidae, siendo la zona de Casabindo-Doncellas la de mayor desarrollo (Albeck, 2003). Según Krapovickas (1983) el análisis de fuentes etno-históricas indica que durante el período Hispano-Indígena, la Puna jujeña estuvo habitada por grupos étnicos diferenciables, como los chichas, los casabindos, los cochinocas y los apatamas (Albeck, 2007).

Por otro lado, el noreste de Argentina fue escenario de intensos intercambios, principalmente con la entrada de grupos tupí-guaraní durante los últimos 2.000 años aproximadamente (Loponte et al., 2011; Bonomo et al., 2015). Esto fue documentado en numerosos sitios arqueológicos en los que la evidencia encontrada sugiere que en el área se dieron dos pulsos principales de dispersión siguiendo una dirección norte-sur de grupos culturalmente asociados a los guaraní (Bonomo et al., 2015).

En el noroeste de Patagonia, principalmente en el actual territorio de Neuquén, y en la región Pampeana durante el Holoceno tardío, las vías de interacción se dieron en un sentido amplio en el eje este-oeste, a diferencia del poblamiento inicial donde predominaba el vector norte-sur (Berón, 2007). Durante este periodo, especialmente hacia el final (1.000 a 250 años AP), los datos arqueológicos y etnohistórico muestran que la dinámica poblacional en la

región estaría caracterizada por la existencia de niveles variables de flujo génico con poblaciones transcordilleranas, y por la ocurrencia de migraciones de grupos procedentes del centro de Chile (Casamiquela, 1990; Mandrini y Ortelli, 1992; Neme y Gil, 2005). Por lo tanto, los grupos asentados en el norte de Patagonia habrían estado en contacto con grupos del centro y sur de Chile, Cuyo y con la región Pampeana, por lo que esta puede ser considerada una zona de alto contacto inter-poblacional. En tiempos históricos, la relación entre grupos de ambos lados de la cordillera se intensificó con la entrada de grupos araucanos al norte de Patagonia y Pampa, proceso conocido como araucanización (Porcel, 2007).

Capítulo 3: Características del ADN mitocondrial y la variación de los linajes maternos en América

3.1 Variantes genéticas y marcadores moleculares en poblaciones humanas

Desde sus inicios en el siglo XX, el estudio de la evolución de las poblaciones humanas se ha nutrido fundamentalmente de la teoría y metodología de la genética de poblaciones (Cavalli-Sforza *et al.*, 1994; Crawford, 2007). Su utilidad radica en la posibilidad de realizar análisis predictivos o retrospectivos de la composición genética de las poblaciones (Nielsen y Slatkin, 2013) y en consecuencia permite inferir ancestros comunes, conocer eventos de expansión, contracción y reemplazo poblacional ocurridos en el pasado, estimar la antigüedad del poblamiento en una región y explorar los procesos microevolutivos -como selección, flujo genético o la deriva génica-que actuaron sobre la variación existente en las poblaciones a lo largo del tiempo (Cavalli-Sforza *et al.*, 1994; Rothhammer, 2009).

Estos procesos y eventos producen variación genética en las poblaciones que se expresa al nivel del número de variantes heredables observadas (*i.e.*, alelos), la frecuencia de cada una de ellas y las interrelaciones entre las mismas (Relethford y Harding, 2001). En aquellos casos en que se detecta más de una variante en una población particular, se refiere a las mismas como polimorfismo. Generalmente, en los estudios de genética de poblaciones humanas se considera que una región genómica es polimórfica cuando la variante menos representada tiene una frecuencia no menor al 1% en una población particular (Cavalli-Sforza *et al.*, 1994).

Tradicionalmente, las investigaciones bioantropológicas estudiaron los polimorfismos genéticos empleando marcadores como grupos sanguíneos (e.g., sistema ABO, Diego y RH), inmunoglobulinas (e.g., sistema Gm y KM) y los antígenos leucocitarios, entre otros (Cavalli-Sforza et al., 1994; Goicoechea et al., 2001; Carnese et al., 2003). Con el advenimiento de las técnicas moleculares modernas las variantes genéticas polimórficas pudieron detectarse directamente al nivel del ADN -la molécula que contiene el material genético-. Las regiones del ADN segregantes que pueden ser usadas para caracterizar

poblaciones por su presencia, ausencia o frecuencia relativa son denominadas marcadores moleculares (Rubicz *et al.*, 2007). La ventaja principal de las técnicas moleculares modernas es que, a diferencia de las tradicionales, permiten estudiar variantes no observables a nivel fenotípico, y por lo tanto, se incrementa la cantidad de la información genética obtenida.

En los estudios más recientes se ha privilegiado el análisis de marcadores moleculares ubicados en la región no codificante del ADN nuclear y marcadores uniparentales de la región no recombinante del cromosoma Y (NRY, por sus siglas en inglés), así como de aquellos que se encuentran localizados en la región control del ADNmt. Esto permite trabajar con regiones que no codifican proteínas y que por lo tanto cambian a tasas relativamente rápidas y presentan un gran número de variantes (Rubicz et al., 2007). En el contexto de los análisis poblacionales se han empleado tres tipos principales de variantes moleculares (Nielsen y Slatkin, 2013): Microsatélites o Repeticiones simples en tándem (STRs, por sus siglas en inglés), INDELs (inserciones o deleciones de cierto número de pares de bases) y *Polimorfismos* de Nucleótido Simple (SNPs, por sus siglas en inglés, se basan en la identificación de sustituciones de un nucleótido por otro en la secuencia de ADN, generadas por mutaciones de punto). Este último tipo de variantes moleculares -SNPs- es el que se ha empleado más frecuentemente en los estudios de genética de poblaciones humanas, en particular en estudios de ADNmt como los desarrollados en este trabajo de tesis.

3.2 El ADN mitocondrial

El ADN mitocondrial se ha convertido en uno de los marcadores moleculares más empleados en estudios orientados a reconstruir la estructura e historia evolutiva de las poblaciones humanas modernas y antiguas (Schurr, 2004; Crawford, 2007; entre otros). Esto se debe tanto a la estructura y características de la molécula, a la información que la misma provee así como

a las facilidades técnicas que presenta su extracción, amplificación y secuenciamiento.

3.2.1 Estructura genómica y características del ADN mitocondrial

Las mitocondrias presentan un genoma circular de doble cadena que en nuestra especie posee 16.569 pares de bases (pb; Anderson *et al.*, 1981; Andrews *et al.*, 1999). Las dos cadenas que constituyen el ADNmt se diferencian por la proporción de purinas y pirimidinas contenida en ambas. A la cadena que posee mayor cantidad de pirimidinas se la denomina L (de light en inglés) o ligera y a la complementaria, rica en purinas, se la denomina H (por heavy en inglés) o pesada. La mayor parte de las secuencias de ADNmt que codifican proteínas se encuentra en la cadena H (Alberts *et al.*, 2004).

El genoma mitocondrial contiene genes que codifican diversas proteínas. Entre cada uno de estos genes sólo existen unas pocas bases nitrogenadas por lo que no presenta regiones no codificantes. En particular, la molécula incluye 37 genes: 2 rRNA (ARN ribosomales 12S y 16S), 22 tRNA (ARN de transferencia) y 13 genes estructurales, relacionados con los complejos enzimáticos del sistema de fosforilación oxidativa –3 subunidades de la citocromo C-oxidasa (COI, II y III), 1 subunidad de la citocromo C óxidoreductasa, 7 subunidades del complejo NADH deshidrogenasa y 2 subunidades del complejo ATP sintetasa (Anderson *et al.*, 1981).

Además, el ADNmt presenta una región denominada control o D-Loop, que ocupa 1.122 pb y se extiende en forma continua entre las posiciones 16024-16569 y 1-576 (Fig. 3.1; Anderson *et al.*, 1981; Andrews *et al.*, 1999). Dicha numeración se debe a que la primera secuencia humana completa, conocida como la Secuencia de Referencia de Cambridge (rCRS por sus siglas en ingles), comienza dentro de la región control (Anderson *et al.*, 1981). Luego ésta fue corregida por Andrews *et al.* (1999) pero la numeración se mantuvo. Vigilant *et al.* (1989) denominaron Región Hipervariable I y II (HVR I y HVR II) a dos segmentos de la región control del ADNmt que eran altamente variables.

Los límites para estas regiones varían según los autores. La extensión más aceptada para la HVR I abarca las posiciones 16024-16365 y para la HVR II entre 73 y 340 (Andrews *et al.*, 1999; ver http://www.phylotree.org).

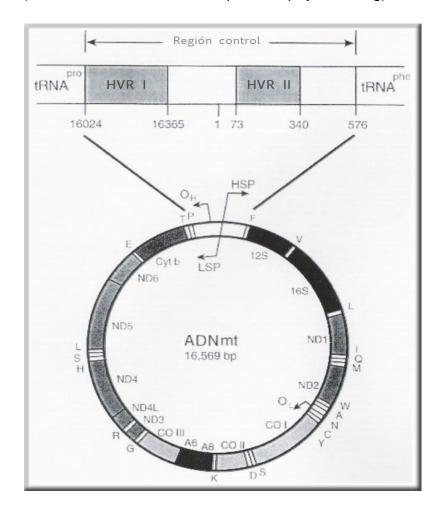


Figura 3.1. Estructura de la molécula del ADNmt con ampliación de la región control donde se delimitan la HVR I y II. Imagen tomada y modificada de Holland y Parsons (1999).

La molécula del ADNmt constituye una herramienta de gran utilidad en estudios de genética de poblaciones y evolución debido a las siguientes características:

a) no recombina y por lo tanto todas las diferencias encontradas entre las secuencias del ADNmt resultan de mutaciones (Innan y Nordborg, 2002;

Pakendorf y Stoneking, 2005), posiblemente, debido a la falta de mecanismos de reparación;

- b) distintos segmentos del genoma mitocondrial evolucionan a velocidades variables. La región no codificante, región control o D-loop, muta a mayor tasa en relación con otras regiones del ADNmt (Witas *et al.*, 2004). Los cambios en el ADNmt ocurren en promedio a una tasa de 0,017 x 10⁻⁶ sustituciones por sitio por año que resulta ser de un orden de magnitud (~ 10 veces) más elevada que la del ADN nuclear (Ingman *et al.*, 2000; Pakendorf y Stoneking, 2005). La tasa de sustitución de la región control ha sido establecida entre 0,024 x 10⁻⁵ y 0,0302 10⁻⁵ sustituciones por sitio por año (Santos *et al.*, 2005; Endicott y Ho, 2008);
- c) se encuentra en gran número de copias por mitocondria en la célula eucariota (poliplasmía) y a su vez cada célula posee un gran número de mitocondrias que varia entre 1.000 y 10.000 dependiendo del tejido considerado (Solano *et al.*, 2001). Esto facilita la obtención de material genético para su análisis;
- d) es heredada estrictamente por vía materna debido a que en la gran mayoría de los animales sólo las gametas femeninas (oocitos) contribuyen con sus mitocondrias al embrión en desarrollo (Giles et al., 1980; Stoneking y Soodyall, 1996; Wallace et al., 1999), con excepciones en diversas especies, como en *Mytilus galloprovincialis*, *Drosophila simulans*, *Drosophila mauritiana*, *Parus major* y *Mus musculus*, entre otras (Ballard y Whitlock, 2004).

3.2.2 ADN mitocondrial antiguo

En 1986 con el desarrollo de la técnica de reacción en cadena de polimerasa -PCR, por sus siglas en inglés- sucedió una revolución en el campo de la biología molecular, en particular, de la genética de poblaciones a nivel del ADN (Mullis *et al.*, 1987). Esta técnica facilitó la reproducción de secuencias polimórficas del ADN obtenido a partir de individuos de poblaciones actuales, y

permitió la replicación de material genético preservado en restos arqueológicos y paleontológicos (Pääbo, 1985; Hagelberg *et al.*, 1989). A diferencia de los estudios de genética de poblaciones actuales orientados a estudiar la historia evolutiva en los que generalmente se asume que la variación observada es representativa de los grupos que habitaban esa región geográfica en el pasado, el ADN antiguo ofrece la posibilidad de analizar los patrones genéticos que existieron en un tiempo y lugar determinados en el pasado, generando evidencia directa sobre las posibles relaciones que mantenían las poblaciones humanas prehistóricas entre sí y con las actuales (Pickrell y Reich, 2014).

Con el avance en el estudio de muestras prehistóricas, comenzaron a explorarse diversas fuentes para la obtención del ADN. Si bien los primeros estudios se centraron en la obtención del ADN a partir de restos esqueletales, por ser los más abundantes en una excavación y de tejido blando asociado a éstos, posteriormente los materiales a analizar se expandieron incluyendo coprolitos, material lítico hallado en los sitios arqueológicos, sedimentos, permafrost, y para el caso de las aves, de plumas y restos de cáscaras de huevos. Sin embargo, las piezas óseas y dentales continúan siendo las preferidas en las investigaciones del ADNa debido a propiedades de las mismas que favorecen su preservación (Shapiro y Hofreiter, 2012). En particular, la elección de las piezas dentales radica en que el esmalte y el cemento dental constituyen una barrera natural contra los cambios físicos y químicos a los que se encuentran expuestas en los sitios arqueológicos. Asimismo, entre el ADN y los cristales de hidroxiapatita -presentes tanto en dientes como en huesos- se producen fuertes enlaces químicos que garantizan su conservación (Thuesen y Engberg, 1990; Ricaut et al., 2005).

Las primeras extracciones del ADNa fueron realizadas en animales extinguidos por Higuchi et al. (1984), quienes identificaron ácidos nucleicos en un ejemplar de Equus quagga y demostraron su afinidad filogenética con la cebra moderna. Posteriormente, Pääbo (1985) y Hagelberg et al. (1989) obtuvieron secuencias del ADN a partir del análisis de tejido blando y esqueletal, respectivamente, de restos humanos prehistóricos. Actualmente

estos primeros resultados son discutidos (Sampietro *et al.*, 2006; Knapp *et al.*, 2015), sin embargo, los mismos dieron inicio a un nuevo campo de estudio orientado a estudiar la variabilidad genética de las poblaciones humanas antiguas.

Al material genético en estudio se lo englobó bajo el concepto del ADN antiguo y se lo describió como aquel recuperado de restos biológicos preservados natural o artificialmente (Rey Fraile, 2007). Las secuencias del ADN multicopia son las que tienen mayor tasa de supervivencia en especímenes antiguos, por lo que la mayoría de las secuencias del ADN que se han recuperado han sido de ADNmt y de cloroplastos en las plantas (Hofreiter *et al.*, 2001). Recién a partir de 1990 fue posible obtener secuencias cortas del ADN nuclear genuino en un resto arqueológico de 7.500 años AP (Lawlor *et al.*, 1991) y a partir de megafauna (Greenwood *et al.*, 1999) y es en 1993 cuando Stone y Stoneking publicaron el primer estudio de ADNa a escala poblacional en nativos americanos (Stone y Stoneking, 1993).

3.2.3 Caracterización de variantes del ADN mitocondrial

Como fue señalado más arriba, la información codificada en el ADNmt se transmite de madres a hijos, es decir por línea materna, por lo que cada descendiente de una misma madre posee el mismo conjunto de mutaciones y una única variante de esa secuencia. Sin embargo, las variantes pueden ser transmitidas con alguna mutación. Este proceso genera una estructura genealógica en el ADNmt, en la que las diferentes variantes comparten conjuntos específicos de mutaciones asociadas denominadas alternativamente linajes o haplotipos (King et al., 2006; Kemp y Schurr, 2010; Raff et al., 2011). Los haplotipos relacionados, que presentan mínimas diferencias pero que comparten una serie de mutaciones que provienen de un ancestro común son denominados subhaplogrupos (Kemp y Schurr, 2010). La herencia materna del ADNmt genera una agrupación natural de las secuencias de haplotipos en grupos monofiléticos, denominados haplogrupos (Kemp y Schurr, 2010; Kloss-

Brandstätter *et al.*, 2010; Raff *et al.*, 2011). Si bien algunos autores limitan el término haplogrupo a grupos filogenéticos del ADNmt definidos por mutaciones en la región codificante (Kemp y Schurr, 2010), Raff *et al.* (2011) proponen una definición más inclusiva en la cual un haplogrupo es un grupo de ADNmts relacionados filogenéticamente que comparten ciertos marcadores tanto de la región hipervariable como de la región codificante. Este último criterio es el empleado a lo largo de este trabajo de tesis para referir a haplogrupo.

Los haplogrupos mitocondriales han sido denominados con letras mayúsculas del alfabeto latino (e.g., A, B, C, D; Torroni et al., 1992, 1993, 1994, 1996; entre otros). Para los subhaplogrupos y haplotipos se alternan letras y números (e.g., A2, D1g, C1b13). La denominación de los haplogrupos se fue otorgando a medida que se iban describiendo, sin poseer una organización jerarquizada que los enumere de forma lógica (Motti, 2012), siendo imposible deducir a partir de su denominación el grado de parentesco entre ellos (Fig. 3.2). El haplogrupo más diverso presente en el continente africano fue denominado con la letra L y es a partir del cual, según lo establecido hasta el presente, derivan el resto de los linajes mitocondriales (Mishmar et al., 2003; Fig. 3.2).

Las variantes -haplotipos y haplogrupos- del ADNmt pueden ser distinguidas por diferentes técnicas tales como los análisis de Polimorfismos de Longitud de Fragmentos de Restricción (RFLP, por sus siglas en inglés) y la secuenciación, entre otros. Los primeros análisis de RFLPs en humanos se basaron en la utilización de enzimas de restricción para cortar el ADN, obteniendo segmentos de longitud variable. Esos primeros análisis utilizaron entre 9 y 12 enzimas que mostraban la existencia de varios sitios polimórficos estables, algunos de los cuales se heredan en conjunto (Brown, 1980; Johnson et. al., 1983; Schurr, 1990; Torroni et al., 1992). Luego, se comenzó a utilizar la secuenciación del genoma mitocondrial principalmente de la región hipervariable (e.g., Horai et al., 1991).

Actualmente, se están desarrollando tecnologías más sofisticadas como la secuenciación de genoma completo de los individuos, tanto nuclear como mitocondrial, a través de "Next Generations Sequencing". Esta técnica se basa en generar librerías de secuencias donde todos los fragmentos de ADN de una muestra en estudio son modificados en sus extremos para poder unirse a cebadores de secuenciación universales. Esto permite que se den en paralelo la amplificación y la secuenciación de todos los segmentos (Shapiro y Hofreiter, 2012). Sin embargo, esta tecnología es aún muy costosa, sí se tiene en consideración que en genética de poblaciones comúnmente se analizan muestras compuestas por numerosos individuos.

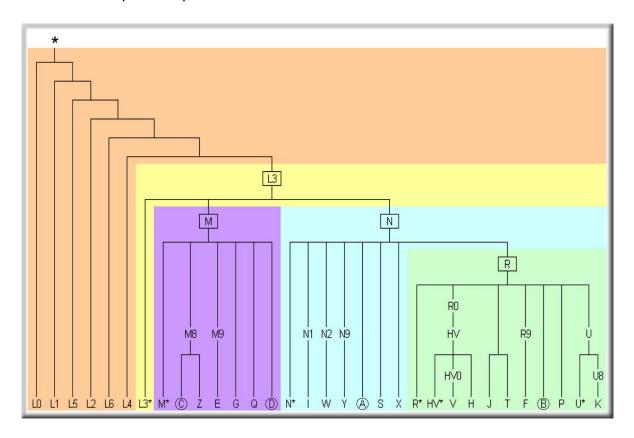


Figura 3.2. Filogenia del ADNmt ilustrando la letra asignada a cada linaje. Los haplogrupos A, B, C y D presentes en Asia y América están marcados con un círculo. Imagen tomada y modificada de van Oven y Kayser (2008).

3.3 Variación del ADN mitocondrial en América

3.3.1 Subhaplogrupos y haplotipos del ADN mitocondrial en América

Los primeros estudios que exploraron la variación del ADNmt en América definieron grupos amplios de variantes mediante técnicas de RFLPs (Wallace et al., 1985; Schurr et al., 1990). Entre ellos se destaca el trabajo de Wallace et al. (1985) en el que utilizaron 6 enzimas de restricción para describir diferentes combinaciones de RFLPs en muestras de Norteamérica, y con base en las mismas propusieron un posible efecto fundador para la población amerindia. Schurr et al. (1990) ampliaron el número de enzimas de restricción e incorporaron muestras de poblaciones nativas de Centro y Sudamérica. En este trabajo se concluye que todos los nativos americanos derivan de 4 haplogrupos maternos asiáticos, y dentro del continente la fuerza de la deriva génica, habría moldeado su distribución entre las poblaciones (Schurr et al., 1990; Kemp y Schurr, 2010).

En 1992 Torroni et al. (Torroni et al., 1992) establecieron los conjuntos de haplogrupos maternos característicos de poblaciones americanas tal como se los clasifica actualmente, haplogrupo A, B, C y D, surgiendo así el paradigma de "los cuatro linajes fundadores". Los haplogrupos o subhaplogrupos son considerados como fundadores en el continente americano si cumplen con los siguientes criterios: el tiempo de coalescencia i.e., tiempo de separación entre dos moléculas contemporáneas y el ancestro de las mismas- al ancestro más reciente de un grupo de linajes es cercano al tiempo de ingreso de los humanos modernos a América, el grupo de linajes está más relacionado con las variantes presentes en poblaciones asiáticas, que con otras de América y finalmente, las variantes del grupo tienen una amplia distribución en las poblaciones amerindias. Torroni et al. (1993 a, b) confirmaron los resultados anteriores mediante la secuenciación de la HVR I de individuos asiáticos y americanos. Estos haplogrupos también fueron descriptos en el mismo año por dos equipos de investigación distintos (Horai et al., 1993; Ginther et al., 1993). Trabajos posteriores identificaron variantes del denominado haplogrupo X que hasta ese momento sólo se encontraba descripto en América del Norte (Foster et al., 1996; Wallace et al., 1999). Es de destacar que los subhaplogrupos encontrados en América (X2a y X2g) son distintos a los encontrados en Europa y centro de Asia (X1, X2b-X2f, X3), y podrían estar relacionados con los presentes en algunas poblaciones de Siberia (Derenko et al., 2001).

Los haplogrupos descriptos desde la década de 1980 para América, pueden ser contextualizados bajo la hipótesis genealógica actual y en el contexto del modelo Out of Africa para el origen y dispersión de los humanos modernos, que plantea que todas las variantes mitocondriales no africanas tienen su origen en el grupo monofilético L3. Trabajos previos sugieren que la primer migración fuera del continente africano tuvo lugar cerca de los 50.000 -70.000 años AP (Soares et al., 2009) con poblaciones portadoras de M y N (según Mishmar et al., 2003), y de un derivado de N, conocido como haplogrupo R. Las poblaciones portadoras de los mismos se expandieron por Cercano Oriente y migraron hacia Europa y Asia (Macaulay et al., 2005). Posteriormente, algunos de sus descendientes, como se mencionó en el capítulo 2, llegaron a Beringia portando sólo 5 de los haplogrupos presentes en sus ancestros (Wallace et al., 1985; Schurr et al., 1990; Torroni et al., 1992). Hoy sabemos que del haplogrupo M derivan los haplogrupos C y D y sus haplotipos, y del N derivan el haplogrupo A, B y X con todos sus linajes derivados (van Oven y Kayser, 2009; O'Rourke y Raff, 2010).

La hipótesis de los 5 haplogrupos fundadores para América fue redefinida en la década del 2000 debido a los avances tecnológicos en la biología molecular y a la optimización en la secuenciación del genoma completo. Los estudios desarrollados en los últimos 15 años han permitido incrementar el número de grupos fundadores de 5 a al menos 13 subhaplogrupos: A2, B2, C1b, C1d, C1c, C4c, D1, D2a, D3, D4h3a, D4e1c, X2a y X2g (Fig. 3.3) (Bandelt *et al.*, 2003; Tamm *et al.*, 2007; Achillli *et al.*, 2008; Perego *et al.*, 2009, 2010; Malhi *et al.*, 2010; Kumar *et al.*, 2011; Bodner *et al.*, 2012). Algunos investigadores sostienen que los subhaplogrupos A2a,

A2b, D2a, D3 y X2a al estar presentes sólo en Norteamérica, tendrían su origen en algunas poblaciones del oeste de Beringia o este de Siberia entrando al continente en el milenio posterior a la llegada de los primeros fundadores (Torroni *et al.*, 1992; Schurr y Sherry, 2004; Achilli *et al.*, 2008; Perego *et al.*, 2009).

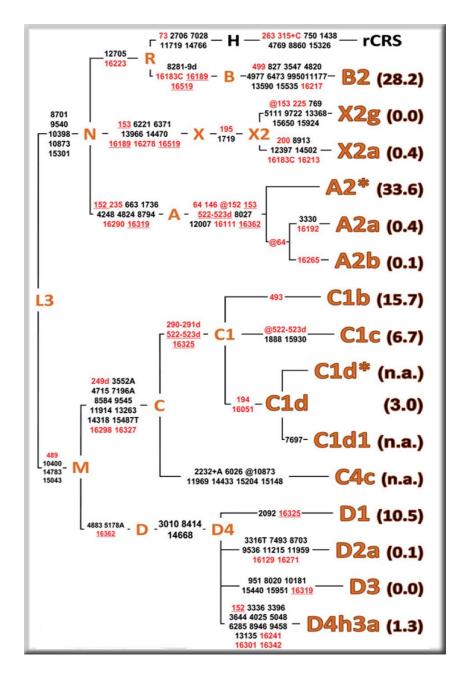


Figura 3.3. Árbol filogenético de los linajes presentes en los nativos americanos con las mutaciones específicas y las raíces de origen de cada uno. Imagen tomada y modificada de Perego *et al.* (2010).

3.3.2 Antigüedad de los subhaplogrupos fundadores americanos

Los datos obtenidos a partir de estudios genéticos han sugerido un ingreso de las poblaciones humanas al continente americano relativamente más antiguo que el propuesto con base en la evidencia arqueológica (e.g., Bonatto y Salzano, 1997). Algunos de los primeros trabajos plantearon que los haplogrupos A, C y D llegaron a América desde el norte de Siberia a través de Beringia. El haplogrupo B habría ingresado más tardíamente -a través de una ruta pacífica-, tal como lo sugería su menor frecuencia con respecto a los otros 3 haplogrupos. Esta vía de ingreso al continente es apoyada por la presencia del haplogrupo a lo largo de la costa asiática, su ausencia en las poblaciones de Siberia y su baja frecuencia en el norte de Norteamérica (Torroni et al., 1992; Mishmar et al., 2003).

Bonatto y Salzano (1997) señalaron, a partir de la diversidad encontrada dentro del haplogrupo A, un origen para todas las poblaciones americanas entre 43.000 y 30.000 años AP, dependiendo de la tasa de sustitución empleada. Este modelo, denominado como *Out of Beringia* planteó además un período de establecimiento de la población original en ese puente terrestre emergido durante las glaciaciones, y una dispersión en América entre 20.000 y 14.000 años AP. Tamm *et al.* (2007) desarrollaron un modelo llamado *Beringian incubation* en el que retoman la propuesta de Bonatto y Salzano (1997) pero con fechado para la dispersión hacia América entre los 17.000 y 10.000 años AP aproximadamente. Este estudio tuvo sus bases en el análisis de genomas mitocondriales de poblaciones asiáticas y americanas actuales y en la aparición de diversos linajes maternos, algunos compartidos entre ambos continentes y otros nuevos encontrados solo en América.

Siguiendo con esta idea y basándose en 86 genomas amerindios completos, Fagundes *et al.* (2008) propusieron que el poblamiento de América estaba dado por una sola población fundadora, con una diferenciación inicial de la población asiática en Beringia hace 23.000 a 19.000 años atrás y el ingreso al continente americano entre 18.000 a 15.000 años AP. Otros autores coinciden con estas estimaciones más tardías que las originalmente propuestas

sobre la base de datos moleculares (Achilli *et al.*, 2008; Mulligan *et al.*, 2008). Asimismo, los estudios más recientes sugieren que el origen de haplotipos fundadores en el sur de Sudamérica ocurrió entre *ca.* 18.000 y 14.000 años AP (Bodner *et al.*, 2012; de Saint Pierre *et al.*, 2012).

En conclusión, los análisis recientes señalan que la diferenciación inicial de las variantes del ADNmt americanas habrían divergido de las asiáticas entre los 25.000 y 19.000 años AP mientras que las variantes locales se habrían originado entre 18.000 y 15.000 años AP dentro del continente.

3.3.3 Distribución geográfica de las variantes del ADN mitocondrial en Sudamérica

Merriwether *et al.* (1995), Moraga *et al.* (2000) y Schurr (2004), entre otros, señalaron que las variantes del ADNmt siguen un patrón de variación geográfica, principalmente latitudinal, en Sudamérica. Salas *et al.* (2009), realizaron un compendio sobre la distribución de los linajes del ADNmt en poblaciones actuales del centro y sur de América (Fig. 3.4). El haplogrupo A es muy frecuente en Mesoamérica y en el Noroeste de Sudamérica, seguido de los haplogrupos B y C. A medida que la frecuencia de A disminuye hacia el sur, comienza a aumentar la proporción de haplogrupos C y D. Por su parte, el haplogrupo B posee su mayor frecuencia en las poblaciones andinas, esto podría deberse a una migración por la costa pacífica (O'Rourke y Raff, 2010).

Bisso-Machado *et al.* (2012) realizaron una revisión muy completa de los estudios sobre el ADNmt y la región no recombinante del cromosoma Y de varias poblaciones actuales y algunas antiguas de Sudamérica, encontrando una fuerte correlación en la frecuencia de los haplogrupos A y D con la latitud, y una moderada influencia de factores geográficos y lingüísticos sobre la distribución de los haplogrupos mitocondriales.

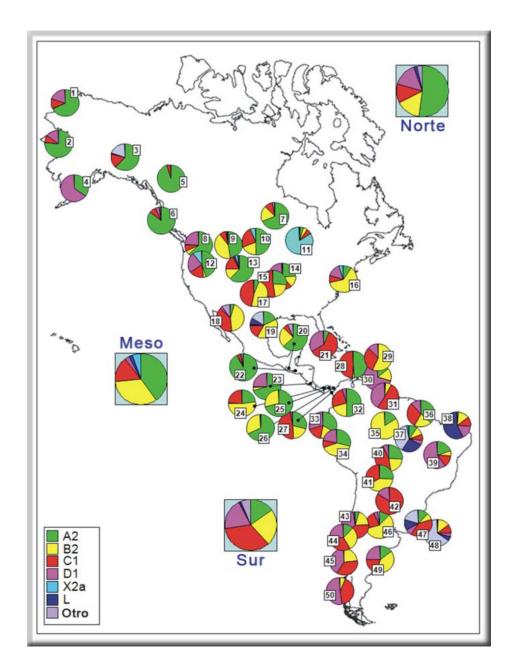


Figura 3.4. Distribución de subhaplogrupos fundadores en el continente americano para poblaciones actuales. Imagen tomada y modificada de Salas *et al.* (2009). Los códigos de las poblaciones son: Norteamérica: 1=Chukchy; 2=Eskimos; 3=Inuit; 4=Aleuts; 5=Atapascanos; 6=Haida; 7=Apache; 8= Bella Coola; 9=Navajo; 10=Sioux; 11=Chippewa; 12=Nuu-Chah-Nult; 13=Cheyenne; 14=Población Muskogea; 15=Cheyenne-Arapaho; 16=Yakima; 17=Stillwell Cherokee; Meso-América: 18=Pima; 19=México; 20=Quiche; 21=Cuba; 22=El Salvador; 23=Huetar; 24=Emberá; 25=Kuna; 26=Ngöbé; 27=Wounan; Sudamérica: 28=Guahibo; 29=Yanomami de Venezuela; 30=Gaviao; 31=Yanomami de Venezuela y Brasil; 32=Colombia; 33=Ecuador; 34=Cayapa; 35=Xavante; 36=norte de Brasil; 37=Brasil; 38=Curiau; 39=Zoró; 40=Ignaciano, 41=Yuracare; 42=Ayoreo; 43=Araucanos; 44=Pehuenche; 45=Mapuches de Chile; 46=Coyas; 47=Tacuarembó; 48=Uruguay; 49=Mapuches de Argentina; 50=Yaganes.

En líneas generales, la distribución latitudinal en las frecuencias de haplogrupos podría ser explicada por aislamiento por distancia, la acción de la deriva génica, movimientos poblacionales y efectos estocásticos a medida que los humanos se iban dispersando por el subcontinente (Moraga *et al.*, 2000; Schurr, 2004; Bodner *et al.*, 2012; de Saint Pierre *et al.*, 2012).

Diferentes estudios han explorado los patrones de variación en las variantes del ADNmt a escalas geográficas de alcance local. Rickards et al. (1999) detectaron una variante poco común en aproximadamente un 22% de la población cayapa de Ecuador. Al no estar descripto hasta ese momento, lo nombraron el "Haplotipo Cayapa". Luego, éste fue encontrado en poblaciones de Brasil (Alves-Silva et al., 2000), México (Green et al., 2000) y en mapuches y yaganes de Chile (Moraga et al., 2000), siendo denominado como D4h3a. Perego et al. (2009) relacionaron este linaje a una dispersión rápida por la ruta costera del Pacífico desde América del Norte hasta el sur del continente y fue considerado un subhaplogrupo fundador derivado del haplogrupo D. Recientemente, Rasmussen et al. (2014) reportaron el haplotipo de los restos de un infante en Anzick, Montana, al noroeste de Estados Unidos, con una datación entre los 12.707 y los 12.556 años AP. Este niño fue asociado a la cultura Clovis y fue el primer resto arqueológico del cual se obtuvo la secuencia completa en América. Su linaje también corresponde al subhaplogrupo D4h3a. En este trabajo se menciona que habría existido una gran variabilidad genética en las poblaciones precolombinas ya que hay restos arqueológicos de individuos de Norteamérica que poseen variantes que no están presentes en Centro y Sudamérica, lo cual ya había sido señalado por Kemp et al. (2007).

Luego de varios años de considerar a D1 como un subhaplogrupo fundador, Bodner et al. (2012) refinaron la filogenia de este subhaplogrupo, describiendo dos haplotipos novedosos en poblaciones actuales. Denominaron D1g al haplotipo caracterizado por las mutaciones A8116G y C16187T. Dentro del mismo describieron 6 ramas diferentes (D1g1-D1g6). El otro haplotipo fue nombrado D1j y presenta las mutaciones T152C, C16242T y T16311C. Los autores calcularon su antigüedad dentro del rango de 16.900±1.600 años, con

lo cual pueden ser considerados como provenientes de las primeras poblaciones fundadoras del Cono Sur. Ambos linajes hasta el momento sólo fueron descriptos para Sudamérica, encontrándose el D1g disperso por Chile y Argentina, con su mayor proporción en la provincia de Río Negro, y el D1j en las Sierras Centrales en Argentina (no alcanzando el extremo sur de la Patagonia), Brasil, Bolivia, y en restos antiguos de taínos, en República Dominicana (Ginther et al., 1993; Moraga et al., 2000; Lalueza-Fox et al., 2001; Garcia-Bour et al. 2004; Salas et al., 2008; Bobillo et al., 2010). Bodner et al. (2012) formularon una hipótesis de la posible dispersión de estos linajes dentro de América del Sur, proponiendo un poblamiento por la costa pacífica con posterior flujo génico entre ambos lados de la cordillera (Fig. 3.5).

Figura 3.5. Modelo hipotético de migración para Sudamérica con una entrada por la costa pacífica y flujo génico entre ambos lados de la cordillera. En verde se enmarca el área posiblemente habitada por los mapuches. Imagen tomada y modificada de Bodner *et al.* (2012).

En otro estudio reciente, García et al. (2012) propusieron un origen distinto para el D1j, a partir de su gran incidencia en las Sierras Pampeanas, y su baja frecuencia en Chile. Postularon que la variante D1j presente en individuos de Bolivia, Perú, Uruguay y Brasil puede ser producto, probablemente, de flujo génico reciente en tiempos históricos. Además, propusieron que este subhaplogrupo sería más moderno (13.900±2.900 años) respecto a lo propuesto por Bodner et al. (2012). Los subhaplogrupos fundadores descriptos para poblaciones actuales también fueron encontrados en las muestras de poblaciones prehispánicas.

Analizando 1108 secuencias de poblaciones actuales de 6 provincias del centro-oeste y noreste de Argentina, Motti (2012) caracterizó a 8 de los 13 subhaplogrupos fundadores, siendo éstos: A2, B2, C1b, C1c, C1d, C4c, D1 y D4h3. Cardoso *et al.* (2013) analizaron la secuencia de la region D-loop del ADNmt de individuos de la provincia de Jujuy y reportaron una alta proporción de subhaplogrupos maternos amerindios (98%), entre ellos: A2, B2, B4b, C1, C1b, C1d, D1, D1a2, D1f, D1j y D4h3a4.

La variación del ADNmt en las poblaciones sudamericanas prehistóricas es relativamente poco conocida. Hasta el año 2014 se han analizado aproximadamente 32 muestras y 700 individuos, que comprenden un lapso temporal entre 9.000 años AP y momentos históricos (Postillone et al., 2014a). A inicios de la década de 1990, Horai et al. (1991) publicaron las primeras secuencias obtenidas a partir de restos óseos para poblaciones nativas de Sudamérica. Estos autores analizaron la HVR I de 5 individuos hallados en un sitio arqueológico en Arica (Chile) para establecer relaciones filogenéticas entre poblaciones americanas y asiáticas. Luego, en 1996 Ribeiro-Dos-Santos et al. (1996) y Monsalve et al. (1996) publicaron más secuencias de la HVR I en amerindios precolombinos. Lalueza et al. (1997) analizaron muestras de la región patagónica encontrando una elevada proporción de los haplogrupos C y D, y no hallando resultados para A y B. Durante los últimos años nuestro equipo de investigación ha realizado varias contribuciones: Dejean et al. (2014) sobre variabilidad biológica en el NOA, Postillone et al. (2014a) realizó un

compendio de resultados de RFLP para varias muestras precolombinas de Sudamérica, y Postillone *et al.* (2014b) para la Puna jujeña en comparación con muestras chilenas y por último el presentado por Russo *et al.* (2014) también para el NOA, específicamente para el sitio Salvatierra ubicado en los valles Calchaquíes, en la provincia de Salta. En el mapa (Fig. 3.6) se resumen todos los estudios de linajes maternos para el ADNa en Sudamérica descriptos hasta el año 2014. El detalle de cada uno de ellos se presenta en la Tabla anexa 1.

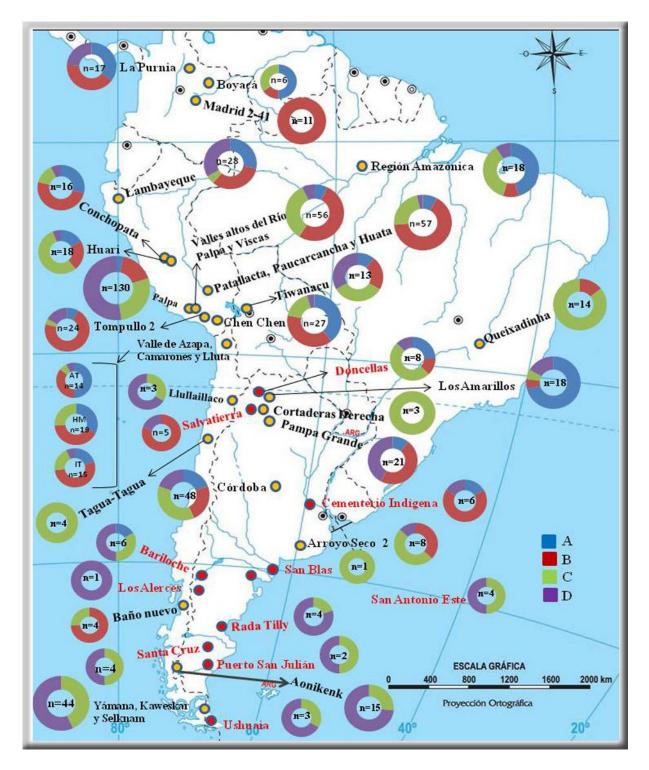


Figura 3.6. Distribución de haplogrupos -definidos principalmente por RFLP- en muestras antiguas de Sudamérica. Mapa tomado de la recopilación realizada por Postillone *et al.* (2014a).

Postillone et al. (2014a) señalan que la distribución de frecuencias de haplogrupos en Sudamérica presenta predominancia de los haplogrupos C y D en el extremo sur y una distribución del haplogrupo B con altas frecuencias extendida a lo largo de la costa pacífica en el norte y centro del subcontinente. Estos patrones muestran similitudes con lo descripto para muestras actuales, aunque también se observan algunas diferencias (Schurr, 2004; Nores y Demarchi, 2011). Sin embargo, debe tenerse en cuenta que la distribución espacial y temporal de las muestras antiguas analizadas hasta el presente es muy irregular y la resolución de los marcadores moleculares analizados es baja (Fehren-Schmitz et al., 2011), cuando se la compara con los datos disponibles para poblaciones actuales.

Capítulo 4: Objetivos e Hipótesis

A continuación se detallan los objetivos e hipótesis propuestos para el desarrollo de los estudios involucrados en esta tesis.

4.1 Objetivos

El objetivo general de este trabajo es contribuir a la comprensión de la historia evolutiva de las poblaciones precolombinas del Cono Sur de Sudamérica en el contexto de la variación presente en las poblaciones americanas mediante el análisis de los patrones de variación en el ADNmt antiguo y moderno.

Los objetivos específicos de esta investigación se organizan en dos ejes principales, por un lado, a) los aspectos metodológicos vinculados al análisis genético en muestras antiguas, y por otro lado, b) el empleo de información genética para estudiar la historia evolutiva de las poblaciones del Cono Sur de Sudamérica:

- a1) Explorar diferentes métodos para la extracción de ADNmt a partir de muestras arqueológicas.
- a2) Evaluar el grado de información que posee la secuencia de la HVR I del ADNmt antiguo para la diferenciación de variantes de subhaplogrupos y haplotipos previamente definidos para Sudamérica a nivel poblacional local y regional.
- a3) Evaluar las potencialidades y limitaciones que presenta el análisis de material genético antiguo en los estudios de la historia poblacional del Cono Sur de Sudamérica.
- b1) Determinar los subhaplogrupos y haplotipos mitocondriales en muestras arqueológicas de Puna en el Noroeste argentino, transición Pampa-Patagonia y Patagonia centro a partir del estudio de secuencias de la HVR I.
- b2) Explorar los patrones de variación intra e inter-poblacional en haplotipos mitocondriales entre diferentes regiones geográficas del Cono Sur

de Sudamérica, centrándose en las diferencias y similitudes entre los patrones de variación observados en muestras arqueológicas y actuales.

De manera complementaria: se exploró la posibilidad de estimar el sexo de los individuos analizados a partir de la amplificación del gen de la amelogenina.

4.2 Hipótesis

Las siguientes hipótesis guían la presente investigación:

- La composición y magnitud de la variación en el ADNmt observadas en las muestras arqueológicas del Noroeste argentino, transición Pampa-Patagonia y Patagonia centro presentan similitudes con las muestras modernas procedentes de cada región.
- En el Cono Sur de Sudamérica la variabilidad en los linajes del ADNmt de muestras antiguas y modernas se asocia con las diferencias en la ubicación geográfica de las mismas.

Capítulo 5: Descripción de las muestras

5.1 Selección de las estructuras esqueletales a analizar

Las muestras de ADNa pueden obtenerse a partir de diferentes materiales biológicos. Generalmente, los investigadores privilegian el empleo de tejidos óseos -los huesos largos de las extremidades- y dentales -dientes molares permanentes-. Estos restos esqueletales presentan un proceso de descomposición *post-mortem* diferencial respecto a otras partes del cuerpo -por ejemplo partes blandas-. La baja velocidad en la tasas de descomposición de estos tejidos hace que el ADN se conserve en mayores proporciones probablemente debido a la menor humedad que retienen y la barrera física que presentan contra microbios por su mayor proporción de cristales de hidroxiapatita (Gilbert *et al.*, 2003).

Los huesos presentan mayor porosidad que los dientes por lo cual, en los procedimientos de limpieza, se corre el riesgo de arrastrar material genético exógeno hacia su interior. Por lo tanto, existe un consenso en que el uso de piezas dentales es más adecuado, siempre que sea posible, por ser donde el ADN se preserva mejor (Pilli *et al.*, 2013; Cardozo *et al.*, 2014).

El mayor problema asociado a la selección de piezas dentales para análisis de ADNa es la poca cantidad de material disponible debido a su menor tamaño respecto a los restos óseos y a la necesidad de su conservación para otros estudios bioantropológicos relacionados con dieta, estado de salud bucal y determinación de la edad, entre otros. Una posible solución a estos problemas es la utilización de terceros molares, que son las piezas dentales menos utilizadas en los estudios bioantropológicos. Puede suceder que en los sitios arqueológicos se encuentren individuos que no posean piezas dentales, que éstas estén en mal estado de conservación o presenten condiciones patológicas. En esos casos se procede a la selección de piezas óseas. En consecuencia, siempre es necesario realizar una evaluación del material, previa al muestreo, y seleccionar las piezas en relación a la disponibilidad y el estado de conservación con el fin de aumentar las posibilidades de éxito en la tipificación genética de cada individuo.

Por todos estos motivos, para esta tesis se seleccionaron, siempre que fuera posible, piezas dentales. En particular, se obtuvieron terceros molares y en aquellos casos en los que este diente no se encontraba presente se seleccionaron premolares, teniendo en cuenta el estado de preservación de la corona y la ausencia de caries. En el caso en que los dientes no presentaban un buen estado de conservación o estaban ausentes, se decidió tomar una muestra de costilla (generalmente la más pequeña).

5.2 Características de las muestras

Por todos estos motivos, para esta tesis se seleccionaron, siempre que fuera posible, piezas dentales. En particular, se obtuvieron terceros molares y en aquellos casos en los que este diente no se encontraba presente se seleccionaron premolares, teniendo en cuenta el estado de preservación de la corona y la ausencia de caries. En el caso en que los dientes no presentaban un buen estado de conservación o estaban ausentes, se decidió tomar una muestra de costilla. A continuación se describe brevemente cada área y las muestras analizadas en cada una de éstas (Fig. 5.1).

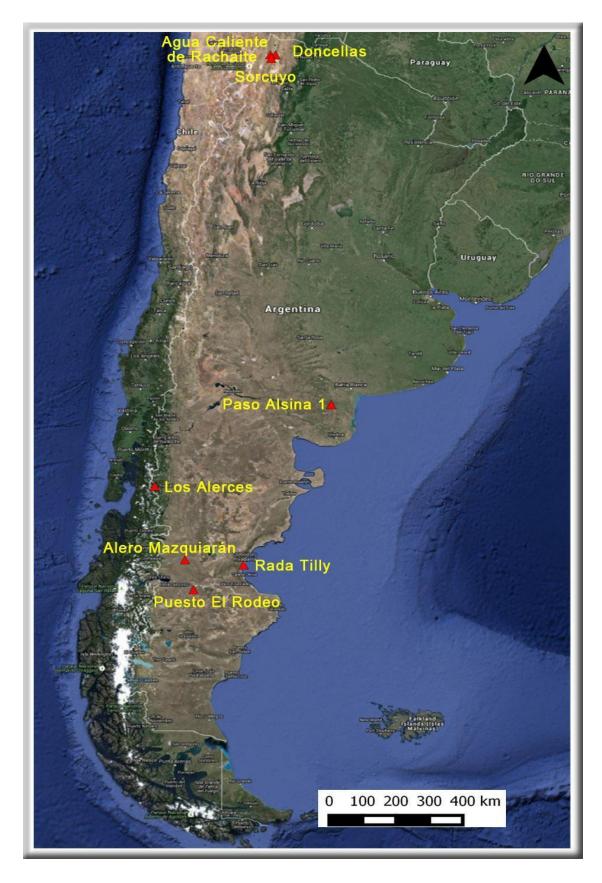


Figura 5.1. Ubicación geográfica de las muestras analizadas en este trabajo

5.2.1 Muestras de Puna

La Puna se encuentra ubicada a 3200-4000 msnm con clima seco y frío con gran variación térmica y precipitaciones muy escasas. La vegetación característica es de tipo estepa arbustiva y se disponen en forma de fajas siguiendo las cuencas alargadas, en las cuales se encuentran pastizales y bosques (Cabrera y Willink, 1973). La localidad arqueológica río Doncellas (Dto. de Cochinoca, provincia de Jujuy) se encuentra ubicada entre los 22º 49′ 12,28′′ lat. sur y 66º 03′54,89′′ long. oeste, en un ambiente típico de Puna con una altitud de 3900 msnm, precipitaciones anuales actuales entre los 100 y 300 mm y con recursos hídricos permanentes (Alfaro, 1988; Pérez y Killian Galván, 2011). La muestra analizada está compuesta por 23 piezas dentales pertenecientes a individuos adultos (Tabla 5.1) procedentes de los sitios arqueológicos Doncellas, Agua Caliente, Río Negro, Casabindo y Sorcuyo, ubicados en la Puna de Jujuy.

Según Fuchs y Varela (2013) esta colección de gran valor arqueológico se formó a partir de tres campañas arqueológicas llevadas a cabo por el Dr. Casanova, la primera en 1940 en el poblado de Doncellas, la segunda en 1941 y junto con Osvaldo Paulotti en el poblado de Agua Caliente de Rachaite, y la tercera en 1944 en Río Negro, Sorcuyo y Casabindo, sitios cercanos geográficamente a los antes mencionados. De acuerdo a los fechados radiocarbónicos obtenidos por Fuchs y Varela (2013) empleando piezas dentales, Doncellas (n=3) presentó una antigüedad de entre 602 y 568 años AP, Agua Caliente (n=1) de 559 ± 41 años AP y Sorcuyo (n=1) de 633 ± 38 años AP, lo que ubica a las muestras en el periodo de Desarrollos Regionales.

Los sitios mencionados se encuentran ubicados en la cuenca endorreica de Miraflores-Guayatayoc-Salinas Grandes, en el centro de la Puna jujeña. Dentro de esta localidad, según Alfaro (1983) y siguiendo las descripciones de Casanova, las localidades originalmente podrían haber tenido funciones complementarias entre ellas y con otras de la región. Estos poblados poseían un patrón de asentamiento característico del tipo "semi-conglomerado agropastoril", con viviendas de planta rectangular, relacionados con la cuenca

del Lago Titicaca en Bolivia, con San Pedro de Atacama en el norte de Chile y con la Quebrada de Humahuaca (Albeck y Ruiz, 2003). Según Albeck (2007) la Puna de Jujuy era un área próspera en pasturas para la crianza y mantenimiento de animales, en su mayoría camélidos. Las características ecológicas de la zona como la altitud, el suelo, las condiciones climáticas y la poca disponibilidad de agua, limitaron la práctica agrícola en la región. Aunque se ha descripto un cierto desarrollo agrícola en el área de Doncellas—Casabindo, se mantenían estrechas relaciones con áreas esencialmente agrícolas como el sur de Bolivia, los oasis atacameños y Quebrada de Humahuaca (Alfaro, 1983; Albeck, 2003).

Tabla 5.1. Detalle de la muestra analizada correspondiente a la Puna

			Pieza	Datación
Sitio		nº de	dental [∆]	(años AP)
Arqueológico	Muestra	catálogo		
	DC10	15438	2 MSI	559 ± 41
	DC14	15421	2 MSD	
	DC15	15418	2 MSI	
Agua Calianta	DC16	15445	3 MID	
Agua Caliente	DC17	15404	2 MII	
	DC20	15400	3 MII	
	DC21	15500	3 MID	
	DC23	15410	3 MSD	
Casabindo	DC9	14136	3MSD	509 ± 42
	DC1	13954	3 MSI	
	DC2	13986	3 MSD	
	DC3	14071	3 MSI	
	DC4	14091	3 MSI	
	DC5	13989	3 MSD	
Doncellas	DC7	13955	3 MSD	568 ±44
	DC8	13958	3 MSD	585 ±42
	DC11	13937	3 MSI	602 ± 33
	DC12	14103	1 PMSI	
	DC18	14040	2 MSI	
	DC19	14051	3 MSD	
Río Negro	DC6	14118	1 PMSD	
	DC13	14176	3 MSI	
Sorcuyo	DC22	14173	2 MSD	

 Δ Para las piezas se asignó: con número la posición en la mandíbula, y con letras en orden: M: molar, PM: premolar, posición S: superior, I: inferior, y por último la lateralidad I: izquierdo, D: derecho.

El intercambio de bienes entre los distintos pisos ecológicos parecería haber estado a cargo de poblaciones de tierras altas (pastoriles y agropastoriles) (Torres-Rouff et al., 2012) que se desplazaban a ambos lados de la cordillera, conectándose con poblados que se encontraban ubicados en regiones de menor altitud como las quebradas y las yungas. Estas rutas ubicaban a la Puna en una posición estratégica muy relacionada a grupos caravaneros (Núñez Atencio, 2007).

El material esqueletal correspondiente a estos sitios se encuentra depositado como colección osteológica de la Puna de Jujuy en el Museo Etnográfico "Juan B. Ambrosetti" (Facultad de Filosofía y Letras, UBA). La autorización para el análisis de las muestras procesadas fue obtenida por el Dr. Cocilovo quien en el marco del proyecto FONCYT (PICT: 02210/07) "El Poblamiento Antiguo del Área Andina Centro Meridional. Origen y Evolución de las Poblaciones Nativas: Interacciones Biosociales, Aislamiento, Dispersión y Diferenciación", y en forma conjunta con la Dra. Fuchs, realizaron paralelamente un análisis morfológico de los cráneos además de obtener las dataciones que se incluyen en estas tesis.

5.2.2 Muestras de la transición Pampa-Patagonia

Esta área se emplaza en una zona correspondiente a la provincia del Espinal, distrito del Caldén (Cabrera y Willink, 1973). La misma se considera una zona de transición o ecotono entre la provincia del Monte y la Pampeana donde la vegetación predominante son especies del genero *Prosopis* y su clima en la porción sur es templado y seco.

El sitio Paso Alsina 1 (39° 23.277' Lat. S y 63°15.360' Long. O) se encuentra ubicado a 400 mts aproximadamente de la margen sur del río Colorado, y a unos 100 km de la costa atlántica en el partido de Patagones de la provincia de Buenos Aires. Se caracteriza por ser un "área exclusiva de inhumación" conformada por 10 entierros secundarios múltiples y un número mínimo de 77 individuos de ambos sexos y diversas categorías de edad de

muerte (Martínez *et al.*, 2006; Flensborg *et al.*, 2013). Los entierros se encontraban dispuestos en una superficie reducida de 6m² y cercanos entre sí (Fig. 5.2).

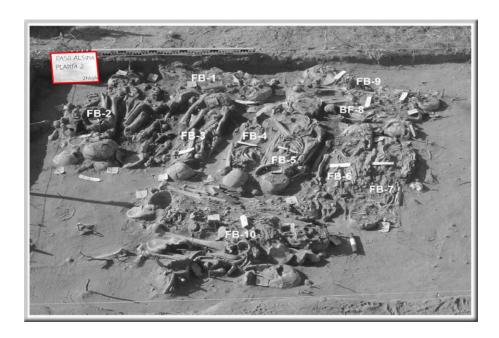


Figura 5.2. Foto reproducida con autorización del autor (Flensborg *et al.* 2013). Disposición de los 10 paquetes funerarios en el sitio Paso Alsina 1.

Se realizaron 13 fechados radiocarbónicos cuyos valores no muestran diferencias estadísticamente significativas, estimando un rango entre 440 a 570 años AP. El contexto del sitio permite inferir que se habría llevado a cabo el entierro de todos los fardos funerarios en un único evento de inhumación (ver discusión en Martínez *et al.*, 2006). De este sitio se realizaron análisis genéticos en 20 piezas dentales provenientes de individuos adultos (PA1 a PA20; Tabla 5.2).

Paso Alsina 1 se distingue del resto de los sitios analizados en la región (La Petrona, San Antonio y El Tigre, entre otros) pues la mayoría presenta evidencia de ser bases residenciales asociadas a lugares de entierro. A partir de esos sitios pudieron determinarse las características del estilo de vida de los individuos que habitaban la región y que podrían reflejar el de la población de

Paso Alsina 1, donde no hay suficientes evidencias artefactuales relacionadas (Martínez, 2008-2009).

Tabla 5.2. Descripción de las muestras analizadas para Paso Alsina 1. La información fue provista por el Dres. Martínez y Flensborg

Muestra	Nº de	Entierro	Cráneo	Pieza dental ^Δ	Sexo
	catálogo				morfológico
PA1	19	4	6	3 MSD	Masculino
PA2	18	6	30	3 MSD	Masculino
PA3	20	7	K	3 MID	Masculino
PA4	1	2	4	3 MSD	Femenino
PA5	2	5	17	3 MSI	Masculino
PA6	3	7	12	3 MII	Femenino
PA7	4	10	8	3 MID	Masculino
PA8	5	10	9	3 MII	Masculino
PA9	6	10	26	3 MSD	Indeterminado
PA10	7	10	34	3 MSI	Femenino
PA11	8	1	18	3 MSD	Femenino
PA12	9	8	14	2 MSD	Masculino
PA13	10	4	20	2 MID	Indeterminado
PA14	11	9	21	3 MII	Femenino
PA15	12	10	24	1 MSI	Indeterminado
PA16	13	10	27	1 MSD	Indeterminado
PA17	14	10	35	2 MSD	Masculino
PA18	15	1	42	2 MSI	Femenino
PA19	16	8	53	3 MSI	Femenino
PA20	17	2	22	3 MSD	Femenino

Δ Para las piezas dentales el número indica la posición seguido de M=Molar, Ubicación: S=superior, I=inferior y la lateralidad: I=zquierda, D=derecha.

En base a los conjuntos faunísticos se propone una mayor diversificación de la subsistencia durante el Holoceno tardío final (*ca.*1.000–250 años AP) en relación a las poblaciones que habitaron el área durante el Holoceno tardío inicial (*ca.* 3.000-1.000 años AP), a partir de la incorporación a la dieta de especies de tamaño pequeño, como aves, roedores y peces de diferentes microambientes. Incluso, se propone la explotación y el consumo

intensivo de algunas especies como el guanaco (Stoessel, 2014; Stoessel y Martínez, 2014).

Por otra parte, el hallazgo de algunas rocas silíceas provenientes de regiones vecinas estaría indicando relaciones de intercambio con otros grupos sociales, con lo cual los autores proponen a esta región como una "frontera blanda" de interacción en sentido norte-sur y este-oeste (Martínez, 2008-2009).

De acuerdo con la información contextual, puede inferirse que la estructura de entierro de Paso Alsina 1 se generó como parte de un proceso social regional a raíz de un incremento en la densidad demográfica, una menor movilidad residencial, una circunscripción espacial de los diversos grupos y cambios en el modo de comportamiento funerario, que se evidencian con un intenso tratamiento de los restos (desarticulación y desprendimiento del material blando asociado al hueso, además del pintado de los mismos con colorantes rojos) (Martínez et al., 2012; Flensborg et al., 2013).

La muestra correspondiente al sitio Paso Alsina 1 fue obtenida en el marco de trabajos de excavación arqueológica bajo el proyecto denominado "Investigaciones arqueológicas en el curso inferior del Río Colorado" financiado por la Fundación Antorchas y dirigido por el Dr. Gustavo Martínez (INCUAPA-CONICET). La muestra se encuentra depositada en el Núcleo Consolidado de Investigaciones Arqueológicas y Paleontológicas del Cuaternario Pampeano, en la ciudad de Olavarría, provincia de Buenos Aires.

5.2.3 Muestras de Patagonia centro

Se considera región patagónica al territorio situado al sur de los ríos Barrancas y Colorado, contando con una superficie aproximada a los 800.000 km². En particular, en este trabajo se estudian muestras provenientes de sitios arqueológicos localizados en los Distritos Patagónico central y del Golfo San Jorge (Cabrera y Willink, 1973). Estas áreas comprenden el centro de la provincia de Rio Negro, Chubut y la mayor parte de la provincia de Santa Cruz

y la costa del Golfo San Jorge se caracterizan por la presencia de especies vegetales de estepa arbustiva y clima seco y templado frío.

De esta área fueron analizados individuos procedentes de los siguientes sitios arqueológicos:

a) El sitio Alero Santos Salina (42º 48' 27' Lat. S y 71º 53' 56" Long. O) se encuentra en la región de la cordillera patagónica en las cercanías del río Desaguadero en el Parque Nacional Los Alerces (Esquel, provincia de Chubut). En los años 1990/1991 se hallaron restos de al menos 5 individuos adultos y subadultos que presentaron diferentes grados de completitud y preservación (Arrigoni, 1999). Los dos individuos analizados en esta tesis RT9-LA1 y RT9-LA 2 (Tabla 5.3) son adultos de sexo masculino que no presentaron modificación artificial del cráneo. Un fechado radiocarbónico realizado sobre el Individuo LA1 arrojó una antigüedad de 1303±45años AP.

Tabla 5.3. Descripción de las muestras del sitio Alero Santos Salina

Muestra	N° de	Pieza	Sexo	Datación
	catálogo	$Dental^{\Delta}$	Morfológico	(años AP)
LA 1	RT9-LA-1	2 PMSI		1303 ± 45
LA 2	RT9-LA-2	2 IID		

Δ Para las piezas dentales se asignó: PM= premolar; I= incisivo; C= canino; M= molar. La segunda letra indica S=superior; I= inferior y por último la lateralidad: I=izquierda; D= derecha

b) La muestra de Rada Tilly incluye un conjunto de sitios arqueológicos detectados dentro del área urbana de esta localidad (45° 55' 49,7" Lat. S y 67° 33' 16,4" Long. O), ubicada sobre la costa atlántica (Fig. 5.1). Los sitios incluidos aquí son: Barrio Judicial (RT7-BJ), Escuela 718 (RT8-ESC), Bergantín Belgrano (RT5-BB), Moyano 780 (RT4-MY), Seguí (RT2-SG) y Antártida Argentina (RT3-AA) (Tabla 5.4). El crecimiento de la localidad ha ido dejando al descubierto diferentes evidencias arqueológicas tales como concheros, líneas de fogones y enterratorios humanos que podrían dar cuenta de la historia de los pueblos que habitaban la región (ver descripción de alguno de los rescates

en Gordón *et al.*, 2014). Esos hallazgos fortuitos fueron recolectados en diferentes acciones de salvataje y se han ido depositando en el Museo Regional de Rada Tilly. La colección que se estaba formando, se encontraba en un estado precario de preservación, por lo que un grupo de antropólogos de la Facultad de Ciencias Naturales y Museo de la Universidad Nacional de La Plata realizaron labores de acondicionamiento de la colección y difusión sobre la conducta ante posibles nuevos hallazgos (Béguelin *et al.*, 2010). De esta colección se analizaron piezas dentales de 6 individuos adultos (DB1-DB6) descriptos en la Tabla 5.4. Gordón *et al.* (2014). realizaron estudios de isótopos estables y fechados radiocarbónicos (¹⁴C) en 5 de los individuos analizados en este estudio, ubicándolos en un periodo cronológico que abarca gran parte del Holoceno tardío entre 2955±51 años AP y 334±36 años AP.

Tabla 5.4. Descripción de las muestras de Rada Tilly analizadas.

Muestra	Nº de catálogo	Pieza dental ^Δ	Sexo morfológico	Datación (años AP)
DB1	RT3-AA	CSI		
DB2	RT8-ESC	3 MSD	Masculino	1306 ± 48
DB3	RT7-BJ	3 MSI	Masculino	1355 ± 49
DB4	RT4-MY	3 MID	Indeterminado	334 ± 36
DB5	RT2-SG	3 MII	Femenino	1392 ± 46
DB6	RT5-BB	2 IID	masculino	2944 ± 51

Δ Para las piezas dentales se asignó: PM= premolar; I= incisivo; C= canino; M= molar. La segunda letra indica S=superior; I= inferior y por último la lateralidad: I=izquierda; D= derecha

c) El sitio Alero Mazquiarán (45° 44' 15" Lat. S y 70° 25' 9" Long. O) se encuentra localizado en la estancia "Don José" en Río Mayo, al sudoeste de la provincia de Chubut. Está ubicado en un abrigo rocoso en una de las extremidades de un cañadón. En esta región se halló un entierro múltiple compuesto por restos esqueletales de 5 individuos, más paquetes de huesos de fauna y escasos objetos líticos. Las campañas para recuperar los restos encontrados en el lugar fueron llevadas a cabo por la Dras. Pérez de Micou y Aguerre durante el periodo 2004-2005 (Pérez de Micou, 2009).

Para este trabajo, se cuenta con fragmentos de costilla de dos individuos (AMZ1 y AMZ5, Tabla 5.5). El entierro del individuo AMZ1 parecería ser secundario y el individuo AMZ5 se encontró en el estrato inferior y estaba envuelto en un poncho, conservado en buen estado (Fig.5.3).

Tabla 5.5: Descripción de las muestras analizadas del Alero Mazquiarán

	Muestra	Nº de catálogo*	Pieza esqueletal	Sexado morfológico
1	AMZ1	individuo 1	costilla	Masculino
1	AMZ5	individuo 5	costilla	Masculino

^{*} corresponde a los individuos descriptos por Bernal y Aguerre (2009)

Los análisis de isótopos estables realizados indicaron que los individuos parecerían haber consumido una dieta con base en recursos terrestres, al igual que lo evidenciado para otros estudios similares en muestras patagónicas. Además no se encontraron caries lo que estaría indicando una dieta con bajas proporciones de azúcares y almidón (Bernal y Aguerre, 2009).

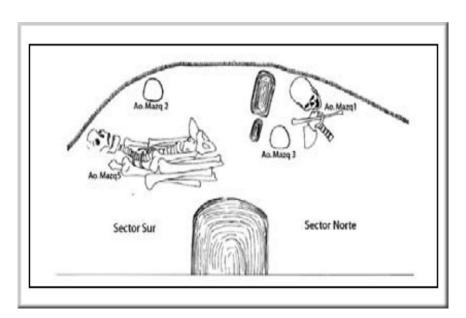


Figura 5.3. Imagen tomada y modificada de Bernal y Aguerre (2009) en la que se muestra la disposición en el entierro de los esqueletos analizados en este estudio.

Por su parte, los fechados radiocarbónicos obtenidos para los coirones (especie cespitosa de la familia de las gramíneas) que cubrían el entierro y para el poncho de lana que cubría al individuo hallado en la parte más inferior indicarían una antigüedad de 210±70 años AP y 212±35 años AP respectivamente, lo que ubicaría a estas muestras entre el último siglo de la etapa colonial (Pérez de Micou, 2009), recordemos que esta región no fue incorporada al territorio del Estado Nacional hasta la década de 1880. Los entierros con presencia de textiles y adornos de metal, patrón descripto para otros entierros de la región, denotan la coexistencia de araucanos y tehuelches (Bernal y Aguerre, 2009).

d) Sitio Puesto El Rodeo. Este sitio se encuentra ubicado en el curso medio del río Pinturas, sobre la margen derecha de su cañadón. Gradin y Aguerre (Gradin y Aguerre, 1994) hallaron un entierro múltiple de tipo "chenque" en las proximidades del Puesto El Rodeo (46° 53' Lat. S y 70° Long. O). El entierro estaba compuesto por 3 individuos, en diferentes estratos y aparentemente de diferentes temporalidades. El esqueleto 1 es el más superficial, se encontraba envuelto en cuero o "retobo" lo que ayudó a mantener su preservación. Por debajo del mismo se encontraba el esqueleto 2 cubierto por restos de vegetación los cuales fueron datados en 1280±90 años AP. Unos 30 cm más abajo, yacía el esqueleto 3 en condiciones de preservación muy precarias. El carbón encontrado en el mismo estrato fue datado en 4.860±150 años AP.

En esta tesis se analizaron piezas dentales, una del esqueleto 1 y otra del 2, y un fragmento de costilla del individuo 3. Además se incluyó en los análisis un molar de un individuo de la misma región del río Pinturas, sin fechado ni contexto (Tabla 5.6).

Tabla 5.6. Muestras analizadas de la región del Río Pinturas

Muestra	Nº de catálogo	Pieza Esqueletal	Sitio Arqueológico
RP1	Individuo 1	3 MID	Puesto El Rodeo, Santa Cruz
RP2	Individuo 2	3 MSD	Puesto El Rodeo, Santa Cruz
RP3	Individuo 3	fragmento de costilla	Puesto El Rodeo, Santa Cruz
RP4		3 MSD	Perito Moreno, Río Pinturas, Santa Cruz

Δ Para las piezas dentales: son 3° molares (M), I=inferior; S= superior y D=derecho

5.3 Base de datos de secuencias comparativas del Cono Sur (BDSC)

Con fines comparativos se generó una base de datos conformada por 1796 secuencias de la HVR I del ADNmt obtenidas a partir de muestras modernas y antiguas. La inclusión de las secuencias en la BDSC se realizó teniendo en cuenta: a) que la asignación geográfica de la muestra este acotada espacialmente, b) que pertenezcan a subhaplogrupos originarios de América, y c) que correspondan a individuos de poblaciones no-cosmopolitas en todos los casos que fueran posibles.

Para cada una de las muestras se consignó la región geográfica de la que procede, la denominación de la muestra, el haplogrupo al que fue asignada y los polimorfismos de la HVR I que presentó. Las secuencias incluidas provienen de Argentina, Brasil, Chile, Bolivia, Perú y Paraguay. Para los análisis realizados en este trabajo las muestras fueron agrupadas siguiendo criterios geográficos y temporales. Las secuencias se encontraban disponibles en GenBank (http://www.ncbi.nlm.nih.gov/genbank/) y en trabajos científicos publicados en diversas revistas nacionales y extranjeras (Tabla anexa 2 a, b; Ginther et al., 1993; Horai et al., 1993; Moraga et al., 2000; Garcia-Bour et al., 2004; Dornelles et al., 2004; Dejean, 2006; Cabana et al., 2006; Álvarez-

Iglésias et al., 2007; Corella et al., 2007; Lewis et al., 2007; Marrero et al., 2007; Kemp et al., 2009; Sandoval et al., 2009, 2013; Moraga et al., 2010; Carnese et al., 2010; Afonso-Costa et al., 2010; Sala et al., 2010; Barbieri et al., 2011; Gayá-Vidal et al., 2011; Mendisco et al., 2011, 2014; de Saint Pierre et al., 2012; García et al., 2012; Baca et al., 2012, 2014; Taboada-Echalar et al., 2013; Cardoso et al., 2013; Fehren-Schmitz et al., 2014; Bataí et al., 2014; de la Fuente et al., 2015).

Los polimorfismos obtenidos a partir de la bibliografía se convirtieron a secuencia utilizando el programa *mtDNA profiler: Mitochondrial DNA sequence analysis tool* (Yonsei DNA profiling group; http://mtprofiler.yonsei.ac.kr/). Se seleccionó la opción *mtSNP conversion* con un rango que abarca desde la base nucleotídica 16024 a la 16365 correspondiente a la HVR I (http://www.phylotree.org/).

5.4 Agrupamiento de las muestras analizadas

Para realizar los análisis estadísticos sobre la variación dentro y entre las muestras se generaron diversos agrupamientos geográficos y temporales.

Las muestras prehispánicas analizadas en esta tesis fueron agrupadas de la siguiente forma: Puna en el Noroeste de Argentina -sitios Doncellas, Agua Caliente, Casabindo, Río Negro y Sorcuyo-, transición Pampa-Patagonia -sitio Paso Alsina 1- y Patagonia centro -sitios Alero Mazquiarán, Puesto El Rodeo, Los Alerces y Rada Tilly-. Posteriormente, las muestras de las tres áreas analizadas fueron incluidas en tres grupos de mayor tamaño que contienen sólo muestras antiguas y abarcaron una escala espacial más amplia de alcance regional: Ands/NOA-A (muestras antiguas de la Puna, Quebrada de Humahuaca y Salta), PP-A (muestras del área de transición Pampa-Patagonia y sudoeste de Pampa) y Pcs-A (muestras de Patagonia centro-sur argentina y chilena) y se generó un nuevo grupo denominado Andc/s-A (muestras antiguas del sur de Perú). Finalmente, se generaron 7 grupos de muestras modernas:

Andc/n-M (Andes centro-norte), Andc/s-M (Andes centro-sur), Ands/Chn-M (Andes Sur, norte de Chile), Ands/NOA-M (Andes sur, NOA), NEA/BRs/Par-M (Noreste de Argentina, sur de Brasil y Paraguay), Pn-M (Norpatagonia), Pcs-M (Patagonia centro-sur).

5.5 Consideraciones éticas y legales en el trabajo con restos óseos humanos

En todo estudio que involucra restos esqueletales humanos se deben considerar sus implicancias éticas. Antes de comenzar con el procesamiento de las muestras, se debe realizar una evaluación sobre el estado de cada una de las piezas, priorizando el valor que poseen los restos arqueológicos, que son únicos y escasos, sobre cualquier interés científico. Sólo en el caso en el que el resultado que pueda obtenerse sea novedoso e informativo y permita aportar datos para la resolución de debates esenciales en las disciplinas relacionadas, puede considerarse la utilización de este material.

Actualmente la intervención que se realiza para obtener el material genético a partir de piezas dentales es muy poco invasiva ya que se utiliza sólo la dentina interna, lo que permite que las mismas puedan ser remontadas y ensambladas para su posterior devolución. Pero cabe señalar, como se mencionó en la introducción, que este tipo de material arqueológico puede presentar un grado de degradación física importante por meteorización y procesos tafonómicos, por lo cual, durante el procesamiento las muestras pueden sufrir algún tipo de daño como fisuras o fracturas, no pudiéndose ensamblar nuevamente la pieza. Por esta razón, antes de comenzar con las investigaciones pertinentes de esta tesis se realizó una réplica de todas las muestras a analizar para conservar la morfología original de las mismas.

En la actualidad, las investigaciones llevadas a cabo sobre restos arqueológicos, se enmarcan dentro de lo propuesto por la Ley Nacional nº 25.517 y su decreto. Este marco legal da respaldo a los estudios que se

realizan desde diferentes disciplinas acerca del pasado de las poblaciones indígenas que habitaron nuestro país, procedentes de excavaciones o de colecciones de museo.

Por otro lado, la Asociación de Antropología Biológica Argentina (AABA), en vista del considerable aumento de estudios bioarqueológicos, ha propuesto una serie de recomendaciones para el tratamiento y desarrollo de las investigaciones con material arqueológico de restos humanos (AABA 2007; Aranda *et al.*, 2014). Estas normativas apoyan el estudio de restos humanos, a través de una adecuada gestión y manejo de los mismos, considerando el respeto y responsabilidad que éstos merecen.

Este tipo de investigaciones son novedosas y muchos interrogantes de índole ética y legal permanecen aún sin resolver, en consecuencia, cada investigación en ADNa que se va a llevar a cabo debe contar con el consentimiento de un comité de ética y los permisos pertinentes otorgados por las autoridades provinciales y nacionales.

En este sentido, el proyecto de este trabajo de tesis doctoral fue autorizado y avalado por las autoridades del Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD) y fue aprobado con fecha 5 de febrero de 2014 por el Comité de Ética de la Universidad Maimónides. En ningún caso las muestras analizadas han sido objeto de reclamos de restitución por parte de comunidades originarias y actualmente las mismas se encuentran a resguardo bajo el cuidado y protección de los investigadores e instituciones mencionadas más arriba. En particular, los recaudos tenidos en cuenta para preservar la mayor cantidad de información posible antes de la extracción de material orgánico para la obtención de ADN fue la realización de un registro fotográfico exhaustivo, y de replicas en aquellos casos en que fue posible.

Para obtener las replicas se realizó un molde positivo utilizando una silicona de impresión Medium Thixoflex M (Zhermack clinical) y un acrílico autocurable para reparaciones Vaicel (Vaicril) para los negativos. Luego de

realizada la extracción de material orgánico para su análisis, las piezas dentales fueron remontadas. Una vez finalizados los análisis se generó un informe detallado para ser entregado a las instituciones e investigadores a cargo de las muestras en el que se dejó constancia de la metodología empleada y de los resultados obtenidos.

Capítulo 6: Metodología empleada en el estudio del ADN antiguo

En este capítulo se describen los métodos empleados para la extracción y amplificación del ADNa y se detallan las medidas de control y autenticación de las secuencias de la HVR I obtenidas. Asimismo, se exponen los procedimientos de alineamiento, tipificación y corroboración de los haplotipos, y los análisis estadísticos de la variabilidad intra e inter-muestral.

6.1 Problemas y precauciones en el trabajo con el ADN antiguo

6.1.1 Factores de daño en el ADN antiguo

Para el trabajo con ADNa es importante considerar algunos factores que pueden llevar al daño de las moléculas y en consecuencia limitar la posibilidad de obtener ADNa. El control de algunos de estos factores requiere del empleo de estrategias metodológicas rigurosas. Los principales efectos son la contaminación, degradación e inhibición de las muestras.

La contaminación del material arqueológico puede darse con ADN propio de los investigadores que lo manipulan y con ADN de microorganismos o animales que hayan estado en contacto con la muestra, o con el ADN de otras muestras recolectadas y almacenadas de manera conjunta; para una revisión más detallada ver Willerslev y Cooper (2005).

Asimismo, la degradación por procesos *post-mortem* de un organismo puede generar daño molecular en el ADN. Las condiciones ambientales son de vital importancia en la conservación del ADN ya que la velocidad de las reacciones químicas responsables de la degradación orgánica aumenta a temperaturas altas, en condiciones de alta humedad y acidez del suelo (Hummel, 2003). Por otro lado, también puede influir la antigüedad que presente el resto esqueletal con el que se esté trabajando. Los daños moleculares pueden incluir fragmentación, rotura de las cadenas, plegamientos inusuales de las mismas, pérdida de bases nucleotídicas y uniones inespecíficas a ADN exógeno. Esto podría interferir en la replicación del ADN

endógeno, generar artefactos y facilitar la amplificación preferencial de ADN contaminante (O`Rourke *et al.*, 2000; Willerslev y Cooper, 2005). En particular, los productos de ADNa amplificados se caracterizan por la presencia de errores como el cambio de bases. Los más comunes son C por T y G por A (Hofreiter *et al.*, 2001). En este sentido, se ha considerado que los daños ocurridos en la secuencia de ADN se producían en regiones al azar, aunque se ha señalado que estos errores podrían concentrarse en "sitios calientes" (en inglés "hot spots") (Gilbert *et al.*, 2003).

Finalmente, la inhibición de la reacción de PCR puede darse ya que algunas de las extracciones de ADNa pueden contener moléculas inhibidoras en los compuestos del suelo donde se encontraban depositadas las muestras (ácidos húmicos y/o fúlvicos, residuos de porfirinas y/o productos de su degradación y taninos) y/o en subproductos de degradación orgánica, entre otros.

6.1.2 Medidas de prevención de contaminación del ADN antiguo en el laboratorio

En este trabajo se tomaron las precauciones necesarias para el trabajo con ADNa siguiendo las recomendaciones propuestas por Kemp y Glenn-Smith (2010), Crespo *et al.* (2010) y Pickrell y Reich (2014). En particular:

- 1. El laboratorio donde se manipularon las muestras antiguas está separado del laboratorio donde se realizan las técnicas de PCR y el lugar de procesamiento de los resultados obtenidos. A su vez, este laboratorio se encuentra aislado de aquél en el que se realizan análisis del ADN humano moderno.
- 2. Todo el material utilizado (mesadas, pipetas, campana de extracción, puntas y piezas accesorias del taladro, morteros de molienda) dentro del laboratorio fue previamente lavado con hipoclorito de sodio al 6%, alcohol al 70% e irradiado por al menos 45 minutos (min.) de cada lado con luz UV (Fig. 6.1). Toda el agua utilizada en el procesamiento de las

muestras, desde la limpieza de las mismas hasta la preparación de reactivos, fue de calidad biología molecular. Este procedimiento se realizó cada vez que fue utilizado el material. Los tubos de plástico utilizados, si bien los fabricantes declaran que son libres de ADNasas y ARNasas, antes de ser empleados fueron esterilizados en autoclave e irradiados con luz UV. Las puntas descartables de las micropipetas poseen filtros para evitar aerosoles y vienen estériles de fábrica, solamente son irradiadas en su superficie, al igual que las cápsulas de Petri y las pipetas descartable tipo Pasteur.

- 3. Además, para minimizar las probabilidades de contaminación, las muestras fueron procesadas por una sola persona (María Bárbara Postillone; con un haplotipo de T con los polimorfismos: T16126C, T16198C, C16294T, C16296T, T16304C) quien fue responsable del procedimiento de extracción, purificación y amplificación del ADNa. En todos los casos se utilizó indumentaria adecuada como barbijos, cofias, doble par de guantes estériles y guardapolvos, todo debidamente irradiado previo a cada uso, con luz UV para su descontaminación.
- 4. Todos los reactivos, soluciones y enzimas fueron preparadas dentro del laboratorio de ADNa. Los equipos de reactivos comerciales empleados también fueron abiertos y utilizados exclusivamente en el mismo.
- 5. Todo el personal que trabaja en el área de ADNa fue tipificado para los marcadores estudiados en este trabajo con el fin de comparar los perfiles genéticos obtenidos de las muestras y así poder determinar si hay presencia de ADN de los investigadores en el caso de contaminaciones cruzadas.

6.1.3 Criterios de control y autenticación de los procedimientos y resultados del ADN antiguo

Como se mencionó en el punto anterior, el control de posibles eventos de contaminación es de crucial importancia en estudios con material antiguo, sobre todo como primer método para validar los resultados obtenidos. A continuación se describirán algunos conceptos y criterios a tener en cuenta en el estudio de ADNa:

- 1. En cada uno de los eventos de extracción del ADN realizado a partir de un conjunto de muestras -óseas y dentales- se incluyó un testigo o control "blanco". El testigo contenía los mismos reactivos y se aplicaron los mismos procedimientos utilizados en las extracciones a partir de material biológico pero no se incluyó el mismo.
- 2. Para evitar contaminaciones cruzadas entre las muestras, el ADN de cada una de ellas fue extraído por separado y se realizaron al menos tres extracciones independientes con las distintas alícuotas del polvo obtenido para cada una. En algunas muestras, además cada extracción se realizó con un método diferente.
- 3. En cada amplificación por PCR se realizó un "blanco" de reacción como testigo de posible contaminación con ADN exógeno en la mezcla de reactivos. Además, en cada amplificación realizada se incluyeron los blancos de extracción de cada muestra para verificar la existencia de contaminación durante la obtención del ADN o si alguna de las soluciones utilizadas en esta parte del procedimiento poseía restos de material genético.
- 4. Además, para corroborar que el programa de amplificación por PCR y los reactivos utilizados hayan funcionado de manera correcta, en el laboratorio de ADN moderno se prepararon controles con ADN de muestras modernas y se incorporaron en la reacción de amplificación.
- 5. Se tomaron como resultados válidos para cada muestra aquellas tipificaciones por RFLP de la región codificante que fueron idénticas en al menos dos extracciones. Para la secuenciación se utilizaron los 3 segmentos solapantes de la HVR I cuyas mutaciones se repitieron en al menos dos extracciones diferentes. Esto se realizó para evitar incorporar mutaciones erróneas, ya sea por falla de lectura durante la secuenciación o por daño *post-mortem* en las bases.

6.2 Metodología empleada para la obtención y análisis del ADN antiguo

En las investigaciones que emplean material arqueológico no se utilizan los mismos protocolos en todos los laboratorios, generalmente éstos dependen del tipo de material a analizar. Si bien ciertas condiciones deben cumplirse muchas prácticas relacionadas estrictamente. con el proceso descontaminación de las piezas, la extracción y método de obtención del ADN de los tejidos y su tipificación posterior pueden variar. La utilización diferencial de protocolos puede ocurrir incluso dentro de un mismo laboratorio según las condiciones de cada muestra. Por esta razón la puesta a punto de los protocolos es una tarea constante que se debe precisar antes de cada estudio, y se debe ir ajustando a medida que se va observando el rendimiento de los mismos. En los estudios del ADNa, a diferencia de los trabajos con poblaciones actuales, cada muestra es tratada individualmente, requiriendo procedimiento específico y laborioso.

6.2.1 Preparación de las muestras

Las superficies de las piezas dentales fueron descontaminadas sumergiéndolas por 5 min. en hipoclorito de sodio al 6% en un tubo Falcon de 15 ml. Luego se enjuagaron varias veces con agua calidad biología molecular y se colocaron en una cápsula de Petri estéril, dentro de una campana aislada que posee luz UV para irradiarla durante 45 min. de cada lado (Fig.6.1).

Este primer paso se realizó para eliminar posible contaminación con ADN exógeno como puede ser el proveniente de los investigadores que manipulan las muestras, o el ADN de microorganismos propios del suelo donde estaban depositadas.

Figura 6.1. Laboratorio de ADNa empleado. Cuenta con luz UV para todo el cuarto. Además, dentro de la campana de trabajo existe otra lámpara UV donde se irradia el material a utilizar.

A continuación se procedió a la obtención del polvo de dentina. Para ello cada pieza fue sujetada con una morsa previamente tratada para eliminar ADN superficial exógeno contaminante. Se realizó un corte transversal en la unión de la corona con la raíz empleando un disco de corte de 23,8 mm con un minitaladro Dremel 3000 y se procedió al desbaste de la dentina del interior de la pieza utilizando la misma herramienta con una fresa de punta fina (Fig. 6.2). El polvo obtenido fue recolectado en tubos Eppendorf de 1,5 ml estériles e irradiados. Las alícuotas fueron de entre 70 a 100 mg de polvo, y se obtuvieron en total un promedio de 400 mg por muestra. Este paso facilita la recuperación del material genético durante el procesamiento posterior ya que al ser polvo se aumenta la superficie de contacto con las soluciones de extracción. Una vez finalizada la recolección del polvo de dentina, las muestras fueron conservadas en bolsas herméticas descontaminadas a -20°C en un freezer propio del laboratorio de ADNa.

Para el caso de las 3 costillas analizadas, la superficie primero fue pulida con un minitaladro Dremel 3000 para eliminar la capa más externa. Sobre todo porque presentaba una capa de laqueado realizado previamente por el

personal encargado de la colección. Luego se limpió muy suavemente con un hisopo con lavandina al 6% y se enjuagó con agua calidad biología molecular. De las costillas enteras se obtuvo una porción de aproximadamente 200 mg cortando con el mismo minitaladro. Ese fragmento fue congelado a -80°C y luego pulverizado en mortero de cerámica previamente esterilizado e irradiado. Al exponer la pieza a temperaturas de congelamiento, se favorece la cristalización de las moléculas que conforman el hueso facilitando la pulverización. El polvo obtenido fue recolectado en tubos Eppendorf estériles en alícuotas de 100 mg aproximadamente y preservadas del mismo modo en que fue descripto para las piezas dentales.

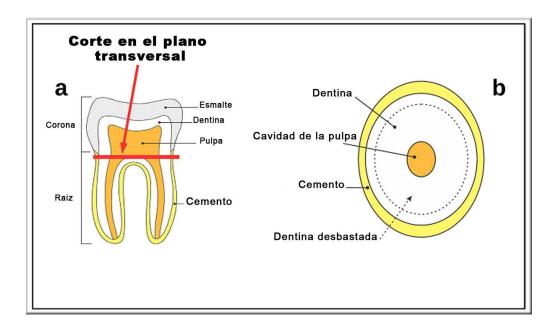


Figura 6.2. a) Esquema del corte que se le realiza a las piezas dentales. b) Composición interna de la pieza dental. En línea punteada se indica el área de dentina desbastada. Figura tomada y modificada de Damgaard *et al.* (2015).

6.2.2 Extracción del ADN

Este paso es probablemente el más importante y crucial en todo el análisis. Si algún proceso falla, puede reducirse o hasta destruirse la información potencial que ha sido conservada durante mucho tiempo en la

pieza arqueológica a analizar y que va a ser utilizada en los próximos pasos. Por esta razón, se ha generado debate acerca de cuál es el método de extracción más apropiado (Hummel, 2003).

Para cada muestra se realizaron al menos tres extracciones del ADN y se utilizó entre 70 y 100 mg del polvo, obtenido en el paso anterior. Además, en cada protocolo de extracción se realizó un "blanco" como control de contaminación de extracción, el cual fue sometido al mismo procedimiento que la muestra.

Las extracciones de ADN a partir del polvo obtenido se realizaron por el método de fenol-cloroformo-alcohol isoamílico (25:24:1) modificado del protocolo descripto por Green y Sambrook (2012) y luego fueron purificados con el equipo AccuPrep® PCR Purification Kit (BIONEER). También se implementó un método de extracción que aprovecha el EDTA que se descarta del método de fenol-clorofomo-alcohol isoamílico. Además, se emplearon dos equipos comerciales: QIAamp DNA Investigator Kit (Qiagen), utilizado para investigaciones forenses У Genclean (MP Biomedicals), diseñado especialmente para material antiguo, ambos basados en extracción del ADN mediante columnas de sílica. Estos dos últimos se emplearon siguiendo las indicaciones del fabricante (cada protocolo está detallado en el Anexo). El protocolo de fenol-clorofomo-alcohol isoamílico se empleó en todas las muestras estudiadas, con excepción de dos casos (AMZ1 y AMZ5).

Con el objetivo de determinar el rendimiento de los protocolos basados en los equipos comerciales, fueron replicadas algunas extracciones (en los casos en que se contaba con mucha cantidad de muestra). El rendimiento se evaluó considerando los haplogrupos por análisis de RFLP.

6.2.3 Tipificación de haplogrupos del ADN mitocondrial mediante RFLP

Para la obtención y diferenciación de fragmentos del material genético de distinto tamaño se empleó la técnica de RFLP. Ésta técnica emplea enzimas

de restricción o endonucleasas de origen bacteriano, que reconocen segmentos del ADN doble cadena en secuencias de 4-8 pb y escinden los fragmentos amplificados por el reconocimiento de un nucleótido mutado. La presencia o ausencia de sitios de reconocimiento para una enzima en cierto locus se da debido a la mutación de una base nitrogenada y eso en consecuencia determina el tamaño de los fragmentos en que resultará digerido o no el ADN. Las diferencias encontradas se observaron mediante electroforesis.

En primer lugar, se realizó una asignación de las muestras a cada uno de los haplogrupos A, B, C y D utilizando los cebadores publicados por Stone y Stoneking (1993) (Tabla 6.1).

Tabla 6.1. Cebadores utilizados para cada haplogrupo junto a la posición complementaria del ADNmt a la cual se ensamblan y el tamaño de los fragmentos obtenidos en la amplificación con los mismos.

Haplogrupo	Cebadores	Posición en el ADNmt	Tamaño del segmento amplificado (pb)
А	F:5' ACCTCCTCAAAGCAATACACTG 3'	590 - 611	176
	R:5' GTGCTTGATGCTTGTTCCTTTTG 3'	743 - 765	
В	F: 5' ACAGTTTCATGCCCATCGTC 3'	8196 - 8215	121
	R: 5' ATGCTAAGTTAGCTTTACAG 3'	8297 - 8316	
С	F: 5' GCGCCTTACACAAAATGACATCAA 3'	13208 - 13232	209
	R: 5' TCCTATTTTCGAATATCTTGTTC 3'	13393 - 13416	
D	F: 5' TAACTACTACCGCATTCCTA 3'	5101 - 5120	149
	R: 5' AAAGCCGGTTAGCGGGGGCA 3'	5230- 5249	

Debido a que se obtuvieron escasos resultados empleando los cebadores publicados por Stone y Stoneking (1993), se procedió a la modificación del protocolo incorporando pares de cebadores que amplifican segmentos de menor longitud (Tabla 6.2). Las enzimas de restricción utilizadas se seleccionaron dependiendo del SNP de la región codificante del ADNmt

específico de cada haplogrupo (Tabla 6.2). El A se define por la ganancia de un sitio para la enzima *Hae*III en la posición 663; el B por la deleción de un fragmento de 9 pb en la región inter-génica COII/tRNA^{LYs} o región V, por lo que no precisa digestión con enzimas de restricción. Por su parte, el haplogrupo C se caracteriza por la pérdida de un sitio para la enzima *Hinc*II en la posición 13259 y el D por la pérdida de un sitio para la enzima *Alu*I en la posición 5176.

Una vez que se extrajo el material genético, se amplificaron los segmentos del ADN de interés mediante la técnica de PCR (Mullis *et al.* 1987). Esta reacción consiste en ciclos de 3 temperaturas diferentes para producir la deshibridación de las hebras complementarias del ADN, la unión de los cebadores empleados (secuencia sintética de bases nucleotídicas que se unen al ADN de la muestra y son utilizadas por la polimerasa como inicio para la unión de bases nucleotídicas en la replicación del ADN) y la activación de la enzima Taq Polimerasa con la que comienza la elongación de las nuevas cadenas sintéticas del ADN. El número de ciclos varía dependiendo de la muestra. En el caso del ADNa al estar posiblemente fragmentado en segmentos pequeños esta reacción comúnmente se realiza entre 35 a 50 ciclos (Hummel, 2014) de modo tal que los segmentos de entre 150 y 250 pb o menores amplifiquen, debido a que rara vez el ADN presente en los restos arqueológicos supera esos tamaños.

La reacción de amplificación por PCR para cada uno de los 4 haplogrupos se realizó en un volumen final de 12,5 μl conteniendo: 1x de GoTaq® reaction buffer, 1,5 mM de MgCl₂ (Promega), 0,2mM de cada dNTP (Thermo Scientific), 0,8 μM de cada cebador (Invitrogen) (Tabla 7), 1,25U de GoTaq® DNA polymerase (Promega) y 5 μl de ADNa.

El programa de amplificación por PCR utilizado consistió en:

- 1 ciclo de desnaturalización inicial a 94°C por 5 min.
- 1 ciclo de 3 pasos consecutivos: 45 segundos a 94°C, 45 segundos a 53°C y 45 segundos a 73°C. Este ciclo se repitió 44 veces más.

- Por último, se realizó un último paso de extensión de la elongación durante 5 min. a 73°C.

Para las amplificaciones realizadas para cada haplogrupo primero se corroboró el buen desarrollo de la reacción sometiendo las muestras a electroforesis en gel de agarosa al 1%. A continuación, aquellas muestras que presentaban banda de ADN fueron digeridas con la enzima de restricción adecuada para A, C y D (Tabla 6.2). Este procedimiento consistió en la adición, a cada tubo de muestra amplificada, de 10 µl de una solución de digestión que contiene: el buffer 5X de estabilización provisto con cada enzima, 1 unidad de enzima de restricción y agua calidad biología molecular. Esta mezcla se dejó incubando a 37°C durante toda la noche.

Tabla 6.2. Descripción de los marcadores utilizados, los cebadores y el segmento obtenido para cada haplogrupo por RFLP.

Haplogrupo	Marcador	Cebadores	Segmentos	Bibliografía
	Estudiado ¹		(pb)	
А	Haelll + 663	F:628-648 y R: 688-707	80 (35 y 45)*	Fehren-Schmitz et al., 2010
В	Del 9pb	F:8250 y R:8289-8310	61 o 52 con	generado para esta
			deleción	investigación
С	HincII - 13259	F:13177-13195 y	113 (82 y	Fehren-Schmitz et al., 2010
		R:13265-13289	31)*	
D	<i>Alul -</i> 5176	F:5112-5137 y R:16185-	96 (31+65)*	Fehren-Schmitz et al., 2010
		5207		

^{1.} El símbolo indica la presencia (+) o ausencia (-) del sitio de corte para cada enzima de restricción. * Se describe el tamaño del fragmento total y entre paréntesis el tamaño de cada fragmento si está presente el sitio de restricción para cada enzima.

La tipificación de los haplogrupos finaliza con la electroforesis de las digestiones enzimáticas de A, C y D, y el amplificado del haplogrupo B durante 60 a 90 min. en geles de poliacrilamida al 12%. Este tipo de gel, en comparación con los de agarosa, permiten una resolución y discriminación

entre bandas que se diferencian hasta por una sola base nucleotídica (fórmula de preparación en el Anexo).

6.2.4 Secuenciación de la HVR I de la región control del ADN mitocondrial

Sanger et al. (1977) propusieron un método de secuenciación del ADN determinando la secuencia de bases nucleotídicas de fragmentos de hasta aproximadamente 200 pb. Esta técnica se basaba en la síntesis de hebras hijas marcadas en su extremo y que difieren en longitud por un nucléotido. Esto se lograba utilizando una enzima polimerasa proveniente de la bacteria *E.coli* y 2',3'-didesoxirribonuclétidos (ddNTP), que a diferencia de los nucléotidos normales, desoxiribonucleótidos (dNTPs), carecen de un grupo hidroxilo 3' y en consecuencia, no generan un enlace fosfodiéster con el dNTP siguiente finalizando la cadena (Fig. 6.3). Los ddNTPs, además, estaban marcados y de este modo las hebras que se iban formando de diferentes tamaños se podían detectar mediante electroforesis y podía seguirse el orden en la secuencia de las bases nucleotídicas (Hummel, 2003; Lodish *et al.*, 2005).

Con el tiempo, las técnicas de secuenciación fueron mejorando y se automatizaron, obteniendo como resultado un mayor número de secuencias en simultáneo y de fragmentos con mayor longitud, pero el fundamento de este nuevo mecanismo es el mismo que el propuesto por Sanger *et al.* (1977). La diferencia primordial es que las cadenas de ADN que se van formando adhieren marcadores fluorescentes de terminación y en consecuencia pueden ser detectadas automáticamente por un haz de luz mientras que el patrón que se va obteniendo es codificado por un programa de computadora. Además, el tamaño de los fragmentos obtenidos pasó a ser de 500 a 1000 pb. Esto permitió estudiar varias mutaciones en paralelo aumentando la resolución en las comparaciones entre poblaciones.

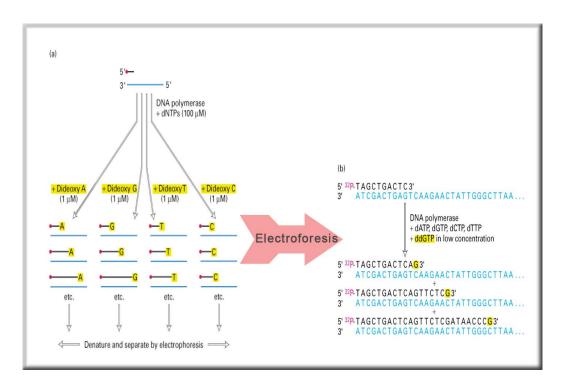


Figura 6.3. Tomada y modificada de De Necochea Campion y Canul Tec, (2004). Ejemplificación de la adición de ddNTPs a las hebras complementarias en formación para la secuenciación de ADN.

La técnica de secuenciación de ADN fue empleada para obtener fragmentos de la HVR I del ADNmt. En particular se procedió con la amplificación por PCR de esta región en tres fragmentos solapados de menos de 220 pb que comprenden desde la posición 15984 a la 16410 del genoma mitocondrial utilizando los cebadores: F15984 (5'-TAGCACCCAAAGCTAAGATTCTAAT-3' modificado a partir de F15989, Gabriel et al., 2001) y H16167 (Ricaut et al., 2004); L16120 (Adachi et al., 2004) y R16239 (Ivanov et al., 1996); F16204 (5'-GCAAGTACAGCAATCAACCCT-3', diseñado por nuestro equipo de trabajo) y R16410 (Gabriel et al., 2001) (Fig. 6.4).

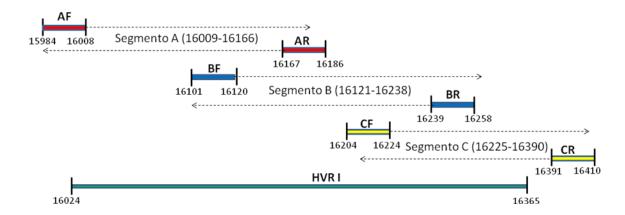


Figura 6.4. Solapamiento de los segmentos de HVR I (A, B y C) amplificados por cada cebador. Los cebadores del segmento A están indicados en rojo, los del B en azul y los del C en amarillo, cada uno con su posición en el ADNmt. Entre paréntesis se indica la extensión de la lectura efectiva de cada segmento amplificado y su posición con respecto a la HVR I (segmento color celeste).

Estos cebadores fueron utilizados luego de realizar las primeras amplificaciones de las secuencias con otros que ya estaban siendo utilizados por el equipo y que se basaba en la amplificación de 2 fragmentos solapantes más largos (Tabla 6.3). Por lo tanto, era más difícil de obtener amplificaciones del material antiguo y el rendimiento de los resultados era desfavorable, en consecuencia se desestimó su uso.

Tabla 6.3. Cebadores utilizados en los primeros fragmentos amplificados de la HVR I.

Segmentos de la HVR I	Cebadores*	Posición en el ADNmt	Tamaño del segmento amplificado
1	F:5' CCCAAAGCTAAGATTCTAAT 3'	15989 - 16008	270
	R:5' TGGCTTTGGAGTTGCAGTTG 3'	16239 - 16258	
2	F: 5' CCCCATGCTTACAAGCAAGT3'	16190 - 16209	221
	R: 5' GAGGATGGTGGTCAAGGGAC 3'	16391 - 16410	

^{*}Cebadores tomados de Carnese et al., (2010).

El cebador F16204 se diseñó utilizando el programa Primer3 disponible en http://simgene.com/Primer3 y luego la función *primer-BLAST* disponible en http://www.ncbi.nlm.nih.gov/pubmed para su corroboración de pegado específico a la porción HVR I en humanos.

Las reacciones de PCR esta vez se llevaron a cabo para cada uno de los 3 segmentos en un volumen de 25µl conteniendo: 1X de Hot Start PCR Buffer (Thermo Scientific), 2mM de MgCl₂ (Thermo Scientific), 0,4µM de cada par de cebadores (Invitrogen), 0,2mM de cada dNTP (Thermo Scientific), 1U de Máxima Hot Start *Taq* DNA Polymerase (Thermo Scientific) y 5µl de la muestra de ADNa como templado. En cada amplificación se incluyeron los "blancos" de extracción, un "blanco" de reacción de PCR y los controles modernos ya mencionados.

Para la PCR de amplificación se utilizó un programa de:

- 1 ciclo de 5 min. a 94°C,
- 45 ciclos compuestos por tres pasos: uno de 45 seg. a 94°C, 45 seg. a 54°C, y 45 seg. a 73°.
- Para finalizar, se realizó un último paso de extensión de la elongación por 7 min. a 73°C.

Para observar los productos de amplificación se realizó una electroforesis en geles de agarosa al 1% y una cuantificación aproximada comparando con diluciones 1:10 y 1:100 del ADN del bacteriófago lambda previamente digerido con enzimas de restricción según las especificaciones del fabricante (511µg/ml, Promega). Aquellas muestras que presentaban una banda intensamente visible, fueron purificadas con el equipo AccuPrep® PCR Purification Kit (BIONEER), siguiendo el protocolo descripto por el fabricante. La única modificación fue en el último paso, donde la elución de las muestras se realizó en agua calidad biología molecular en vez de buffer de elución del equipo, según lo recomendado por el servicio de secuenciación en las condiciones de envío de las muestras. Las mismas fueron secuenciadas en la

Unidad Genómica del Instituto Nacional de Tecnología Agropecuaria (INTA) de la sede Castelar utilizando un secuenciador automático 3130 XL Genetic Analyzer con el equipo BigDye™ Terminator Sequencing Kit (Applied Biosystems).

6.2.5 Prueba de inhibición en las muestras no amplificadas

En todas aquellas muestras en las cuales no se pudo amplificar el ADN para RFLP o secuenciación, se realizó una PCR para corroborar si la falta de resultados se debía a la ausencia del ADN en la muestra o a que las mismas presentaban inhibidores para la Taq polimerasa. A cada tubo que contenía una muestra de ADNa se le agregó 2 µl de ADN de una misma muestra moderna. Los cebadores utilizados y la reacción de amplificación fueron las mismas que las utilizadas para la secuenciación de la HVR I. En aquellos casos en que la corrida electroforética no mostró la presencia de una banda de ADN amplificado ni de banda de cebadores, como suele suceder en los casos de ADNa, se asumió que la muestra estaba inhibida.

6.3 Determinación del sexo mediante un marcador molecular

El diagnóstico molecular del sexo es de suma importancia en aquellas muestras que presentan una gran degradación física y por lo tanto no puede realizarse un diagnóstico anatómico (Fernández Dominguez *et al.*, 2005), o en aquellas que no presentan dimorfismo sexual a nivel morfológico como es el caso de los subadultos.

Se determinó el sexo de las muestras a partir de la amplificación del gen de la amelogenina, que codifica para una proteína del esmalte dental y se encuentra situado en la región Xp22.3-p22.1 (cromosoma X) y en la región Yp11.2 (cromosoma Y). Este gen da lugar a un amplicón de 112 pares de bases en el cromosoma Y y 106 pares de bases en el cromosoma X. Esta diferencia en el número de pares de bases se emplea para determinar el sexo. Se utilizaron las mismas condiciones de ciclado que para la HVR I pero con los

cebadores: F: 5'-CCCTGGGCTCTGTAAAGAA-3' y R: 5'-ATCAGAGCTTAAACTGGGAAAGAA-3' creados por el equipo de investigación y una temperatura de anidado de cebadores a 53°C.

Luego de la amplificación, en una electroforesis en geles de poliacrilamida al 12% se diferenciaron los fragmentos de 106pb y 112pb de los cromosomas X e Y, respectivamente. Si el individuo es masculino se observan dos bandas cada una correspondiente al cromosoma X e Y, mientras que si se trata de un individuo femenino, se observa una sola banda correspondiente al mismo segmento de los dos cromosomas X.

También, este marcador fue analizado en PCRs en tiempo real utilizando una solución ya preparada que provee la firma Biodynamics (que posee Taq polimerasa, dNTPs, buffer, conservantes y fluorocromo verde en concentraciones especificadas por el fabricante) y agua calidad biología molecular. El fundamento de esta técnica es observar las diferencias en la temperatura de fusión del ADN amplificado entre las muestras masculinas y las femeninas, los cuales varían debido al tamaño del segmento amplificado. Esa diferencia es de un grado centígrado, pero es fácilmente detectable. Los fragmentos del cromosoma X, al poseer la deleción de 6 pares de bases, presentan una temperatura de fusión de 73°C, mientras que la del cromosoma Y es de 74°C.

6.4 Análisis de las secuencias del ADN mitocondrial

6.4.1 Alineamiento de secuencias y análisis preliminares

Las secuencias provenientes de los 10 sitios estudiadas en este trabajo de tesis (Doncellas, Agua Caliente, Casabindo, Río Negro, Sorcuyo, Paso Alsina 1, Los Alerces, Rada Tilly, Alero Mazquiarán y Puesto El Rodeo) se alinearon en forma conjunta con las secuencias de todos los individuos incorporados en la BDSC (Tabla 2a) empleando el método progresivo FFT-NS-

2 implementado en MAFFT versión 7.294 (Katoh y Standley, 2013). Este algoritmo de alineamiento es similar al implementado en ClustalW (Thompson et al., 1994), pero a diferencia de este último permite alinear un gran número de secuencias (hasta ca. 5.000) de manera rápida y eficiente en una computadora estándar (Katoh et al., 2002). El algoritmo FFT-NS-2 sigue el siguiente procedimiento: a) se estima una matriz de distancias aproximadas entre las secuencias contando el número de 6 bases con el mismo orden (tuplas) compartidas entre cada par de secuencias que serán alineadas, b) se genera un árbol inicial o guía usando una versión modificada del método de UPGMA (Unweighted Pair Group Method with Arithmetic Mean, por sus siglas en inglés), c) se alinean las secuencias de acuerdo con el orden de divergencia generado por el árbol guía, d) éste se vuelve a estimar a partir de las distancias (e.g., número de diferencias) estimadas sobre la primera alineación, y e) se lleva a cabo una segunda alineación progresiva (Katoh et al., 2002). El alineamiento obtenido por este procedimiento fue guardado en formato FASTA y el archivo generado fue abierto con el programa BioEdit versión 7.2.5 (Hall, 2013) para corroborar la inexistencia de errores en las secuencias y en el alineamiento.

6.4.2 Tipificación y corroboración de los subhaplogrupos y haplotipos del ADN mitocondrial empleando secuencias

Conocer de manera no ambigua la correspondencia de una secuencia de ADN a un subhaplogrupo del ADNmt previamente descripto es un paso previo fundamental para el estudio de la historia de la evolución de las poblaciones en el cono sur de Sudamérica, así como para detectar y descartar posibles errores ocurridos durante el procesamiento de las muestras. Las secuencias de ADNmt de muestras antiguas procesadas en este trabajo se compararon con la Secuencia de Referencia de Cambridge revisada (rCRS, por sus siglas en ingles) (Andrews et al., 1999) utilizando el programa Sequencher (Gene Codes Corporation, 1991-2009; http://www.genecodes.com). Las diferencias observadas entre ambas fueron registradas con el fin de determinar

los subhaplogrupos y haplotipos presentes en la muestras estudiadas considerando los haplotipos descriptos en trabajos previos (e.g., Perego et al., 2009, 2010; Bodner et al., 2012; de Saint Pierre et al., 2012). Sin embargo, es importante considerar que la clasificación manual de las secuencias en subhaplogrupos y haplotipos conocidos es un proceso lento y en el que pueden generarse errores. Debido a esto, y a que no hay un acuerdo generalizado entre los investigadores sobre la asignación y denominación de los haplotipos, así como sobre las bases nucleotídicas que son diagnósticas, una segunda clasificación de las muestras se realizó utilizando el programa HaploGrep (Klöss-Brandstätter et al., 2011), el cual emplea la base de datos de Phylotree (www.phylotree.org), que periódicamente actualiza las muestras disponibles para el estudio de la variación en el ADNmt a escala mundial. El algoritmo implementado en HaploGrep estima un ranking de subhaplogrupos y haplotipos a los cuales podría pertenecer la secuencia de interés. Con este fin, se compara esta secuencia con los polimorfismos registrados en Phylotree para la región del ADNmt bajo estudio. Es importante remarcar que HaploGrep permite comparar la totalidad del genoma mitocondrial o una parte pequeña del mismo, ya que toda región del ADNmt potencialmente contiene información para generar el ranking (Klöss-Brandstätter et al., 2011). La similitud entre cada secuencia y los haplotipos presentes en Phylotree es estimada mediante una medida de similaridad que cuantifica las mutaciones compartidas, ponderadas por los pesos filogenéticos informados por Soares et al. (2009), y que puede ser empleada como una medida de la confianza de la determinación. La definición de haplotipo empleada en este trabajo, siguiendo los criterios de Raff et al. (2011) que prioriza la definición de los mismos a partir de secuencias, es concordante con la implementada en el algoritmo empleado por HaploGrep (Klöss-Brandstätter et al., 2011).

Si bien Phylotree presenta una base de datos amplia para la diversidad de haplotipos mitocondriales presentes en el mundo, muchas variantes locales que han sido descriptas para Sudamérica no están representadas en esta base. Por esta razón, en este trabajo se corroboraron los haplotipos y subhaplogrupos determinados con HaploGrep calculando número de diferencias, distancias *p* (número estandarizado de diferencias) y árboles de *Neighbor-joining* con las secuencias modernas y antiguas previamente publicadas para el cono sur de Sudamérica (BDSC, Tabla anexa 2a). Estos análisis fueron efectuados utilizando el programa MEGA 7 (Kumar *et al.*, 2016).

El procedimiento implementado en este trabajo no sólo permitió la asignación correcta de las secuencias estudiadas a los subhaplogrupos y haplotipos previamente descriptos, sino también la determinación de variantes nuevas y la detección de posibles errores en las secuencias. En particular, los productos de ADNa amplificados se caracterizan por la presencia de errores como el cambio de bases. Es decir, las secuencias obtenidas podrían presentar mutaciones que no son propias del genotipo del individuo, sino que son artefactos producidos por la degradación que presentan las muestras (Hofreiter et al., 2001). Es por ello que al momento de realizar los análisis de las secuencias y las comparaciones se tuvo en cuenta no sólo si las transiciones o transversiones encontradas se repiten en al menos tres de las secuencias obtenidas para una misma muestra, sino que a su vez se consideró que las secuencias descriptas puedan ser asignadas a variantes conocidas (empleando HaploGrep), sean similares a algunas previamente descriptas (calculando en número de diferencias y árboles de Neighbor-joining) o presenten mutaciones en regiones donde las mismas acontecen comúnmente (comparando las mutaciones observadas con las informadas en trabajos previos; Soares et al., 2009).

6.5 Análisis estadísticos

Con el objetivo de explorar los patrones de diversidad molecular dentro y entre muestras modernas y antiguas se efectuaron análisis a dos escalas. En primer lugar se analizó la variación interna de cada subhaplogrupo y de todos los linajes por región geográfica, considerando las muestras modernas y

antiguas del NOA, transición Pampa-Patagonia y Patagonia centro-sur. En segundo lugar, se describió el patrón de variación entre las muestras modernas y antiguas del Cono Sur de Sudamérica, de grupos geográficamente localizados, y se lo comparó con la ubicación geográfica de las mismas.

6.5.1 Análisis de la variabilidad dentro de las muestras

Con el fin de explorar los patrones de variación intra-muestral entre las diferentes regiones geográficas, períodos temporales y subhaplogrupos estudiados se estimó la variabilidad interna de los mismos, empleando tres conjuntos de datos: a) sólo muestras de ADN antiguo, b) muestras modernas y c) muestras antiguas y modernas. Los estadísticos de variabilidad calculados fueron:

- 1. Número de haplotipos (h) presente en la muestra.
- 2. Diversidad Haplotípica (Hd), es la probabilidad de que dos secuencias tomadas al azar sean diferentes. Es calculada como 1 menos la sumatoria de la frecuencia relativa de todos haplotipos, en función del número total de secuencias.
- 3. *Número de sitios segregantes* (S), es el número de posiciones variables o polimórficas en un conjunto de secuencia de ADN.
- 4. Diversidad Nucleotídica (π), es el número promedio de diferencias nucleotídicas por sitio para una muestra de secuencias.
- 5. Número medio de diferencias nucleotídicas entre pares de Haplotipos (k), consiste en el promedio de diferencias nucleotídicas entre todos los pares posibles de secuencias de una muestra.

Una descripción detallada de estas medidas puede encontrarse en Rozas (2009). Se utilizó el programa DNAsp (Librado y Rozas, 2009) para calcular los estadísticos de variabilidad y definir los conjuntos de secuencias para cada grupo analizado.

Para describir la variación interna de cada subhaplogrupo, además de las medidas enumeradas arriba, se construyeron redes de haplotipos, teniendo en cuenta las muestras analizadas en el marco de este estudio y las muestras antiguas previamente publicadas (Tabla anexa 2a). Cabe destacar que las asignaciones a los grupos étnicos nombrados fueron tomadas tal como se nombraron en los respectivos trabajos. Los sitios polimórficos de cada haplotipo por grupo muestral, el número de individuos que poseen y su filiación se describen detalladamente en la BDSC (Tabla anexa 2a). Para construir las redes se empleó el programa Network 4.6.1.3 (Fluxus Technology LTD 2004-2015), se utilizó el método de *median joining* y se asignaron los pesos a cada sitio polimórfico según lo propuesto por Soares *et al.* (2009).

6.5.2 Análisis de la variabilidad entre las muestras

Con el fin de explorar los patrones de variación inter-muestral en la secuencia de la HVR I entre los diferentes grupos geográficos y períodos temporales estudiados se compararon las áreas del Cono Sur de Sudamérica estudiadas aquí con aquellas incluidas en la BDSC (ver apartado 5.3).

Con el fin de evaluar la variación dentro y entre grupos de muestras y establecer las posibles relaciones biológicas entre los mismos, se llevó a cabo un Análisis de la Varianza Molecular (AMOVA). Además, se calcularon las distancias entre pares de muestras a través del índice de fijación F_{ST}, que mide el grado de diferenciación genética de las poblaciones o grupos poblacionales calculando las varianzas estandarizadas de las frecuencias haplotípicas, utilizando 1000 permutaciones para obtener la significación. Ambos análisis se llevaron a cabo con el programa Arlequin 3.11 (Excoffier, 1995-2006), utilizando el modelo evolutivo de Tamura y Nei (1993) con un valor de Gamma= 0,36. El archivo de datos de entrada para el programa Arlequin 3.11 fue generado y exportado mediante el programa DNAsp (Librado y Rozas, 2009). El patrón de distancias F_{ST} entre las muestras estudiadas fue visualizado mediante los análisis de escalamiento multidimensional no-métrico (nm-*MDS*, por sus siglas

en inglés) y *Neighbor-joining* utilizando el programa PAST 3.12 (Hammer *et al.*, 2001).

6.5.3 Asociación entre la distancia genética y la geográfica

Por último, a partir de esta matriz de distancias genéticas F_{ST} se realizó un análisis de Coordenadas Principales (CP) utilizando el programa PAST 3.12 y se extrajeron las dos primeras coordenadas con el fin de explorar la estructura espacial en las diferencias genéticas entre las muestras estudiadas. Los scores de CP fueron rotados para obtener el mejor ajuste con las coordenadas geográficas medias de cada muestra estudiada utilizando un método de Procrustes y la prueba de permutaciones PROTEST implementada en el paquete Vegan del programa R 3.0.3 (R Core Team, 2016). La función permite escalar, trasladar y rotar las dos configuraciones de puntos (en este caso las coordenadas geográficas y los scores de las coordenadas principales) y calcular una medida de ajuste o pseudo-correlación que varía entre 0 y 1 (siendo 1 el ajuste máximo o perfecto), así como su probabilidad asociada (Peres-Neto y Jackson, 2001).

Capítulo 7: Resultados de los análisis genéticos y estadísticos

7.1 Comparación del rendimiento de los métodos de extracción del ADN

Uno de los objetivos de esta tesis fue realizar una comparación entre diferentes métodos de extracción de ADNa para determinar cuál posee un mejor rendimiento. Debe tenerse en cuenta que el porcentaje de material recuperado también depende de las características de preservación de cada una de las piezas óseas y dentales. Esta comparación puede servir para el empleo del protocolo más apropiado en investigaciones futuras.

Cada una de las muestras incluidas fue procesada al menos 3 veces, como se señaló anteriormente en los criterios de autenticación de los resultados obtenidos. En la Tabla 7.1, se presentan los resultados para los 3 métodos empleados, así como los obtenidos a partir de la extracción desde el EDTA y se señalan aquellos casos en los que fue posible la amplificación durante el proceso de PCR empleando los cebadores diseñados para RFLP. Asimismo, se indica qué muestras estaban inhibidas y en que muestras no se aplicó alguno de los métodos de extracción.

El protocolo con el cual se obtuvo mayor número de amplificaciones fue el de fenol-cloroformo-alcohol isoamílico, con el cual fue posible amplificar 50 de las 57 muestras analizadas y en 2 no se realizó este método de extracción. Este buen rendimiento del protocolo puede deberse a que este es el método que tiene más flexibilidad para hacer ajustes en cada paso, a diferencia de los otros dos protocolos que al ser equipos comerciales están estandarizados y la posibilidad de modificaciones es menor. La extracción con QIAamp DNA Investigator Kit permitió amplificar 16 de un total de 52 muestras procesadas. De las 36 muestras que no amplificaron, 7 resultaron inhibidas. Es importante remarcar que mediante el empleo de este equipo y a partir del ADN extraído con el protocolo de fenol-cloroformo-alcohol isoamílico fue posible amplificar 3 de las muestras que estaban inhibidas (Tabla 7.1). La diferencia entre los rendimientos de los protocolos puede deberse a la utilización de solventes orgánicos en este último, lo cual puede estar facilitando la eliminación de los

posibles agentes inhibitorios para la taq polimerasa de la PCR, o al tratarse de un protocolo con mayor número de pasos en su procedimiento, aumentaría la probabilidad de eliminar inhibidores presentes en la muestra (Hummel, 2003). Finalmente, para el Geneclean kit desde el inicio del procesamiento se pudo amplificar una proporción muy baja de muestras, por lo que el empleo del mismo fue interrumpido.

Tabla 7.1. Comparación entre los métodos de extracción utilizados

	Métodos de extracción de ADN								
Caso	fenol-cloroformo-isoamílico	QIAamp DNA Investigator KIT	Geneclean Kit	EDTA					
DC1	Amplificó x 3	Np	Np	Np					
DC2	Amplificó x 3	Np	Np	Np					
DC3	Amplificó x 3	Np	Np	Np					
DC4	Amplificó x 3	Na x 1	Np	Np					
DC5	Amplificó x 3	Np	Np	Np					
DC6	Amplificó x 3	Na x 1	Np	Amplificó x 1					
DC7	Amplificó x 3	Amplificó x 2	Np	Amplificó x 1					
DC8	Amplificó x 3	Na x 1	Np	Np					
OC9	Amplificó x 3	Np	Np	Np					
DC10	Amplificó x 3	Na x 2	Amplifico x 1	Np					
DC11	Amplificó x 3	Na x 2	Amplifico x 1	Np					
C12	Amplificó x 3	Amplificó x 2	Np	Amplificó x 1					
C13	Na x 2	In	Np	Np					
C14	Amplificó x 3	Amplificó x 2	Np	Np					
C15	Na x 2	In	Np	Np					
DC16	Amplificó x 3	Amplificó x 2	Np	Np					
C17	Amplificó x 3	Amplificó x 2	Np	Amplificó x 1					
C18	Amplificó x 3	Amplificó x 2	Np	Np					
C19	Amplificó x 3	Amplificó x 2	Np	Na x 1					
C20	Amplificó x 3	In	Np	Np					
C21	Amplificó x 3	Amplificó x 2	Np	Np					
C22	Amplificó x 3	Amplificó x 2	Np	Na x 1					
C23	Amplificó x 3	Amplificó x 2	Np	Amplificó x 1					
.A1	Amplificó x 3	Na x 1	Na x 1	Np					
A2	Amplificó x 3	Na x 1	Amplificó x 1	Amplificó x 1					
DB1	Amplificó x 3	Na x 1	Na x 1	Amplificó x 1					
B2	Amplificó x 3	Na x 1	Na x 1	Amplificó x 1					
DB3	no amplificó x 2	Na x 1	Na x 1	Amplificó x 1					
DB4	Amplificó x 3	Amplificó x 1	Na x 1	Amplificó x 1					
DB5	Amplificó x 3	Amplificó x 1	Na x 1	Amplificó x 1					
DB6	Amplificó x 3	Na x 1	Na x 1	Np					

Continuación Tabla 7.1

	Métodos de extracción de ADN								
Caso	fenol-cloroformo-isoamílico	QIAamp DNA Investigator KIT	Geneclean Kit	EDTA					
PA1	Amplificó x 2	Na x 1	Np	Na x 1					
PA2	Amplificó x 2	Na x 1	Np	Na x 1					
PA3	Amplificó x 2	Na x 1	Np	Na x 1					
PA4	Na x 1	In	Np	Np					
PA5	Amplificó x 2	In	Np	Np					
PA6	Na x 1	Na x 1	Np	Na x 1					
PA7	Amplificó x 2	Na x 1	Np	Np					
PA8	Amplificó x 2	Na x 1	Np	Np					
PA9	Amplificó x 2	Na x 1	Np	Np					
PA10	Amplificó x 2	Na x 1	Np	Np					
PA11	Amplificó x 2	Amplificó x 1	Np	Np					
PA12	Amplificó x 2	Amplificó x 1	Np	Np					
PA13	Amplificó x 2	Na x 1	Np	Np					
PA14	Amplificó x 2	Na x 1	Np	Np					
PA15	Amplificó x 2	Na x 1	Np	Np					
PA16	Amplificó x 2	Na x 1	Np	Np					
PA17	Amplificó x 2	Na x 1	Np	Na x 1					
PA18	Amplificó x 2	Na x 1	Np	Na x 1					
PA19	Amplificó x 2	Na x 1	Np	Np					
PA20	Amplificó x 2	Na x 1	Np	Na x 1					
AMZ1	Np	In	Np	Np					
AMZ2	Np	Na x 1	Np	Amplificó x 1					
RP1	Amplificó x 2	Na x 1	Np	Amplificó x 1					
RP2	Amplificó x 2	Amplificó x 1	Np	Amplificó x 1					
RP3	Amplificó x 2	In x 1	Np	Na x 1					
RP4	Amplificó x 2	Amplificó x 1	Np	Amplificó x 1					

Np: muestra no procesada, Na: muestra que no amplificó, In: muestra inhibida, Amplificó: muestra que amplificó. El número en cada método de extracción implica la cantidad de veces que se realizó ese protocolo en esa muestra y se obtuvo un resultado

7.2 Tipificación de haplogrupos por análisis de RFLP

Con el fin de determinar los haplogrupos mitocondriales en las muestras arqueológicas de Puna, transición Pampa-Patagonia y Patagonia centro en primer lugar se efectuó un análisis con técnicas de RFLP (Fig.7.1). Del total de las 57 muestras incluidas en este trabajo se aplicó la técnica de RFLP a 47 de ellas. A 24 muestras (51,06%) de estas 47 fue posible asignarlas a un haplogrupo (Tabla 7.2). De las 23 restantes, 5 presentaban inhibición y en 18 no se amplificó ninguno de los segmentos de ADN correspondientes a los 4 haplogrupos. En las 24 muestras amplificadas se pudo corroborar el haplogrupo en al menos 2 extracciones diferentes y no se obtuvo amplificación

para el "blanco" de la extracción de cada muestra, ni para el "blanco" de reacción de PCR.

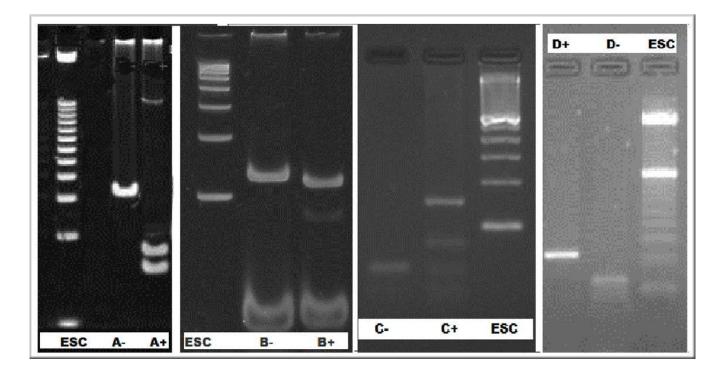


Figura 7.1. Representación de los distintos fragmentos obtenidos por RFLP para los 4 haplogrupos. En el caso del A se usó una escalera de peso molecular de 20pb y en los otros 3 de 100bp.

Los 10 individuos no analizados por RFLP provienen del sitio Paso Alsina 1. Esta muestra fue la última que se incorporó. Debido a que a lo largo del estudio se comprobó que la secuenciación directa de la HVR I permitía obtener más información y mayor éxito en la tipificación, y considerando que realizar ambos análisis requería de una importante cantidad de material genético arqueológico, se decidió seguir únicamente con la secuenciación de la HVR I.

Tabla 7.2. Tipificación de haplogrupos por RFLP

Muestra	Haplogrupo (RFLP)	Sitio
DC1	В	Puna
DC2		Puna
DC3	А	Puna
DC4	А	Puna
DC5	С	Puna
DC6		Puna
DC7	А	Puna
DC8		Puna
DC9	А	Puna
DC10		Puna
DC11	С	Puna
DC12	А	Puna
DC13	inhibida	Puna
DC14	В	Puna
DC15	inhibida	Puna
DC16		Puna
DC17		Puna
DC18	D	Puna
DC19	D	Puna

Muestra	Haplogrupo (RFLP)	Sitio
DC20		Puna
DC21	D	Puna
DC22		Puna
DC23		Puna
DB1	D	Patagonia Centro
DB2		Patagonia Centro
DB3	D	Patagonia Centro
DB4	D	Patagonia Centro
DB5	D	Patagonia Centro
DB6		Patagonia centro
LA 1	D	Patagonia Centro
LA 2	D	Patagonia Centro
AMZ1	inhibida	Patagonia centro
AMZ5	D	Patagonia centro
RP1	D	Patagonia centro
RP2		Patagonia Centro
RP3	inhibida	Patagonia Centro
RP4	D	Patagonia Centro
PA1		Trans. Pampa- Patagonia

Muestra	Haplogrupo (RFLP)	Sitio
PA2		Trans. Pampa- Patagonia
PA3		Trans. Pampa- Patagonia
PA4	inhibida	Trans. Pampa- Patagonia
PA5		Trans. Pampa- Patagonia
PA6		Trans. Pampa- Patagonia
PA7		Trans. Pampa- Patagonia
PA8		Trans. Pampa- Patagonia
PA9	С	Trans. Pampa- Patagonia
PA10		Trans. Pampa- Patagonia
PA11	D	Trans. Pampa- Patagonia
PA12		Trans. Pampa- Patagonia
PA13		Trans. Pampa- Patagonia
PA14		Trans. Pampa- Patagonia
PA15		Trans. Pampa- Patagonia
PA16		Trans. Pampa- Patagonia
PA17		Trans. Pampa- Patagonia
PA18		Trans. Pampa- Patagonia
PA19	С	Trans. Pampa- Patagonia
PA20		Trans. Pampa- Patagonia

Para la Puna se obtuvo un total de 12 asignaciones a un haplogrupo (52,17%), 2 resultaron estar inhibidas y 9 no pudieron ser tipificadas para ningún haplogrupo. De los 12 resultados positivos, un 41,66% correspondió al haplogrupo A, 25% al D y un 16,67% al C y al B (Fig. 7.2).

Para la muestra de la transición Pampa-Patagonia, de los 10 individuos analizados, 2 individuos (20%) presentaron el haplogrupo C y 1 individuo (10%) el D, obteniéndose un 30% de recuperación. De los 7 restantes, un individuo presentaba inhibición y para los otros 6 no se obtuvo amplificación para ninguno de los 4 haplogrupos (Fig. 7.2).

Por último para la muestra de Patagonia centro, de un total de 14 individuos se obtuvo resultado positivo en 9 de ellos (64,29%), todos pertenecientes al haplogrupo D. Dos individuos presentaron inhibición y 3 no pudieron ser amplificados por RFLP (Fig.7.2).

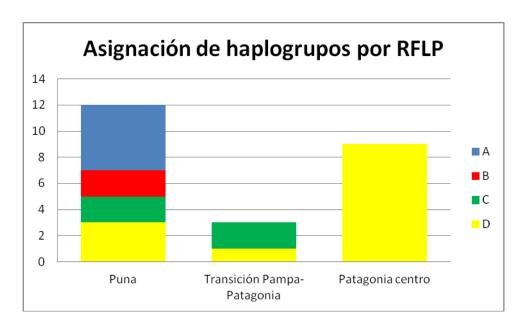


Figura 7.2. Valores absolutos de los haplogrupos registrados.

7.3 Análisis de la determinación del sexo por amplificación del gen de la amelogenina

De los 57 individuos estudiados se logró establecer el sexo molecular de 4 de ellos correspondientes a la muestra de Puna, obteniendo dos individuos masculinos (DC3 y DC9) y dos femeninos (DC1 y DC4). Este resultado se obtuvo mediante la amplificación por PCR y la posterior observación de la diferencia de 6 pares de bases entre ambos sexos (Fig. 7.3). Teniendo en cuenta la comunicación personal de la Dra. Laura Fuchs, la determinación del sexo a partir de este marcador coincidió con el sexo determinado por indicadores morfológicos para esos individuos. El resto de las muestras se analizó al menos 3 veces para este marcador molecular sin obtenerse resultados favorables, ni con el método de amplificación por PCR, ni con el método de PCR en tiempo real utilizando las curvas de disociación.

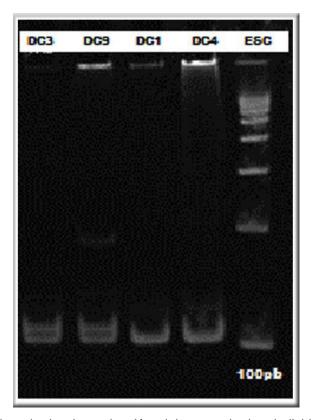


Figura 7.3. Resultados de la determinación del sexo de los individuos analizados. Los individuos masculinos muestran dos bandas y los femeninos una.

7.4 Secuenciación de la HVR I y tipificación de haplotipos

De los 57 individuos analizados para la HVR I, 39 secuencias fueron asignadas a un haplotipo (68,42% de recuperación de ADNa) utilizando sólo los segmentos de la región que pudieron ser secuenciados más de 3 veces. De los restantes, en 15 no se obtuvo amplificación de la HVR I y en 3 casos (DC2, DC10 y DC22) no fue posible realizar una asignación confiable a un subhaplogrupo amerindio utilizando HaploGrep, debido a la ausencia de mutaciones específicas. Además presentaron diferencias mayores a 3 bases con otras secuencias de Sudamérica, por lo que se las consideró como indeterminadas y no se tuvieron en cuenta para los análisis estadísticos.

La asignación al subhaplogrupo más probable realizada con HaploGrep fue muy buena (más del 90% en la confianza de la determinación) en 23 casos, aceptable (entre 90% y 80% de confianza) en 6 casos y en los 10 restantes la asignación fue entre 70% y 80% de confianza (Tablas 7.3, 7.5 y 7.7).

Estos últimos 16 casos podrían corresponder a errores en la secuenciación o a la ausencia del haplotipo en la base de datos de HaploGrep. Con el fin de explorar estas posibilidades se calculó la distancia P (número de diferencias dividido por el tamaño de la secuencia) entre estos casos y todas las secuencias modernas y antiguas que integran la base de datos generada para este estudio (Tabla anexa 2a). Este procedimiento fue realizado debido a que si bien HaploGrep contiene una base de datos extensa, numerosas variantes conocidas para Sudamérica no se encuentran incluidas en la misma hasta el momento.

Las distancias obtenidas variaron entre 0.000 y 0.012, es decir entre 0 y 4 polimorfismos de diferencia (Tablas 7.3, 7.5 y 7.7). Aquellas secuencias que presentaron distancias pequeñas (entre 0 y 2 polimorfismos) a varias de las secuencias incluidas en la comparación fueron consideradas confiables debido a que coinciden o son muy similares a haplotipos descriptos para la región de estudio, y por lo tanto fueron empleadas en análisis posteriores. Estas diferencias generalmente incluyeron "mutaciones privativas locales"

(polimorfismos que existen en Phylotree pero no están asociados a ese haplotipo particular) o "globales" (es decir, polimorfismos no descriptos hasta el momento en Phylotree) (Tablas 7.3, 7.5 y 7.7) determinadas por Haplogrep (Klöss-Brandstätter *et al.*, 2011).

Asimismo, dentro de los individuos comparativos con la menor distancia P a las muestras estudiadas en esta tesis, al más cercano genéticamente según el análisis de *Neighbor-joining*, se realizó una asignación al haplotipo más probable utilizando HaploGrep. Los linajes obtenidos coincidieron o correspondieron a haplotipos filogenéticamente cercanos a los obtenidos para los individuos analizados aquí. Si se tiene en cuenta que los individuos de la base de datos poseen la secuencia de la HVR I completa, podría asumirse esa similitud en los linajes como un paso más de autenticación de los datos obtenidos. Es importante remarcar, que en todos los casos estudiados en esta tesis el subhaplogrupo determinado por HaploGrep coincidió con el haplogrupo determinado por RFLP, lo que puede interpretarse como una prueba independiente de autenticación.

Por otro lado, a pesar de los criterios descriptos, dentro de las 39 secuencias obtenidas, 7 fueron excluidas de este trabajo (AMZ5, PA12, PA13, PA19, DC12, DC14 y DC19) por no presentar amplificación del segmento B o el C o de alguno de estos dos junto con el A. Por la ausencia de esos segmentos presentaban de 2 a 4 diferencias con las otras secuencias de la región de estudio y esas diferencias incluían mutaciones propias o exclusivas que definen los haplotipos amerindios a los cuales la secuencia era similar. Además, al momento de realizar los análisis de comparación entre secuencias, la ausencia de esos fragmentos, generaba errores o impedía continuar con los análisis estadísticos.

7.5 Resultados a escala regional y supra-regional

7.5.1 Resultados por región geográfica

-Muestra del área de la Puna

Para la muestra de la Puna de un total de 23 individuos se obtuvo amplificación para 17, de los cuales 14 fueron asignados a un haplotipo y 3 resultaron ser indeterminados (DC2, DC10 y DC22) por lo que fueron excluidos de los análisis estadísticos posteriores, dando un 47,83% de resultados favorables para su análisis y comparación. Los 6 restantes no pudieron ser amplificados. En 2 de los individuos (DC19 y DC14) no se obtuvo amplificación para los segmentos A y C de la HVR I (ver Tabla 7.3), a diferencia de DC16, DC21, DC18 y DC1 en los cuales no amplificó el segmento A y de DC12 en el que no se obtuvo amplificación del segmento C. El único individuo para el cual no amplificó el segmento B fue el DC6 (Tabla 7.3).

Tabla 7.3. Resultados obtenidos para la muestra de Puna

			HVR I ^Δ				distancia P		asignación al	% de		
		Haplogru						mínima con		subhaplogrupo de	Haplogrep de	
Sitio		po	Segmento A	Segmento B	Segmento C	asignación a subhaplogrupo ^o por	%	muestras		muestras actuales	las muestras	polimorfismos en los
Arqueológico	Individuo	(RFLP)	(16009-16166)	(16121-16238)	(16225-16390)	Haplogrep	Haplogrep	actuales	individuos de base de datos	por Haplogrep	actuales	que difieren
	DC16		no amplifica	125A 223T	290T 319A 362C	A+152+16362	100	0.004	PilFo.M2 + 11 individuos más	A+152+16362	90,13%	16051 y 16125
									C EIP 121 y C EIP 122* + 64			-
	DC21	D	no amplifica	223T	325C 354T 362C	D1	84.25	0.004	individuos más	D - 16325	72%	16325
	DC14	В	no amplifica	183C 188T 189C 217C	no amplifca	B4	79.41	0.000	Hp92 + 85 individuos más	B4	100%	ninguno
Agua Calinte	DC10		no amplifica	153A 223T	amplificó una vez con 298C	indeterminado		0.011	Cochabamba1 + 15 individuos m	С	86,38%	16153, 16298 y 16327
	DC15	inhibida	no amplifica	no amplifica	no amplifca							
	DC17		no amplifica	no amplifica	no amplifca							
	DC20		no amplifica	no amplifica	no amplifca							
	DC23		no amplifica	no amplifica	no amplifca							
Casabindo	DC9	Α	rCRS	192T 223T 234G	256T 290T 319A 362C	A2+(64)+@16111	75	0.003	Hp50 + 1 individuo más	A2+(64)+@16111	78,5%	16192
	DC4	Α	rCRS	223T	290T 319A 362C	A+152+16362	100	0.000	PilFo.M3 y 9 individuos más	A+152+16362	100%	ninguno
	DC7	Α	111T 129A	223T	290T 319A 362C	A2+(64)+16129	100	0.000	T40 + 5 individuos más	A2+(64)+16129	100%	ninguno
	DC11	C	rCRS	223T	298C 325C 327T	C1/C1b	100	0.000	AT171 + 111 individuos más	C1	100%	ninguno
	DC5	С	rCRS	189C 223T	298C 325C 327T	C1/C1b	96.15	0.000	ARO70 + 5 individuos más	C1	96,15%	ninguno
	DC3	Α	086C 111T	223T 234G	290T 319A 362C	A2z	80.95	0.006	Hp52 y 53 individuos más	A2	86,23%	16266 y 16234G
Doncellas	DC18	D	no amplifica	187T 223T	257T 290T 362C	D1g4- 16325	77.31	0.008	Mapu13.M	D1g2a -16189	94.10%	16257 y 16290
	DC1	В	no amplifica	183C 189C 217C	253G 286G	B4	75.28	0.008	ARG154 +179 individuos más	B4	83,33%	16253 y 16286
	DC19	D	no amplifica	125A 187T 189C 209C 223T	no amplifca	D1g5-16325 - 16362	86.43	0.01	Map.AG17 + 44 individuos más	D1g2a -16223	63.30%	16125 y 16209
	DC12	Α	072T 083T 111T	129A 223T	no amplifca	A2z-16256 - 16290 - 16319 -16362	73.58	0.011	T40 + 9 individuos más	A2+(64)+16129	100%	16072 y 16083
	DC2		no amplifica	188T 192T 223T	319A	indeterminado		0.011	Chil26	A2a-16111	91,61%	16188 y 16290
	DC8		no amplifica	no amplifica	no amplifca							
Río Negro	DC6		rCRS	no amplifica	223T** 287T 298C 325C 327T 362C	C1b8	76.1	0.006	H_LIP_C81 y un individuo más*	C1	80,53%	16147A
Sorcuyo	DC22		no amplifica	189C 223T	300G	indeterminado		0.011	YA09 + 19 individuos más	D1g + 16189	83.49%	16187, 16325 y 16362
Sorcuyo	DC13	inhibida	no amplifica	no amplifica	no amplifca							

Nota: en color rojo se identifican las mutaciones que según Haplogrep son hotspots, en azul las que son consideradas mutaciones privativas locales y en color verde las privativas globales.

Δ los polimorfismos de HVR I corresponden a la posición 16000 + el número descripto

^{*} los individuos más cercanos son antiguos, los actuales se encuentran a una distancia mayor

^{**} Esta mutación aunque no fue leida en el segmento B, al ser característica de ciertos haplogrupos, se la consideró valida por obtenerse en 3 lecturas independientes del cebador reverse del segmento C

o si bien HaploGrep asigna a haplogrupo, según los criterios seguidos en este estudio, la asignación correspondería a subhaplogrupos

A nivel de subhaplogrupo dentro de los 11 individuos con resultados favorables, se obtuvo un 45,45% de A2, un 27,27% fue estimado para C1, un 18,18% para D1 y por último un 9,1% de B2. Ninguno de los individuos presentó un haplotipo compartido dando como resultado un número de haplotipos igual a 11. Además, al obtenerse representantes de linajes de los 4 subhaplogrupos principales, la diversidad haplotípica y nucleotídica son elevadas, ya que cada haplotipo se diferencia del resto por más de 2 sitios polimórficos (Tabla 7.4).

Con respecto a la distancia con el resto de las muestras de la base de datos generada para este estudio, la mayoría de los individuos analizados de Puna presentaron las menores distancias a individuos del sur de los Andes centrales, seguidos de los correspondientes al noreste de Argentina (NEA) (Tabla anexa 3).

Tabla 7.4. Estadísticos de variabilidad genética para el área de la Puna

Muestra	n	S	h	Hd	K	π
Puna	11	23	11	1,00±0,039	6,436	0,01882±0,00244

n= número de secuencias analizadas; S=número total de sitios polimórficos; h=número de haplotipos; Hd=Diversidad haplotípica \pm su desvío estandar; k=número promedio de diferencias entre pares de secuencias; $\pi=$ Diversidad nucleotídica \pm su desvío estándar.

- Muestras del área de transición Pampa-Patagonia

Se analizaron 20 individuos, a 13 de los cuales se le asignó un linaje mitocondrial, pero por las razones comentadas anteriormente, 3 de ellos (PA12, PA13 y PA19) fueron excluidos de los análisis estadísticos. Se obtuvo, por lo tanto, un 50% de resultados favorables. Para 4 individuos (PA3, PA15, PA18 y PA14) no se consiguió secuenciar el segmento A, en 2 individuos (PA12 y PA13) el segmento C y en PA19 no se obtuvo amplificación del segmento B. A pesar de contar con la pérdida de información de estos segmentos, el porcentaje de asignación a un haplotipo mitocondrial utilizando HaploGrep, en

la mayoría (10 de 13 individuos), fue superior al 90% de confianza. Para los 7 individuos restantes no se obtuvieron amplificaciones de la HVR I para secuenciar (Tabla 7.5).

Tabla 7.5. Resultados obtenidos para la región de transición Pampa-Patagonia

			HVR I ^Δ								
Individuo	Haplogrupo (RFLP)	Segmento A (16009-16166)	Segmento B (16121-16238)	Segmento C (16225-16390)	asignación a subhaplogrupo ^o por Haplogrep	% Haplogrep	distancia P mínima con muestras actuales	individuos de base de datos	asignación al subhaplogrupo de muestras actuales por Haplogrep	% de Haplogrep de las muestras actuales	polimorfismos en los que difieren
PA3		no amplifica	187T 223T	349R 325C 362C	D1g	100	0.004	C EIP D111* + 31 individuos más	D1g	100%	16349R
PA5		030T 156A	208A 223T	325C 362C	D1	100	0.009	Huari.MQ13* + 56 individuos más	D1g	100%	16030, 16156 y 16208
PA7		129A 146R	223T	362C	D4a	100	0.006	Yu019 + 4 individuos más	D1 + 16129	92%	16146R y 16325
PA10		rCRS	187T 223T	325C 362C	D1g	100	0.000	MARG83 + 32 individuos más	D1g1 -16362	100%	ninguno
PA11	D	rCRS	187T 223T	325C 362C	D1g	100	0.000	MARG83 + 32 individuos más	D1g1 -16362	100%	ninguno
PA15		no amplifica	187T 223T	325C 362C	D1g	100		C EIP D111* + 31 individuos más	D1g	100%	ninguno
PA16		rCRS	187T 223T	290T 325C 362C	D1g4	100	0.003	Chil19.M + 38 individuos más	D1g4	88.63%	16335
PA18		no amplifica	187T 223T	325C 362C	D1g	100	0.000	C EIP D111* + 31 individuos más	D1g	100%	ninguno
PA8		rCRS	187T 223T	325C	D1g -16362	93.6	0.000	Map.AG15 + 1 individuo más	D1g1 -16362	93.60%	16390
PA14		no amplifica	187T 223T	248T 295T 362C	D1g2a -16189	72.9	0.008	Mapu13.M	D1g2a -16189	94.10%	16248 y 16295
PA19	C	rCRS	no amplifica	223T** 298C 325C 327T	C1/C1b	100	0.000	Cochabamba10 + 160 individuos más	C1	84,2%	ninguno
PA12		rCRS	187T 209C 223T	no amplifica	D1g5 -16189	82.6	0.000	Chil19.M + 55 individuos más	D1g4	88.63%	16209
PA13		129A	187T 223T	no amplifica	D1g2a -16189	78.2	0.006	ARO94 + 62 individuos más	D1g1	100%	16129
PA20		no amplifica	no amplifica	no amplifica							
PA1		no amplifica	no amplifica	no amplifica							
PA2		no amplifica	no amplifica	no amplifica							
PA4	inhibida	no amplifica	no amplifica	no amplifica							
PA6		no amplifica	no amplifica	no amplifica							
PA9	С	no amplifica	no amplifica	no amplifica							
PA17		no amplifica	no amplifica	no amplifica							

Nota: en color rojo se identifican las mutaciones que según Haplogrep son hotspots, en azul las que son consideradas mutaciones privativas locales y en color verde las privativas globales.

Δ los polimorfismos de HVR I corresponden a la posición 16000 + el número descripto

^{*} los individuos más cercanos son antiguos, los actuales se encuentran a una distancia mayor

^{**} Esta mutación aunque no fue leida en el segmento B, al ser característica de ciertos haplogrupos, se la consideró valida por obtenerse en 3 lecturas independientes del cebador reverse del segmento C

[◊] si bien HaploGrep asigna a haplogrupo, según los criterios seguidos en este estudio, la asignación correspondería a subhaplogrupos

Una gran proporción de los haplotipos encontrados fueron similares, y en algunos casos idénticos, a los descriptos para muestras modernas y antiguas publicadas previamente para Patagonia y también para otras regiones del Cono Sur de Sudamérica (Tabla 7.5).

A diferencia de la muestra de Puna, sólo se obtuvieron haplotipos correspondientes a D1 y el 80% correspondió al subhaplogrupo D1g (Tabla 7.6). Los casos PA10, PA11, PA15 y PA18 compartieron el mismo haplotipo, el cual se caracterizó por presentar los polimorfísmos típicos del D1g dando como resultado un h=7. La diversidad haplotípica estimada (0,867±0,17) es baja en comparación a la Puna (Tabla 7.6). Esto puede deberse a que sólo hay representantes del subhaplogrupo D1, 4 individuos comparten haplotipo como ya fue señalado y la mayoría de las secuencias correspondieron al subhaplogrupo D1g.

Tabla 7.6. Estadísticos de variabilidad genética para el área de transición Pampa-Patagonia

Muestra	n	S	h	Hd	K	π
Transición Pampa- Patagonia	10	12	7	0,867±0,170	2,711	0,00793±0,00215

n= número de secuencias analizadas; S=número total de sitios polimórficos; h=número de haplotipos; Hd=Diversidad haplotípica \pm desvío estandar; k=número promedio de diferencias entre pares de secuencias; $\pi=$ Diversidad nucleotídica \pm desvío estándar

- Muestras del área Patagonia centro

De un total de 14 individuos analizados, para 12 fue posible asignar un haplotipo, obteniéndose un 85,71% de recuperación en la secuenciación de la HVR I. Aunque el individuo AMZ5 fue excluido para los análisis posteriores dando un 78,57% de resultados favorables. En 2 individuos (DB6 y AMZ5) no se obtuvo amplificación de los segmentos A y B, mientras que en un individuo (RP4) el único segmento no amplificado fue el A. Esto demuestra, en

comparación a las otras dos muestras analizadas, que el ADNmt de estos individuos se encontraba mejor preservado en los restos esqueletales.

De los 11 resultados favorables, la asignación al haplotipo correspondió a más de un 90% de confianza para HaploGrep en 7 individuos, entre 90% y 80% en 2 casos, mientras que para los 2 restantes se obtuvieron porcentajes bajos, de 73% y 776%, respectivamente, poseyendo estos 2 últimos varios polimorfismos determinados como "mutaciones privativas locales" (Tabla 7.7).

Tabla 7.7. Resultados obtenidos para las muestras de Patagonia centro

			HVR I ^Δ						, .,		
Individuo	Haplogrupo (RFLP)	Segmento A (16009-16166)	Segmento B (16121-16238)	Segmento C (16225-16390)	asignación a subhaplogrupo⁰ por Haplogrep	% Haplogrep	distancia P mínima con muestras actuales	individuos de base de datos	asignación del subhaplogrupo de muestras actuales por HaploGrep	% de Haplogrep de las muestras actuales	polimorfismos en los que difieren
LA 1	D	rCRS	187T 223T	325C 362C	D1g	100	0.000	MARG83 + 31 individuos más	D1g1 -16362	100%	ninguno
LA 2	D	rCRS	187T 189C 209C 223T	325C 362C	D1g5	100	0.000	MARG39 + 11 individuos más	D1g5	100%	ninguno
DB1	D	072T	187T 189C 223T	325C 362C	D1g+16189	100	0.003	MA29 + 2 individuos más	D1g + 16189	100%	16072
DB4	D	rCRS	187T 189C 209C 223T	325C 362C	D1g5	100	0.000	Teh3.M + 12 individuos más	D1g5	100%	ninguno
DB5	D	129A	223T	362C	D4a	100	0.003	Yu019 +4 individuos más	D1 + 16129	92%	16325
DB6		no amplifica	no amplifica	223T** 311C 325C 362C	D1	94,8	0.000	PilFo.M23 + 9 individuos más	D1	94.77%	ninguno
DB3	D	rCRS	174T 187T 189C 209C 223T	325C 362C	D1g5	88,62	0.003	MARG39 + 12 individuos más	D1g5	100%	16174
DB2		093C	223T	266T 298C 325C 327T	C1/C1b	87,74	0.003	PilFo.M16 + 6 individuos más	C1	91,96%	16093
RP2		rCRS	187T 189C 205T 209C 223T	325C 362C	D1g5	100	0.003	MARG39 + 13 individuos más	D1g5	100%	16205
RP 1	D	051G	187T 189C 209C 223T	298C 305G 320T 325C 362C	D1g5	76,01	0.012	MARG39 + 13 individuos más	D1g5	100%	16051, 16298, 16305, 16320
RP 4	D	no amplifica	187T 189C 194G 209C 223T	235G 362C	D1g2a - 16325	73,05	0.011	YA09 + 28 individuos más	D1g5	91.48%	16194 y 16235
AMZ5	D	no amplifica	no amplifica	223T** 325C 362C	D1	100	0.000	Hp114 + 134 individuos más	D1	78,1%	ninguno
AMZ1	inhibida	no amplifica	no amplifica	no amplifica							
RP 3	inhibida	no amplifica	no amplifica	no amplifica							

Nota: en color rojo se identifican las mutaciones que según Haplogrep son hotspots, en azul las que son consideradas mutaciones privativas locales y en color verde las privativas globales.

Δ los polimorfismos de HVR I corresponden a la posición 16000 + el número descripto

^{**} Esta mutación aunque no fue leida en el segmento B, al ser característica de ciertos haplogrupos, se la consideró valida por obtenerse en 3 lecturas independientes del cebador reverse del segmento C

[🛮] si bien HaploGrep asigna a haplogrupo, según los criterios seguidos en este estudio, la asignación correspondería a subhaplogrupos

En cuanto a los linajes obtenidos, un 90,9% correspondió al subhaplogrupo D1 y el resto (9,1%) al subhaplogrupo C1. Del subhaplogrupo D1, el 80% correspondió al subhaplogrupo D1g. Sólo 2 individuos (LA2 y DB4) comparten el mismo linaje dando como resultado un número de haplotipos igual a 10 y una elevada diversidad haplotípica (0,982±0,046), superior a la de la muestra de Puna, en la cual hay 11 haplotipos representados. Esto indicaría que el subhaplogrupo D1 dentro de la muestra de Patagonia centro presenta linajes diversos que se diferencian entre sí por más de 4 polimorfismos (k; Tabla 7.8).

En este caso la mayoría de los individuos tipificados presentó distancias genéticas mínimas con individuos de la muestra actual de Norpatagonia, y la minoría presentó mayor cercanía a muestras ubicadas geograficamente más al norte.

Tabla 7.8. Estadísticos de variabilidad genética para el área de Patagonia centro

Muestra	n	S	h	Hd	k	π
Patagonia	11	19	10	$0,982 \pm 0,046$	4.691	$0,01352 \pm 0,00370$
centro						

n= número de secuencias analizadas; S=número total de sitios polimórficos; h=número de haplotipos; Hd=Diversidad haplotípica \pm desvío estandar; k=número promedio de diferencias entre pares de secuencias; $\pi=$ Diversidad nucleotídica \pm desvío estandar

7.5.2 Análisis de la variabilidad en el contexto supra-regional

Las muestras de Puna, transición Pampa-Patagonia y Patagonia centro fueron incluidas en agrupamientos mayores, junto con otras muestras antiguas, en escalas geográficas más amplias correspondiendo a Andes sur/NOA, Pampa-Patagonia y Patagonia centro-sur, respectivamente. Para cada uno de estos nuevos agrupamientos se calcularon los índices de diversidad haplotípica y nucleotídica (Tabla 7.9).

Si bien la muestra Andes sur/NOA es la que presenta mayor número de individuos (n=62) y con mayor cantidad de haplotipos (h=31), las tres regiones presentan una diversidad haplotípica relativa elevada. Para entender estos

resultados, es importante señalar que en Andes sur/NOA están representados los 4 subhaplogrupos (A2, B2, C1 y D1), mientras que en la región de Pampa-Patagonia se encuentran el A2, el C1 y el D1 y para la muestra de Patagonia centro-sur sólo están representados el subhaplogrupo C1 y D1. Esto muestra que los subhaplogrupos C1 y D1 se encuentran muy diversificados en el sur, con una diferencia entre pares de haplotipos de más de 5 polimorfismos (Tabla 7.9).

Tabla 7.9. Estadísticos de variabilidad genética para las regiones Andes sur/NOA, Pampa-Patagonia y Patagonia centro-sur

Muestra	n	S	h	Hd	k	π
Andes sur/NOA	62	38	31	0,938±0,02	6,662	0,01948±0,00105
Pampa- Patagonia	12	16	9	0,909±0,079	3,364	0,00989±0,00221
Patagonia centro-sur	50	31	23	0,936±0,02	5,507	0,01610±0,00102

n= número de secuencias analizadas; S=número total de sitios polimórficos; h=número de haplotipos; Hd=Diversidad haplotípica \pm desvío estandar; k=número promedio de diferencias entre pares de secuencias; $\pi=$ Diversidad nucleotídica \pm desvío estandar

Además, se analizó la diversidad en las mismas regiones geográficas estudiadas en muestras modernas ya publicadas (BDSC, Tabla anexa 2 a, b). La muestra Andes sur/NOA presenta la mayor cantidad de individuos (n=228), seguida por Norpatagonia (n=221), siendo más escasos los individuos analizados para Patagonia centro-sur (n= 119). Aunque Andes sur/NOA presentó la mayor cantidad de haplotipos, las 3 regiones presentan valores de diversidad haplotípica similares con haplotipos que se diferencian por la misma cantidad de polimorfismos (k, Tabla 7.10). En este análisis de muestras modernas en todas las regiones, a diferencia de los agrupamientos con muestras antiguas, se observaron los 4 subhaplogrupos amerindios. También puede observarse que en relación con las muestras antiguas las diferencias en

cuanto a la diversidad haplotípica son mínimas y en proporción éstas últimas presentan menor número de haplotipos (Tabla 7.10).

Tabla 7.10. Estadísticos de variabilidad genética para las regiones Andes sur/NOA, Norpatagonia y Patagonia centro-sur

Muestra	n	S	h	Hd	k	π
Andes sur/NOA	228	77	97	0,969±0,005	6,016	0,01769±0,00059
Norpatagonia	221	62	77	0,964±0,005	6,431	0,01891±0,00042
Patagonia centro-sur	119	45	53	0,961±0,009	6,254	0,01839±0,00076

n= número de secuencias analizadas; S=número total de sitios polimórficos; h=número de haplotipos; Hd=Diversidad haplotípica \pm desvío estandar; k=número promedio de diferencias entre pares de secuencias; $\pi=$ Diversidad nucleotídica \pm desvío estándar

Finalmente, cuando se analizaron las muestras antiguas y modernas de manera conjunta, se observa que con respecto a los índices de diversidad obtenidos para las muestras modernas, no hay diferencias notables. Sin embargo, el número de haplotipos varía, siendo en comparación a los análisis anteriores, proporcionalmente menor al número total de individuos analizados (Tabla 7.11). Si se observa el número total de sitios polimórficos (S, Tabla 7.11) con respecto a los de antiguos y modernos por separado, podría inferirse que los individuos antiguos aportan mayor diversidad a los haplotipos, lo cual no se ve reflejada significativamente en la diversidad haplotípica debido a que la misma depende de la frecuencia de cada haplotipo.

Esto se debe a que 11 de los haplotipos de los Andes sur/NOA-A son compartidos con modernos, mientras que en Norpatagonia y Pampa-Patagonia esto ocurre sólo con 2 haplotipos y en Patagonia centro-sur ocurre con 3. Además, es importante destacar que numerosos haplotipos presentes en las muestras antiguas no han sido detectados en modernas, Lo cual ha sido observado en 16 muestras de la región Andes sur/NOA, 7 de Norpatagonia y 13 de Patagonia (Tabla 7.11).

Tabla 7.11. Estadísticos de variabilidad genética para las regiones Andes sur/NOA, Pampa-Patagonia y Patagonia centro-sur

Muestra	n	S	Н	h-uni. Antiguos	Hd	k	π
NOA	290	82	116	16	0,97±0,0041	6,187	0,0182±0,00046
Norpatagonia	233	68	84	7	0,965±0,005	6,381	0,01888±0,00043
Patagonia centro-sur	169	58	66	13	0,962±0,007	6,119	0,01800±0,00066

n= número de secuencias analizadas; S=número total de sitios polimórficos; h=número de haplotipos; h-uni Antiguos= haplotipos sólo presenten en muestras antiguas; Hd=Diversidad haplotípica; k=número promedio de diferencias entre pares de secuencias; $\pi=$ Diversidad nucleotídica.

7.5.3 Análisis de la variabilidad dentro de los subhaplogrupos

Con el fin de analizar la diversidad interna de cada uno de los 4 subhaplogrupos amerindios principales observados en muestras antiguas del Cono Sur de Sudamérica se emplearon las medidas de diversidad utilizadas en el apartado 7.5.2. Para este análisis se incluyeron todas las muestras procesadas y de la BDSC generada para este trabajo de tesis (Tabla anexa 2a).

El subhaplogrupo más representado en los individuos antiguos es el B2, siendo muy frecuente en poblaciones de los Andes centro-sur. Lo siguen en frecuencia decreciente el subhaplogrupo D1, el C1 y en menor proporción se encuentra representado el subhaplogrupo A2. Es de destacar que las muestras antiguas analizadas en este trabajo para la Puna, no presentan concordancia con este patrón, ya que las mismas al igual que la muestra de Los Amarillos (Mendisco *et al.*, 2011), presentan una mayor representación del subhaplogrupo A2.

El subhaplogrupo D1 es el que presenta mayor número de haplotipos. Asimismo, este subhaplogrupo presenta un valor alto de diversidad nucleotídica (π), con más de 3 polimorfismos en media de diferencia entre pares de secuencias, pareciendo ser el más diverso de los 4. El subhaplogrupo B2

también presenta gran variación haplotípica, pero en proporción posee menor número de haplotipos y los mismos se diferencian menos entre sí (Tabla 7.12).

Tabla 7.12. Estadísticos de variabilidad genética para los subhaplogrupos antiguos

Subhaplogrupo	n	\mathbf{S}	h	Hd	k	π
A2	40	20	19	0,776±0,070	1,556	0,00458±0,00085
B2	124	43	52	$0,960\pm0,008$	3,033	$0,00889\pm0,00054$
C 1	97	41	42	$0,898\pm0,026$	2,121	$0,00620\pm0,00054$
D1	106	58	54	$0,929\pm0,020$	3,385	$0,0099\pm0,0008$

n= número de secuencias analizadas; S=número total de sitios polimórficos; h=número de haplotipos; Hd=Diversidad haplotípica \pm desvío estandar; k=número promedio de diferencias entre pares de secuencias; $\pi=$ Diversidad nucleotídica \pm desvío estándar

Estas diferencias en la diversidad de haplotipos para cada uno de los 4 subhaplogrupos principales pueden observarse en las redes de asociación de haplotipos antiguos que fueron construidas a partir del método de *median-joining* (Fig. 7.4 a la 7.7). Las redes generadas muestran que la mayoría de los haplotipos descriptos para las muestras procesadas en este trabajo son idénticos (9/32) o presentan una (8/32) o dos (7/32) mutaciones o hasta 6 cómo máximo (8/32) de separación con haplotipos de muestras antiguas descriptas en trabajos previos. Además la mayoría de ellas se diferencian por al menos una mutación del haplotipo nodal (Fig. 7.4 a la 7.7).

Las redes de B2 y el D1, tal como se mencionó con los índices de diversidad, reflejan que estos son los subhaplogrupos que presentan mayor número de haplotipos (Fig.7.5 y 7.7). Si se comparan las 4 redes, podría inferirse que los linajes de B2 y D1, poseen un tiempo de divergencia mayor que los de A2 y C1, lo cual les permitió generar mayor variabilidad interna, sobre todo con una gran diferenciación por región geográfica (Fig. 7.4 a la 7.7).

Dentro de la red y del *Neighbor-joining* de los haplotipos del subhaplogrupo A2 (Fig. 7.4 y Fig. digital anexa 1), las secuencias de los individuos DC4 y DC7 se diferencian del haplotipo nodal por un evento

mutacional, siendo éste la pérdida de 16111T y la aparición de 16129A, respectivamente. El caso DC4 comparte haplotipo con los individuos modernos LPAZ 59, SantaCruz22 y Hp17 de los Andc/s, ARG169, 253, 64, 132 y 147 de los Ands/NOA, un pilagá de Formosa y Map.AG18 y Map.AG19 de Pn. Con respecto a DC7, presentó el mismo haplotipo que los casos modernos Titi2.Q de los Andc/s y T40, 69, 80 y Map74 de Pn y Mar13 de Pcs. El haplotipo del caso DC3 se diferencia del nodal por los polimorfismos 16086C y 16234G, siendo el único antiguo con esas mutaciones en una misma secuencia. Además, este haplotipo no se encontró en ninguno de los descriptos en la BDSC. Sin embargo, cada uno de los polimorfismos por separados aparecen en diversos haplotipos (Tabla anexa 2a).

La mutación 16234G también está presente en el haplotipo del individuo DC9 el cual se diferencia de la secuencia nodal por 4 eventos mutacionales (16192T, 16234G, 16256T y la reversión de 16111T). Es un haplotipo único entre los antiguos y no fue encontrado en ninguna de las muestras modernas. Sin embargo, la mutación 16192T aparece en la BDSC, mientras que las mutaciones 16234G, 16256T y la reversión de 16111T se encontraron juntas en 2 muestras de los Andes centro-sur (Cochabamba21 y Cochabamba23). Por último, el haplotipo del individuo DC16 no posee la mutación 16111T, pero en este caso puede deberse a que el segmento A, donde podría observarse esa mutación, no ha podido ser amplificado. Además, presenta la 16125A que fue descripta para una muestra antigua de Los Amarillos (LAm9) sin encontrarse hasta el momento, un linaje moderno similar.

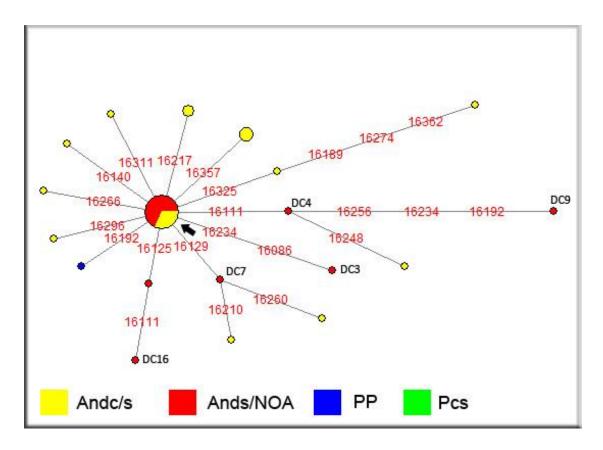


Figura 7.4. Red de haplotipos antiguos para el subhaplogrupo A2. La flecha indica el haplotipo nodal y se señala la posición de las muestras analizadas.

En la red haplotípica y *Neighbor-joining* del subhaplogrupo B2 (Fig 7.5 y Fig. digital anexa 2), el haplotipo de DC1 se diferencia del nodal por las mutaciones 16286G y 16253G, siendo único entre las muestras antiguas. La mutación 16286G no se observó en ninguno de los haplotipos de la BDSC. Sin embargo, el polimorfismo 16253G se encontró junto a la mutación 16289G en los haplotipos de un aymará de los Andc/s, y 2 individuos de los Ands/NOA (Coya y ARG083), siendo éstos los más similares al obtenido aquí.

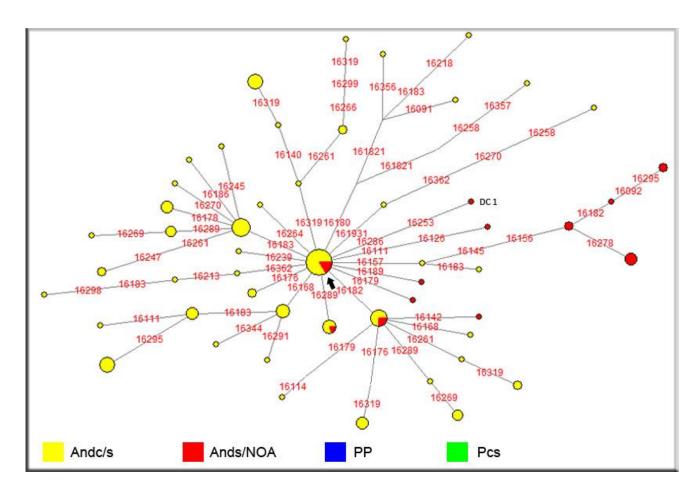


Figura 7.5. Red de haplotipos antiguos para el subhaplogrupo B2. La flecha indica el haplotipo nodal y se señala la posición de las muestras analizadas.

En la red haplotípica y el *Neighbor-joining* de C1 (Fig. 7.6 y Fig. digital anexa 3), la secuencia DC11 muestra el haplotipo de un C1 nodal junto a otros 28 casos antiguos, de los cuales 8 corresponden a la región de Pcs, 22 a la de Andc/s y 1 de los Ands/NOA. Con respecto a las muestras modernas, DC11 comparte el haplotipo con 112 individuos de Pn y Psc (Tabla anexa 3). Por su parte, el haplotipo del caso DC5 se diferencia del nodal por el polimorfismo 16189C, siendo el mismo que el del individuo antiguo C_LIP-C7 de los Andc/s y del de los casos modernos: Yu015 de los Andc/n, Hp107 de los Andc/s, ARO70 de los Ands/Chn, MB.GU10 de la región del NEA/BRs/Par y Map.AG9 de Pn. La secuencia nucleotídica del individuo DC6 se diferencia del nodal por dos eventos mutacionales, la aparición de 16362C y 16287T. Es un haplotipo único

en antiguo aunque la mutación 16362C la comparte con ACCH12 y C-EIP-C251 de los Andc/s y por otro lado, comparte la mutación 16287T con H-LIP-C81 y 82 de los Andc/s. Estos dos últimos individuos además poseen la mutación 16147A. En comparación con las muestras modernas, el haplotipo de DC6 se asemeja al de YU014 de los Andc/n, LaPaz34 de los Andc/s, coya de los Ands/NOA y a Chil137 de Pcs por poseer la mutación 16362C como adicional a las típicas del haplotipo nodal de C1.

EL haplotipo del caso DB2 se diferencia del nodal por los polimorfismos 16093C y 16266T, siendo un haplotipo antiguo único. La mutación 16093C se encuentra también en muestras antiguas de los Andc/s (C_EIP-C321 y H_LIP-C111). Ambas mutaciones se encuentran por separado en varios linajes modernos de los subhaplogrupos amerindios. Por último, la secuencia de DB2 posee un haplotipo similar al de los casos modernos QuechPeru12 y LPaz037 de los Andc/s y a una muestra PilFo del NEA/BRs/Par, pero con la ausencia de la mutación 16093C. Por otro lado el caso DB2 también se asemeja a los casos Beni7, LaPAz8, Hp62, Hp155 de los Andc/s, con la ausencia de la mutación 16266T (Tabla anexa 3).

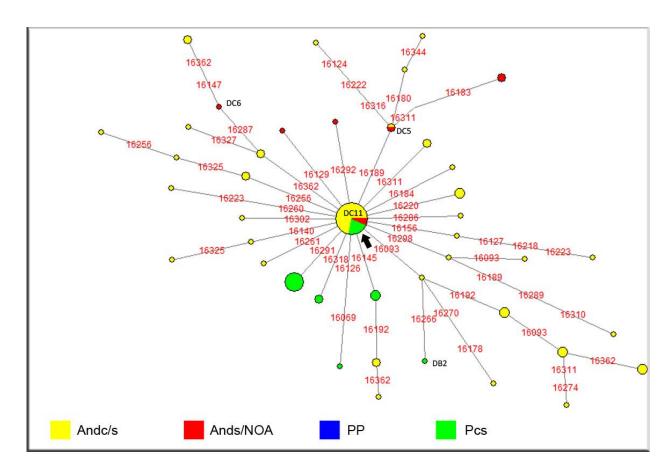


Figura 7.6. Red de haplotipos antiguos para el subhaplogrupo C1. La flecha indica el haplotipo nodal y se señala la posición de las muestras analizadas.

En la red haplotípica y en el *Neighbor-joining* del subhaplogrupo D1 (Fig. 7.7 y Fig. digital anexa 4) se observa una mayor frecuencia relativa de haplotipos obtenidos en este trabajo de investigación. Este subhaplogrupo fue el más representado en las muestras de transición Pampa-Patagonia y Patagonia centro. Los haplotipos tipificados en este trabajo se encuentran ubicados en posiciones alejadas del nodal por varios eventos mutacionales, lo cual estaría indicando que los mismos son muy derivados. Varios de estos haplotipos se encuentran en tres agrupamientos que corresponden a subhaplogrupos previamente descriptos: D1g, D1g5 y D1g4 (Fig. 7.7).

El caso DB6 se diferencia del haplotipo nodal por el polimorfismo 16311C, definiendo un haplotípo único del -cual derivan por otro evento mutacional varios haplotipos correspondientes a la región de los Andc/S. Con

respecto a las muestras modernas, el mismo haplotipo fue definido para 2 individuos de la región Ands/Chn, ARO63 y ARO78. La secuencia del individuo DC21 se distancia del haplotipo nodal por la mutación 16354T dando como resultado un haplotipo único, del cual se ramifican por otros eventos mutacionales de las muestras de los Andc/s. Este haplotipo no fue hallado entre las muestras modernas, pero sí esa mutación en particular.

Los haplotipos de los casos DB5 y PA7 se diferencian del nodal por poseer el polimorfismo 16129A y no presentar la mutación típica 16325C. Ambos están caracterizados como haplotipos únicos en antiguo y distintos entre sí, por una heteroplasmía propia de PA7 (16146R). Dos casos antiguos de los Ands/NOA, de la muestra Pampa Grande y un caso moderno de los Andc/n (Yu019) presentaron la mutación 16129A pero junto a la 16325C. Si bien DB5 y PA7 fueron asignados por HaploGrep al linaje D4a, esto puede deberse a la reversión en 16325C. A futuro se espera poder realizar la amplificación de la región codificante para definir si se tratan de las variantes identificadas en Asía o si son hapotipos que se originaron una vez entrados en América. En las muestras modernas la ausencia de 16325C se observa en Beni21 de Andc/s, ARG097, ARG163, ARG095 de Ands-NOA, en 4 casos del NEA/Brs/Par, 9 pehuenches (T), MARG90, Map.AG17 y Map90 de Pn, y Teh50, Teh56, Mapu11 y Mapu13 de Pcs. El haplotipo del individuo PA16 presenta dos eventos mutacionales extras al nodal de D, la 16187T que es típica del subhaplogrupo D1g y la 16290T que define el subhaplogrupo D1g4. El haplotípo del individuo PA16 fue único entre los casos antiguos y modernos. La secuencia del caso DC18 deriva de este último haplotipo pero se diferencia por la ausencia del polimorfismo 16325C y la presencia de 16257T. El individuo PA5, por su parte, posee 3 eventos mutacionales extras al haplotipo nodal, 16030T, 16156A y 16208A. El mismo puede caracterizarse como único debido a que en la base de datos no se encontró ningún haplotipo idéntico. El polimorfismo 16156A ha sido descripto para otras muestras modernas, no siendo exclusivo de D. Sin embargo, las mutaciones 16030T y 16208A no han sido descriptas en ninguno de los linajes de los 4 subhaplogrupos amerindios

(Tabla anexa 2a). Estas mutaciones podrían ser un artefacto, pero se consideró el haplotipo en los análisis subsiguientes debido a que los polimorfismos fueron encontrados en tres secuenciaciones independientes.

La mayoría de los haplotipos tipificados del subhaplogrupo D1 se encuentran ubicados en la ramificación dada por el polimorfismo 16187T, el cual define el subhaplogrupo D1g. Dentro de la misma los individuos LA1, PA3, PA10, PA11, PA15 y PA18 forman parte del núcleo central junto a una minoría de individuos de los Andc/s. Este subhaplogrupo se encuentra subrepresentado en la muestra moderna de Pn. El haplotipo del individuo PA8 se separa del subhaplogrupo D1g por la ausencia de la mutación 16362C, siendo un haplotipo único entre las muestras antiguas. Sin embargo, en la BDSC un individuo moderno de Pcs, Mapu9, presenta el mismo haplotipo y Map.AG15 de Pn se diferencia en una mutación adicional (16390A). Del subhaplogrupo D1g surge una nueva ramificación definida en la base por el polimorfismo 16189C. En este grupo, el haplotipo de DB1 se diferencia por la presencia de la mutación 16072T, no encontrándose otro haplotipo antiguo o moderno que la contenga. Los individuos LA2 y DB4 comparten el mismo haplotipo dentro de esta ramificación caracterizado por la presencia de la mutación 16209T. Este haplotipo se ha denominado D1g5 en trabajos previos. Sólo había sido observado hasta el momento, en un individuo antiguo de Pcs, específicamente de los archipiélagos chilenos. Además, fue caracterizado en los individuos modernos Map126, Marg39, T09, T63, T94, T33, T72 y MARG99 de Pn y en los casos LRO3, Teh3 y Chil15 de Pcs. Por su parte, la secuencia del individuo DB3 se diferencia el nodo del D1g5 por la mutación 16174T, definiendo un haplotipo único entre las muestras antiguas y modernas. El polimorfismo 16174T se vio asociado a haplotipos modernos D1 como los observados en Yu20 y Aym.M49 de los Andc/S y en 4 de la región del NEA/BRs/Par. El linaje del caso RP2 también se diferencia del núcleo central de D1g5 por un sólo evento mutacional. El mismo está dado por la mutación 16205T y define un haplotipo único entre las muestras antiguas y modernas. El polimorfismo 16205T no fue descripto en ninguno de los haplotipos de la BDSC generada,

pudiendo tratarse de una mutación poco frecuente o de un artefacto de la PCR. El haplotipo de RP2 fue considerado para los análisis posteriores ya que se obtuvo en las tres secuenciaciones independientes. Otro caso es el de RP4, el cual posee un linaje que se diferencia del D1g5 nodal por 3 eventos mutacionales, 16194G, 16235G y la falta de 16325C. Este haplotipo también fue único dentro de las muestras antiguas y de las modernas. Las mutaciones 16194G y la 16235G están presentes en diferentes haplotipos modernos. Como ya fue señalado, la ausencia del polimorfismo 16325C también fue descripta en varios haplotipos modernos. Por último, dentro del subhaplogrupo D1g5 el haplotipo de RP1 se diferencia del nodo central por 4 eventos mutacionales, 16051G, 16298C, 16305G y 16320T, dando como resultado un haplotipo único para los antiguos y para los modernos. De esas mutaciones 3 se encuentran caracterizadas en varios haplotipos de modernos pero cada una por separado, sugiriendo que no serían artefactos de la PCR. Sin embargo, no se encontró en ningún caso la mutación 16305G en las muestras publicadas previamente.

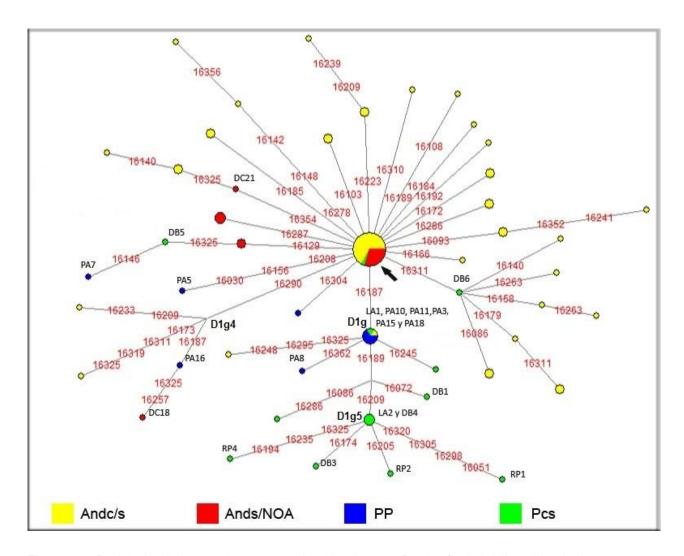


Figura 7.7. Red de haplotipos antiguos para el subhaplogrupo D1. La flecha indica el haplotipo nodal y se señala la posición de las muestras analizadas.

Al realizar las mismas comparaciones de diversidad haplotípica y nucleotídica por subhaplogrupo, utilizando sólo las muestras modernas de toda el área geográfica analizada, nuevamente se observó una mayor representación del subhaplogrupo B2 (probablemente debido a que hay una mayor proporción de muestras de los Andes centro-sur), pero a diferencia de lo observado en las muestras antiguas el subhaplogrupo que sigue en frecuencia es el C1 y luego el D1 y por último el subhaplogrupo A2. El subhaplogrupo A2 es el que en proporción presenta el mayor número de haplotipos. Aunque, los haplotipos del subhaplogrupo D1 se diferencian por un número mayor de

posiciones nucleotídicas, teniendo en promedio 4 polimorfismos entre pares de haplotipos. Los 4 subhaplogrupos presentan diversidad haplotípica similares siendo el C el menos diverso (Tabla 7.14).

Tabla 7.14. Estadísticos de variabilidad genética para los subhaplogrupos presentes en las muestras modernas

Subhaplogrupo	n	S	h	Hd	k	π
A2	187	73	88	0,955±0,01	2,891	$0,00845 \pm 0,00046$
B2	715	125	251	$0,9467\pm0,0056$	2,686	$0,00799\pm0,00022$
C1	292	95	125	$0,9127\pm0,0147$	2,684	$0,00785\pm0,00042$
D1	267	80	102	$0,9651\pm0,0051$	4,076	$0,01192\pm0,0005$

n= número de secuencias analizadas; S=número total de sitios polimórficos; h=número de haplotipos; Hd=Diversidad haplotípica \pm desvío estandar; k=número promedio de diferencias entre pares de secuencias; π =Diversidad nucleotídica \pm desvío estándar

Finalmente, se comparó la diversidad interna de cada haplogrupo considerando de manera conjunta las muestras antiguas y las modernas de toda el área geográfica analizada (Tabla 7.15). Se determinó el porcentaje de haplotipos únicos (%h-un). Los valores de la diversidad haplotípica se mantuvieron similares a los obtenidos para muestras modernas. Sin embargo, si consideramos el número de haplotipos estimado de manera independiente para las muestras modernas y las antiguas para los subhaplogrupos A2, B2 y C1, cuando se las analiza juntas el número total de haplotipos es menor, lo cual indicaría que los individuos antiguos y los modernos comparten un gran número de linajes. Por el contrario, para el subhaplogrupo D1 se observó un mayor %h-un en las muestras antiguas aunque no fue el más representado en la muestra total. Para este subhaplogrupo también se obtuvo una diversidad haplotípica de un orden de magnitud mayor que la de los otros tres subhaplogrupos indicando, junto al mayor valor de k, que las secuencias que lo componen se diferencian más entre sí.

Tabla 7.15. Estadísticos de variabilidad genética para los subhaplogrupos presentes en muestras antiguas y modernas

Subhaplogrupo	n	S	h	h-uni antiguos	% h-un	Hd	k	π
A2	227	75	99	11	11.11	0,935±0,013	2,661	0,00783±0,00042
B2	839	130	274	39	14.23	$0,9440\pm0,0056$	2,664	0,00787±0,00020
C1	389	105	151	27	17.88	0,9107±0,0130	2,556	0,00747±0,00034
D1	373	100	142	40	28.17	0,9613±0,0055	3,898	0,01140±0,00043

n= número de secuencias analizadas; S=número total de sitios polimórficos; h=número de haplotipos; h-uni=número de haplotípos antiguos no compartidos con modernos; % h-un= porcentaje de haplotipos antiguos únicos sobre el total de los haplotipos; Hd=Diversidad haplotípica \pm desvío estandard; k=número promedio de diferencias entre pares de secuencias; $\pi=$ Diversidad nucleotídica \pm desvío estandard

7.6 Análisis espacial y temporal de la varianza molecular

Con el fin de analizar la variación genética entre y dentro de las muestras en escala espacial se realizó un análisis de AMOVA. Para ello se agruparon las muestras antiguas en cuatro grupos: Andc/s-A, Ands/NOA-A, PP-A y Pcs-A. El análisis de AMOVA arrojó como resultado que en promedio la variación dentro de los grupos (88,47%) fue mayor a la variación observada entre los grupos (11,53%) (Tabla 7.16). Es destacable que la variación entre los grupos resultó significativa, sugiriendo una estructuración espacial de los grupos comparados (F_{ST}=0,11527 y p< 0,00001).

Tabla 7.16. Resultados de AMOVA para la variación inter e intra-grupos muestrales

Fuentes de variación	Grados de libertad	Suma de Cuadrados	Componentes de la varianza	% de variación
Entre grupos	3 86.695 0.4100		0.4100	11.53
Dentro de los grupos	363	1142.312	3.14686	88.47
total	363	1229.007	3.55687	100.00

El análisis de AMOVA también se realizó incluyendo las muestras modernas, las cuales se distribuyeron en 7 grupos muestrales considerando la localización geográfica de cada muestra. Asimismo, en este análisis se incluyeron los cuatro grupos de muestras antiguas. Se analizaron un total de 11 muestras: Andc/n-M, Andc/s-M y Andc/s-A, Ands/Chn-M, Ands/NOA-M y Ands/NOA-A, NEA/BRs/Par-M, PP-A, Pn-M, Pcs-M y Pcs-A. Este análisis muestra que la diferencia promedio dentro de los grupos muestrales es de 93,23%, siendo mucho mayor que la variación observada entre los mismos (6,77%) (Tabla 7.17). La variación entre las muestras fue significativa (F_{ST}: 0,06774 y p< 0,00001), sugiriendo también la existencia de estructuración espacial.

Tabla 7.17: Resultados de AMOVA para la variación inter e intra-grupo muestral para todas las muestras antiguas y modernas

Fuentes de variación	Grados de libertad	Suma de Cuadrados	Componentes de la varianza	Porcentajes de variación
Entre grupos	10	400.509	0.25000	6.77
Dentro de los grupos	1817	6251.298	3.44045	93.23
total	1827	6551.806	3.69045	100

Para establecer qué grupos presentaron diferencias significativas se estimó el índice de fijación (F_{ST}) entre pares de muestras. Se observó que la mayoría de los grupos presentaron valores significativos de F_{ST} (Tabla 7.18). Los únicos grupos que presentaron distancias genéticas no significativas fueron Andc/s-A y Andc/n-M (F_{ST} =0.02121 y p=0,0625). Posiblemente esto se deba a que poseen un mayor porcentaje de linajes B2, seguido de los C1 y D1 y una proporción de linajes de A2 inferior al 10% (Tabla 7.19).

Tabla 7.18. Distancias genéticas (valores de Fst) y p- valores asociados

ECT. D. 1	Andc/n-	Andc/s-	Andc/s-	Ands/Chn-	Ands/NOA	Ands/NOA-	NEA/	DD A	D. M	D. M	D A
FSTs\ P-valores	M	M	A	M	-M	A	BRs/Par	PP-A	Pn-M	Pcs-M	Pcs-A
Andc/n-M	0.00000	0.00098	0.0625	0.00488	0.00586	0.00098	0.00098	0.00000	0.00098	0.00000	0.00000
Andc/s-M	0.03503	0.00000	0.00000	0.00195	0.00391	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Andc/s-A	0.02121	0.03499	0.00000	0.00000	0.00000	0.00000	0.00098	0.00000	0.00000	0.00000	0.00000
Ands/Chn-M	0.07067	0.02152	0.07761	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Ands/NOA -M	0.05432	0.00802	0.03461	0.05242	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Ands/NOA-A	0.09658	0.06446	0.04934	0.09675	0.06267	0.00000	0.01660	0.00391	0.00000	0.00000	0.00000
NEA/BRs/Par	0.07016	0.07148	0.02535	0.1009	0.06840	0.01937	0.00000	0.00000	0.00000	0.00000	0.00000
PP-A	0.29703	0.25691	0.20424	0.29366	0.27215	0.16006	0.12875	0.00000	0.00195	0.00391	0.00098
Pn-M	0.05534	0.06593	0.03100	0.07541	0.07604	0.06166	0.03668	0.12940	0.00000	0.00000	0.00000
Pcs-M	0.10348	0.12628	0.06244	0.15602	0.13233	0.09351	0.04597	0.09912	0.02662	0.00000	0.00684
Pcs-A	0.20681	0.22397	0.14498	0.26943	0.23098	0.17570	0.09892	0.15053	0.10419	0.03328	0.00000

Muestras: Andc/s-A: Perú, Ands/NOA-A: Puna jujeña, Quebrada de Humahuaca y Salta, PP-A: transición Pampa-Patagonia, Pcs-A: Patagonia argentina y chilena, Andc/n-M: Andes centro-norte, Andc/s-M y Andc/s-A Andes centro-sur, Ands/Chn-M: Andes Sur, norte de Chile, Ands/NOA-M y Ands/NOA-A: Andes sur, NOA, NEA/BRs/Par-M: Noreste de Argentina, sur de Brasil y Paraguay), Pn-M: Norpatagonia, Pcs-M y Pcs-A: Patagonia centro-sur; A: antigua, M: moderna.

Tabla 7.19. Frecuencias de los haplogrupos A, B, C y D para los 11 grupos muestrales analizados

grupo muestral	%A	%B	%C	%D	total
Andc/n-M	3.57	57.14	25.00	14.29	28
Andc/s-M	13.93	59.09	16.72	10.26	682
Andc/S-A	7.82	42.80	27.16	22.22	243
Ands/Chn-M	13.43	61.19	8.96	16.42	67
Ands/NOA-M	14.04	56.58	18.86	10.53	228
Ands/NOA-A	32.26	32.26	12.90	22.58	62
NEA/BRs/Par-M	22.61	26.96	26.96	23.48	115
PP-A	8.33	0.00	0.00	91.67	12
Pn-M	9.46	33.33	23.87	33.33	222
Pcs-M	2.52	17.65	32.77	47.06	119
Pcs-A	0.00	0.00	46.00	54.00	50

La estructuración espacial de las distancias genéticas se observó en el análisis de escalamiento multidimensional (MDS), donde los grupos se diferenciaron según su procedencia geográfica (Fig. 7.8). El valor de stress obtenido para esta representación fue aceptable (0,091). En el MDS los grupos

se distribuyen sobre el eje 1 en función de la frecuencia de los subhaplogrupos B2 y D1 (ver Tabla 7.19). Las muestras que presentan un mayor porcentaje del subhaplogrupo B2 se encuentran hacia el extremo izquierdo del eje (e.g., Ands/Chn-M) mientras que en el extremo derecho se encuentran las que presentan una mayor frecuencia de C1 y D1 (e.g., PP-A), con excepción del sitio Paso Alsina 1.

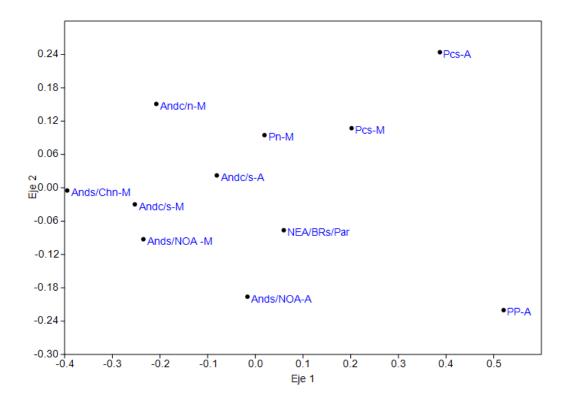


Figura 7.8. Representación gráfica del ordenamiento de los 11 grupos muestrales en los dos ejes espaciales del MDS

El análisis de PROTEST efectuado para estimar la intensidad de la estructuración geográfica observada en el MDS se realizó comparando la posición geográfica media de cada grupo con su posición en los ejes del MDS. Los resultados indicaron un ajuste alto y significativo (pseudo-correlación= 0.755; p=0,001). La misma diferenciación geográfica entre muestras de Pampa-

Patagonia modernas y antiguas (Pn-M, Pcs-M, Pcs-A, PP-A) y Andes (Ands/CHn-M, Andc/s-M, Ands/NOA-M, Andc/n-M, Andsc/S-A, Ands/NOA-A) pudo observarse en el análisis de *Neighborg-joining* (Fig. 7.9).

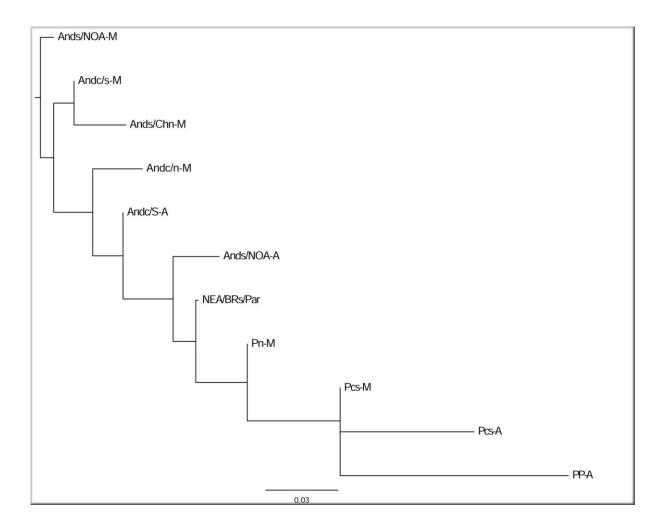


Figura 7.9. Gráfica de los análisis de *Neighbor-joining* para los 11 grupos muestrales comparados

Capítulo 8: Discusión

8.1 Evaluación de los procedimientos para la obtención y análisis del ADN antiguo

Los primeros objetivos de esta tesis doctoral se orientaron al tratamiento de aspectos metodológicos para la obtención y análisis de ADNa. En particular, se exploraron diferentes métodos para la extracción de ADNmt a partir de muestras arqueológicas, se estimó el grado de información que posee la secuencia de la HVR I del ADNmt antiguo y se evaluaron las potencialidades y limitaciones que presenta el análisis de material genético antiguo. A continuación se discuten estos aspectos a partir de los resultados obtenidos.

8.1.1 Procedimientos para la extracción del ADN antiguo

Uno de los primeros aspectos considerados en el proceso de extracción del material genético a partir de los restos arqueológicos fue el tamaño del material óseo o piezas dentales de los que se extrajo el ADNa. A causa de ello, antes de comenzar con las extracciones, se estimó la cantidad de polvo de dentina o hueso que era factible obtener y procesar de forma consistente, para poder realizar al menos tres extracciones diferentes del mismo individuo. Si bien la dentina y el polvo de costilla obtenido fue similar en cantidad, fue notoria la diferencia en preservación del material genético observada entre ellos. De las 3 costillas analizadas sólo se obtuvieron resultados analizables para una de ellas correspondiente a la muestra AMZ5. Esto podría haber estado influenciado por la mejor conservación de la muestra dada su escasa profundidad temporal, la cual fue datada en 210-212 años AP, lo que llevaría a suponer una corta exposición a agentes tafonómicos.

Para las piezas dentales se obtuvo material genético para 41 de las 54 analizadas. La cubierta de esmalte y cemento que recubre la dentina tendría un efecto protector ante los agentes de degradación autolítica y postmortem a los cuales está expuesto el material genético de los restos arqueológicos y ante los procesos tafonómicos ocurridos en los yacimientos donde se encontraban,

generando un retraso en los efectos de la acción de dichos procesos (Pääbo et al., 2004). Por su parte Kemp et al. (2007), al igual que en este estudio, no obtuvieron resultados favorables en la extracción de ADN a partir de una costilla, pero sí a partir de piezas molares. Además, observamos una diferenciación en la obtención de material genético entre muestras de un mismo sitio arqueológico o una misma colección. Estos resultados son coincidentes con lo planteado por diversos autores en que la obtención de resultados positivos depende principalmente del estado de preservación individual de cada muestra y del tipo de muestra esqueletal, más que de la antigüedad de las mismas (Poinar y Stankiewicz, 1998; Stone y Stoneking et al., 1999; Carnese et al., 2010).

Además de la preservación diferencial del ADN en cada tipo de pieza esqueletal utilizada, es importante estimar la cantidad de ADN endógeno que puede estar disponible y preservado en cada una, siendo uno de los factores limitantes en los estudios arqueogenéticos al igual que en los forenses. Es de crucial importancia la utilización de protocolos que recuperen la mayor cantidad de ADNa (Rohland y Hofreiter, 2007a y 2007b). Se han publicado varios trabajos proponiendo diversos métodos de extracción utilizando diferentes solventes orgánicos, suspensión de sílica, columnas con filtros y equipos comerciales (Höss y Pääbo, 1994; Hänni *et al.*, 1995; Yang *et al.*, 1998; Kalmár *et al.*, 2000; Hummel, 2003). Sin embargo, muy pocos son los que realizan comparaciones entre ellos para determinar cuál es el de mayor rendimiento (Rohland y Hofreiter, 2007a).

Como pudimos observar en los resultados, el protocolo que demostró la mayor recuperación de ADNa, independientemente del tipo de muestra, fue el de fenol-cloroformo-alcohol isoamílico. Además comprobamos que se pudo amplificar ADNa de una muestra que fue extraída con este método, pero que por los otros protocolos utilizados presentaba agentes inhibitorios para la PCR. Estos resultados concuerdan con los trabajos previos que señalan que este es uno de los métodos más apropiados para las muestras de una gran antigüedad y con una alta probabilidad de degradación (Kemp *et al.*, 2007; Wilson *et al.*,

2007; Bolnick *et al.*, 2012; Jenkins *et al.*, 2012; Grier *et al.*, 2013), y difieren de los obtenidos por Rohland y Hofreiter (2007b), quienes sostienen que la extracción con sílica en suspensión es el método más eficiente. Barta *et al.* (2014) realizaron una crítica a los trabajos antes mencionados basada en que ninguno informa la cantidad de ADNa existente en las muestras para luego determinar el rendimiento, sino que sólo describen el que mejor funcionó. Como una alternativa metodológica para considerar la crítica efectuada por Barta *et al.* (2014), podría efectuarse una cuantificación de ADNa mediante una PCR cuantitativa para comparar la eficacia de los protocolos de extracción.

8.1.2 Amplificación del ADN en muestras antiguas

En aquellas muestras en las que se pudo obtener ADN, otro de los problemas significativos que se observó durante el procedimiento estuvo relacionado a su amplificación. En una etapa preliminar de esta investigación se utilizaron cebadores para la PCR de secuenciación de HVR I que amplificaban segmentos de más de 220 pb, por lo que la mayoría de las reacciones eran fallidas. Esto se debía posiblemente a que el material genético antiguo al estar degradado se encuentra fragmentado en segmentos, que en el caso de los analizados en esta tesis, no superarían las 180 pb. Por lo tanto, teniendo en cuenta que el material genético de los restos esqueletales presentaba diferentes grados de degradación y posiblemente estaba muy fragmentado, se decidió reducir el tamaño de los segmentos utilizando nuevos cebadores que permitieron amplificar ADN en fragmentos más cortos. Este cambio permitió un mejoramiento del 70% en el rendimiento en las amplificaciones para su secuenciación.

Observando esa tasa de incremento en los resultados favorables, se decidió realizar lo mismo para los segmentos de amplificación del gen de la amelogenina para la determinación del sexo de los individuos, pero aún así no se obtuvo un rendimiento aceptable. Las diferencias entre el ADNmt y el gen de la amelogenina ubicado en el ADN nuclear pueden deberse a que el primero se

encuentra en una mayor proporción por célula, por lo que es más probable la recuperación de algún segmento del tamaño adecuado. Posiblemente, por esta razón logramos obtener un 73,68% de recuperación para el ADNmt de las 57 muestras analizadas, mientras que para el sexado molecular solo obtuvimos un 7%.

Dado el grado de deterioro del ADNa junto con el riesgo de contaminación con ADN exógeno contemporáneo, fue necesario llevar a cabo exhaustivos controles a lo largo de todo el procedimiento, así como también realizar múltiples comprobaciones del mismo resultado (al menos tres), tanto entre los diferentes extractos del mismo individuo como entre diferentes amplificaciones de alícuotas del mismo extracto. Aquellas muestras que no pudieron ser autenticadas por no obtenerse al menos tres veces el mismo patrón polimórfico, fueron desestimadas para análisis subsiguientes.

Todas estas dificultades sumadas a las inherentes al registro arqueológico, que implica un bajo número de material óseo y/o piezas dentales disponibles para su estudio, son limitantes para los estudios de ADNa. Sin embargo, es de destacar que aún así es posible obtener datos de calidad para ser empleados en estudios sobre la historia evolutiva de poblaciones humanas.

8.1.3 Tipificación de la Región Hipervariable I a partir del ADN antiguo

La tipificación de haplogrupos maternos amerindios por RFLP se realizó en 24 muestras de un total de 47 analizadas por este método, siendo el porcentaje de recuperación obtenido del 51,06%. Al considerar cada muestra por separado, ese valor fue del 100% en Los Alerces, del 66,67% en Rada Tilly, del 52,17% en la Puna jujeña, del 50% en Alero Mazquiarán y Puesto El Rodeo y por último de un 30% en Paso Alsina 1.

Otros estudios que analizan muestras antiguas del Cono Sur han obtenido mayores tasas de éxito en la determinación de los linajes maternos por RFLP. Manríquez et al. (2011) obtuvieron un 62,5% de recuperación en

promedio en muestras del norte, centro y sur de Chile, con mejor conservación en la primera de las regiones. En una muestra precolombina de Córdoba se obtuvo un valor del 90,57% (Nores *et al.*, 2011). Puede observarse gran variabilidad en el porcentaje de la recuperación del ADNa en diferentes estudios. En nuestro estudio el valor de recuperación fue de 51,06%, superando el 33% obtenido para muestras de Chile central (Manríquez *et al.* 2011) pero menores a los obtenidos para el norte de Chile y Córdoba (Manríquez *et al.* 2011; Nores *et al.*, 2011).

La secuenciación de la región control a diferencia de los RFLPs, posee un mayor poder de resolución en la determinación del linaje materno de una muestra y en las comparaciones de sitios polimórficos realizadas con otros individuos, por lo que se prefirió, ante la escasez del material, priorizar su determinación. Para la HVR I se obtuvo a nivel de todas las muestras analizadas una recuperación del 73,68% (42/57). Sin embargo, los valores obtenidos fueron inferiores a los estimados para otras muestras del NOA, pues se obtuvo un 90,47% en Pampa Grande, Salta (Carnese *et al.*, 2010) y un 80,39% para muestras de la Quebrada de Humahuaca, Puna jujeña y del Valle Calchaquí (Mendisco *et al.*, 2014). Por otra parte, al comparar nuestras muestras con las procedentes de fuego-patagonia (Chile y Argentina) analizadas por García-Bour *et al.* (2004), se observa que estos autores obtuvieron un porcentaje de recuperación menor, de alrededor del 40%.

Si la comparación se extiende a otras áreas geográficas, los valores obtenidos aquí, superan los registrados para muestras de la Amazonía (Ribeiro dos Santos *et al.*, 1996), costa y valles del norte y sur de Perú, donde el porcentaje de recuperación fue entre el 60 y el 70 % respectivamente (Shinoda *et al.*, 2006; Fehren-Schmitz *et al.*, 2010). Pero para esta última región, Lewis Jr. *et al.* (2007) analizando 94 individuos chen chen obtuvieron resultados favorables para un 41,49%, este menor porcentaje puede estar influido por el hecho de tratarse de restos depositados en museos.

Estas diferencias en las proporciones de obtención de resultados de ADNa en diferentes regiones geográficas podría vincularse a las condiciones de preservación en cada una de ellas. En particular, la temperatura, la humedad -con variaciones locales- y las del ph del suelo -con variación locales-podría condicionar los resultados obtenidos (O'Rourke *et al.*, 2000).

La comparación de la tasa de recuperación entre los entierros primarios y secundarios (Paso Alsina 1) analizados en este trabajo mostró tasas más altas de recuperación de ADN, siendo entre 75 y 85% para los primeros y 60% para los últimos. En particular, para la muestra del sitio Paso Alsina 1 (que también es un sitio de entierros secundarios) se obtuvo una proporción menor de recuperación al compararlos con las otras muestras patagónicas de entierros primarios. Sin embargo, cuando estos resultados se comparan con otros obtenidos previamente, se observan resultados dispares. Para los entierros primarios descriptos para la Puna y los entierros secundarios de Pampa Grande (Carnese et al., 2010), se observó que no existen diferencias importantes en el grado de recuperación del material genético, aunque es levemente mayor en este último caso. Debido a que se trata de muy pocos casos -y no se están considerando otras variables tales como la preparación post-mortem, tipo y pH del suelo, entre otras-, no es posible conjeturar cuáles son las causas de las diferencias en las tasas de recuperación. Es de destacar que la estructura morfológica de las piezas dentales de Paso Alsina 1 presentaba un gran deterioro físico y en algunos casos se pulverizaban durante el procedimiento de desbaste, sugiriendo que el ambiente local de preservación podría ser importante.

La evaluación de la cantidad y calidad de la información contenida en las secuencias mediante HaploGrep indicó que 23 secuencias contenían suficiente información para asignarlas con un elevado grado de confianza a haplotipos descriptos previamente. De las 19 restantes, 6 mostraron porcentajes moderados de confianza, 10 mostraron valores de confianza bajos para la asignación a haplotipos conocidos en HaploGrep y 3 no fueron asignados con confiable a ningún subhaplogrupo amerindio. Varias de estas últimas 19

secuencias resultaron iguales o muy similares a haplotipos descriptos para la región de estudio que aún no se encuentran incluidos dentro de HaploGrep, y por lo tanto, fueron consideradas confiables e incorporadas a los subsiguientes análisis. Los casos que no pudieron asignarse confiablemente a un haplotipo, en general, se debió a que para muchas de las secuencias no se pudieron amplificar todos los fragmentos informativos, y por lo tanto tenían una proporción muy alta de datos perdidos.

8.2 Variabilidad intra e inter-grupo en el Cono Sur de Sudamérica

8.2.1 Diferencias en la variabilidad antigua y moderna en el ADN mitocondrial

La primera hipótesis formulada en este trabajo postula que *la composición y la magnitud de la variación en el ADNmt observadas en las muestras arqueológicas del Noroeste argentino, transición Pampa-Patagonia y Patagonia centro presentan similitudes con las muestras modernas procedentes de cada región.* Los resultados obtenidos indican un alto grado de similitud en la composición haplotípica entre las muestras antiguas y modernas de las tres regiones analizadas. No obstante, en los cuatro subhaplogrupos se observó una reducción de la variación a través del tiempo ya que entre un 11% y 28% de las variantes antiguas no se encuentran representadas en las muestras modernas. En particular, se observó una importante pérdida de variación en los subhaplogrupos D1 y C1, los cuales exhiben una mayor frecuencia en las muestras procedentes de Patagonia.

El análisis comparativo de las redes de haplotipos de las muestras antiguas, así como el análisis de *Neighbor-joining* realizado con las secuencias incluidas en la BDSC permitió profundizar en los cambios en la variación haplotípica durante los últimos 500 años. En las muestras antiguas de la Puna

se encontraron diversas mutaciones adicionales a las nodales de los subhaplogrupos A2, B2 y C1. Al considerar las redes de haplotipos de A2 se observó que dos de los linajes definidos en este trabajo no se han descripto hasta el presente en muestras modernas. Dos haplotipos hallados en la Puna (individuos DC3 y DC9) no fueron descriptos para ningún otro individuo de las muestras modernas utilizadas para la comparación, mientras que uno (DC16) fue descripto en otra muestra antigua del sitio Los Amarillos en Ands/NOA (Mendisco et al., 2011). Podría suponerse entonces, que estos tres linajes pudieron haberse extinguido en los tiempos de la conquista europea o permanecen en la población actual en muy baja frecuencia y aún no han sido muestreados. Los otros dos individuos (DC4 y DC7) presentaron haplotipos que ya fueron detectados en varias de las regiones estudiadas, La Paz (Bolivia; Afonso-Costa et al., 2010), Santa Cruz (Bolivia; Taboada-Echalar et al., 2013), Altiplano Boliviano (Sandoval et al., 2013), Cuenca del Titicaca (Bolivia, Barbieri et al., 2011), Jujuy (Cardoso et al., 2013), Formosa (Cabana et al., 2006), Mapuches de Río Negro y Chile (Ginther et al., 1993; de Saint Pierre et al., 2012; Sala y Corach, 2014), Pehuenches (Chile, de Saint Pierre et al., 2012). Estas variantes tienen alta frecuencia en el Altiplano Boliviano y Jujuy, indicando que se podría tratar de linajes que evolucionaron en la región.

Respecto del subhaplogrupo B2, la muestra de la Puna presentó mutaciones adicionales a las que posee el haplotipo nodal. El linaje del individuo DC1 fue único, no encontrándose en ningún otro individuo antiguo ni actual. Esto podría estar indicando que ese linaje es específico de la Puna. El subhaplogrupo B2 es el más frecuente en relación con los otros subhaplogrupos y presenta el número más elevado de haplotipos en términos absolutos, sin embargo, los resultados de los análisis de diversidad indican que la proporción de haplotipos diferentes es más baja que en los subhaplogrupos C1 y D1. Este resultado puede deberse a que la mayoría de los linajes de B2 observados en la BDSC provienen de una misma región geográfica, los Andes centro-sur, y en su mayoría corresponden a muestras actuales (n=715).

Para el caso de los haplotipos de C1 propios de la Puna, el individuo DC6 presentó una secuencia con mutaciones exclusivas, diferenciándose del haplotipo nodal por dos mutaciones específicas. La secuencia del individuo DC11 presentó las mutaciones del linaje nodal y se encuentra en numerosas muestras modernas, principalmente de Patagonia norte y Patagonia centro-sur (Lewis et al., 2007; Sala et al., 2010; de Saint Pierre et al., 2012), así como en algunas muestras del norte argentino y Perú (Cabana et al., 2006; Cardoso et al., 2013; Sandoval et al., 2013; Fehren-Schmitz et al., 2014). La secuencia de DC5 se diferencia del haplotipo nodal por un único polimorfismo y comparte el haplotipo con dos muestras modernas de Perú (Lewis et al., 2007; Sandoval et al., 2013), una muestra del norte de Chile (de Saint Pierre et al., 2012), un caso de Misiones (Sala et al., 2010) y un Mapuche de Río Negro (Ginther et al., 1993).

Con respecto a los linajes de D1 encontrados en Puna, los casos DC21 y DC18 presentaron haplotipos únicos diferenciados del nodal por una y cuatro mutaciones, respectivamente. Estas variantes son exclusivas de las muestras antiguas. Dada esta distancia al nodal y su exclusividad, podría inferirse que los mismos son específicos del área habiendo, probablemente, evolucionado allí con una gran profundidad temporal.

El análisis de los haplotipos del subhaplogrupo D1 en las muestras antiguas de transición Pampa-Patagonia y Patagonia centro mostró la existencia de 9 variantes exclusivas. Las de la transición Pampa-Patagonia corresponden a los individuos PA5, PA7 y PA16, y están separadas del haplotipo nodal por 3 y 1 mutaciones, respectivamente. En Patagonia centro los casos de muestras antiguas con secuencias únicas corresponden a los individuos DB1, DB3, DB5, RP1, RP2 y RP4, las cuales se diferencian del haplotipo nodal por dos a siete mutaciones. Las diez secuencias restantes del subhaplogrupo D1 tipificadas para Patagonia en este trabajo han sido previamente descriptas para muestras modernas y/o antiguas. En particular, 6 de las muestras (LA1, PA3, PA10, PA11, PA15, PA18) corresponden al subhaplogrupo D1g, que se encuentra representado con elevada frecuencia en

Patagonia norte (Ginther *et al.*, 1993; de Saint Pierre *et al.*, 2012; Sala y Corach, 2014). Por otro lado, 2 casos (LA2, DB4) corresponden al subhaplogrupo D1g5, distribuido a lo largo de Patagonia (de Saint Pierre *et al.*, 2012). Los 2 haplotipos restantes, hallados en los individuos DB6 y PA8, fueron hallados en baja frecuencia en el norte y centro de Chile, respectivamente (Moraga *et al.*, 2000; de Saint Pierre *et al.*, 2012). El único haplotipo del subhaplogrupo C1 hallado en las muestras antiguas de Patagonia centro fue el caso DB2, que es exclusivo de la región tanto para muestras antiguas como modernas. Es significativo que este linaje sea exclusivo aún al compararlo con muestras modernas y antiguas de Patagonia, donde los linajes del subhaplogrupo C1 tuvieron una gran diversificación (García *et al.*, 2006).

Al considerar todas las muestras antiguas y modernas de la BDSC, el subhaplogrupo D1 presentó el valor más alto de diversidad haplotípica dentro de los subhaplogrupos amerindios principales, lo cual se ve reflejado tanto en la red haplotípica de los linajes antiguos de D1, como en el Neighbor-joining de todos los individuos de la BDSC. Este resultado concuerda con lo observado en otros estudios (Bravi, 2004; de Saint Pierre et al., 2012). La cantidad de haplotipos antiguos que fueron únicos es un dato relevante dentro de este subhaplogrupo, sobre todo si se tiene en cuenta que los mismos representaron el 28,17% de todos los linajes de D1. La mayoría de estos corresponden a individuos de la Patagonia. Este resultado, sumado a que en proporción las secuencias de D1 antiguas presentaron mayor número de haplotipos distintos, permiten inferir que la diversidad de linajes en momentos prehispánicos era mayor a la observada en las muestras poblacionales actuales. La gran diversidad relativa del linaje D1 se mantuvo a pesar del aporte de las migraciones modernas mediante las cuales se incorporaron linajes de los subhaplogrupos A2 y B2 a la Patagonia -no descriptos hasta el momento para muestras antiguas de esa región geográfica- (de Saint Pierre et al., 2012).

Para los linajes de D1 obtenidos en las muestras antiguas analizadas en esta tesis, la mayor parte (17 individuos de 22 con linajes D1) presentó un haplotipo propio del subhaplogrupo D1g. Siguiendo el patrón observado para

todos los linajes del subhaplogrupo D1, los individuos de la transición Pampa-Patagonia, seguidos de los de Patagonia centro fueron los más representativos en ese subhaplogrupo. De los 17 linajes tipificados sólo 1, con las mutaciones típicas de D1g (16187T 16223T 16325C 16362C), fue compartido por 5 individuos de ambas regiones. La gran diversidad que exhibe este subhaplogrupo en el norte de Patagonia sugiere que este podría ser el lugar de origen a partir del cual se expandió hacia otras regiones. Esto concuerda con el modelo de poblamiento propuesto por Bodner *et al.* (2012) para la parte sur de Sudamérica. El modelo supone que la dispersión de los linajes de D1g habría sido primero por el corredor costero pacífico, para luego ingresar al sur del continente mediante migraciones transcordilleranas que posteriormente involucraron flujo génico bi-direccional. Este hecho puede verse avalado por diferentes evidencias arqueológicas de contacto entre sectores costeros y del interior (Gómez Otero *et al.*, 1998; Orquera y Gómez Otero, 2007).

Por otra parte, el linaje D1j, que también ha sido propuesto como fundador para la región debido a su tiempo de coalescencia y distribución pacífica (Bodner et al., 2012), no estuvo representado en las muestras antiguas de Patagonia analizadas aquí. Considerando estos resultados, así como trabajos previos para el Cono Sur de Sudamérica (García et al., 2012), es posible señalar que este haplotipo probablemente estuvo restringido a las Sierras Pampeanas. En particular, García et al. (2012) propusieron un origen distinto al propuesto por Bodner et al. (2012) para el D1j. Esto se basó en su gran incidencia en las Sierras Pampeanas, y su baja frecuencia en Chile. La presencia de haplotipos D1j en Bolivia, Perú, Uruguay y Brasil podría ser producto de flujo génico reciente durante tiempos históricos. Por otra parte, Motti (2012) con base en un extensivo estudio realizado con muestras modernas de ADNmt procedentes del noroeste y centro-oeste de Argentina sugiere como alternativa al origen en Sierras Pampeanas un posible origen en La Rioja. Además, García et al. (2012) propusieron que este linaje sería más moderno (13.900±2.900 años) respecto a lo propuesto por Bodner et al. (2012).

En conjunto, los datos analizados sugieren pérdida de diversidad haplotípica en las poblaciones actuales del Cono Sur del continente. En el caso particular de las muestras analizadas en este trabajo, 16 de los 32 individuos presentaban linajes únicos, distribuyéndose de esta manera: Puna 6/11, Pampa-patagonia 3/10 y Patagonia 7/11. Este resultado difiere de estudios previos realizados en el Noroeste de Argentina que sugieren continuidad regional sin una pérdida significativa de la variabilidad. En este sentido, se ha señalado que 16 de los 19 individuos analizados en Pampa Grande (Carnese et al., 2010) y 12 de los 13 individuos en Los Amarillos (Mendisco et al., 2011) presentaban linajes descriptos para muestras actuales. Otros estudios efectuados en el extremo sur del continente también sugieren que la variación observada en las poblaciones actuales exhibe continuidad respecto a las muestras antiguas (Moraga et al., 2010). Por el contrario, un estudio realizado en el centro de Argentina señala importantes discontinuidades en las variantes del ADNmt entre las muestras antiguas y modernas (Nores y Demarchi, 2011). Tales discrepancias podrían vincularse a las particularidades de los procesos demográficos y evolutivos ocurridos en cada área geográfica y remarcan la relevancia de incluir en los estudios moleculares muestras antiguas a fin de obtener una mejor caracterización de los patrones de variabilidad genética en cada región.

Uno de los procesos probablemente vinculados a la pérdida de diversidad haplotípica en Sudamérica es la contracción demográfica de las poblaciones originarias a partir de la colonización europea (Schurr, 2004). En este sentido, el impacto relativo de este proceso sobre la diversidad registrada en las diferentes regiones podría estar relacionado con las dinámicas demográficas particulares a lo largo del Holoceno medio-tardío. En el caso de los Andes Sur/Noroeste argentino, la evidencia arqueológica sugiere tamaños poblacionales mayores que en Patagonia, especialmente con posterioridad a 5.000 años AP (Goldberg *et al.*, 2016). Tal aumento demográfico coincide con un proceso de intensificación económica, domesticación de plantas y animales, reducción en la movilidad residencial y aumento del agrupamiento residencial

(Yacobaccio, 2001; Muscio y López, 2016). Por el contrario, los indicadores arqueológicos sugieren que en Patagonia el aumento demográfico tuvo lugar más tardíamente, alrededor de 2.000 ó 1.000 años atrás (Martínez *et al.*, 2015; Zubimendi *et al.*, 2015), aunque la densidad poblacional a lo largo del tiempo fue menor a la observada para los Andes sur/Noroeste argentino (Goldberg *et al.*, 2016).

8.2.2 Estructura geográfica de la variabilidad en el ADN mitocondrial

La segunda hipótesis explorada en este trabajo plantea que en el Cono Sur de Sudamérica la variabilidad en los linajes del ADNmt de muestras antiguas y modernas se asocia con las diferencias en la ubicación geográfica de las mismas. Los resultados obtenidos para la variabilidad haplotípica dentro de cada área indican que las muestras antiguas de Puna, transición Pampa-Patagonia y Patagonia centro analizadas aquí presentaron niveles similares de variación, correspondiendo el valor más bajo a la muestra de la transición Pampa-Patagonia. Esto es esperable dado que los individuos de esta última área provienen de un único sitio arqueológico que presenta un rango temporal acotado. Un patrón diferente fue obtenido al ampliar la escala geográfica incluyendo datos para muestras antiguas disponibles en la literatura. En este caso la región de los Andes sur/Noroeste argentino exhibió mayor variabilidad haplotípica que Patagonia centro-sur y Pampa-Patagonia. El mismo patrón geográfico, caracterizado por una reducción de la variación haplotípica intraregional en un sentido norte-sur, fue observado en las muestras modernas. En coincidencia estos resultados. los análisis de Escalamiento con Multidimensional y PROTEST realizados para las muestras antiguas y modernas de manera conjunta muestran que la región de los Andes centro-sur se diferencia claramente de Patagonia en las variantes haplotípicas. Por lo tanto, es posible afirmar la existencia de una fuerte estructuración espacial de la variación haplotípica del ADNmt a una escala supra-regional en la que las

muestras cercanas geográficamente fueron más similares entre sí que con aquellas que se encontraron más distantes.

Las diferencias observadas para las variantes haplotípicas del ADNmt entre las muestras de Andes centro-sur y Patagonia concuerdan con lo descripto previamente por Merriwether et al. (1996), Moraga et al. (2000), Schurr (2004), entre otros, para la variación en haplogrupos mitocondriales. Estos trabajos, empleando secuencias de ADNmt de muestras modernas de poblaciones originarias, han explicado este patrón como el resultado de un efecto fundador serial para la región (Moraga et al., 2000). En particular, se ha sugerido que a medida que las poblaciones iniciales se expandieron hacia el sur, los nuevos territorios fueron colonizados por desprendimientos de pequeños grupos de una población mayor (Moraga et al., 2000). Los sucesivos eventos fundadores podrían haber llevado a la pérdida de algunos haplotipos mitocondriales, así como al aumento de la frecuencia relativa de otros. Este proceso podría explicar las diferencias en la variabilidad de los haplotipos amerindios entre el norte y sur de la región de estudio, así como la estructuración geográfica observada en las distancias F_{ST}. Ramachandran et al. (2005) usando microsatélites autosómicos, también encontraron una fuerte relación entre distancias F_{ST} y las distancias geográficas, con pérdida marcada de la variabilidad en función de la latitud para Sudamérica. Los autores interpretan este patrón como el resultado del equilibrio entre la deriva y dispersión, apoyando el modelo de un efecto fundador serial durante el poblamiento inicial de la región (Ramachandran et al., 2005). Es importante remarcar que este modelo asume la persistencia a través del tiempo de un patrón de variación genética originado durante el poblamiento temprano del continente hace 14.000 años AP, y por lo tanto, que las primeras poblaciones americanas y las actuales presentan cierto grado de continuidad biológica en las diferentes áreas geográficas estudiadas.

Si bien este planteo resulta plausible, es importante considerar que la distancia temporal entre las primeras poblaciones y las del Holoceno tardío -las que generalmente han sido estudiadas- es de alrededor de 12.000 años. En

este lapso temporal diversos eventos y procesos evolutivos podrían haber actuado sobre las poblaciones y dar origen a múltiples patrones de variación. En este sentido es remarcable el grado de diferencia observado en este trabajo para la variación encontrada entre muestras del Holoceno tardío y muestras contemporáneas. Dado que a lo largo del Holoceno temprano-medio se terminaron de ocupar las regiones de estudio, se configuraron los patrones más recientes de subsistencia y se produjo el aumento demográfico más significativo en el subcontinente (Borrero, 2008, 2016), es esperable que hayan ocurrido cambios en las poblaciones que muestren un correlato en la variación molecular. Todos estos procesos podrían ser importantes para explicar la variación observada en el Holoceno tardío en la región, aunque hasta el momento los mismos no se han discutido en profundidad.

En este sentido, dos fenómenos detectados en el registro arqueológico podrían ser considerados. Por una parte, la existencia de densidades demográficas diferentes en las poblaciones de Andes sur y las de Patagonia y, por otra parte, a los niveles de interacción entre grupos dentro de cada una de estas regiones. Como se discutió más arriba, la región de los Andes experimentó un importante crecimiento demográfico durante el Holoceno tardío (Goldberg et al., 2016), el cual podría haber incrementado las probabilidades de generación de nuevas mutaciones (debido al aumento en la tasa de nacimientos; Nielsen y Slatkin, 2013). Esto podría haber contribuido a la mayor variabilidad haplotípica observada en esta región con respecto a regiones de menor demografía como Pampa y Patagonia. Bajo este escenario, la estructuración latitudinal de la variación sería resultado de las diferentes dinámicas demográficas en las regiones norte y sur.

Asimismo, diversas investigaciones arqueológicas remarcan que a lo largo del Holoceno hay evidencias de fuertes interacciones entre grupos dentro de las regiones analizadas (e.g., modificaciones del cráneo, arte rupestre, tipos de asentamientos; Berberián y Nielsen, 2001; Belardi, 2004; Perez et al., 2009), mientras que la interacción a escala supra-regional fue muy escasa, estando limitada a la presencia de algunos ítems foráneos procedentes de grandes

distancias (Gómez-Otero y Dahinten, 1997-1998). El flujo génico diferencial podría haber conducido al establecimiento de patrones de aislamiento por distancia durante el Holoceno tardío tal como se ha planteado previamente a partir de diferentes datos genéticos. En particular, diversos estudios realizados a partir de datos de cromosoma Y, ADNmt y marcadores nucleares sugieren que el flujo y la deriva génica fueron importantes para configurar los patrones modernos de variación genética en Sudamérica (Fuselli *et al.*, 2003; Callegari-Jacques *et al.*, 2011). En conjunto, estos procesos podrían haber generado patrones espaciales de variación que se ajustan a un modelo de aislamiento por distancia.

Como se desprende de esta discusión, diferentes procesos podrían haber contribuido desde el inicio del poblamiento del Cono Sur de América a modelar la variación genética mitocondrial de las poblaciones. Los mismos podrían haber actuado a lo largo de los últimos 14.000 años y sus efectos encontrarse superpuestos en los patrones observables en la actualidad. Esta idea de que el patrón observado en tiempos históricos sería un palimpsesto resultante de los múltiples procesos enumerados más arriba ha sido planteada en trabajos previos (Fehren-Schmitz *et al.*, 2010; Callegari-Jacques *et al.*, 2011; Motti, 2012). La resolución temporal de las muestras disponibles hasta el momento no resulta adecuada para distinguir los procesos ocurridos a partir del Pleistoceno final.

En este contexto, un interrogante clave resulta determinar en qué momento se establecieron los patrones de variación molecular descriptos en esta tesis. Si bien la evidencia disponible no es suficiente para dar respuesta a esta pregunta, algunos de los resultados obtenidos en este trabajo pueden contribuir a discutir este problema. En primer lugar, los resultados obtenidos del AMOVA realizado con muestras antiguas indicó que el 12% de la variación se encuentra entre las muestras y el 88% dentro de las muestras, mientras que al incluir las muestras modernas un 7% de la variación se encuentra entre las muestras y un 93% dentro de las mismas. Esta disminución de la variación entre grupos y el consiguiente aumento de la variación intra-grupo sugiere la

existencia de procesos de flujo génico, o el desplazamiento de gran número de individuos, entre las regiones estudiadas durante los últimos 500 años, como ya ha sido sugerido por la evidencia etnohistórica (Martínez Sarasola, 2002). En este mismo sentido, la estructuración espacial de las muestras estudiadas también sugiere la existencia de flujo génico intenso durante tiempos históricos. El Escalamiento Multidimensional y la prueba de PROTEST mostraron que las muestras de Patagonia que mayor diferenciación presentan de las de Andes centro-sur son las antiguas, mientras que las muestras modernas de la misma región se acercan en el espacio multivariado a las de los Andes centro-sur.

Profundizar en este problema requeriría el estudio de muestras datadas en el Holoceno temprano (ca. 10.000 a 8.000 años radiocarbónicos AP). Hasta el presente las muestras correspondientes a este periodo así como aquellas datadas en el Holoceno medio inicial (ca. 7.500 a 6.000 años AP) son escasas y se concentran en la Región Pampeana (e.g. Arroyo Frías y Arroyo Seco; Pucciarelli et al., 2010), en la Patagonia meridional (e.g. Baño Nuevo; Mena et al., 2003) y el norte de Chile (Quebrada de Acha y Camarones 14; Manríquez et al., 2011), (e.g., en la Región Pampeana, y en el norte de Chile, ambas datadas AP). Para algunas de estas muestras se han obtenido datos de las variantes del ADNmt, al menos con técnicas de RFLP. Las muestras de Baño Nuevo presentaron variantes del haplogrupo B, no registradas posteriormente en la región. Por otro lado, varias muestras de Arroyo Seco 2 han sido tipificadas a nivel de haplogrupos (Figueiro, 2006), obteniéndose los haplogrupos B, C y D, y dos de ellas han sido secuenciadas recientemente (Llamas et al., 2016). Estos resultados, aunque preliminares, sugieren que la variación observada en el Holoceno temprano-medio podría haber sido marcadamente diferente de la observada en el Holoceno tardío en el Cono Sur de Sudamérica.

Capítulo 9: Consideraciones finales

En el marco de este trabajo se obtuvieron muestras de ADNa de poblaciones originarias americanas que corresponden a periodos temporales y áreas geográficas de Argentina no estudiadas hasta el presente. La importancia de los estudios de ADNa radica en la posibilidad de investigar de manera directa eventos y procesos que tuvieron lugar en el pasado. En este sentido, los datos aportados en esta tesis incrementan la información disponible, y se espera contribuyan a dilucidar los patrones de variación biológica y la historia evolutiva de las poblaciones del sur de Sudamérica.

Los procedimientos técnicos para minimizar y controlar el riesgo de contaminación de las muestras óseas y dentales durante la extracción y amplificación del ADNa, así como los procedimientos de autenticación del mismo que fueron aplicados aquí, mostraron buenos resultados. En particular, el protocolo basado en la extracción por fenol-cloroformo-alcohol isoamílico seguida de la secuenciación de la HVR I, fue el que mostró los mejores resultados y permitió obtener secuencias para un 74% del total de los individuos analizados. Un 18% del total de los individuos fueron excluidos debido a diversos problemas en los fragmentos secuenciados. En conjunto, los procedimientos seguidos en el laboratorio y los bioinformáticos empleados para la corroboración de los haplotipos permitieron generar una base de datos confiable para este estudio.

El análisis comparativo de las muestras antiguas y modernas indicó la presencia de las mismas variantes haplotípicas, o variantes muy relacionadas, a través del tiempo. Esto sugiere la existencia de continuidad poblacional a escala regional. Sin embargo, una parte importante de los haplotipos presentes en las muestras correspondientes al Holoceno tardío no se encontraron en las muestras modernas. Esta pérdida de variación es mayor en Patagonia centrosur, aunque fue detectada en las tres regiones estudiadas. En particular, las muestras modernas de Patagonia presentaron una considerable reducción de variación para el subhaplogrupo D1 y en menor medida para el C1. La pérdida de variantes haplotípicas desde el Holoceno tardío hasta el presente podría ser atribuida al impacto negativo que tuvo la conquista europea sobre la

demografía de las poblaciones originarias, el cual fue mayor en los grupos de baja densidad como los cazadores-recolectores de Patagonia.

La variabilidad haplotípica presentó un patrón de reducción en sentido norte-sur tanto en las muestras antiguas como en las modernas, presentado la región de los Andes sur/Noroeste argentino mayor variación haplotípica que Pampa y Patagonia. Asimismo, se observó una fuerte asociación entre la distancia genética y las distancias geográficas entre muestras, sugiriendo una fuerte estructura espacial de la variación en los linajes mitocondriales a una escala supra-regional. Dado que las muestras diacrónicas de una misma región geográfica presentan mayor similitud que con muestras contemporáneas de otras regiones es posible inferir que la estructuración espacial a escala supra-regional se habría establecido al menos durante el Holoceno tardío.

El patrón espacial descripto para las variantes haplotípicas del ADNmt es compatible con las expectativas derivadas del modelo de efecto fundador serial propuesto para el poblamiento inicial del Cono Sur de Sudamérica. Si bien es plausible que los patrones de variación observados en el Holoceno tardío se hayan establecido durante el poblamiento inicial, es importante tener en cuenta el amplio lapso transcurrido -alrededor de 12.000 años-. En este sentido, diversos procesos y eventos evolutivos podrían haber actuado sobre las poblaciones modelando la variación genética. Dos aspectos que requieren ser considerados son la existencia de densidades demográficas diferentes en las poblaciones de Andes sur y Patagonia, así como los niveles de interacción entre grupos dentro de cada una de estas regiones. Particularmente, la estructuración norte-sur de la variación podría ser resultado del mayor crecimiento demográfico que experimentaron las poblaciones de los Andes, el cual habría incrementado la probabilidad de surgimiento de nuevos linajes mitocondriales. Asimismo, el flujo génico diferencial -mayor dentro de las regiones que a escala supra-regionalpodría haber conducido establecimiento de patrones de aislamiento por distancia durante el Holoceno tardío tal como se ha planteado previamente.

Establecer la contribución relativa de cada uno de estos procesos y eventos a la variación biológica requiere de estudios futuros que se orienten a: 1) incrementar los tamaños muestrales y ampliar la cobertura espacial y temporal para permitir un mayor grado de detalle. En particular, es importante evaluar el grado de similitud entre el patrón observado en las muestras antiguas del Holoceno tardío con aquel presente en muestras del Holoceno temprano. Esta comparación permitiría establecer en qué medida los patrones de variación observada en el Holoceno tardío reflejan el proceso inicial de poblamiento o se relacionan con procesos que actuaron durante el Holoceno temprano y medio, tales como las diferencias en las trayectorias demográficas de las regiones estudiadas; 2) obtener datos genéticos más informativos acerca de los procesos de interés. Con este fin es necesario incorporar análisis de región no recombinante del cromosoma Y para la determinación de linajes paternos y la inclusión de marcadores autosómicos bi-parentales. Los linajes maternos estudiados en esta tesis muestran una historia parcial del poblamiento y evolución de los grupos humanos que habitaron el Cono Sur de Sudamérica antes de la migración europea hace 500 años AP. Finalmente, 3) explorar modelos estadísticos formales para la evaluación de diferentes escenarios evolutivos que puedan dar cuenta de los patrones de variación observados en la región de estudio.

Hasta el presente los estudios efectuados han sido principalmente descriptivos, debido en parte a la ausencia de suficientes datos para emplear modelos formales. Sin embargo, en años recientes la cantidad de datos genéticos sobre muestras antiguas y actuales se ha incrementado notablemente, lo que permitirá evaluar explícitamente modelos filogeográficos para la comprensión de la historia evolutiva de las poblaciones del Cono Sur de Sudamérica.

Bibliografía

- -AABA. 2007. Declaración de la Asociación de Antropología Biológica Argentina en relación con la ética del estudio de restos humanos. Disponible en: www.fcnym.unlp.edu.ar/aabra.
- -Achilli A, Perego U, Bravi C, Coble M, Kong Q, Woodward S, Salas A, Torroni A, Bandelt H. 2008. The phylogeny of the four pan-american mtDNA haplogroups: implications for evolutionary disease studies. Plos One, 3:e1764.
- -Adachi N, Umetsu K, Takigawa W, Sakaue K. 2004. Phylogenetic analysis of the human ancient mitochondrial DNA. Journal of Archaeological Science 31:1339– 1348.
- -Adovasio JM. y Pedler DR. 1997. *Monte Verde and the antiquity of humankind in the Americas*. Antiquity 71:573-580.
- -Afonso Costa H, Carvalho M, Lopes V, Balsa F, Bento AM, Serra A, Andrade L, Anjos MJ, Vide MC, Pantoja S, Vieira DN, Corte-Real F. 2010. Mitochondrial DNA sequence analysis of native Bolivian population. Journal of Forenensic and legal Mededicin 17:247-253.
- -Agosta EA, Favier Dubois C, Compagnucci RH. 2006. Climate patterns in Patagonia during the medieval warm period and the Little Ice Age: Proxy data and depicting model. En: Simposio Internacional, Reconstructing Past Regional Climate Variations in South America over the late Holocene.
- -Aguirre ML. y Farinati EA. 1997. Paleobiogeografía de las faunas de moluscos marinos del neógeno y Cuaternario del Atlántico Sudoccidental. Revista de la Sociedad Geológica de España 12:93-112.
- -Albeck ME. y Ruiz MS. 2003. El Tardío en la Puna de Jujuy: Poblados, Etnias y Territorios. Cuadernos FHyCS-UNJu 20:199-221.
- -Albeck ME. 2007. El Intermedio Tardío: Interacciones económicas y políticas de la Puna de Jujuy. En: Williams V, Ventura B, Callegari A, Yacobaccio H. editores. Sociedades Precolombinas Surandinas: Temporalidad, Interacción y Dinámica Cultural del NOA en el ámbito de los Andes Centro-Sur. Buenos Aires, pp. 125-145.
- -Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. 2004. *Biología molecular de la célula*. Cuarta edición. Ediciones Omega S.A., Barcelona España.
- -Alfaro LC. 1983. Investigación arqueológica en la Cuenca del Río Doncellas (Provincia de Jujuy). Integración de la Puna Jujeña a los centro cúlticos andinos. Relaciones de la Sociedad Argentina de Antropología XV(s):25-47.
- -Alfaro L. 1988. Investigación en la Cuenca del Río Doncellas. Dpto. de Cochinoca Pcia. de Jujuy. Reconstrucción de una cultura olvidada en la Puna Jujeña. Departamento de Antropología y Folklore. Pcia. de Jujuy.
- -Álvarez-Iglesias V, Jaime J, Carracedo A, Salas A. 2007. Coding region mitochondrial DNA SNP's: Targeting East Asian and Native American haplogroups. Forensic Science International: Genetics, 1:44-55.
- -Alves-Silva J, da Silva Santos M, Guimaraes P, Ferreira A, Bandelt H, Pena S, Ferreira Prado V. 2000. *The ancestry of brazilian mtDNA lineages*. American Journal of Human Genetic, 67:444-461.

- -Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe RA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG. 1981. Sequence and organization of the human mitochondrial genome. Nature 290:457-65.
- -Anderson DG. y Gillam JC. 2000. Paleoindian Colonization of the Americas: Implications from an Examination of Physiography, Demography, and Artifact Distribution. American Antiquity 65 (1):43-66.
- -Andrews RM., Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N. 1999. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nature Genetics 23:147.
- -Aranda C. y Luna L. 2014. *Inventario y reasociación de restos humanos en el Área de Antropología Biológica del Museo Etnográfico J. B. Ambrosetti (Universidad de Buenos Aires, Argentina). Implicancias para el tratamiento respetuoso de las colecciones y para las investigaciones bio.* Avances Recientes de la Bioarqueología Latinoamericana, Buenos Aires pp:337-357.
- -Arrigoni G. 1999. Análisis del área de captación de recursos ASI. Parque Nacional Los Alerces, Valle del Río Desaguadero. Pcia. De Chubut, M.S.Presentado ante el simposio de Patagonia. XIII Congreso Nacional de Arqueología Argentina. Córdoba.
- -Avena S, Via M, Ziv E, Perez-Stable EJ, Gignoux CR, Gignoux CR, Dejean CB, Huntsman S, Torres-Mejía G, Dutil J, Matta JL, Beckman K, González Burchard E, Parolin ML, Goicoechea A, Acreche N, Boquet M, Ríos Prat MdC, Fernández V, Rey J, Stern MC, Carnese FR, Fejerman L. 2012. Heterogeneity in Genetic Admixture across Different Regions of Argentina. PLoS ONE 7(4):e34695.
- -Baca M, Doan K, Sobczyk M, Stankovic A, Weglenski P. 2012. *Ancient DNA reveals kinship burial patterns of a pre-Columbian Andean community*. BMC Genetics 13:30.
- -Baca M, Molak M, Sobczyk M, Weglenski P, Stankovic A. 2014. Locals, Resettlers, and Pilgrims: A Genetic Portrait of Three Pre-Columbian Andean Populations. American Journal of Physical Anthropology 154 (3):402-412.
- -Ballard J. y Whitlock M. 2004. The incomplete natural history of mitochondria. Molecular Ecology 13:729-744.
- -Bandelt H, Herrnstadt C, Yao Y, Kong Q, Kivisild T, Rengo C, Scozzari R, Richards M, Villems R, Macaulay V, Howell N, Torroni A, Zhang Y. 2003. *Identification of Native American founder mtDNAs through the analysis of complete mtDNA sequences: some caveats*. Annals of Human Genetics 67:512-524.
- -Barberena R, Prates L, De Porras M. 2015. The human occupation of North Western Patagonia (Argentina): paleoecological and chronological trends. Quaternary International 356:111-126.
- -Barberián E. y Nielsen A. 2001. *Historia argentina prehispánica*. Vol. 1. Editorial Brujas.
- -Barbieri C, Heggarty P, Castri L, Luiselli D, Petterner D. 2011. *Mitochondrial DNA variability in the Titicaca basin: matches and mismatches with linguistics and etnohistory*. American Journal of Human Biology 23:89-99.
- -Barrientos G. y Perez SI. 2004. La expansión y dispersión de poblaciones del norte de Patagonia durante el Holoceno Tardío: evidencia arqueológica y modelo

- explicativo. En: Contra Viento y Marea. Arqueología de Patagonia. Civalero MT, Fernández P. y Guráieb AG. Editores. Arqueología de Patagonia, Buenos Aires, INAPUSAA, pp:179-195.
- -Barrientos G. y Perez SI. 2005. Was there a population replacement during the late middle Holocene in the Southeastern Pampas of Argentina? Archaeological evidence and its paleoecological basis. Quaternary International 132:95-105.
- -Barta J, Monroe C, Teisberg J, Winters M, Flanigan K, Kemp B. 2014. One of the key characteristics of ancient DNA, low copy number, may be product of its extraction. Journal of Archaeological Science 46:281-289.
- -Batai K. y Williams SR. 2014. *Mitochondrial variation among the Aymara and the Signatures of Population Expansion in the Central Andes.* American Journal of Human Biology 26(3):321-330.
- -Béguelin M. 2010. Tamaño corporal y temperatura ambiental en poblaciones cazadoras-recolectoras del Holoceno Tardío de Pampa y Patagonia. Revista Argentina de Antropología Biológica 12:27-36
- -Belardi JB. 2004. *Más vueltas que una greca*. En: Civalero T, Fernández P, Guraieb G. editores, Contra Viento y Marea. Arqueología de la Patagonia, pp:591-603.
- -Berenguer J. y Dauelsberg P. 1989. *El norte grande en la órbita de Tiwanaku*. En: Hidalgo J, Schiappacasse V, Aldunate C, Solimano I, editores. Culturas de Chile. Prehistoria. Desde los orígenes hasta los albores de la conquista. Editorial Ándres Bello, Santiago, Chile pp:129-180.
- -Bernal V. 2008. Procesos de diferenciación biológica entre poblaciones humanas del Holoceno tardío de Patagonia. Una aproximación desde la variación morfométrica dental. Tesis Doctoral, Universidad Nacional de La Plata, La Plata.
- -Bernal V. y Aguerre AM. 2009. Investigaciones Bioarqueológicas en Río Mayo, Aleros Mazquiarán y Manantiales 2 (SO de la Provincia de Chubut). Capítulo 4 En: Pérez de Micou C, Trivi de Mandri M, Burry LS. editoras. Imágenes desde un alero: investigaciones multidiciplinarias en Río Mayo, Chubut Patagonia argentina. Buenos Aires pp:43-60.
- -Bernal V, Pérez SI, Gonzalez PN, Sardi ML, Pucciarelli HM. 2010. Spatial patterns and evolution processes in southern south America: a study of dental morphometric variation. American Journalof Physical Anthropology 142:95-104.
- -Berón MA. 2007. Integración de evidencias para evaluar dinámica y circulación de poblaciones en las fronteras del Río Colorado. Arqueología de Fuego-Patagonia. Levantando piedras, desenterrando huesos... y develando arcanos. Simposio: Arqueología y Biogeografía. Diferentes Escalas de Análisis y Líneas de evidencias pp:173-196.
- -Berón MA. 2015. Chronological distribution and disturbance factors to evaluate population dynamics in Western Pampas, Argentina. Quaternary International 356: 74e88.
- -Bianchi NO, Catanesi CT, Baillet G, Martínez-Marignac VL, Bravi CM, Vidal-Rioja LB, Herrera RJ, Lopez-Camelo JS. 1998. *Characterization of ancestral and derived Y-chromosome haplotypes of New World native populations*. American Journal of Human Genetics 63:1862-1871.
- -Bisso-Machado R, Bortolonia MC, Salzano FM. 2012. *Uniparental genetic markers in South Amerindians*. Genetics and Molecular Biology 35 (2):365-387.

- -Bobillo MC, Zimmermann B, Sala A, Huber G, Röck A, Bandelt HJ, Corach D, Parson W. 2010. Amerindian mitochondrial DNA haplogroups predominate in the population of Argentina: towards a first nationwide forensic mitochondrial DNA sequence database. International Journal of Legal Medicine 124:263-268.
- -Bodner M, Perego UA, Huber G, Fendt L, Röck AW, Zimmermann B, Olivieri A, Gómez-Carballa A, Lancioni H, Angerhofer N, Bobillo MC, Corach D, Woodward SR, Salas A, Achilli A, Torroni A, Bandelt HJ, Parson W. 2012. Rapid coastal spread of First Americans: Novel insights from South America's Southern Cone mitochondrial Genomes. Genome Reserch pp:1-10.
- -Bolnick D, Bonine H, Mata-Miguez J, Kemp B, Snow M, LeBlanc S. 2012. Nondestructive sampling of human skeletal remains yields ancient nuclear and mitochondrial DNA. American Journal of Physical Anthropology, 147:293-300.
- -Bonatto SL. y Salzano FM. 1997. A single and early migration for the peopling of the Americas supported by mitochondrial DNA sequence data. The National Academy of Science of the USA 94:1866-1871.
- -Bonomo M, Costa Angrizani R, Apolinaire E, Silva Noelli F. 2015. A model for the Guaraní expansión in the La Plata basin zone of souther Brazil. Quaternary international 356:54-73.
- -Borrero L. 1999. Human dispersal and climatic conditions during Late Pleistocene times in Fuego-Patagonia. Quaternary International, 53/54:93-99.
- -Borrero L. 2008. Early Ocuupations in the Southern Cone. Capítulo 4, En: Silverman H. y Isbell WH, editors. Handbook of South America Archaeology, Springer, Nueva York.
- -Borrero L. 2016. Ambiguity and Debates on the Early Peopling of South America. PaleoAmerica. College Satation 2:2-12.
- -Bradley B. y Stanford D. 2004. The North Atlantic ice-edge corridor: a possible Palaeolithic route to the New World. World Archaeology 36 (4):459-478.
- -Bravi CM. 2004. Análisis de linajes maternos en poblaciones indígenas americanas. Tesis de Doctorado, Facultad de Ciencias Naturales y Museo, UNLP.
- -Brigham-Grette J, Anderson PM, Lozhkin AV, Glushkova OY. 2004. Paleoenviromental conditions in western Beringia before and during the Last Glacial Maximum. En: Madsen DB. Editor. Entering America northeast Asia and the Beringia before the Last Glacial Maximum, The University of Utah Press pp: 1-57.
- **-Brown** WM. 1980. *Polymorphism in mitochondrial DNA of humans as revealed by restriction endonuclease analysis*. Proceedings of the National Academy Sciences of the United States of America, 77:3605-3609.
- -Cabana GS, Merriwether DA, Hunley K, Demarchi D. 2006. Is the genetic structure of Gran Chaco populations unique? Interregional perspectives on native south american mitochondrial DNA variation. American Journal of Physical Anthropology 131:108-119.
- -Cabrera ÁL y Willink A. 1973. Biogeografía de América Latina. Monografía 13. Serie de Biología. Secretaría General de la Organización de los Estados Americanos. Washington DC. EEUU. 120 pp.
- -Callegari-Jacques SM, Tarazona-Santos EM, Gilman RH, Herrera P, Cabrera L, Dos Santos SE, Morés L, Hutz MH, Salzano FM. 2011. Autosome STR in native south america-testing models of association with geography and language.

- American Journal of Physical Anthropology, 145(3):371-381.
- -Cardoso S, Palencia-Madrid L, Valverde L, Alfonso-Sánchez M, Gómez-Pérez L, Alfaro E, Bravi C, Dipierri J, Peña J, de Pancorbo M. 2013. Mitochondrial DNA control region data reveal high prevalence of Native American lineages in Jujuy Province, NW Argentina. Forensic Science International Genetics 7:52-55.
- -Cardozo D, Crespo C, Russo G, Postillones MB. 2014. Análisis y conservación de ADN antiguo en restos esqueletales humanos de sitios arqueológicos y colecciones de museos de Argentina. En: Esnal A, Funes M, Grosso M, Kuperszmit N, Murgo A, Romero G, editores. Entre Pasados y Presentes IV. Estudios Contemporáneos en Ciencias Antropológicas. C.A.B.A, pp:313-330.
- -Carnese FR, Avena SA, Goicoechea AS, Dejean CB, Sevin A, Dugoujon JM. 2003. Sistemas Gm y Km en poblaciones aborígenes de la Patagonia Argentina. En: Aluja MP, Malgosa A y Nogués RM, Editores. Antropología y Biodiversidad. Editorial Bellaterra. Barcelona, España 2:67-73.
- -Carnese F, Mendisco F, Keyser C, Dejean B, Dugounjon J, Bravi C, Ludes B, Crubezy E. 2010. Paleogenetical study of pre-columbian samples from Pampa Grande (Salta, Argentina). American Journal of Physical Anthropology 141:452-462.
- -Casamiquela R. 1990. Los Pueblos indígenas. Ciencia Hoy, BS. AS. 2 (7):18-28.
- -Cavalli-Sforza LL, Menozzi P, Piazza A. 1994. *The history and geography of human genes*. Princeton University Press.
- -Chatters JC. 2000. The Recovery and First Analysis of an Early Holocene Skeleton from Kennewick, Washington. American Antiquity 65 (2):291-316.
- -Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe M. 2009. The Last Glacial Maximum. Science 325:710-714.
- -Cocilovo JA, Di Rienzo J. 1984-1985. Un modelo biológico para el estudio del poblamiento prehispánico del territorio argentino. Correlación fenético-espacial. Relaciones de la Sociedad Argentina de Antropología 16:119-135.
- -Cocilovo JA, Varela HH, Valdano SG. 2001. Estructura de la población antigua de la Quebrada de Humahuaca. En: Berberián EE. y Nielsen AE. Editores. Historia Argentina Prehispánica, Editorial Brujas, Córdoba, Argentina pp:264-287.
- -Crella A, Bert F, Pérez-Pérez A, Gené M, Turbón D. 2007. Mitochondrial DNA diversity of the Amerindian populations living in the Andean Piedemont of Bolivia: Chimane, Moseten, Aymara and Quechua. Annals of human biology 34 (1):34-55.
- -Cornero S, Neves W, Rivero D. 2014. Nuevos aportes a la cronología de las ocupaciones tempranas en las sierras de Córdoba. La Gruta de Candonga (Córdoba, Argentina). Relaciones de la Sociedad Argentina de Antropología XXXIX (1):285-292.
- **-Crawford** MN. 2007. *Anthropological Genetics: Theory, Methods and Applicatios.* Cambridge University Press
- -Crespo CM, Dejean CB, Postillone MB, Lanata JL, Carnese RF. 2010. Historias en código genético. Los aportes de los estudios de ADN antiguo en Antropología y sus implicancias éticas. Runa XXXI (2): 153-174.
- -Crespo CM. 2015. Estudio de la Variabilidad mitochondrial en Poblaciones prehistóricas de la Patagonia. Sus implicancias en el proceso de

- poblamientoregional. Tesis de Doctorado, inédita, Facultad de Filosofía y Letras, UBA.
- **-Damgaard** PB, Margaryan A, Schroeder H, Orlando L, Willerslev E, Allentoft ME. 2015. *Improving access to endogenous DNA in ancient bones and teeth.* Scientific Reports, Nature 5:11184.
- -Dejean C, Keyser-Tracqui C, Crubezy E, Blandin P, Luna L, Aranda C, Acuto F, Dugoujon J, Ludes B, Carnese F. 2006. Análisis paleogenético de tres individuos provenientes del sitio Cartaderas Derecha, Salta 185 (Argentina). Trabajo presentado en el IX Congreso de la Asociación Latinoamericana de Antropología Biológica, Ouro Preto, Brasil.
- -Dejean C, Keyser C, Avena SA, Dugoujon F, Ludes B, Crubezy E, Carnese F. 2008. Análisis genético de muestras esqueletales provenientes del Canal de Beagle. Trabajo presentado en el X Congreso de la Asociación Latinoamericana de Antropología Biológica, La Plata, Argentina.
- -Dejean CB, Seldes V, Russo MG, Mendisco F, Keyser C, Ludes B, Carnese FR. 2014. Variabilidad Genética Mitocondrial: comparación de muestras de dos sitios arqueológicos del Noroeste Argentino. Revista Argentina de Antropología Biológica 16 (1):5-16.
- -de la Fuente C, Galimany J, Kemp BM, Judd K, Reyes O, Moraga M. 2015. Ancient marine hunter-gatherers from Patagonia and Tierra del Fuego: diversity and differentiation using uniparentally inherited genetic markers. American Journal of Physical Anthropology 158:719-729.
- -Del Papa MC. 2013. La estructura y dinámica del poblamiento humano de Pampa y Patagonia continental durante el Holoceno tardío: un análisis de rasgos epigenéticos craneofaciales. Tesis Doctoral Inedita. Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata.
- -Demarchi DA, Fabra M, Garcia A. 2010. Poblamiento inicial de las Sierras Centrales de Argentina: nuevas evidencias morfológicas y moleculares. III Simposio Internacional El Hombre temprano en América. Instituto Nacional de Antropología e Historia, Instituto de Investigaciones Antropológicas, UNAM, Museo del Desierto, México
- -de Necochea Campion R. y Canul Tec JC. 2004. Secuenciación de ácidos nucléicos. Métodos fisicoquímicos en Biotecnología. Instituto de Biotecnología-UNAM. Cuernavaca, Mor.
- -Derenko M, Grzybowski T, Malyarchuk B, Czarny J, Miscicka-Silwka D, Zakhorva L. 2001. The presence of mitochondrial haplogroup X in Altaians from South Siberia. American Journal of Human Genetics 69 (1):237-241.
- -de Saint Pierre M, Bravi CM, Motti JMB, Fuku N, Tanaka M, Llop E, Bonatto SL, Moraga M. 2012. An alternative model for the early peopling of southern South America revealed by analyses of three mitochondrial DNA haplogroups. Plos One 7 (9):1-12.
- -Dillehay TD. 1997. Monte Verde: A late Pleistocene settlement in Chile. Vol. 2: The Archaeological Context and Interpretation. Washington, Smithsonian Institute Press.
- **-Dillehay** TD. 2000. *The Settlement of the Americas*. A New Prehistory. Nueva York, Basic Books.
- -Dillehay TD, Ramirez C, Pino M, Collins M, Rossen J, Pino-Navarro J. 2008. Monte

- Verde: seaweed, food, medicine and the peopling of South America. Science, 320:784-786.
- **-Dillehay** TD. 2009. *Probing deeper into first American studies*. Proceedings of the National Academy of Sciences of the United States of America 106:971-978.
- -Dillehay TD, Ocampo C, Saavedra J, Sawakuchi AO, Vega RM, Pino M, Collins MB, Cummings LS, Arregui I, Villagran XS, Hartmann GA, Mella A, González A, Dix G. 2015. New archaeological evidence for an early human presence at Monte Verde, Chile. PLoS ONE 10:0141923.
- **-Dixon** EJ. 2001. *Human Colonization of the Americas: timing, technology and process.* Quaternary Science Reviews 20: 277-299.
- -Dornelles CL, Battilan J, Fagundes NJR, Freitas LB, Bonatto SL, Salzano FM. 2004. Mitochondrial DNA and Alu in a genetically peculiar population: the Ayoreo Indians of Bolivia and Paraguay. American Journal of human Biology 16:479-488.
- **-Endicott** P, Ho SYW. 2008. *A Bayesian evaluation of human mitochondrial substitution rates*. American Journal of Human Genetics 82:895-902.
- -Excoffier L. 1995-2006. ARLEQUIN 3.01. An Integrated Software Package for Population Genetics.
- -Fabra M. 2005. Historia Biológica y patrones de colonización y poblamiento humano en el sector austral de las Sierras Pampeanas durante el Holoceno. Tesis. Facultad de Filosofía y Humanidades. Universidad Nacional de Córdoba, Córdoba, Argentina.
- -Fabra M. y Demarchi D. 2011. Geographic patterns of craniofacial variation in Pre-Hispanic populations from the Southern Cone of South America. Human Biology 83 (4):491-507
- **-Fagundes** NJ., Kanitz R, Eckert R, Valls ACS, Bogo MR, Salzano FM, Glenn Smith D, Silva Jr. WA, Zago MA, Ribeiro-dos-Santos AK, Santos SEB, Petz-Erler ML, Bonatto SL. 2008. *Mitochondrial population genomics supports a single pre-Clovis origin with a coastal route for the peopling of the Americas.* Journal of Human Genetics 82:583-592.
- -Favier Dubois C. 2013. Hacia una cronología del uso del espacio en la costa Norte del Golfo de San Matías, Río Negro, Argentina: sesgos geológicos e indicadores temporales. En: Zangrando A, Barberena R, Gil A, Neme C, Giardina M, Luna L, Otaola C, Paulides S, Salgan C, Tívoli A. editores. Tendencias Teórico-Metodológicas y casos de estudio en la Arqueología de la Patagonia. 1ra Ed. San Rafael: Museo de Historia Natural de San Rafael.
- -Fehren-Schmitz L, Reindel M, Cacigao E, Hummel S, Herrmann B. 2010. Precolumbian population dynamics in coastal Southern Peru: a diachronic investigation of mtDNA patterns in the Palpa region by ancient DNA analysis. American Journal of Physical Anthropology 141:208-221.
- -Fehren-Schmitz L, Llamas B, Tomasto E, Haak W. 2011. El ADN antiguo y la historia del poblamiento temprano del oeste de Sudamérica: lo que hemos aprendido y hacia dónde vamos. Boletín de Arqueología PUCP nº 15:17-41.
- -Fehren-Schmitz L, Haak W, Mächtel B, Masch F, Llamas B, Tomasto Cagigao E, Sossna V, Schittek K, Isla Cuadrado J, Eitel B, Reindel M. 2014. Climate change underlies global demographic, genetic and cultural trasitions in pre-Columbian souther Peru. PNAS Direct Submission.

- -Fernández Dominguez E, Arroyo-Pardo E, Turbón D. 2005. Aplicacions de l' ADN antic en arqueología. La nova <<arqueología moleculra>>. Cota Zero 20:123-128.
- -Figueiro G. 2006. Estudio de las caracteristicas y la continuidad de la poblacion prehistorica de Arroyo Seco, Argentina, a traves del ADN mitocondrial. Tesis de Maestria Inedita, Montevideo, Universidad de la Republica
- -Figueiro G. 2013. Continuidad temporal en la composición genética de las poblaciones indígenas del Uruguay. Colección Avances de Investigación (Tomo Docentes). Montevideo: Facultad de Humanidades y Ciencias de la Educación, pp:141-159.
- -Flegenheimer N, Miotti L, Massia N. 2013. Rethinking early objects and landscapes in the Southern Cone: Fishtail point concentrations in the Pampas and northern Patagonia. Paleoamerican Odyssey, Santa Fe, Texas pp: 359-376.
- -Flensborg G, Martínez G, Bayala PD. 2013. Mortality profiles of Hunter-Gatherer societies: A case study from the eastern Pampa-Patagonia transition (Argentina) during the Final Late Holocene. International Journal of Osteoarchaeology 25 (6):816-826.
- **-Foster** P, Harding R, Torroni A, Bandelt H-J. 1996. *Origin and evolution of Native American mtDNA variation: a reappraisal.* American Journal of Human Genetics 59:935-945.
- -Fuchs ML. y Varela H. 2013. Fechados radiocarbónicos de colecciones osteológicas de la Puna de Jujuy, Argentina. Relaciones de la Sociedad Argentina de Antropología XXXVIII (2):553-558.
- **-Fuselli** S, Tarazona-Santos E, Dupanloup I, Soto A, Luiselli D, Pettener D. 2003. *Mitochondrial DNA diversity in South America and the genetic history of andean highlanders*. Molecual Biology and Evolution 20 (10):1682–1691.
- -Gabriel MN, Huffine EF, Ryan JH, Holland MM, Parsons TJ. 2001. *Improved mtDNA sequence analysis of forensic remains using "mini-primer set" amplification strategy*. Journal of Forensic Sciences 46:247-253.
- -García A, Zárate M, Páez M. 1999. The Pleistocene Holocene transition and the human occupation in the Central Andes of Argentina: Agua de la Cueva locality. Quaternary International 53/54:43-52.
- -García F, Moraga M, Vera S, Henríquez H, Llop E, Aspillaga E, Rothhammer F. 2006. *mtDNA microevolution in Southern Chile's archipielagos.* American Journal of Physical Anthropology 129:473-481.
- -García A. 2010. Human occupation during the mid-Holocene in western Argentina: a comment on Neme and Gil. Current Anthropology 51 (3):415-416.
- -García A, Pauro M, Bravi C, Demarchi D. 2012. *Phylogeography of mitochondrial haplogroup D1: an early spread of subhaplogoup D1j from Central Argentina*. American Journal of Physical Anthropology 149:583-590.
- -García-Bour J, Pérez-Pérez A, Álvarez S, Fernández E, López-Parra A, Arroyo-Pardo E, Turbón D. 2004. Early population differentiation in extinct aborigins from Tierra del Fuego-Patagonia: ancient mtDNA sequence and Y chromosome STR characterization. American Journal of Physical Anthropology 123:361-370.
- -Gayà-Vidal M, Moral P, Saenz-Ruales N, Gerbault P, Tonasso L, Villena M, Vasquez R, Bravi CM, Dugoujon J-M. 2011. mtDNA and Y-Chromosome diversity in Aymaras and Quechuas from Bolivia: different stories and Sispecial genetic

- traits of the andean Altiplano populations. American journal of Physical Anthropology 145:215-230.
- -Gil A. 2005. Arqueología de La Payunia (Mendoza, Argentina). En: el Poblamiento Humano en los Márgenes de la Agricultura. BAR International Series 1477, Archaeopress, Oxford.
- -Gil A, Tykot RH, Neme GA, Shelnut N. 2006. Maize on the frontier: isotopic and macrobotanical data from central-western Argentina. In: Staller J, Tykot RH, Benz B. editors. Histories of maize: multidisciplinary approaches to the prehistory, biogeography, domestication and evolution of maize. Academic Press pp:199-214.
- -Gil A, Neme G, Otaola C, García A. 2011. Registro arqueofaunístico en los Andes meridionales entre 11.000 y 5.000 años AP: evidencias en Agua de la Cueva-Sector Sur (Mendoza, Argentina). Latin American Antiquity 22 (4):595-617.
- -Gil AF, Neme GA, Ugan A, Tykot RH. 2014. Oxygen isotopes and human residential mobility in central western Argentina. International Journal of Osteoarchaeology 24:31-41.
- -Gilbert T, Hansen A, Willerslev E, Rudbeck L, Barnes R, Lynnerup N, Cooper A. 2003. Characterization of genetic miscoding lesions caused by post-mortem damage. American Journal of Human Genetics 72:48-61.
- -Giles RE, Blanc H, Cann HM, Wallace DC. 1980. *Maternal inheritance of human mitochondrial DNA*. Proceedings of the National Academy of Sciences of the United States of America 77:6715-6719.
- -Ginther C, Corach D, Penacino GA, Rey JA, Carnese FR, Hutz MH, Anderson A, Just J, Salzano FM, King MC. 1993. Genetic variation among Mapuche Indians from the Patagonia region of Argentina: Mitochondrial DNA sequence variation and allele frequencies of several nuclear genes. En: Pena SDJ, Chakraborty R, Epplen JT, Jeffreys AJ. editores. DNA fringerprinting: state of the science. Birkhauser Verlag, Basel pp:211-219.
- **-Goebel** T, Waters MR, O'Rourke DH. 2008. *The Late Pleistocene Dispersal of Modern Humans In the Americas*. Science 319:1497-1502.
- -Goicoechea AS, Carnese FR, Dejean CB, Avena SA, Weimer TA, Franco MH, Callegari-Jacques MS, Estalote A, Simoes ML, Palatnik M, Salomoni P, Salzano FM. 2001. Genetic relationships between Amerindian populations of Argentina. American Journal of Physical Anthropology 115:133-143.
- **-Goldberg** A, Mychajliw A, Hadly E. 2016. *Humans as a unique invasive species:* growth and population size dynamics in prehistoric South America. The 85th Annual meeting of the American Association of physical Anthropologists.
- -Gómez-Otero J. y Dahinten S. 1997-1998. Costumbres funerarias y esqueletos humanos: variabilidad y poblamiento en la costa nordeste de la provincia del Chubut (Patagonia Argentina). Relaciones 22-23:101-124.
- -Gómez-Otero J, Lanata J, Prieto A. 1998. *Arqueología de la costa atlántica patagónica*. Revista de Arqueología Americana 15:107-185.
- -González AR. y Pérez JA. 1972. Argentina Indígena. Vísperas de la Conquista. Paidós, Colección Historia Argentina I, Buenos Aires.
- -González-José R, Dahinten S, Hernández M. 2001. *The Settlement of Patagonia: A Matrix Correlation Study*. Human Biology 73:233-248
- -González-José R, Bortolini MC, Santos FR, Bonatto SL. 2008. The peopling of

- America: craniofacial shape variation on a continental scale and its interpretatios from an interdisciplinary view. American Journal of Physycal Anthropology 137:175-187.
- -Gordón F, Tessone A, Béguelin M, Arrigoni G, Guichón R. 2014. Paleodietas humanas en la costa patagónica durante el Holoceno tardío. Nuevos datos para la costa centro-sur. Interacciones en Antropología pp:1-22.
- -Gradin C. y Aguerre A. 1994. Contribución a la arqueología del rio Pinturas. Provincia de Santa Cruz. Búsqueda de Ayllu, Concepcion de Uruguay.
- -Green LD, Derr JN, Knight A. 2000. mtDNA affinities of the peoples of North-Central Mexico. American Journal of Human Genetics 66:989-98
- -Green MR. y Sambrook J. 2012. *Molecular Cloning: A Laboratory Manual.* 4º Edición.
- -Greenberg JH, Turner II CG, Zegura SL. 1986. The settlement of the Americas: a comparison of the linguistic, dental, and genetic evidence (and comments and reply). Current Anthropology 27 (5):477-497.
- -Greenwood A, Capelli C, Possnert G, Pääbo S. 1999. *Nuclear DNA sequences from late Pleistocene megafauna*. Molecular Biology and Evolution 16:1466-1473.
- -Grier C, Flanigan K, Winters M, Jordan L, Lukowski S, Kemp B. 2013. *Using ancient DNA identification and osteometric measures of archaeological pacific salmon vertebrae for reconstructing salmon fisheries and sites seasonality at Dionisio Point, British Columbia*. Journal of Archaeological Science 40:544-555.
- -Hagelberg E, Sykes B, Hedges R. 1989. *Ancient bone DNA amplified.* Nature 342:485.
- -Hall T. 2013. BioEdit: Biological sequence alignment editor for Win 95/98/NT/2k/XP/7. Ibis Biosciences.
- -Hammer Ø, Harper DAT, Ryan PD. 2001. *PAST: Paleontological statistics software package for education and data analysis.* Palaeontologia Electronica 4 (1):9.
- -Hamilton M. y Buchanan B. 2007. Spatial gradients on Clovis-age radiocarbon dates across North America suggest rapid colonization from the North. Proceedings of the National Academy of Science 104:15625-15630.
- -Hänni C, Brousseau T, Laudet V, Stehelin D. 1995. *Isopropanol precipitation removes PCR inhibitors from ancient bone extracts*. Nucleic Acids Research 5:881-882.
- -Haynes S, Searle J, Bretman A, Dobney K. 2002. Bone preservation and ancient DNA: the application of screening methods for predicting DNA survival. Journal of Archaeological Science 29:585-592.
- -Higuchi R, Bowman B, Freiberger M, Ryder O, Wilson A. 1984. DNA sequences from the quagga, an extinct member of the horse family. Nature 312:282–284.
- -Hoffecker JF, Elias SA, O'Rourke DH. 2014. Out of Beringia? Science 343:979-980.
- -Hofreiter M, Serre D, Poinar H, Kuch M, Pääbo S. 2001. *Ancient DNA*. Nature 2:353-359.
- **-Holland** MM. y Parson TJ. 1999. *Mitochondrial DNA sequence analysis validation and use for forensic casework*.Central Police University Press.
- -Horai S, Kondo R, Muruyama K, Hayashi S, Koike H, Nakai N. 1991. Phylohenetic affiliation of ancient and contemporary humans inferred from mitochondrial DNA. Philosophical Transaction of the Royal Society London Biology 333:409-417.
- -Horai S, Kondo R, Hattori Y, Hayashi S, Sonoda S, Tajima K. 1993. Peopling of the

- Americas, founded by four major lineages of mitochondrial DNA. Molecular Biology Evolution 10:23-47.
- -Höss M, Pääbo S, Vereshchagin N. 1994. *Mammoth DNA sequences*. Nature 370:333.
- -Hrdlička A, Fenner CN, Wright FE, Holmes WH, Willis B. 1912. *Early man in South America*, Washington, G. P. O.
- -Hrdlička A. 1937. The *origin and antiquity of the American Indian*. Annual Report of the Smithsonian Institution, Washington 1923:481-494.
- -Hubbe M, Neves WA, Harvati K. 2010. Testing evolutionary and dispersion scenarios for the settlement of the New World. PLoS One 5(6):11105.
- **-Hummel** S. 2003. *Ancient DNA tiping. Methods, strategies and applications*. Springer-Verlag. Berlin Heidelberg. New York.
- **-Hummel** S. 2014. *Ancient DNA*. En: Henke W. y Tattersall I. editores. Handbook of Paleoanthropology. Springer-Verlag Berlin Heidelberg pp:1-24.
- -Imbelloni J. 1937. Razas humanas y grupos sanguíneos. Relaciones 1:23-49.
- -Imbelloni J. 1938. Tabla clasificatoria de los indios. Regiones biológicas y grupos raciales humanos de América. Physis 12:228-248.
- -Ingman M, Kaessmann H, Pääbo S, Gyllensten U. 2000. *Mitochondrial genome variation and the origin of modern humans*. Nature 408:708-713.
- -Innan H. y Nordborg M. 2002. Recombination or mutational hot spots in human mtDNA? Molecular Biology and Evolution 19 (7):1122-1127.
- -Ivanov PL, Wadhams MJ, Holland MM, Weedn VW, Parsons TJ. 1996. Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov establishes the authenticity of the remains of Tsar Nicholas II. Nature Genetics 12:417–420.
- -Jenkins D, Davis L, Stafford Jr T, Campos P, Hockett B, Jones G, Cummings L, Yost C, Connolly T, Yohe II R, Gibbons S, Raghavan M, Rasmussen M, Paijmans J, Hofreiter M, Kemp B, Barta J, Monroe C, Gilbert M, Willerslev E. 2012. Clovis age Western stemmed projectile points and human coprolites at the Paisley Caves. Science 337:223-228.
- -Jodry MA. y Stanford DJ. 1992. Stewart's Cattle Guard Site: an analysis of bison remains in a Folsom kill-butchery campsite. En: Stanford DJ, Day JS, editores. Ice Age Hunters of the Rockies. University of Colorado Press and Denver Museum of Natural History, Niwot.
- -Johnson MJ, Wallace DC, Ferris SD, Rattazzi MC, Cavalli-Sforza LL. 1983. Radiation of human mitochondria DNA types analyzed by restriction endonuclease cleavage patterns. Journal of Molecular Evolution 19:255–271.
- -Kalmár T, Csanád ZB, Marcsik A, Raskó I. 2000. A simple and efficient method for PCR amplifiable DNA extraction from ancient bones. Nucleic Acid Research 28 (12):67.
- **-Katoh** K. y Kuma M. 2002. *MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.* Nucleic Acids Reserchs 30:3059-3066.
- -Katoh K. y Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30:772-780.
- -Kemp BM, Malhi RS, McDonough J, Bolnick DA, Eshleman JA, Rickards O,

- Martínez-Labarga C, Johnson JR, Lorenz JG, Dixon EJ, Fifield T, Heaton TH, Worl R, Smith DG. 2007. *Genetic analysis of Early Holocene skeletal remains from Alaska and its Implications for the settlement of the Americas.* American Journal of Physical Anthropology 132:605-621.
- -Kemp B, Tung T, Summar M. 2009. The collapse of the Wari empire: mitochondrial DNA profiles from Wari and post-Wari populations in ancient Andes. American Journal of Physical Anthropology 140:80-91.
- -Kemp B. y Glenn-Smith D. 2010. Ancient DNA methodology: thoughts from Brian M. Kemp and David Glenn Smith on "mitochondrial DNA of protohistoric remains of an Arikara population from South Dakota". Human Biology 82:227-238.
- -Kemp B. y Schurr T. 2010. Ancient and modern genetic variation in the Americas. En: Auerbach BM. editor. Human variation in the Americas. Center for Archaeological investigations, Ocasional Paper, Southern Illinois University 38: 12-50.
- **-King** R, Stansfield WD, Mulligan PK. 2006. *A dictionary of genetics 7th ed.* Oxford University Press.
- **-Kitchen** A, Miyamoto MM, Mulligan CJ. 2008. *A three-stage colonization model for the peopling of the Americas*. PloS ONE 3 (2):1596.
- -Klöss-Bandstätter A, Pacher D, Schönherr S, Weissensteiner H, Binna R, Specht G, Kronenberg F. 2011. *HaploGrep: a fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups.* Human Mutation 32:25-32.
- -Knap M, Lalueza-Fox C, Hofreiter M. 2015. Re-inventing ancient human DNA. Investigative Genetics 56:4.
- -Krapovickas P. 1983. Las poblaciones indígenas históricas del sector oriental de la Puna (un intento de correlación entre la información arqueológica y la etnográfica). Relaciones 15:7- 24.
- -Kumar S, Bellis C, Zlojutro M, Melton P, Blangero J, Curran J. 2011. Large scale mitochondrial sequencing in Mexican Americans suggests a reappraisal of Native American origins. BMC Evolutionary Biology 11:293-312.
- -Kumar S, Stecher G, Tamura K. 2016. *MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets*. Molecular Biology and Evolution 33 (7):1887.
- -Lalueza C, Pérez-Pérez A, Prats E, Cornudella L, Turbón D. 1997. Lack of founding amerindian mitochondrial DNA in extinct aborigines from Tierra del Fuego-Patagonia. Human Molecular Genetics 6:41-46.
- -Lalueza-Fox C, Luna-Calderon F, Calafell F, Morera B, Bertrantpetit J. 2001. *mtDNA from extinct Tainos and the peopling of the caribbean.* Annuals Human Genetics 65:137-151.
- **-Lawlor** DA, Dickel CD, Hauswirth WW, Parham P. 1991. *Ancient HLA genes from 7,500 year old Archaeological Remains*. Nature 349:785-788.
- **-Lewis** CM, Lizárraga B, Tito R, López P. 2007. *Mitochondrial DNA and peopling of South America*. Human Biology 79 (2):159-178.
- **-Lewis** Jr CM, Buikstra JE, Stone AC. 200). *Ancient DNA and genetic continuity in the South Central Andes*. Latin American Antiquity 18 (2):145-160.
- **-Librado** P. y Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451-1452.
- -Llamas B, fehren-Schmitz L, Valverde G, Soubrier J, Mallick S, Rohland N,

- Nordenfelt S, Valdiosera C, Richards S, Rohrlach A, Barreto Romero MI, Flores Espinoza I, Tomasto Cagigao L, Watson Jiménez L, Malkowski K, Leboreiro Reyna I, Mansilla Lory J, Ballivián Torrez JA, Rivera M, Burger R, Ceruti MC, Reinhard J, Wells RS, Politis G, Santoro C, Standen V, Smith C, Reich D, Ho S, Cooper A, Haak W. 2016. *Ancient mitochondrial DNA provides high-resolution time scale of the peopling of the Americas*. Science Advances 2 (4):1501385.
- -Lodish H, Berk A, Matsudaira P, Jaiser C, Krieger M, Scott M, Zipursky SL, Darnell J. 2005. Biología Celular y Molecular. 5º Edición, Editorial Médica Panamericana, Buenos Aires.
- -Loponte D, Acosta A, Capparelli I, Perez M. 2011. La arqueología guaraní en el extremo meridional de la cuenca del Plata. En: Loponte D, Acosta A. editores. Arqueología Tupiguaraní. Instituto Nacional de Antropología y Pensamiento Latinoamericano, Buenos Aires, Argentina, pp:111-154.
- **-Luciani** S, Fornaciari G, Rickards O, Labarga C, Rollo F. 2006. *Molecular characterization of a pre-columbian mummy and in situ coprolite.* American Journal of Physical Anthropology 129:620-629.
- -Macaulay V, Hill MC, Achilli A, Rengo C, Clarke D, Meehan W, Blackburn J, Semino O, Scozzari R, Cruciani F, Taha A, Kassim Shaari N, Raja J, Ismail P, Zainuddin Z, Goodwin W, Bulbeck D, Bandelt H, Oppenheimer S, Torroni A, Richards M. 2005. Single, rapid coastal settlement of Asia reveled by analysis of complete mitochondrial genomes. Science 308 (5724):1034-1036.
- -Malhi R, Cybulski J, Tito R, Johnson J, Harry H, Dan C. 2010. Brief communication: mitochondrial haplotype C4c confirmed as a founding genome in the Americas. American Journal of Physical Anthropology 141:191-497.
- -Mandrini R. y Ortelli S. 1992. *Volver al país de los araucanos*. Buenos Aires: Editorial Sudamericana
- -Manríquez G, Moraga M, Santoro C, Aspillaga E, Arriaza B, Rothhammer F. 2011. Morphometric and mtDNA analyses of archaic skeletal remains from Southwestern South America. Chúngara 43:283-292.
- -Marangoni A, Caramelli D, Manzi G. 2013. Homo Sapiens in the Americas. Overview of the earliest human expansion in the New World. Journal of Anthropological Sciences 91: 1-19.
- -Marrero AR, Bravi CM, Stuart S, Long JC, Pereira das Veves Leite F, Kommers T, Carvalho CMB, Junho Pena SD, Ruiz-Linares A, Salzano FM, Bortoloni MC. 2007. Pre- and Post-Columbian gene and cultural continuity: the case of the Gaucho from Southern Brazil. Human Heredity 64 (3):160-171.
- -Martínez G, Bayala P, Flensborg G, López R. 2006. Análisis preliminar de los entierros humanos del sitio Paso Alsina 1 (Partido de Patagones, Provincia de Buenos Aires). Intersecciones en Antropología 7:95-108.
- -Martínez G. 2008-2009. Arqueología del curso inferior del Río Colorado: estado actual del conocimiento e implicaciones para la dinámica poblacional de cazadores-recolectores Pampeano-Patagónicos. Cazadores Recolectores del Cono Sur. Revista de Arqueología 3:71-92.
- -Martínez G, Flensborg G, Bayala P. 2013. Chronology and human settlement in Northeastern Patagonia (Argentina): patterns of site destruction, intensity of archaeological signal and population dynamics. Quaternary International 301: 123-134.

- -Martínez G, Prates L, Flensborg G, Stoessel L, Alcaráz AP, Bayala PD. 2015. Radiocarbon trends in the Pampean region (Argentina). Biases and demographic patterns during the final Late Pleistocene and Holocene. Quaternary International 356:89-110.
- -Martínez Sarasola C. 1992. Nuestros paisanos los indios. Vida, historia y destino de las comunidades indígenas en la Argentina. Emecé, Buenos Aires.
- -Martínez Sarasola C. 2002. De la mano de las piedras sagradas: Los grandes cacicazgos de las llanuras (1830-1880). Artículo incluído en "Hijos del Viento, Arte de los pueblos del sur, siglo XIX". Catálogo Colección Eduardo P. Pereda. Fundación PROA, Buenos Aires.
- -Masson V, Vimeux F, Jouzel J, Morgan V, Delmotte M, Ciais P, Hammer C, Johnsen S, Lipenkov VY, Mosley-Thompson E, Petit JR, Steig EJ, Stievenard M, Vaikmae R. 2000. Holocene climate variability in Antarctica based on 11 icecore isotopic records. Quaternary Research 54:348–358
- -Mellars P. 2006. Why did modern human populations disperse from Africa ca. 60.000 years ago? A new model. PNAS 103 (25):9381-9386.
- -Mena F, Reyes O, Stafford TW, Southon J. 2003. Early human remains from Baño Nuevo-1 cave, central Patagonian Andes, Chile. Quaternary International 109110:113-121.
- -Mendisco F, Keyser C, Hollard C, Seldes V, Nielsen A, Crubezy E, Ludes B. 2011. Application of the iPLEX Gold SNP genotyping method for the analysis of Amerindian ancient DNA samples: benefits for ancient population studies. Electrophoresis 32:1-8.
- -Mendisco F, Keyser C, Seldes V, Rivolta C, Marcolli P, Cruz P, Nielsen A, Crubezy E, Ludes B. 2014. Genetic diversity of a late prehispanic group of the Quebrada de Humaahuaca, northwestern Argentina. Annals of Human Genetics 78 (5): 367-380.
- -Merriwether DA, Rothhammer F, Ferrell RE. 1995. Distribution of the four founding lineage haplotypes in native americans suggests a single wave of migration for the New World. American Journal of Physical Anthropology 98:411-430.
- -Merriwether DA, Hall WW, Vahlne A, Ferrell RE. 1996. mtDNA variation indicates Mongolia may have been the source for the founding population for the New World. American Journal of Human Genetics 59:204-212.
- -Miotti L. y Salemme M. 2003. When Patagonia was colonized: people mobility at high latitudes during Pleistocene/Holocene transition. Quaternary International 109-110:95-111.
- -Miotti L. y Salemme M. 2004. *Poblamiento, movilidad y territorios entre las sociedades cazadoras-recolectoras de Patagonia*. Complutum 15:177-206.
- -Miotti L. 2006. La fachada atlántica como puerta de ingreso alternativa de la colonización humana de América del Sur durante la transición Pleistoceno/Holoceno. Simposio Internacional del Hombre Temprano en América 2. Instituto Nacional de Antropología e Historia, México pp:155-188.
- -Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark A, Hosseini S, Brandon M, Easley K, Chen E, Brown M, Sukernik R, Olckers A, Wallace D. 2003. Natural selection shaped regional mtDNA variation in humans. Proceedings of the National Academy of Science 100:171-176.

- -Molak M, Suchard MA, Ho SYW, Beilman D, Shapiro B. 2015. Empirical calibrated radiocarbon sampler: a tool for incorporating radiocarbon-date and calibration error into Bayesian phylogenetic analyses of ancient DNA. Molecular Ecology Resources. 15:81-86.
- -Monsalve M, Cardenas F, Guhl F, Delaney A, Devine D. 1996. Phylogenetic analysis of mtDNA lineages in South American mummies. American Journal of Human Genetics 60:293-303.
- -Moraga M, Rocco P, Miquel J, Nervi F, Llop E, Chakraborty R, Rothhammer F, Carvallo P. 2000. Mitochondrial DNA polymorphisms in Chilean aboriginal populations: implications for the peopling of the Southern Cone of the continent. American Journal of Physical Anthropology 113:19-29.
- -Moraga M, Santoro C, Standen V, Carvallo P, Rothhammer F. 2005. Microevolution in prehistoric Andean population: chronologic mtDNA variation in the desert Valleys of Northern Chile. American Journal of Physical Anthropology 127:170-181.
- -Moraga M, de Saint Pierre M, Torres F, Ríos J. 2010. Vínculos de parentesco por vía materna entre los últimos descendientes de la etnia Kawesqar y algunos entierros en los canales patagónicos: evidencia desde el estudio de linajes mitocondriales. Magallania 38:103-114.
- -Motti JMB. 2012. Caracterización de linajes maternos en la población actual del Noroeste y Centro-oeste argentinos. Tesis doctoral, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata.
- -Mulligan CJ, Kitchen A, Miyamoto MM. 2008. *Updated three-stage model for the peopling of the Americas*. PloS One 3 (9):3199.
- -Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. 1987. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symposia on Quantitative Biology 51: 263-273.
- -Muscio HJ. y López GEJ. 2016. Radiocarbon dates and anthropogenic signal in the South-Central Andes (12,500-600 cal. years BP). Journal of Archaeological Science 65:93-102.
- -Neme G. y Gil A. 2005. Aportes para la discusión del intercambio en el sur de Mendoza. Actas del XVI Congreso Nacional de Arqueología Chilena pp:317-326.
- **-Neme** G. y Gil A. 2009. *Human occupation and increasing mid-Holocene aridity.* Current Anthropology 50 (1):149–163
- -Neves WA. y Pucciarelli HM. 1991. Morphological affinities of the first Americans: an exploratory analysis based on early South American human remains. Journal of Human Evolution 21:261-273.
- -Neves W, Prous A, Gonzalez-Jose R, Kipsnir R, Powell J. 2003. Early human skeletal remains from Santa Do Riacho, Brazil: implications for the settlement of the new world. Journal of Human Evolution 45:19-42.
- -Neves WA. y Hubbe M. 2005. Cranial morphology of early Americans from Lagoa Santa, Brazil: Implications for the settlement of the New World. PNAS 102 (51):18309-18314.
- -Nielsen R. y Slatkin M. 2013. *An introduction to population genetics. Theory and Applications.* University of California, Berkeley.
- -Nores R. y Demarchi D. 2011. Análisis de haplogrupos mitocondriales en restos

- humanos de sitios arqueológicos de la Provincia de Córdoba. Revista Argentina de Antropología Biológica 13:43-54.
- -Nores R, Fabra M, Demarchi D. 2011. *Variación temporal y espacial en poblaciones pre-hispánicas de Córdoba*. Revista del Museo de Antropología 4:187-194.
- -Núñez Atencio L. 2007. Reflexiones sobre el tráfico de caravanas y complementariedad circumpuneña. En: Williams V, Ventura B, Callegari A, Yacobaccio H. editores. Sociedades Precolombinas Surandinas: Temporalidad, Interacción y Dinámica Cultural del NOA en el ámbito de los Andes Centro-Sur. Buenos Aires pp:33-57.
- -Núñez L. 1992. Ocupación arcaica en la Puna de Atacama: Secuencia, movilidad y cambio. En: Meggers B. editor. Prehistoria sudamericana. Nuevas perspectivas Taraxacum, Washington D. C pp: 283-307.
- -O'Rourke DH, Hayes MG, Carlyle SW. 2000. Spatial and temporal stability of mtDNA haplogroup frequencies in native North America. Human Biology 72:15–34.
- **-O'Rourke** DH. y Raff JA. 2010. The human genetics history of the Americas: The final frontier. Current Biology 20 (4):202-207.
- -Orquera L. y Gómez-Otero J. 2007. Los cazadores-recolectores de las costas de Pampa, Patagonia y Tierra del Fuego. Relaciones de la Sociedad Argentina de Antropología 32:75-99.
- -Pääbo S. 1985. Molecular cloning of ancient Egyptian mummy DNA. Nature 314: 644-645.
- -Pääbo S, Poinar H, Serre ., Jaenicke-Després V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M. 2004. *Genetics analyses from ancint DNA*. Annual Review of Genetics 38: 645-679.
- -Pakendorf B. y Stoneking M. 2005. *Mitochondrial DNA and human evolution*. Annual Review of Genomics and Humanan Genetics 6:165-183.
- -Perego U, Achilli A, Angerhofer N, Accetturo M, Pala M, Olivieri A, Kashani B, Ritchie K, Scozzari R, Kong Q, Myres N, Salas A, Semino O, Bandelt H, Woodward S, Torroni A. 2009. Distinctive paleo-indian migration routes from Beringia marked by two rare mtDNA haplogroups. Current Biology 19:1-8.
- -Perego UA, Angerhofer N, Pala M, Olivieri A, Lancioni H, Kashani BH, Carossa V, Ekins JE, Gómes-Carballa A, Huber G, Zimmermann B, Corach D, Babudri N, Panara F, Myres NM, Parson W, Semino O, Salas A, Woodward SR, Achilli A, Torroni A. 2010. The initial peopling of the Americas: a growing number of founding mitocondrial genomes from Beringia. Genome Reserch 20:1174-1179.
- -Peres-Neto PR. y Jackson DA. 2001. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129:169–178
- -Perez SI, Bernal V, Gonzalez PN. 2007. Morphological differentiation of aboriginal human populations from Tierra del Fuego (Patagonia): Implications for South American peopling. American Journal of Physical Anthropology 133:1067-1079.
- -Perez SI, Bernal V, Gonzalez PN, Sardi M, Politis GG. 2009. *Discrepancy between cranial and DNA data of early Americans: Implications for American Peopling*. Plos One 4 (5):1-11.
- -Perez SI, Cardillo M, Gonzalez P. 2009. *Artificial cranial deformation in South American: A quantitative approach to cultural variation*. En: López G. y Cardillo M. editores. Arqueología y Evolución. Series de Complejidad Humana. Editorial

- SB, pp:87-107.
- -Perez SI. y Monteiro LR. 2009. Non-random factors in modern human morphological diversification: a study of variation in southern south american populations. Evolution 69:978–93.
- -Perez SI. 2011. Poblamiento Humano, Diferenciación Ecológica y Diversificación Fenotípica en América. Runa XXXII (1):83-104.
- -Perez SI, Lema V, Felizola Diniz-Filho JA, Bernal V, Gonzalez PN, Gobbo D, Pucciarelli HM. 2011. The role of diet and temperature in shaping cranial diversification of South American human populations: an approach based on spatial regression and divergence rate tests. Journal of Biogeography 38:148-163.
- **-Perez** SI, Bernal V, Gonzalez PN. 2016a. *Past population dynamics in Northwest Patagonia: an estimation using molecular and radiocarbon data*. Journal of Archaeological Science 65:154-160.
- -Perez SI, Postillone MB, Rindel D, Gobbo D, González PG, Bernal V. 2016b. Peopling time, spatial occupation and demography of Late Pleistocene-Holocene human population from Patagonia. Quaternary International, en prensa.
- -Pérez M. y Killian Galván VA. 2011. Doncellas (Puna Septentrional, Jujuy, Argentina): nuevos enfoques a partir del estudio cerámico y del análisis paleodietario. Estudios Atacameños 42:79-100.
- -Pérez de Micou C. 2009. El sitio Alero Mazquiarán, Chubut. Capítulo 3 En: Pérez de Micou C, Trivi de Mandri M, Burry LS. Editoras. Imágenes desde un alero: investigaciones multidiciplinarias en Río Mayo, Chubut Patagonia argentina.. Buenos Aires pp:33-41.
- -Pickrell J. y Reich D. 2014. Towards a new history and geography of human genes informed by ancient DNA. Trends in Genetics 30 (9): 377-389.
- -Pilli E, Modi A, Serpico C, Achilli A, Lancioni H, Lippi B, Bertoldi F, Gelicih S, Lari M, Caramelli D. 2013. *Monitoring DNA contamination in handled Vs. directly excavated ancient human skeletal remains*. Plos One 8:52524.
- -Poinar H. y Stankiewcz A. 1998. *Protein preservation and DNA retrieval from ancient tissues*. Proceedings of National Academy of Science, USA 96:8426-8431.
- -Politis GG, Messineo PG, Kaufmann CA. 2004. El Poblamiento temprano de las llanuras pampeanas de Argentina y Uruguay. Complutum 15:207-224.
- -Politis GG, Prates L, Perez SI. 2010. El Poblamiento de América. Arqueología y bioantropología de los primeros americanos. Colección Ciencia Joven nº 35, Editorial Eudeba. Buenos Aires.
- **-Porcel** RE. 2007. La Araucanización de nuestra pampa: los Tehuelches y Pehuenches. Los Mapuches invasores. 1ª edición, Buenos Aires.
- -Postillone MB, Crespo CM, Russo G, Cardozo DG. 2014^a. Distribución de haplogrupos mitocondriales amerindios en muestras arqueológicas de Sudamérica. En: Esnal A, Funes M, Grosso M, Kuperszmit N, Murgo A. y Romero G. editores. Entre Pasados y Presentes IV. Estudios Contemporáneos en Ciencias Antropológicas. C.A.B.A. pp:347-363.
- -Postillone MB, Dejean CB, Fuchs ML, Varela HH, Avena SA, Carnese FR. 2014b. Evidencia de contacto entre poblaciones prehispánicas de la Puna Jujeña y el Norte de Chile. Nuevas Aproximaciones Biológicas .En: Gheggi MS. y Seldes

- V. Editoras. Antropología biológica y estudios del comportamiento mortuorio de los pueblos prehispánicos del noroeste Argentino". Fundación Azara pp:95-110.
- **-Powell** JF. y Neves WA. 1999. Craniofacial Morphology of the First Americans: Pattern and Process in the Peopling of the New World. Yearbook of Physical Anthropology 42:153-188.
- -Prates L, Politis G, Steele J. 2013. Radiocarbon chronology of the early human occupation of Argentina. Quaternary International 301:104-122.
- -Pucciarelli H., Neves W., González-José R. (2006). *East-West cranial differentiation in human precolumbian populations of South America.* Homo, 57(2):133-150.
- -Pucciarelli H, Perez SI, Politis GG. 2010. Early holocene human remains from the Argentinean Pampas: additional evidence for distinctive cranial morphology of early South Americans. American Journal of Physical Anthropology 143:298-305.
- -Raff J, Bolnick D, Tackney J, O'Rourke D. 2011. Ancient DNA perspective on American colonization and population history. American Journal of Physical Anthropology 146:503-514.
- -Ramachandran S, Deshpande O, Roseman C, Rosenberg N, Feldman M, Cavalli-Sforza L. 2005. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proceedings of the National Academy of Science, USA 102:15942-15947.
- -Rasmussen M, Anzick S, Waters M, Skoglund P, De Giorgio M, Stafford Jr T, Rasmussen S, Moltke I, Albrechtsen A, Doyle S, Poznik D, Gusmundsdottir V, Yadav R, Malaspina A, White S, Alentoft M, Cornejo O, Tambets K, Eriksson A, Heintzman P, Kermin M, Korneliussen T, Meltser D, Pierre T, Stenderup J, Saag L, Warmuth V, Lopes M, Malhi R, Brunak S, Sicheritz-Ponten T, Barnes I, Collins M, Orlando L, Balloux F, Manica A, Gupta R, Metspalu M, Bustamante C, Jakobsson M, Nielsen R, Willerslev E. 2014. The genome of a late pleistocene human from a Clovis burial site in Western Montana. Nature 506:225-239.
- -Rasmussen M, Sikora M, Albrechtsen A, Korneliussen T, Moreno-Maya JV, Poznik GD, Zollikofer CPE, Ponce de León MS, Allentoft ME, Moltke I, Jónsson H, Valdiosera C, Malhi R, Orlando L, Bustamante CD, Stafford Jr TW, Meltzer DJ, Nielsen R, Willerslev E. 2015. The ancestry and affiliations of Kennewick Man. Nature 523: 455-458.
- -Ray N, Wegmann D, Fagundes N, Wang S, Ruiz-Linares A, Excoffier L. 2010. A statistical evaluation of models for the initial settlement of the American continent emphasizes the importance of gene flow with Asia. Molecular Biology Evolution 27:337-345.
- -R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: http://www.Rproject.org/.
- -Relethford JH. y Harding RM. 2001. Population genetics of Modern Human Evolution. eLS on line.
- -Rey Fraile I. 2007. *Utilización del AND antiguo en estudios bioarqueológicos*. Notas Técnicas dialnet.unirioja.es/descarga/articulo/2982290.pdf.
- -Ribeiro-dos-Santos A, Santos S, Machado A, Guapindaia V, Zago M. 1996.

- Heterogeneity of mitochondrial DNA haplotypes in pre-Columbian natives of the Amazon region. American Journal of Physical Anthropology 101:29-37.
- -Ricaut FX, Kolodesnikov S, Keyser-Tracqui C, Alekseev AN, Crubézy E, Ludes B. 2004. *Genetic analysis of human remains found in two eighteenth century Yakut graves at At-Dabaan.* International Journal ol Legal Medicine 118:24-31.
- -Ricaut FX, Keyser-Tracqui C, Crubézy E, Ludes B. 2005. STR-genotyping from human medieval tooth and bone samples. Forensic Science International 151:31-5.
- -Rickards O, Martínez-Labarga C, Lum J, De Stefano G, Cann R. 1999. mtDNA history of the Cayapa Amerinds of Ecuador: detection of additional founding lineages for the Native American populations. American Journal of Human Genetics 65:519-530.
- -Rivera MA. 1991. The prehistory of northern Chile: a synthesis. Journal of World Prehistory 5 (1):1-48.
- -Rivero D. y Berberián E. 2006. El poblamiento inicial de las Sierras Centrales de Argentina. Las evidencias arqueologicas tempranas. Cazadores Recolectores del Cono Sur. Revista de Arqueología 1:127-138, Mar del Plata.
- -Rivero D. 2007. Los Primeros pobladores de las Sierras Centrales de Argentina. Las evidencias más antiguas del sitio "El Alto 3" (Dpto. Punilla, Córdoba). Comechingonia Virtual 1:32-51.
- -Rohland N. y Hofreiter M. 2007a. *Ancient DNA extraction from bones and teeth.* Nature protocols 7:1756-1762.
- **-Rohland** N. y Hofreiter M. 2007b. *Comparison and optimization of ancient DNA extraction*. Biotechniques 3:343-352.
- -Rothhammer F. y Silva C. 1990. Craniometrical variation among South American prehistoric populations: Climatic, altitudinal, chronological and geographic contributions. American Journal of Physical Anthropology 82:9-17.
- -Rothhammer F, Santoro CM, Poulin E, Arriaza B, Moraga M, Standen V. 2009. Archeological and mtDNA avidence for Tropical Lowland migrations during the Late Archaic/Formative in northern Chile. Revista Chilena de Historia Natural 82:543-552.
- -Rothhammer F. y Dillehay TD. 2009. The Late Pleistocene colonization of South America: an interdisciplinary perspective. Annals of Human Genetics 73:540-549.
- -Rozas J. 2009. DNA sequence polymorphism analysis using DNAsp. En: Posadas D. editor. Bioinformatics for DNA sequence analysis. Springer Protocols, Humana Press, Vigo, España pp:337-350.
- -Rubicz R, Melton P, Crawford MH. 2007. *Molecular markers in anthropological genetic studies*. En: Anthropological Genetics, Cambridge University Press pp:141-186.
- -Russo MG, Seldes V, Rivolta MC, Zigarán MF, Avena SA, Dejean C. 2014. Aportes de la genética al estudio de la dinámica poblacional del NOA en tiempos prehispánicos. En: Gheggi MS. y Seldes V. editoras. Antropología Biológica y Estudios del Comportamiento Mortuorio de los Pueblos Prehispánicos del Noroeste Argentino, Buenos Aires pp:83-93.
- -Sala A, Argüelles CF, Marino ME, Bobillo C, Fenocchio A, Corach D. 2010. Genetic analysis of six communities of Mbyá-Guaraní inhabiting Northeastern Argentina

- by means of nuclear and mitochondrial polymorphic markers. Human biology 82 (4):433-456.
- -Sala A. y Corach D. 201). Analysis of admixture and genetic structure of two Native American groups of Southern Argentinean Patagonia. Molecular Biology Reports 41:1533-1543.
- -Salas A, Jaime J, Álvarez-Iglesias V, Carracedo A. 2008. Gender bias in the multiethnic genetic composition of Central Argentina. Journal of Human Genetics 53: 662-674.
- -Salas A, Lovo-Gómez J, Álvarez-Iglesias V, Cerezo M, Lareu M, Macaulay V, Richards MB, Carracedo Á. 2009. *Mitochondrial echoes of first settlement and genetic continuity in El Salvador.* PLoS ONE 4(9):6882.
- **-Salemme** MC. y Miotti LL. 2008. *Archeological hunter-gatherer landscapes since the latest Pleistocene in Fuego-Patagonia*. Developments in Quaternary Sciences 11:437-483.
- -Sampietro ML, Gilbert MT, Lao O, Caramelli D, Lari M, Bertranpetit J, Ialueza-Fox C. 2006. *Tracking down human contamination in ancient human teeth.* Molecualr Biology and Evolution 23 (9):1801-1807.
- -Sandoval K, Buentello-Malo L, Peñaloza-Espino R, Avelino H, Salas A, Calafell F, Comas D. 2009. *Linguistic and maternal genetic diversity are not correlated in Native Mexicans*. Human Genetics 126:521-531.
- -Sandoval JR, Lacerda DR, Jota M, Salazar-Granara A, Vieira PP, Acosta O, Cuellar C, Revollo S, Fujita R, Santos F, The Genographic Project Consortum. 2013. The genetic history of indegenous populations of the Peruvian and Bolivian Altiplano: the legacy of the Uros. PLoS ONE 8 (9):73006.
- -Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Science, USA 74:5463-5467.
- -Santos C, Montiel R, Sierra B, Bettencourt C, Fernandez E, Alvarez L, Lima M, Abade A, Aluja MP. 2005. *Understanding differences between phylogenetic and pedigree-derived mtDNA mutation rate: a model using families from the Azores Islands (Portugal)*. Molecular Biology and Evolution 22:1490-1505.
- -Schurr TG, Ballinger SW, Gan Y-Y, Hodge JA, Merriwether DA, Lawrence DN, Knowler WC, Weiss KM, Wallace DC. 1990. Amerindian mitochondrial DNAs have rare asian mutations at high frequencies, suggesting they derived from four primary maternal lineages. American Journal of Human Genetics 46:613-623.
- -Schurr T. 2004. The Peopling of the New World: Perspectives from Molecular Anthropology. Annual Review of Anthropology 33:551-583.
- -Schurr T. y Sherry ST. 2004. *Mitochondrial DNA and Y Chromosome diversity and the peopling of the americas: evolutionary and demographic evidence.* American Jounnal of Human Biology 16:420-439.
- **-Shapiro** B. y Hofreiter M. 2010. *Analysis of ancient human genomes.* Bioessays 32:388-391.
- -Shinoda K, Adachi N, Guillen S, Shimada I. 2006. Mitochondrial DNA analysis of ancient Peruvian Highlanders. American Journal of Physical Anthropology 131 (1):98-107.
- -Soares P, Ermini L, Thomson N, Mormina M, Rito T, Röhl A, Salas A, Oppenheimer

- S, Macaulay V, Richards M. 2009. *Correcting for purifying selection: an improved human mitochondrial molecular clock*. American Journal of Human Genetics 84:740-759.
- -Solano A, Playán A, López-Pérez MJ, Montoya J. (2001). *Enfermedades genéticas del ADN mitocondrial humano*. Salud Pública de México 43 (2):151-161.
- -Steele J. y Politis G. 2009. AMS ¹⁴C dating of early human occupation of southern South America. Journal of Archaeological Science 36:419-429.
- -Stoessel L. 2014. Evaluating intensity in the processing of guanaco (Lama guanicoe) at the lower basin of the Colorado River (Argentina): fragmentation levels and fracture patterns analysis. International Journal of Osteoarchaeology 24:51-67.
- -Stoessel L. y Martínez G. 2014. El proceso de intensificación en la transición Pampeano-Patagonica oriental, discusión y perspectivas comparativas con regiones aledañas. Comechingonia 18:65-94.
- **-Stone** A. y Stoneking M. 1993. *Ancient DNA from a pre-Columbian Amerindian population*. American Journal of Physical Anthropology 92:463-471.
- **-Stone** A. y Stoneking M. 1999. *Analysis of ancient DNA from prehistoric Amerindian cemetery.* Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 354:153-159.
- **-Stoneking** M, Soodyall H. 1996. *Human evolution and the mitochondrial genome*. Current Opinion in Genetics and Development 6:731–36.
- -Taboada-Echalar P, Álvarez-iglesias V, Heinz T, Vidal-Bralo L, Gómez-Carballa A, Catelli L, Pardo-Seco J, Pastoriza A, carracedo A, Torres-Balanza A, Rocabado O, Vullo C, Salas A. 2013. The genetic legacy of the Pre-Colonial period in contemporary bolivians. PLoS ONE 8 (3):58980.
- -Tamm E, Kivisild T, Reidla M, Metspalu M, Smith DG, Mulligan CJ, Bravi CM, Rickards O, Martinez-Labarga C, Khusnutdinova EK, Fedorova SA, Golubenko MV, Stepanov VA, Gubina MA, Zhadanov SI, Ossipov LP, Damba L, Voevoda MI, Dipierri JE, Villems R, Malhi RS. 2007. Beringian sandstill and spread of native american founders. Plos One 9:1-6.
- **-Tamura** K. y Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10:512-526.
- -Tarragó M. 1984. La historia de los pueblos circumpuneños en relación con el altiplano y los Andes Meridionales. Estudios Atacameños 7:93-104.
- -Tarragó M. 2002. El Formativo y el surgimiento de la complejidad social en el Noroeste Argentino. En: Ledergerber-Crespo P. editora. Capítulo VIII, El Formativo de Argentina. Formativo Sudamericano, Edic. Abya-Yala pp:303-315.
- -Tchilinguirian P. y Morales M. 2013. *Mid-Holocene paleoenvironments in Northwestern Argentina: Main patterns and discrepancies*. Quaternary International 307:14-23.
- **-Thompson** JD, Higgins DG, Gibson TJ. 1994. Clustal W: Improving the sensitivity of preogressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Reserchs 11;22 (22):4673-4680.
- **-Thuesen** I. y Engberg J. 1990. *Recovery and analysis of human genetic material from mummified tissue and bone.* Journal of Archaeological Science 17: 679-689.
- -Torres-Rouff C, Pimentel G, Ugarte M. 2012. ¿Quiénes viajaban? Investigando la

- muerte de viajeros prehispánicos en el desierto de Atacama (ca. 800 AC 1536 DC). Estudios Atacameños 43:167-186.
- -Torroni A, Schurr TG, Yang C-C, Szathmary EJE, Williams RC, Schanfield MS, Troup GA, Knowler WC, Lawrence DN, Weiss KM, Wallace DC. 1992. Native american mitochondrial DNA analysys indicates that the Amerind and the Nadene populations were founded by two independent migrations. Genetics 130:153-162.
- -Torroni A, Schurr T., Cabell MF, Brown MD, Neel JV, Larsen M, Smith DG, Vullo CM, Wallace DC. 1993. *Asian affinities and continental radiation of the four founding native american mtDNAs*. American Journal of Human Genetics 53:563-590.
- **-Torroni** A, Chen Y, Semino O, Santachiara-Beneceretti A, Scott C, Lott M, Einter M, Wallace D. 1994. *mtDNA and Y-chromosome polymorphisms in four native American populations from Southern Mexico*. American Journal of Human Genetics 54:303-318.
- -Torroni A, Huoponen K, Francalacci P, Petrozzi M, Morelli L, Scozzari R, Obinu D, Savontaus M, Wallace D. 1996. *Classification of european mtDNAs from an analysis of three european populations*. Genetics 144:1835-1850.
- -Turner II CG. 1983. Sinodonty and Sundadonty: a dental anthropological view of Mongoloid microevolution, origin, and dispersal into the Pacific Basin, Siberia, and the Americas. En: Vasilievsky RS, editor. Late Pleistocene and early Holocene cultural connection of Asia and America. Novosibrisk, USSR, Academy of Sciences, Siberian Branch pp: 72-76.
- **-Van Oven** M. y Kayser M. 2008. *Updated comprehensive phylogenetic tree of global human mitochondrial DNA*. Human Mutation 30:386-394.
- -Vigilant L, Pennington R, Harpending H, Kocher TD, Wilson AC. 1989. *Mitochondrial DNA sequences in single hairs from a southern African population*. Proceedings of the National Academy of Science, USA 86:9350-9354.
- **-Waguespack** NM. 2007. Why we're still arguing about the Pleistocene occupation of the Americas. Evolutionary Anthropology 16:63-74.
- **-Wallace** D, Garrison K, Knowler W. 1985. *Dramatic founder effects in Amerindian mitochondrial DNAs*. American Journal of Physical Anthropology 68:149-155.
- **-Wallace** D. y Torroni A. 1992. *American Indian prehistory as written in the mitochondrial DNA: a review.* Human Biology 64:403-416.
- **-Wallace** D, Brown MD, Lott MT. 1999. *Mitochondrial DNA variation in human evolution and disease*. Genetics 238:211-230.
- **-Waters** M. y Stafford Jr T. 2007. Redefining the age of Clovis: implications for the peopling of the Americas. Science 315:1122-1126.
- **-Willerslev** E. y Cooper A. 2005. *Ancient DNA*. Proceeding of the Royal Society of Biology 272:3-16.
- **-Williams** PW, King DNT, Zhao J, Collerson KD. 2004. Speleothem master chronologies: combined Holocene ¹⁸O and ¹³C records from the North Island of New Zealand and their paleoenvironmental interpretation. The Holocene 14 (2): 194–208.
- **Wilson** A, Taylor T, Ceruti M, Chavez J, Reinhard J, Grimes V, Meier-Augenstein W, Cartmell L, Stern B, Richards M, Worobey M, Barnes I, Gilbert T. 2007. *Stable isotopes and DNA evidence for ritual sequence in Inca child sacrifice*. Proceedings of the National Academy of Science 104:16456-16461.

- -Witas HK. y Zawicki P. 2004. *Mitochondrial DNA and human evolution: A review.*Przegląd Antropologiczny- Anthropological Review 67:97-110.
- -Yacobaccio HD. 2001. La domesticación de camélidos en el Noroeste Argentino. En: Berberián E. y Nielsen A. editores. Historia Argentina Prehispánica. Vol. 1, Editorial Brujas, Córdoba pp:7-40.
- **-Yang** D, Eng B, Waye J, Dudar J, Saunders S. 1998. *Technical note: improved DNA extraction from ancient bones using silica-based spin columns*. American Journal of Physical Anthropology 105:539-543.
- -Zubimendi MA, Ambrústulo P, Zilio L, Castro A. 2015. Continuity and discontinuity in the human use of the north coast of Santa Cruz (Patagonia Argentina) through its radiocarbon record. Quaternary International 356:127-146.

Anexo

A1. Descripción de protocolos de apartado 6.2.2 de extracción de ADN

A1.1Protocolo Kit QIAamp® DNA Investigator Kit (QIAGEN)

Este equipo comercial se basa en la extracción de ADN utilizando columnas de sílica:

- 1. Al polvo de cada muestra se le agregó 360 ul del buffer ATL y 20 ul de Proteinasa K (20 mg/ml, Promega). Se incubó toda la noche a 56°C.
- 2. Al segundo día se añadió 20 ul de la Proteinasa K y se dejó hasta el día siguiente en las mismas condiciones.
- Luego de centrifugar las muestras a 800 revoluciones por minuto (rpm), se agregó 300 ul de buffer AL. Se agitó durante 10 min. para homogeneizar.
- 4. Las muestras se expusieron a 70°C durante un baño térmico a 12 min., agitando cada intervalos de 3 min. para mejorar la lisis.
- 5. Se centrifugaron a 14000 rpm durante 1 min. y el sobrenadante obtenido se transfirió a un nuevo tubo eppendorf de 1,5 ml.
- 6. 150 ul de etanol absoluto fueron agregados al sobrenadante y se mezcló con vortex por 15 segundos (seg.).
- 7. Se preparó una columna MiniElute QIAamp con un tubo colector de 2 ml y se transfirió toda la solución del paso 5.
- 8. Se centrifugó a 8000 rpm durante 1 min.

- Se agregó 600 ul de buffer AW1 a la columna y se centrifugó bajo las mismas condiciones del paso 7. Se descartó el tubo colector y la columna fue pasada a un nuevo tubo.
- 10. Se agregaron 700 ul de buffer AW2 y la centrifugación fue ídem paso 8.
- 11. 700 ul de etanol absoluto fueron agregados y se procedió ídem paso 8.
- 12. La columna vacía se puso en un tubo nuevo y se centrifugó durante 3 min. a 14000 rpm. Para terminar de eliminar el excedente de etanol.
- 13. Como tubo colector esta vez utilizamos un tubo eppendorf de 1,5 ml, se colocó la columna y se la llevo a 56°C en calor seco por 5 min.
- 14. Se agregaron 40 ul de agua calidad biología molecular a 60°C para eluir la muestra y se lo dejó incubando a temperatura ambiente por 5 min. Luego se centrifugó 1 min. a 14000 rpm. Este paso se realizó dos veces utilizando el mismo tubo colector para aumentar el volumen final donde está disuelto el ADN.

A1.2 Protocolo Kit Geneclean (MP Biomedicals)

Como segundo método se utilizó este equipo comercial también basado en la purificación de ADN a partir de columnas de sílica:

- 1) Partimos de 100 mg de polvo, se le agregaron 500ul de EDTA (0,5M) + 25 ul de Proteinasa K (20mg/ml, Promega) y se incubó toda la noche a 55°C.
- 2) Se adicionaron 100 ul de la misma Proteinasa K y se la dejó hasta el día siguiente. Los pasos 1 y 2 se realizan para descalcificar el polvo de dentina y hueso a tratar, ayudando a la eliminación del calcio y la obtención del material genético retenido en la matriz mineral (degradando el material sólido queda expuesta mayor superficie de

- contacto para favorecer a que los reactivos que se utilizarán con posterioridad se unan al ADN).
- 3) Se centrifugó por 10 min. y se pasó el sobrenadante a un nuevo tubo.
- 4) Se agregaron 500 ul de solución DeHyb A y 150 ul de Glassmilk y se dejó incubando durante 2 hs a 55°C.
- 5) Se transfirió toda la muestra a una columna de filtrado y se centrifugó por 1 min. a 14000 rpm. Este paso se realizó las veces necesarias para filtrar toda la muestra, eliminando cada vez el eluato.
- Se agregó 250ul de Salton Wash 1 y centrifugó 1 min. A 14000 rpm, se descartó el eluato.
- 7) Ídem condiciones del paso 6 pero en este caso se agregó Salton Wash 2
- 8) Se agregaron 250ul de aDNA Alcohol Wash a la columna y se centrifugó1 min. a 14000 rpm. Descartamos el eluato.
- 9) Se centrifugó nuevamente (con el tubo de captura vacio) durante 2min. para secar el filtro de los restos de alcohol.
- 10) Se ubicó el filtro en un tubo de captura nuevo y se agregaron 50ul de DNA free Elution Solution y se resuspendió el pellet de la columna para disolverlo. Se dejó incubar por 15 min. a temperatura ambiente.
- 11) Por último se centrifugó 1min. a 14000 rpm y se guardó el eluato del tubo de captura.
- 12) Se realizó una segunda elución ídem paso 10 y 11 pero utilizando un volumen de 25 ul de DNA free Elution Solution.

A1.3 Protocolo de extracción con fenol – cloroformo- alcohol isoamílico

Por otro lado, se extrajo el ADN con modificaciones en el método de Green y Sambrook, 2012:

- Primero se realizó la descalcificación del polvo de hueso y diente obtenido como se describió en el paso 1 del protocolo del Geneclean: Se agregó al polvo de cada muestra 1ml de EDTA 0,5M (pH 8) a temperatura ambiente y se las dejó con agitación durante dos días.
- 2. Se extrajo el sobrenadante de EDTA y se preservó a -20°C. Al precipitado se lo digirió con 1 ml de solución conteniendo: Tris-HCl 10 mM, EDTA 5mM, Acetato de Sodio 4% y SDS 2%, y 25 ul de Proteinasa K (Promega). Las muestras se incubaron toda la noche a 55°C en agitador.
- 3. Se agregaron 500 ul de fenol y 500 ul de la solución 24:1 de Cloroformo Alcohol Isoamílico.
- 4. La muestra se centrifugó a 14000 rpm por 1º min.
- Se retiró el sobrenadante, se colocó en un nuevo tubo Eppendorf de 1,5 ml y se le agregaron 500 ul de Cloroformo – Alcohol Isoamílico en las mismas proporciones que el paso 3.
- 6. Ídem paso 4.
- 7. El sobrenadante fue retirado a otro tubo eppendorf de 1,5 ml.
- 8. La fase acuosa se purificó mediante columnas de sílica utilizando el equipo AccuPrep[®] PCR Purification Kit (BIONEER), siguiendo el protocolo especificado por el fabricante

A1.4 Protocolo de extracción a partir del EDTA obtenido en el primer paso del protocolo de extracción de fenol-clorofomo-isoamílico

- A cada tubo del EDTA de las muestras se le agregó 25 ul de Proteinasa K (Promega).
- 2) Se dejó agitando a 56° C durante 48 hs.

3) Sobre el tubo anterior se realizó la purificación de ADN utilizando el equipo AccuPrep[®] PCR Purification Kit (BIONEER), siguiendo el protocolo especificado por el fabricante.

A2. Soluciones utilizadas

- Geles de poliacrilamida: Está compuesto por una proporción 29:1 de acrilamida – bisacrilamida (BIO RAD), buffer TBE 10X, agua calidad biología molecular, Persulfato de Amonio (APS) al 10% y N,N,N,N'-tetrametilendiamina (TEMED, Life Technologies) al 1%.

A3. Tablas Anexas

Tabla anexa 1. Precolombinas estudiadas en Sudamérica para los 4 Hgs amerindios

Muestra	n	A%	В%	С%	D%	Indet%	Localización	Temporalidad (años)	Referencia
Boyacá	6	50,0	16,0	34,0	0,0	0,0	Depto. Boyacá, Colombia	1543- 213 AP	Monsalve et al. (1996)
Madrid 2-41 (Sabana de Bogotá)	11	0,0	100,0	0,0	0,0	0,0	Dist. Cap. Bogotá, Colombia	2000 AP	Silva <i>et al.</i> (2008)
La Purnia (Santander)	17	35,0	41,0	0,0	24,0	0,0	Depto. Santander, Colombia	1090 AP	Casas-Vargas <i>et al.</i> (2011)
Cuzco	1	0,0	0,0	0,0	100,0	0,0	Depto. Cuzco, Perú.	1033- 840 AP	Luciani <i>et al.</i> (2006)
Patallacta, Paucarcancha y Huata	57	5,0	40,0	14,0	2,0	39,0	Depto. Cuzco, Perú	400 - 500 AP	Shinoda et al. (2006)
Lambayeque	28	21,0	25,0	4,0	25,0	25,0	Depto, Lambayeque, Perú.	1200- 575 AP	Shimada <i>et al.</i> (2004)
Conchopata	16	29,0	50,0	14,0	7,0	0,0	Depto. Ayacucho, Perú	1400- 1200 AP	Kemp et al. (2009)
Huari	18	17,0	22,0	55,0	6,0	0,0	Depto. Ayacucho, Perú	900- 600 AP	Kemp et al. (2009)
Palpa	130	2,3	17,7	27,7	52,3	0,0	Depto. Ica, Perú	1200- 800 AP	Fehren-Schmitz <i>et al</i> . (2010)
Chen Chen	27	33,3	33,3	14,8	3,7	14,8	Depto. de Moquegua, Perú	7200- 1000 AP	Lewis, Buikstra y Stone (2007)
Valles altos del Río Palpa y Viscas	56	7,1	51,8	33,9	7,1	0,0	Depto. Ica, Perú	1200- 800 AP	Fehren-Schmitz <i>et al.</i> (2011)
Tiwanacu	13	8,0	15,0	23,0	23,0	31,0	Depto. La Paz, Bolivia	1000- 2300 AP	Rothhammer <i>et al.</i> (2003)
Tompullo 2	24	8,3	70,8	4,2	16,7	0,0	Depto. Arequipa, Perú	siglo XV- XVI	Baca et al. (2012)
Valle de Azapa, Camarones y Lluta, (Arcaico tardío)	14	50,0	36,0	7,0	7,0	0,0	Prov. Arica, Chile	3900 AP	Moraga <i>et al.</i> (2005)
Valle de Azapa, Camarones y Lluta, (Horizonte Medio)	19	32,0	42,0	26,0	0,0	0,0	Prov. Arica, Chile	1000 AP	Moraga <i>et al.</i> (2005)
Valle de Azapa, Camarones y Lluta, (Intermed. tardío)	15	20,0	53,0	20,0	7,0	0,0	Prov. Arica, Chile	500 AP	Moraga <i>et al.</i> (2005)
Quebrada de Acha	4	25,0	0,0	50,0	25,0	0,0	Prov. Arica, Chile	9000 - 7500 AP	Manríquez et al. (2011)
Camarones 14	4	25,0	50,0	25,0	0,0	0,0	Prov. Arica, Chile	7500 AP	Manríquez et al. (2011)
Tagua Tagua	4	0,0	0,0	100,0	0,0	0,0	Prov. Biobío, Chile	8000 AP	Manríquez et al. (2011)
Baño Nuevo	4	0,0	75,0	25,0	0,0	0,0	Prov. Coyhaique, Chile	9000 AP	Manríquez et al. (2011)
Región Amazónica	18	28,0	6,0	22,0	5,0	39,0	Estados de Pará, Amapá y Amazonas, Brasil	500 - 4000 AP	Ribeiro dos Santos <i>et al.</i> (1996)

Continuación tabla anexa 1

Muestras	n	A%	В%	С%	D%	Indet%	Localización	Temporalidad (años)	Referencia
Queixadinha (Vale do Jaquitinhonha)	14	0,0	14,3	85,7	0,0	0,0	Unid. Federal de Minas Gerais, Brasil	antes del siglo XIX	Gonçalves et al. (2010)
Los Amarillos	18	72,0	6,0	6,0	16,0	0,0	Prov. Jujuy, Argentina	1000 -500 AP	Mendisco et al. (2011)
Cortaderas Derecha	3	0,0	0,0	100,0	0,0	0,0	Prov. Salta, Argentina	1300 AP	Dejean et al. (2006)
Llullaillaco	3	0,0	0,0	33,0	67,0	0,0	Prov. Salta, Argentina	520- 430 AP	Wilson et al. (2007)
Pampa Grande	21	11,0	47,0	0,0	42,0	0,0	Prov. Salta, Argentina	1310 AP	Carnese et al. (2010)
Sierras centrales	35	23,0	26,0	34,0	17,0	0,0	Museos de la Prov. de Córdoba, Argentina	3360 - 345 AP	Nores y Demarchi (2011)
Sierras y Llanuras	48	16,7	22,9	39,6	20,8	0,0	Museos de la Prov. De Córdoba, Argentina	4525 - 345 AP	Nores et al. (2011)
Arroyo seco 2	8	0,0	37,0	50,0	13,0	0,0	Prov. Buenos Aires, Argentina	Desde 7800 AP	Figueiro y Sans (2007)
"Aonikenk"	15	0,0	0,0	26,7	73,3	0,0	Patagonia de Chile y Argentina	150 AP	Lalueza et al. (1997)
Canal de Beagle	2	0,0	0,0	50,0	50,0	0,0	Tierra del Fuego, Chile	150 AP	Dejean <i>et al.</i> (2008)
"Yámana, Kaweskar, Selknam"	45	0,0	0,0	42,2	55,6	2,2	Tierra del Fuego, Chile y Argentina	150 AP	Lalueza <i>et al.</i> (1997)

Tabla anexa 2a. Base de datos de secuencias comparativas

Grupo Muestral	Lugar de origen	caso	Haplo- grupo				Polimorfis	mos de HVR	RI			Bibliografía
Andc/n-M	Yungay, Perú	Yu001	Α	16111T	16223T	16260T	16271C	16278T	16290T	16319A	16362C	Lewis et al., 2007
Andc/n-M	Yungay, Perú	Yu002	В	16189C	16217C							Lewis et al., 2007
Andc/n-M	Yungay, Perú	Yu003	В	16189C	16217C	16362C						Lewis et al., 2007
Andc/n-M	Yungay, Perú	Yu004	В	16168T	16189C	16217C	16270T	16278T				Lewis et al., 2007
Andc/n-M	Yungay, Perú	Yu005	В	16168T	16189C	16217C	16261T					Lewis et al., 2007
Andc/n-M	Yungay, Perú	Yu007	В	16093C	16140C	16189C	16217C					Lewis et al., 2007
Andc/n-M	Yungay, Perú	Yu008	В	16168T	16189C	16217C	16357C					Lewis et al., 2007
Andc/n-M	Yungay, Perú	Yu009	В	16168T	16189C	16217C	16360T					Lewis et al., 2007
Andc/n-M	Yungay, Perú	Yu010	В	16168T	16189C	16217C						Lewis et al., 2007
Andc/n-M	Yungay, Perú	Yu011	В	16189C	16217C	16293G						Lewis et al., 2007
Andc/n-M	Tupe, Perú	TPE01	В	16168T	16189C	16217C						Lewis et al., 2007
Andc/n-M	Tupe, Perú	TPE02	В	16189C	16217C	16260T	16319A					Lewis et al., 2007
Andc/n-M	Tupe, Perú	TPE03	В	16311G	16185T	16189C	16217C	16288C				Lewis et al., 2007
Andc/n-M	Tupe, Perú	TPE04	В	16189C	16217C							Lewis et al., 2007
Andc/n-M	Tupe, Perú	TPE05	В	16189C	16217C	16274A						Lewis et al., 2007
Andc/n-M	Tupe, Perú	TPE06	В	16129A	16189C	16217C						Lewis et al., 2007
Andc/n-M	Tupe, Perú	TPE07	В	16189C	16217C	16256T	16304C					Lewis et al., 2007
Andc/n-M	Yungay, Perú	Yu012	С	16223T	16292T	16298C	16325C					Lewis et al., 2007
Andc/n-M	Yungay, Perú	Yu013	С	16223T	16298C	16311C	16325C	16327T				Lewis et al., 2007
Andc/n-M	Yungay, Perú	Yu014	С	16094C	16223T	16298C	16325C	16327T	16362C			Lewis et al., 2007
Andc/n-M	Yungay, Perú	Yu015	С	16189C	16223T	16298C	16325C	16327T				Lewis et al., 2007

		•			•				•		•	
Andc/n-M	Yungay, Perú	Yu016	С	16129A	16189C	16223T	16298C	16325C	16327T			Lewis et al., 2007
Andc/n-M	Tupe, Perú	TPE08	С	16093C	16192T	16223T	16298C	16325C	16327T			Lewis et al., 2007
Andc/n-M	Tupe, Perú	TPE09	С	16223T	16298C	16325C	16327T					Lewis et al., 2007
Andc/n-M	Yungay, Perú	Yu017	D	16223T	16325C	16362C						Lewis et al., 2007
Andc/n-M	Yungay, Perú	Yu018	D	16209C	16325C	16362C						Lewis et al., 2007
Andc/n-M	Yungay, Perú	Yu019	D	16129A	16223T	16325C	16362C					Lewis et al., 2007
Andc/n-M	Yungay, Perú	Yu020	D	16174T	16223T	16325C	16362C					Lewis et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Quechua545	А	16111T	16223T	16290T	16319A	16362C				Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Moseten036	А	16111T	16140C	16189C	16223T	16264T	16290T	16319A	16362C	Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Moseten039	А	16111T	16140C	16189C	16223T	16264T	16290T	16319A	16362C	Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Chimane151	А	16111T	16140C	16189C	16223T	16264T	16290T	16319A	16362C	Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Moseten031	А	16111T	16189C	16223T	16290T	16319A				Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Chimane230	А	16111T	16189C	16223T	16290T	16319A				Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Chimane149	А	16111T	16189C	16223T	16264T	16319A				Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Chimane152	А	16111T	16189C	16223T	16290T	16319A	16362C			Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Moseten048	А	16111T	16189C	16223T	16290T	16319A	16362C			Corella et al., 2007
Andc/s-M	Puno, Perú	QPNO01	Α	16111T	16222T	16223T	16290T	16294T	16319A			Lewis et al., 2007
Andc/s-M	Puno, Perú	QPNO02	Α	16111T	16217C	16223T	16290T	16319A				Lewis et al., 2007
Andc/s-M	Perú	QuechPeru1	Α	16051G	16111T	16134T	16223T	16248T	16290T	16319A	16362C	Sandoval et al., 2009
Andc/s-M	Perú	QuechPeru2	А	16111T	16129A	16157C	16223T	16290T	16311C	16319A	16362C	Sandoval et al., 2009

r-													
Andc/s-M	Perú	QuechPeru3	Α	16111T	16129A	16223T	16256T	16290T	16319A	16362C			Sandoval et al., 2009
Andc/s-M	Perú	QuechPeru4	Α	16111T	16214T	16223T	16290T	16319A	16362C				Sandoval et al., 2009
Andc/s-M	Perú	QuechPeru5	Α	16111T	16290T	16319A	16362C						Sandoval et al., 2009
Andc/s-M	La Paz, Bolivia	LPAZ048	Α	16111T	16223T	16290T	16319A	16362C					Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ059	Α	16223T	16290T	16319A	16362C						Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ063	Α	16111T	16217C	16223T	16290T	16319A	16343T	16362C			Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ069	Α	16111T	16217C	16223T	16290T	16319A	16343T	16362C			Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ071	Α	16092C	16111T	16223T	16290T	16319A	16362C				Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ076	А	16111T	16136C	16223T	16268A	16290T	16319A	16362C			Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ077	Α	16111T	16217C	16223T	16290T	16319A	16343T	16362C			Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ081	Α	16111T	16217C	16223T	16290T	16319A	16362C				Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ085	Α	16111T	16183C	16189C	16217C	16223T	16290T	16319A	16343T	16362C	Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ090	Α	16111T	16223T	16290T	16319A	16362C					Afonso Costa et al., 2010
Andc/s-M	Lago Titicaca, Bolivia	Aym2	A	16086C	16111T	16223T	16266T	16290T	16319A	16362C			Gayà-Vidal et al., 2011
Andc/s-M	Lago Titicaca, Bolivia	Aym2	А	16111T	16136C	16217C	16223T	16290T	16319A	16343T	16362C		Gayà-Vidal et al., 2011
Andc/s-M	Lago Titicaca, Bolivia	Aym2	А	16111T	16136C	16223T	16290T	16319A	16362C				Gayà-Vidal et al., 2011
Andc/s-M	Lago Titicaca, Bolivia	Aym2	А	16111T	16223T	16290T	16319A	16362C					Gayà-Vidal et al., 2011
Andc/s-M	Lago Titicaca, Bolivia	Aym2	А	16111T	16189C	16223T	16290T	16319A	16362C				Gayà-Vidal et al., 2011
Andc/s-M	norte de Potosi, Bolivia	Que2	А	16111T	16223T	16290T	16294T	16319A	16362C				Gayà-Vidal et al., 2011
Andc/s-M	norte de Potosi, Bolivia	Que2	А	16111T	16189C	16223T	16239A	16266T	16290T	16319A	16362C		Gayà-Vidal et al., 2011
Andc/s-M	norte de Potosi, Bolivia	Que2	А	16111T	16223T	16290T	16319A	16362C					Gayà-Vidal et al., 2011
Andc/s-M	Lago Titicaca, Bolivia	Aym2	А	16111T	16124C	16223T	16290T	16311C	16319A	16362C			Gayà-Vidal et al., 2011

	norte de Potosi.											
Andc/s-M	Bolivia	Que2	Α	16111T	16223T	16261T	16290T	16311C	16319A			Gayà-Vidal et al., 2011
	norte de Potosi,											
Andc/s-M	Bolivia	Que2	Α	16111T	16223T	16290T	16319A	16362C				Gayà-Vidal et al., 2011
	norte de Potosi,											
Andc/s-M	Bolivia	Que2	Α	16111T	16217C	16223T	16290T	16319A	16362C			Gayà-Vidal et al., 2011
	norte de Potosi,											
Andc/s-M	Bolivia	Que2	Α	16111T	16217C	16223T	16290T	16319A	16343T	16362C		Gayà-Vidal et al., 2011
	norte de Potosi,	_	_						_			
Andc/s-M	Bolivia	Que2	Α	16051G	16111T	16223T	16290T	16319A	16362C			Gayà-Vidal et al., 2011
	norte de Potosi,											
Andc/s-M	Bolivia	Que2	Α	16051G	16111T	16290T	16311C	16319A	16362C			Gayà-Vidal et al., 2011
	Depto. Santa											
Andc/s-M	Cruz, Bolivia	SantaCruz1	Α	16038R	16111	16189	16223	16290	16293	16319	16362	Taboada-Echalar et al., 2013
	Depto. Santa	0 10 0		40054	40444	40000	40000	40040	40000			
Andc/s-M	Cruz, Bolivia	SantaCruz2	Α	16051	16111	16223	16290	16319	16362			Taboada-Echalar et al., 2013
	Depto. Beni,	D :0		40444	40447	40000	40070	40000	40040	40000		
Andc/s-M	Bolivia	Beni3	Α	16111	16147	16223	16270	16290	16319	16362		Taboada-Echalar et al., 2013
	Depto. Beni,	Beni4	_	16111	16147	16223	16270	16290	16319	16362		T
Andc/s-M	Bolivia	Deni4	Α	10111	10147	10223	10270	16290	10319	10302		Taboada-Echalar et al., 2013
	Depto. Cochabamba,											
Andc/s-M	Bolivia	Cochabamba5	Α	16111	16217	16223	16290	16319	16343T	16362		Taboada-Echalar et al., 2013
ATIUC/S-IVI	Depto. Beni,	Cochabambas		10111	10217	10223	10230	10319	103431	10302		Tabbada-Echalai et al., 2013
Andc/s-M	Bolivia	Beni6	Α	16111	16223	16266	16290	16319	16362			Taboada-Echalar et al., 2013
Alido/3 W	Depto. Santa	Defilo		10111	10220	10200	10230	10010	10002			Tabbada Edilalai et al., 2013
Andc/s-M	Cruz, Bolivia	SantaCruz7	Α	16111	16223	16290	16311	16319	16362			Taboada-Echalar et al., 2013
									10002			,
Andc/s-M	La Paz, Bolivia	LaPaz8	Α	16111	16223	16290	16319	16362				Taboada-Echalar et al., 2013
	Depto. Beni,	D :0		40444	40000	40000	40040	40000				
Andc/s-M	Bolivia	Beni9	Α	16111	16223	16290	16319	16362				Taboada-Echalar et al., 2013
	Depto. Pando,	D 1.40		40444	40000	40000	40040	40000				
Andc/s-M	Bolivia	Pando10	А	16111	16223	16290	16319	16362				Taboada-Echalar et al., 2013
	Depto. Pando,	D = 1 = 4.4	_	40444	40000	40040	40000					
Andc/s-M	Bolivia	Pando11	Α	16111	16290	16319	16362					Taboada-Echalar et al., 2013
Andc/s-M	La Paz, Bolivia	LaPaz12	Α	16111	16189	16266	16290	16319	16362			Taboada-Echalar et al., 2013

		1									ı		
Andc/s-M	Depto. Beni, Bolivia	Beni13	А	16092	16111	16223	16265	16290	16311	16319	16362		Taboada-Echalar et al., 2013
Andc/s-M	Depto. Beni, Bolivia	Beni14	А	16111	16129	16134	16223	16274	16290	16319	16362		Taboada-Echalar et al., 2013
Andc/s-M	Depto. Cochabamba, Bolivia	Cochabamba15	A	16111	16223	16290	16294	16319	16335	16362			Taboada-Echalar et al., 2013
Andc/s-M	Depto. Santa Cruz, Bolivia	SantaCruz16	А	16111	16209	16223	16290	16301	16319				Taboada-Echalar et al., 2013
Andc/s-M	Depto. Santa Cruz, Bolivia	SantaCruz17	Α	16209	16223	16290	16319	16362					Taboada-Echalar et al., 2013
Andc/s-M	Depto. Beni, Bolivia	Beni18	А	16111	16136	16223	16290	16319	16362				Taboada-Echalar et al., 2013
Andc/s-M	Depto. Pando, Bolivia	Pando19	А	16111	16223	16290	16293	16319	16362				Taboada-Echalar et al., 2013
Andc/s-M	La Paz, Bolivia	LaPaz20	Α	16104	16172	16223	16290	16319	16362				Taboada-Echalar et al., 2013
Andc/s-M	Depto. Cochabamba, Bolivia	Cochabamba21	A	16223	16234G	16256	16290	16319	16362				Taboada-Echalar et al., 2013
Andc/s-M	Depto. Santa Cruz, Bolivia	SantaCruz22	Α	16223	16290	16319	16362						Taboada-Echalar et al., 2013
Andc/s-M	Depto. Cochabamba, Bolivia	Cochabamba23	A	16189	16223	16234G	16256	16290	16319	16362			Taboada-Echalar et al., 2013
Andc/s-M	Altiplano Boliviano	AymaraA01	А	16111	16223	16290	16319	16362					Batai et al., 2014
Andc/s-M	Altiplano Boliviano	AymaraA02	А	16086	16111	16223	16226	16290	16319	16362			Batai et al., 2014
Andc/s-M	Altiplano Boliviano	AymaraA03	А	16111	16183	16189	16223	16290	16319	16362			Batai et al., 2014

Andc/s-M	Altiplano Boliviano	AymaraA04	Α	16111	16188	16223	16290	16319	16357	16362			Batai et al., 2014
Andc/s-M	Altiplano Boliviano	AymaraA05	Α	16111	16217	16223	16290	16319	16343T	16362			Batai et al., 2014
Andc/s-M	Altiplano Boliviano	AymaraA06	А	16111	16129	16217	16223	16290	16319	16343T			Batai et al., 2014
Andc/s-M	Altiplano Peruano- Boliviano	Hp17	A	16223	16290	16311	16319	16362					Sandoval et al., 2013
Andc/s-M	Altiplano Peruano- Boliviano	Hp18	А	16182	16183	16189	16223	16290	16319	16362	16390		Sandoval et al., 2013
	Altiplano Peruano-								10319	10302	10390		,
Andc/s-M	Boliviano Altiplano Peruano-	Hp19	A	16111	16223	16290	16319	16362					Sandoval et al., 2013
Andc/s-M	Boliviano Altiplano Peruano-	Hp41	A	16111	16223	16290	16319	16362	16381				Sandoval et al., 2013
Andc/s-M	Boliviano Altiplano	Hp50	A	16223	16234G	16256	16290	16319	16362	16519			Sandoval et al., 2013
Andc/s-M	Peruano- Boliviano	Hp52	Α	16086	16111	16223	16266	16290	16319	16362			Sandoval et al., 2013
Andc/s-M	Altiplano Peruano- Boliviano	Hp55	A	16111	16290	16319	16350	16362					Sandoval et al., 2013
Andc/s-M	Altiplano Peruano- Boliviano	Hp69	А	16111	16223	16290	16296	16319	16362	16519			Sandoval et al., 2013

		<u> </u>		1	1	1	1	1		1			
Andc/s-M	Altiplano Peruano- Boliviano	Hp82	А	16111	16223	16290	16319	16362					Sandoval et al., 2013
Andc/s-M	Altiplano Peruano- Boliviano	Hp85	A	16111	16223	16290	16319	16362					Sandoval et al., 2013
Andc/s-M	Altiplano Peruano- Boliviano	Hp89	A	16111	16213	16223	16290	16319	16356	16362			Sandoval et al., 2013
Andc/s-M	Altiplano Peruano- Boliviano	Hp119	A	16111	16223	16290	16319	16362	16519				Sandoval et al., 2013
Andc/s-M	Altiplano Peruano- Boliviano	Hp133	A	16111	16223	16270	16290	16319	16357	16362			Sandoval et al., 2013
Andc/s-M	Altiplano Peruano- Boliviano	Hp134	А	16111	16213	16223	16290	16319	16362	16463			Sandoval et al., 2013
Andc/s-M	Altiplano Peruano- Boliviano	Hp141	A	16111	16223	16319	16362						Sandoval et al., 2013
Andc/s-M	Altiplano Peruano- Boliviano	Hp152	A	16111	16217	16223	16290	16319	16362				Sandoval et al., 2013
Andc/s-M	Altiplano Peruano- Boliviano	Hp154	A	16111	16217	16223	16290	16319	16343T	16362			Sandoval et al., 2013
Andc/s-M	Altiplano Peruano- Boliviano	Hp164	A	16111	16217	16223	16278	16290	16319	16343T	16362		Sandoval et al., 2013

	Altiplano			T								
Andc/s-M	Peruano- Boliviano	Hp169	Α	16111	16223	16249	16290	16319	16362			Sandoval et al., 2013
Andc/s-M	Altiplano Peruano- Boliviano	Hp172	А	16111	16223	16319	16362					Sandoval et al., 2013
Andc/s-M	Altiplano Peruano- Boliviano	Hp193	A	16111	16223	16290	16319	16362				Sandoval et al., 2013
Andc/s-M	Altiplano Peruano- Boliviano	Hp196	A	16111	16189	16223	16240	16290	16319	16362	 	 Sandoval et al., 2013
Andc/s-M	Cuenca del Lago Titicaca	Titi1.Q	А	16111T	16223T	16290T	16319A	16362C				Barbieri et al., 2011
Andc/s-M	Cuenca del Lago Titicaca	Titi2.Q	А	16111T	16129A	16223T	16290T	16319A	16362C	16381C		Barbieri et al., 2011
Andc/s-M	Cuenca del Lago Titicaca	Titi3.Q	А	16223T	16290T	16311C	16319A	16362C				Barbieri et al., 2011
Andc/s-M	Depto. de Beni,Bolivia	Aymara257	В	16189C	16217C							Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Aymara289	В	16189C	16217C							Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Moseten038	В	16189C	16217C							Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Chimane224	В	16189C	16217C							Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Aymara244	В	16189C	16217C							Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Aymara249	В	16189C	16217C							Corella et al., 2007

		_	1		1	1		· · · · · · · · · · · · · · · · · · ·	1	1	
Andc/s-M	Depto. de Beni,Bolivia	Aymara255	В	16189C	16217C						Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Chimane138	В	16189C	16217C						Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Chimane153	В	16189C	16217C						Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Aymara258	В	16189C	16217C						Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Quechua533	В	16189C	16217C						Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Moseten029	В	16161C	16173T	16189C	16217C	16324C			Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Moseten046	В	16161C	16173T	16189C	16217C	16324C			Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Chimane181	В	16161C	16173T	16189C	16217C	16324C			Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Moseten032	В	16171G	16189C	16217C					Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Moseten033	В	16093C	16189C	16217C	16242A				Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Chimane167	В	16189C	16217C	16233G	16356C				Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Aymara247	В	16189C	16217C	16266T					Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Aymara248	В	16189C	16217C	16274A					Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Quechua530	В	16075C	16188T	16189C	16217C				Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Aymara243	В	16188T	16189C	16217C					Corella et al., 2007

Andc/s-M	Depto. de Beni,Bolivia	Quechua532	В	16188T	16189C	16217C						Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Quechua534	В	16188T	16189C	16217C						Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Quechua536	В	16188T	16189C	16217C						Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Quechua537	В	16188T	16189C	16217C						Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Quechua542	В	16188T	16189C	16217C						Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Quechua544	В	16188T	16189C	16217C						Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Quechua546	В	16188T	16189C	16217C						Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Quechua549	В	16188T	16189C	16217C						Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Quechua539	В	16168T	16189C	16217C						Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Quechua540	В	16188T	16189C	16217C	16354T					Corella et al., 2007
Andc/s-M	Depto. de Beni,Bolivia	Quechua543	В	16189c	16214T	16217C						Corella et al., 2007
Andc/s-M	Puno, Perú	QPNO03	В	16168T	16189C	16217C						Lewis et al., 2007
Andc/s-M	Puno, Perú	QPNO04	В	16189C	16217C							Lewis et al., 2007
Andc/s-M	Puno, Perú	QPNO05	В	16169T	16217C	16220C	16319A					Lewis et al., 2007
Andc/s-M	Puno, Perú	QPNO06	В	16092C	16129A	16180C	16189C	16217C				Lewis et al., 2007
Andc/s-M	Puno, Perú	QPNO07	В	16093C	16176T	16189C	16217C	16274A	16319A			Lewis et al., 2007
Andc/s-M	Puno, Perú	QPNO08	В	16145A	16189C	16217C	16357C					Lewis et al., 2007
Andc/s-M	Puno, Perú	QPNO09	В	16217C								Lewis et al., 2007

										•		
Andc/s-M	Puno, Perú	QPNO10	В	16129A	16217C	16354T						Lewis et al., 2007
Andc/s-M	Puno, Perú	QPNO11	В	16189C	16217C	16362C						Lewis et al., 2007
Andc/s-M	Puno, Perú	QPNO12	В	16153A	16189C	16217C						Lewis et al., 2007
Andc/s-M	Puno, Perú	QPNO13	В	16066G	16168T	16217C						Lewis et al., 2007
Andc/s-M	Puno, Perú	QPNO14	В	16217C	16362C							Lewis et al., 2007
Andc/s-M	Puno, Perú	QPNO15	В	16086C	16189C	16217C	16220G					Lewis et al., 2007
Andc/s-M	Puno, Perú	APNO01	В	16217C								Lewis et al., 2007
Andc/s-M	Puno, Perú	APNO02	В	16111T	16136C	16189C	16217C	16264T				Lewis et al., 2007
Andc/s-M	Puno, Perú	APNO03	В	16217C	16266T							Lewis et al., 2007
Andc/s-M	Puno, Perú	APNO04	В	16217C	16258C							Lewis et al., 2007
Andc/s-M	Puno, Perú	APNO05	В	16189C	16217C	16261T						Lewis et al., 2007
Andc/s-M	Puno, Perú	APNO06	В	16177G	16217C	16309G						Lewis et al., 2007
Andc/s-M	Puno, Perú	APNO07	В	16189C	16217C							Lewis et al., 2007
Andc/s-M	Perú	QuechPeru6	В	16182C	16183C	16189C	16217C					Sandoval et al., 2009
Andc/s-M	Perú	QuechPeru7	В	16183C	16188T	16189C	16217C					Sandoval et al., 2009
Andc/s-M	Perú	QuechPeru8	В	16183C	16189C	16217C						Sandoval et al., 2009
Andc/s-M	Perú	QuechPeru9	В	16183C	16189C	16217C	16261T	16319A	16362C			Sandoval et al., 2009
Andc/s-M	Perú	QuechPeru10	В	16183C	16189C	16217C	16261T	16342C				Sandoval et al., 2009
Andc/s-M	Perú	QuechPeru11	В	16183C	16189C	16217C	16289G					Sandoval et al., 2009
Andc/s-M	La Paz, Bolivia	LPAZ001	В	16183C	16189C	16217C						Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ003	В	16183C	16189C	16217C						Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ004	В	161093C	16183C	16189C	16217C					Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ005	В	16183C	16188T	16189C	16217C					Afonso Costa et al., 2010

		1	1	1	I	1			1	1	1	Afanas Casta et al
Andc/s-M	La Paz, Bolivia	LAPZ006	В	16183C	16188T	16189C	16217C					Afonso Costa et al., 2010
A = = = /= BA	Lo Doz Polivio	LPAZ007	В	16183C	16188T	16189C	16217C					Afonso Costa et al.,
Andc/s-M	La Paz, Bolivia	LPAZ007	Ь	101030	101001	101090	102170					2010
Andc/s-M	La Paz, Bolivia	LPAZ008	В	16183C	16189C	16217C						Afonso Costa et al., 2010
Andolo M	La Paz, Bolivia	LPAZ0104	В	16183C	16189C	16217C						Afonso Costa et al., 2010
Andc/s-M	La Faz, Bullvia	LFAZU104	ь	101030	101090	102170						Afonso Costa et al.,
Andc/s-M	La Paz, Bolivia	LPAZ0114	В	16183C	16189C	16217C	16270T	16278T				2010
Andc/s-M	La Paz, Bolivia	LPAZ012	В	16183C	16188T	16189C	16217C	16362C				Afonso Costa et al., 2010
ATIGC/3-IVI	La i az, Dolivia	LIAZUIZ		101030	101001	101030	102170	103020				Afonso Costa et al.,
Andc/s-M	La Paz, Bolivia	LPAZ013	В	16182C	16183C	16189C	16217C					2010
Andc/s-M	La Paz, Bolivia	LPAZ014	В	16183C	16189C	16217C						Afonso Costa et al., 2010
7 (1100) 0 111	La i az, Bolivia	2.7.2011		101000	101000	102110						Afonso Costa et al.,
Andc/s-M	La Paz, Bolivia	LPAZ015	В	16168T	16183C	16189C	16217C	16270T	16278T			2010
Andc/s-M	La Paz, Bolivia	LPAZ017	В	16168T	16182C	16183C	16189C	16217C	16218T			Afonso Costa et al., 2010
71100/5 171	Ea i az, Bolivia	217(2017		101001	101020	101000	101000	102170	102101			Afonso Costa et al.,
Andc/s-M	La Paz, Bolivia	LPAZ018	В	16183C	16188T	16189C	16217C					2010
Andc/s-M	La Paz, Bolivia	LPAZ019	В	16182C	16183C	16189C	16217C	16362C				Afonso Costa et al., 2010
												Afonso Costa et al.,
Andc/s-M	La Paz, Bolivia	LPAZ020	В	16183C	16189C	16217C	16293C					2010
Andc/s-M	La Paz, Bolivia	LPAZ021	В	16183C	16189C	16217C						Afonso Costa et al., 2010
												Afonso Costa et al.,
Andc/s-M	La Paz, Bolivia	LPAZ022	В	16183C	16188T	16189C	16217C	16354T				2010
Andc/s-M	La Paz, Bolivia	LPAZ023	В	16183C	16189C	16217C						Afonso Costa et al., 2010
			_									Afonso Costa et al.,
Andc/s-M	La Paz, Bolivia	LPAZ024	В	16183C	16188T	16189C	16217C	16266T				2010
Andc/s-M	La Paz, Bolivia	LPAZ025	В	16183C	16188T	16189C	16217C	16354T	16362C			Afonso Costa et al., 2010
			_									Afonso Costa et al.,
Andc/s-M	La Paz, Bolivia	LPAZ026	В	16183C	16189C	16217C						2010
												Afonso Costa et al.,
Andc/s-M	La Paz, Bolivia	LPAZ027	В	16183C	16189C	16217C	16261T	16319A				2010

Andc/s-M	La Paz, Bolivia	LPAZ028	В	16129A	16183C	16189C	16217C					Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ029	В	16183C	16189C	16217C	16289G					Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ030	В	16183C	16189C	16217C	16356C	16362C				Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ031	В	16183C	16189C	16217C						Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ032	В	16183C	16189C	16217C	16359C					Afonso Costa et al., 2010
Andc/s-M	Depto. Cochabamba, Bolivia	Cochabamb a33	В	16168	16183	16189	16217					Taboada-Echalar et al., 2013
Andc/s-M	Depto. Cochabamba,B olivia	Cochabamb a36	В	16182	16183	16189	16213	16217	16362			Taboada-Echalar et al., 2013
Andc/s-M	Depto. Santa Cruz, Bolivia	SantaCruz3	В	16182	16183	16189	16217	16218	16233	16356		Taboada-Echalar et al., 2013
Andc/s-M	Depto. Pando, Bolivia	Pando39	В	16182	16183	16189	16217	16303				Taboada-Echalar et al., 2013
Andc/s-M	Depto. Santa Cruz, Bolivia	SantaCruz4	В	16182	16183	16189	16217	16316				Taboada-Echalar et al., 2013
Andc/s-M	Depto. Cochabamba, Bolivia	Cochabamb a43	В	16182	16183	16189	16217	16328				Taboada-Echalar et al., 2013
Andc/s-M	Depto. Cochabamba, Bolivia	Cochabamb a44	В	16182	16183	16189	16217					Taboada-Echalar et al., 2013
Andc/s-M	La Paz, Bolivia	LaPaz48	В	16183	16188	16189	16217	16266				Taboada-Echalar et al., 2013
Andc/s-M	La Paz, Bolivia	LaPaz49	В	16183	16188	16189	16217	16304				Taboada-Echalar et al., 2013
Andc/s-M	Depto. Cochabamba, Bolivia	Cochabamb a50	В	16183	16188	16189	16217	16354				Taboada-Echalar et al., 2013
Andc/s-M	La Paz, Bolivia	LaPaz52	В	16183	16188	16189	16217	16362				Taboada-Echalar et al., 2013
Andc/s-M	La Paz, Bolivia	LaPaz54	В	16183	16188	16189	16217					Taboada-Echalar et al., 2013

Andc/s-M	La Paz, Bolivia	LaPaz55	В	16183	16188	16189	16217				Taboada-Echalar et al., 2013
Andc/s-M	Depto. Cochabamba, Bolivia	Cochabamb a70	В	16183	16189	16203	16217	16218			Taboada-Echalar et al., 2013
Andc/s-M	Depto. Cochabamba, Bolivia	Cochabamb a71	В	16183	16189	16217	16290				Taboada-Echalar et al., 2013
Andc/s-M	Depto. Cochabamba, Bolivia	Cochabamb a72	В	16183	16189	16217	16290				Taboada-Echalar et al., 2013
Andc/s-M	La Paz, Bolivia	LaPaz75	В	16183	16189	16217					Taboada-Echalar et al., 2013
Andc/s-M	Depto. Beni, Bolivia	Beni82	В	16051	16183	16189	16217	16360			Taboada-Echalar et al., 2013
Andc/s-M	La Paz, Bolivia	LaPaz83	В	16183	16189	16217	16360				Taboada-Echalar et al., 2013
Andc/s-M	Depto. Beni, Bolivia	Beni84	В	16182	16183	16189	16317				Taboada-Echalar et al., 2013
Andc/s-M	La Paz, Bolivia	LaPaz85	В	16183	16189	16217	16218				Taboada-Echalar et al., 2013
Andc/s-M	Depto. Santa Cruz, Bolivia	SantaCruz8	В	16086	16092	16182	16183	16189	16217		Taboada-Echalar et al., 2013
Andc/s-M	La Paz, Bolivia	LaPaz88	В	16086	16182	16183	16189	16217			Taboada-Echalar et al., 2013
Andc/s-M	Depto. Cochabamba, Bolivia	Cochabamb a89	В	16086	16183	16189	16217	16218			Taboada-Echalar et al., 2013
Andc/s-M	La Paz, Bolivia	LaPaz90	В	16086	16183	16189	16217	16220	16287		Taboada-Echalar et al., 2013
Andc/s-M	Altiplano Boliviano	AymaraB01	В	16183	16189	16217					Batai et al., 2014
Andc/s-M	Altiplano Boliviano	AymaraB02	В	16182	16183	16189	16217				Batai et al., 2014
Andc/s-M	Altiplano Boliviano	AymaraB03	В	16183d	16217						Batai et al., 2014
Andc/s-M	Altiplano Boliviano	AymaraB04	В	16182	16183	16189					Batai et al., 2014

	Altiplano										
Andc/s-M	Boliviano	AymaraB05	В	16183	16188	16189	16217				Batai et al., 2014
	Altiplano										
Andc/s-M	Boliviano	AymaraB06	В	16058T	16111	16183	16189	16217			Batai et al., 2014
	Altiplano										
Andc/s-M	Boliviano	AymaraB07	В	16111	16183	16189	16217				Batai et al., 2014
	Altiplano										
Andc/s-M	Boliviano	AymaraB08	В	16092	16183	16189	16217				Batai et al., 2014
	Altiplano										
Andc/s-M	Boliviano	AymaraB09	В	16093	16183	16189	16217				Batai et al., 2014
	Altiplano										
Andc/s-M	Boliviano	AymaraB10	В	16093	16183	16188	16189	16217			Batai et al., 2014
	Altiplano										
Andc/s-M	Boliviano	AymaraB11	В	16093	16183	16184	16189	16217			Batai et al., 2014
	Altiplano		_								
Andc/s-M	Boliviano	AymaraB12	В	16129	16182	16183	16189	16217			Batai et al., 2014
	Altiplano		_								
Andc/s-M	Boliviano	AymaraB13	В	16168	16183	16189	16192	16217			Batai et al., 2014
	Altiplano		_	40470	40400	40400	40047				
Andc/s-M	Boliviano	AymaraB14	В	16172	16183	16189	16217				Batai et al., 2014
	Altiplano	. 545	_	40470	40400	40047	40050	40000			
Andc/s-M	Boliviano	AymaraB15	В	16172	16189	16217	16256	16288			Batai et al., 2014
	Altiplano	A D40	_	40400	40400	40400	40047	40005			
Andc/s-M	Boliviano	AymaraB16	В	16182	16183	16189	16217	16295			Batai et al., 2014
A	Altiplano Boliviano	Aumoro D17	В	16102	16189	16217	16061	16210			Data: at al. 2014
Andc/s-M		AymaraB17	D	16183	10109	10217	16261	16319			Batai et al., 2014
Ando/o M	Altiplano Boliviano	AymaraB18	В	16183	16189	16217	16362				Potoi et al. 2014
Andc/s-M	Altiplano	Ayınarabıo	Ь	10103	10109	10217	10302				Batai et al., 2014
	Peruano-										
Andc/s-M	Boliviano	Hp1	В	16170	16183	16188	16189	16217			Sandoval et al., 2013
7 (1 IGG/ 5-1VI	Altiplano	11171		10170	10100	10100	10109	10217			Gariadvai et al., 2013
	Peruano-										
Andc/s-M	Boliviano	Hp2	В	16183	16188	16189	16217				Sandoval et al., 2013
ATIUU/5-IVI		ΠΡΖ	<u> </u>	10103	10100	10103	10217				Sanuovai et al., 2013
	Altiplano										
	Peruano-	11-0	-	40470	40400	40400	40400	40047			
Andc/s-M	Boliviano	Hp3	В	16170	16183	16188	16189	16217			Sandoval et al., 2013

	Altiplano												
	Peruano-		_	40470	40400	40400	10100	40047	10101				
Andc/s-M	Boliviano	Hp4	В	16170	16183	16188	16189	16217	16464		1		Sandoval et al., 2013
	Altiplano												
A = = 1 = / = B.4	Peruano-	l la C		40400	40400	40400	16217						0
Andc/s-M	Boliviano	Hp5	В	16183	16188	16189	16217						Sandoval et al., 2013
	Altiplano												
Andc/s-M	Peruano- Boliviano	Hp6	В	16183	16188	16189	16217						Condoval at al. 2012
Andc/s-ivi	Altiplano	про	Ь	10103	10100	10109	10217				+		Sandoval et al., 2013
	Peruano-												
Andc/s-M	Boliviano	Hp7	В	16183	16188	16189	16217						Sandoval et al., 2013
Alluc/5-IVI	Altiplano	Tipi		10103	10100	10103	10217						Sandovai et al., 2013
	Peruano-												
Andc/s-M	Boliviano	Hp8	В	16183	16188	16189	16217	16362					Sandoval et al., 2013
711100/3 171	Altiplano	11,50		10100	10100	10100	10217	10002			1		Gariaovai et al., 2010
	Peruano-												
Andc/s-M	Boliviano	Hp9	В	16114	16183	16189	16217	16294	16359				Sandoval et al., 2013
	Altiplano			_									, , , , , , , , , , , , , , , , , , , ,
	Peruano-												
Andc/s-M	Boliviano	Hp10	В	16183	16189	16217	16294	16359					Sandoval et al., 2013
	Altiplano												
	Peruano-												
Andc/s-M	Boliviano	Hp11	В	16172	16183	16189	16217						Sandoval et al., 2013
	Altiplano												
	Peruano-					16193.1							
Andc/s-M	Boliviano	Hp12	В	16183	16189	С	16217						Sandoval et al., 2013
	Altiplano												
	Peruano-		_	40400	40400	40400	10017						
Andc/s-M	Boliviano	Hp13	В	16182	16183	16189	16217						Sandoval et al., 2013
	A 14: 1												
	Altiplano												
Andolo M	Peruano- Boliviano	Hp14	В	16189	16217								Condeval et al. 2012
Andc/s-M	Altiplano	Прт4	P	10109	10217								Sandoval et al., 2013
	Peruano-												
Andc/s-M	Boliviano	Hp15	В	16182	16183	16189	16217	16242	16324				Sandoval et al., 2013
VIIOC/2-IAI	Doliviano	Lihia	_ D	10102	10103	10103	10211	10242	10024			l	Januovai et al., 2013

	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp20	В	16126	16183	16188	16189	16190	16217			Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp21	В	16183	16188	16189	16217	16266				Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp22	В	16183	16188	16189	16217					Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp24	В	16182	16183	16189	16217	16258	16357			Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp25	В	16183	16189	16217						Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp26	В	16092	16182	16183	16189	16217				Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp27	В	16093	16168	16183	16189	16217				Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp28	В	16183	16188	16189	16217	16266				Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp29	В	16183	16188	16189	16217					Sandoval et al., 2013
	Altiplano											
	Peruano-				16183de							
Andc/s-M	Boliviano	Hp30	В	16066	l	16186	16189	16217				Sandoval et al., 2013
	Altiplano											
	Peruano-		_									
Andc/s-M	Boliviano	Hp31	В	16183	16189	16217						Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp32	В	16183	16188	16189	16217	16299	16319	16354		Sandoval et al., 2013

	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp33	В	16183	16189	16217						Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp34	В	16183	16188	16189	16217	16354				Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp37	В	16129	16178	16182	16183	16189	16217			Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp38	В	16173	16183	16188	16189	16217				Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp39	В	16183	16189	16217	16258	16289	16357			Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp40	В	16183	16189	16217						Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp42	В	16086	16183	16189	16217					Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp43	В	16182	16183	16189	16217					Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp44	В	16092	16182	16183	16189	16217	16291			Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp46	В	16176	16183	16189	16217	16319				Sandoval et al., 2013
	Altiplano											
	Peruano-	1										
Andc/s-M	Boliviano	Hp47	В	16183	16188	16189	16217					Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp48	В	16093	16168	16183	16189	16193.1C	16217	16270		Sandoval et al., 2013

	Altiplano											
	Peruano-			40400	40400	40400	10017					
Andc/s-M	Boliviano	Hp49	В	16183	16188	16189	16217					Sandoval et al., 2013
	Altiplano											
	Peruano-	50		40400	40400	40047	40050	40057				
Andc/s-M	Boliviano	Hp53	В	16183	16189	16217	16258	16357		-		Sandoval et al., 2013
	Altiplano											
	Peruano-			40400	40400	40400	10017					
Andc/s-M	Boliviano	Hp54	В	16183	16188	16189	16217					Sandoval et al., 2013
	Altiplano											
	Peruano-	50		16182de	16183de	40400	101010	40405	10017	40000		
Andc/s-M	Boliviano	Hp59	В	I	I	16189	16194C	16195	16217	16362		Sandoval et al., 2013
	Altiplano					404004						
	Peruano-			40400	40400	16193.1	10017	40000				
Andc/s-M	Boliviano	Hp60	В	16183	16189	С	16217	16289				Sandoval et al., 2013
	Altiplano					10100 1						
	Peruano-	04		40400	40400	16193.1	10017	40040				
Andc/s-M	Boliviano	Hp61	В	16183	16189	С	16217	16218		-		Sandoval et al., 2013
	Altiplano					10100 1						
	Peruano-			40400	40400	16193.1	10017	40050				
Andc/s-M	Boliviano	Hp63	В	16183	16189	С	16217	16352		-		Sandoval et al., 2013
	Altiplano											
	Peruano-	04		40400	40400	40400	10017	40000				
Andc/s-M	Boliviano	Hp64	В	16183	16188	16189	16217	16293		-		Sandoval et al., 2013
	Altiplano					404004						
	Peruano-	05		40400	40400	16193.1	10017	40000				
Andc/s-M	Boliviano	Hp65	В	16183	16189	С	16217	16293				Sandoval et al., 2013
	Altiplano											
	Peruano-			16183de								
Andc/s-M	Boliviano	Hp66	В	I	16189	16194C	16195	16217				Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp67	В	16183	16188	16189	16217	16354				Sandoval et al., 2013
7.1100/0 101	Altiplano	11,507		10100	10100	10100	10211	1000 /			1	Candoval of all, 2010
	Peruano-											
Andc/s-M	Boliviano	Hp68	В	16183C	16189	16217	16258	16357	16390			Sandoval et al., 2013

	Altiplano											
Andolo M	Peruano- Boliviano	Hp70	В	16183	16188	16189	16217	16319				Condoval at al. 2012
Andc/s-M	Altiplano	прто	Ь	10103	10100	10109	10217	10319			+	Sandoval et al., 2013
	Peruano-											
Andc/s-M	Boliviano	Hp71	В	16136	16183T	16189	16217					Sandoval et al., 2013
711100/3 101	Altiplano	111971		10100	101001	10100	10217					Canadvar ot al., 2010
	Peruano-											
Andc/s-M	Boliviano	Hp73	В	16140	16183	16189	16193.1C	16217				Sandoval et al., 2013
	Altiplano	'										,
	Peruano-											
Andc/s-M	Boliviano	Hp74	В	16168	16183	16189	16193.1C	16217				Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp75	В	16176	16183	16189	16193.1C	16217	16319	16357		Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp76	В	16182	16183	16189	16217	16249				Sandoval et al., 2013
	Altiplano											
	Peruano-			40400	40400	40047	40000					0 1 1 1 2 2 2 2
Andc/s-M	Boliviano	Hp77	В	16183	16189	16217	16292					Sandoval et al., 2013
	Altiplano Peruano-											
Andc/s-M	Boliviano	Hp78	В	16183	16188	16189	16217	16311				Sandoval et al., 2013
ATIUC/S-IVI	Altiplano	Tipro	Ь	10103	10100	10109	10217	10311			1	Sandoval et al., 2013
	Peruano-											
Andc/s-M	Boliviano	Hp79	В	16051	16129	16183	16189	16193.1C	16217			Sandoval et al., 2013
7 1110070 111	Altiplano	1.07.0		10001	10120	10100	10100	10100.10	10211			Canadvar ot all, 2010
	Peruano-											
Andc/s-M	Boliviano	Hp80	В	16182C	16183C	16189	16217	16303				Sandoval et al., 2013
	Altiplano	'			_							, , , , , , , , , , , , , , , , , , , ,
	Peruano-											
Andc/s-M	Boliviano	Hp81	В	16051	16129	16168	16183C	16189	16217			Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp84	В	16093	16183C	16189	16217	16362				Sandoval et al., 2013

	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp86	В	16182C	16183C	16189	16217				Sandov	al et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp87	В	16183C	16189	16217					Sandov	al et al., 2013
	Altiplano											
	Peruano-				16188.1							
Andc/s-M	Boliviano	Hp88	В	16183C	С	16217	16435				Sandov	al et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp91	В	16183C	16188	16189	16217				Sandov	al et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp92	В	16183C	16188	16189	16217	16256	16354	16362	Sandov	al et al., 2013
	Altiplano											
	Peruano-			_								
Andc/s-M	Boliviano	Hp93	В	16183C	16188	16189	16217				Sandov	al et al., 2013
	Altiplano											
	Peruano-			101000	40400	40400	40047	40004				
Andc/s-M	Boliviano	Hp94	В	16183C	16188	16189	16217	16381			Sandov	al et al., 2013
	Altiplano											
	Peruano-	11-05		404000	40400	40400	40047	40054	40000			
Andc/s-M	Boliviano	Hp95	В	16183C	16188	16189	16217	16354	16362		Sandov	al et al., 2013
	Altiplano											
Ando/o M	Peruano- Boliviano	Hp96	В	16183C	16188	16189	16217	16295			Canda	roletal 2012
Andc/s-M		прэб	Ь	161630	10100	10109	10217	16295			Sandov	al et al., 2013
	Altiplano Peruano-											
Andc/s-M	Boliviano	Hp97	В	16183C	16188	16189	16217				Canda	roletal 2012
ATIUC/S-IVI		Tipar	В	101030	10100	10109	10217				Sandov	al et al., 2013
	Altiplano											
Andc/s-M	Peruano- Boliviano	Hp100	В	16168	16182C	16183C	16189	16217	16301A	16390	Sanda	ral at al. 2012
ATIUC/S-IVI	Altiplano	пртоо	Ь	10100	101020	101030	10109	10217	10301A	10390	Sandov	al et al., 2013
	Peruano-											
Andc/s-M	Boliviano	Hp101	В	16183C	16188	16189	16217	16381			Sando	al et al., 2013
ATTUC/ 3-IVI	Dollviano	TIPIOI		101030	10100	10109	10217	10001	1		Januov	ai Cl ai., 2013

	Altiplano											
	Peruano-			404000	404000	40400	40047	40044				
Andc/s-M	Boliviano	Hp102	В	16182C	16183C	16189	16217	16241				Sandoval et al., 2013
	Altiplano											
A1 - /- N4	Peruano-	11-400		404000	10100	40040	40047	40004	40040			0
Andc/s-M	Boliviano	Hp103	В	16183C	16189	16212	16217	16261	16319			Sandoval et al., 2013
	Altiplano											
A N 4	Peruano- Boliviano	Hp104	В	161000	161020	16189	16217					Condeveletel 2042
Andc/s-M		прт04	Ь	16182C	16183C	10109	10217					Sandoval et al., 2013
	Altiplano											
A1 - /- NA	Peruano-	Un 105	D	161000	16190	16223	16202	16225	16262			0
Andc/s-M	Boliviano	Hp105	В	16183C	16189	10223	16292	16325	16362			Sandoval et al., 2013
	Altiplano Peruano-											
Andc/s-M	Boliviano	Hp106	В	16111	16217	16223	16290	16319	16362			Sandoval et al., 2013
ATIUC/S-IVI	Altiplano	TIPTOO	Ь	10111	10217	10223	10290	10319	10302			Sandoval et al., 2013
	Peruano-											
Andc/s-M	Boliviano	Hp109	В	16182C	16183C	16189	16217	16390				Sandoval et al., 2013
711100/0111	Altiplano	110100		101020	101000	10100	10217	10000				Candovar of al., 2010
	Peruano-											
Andc/s-M	Boliviano	Hp111	В	16051	16092	16183C	16189	16217	16241			Sandoval et al., 2013
	Altiplano					10100						
	Peruano-											
Andc/s-M	Boliviano	Hp112	В	16183C	16189	16217	16266					Sandoval et al., 2013
	Altiplano	•										·
	Peruano-											
Andc/s-M	Boliviano	Hp113	В	16182C	16183C	16189	16192	16217	16294			Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp115	В	16183C	16189	16217	16233	16290				Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp116	В	16172	16182C	16183C	16189	16217	16266			Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp120	В	16183C	16189	16217						Sandoval et al., 2013

	Altiplano											
Andc/s-M	Peruano- Boliviano	Hp123	В	16117	16129	16183C	16189	16217				Sandoval et al., 2013
Alido/3 W	Altiplano	110120		10117	10123	101000	10103	10217				Garidovai et al., 2015
	Peruano-											
Andc/s-M	Boliviano	Hp125	В	16183C	16189	16217	16290					Sandoval et al., 2013
	Altiplano											
	Peruano-		_									
Andc/s-M	Boliviano	Hp126	В	16145	16183C	16189	16217	16357				Sandoval et al., 2013
	Altiplano											
Andc/s-M	Peruano- Boliviano	Hp127	В	16183T	16189	16217						Sandoval et al., 2013
Aliuc/3-IVI	Altiplano	TIPIZI		101001	10103	10217						Sandoval et al., 2013
	Peruano-											
Andc/s-M	Boliviano	Hp129	В	16051	16183C	16189	16193.1C	16217	16360			Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp132	В	16183C	16188	16189	16217	16354				Sandoval et al., 2013
	Altiplano											
Ando/o M	Peruano- Boliviano	Hp135	В	16183C	16188	16189	16217					Sandayal et al. 2012
Andc/s-M	Altiplano	Пртоо	В	101030	10100	10109	10217					Sandoval et al., 2013
	Peruano-											
Andc/s-M	Boliviano	Hp136	В	16182C	16183C	16189	16217	16235	16242	16291		Sandoval et al., 2013
	Altiplano											
	Peruano-					16193.1						
Andc/s-M	Boliviano	Hp137	В	16183C	16189	С	16217	16357				Sandoval et al., 2013
	Altiplano					404004						
Andc/s-M	Peruano- Boliviano	Hp139	В	16183C	16189	16193.1 C	16217	16422				Condeval et al. 2012
Anac/s-IVI	Boliviario	Tipios	Ь	101030	10109	C	10217	10422				Sandoval et al., 2013
	Altiplano											
	Peruano-					16193.1						
Andc/s-M	Boliviano	Hp142	В	16183C	16189	С	16217	16325				Sandoval et al., 2013
	Altiplano					16102.4						
Andc/s-M	Peruano- Boliviano	Hp143	В	16183C	16189	16193.1 C	16217					Sandoval et al., 2013
MIUC/5-IVI	DUIMANU	[11þ1 4 3		101030	10109	U	10211		1			Sandovai et al., 2013

	Altiplano											
A1 - /- B.4	Peruano-	11=4.44		40400	404000	40400	10017	40044				0
Andc/s-M	Boliviano	Hp144	В	16129	16183C	16189	16217	16344			1	Sandoval et al., 2013
	Altiplano Peruano-											
Andc/s-M	Boliviano	Hp146	В	16182C	16183C	16189	16217	16274				Sandoval et al., 2013
Alluc/5-IVI	Altiplano	110140		101020	101030	10109	10217	10274				Sandoval et al., 2013
	Peruano-											
Andc/s-M	Boliviano	Hp147	В	16183C	16188	16189	16217					Sandoval et al., 2013
7 11 10 07 0 111	Altiplano					.0.00						
	Peruano-											
Andc/s-M	Boliviano	Hp148	В	16183C	16189	16193.C	16217	16289				Sandoval et al., 2013
	Altiplano	•										
	Peruano-											
Andc/s-M	Boliviano	Hp149	В	16168	16183C	16189	16217					Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp151	В	16183C	16189	16217	16304	16352	16360	16390		Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp153	В	16168	16183d	16189	16217	16270	16278	16428		Sandoval et al., 2013
	Altiplano											
	Peruano-	11.450		40000	40400	404000	404000	40400	10017			
Andc/s-M	Boliviano	Hp156	В	16066	16168	16182C	16183C	16189	16217		1	Sandoval et al., 2013
	Altiplano											
Andc/s-M	Peruano- Boliviano	Hp158	В	16182C	16183C	16189	16217	16258				Sandoval et al., 2013
Andc/s-ivi	Altiplano	пртоо	В	101020	101030	10109	10217	10230			+	Sandoval et al., 2013
	Peruano-											
Andc/s-M	Boliviano	Hp159	В	16129	16178	16182C	16183C	16189	16217			Sandoval et al., 2013
Andc/3 W	Bonviario	110100		10120	10170	101020	101000	10100	10217			Candoval et al., 2015
	Altiplano											
	Peruano-					_		_				
Andc/s-M	Boliviano	Hp160	В	16140	16172	16183C	16189	16193.1C	16217	16437		Sandoval et al., 2013
	Altiplano											
1	Peruano-			40446	404000	40406	40047					
Andc/s-M	Boliviano	Hp165	В	16140	16183C	16189	16217					Sandoval et al., 2013

	Altiplano Peruano-												
Andc/s-M	Boliviano	Hp167	В	16183C	16185	16189	16217	16320					Sandoval et al., 2013
7111075 111	Altiplano	110101		101000	10100	10100	10217	10020					Cariacvar ct al., 2010
	Peruano-												
Andc/s-M	Boliviano	Hp171	В	16176	16183C	16189	16217	16319	16422				Sandoval et al., 2013
	Altiplano												
	Peruano-												
Andc/s-M	Boliviano	Hp174	В	16183C	16188	16189	16217	16239	16311				Sandoval et al., 2013
	Altiplano												
	Peruano-	11-470		404000	40400	40400	40047						
Andc/s-M	Boliviano	Hp176	В	16183C	16188	16189	16217						Sandoval et al., 2013
	Altiplano Peruano-												
Andc/s-M	Boliviano	Hp177	В	16086	16182C	16183C	16189	16217	16296	16454	16455		Sandoval et al., 2013
Alido/3-W	Altiplano	Пртт		10000	101020	101030	10103	10217	10230	10404	10-100		Sandovar et al., 2013
	Peruano-												
Andc/s-M	Boliviano	Hp178	В	16051	16183C	16188	16189	16217	16266				Sandoval et al., 2013
	Altiplano	'											,
	Peruano-												
Andc/s-M	Boliviano	Hp179	В	16154	16178	16182C	16183C	16189	16217				Sandoval et al., 2013
	Altiplano												
	Peruano-												
Andc/s-M	Boliviano	Hp180	В	16182C	16183C	16189	16217	16242					Sandoval et al., 2013
	Altiplano												
Andc/s-M	Peruano- Boliviano	Hp181	В	16183C	16188	16189	16217						Sandoval et al., 2013
Aliuc/5-IVI	Altiplano	Пртот	ь	101030	10100	10109	10217						Sandovar et al., 2013
	Peruano-				16183de								
Andc/s-M	Boliviano	Hp182	В	16066		16186	16189	16217					Sandoval et al., 2013
		'											,
	Altiplano												
Andc/s-M	Peruano- Boliviano	Hp183	В	16183C	16189	16217							Sandoval et al., 2013
ATIUC/S-IVI	Altiplano	пртоз	Ь	101030	10109	10217			1				Sandoval et al., 2013
	Peruano-												
Andc/s-M	Boliviano	Hp184	В	16146	16183d	16189	16217	16218					Sandoval et al., 2013

	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp185	В	16182C	16183C	16189	16217					Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp186	В	16092	16103	16167	16183C	16189	16217	16311		Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp187	В	16092	16167	16183C	16189	16217	16311			Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp189	В	16167	16183C	16189	16217	16311				Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp190	В	16086	16183C	16189	16217	16296	16362			Sandoval et al., 2013
	Altiplano											
	Peruano-				_							
Andc/s-M	Boliviano	Hp191	В	16086	16183C	16189	16217	16296	16362			Sandoval et al., 2013
	Altiplano											
	Peruano-											
Andc/s-M	Boliviano	Hp192	В	16183C	16189	16217	16258	16357				Sandoval et al., 2013
	Altiplano											
	Peruano-	11.407		40000	40440	404000	40400	40047	40407			
Andc/s-M	Boliviano	Hp197	В	16093	16140	16183C	16189	16217	16437			Sandoval et al., 2013
	Altiplano											
	Peruano-	11-400		404000	40400	40007	40047	40000				
Andc/s-M	Boliviano	Hp199	В	16183C	16189	16207	16217	16336				Sandoval et al., 2013
	Altiplano											
	Peruano-	11-004		404000	40400	10100	10017	40040	40054			
Andc/s-M	Boliviano	Hp201	В	16183C	16188	16189	16217	16319	16354			Sandoval et al., 2013
	Altiplano											
Al - /- NA	Peruano-	11,000		404000	40400	40400	10017					0
Andc/s-M	Boliviano	Hp202	В	16183C	16188	16189	16217					Sandoval et al., 2013
	Altiplano											
Andolo M	Peruano-	LL _D 202	В	161020	16100	16189	16217					Condeval et al. 2012
Andc/s-M	Boliviano	Hp203		16183C	16188	10109	10211					Sandoval et al., 2013

	Cuenca del											
Andc/s-M	Lago Titicaca	Titi4.Q	В	16183C	16189C	16217C						Barbieri et al., 2011
	Cuenca del											
Andc/s-M	Lago Titicaca	Titi5.Q	В	16183C	16188T	16189C	16217C					Barbieri et al., 2011
	Cuenca del											
Andc/s-M	Lago Titicaca	Titi6.Q	В	16183C	16188T	16189C	16217C	16362C				Barbieri et al., 2011
	Cuenca del											
Andc/s-M	Lago Titicaca	Titi7.Q	В	16182C	16183C	16189C	16217C	16362C				Barbieri et al., 2011
	Cuenca del		_									
Andc/s-M	Lago Titicaca	Titi8.Q	В	16183C	16189C	16217C	16242A					Barbieri et al., 2011
	Cuenca del											
Andc/s-M	Lago Titicaca	Titi9.Q	В	16183C	16189C	16217C	16289G					Barbieri et al., 2011
	Cuenca del	T:::40 O		400000	40470T	404000	404000	400470	400744	400404	400000	D 11 1 1 1 0044
Andc/s-M	Lago Titicaca	Titi10.Q	В	16093C	16176T	16183C	16189C	16217C	16274A	16319A	16362C	Barbieri et al., 2011
A = -1 = /= B.4	Cuenca del	T:4:44 O		404000	404000	400470	4.0000T					Dankiani at al. 0044
Andc/s-M	Lago Titicaca	Titi11.Q	В	16183C	16189C	16217C	16290T					Barbieri et al., 2011
A - /- A 4	Cuenca del Lago Titicaca	Titi12.Q	В	16182C	16183C	16189C	16217C	16240G				Dawhiani at al 0044
Andc/s-M	Cuenca del	TILLIZ.Q	Ь	10102C	101030	101090	102170	10240G				Barbieri et al., 2011
Andc/s-M	Lago Titicaca	Titi13.Q	В	161096T	16108G	16109C	16183C	16188T	16189C	16217C		Barbieri et al., 2011
Aliuc/s-ivi	Cuenca del	Till 13.Q		1010901	101000	101030	101030	101001	101090	102170		Daibleil et al., 2011
Andc/s-M	Lago Titicaca	Titi14.Q	В	16176T	16183C	16189C	16217C	16274A	16319A	16362C		Barbieri et al., 2011
Aliuc/3-IVI	Cuenca del	11014.00	+ -	101701	101000	101030	102170	1021471	1001071	100020		Daibleif et al., 2011
Andc/s-M	Lago Titicaca	Titi15.Q	В	16183C	16188T	16189C	16217C	16381C				Barbieri et al., 2011
7 11 140/0 111	Cuenca del	THE TOTAL		101000	101001	101000	102110	100010				Barbion of all, 2011
Andc/s-M	Lago Titicaca	Titi16.A	В	16183C	16189C	16194C	16217C					Barbieri et al., 2011
	Cuenca del											,
Andc/s-M	Lago Titicaca	Titi17.A	В	16140C	16183C	16189C	16217C					Barbieri et al., 2011
	Cuenca del											
Andc/s-M	Lago Titicaca	Titi18.A	В	16183C	16188T	16189C	16217C	16354T				Barbieri et al., 2011
	Cuenca del											
Andc/s-M	Lago Titicaca	Titi19.A	В	16183C	16188T	16189C	16217C	16299G	16379A	16354T		Barbieri et al., 2011
	Cuenca del							·				
Andc/s-M	Lago Titicaca	Titi20.A	В	16093C	16183C	16189C						Barbieri et al., 2011
	Cuenca del											
Andc/s-M	Lago Titicaca	Titi21.A	В	16170G	16183C	16188T	16189C	16217C				Barbieri et al., 2011

	Cuenca del											
Andc/s-M	Lago Titicaca	Titi22.A	В	16182C	16183C	16189C	16217C					Barbieri et al., 2011
Andc/s-M	Cuenca del Lago Titicaca	Titi23.A	В	16183C	16188T	16189C	16217C	16266T				Barbieri et al., 2011
Andc/s-M	Cuenca del Lago Titicaca	Titi24.A	В	15183C	16188T	16189C	16217C	16319A	16354T			Barbieri et al., 2011
Andc/s-M	Cuenca del Lago Titicaca	Titi25.A	В	16183C	16189C	16217C	16242A					Barbieri et al., 2011
Andc/s-M	Depto. de Beni,Bolivia	Moseten037	С	16051G	16223T	16298C	16325C	16327T				Corella et al., 2007
Andc/s-M	Puno, Perú	QPNO16	С	16126C	16189C	16223T	16294C	16298C	16325C	16327T	16344T	Lewis et al., 2007
Andc/s-M	Puno, Perú	QPNO17	С	16150T	16169T	16223T	16298C	16325C	16327T			Lewis et al., 2007
Andc/s-M	Puno, Perú	QPNO18	С	16223T	16256T	16298C	16325C	16327T				Lewis et al., 2007
Andc/s-M	Puno, Perú	QPNO19	С	16223T	16325C	16327T						Lewis et al., 2007
Andc/s-M	Puno, Perú	QPNO20	С	16129A	16189C	16223T	16294T	16298C	16325C	16327T		Lewis et al., 2007
Andc/s-M	Puno, Perú	QPNO21	С	16189C	16223T	16298C	16325C	16327T	16344T			Lewis et al., 2007
Andc/s-M	Puno, Perú	QPNO22	С	16051G	16189C	16223T	16298C	16325C	16327T	16344T		Lewis et al., 2007
Andc/s-M	Puno, Perú	APNO08	С	16051G	16086C	16170G	16223T	16298C	16325C	16327T		Lewis et al., 2007
Andc/s-M	Puno, Perú	APNO09	С	16223T	16298C	16325C	16327T					Lewis et al., 2007
Andc/s-M	Perú	QuechPeru 12	С	16223T	16266G	16298C	16325C	16327T				Sandoval et al., 2009
Andc/s-M	Perú	QuechPeru 13	С	16223T	16298C	16325C	16327T					Sandoval et al., 2009
Andc/s-M	La Paz, Bolivia	LPAZ037	С	16223T	16266T	16298C	16325C	16327T				Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ046	С	16192T	16223T	16298C	16325C	16327T				Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ047	С	16129A	16223T	16298C	16325C	16327T				Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ052	С	16223T	16298C	16325C	16327T					Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ054	С	16092C	16145A	16223T	16298C	16325C				Afonso Costa et al., 2010

Andc/s-M	La Paz, Bolivia	LPAZ060	С	16223T	16298C	16311C	16325C	16327T						Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ061	С	16223T	16298C	16325C	16327T							Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ062	С	16172C	16223T	162556T	16298C	16325C	16327T					Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ064	С	16223T	16298C	16325C	16327T	16345T						Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ065	С	16223T	16298C	16325C	16327T	16381C						Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ066	С	16037G	16223T	16298C	16325C	16327T						Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ068	С	16093C	16183C	16189C	16223T	16298C	16325C	16327T	16381C			Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ072	С	16140C	16223T	16298C	16311C	16325C	16327T					Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ073	С	16223T	16298C	16325C	16327T							Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ074	С	16223T	16298C	16325C	16327T							Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ075	С	16145A	16223T	16270T	16298C	16325C	16327T					Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ078	С	16111T	16183G	16223T	16298C	16325C	16327T	16368C				Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ080	С	16181G	16189C	16223T	16298C	16325C	16327T	16344T				Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ082	С	16051G	16213A	16223T	16247G	16298C	16325C	16327T				Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ084	С	16041G	16172C	16173T	16192T	16223T	16266T	16298C	16325C	16327T	16346 A	Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ086	С	16189C	16192T	16223T	16266T	16298C	16316G	16325C	16327T			Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ087	С	16189C	16192T	16223T	16266T	16298C	16316G	16325C	16327T			Afonso Costa et al., 2010
Andc/s-M	norte de Potosi, Bolivia	Que1	С	16183C	16189C	16223T	16298C	16325C	16327T	16344T				Gayà-Vidal et al., 2011
Andc/s-M	norte de Potosi, Bolivia	Que1	С	16051G	16298C	16325C	16327T							Gayà-Vidal et al., 2011
Andc/s-M	Lago Titicaca, Bolivia	Aym1	С	16051G	16223T	16298C	16325C	16327T						Gayà-Vidal et al., 2011

Andc/s-M	norte de Potosi, Bolivia	Que1	С	16051G	16223T	16298C	16325C	16327T						Gayà-Vidal et al., 2011
Andc/s-M	Lago Titicaca, Bolivia	Aym1	С	16223T	16298C	16299G	16325C	16327T						Gayà-Vidal et al., 2011
Andc/s-M	norte de Potosi, Bolivia	Que1	С	16223T	16298C	16325C	16327T							Gayà-Vidal et al., 2011
Andc/s-M	norte de Potosi, Bolivia	Que1	С	16172C	16223T	16256T	16298C	16325C	16327T					Gayà-Vidal et al., 2011
Andc/s-M	Lago Titicaca, Bolivia	Aym1	С	16102C	16223T	16256T	16298C	16325C	16327T	16456A	16468C	16469C		Gayà-Vidal et al., 2011
Andc/s-M	norte de Potosi, Bolivia	Que1	С	16145A	16192T	16223T	16233C	16298C	16325C	16327T	16348T			Gayà-Vidal et al., 2011
Andc/s-M	Lago Titicaca, Bolivia	Aym1	С	16223T	16298C	16325C	16327T	16384A						Gayà-Vidal et al., 2011
Andc/s-M	Lago Titicaca, Bolivia	Aym1	С	16223T	16298C	16325C	16327T							Gayà-Vidal et al., 2011
Andc/s-M	norte de Potosi, Bolivia	Que1	С	16223T	16298C	16325C	16327T							Gayà-Vidal et al., 2011
Andc/s-M	Depto. Cochabamba, Bolivia	Cochabamb a1	С	16037	16223	16298	16327	16384						Taboada-Echalar et al., 2013
Andc/s-M	La Paz, Bolivia	LaPaz2	С	16037	16223	16298	16325	16327						Taboada-Echalar et al., 2013
Andc/s-M	Depto. Santa Cruz, Bolivia	SantaCruz3	С	16064.1 T	16223	17298	16325	16327	16384					Taboada-Echalar et al., 2013
Andc/s-M	Depto. Cochabamba,B olivia	Cochabamb a4	С	16086	16129	16223	16286	16298	16325	16317				Taboada-Echalar et al., 2013
Andc/s-M	La Paz, Bolivia	LaPaz5	С	16092	16129	16223	16298	16325	16327	16400				Taboada-Echalar et al., 2013
Andc/s-M	Depto. Beni, Bolivia	Beni6	С	16093	16172	16173	16189	16192	16223	16298	16325	16327	16346	Taboada-Echalar et al., 2013
Andc/s-M	Depto. Beni, Bolivia	Beni7	С	16093	16223	16298	16325	16327						Taboada-Echalar et al., 2013
Andc/s-M	La Paz, Bolivia	LaPaz8	С	16093	16223	16298	16325	16327	16482					Taboada-Echalar et al., 2013

	1												
Andc/s-M	Depto. Beni, Bolivia	Beni9	С	16094	16223	16298	16325	16327					Taboada-Echalar et al., 2013
Andc/s-M	Depto. Cochabamba, Bolivia	Cochabamb a10	С	16111	16124	16223	16298	16325	16327				Taboada-Echalar et al., 2013
Andc/s-M	Depto. Santa Cruz, Bolivia	SantaCruz1	С	16129	16223	16298	16325	16327					Taboada-Echalar et al., 2013
Andc/s-M	Depto. Beni, Bolivia	Beni12	С	16140	16223	16298	16325	16327					Taboada-Echalar et al., 2013
Andc/s-M	Depto. Cochabamba, Bolivia	Cochabamb a13	С	16157	16209	16223	16298	16325	16327	16512.1 C	16515C	16516C	Taboada-Echalar et al., 2013
Andc/s-M	Depto. Santa Cruz, Bolivia	SantaCruz1 4	С	16172	16173	16192	16223	16298	16325	16327	16346	16518T	Taboada-Echalar et al., 2013
Andc/s-M	Depto. Beni, Bolivia	Beni15	С	16172	16173	16223	16298	16325	16327	16346			Taboada-Echalar et al., 2013
Andc/s-M	Depto. Santa Cruz, Bolivia	SantaCruz1 6	С	16172	16223	16256	16298	16325	16327				Taboada-Echalar et al., 2013
Andc/s-M	Depto. Pando, Bolivia	Pando17	С	16184	16215	16223	16298	16325	16327				Taboada-Echalar et al., 2013
Andc/s-M	Depto. Santa Cruz, Bolivia	SantaCruz1 8	С	16189	16220	16223	16298	16325	16327				Taboada-Echalar et al., 2013
Andc/s-M	Depto. Beni, Bolivia	Beni19	С	16192	16223	16298	16325	16327					Taboada-Echalar et al., 2013
Andc/s-M	Depto. Beni, Bolivia	Beni21	С	16192	16223	16298	16325	16327					Taboada-Echalar et al., 2013
Andc/s-M	Depto. Beni, Bolivia	Beni22	С	16223	16239G	16298	16325	16327					Taboada-Echalar et al., 2013
Andc/s-M	Depto. Beni, Bolivia	Beni24	С	16223	16291	16298	16325	16327					Taboada-Echalar et al., 2013
Andc/s-M	Depto. Cochabamba, Bolivia	Cochabamb a25	С	16223	16294	16298	16325	16327	16390				Taboada-Echalar et al., 2013
Andc/s-M	Depto. Beni, Bolivia	Beni26	С	16223	16298	16301	16325	16327					Taboada-Echalar et al., 2013
Andc/s-M	Depto. Beni, Bolivia	Beni28	С	16223	16298	16325	16327						Taboada-Echalar et al., 2013

Al- /- A4	Depto. Beni, Bolivia	Beni33	С	16223	16298	16325	16327						Taboada-Echalar et
Andc/s-M	Bolivia	Beni33		16223	16298	10325	16327						al., 2013 Taboada-Echalar et
Andc/s-M	La Paz, Bolivia	LaPaz34	С	16223	16298	16325	16327	16362					al., 2013
Andc/s-M	La Paz, Bolivia	LaPaz35	С	16223	16298	16325	16327	16381					Taboada-Echalar et al., 2013
Andc/s-M	Depto. Beni, Bolivia	Beni36	С	16223	16298	16325	16327						Taboada-Echalar et al., 2013
Andc/s-M	Depto. Beni, Bolivia	Beni40	С	16223	16298G	16325	16327						Taboada-Echalar et al., 2013
Andc/s-M	Depto. Beni, Bolivia	Beni41	С	16173	16192	16223	16298	16325	16327	16346	16362		Taboada-Echalar et al., 2013
Andc/s-M	Depto. Cochabamba, Bolivia	Cochabamb a43	С	16223	16298	16325	16327		10021				Taboada-Echalar et al., 2013
Andc/s-M	Depto. Beni, Bolivia	Beni44	С	16051	16092	16174	16223	16198	16316	16325	16327	16497	Taboada-Echalar et al., 2013
Andc/s-M	Depto. Cochabamba, Bolivia	Cochabamb a45	С	16051	16183	16189	16223	16298	16325	16327	16344		Taboada-Echalar et al., 2013
Andc/s-M	Depto. Beni, Bolivia	Beni46	С	16051	16189	16223	16298	16325	16327				Taboada-Echalar et al., 2013
Andc/s-M	Depto. Santa Cruz, Bolivia	SantaCruz4 8	С	16088.1 T	16223	16260	16261	16298	16311	16325	16327		Taboada-Echalar et al., 2013
Andc/s-M	Depto. Beni, Bolivia	Beni49	С	16223	16298	16311	16325	16327					Taboada-Echalar et al., 2013
Andc/s-M	Altiplano Boliviano	AymaraC01	С	16223	16298	16325	16327						Batai et al., 2014
Andc/s-M	Altiplano Boliviano	AymaraC02	С	16223	16298	16325							Batai et al., 2014
Andc/s-M	Altiplano Boliviano	AymaraC03	С	16140	16233	16298	16325	16327					Batai et al., 2014
Andc/s-M	Altiplano Boliviano	AymaraC04	С	16093	16183	16189	16223	16298	16311	16325	16327		Batai et al., 2014
Andc/s-M	Altiplano Boliviano	AymaraC05	С	16124	16183	16189	16223	16298	16325	16327			Batai et al., 2014

	Altiplano											
Andc/s-M	Boliviano	AymaraC06	С	16223	16263	16298	16325	16327				Batai et al., 2014
Andc/s-M	Altiplano Boliviano	AymaraC07	С	16223	16298	16325	16327	16345T				Batai et al., 2014
	Altiplano Peruano-		-					100101				
Andc/s-M	Boliviano	Hp56	С	16223	16298	16325	16327					Sandoval et al.,2013
	Altiplano Peruano-											
Andc/s-M	Boliviano	Hp58	С	16126	16223	16298	16325	16327				Sandoval et al.,2013
Andc/s-M	Altiplano Peruano- Boliviano	Hp62	С	16093	16223	16298	16325	16327	16482			Sandoval et al.,2013
	Altiplano Peruano- Boliviano	Hp72	С	16180	16223	16298	16325	16327				,
Andc/s-M	Altiplano Peruano-	Πρ/2		10100			10323	10327				Sandoval et al.,2013
Andc/s-M	Boliviano	Hp83	С	16129	16192	16223	16298	16325	16327			Sandoval et al.,2013
	Altiplano Peruano-		_									
Andc/s-M	Boliviano	Hp98	С	16147	16223	16257	16298	16325	16327			Sandoval et al.,2013
A = d= /= B4	Altiplano Peruano- Boliviano	Нр99	С	16223	16298	16325	16327					0
Andc/s-M		прээ		10223	10290	10323	16327					Sandoval et al.,2013
	Altiplano Peruano-	11.407	0	40400	40000	40000	40005	10007				
Andc/s-M	Boliviano	Hp107	С	16189	16223	16298	16325	16327				Sandoval et al.,2013
A = d= /= B4	Altiplano Peruano- Boliviano	Hp108	С	16183C	16189	16223	16266	16298	16325	16327		Condoval et al. 2012
Andc/s-M		HP108		16183C	16189	16223	16266	16298	16325	16327		Sandoval et al.,2013
	Altiplano Peruano-											
Andc/s-M	Boliviano	Hp110	С	16078	16223	16298	16325	16327				Sandoval et al.,2013
	Altiplano Peruano-											
Andc/s-M	Boliviano	Hp128	С	16223	16298	16325	16327	16381	16497			Sandoval et al.,2013

,	Altiplano Peruano-			40000	40400	40400	40000	40005	40000	10005	10007		
Andc/s-M	Boliviano	Hp131	С	16093	16126	16193	16223	16235	16298	16325	16327		Sandoval et al.,2013
	Altiplano Peruano-												
Andc/s-M	Boliviano	Hp140	С	16126	16223	16234	16298	16325					Sandoval et al.,2013
Alluc/S-IVI	Altiplano	110140		10120	10223	10234	10290	10323					Sandoval et al.,2013
	Peruano-												
Andc/s-M	Boliviano	Hp145	С	16188	16223	16298	16325	16327					Sandoval et al2013
7 (1100/0 111	Altiplano	11,511.0		10100	10220	10200	10020	10027					Canactar of an,2010
	Peruano-												
Andc/s-M	Boliviano	Hp155	С	16093	16223	16298	16325	16327					Sandoval et al.,2013
	Altiplano												
	Peruano-												
Andc/s-M	Boliviano	Hp157	С	16183C	16189	16223	16298	16325	16327				Sandoval et al.,2013
	Altiplano												
	Peruano-												
Andc/s-M	Boliviano	Hp168	С	16223	16298	16311	16325	16327					Sandoval et al.,2013
	Altiplano												
	Peruano-		_	40404	40407	40000	40000	400070	40000	40005	40007		
Andc/s-M	Boliviano	Hp170	С	16124	16127	16209	16223	16227G	16298	16325	16327		Sandoval et al.,2013
	Altiplano												
Andc/s-M	Peruano- Boliviano	Up.172	С	16172	16223	16298	16325	16327	16519				Condound at al. 2012
Andc/s-IVI	DOIIVIANO	Hp173	C	10172	10223	10290	10323	16327	10519				Sandoval et al.,2013
	Altiplano												
	Peruano-												
Andc/s-M	Boliviano	Hp188	С	16037	16223	16298	16325	16327					Sandoval et al.,2013
	Cuenca del												
Andc/s-M	Lago Titicaca	Titi26.Q	С	16183C	16189C	16223T	16298C	16325C	16327T	16344T			Barbieri et al., 2011
	Cuenca del				_	_	_						
Andc/s-M	Lago Titicaca	Titi27.Q	С	16223T	16298C	16325C	16327T						Barbieri et al., 2012
	Cuenca del	T:::00 0	_	100510	400000	404700	40000 T	40000	400050	4000==			
Andc/s-M	Lago Titicaca	Titi28.Q	С	16051G	16086C	16170G	16223T	16298C	16325C	16327T			Barbieri et al., 2013
A1 - /- B.4	Depto. de	A 2 2000	0	40000T	40000T	400050	400000						0
Andc/s-M	Beni,Bolivia	Aymara268	С	16223T	16320T	16325C	16362C						Corella et al., 2007
Ando/o M	Depto. de Beni,Bolivia	Quechua53 14H	D	16223T	162410	16271C	16292T	16294T	16301T	16342C	16362C		Corollo et al. 2007
Andc/s-M	Deni, bolivia	14∏	ע	102231	102416	102/10	102921	102941	103011	103420	103020		Corella et al., 2007

Andc/s-M	Depto. de Beni,Bolivia	Quechua53 54H	D	16223T	16241G	16271C	16292T	16294T	16301T	16342C	16362C	Corella et al., 2007
Andc/s-M	Puno, Perú	QPNO23	D	16223T	16325C							Lewis et al., 2007
Andc/s-M	Puno, Perú	APNO10	D	16189C	16223T	16325G	16310A	16325C	16362C			Lewis et al., 2007
Andc/s-M	Puno, Perú	APNO11	D	16223T	16242T	16248T	16325C	16362C				Lewis et al., 2007
Andc/s-M	Perú	QuechPeru 14	D	16129A	16209C	16223T	16325C	16362C				Sandoval et al., 2009
Andc/s-M	Perú	QuechPeru 15	D	16142T	16148T	16223T	16278T	16325C	16356C	16362C		Sandoval et al., 2009
Andc/s-M	Perú	QuechPeru 16	D	16192T	16223T	16311C	16325C	16352C	16362C			Sandoval et al., 2009
Andc/s-M	Perú	QuechPeru 17	D	16209C	16325C	16362C						Sandoval et al., 2009
Andc/s-M	Perú	QuechPeru 18	D	16223T	16278T	16325C	16362C	16371G				Sandoval et al., 2009
Andc/s-M	Perú	QuechPeru 19	D	16223T	16290T	16325C	16362C					Sandoval et al., 2009
Andc/s-M	Perú	QuechPeru 20	D	16223T	16325C	16362C						Sandoval et al., 2009
Andc/s-M	Perú	QuechPeru 214h	D	16223T	16271C	16294T	16301T	16342C	16362C			Sandoval et al., 2009
Andc/s-M	La Paz, Bolivia	LPAZ002	D	16223T	16292T	16325C	16362C					Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ009	D	16223T	16325C	16362C						Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ016	D	16223T	16241G	16304C	16325C	16362C				Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ0344h	D	16223T	16255A	16301T	16342C	16362C				Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ042	D	16114G	16129A	16222T	16223T	16325C	16362C			Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ0584	D	16223T	16293G	16325C	16362C					Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ0794h	D	16075C	16223T	16241G	16260T	16294T	16301T	16342C	16362C	Afonso Costa et al., 2010
Andc/s-M	La Paz, Bolivia	LPAZ0834h	D	16075C	16223T	16241G	16260T	16294T	16301T	16342C	16362C	Afonso Costa et al., 2010

Andc/s-M	norte de Potosi, Bolivia	Que.M441	D	16142T	16148T	16223T	16278T	16311C	16320T	16325C	16356C	16362C	Gayà-Vidal et al., 2011
Andc/s-M	norte de Potosi, Bolivia	Que.M451	D	16223T	16292T	16325C	16362C						Gayà-Vidal et al., 2011
Andc/s-M	norte de Potosi, Bolivia	Que.M461	D	16223T	16271C	16325C	16362C						Gayà-Vidal et al., 2011
Andc/s-M	norte de Potosi, Bolivia	Que.M471	D	16223T	16242T	16311C	16325C	16362C					Gayà-Vidal et al., 2011
Andc/s-M	Lago Titicaca, Bolivia	Aym.M491	D	16174T	16223T	16325C	16362C						Gayà-Vidal et al., 2011
Andc/s-M	Lago Titicaca, Bolivia	Aym.M501	D	16223T	16325C	16362C							Gayà-Vidal et al., 2011
Andc/s-M	La Paz, Bolivia	LaPaz1	D	16223	16231	16258	16259	16325	16362				Taboada-Echalar et al., 2013
Andc/s-M	Depto. Santa Cruz, Bolivia	SantaCruz2	D	16093	16223	16325	16362						Taboada-Echalar et al., 2013
Andc/s-M	Depto. Cochabamba, Bolivia	Cochabamb a3	D	16172	16223	16325	16362						Taboada-Echalar et al., 2013
Andc/s-M	La Paz, Bolivia	LaPaz4	D	16183	16189	16223	16325	16362					Taboada-Echalar et al., 2013
Andc/s-M	Depto. Cochabamba, Bolivia	Cochabamb a5	D	16189	16223	16310	16325	16362					Taboada-Echalar et al., 2013
Andc/s-M	La Paz, Bolivia	LaPaz6	D	16220	16223	16325	16362						Taboada-Echalar et al., 2013
Andc/s-M	Depto.Santa Cruz, Bolivia	SantaCruz7	D	16223	16261	16311	16325	16362					Taboada-Echalar et al., 2013
Andc/s-M	La Paz, Bolivia	LaPaz8	D	16223	16325	16362							Taboada-Echalar et al., 2013
Andc/s-M	Depto. Beni, Bolivia	Beni9	D	16223	16325	16362							Taboada-Echalar et al., 2013
Andc/s-M	Depto. Beni, Bolivia	Beni11	D	16223	16325	16362							Taboada-Echalar et al., 2013
Andc/s-M	Depto. Cochabamba, Bolivia	Cochabamb a17	D	16142	16223	16325	16362						Taboada-Echalar et al., 2013

Andc/s-M	Depto. Beni, Bolivia	Beni184h	D	16180T	16223	16259G	15278	16325	16362			Taboada-Echalar et al., 2013
Andc/s-M	La Paz, Bolivia	LaPaz194h	D	16092	16183	16223	16235	16301	16342	16362		Taboada-Echalar et al., 2013
Andc/s-M	La Paz, Bolivia	LaPaz204h	D	16223	16241	16294	16301	16342	16362			Taboada-Echalar et al., 2013
Andc/s-M	Depto. Beni, Bolivia	Beni214j	D	16223	16291	16362						Taboada-Echalar et al., 2013
Andc/s-M	Altiplano Boliviano	AymaraD01	D	16183	16189	16223	16310	16325	16362			Batai et al., 29014
Andc/s-M	Altiplano Peruano- Boliviano	Hp16	D	16223	16325	16362	16519					Sandoval et al., 2013
Andc/s-M	Altiplano Peruano- Boliviano	Hp35	D	16189	16223	16310	16325	16362				Sandoval et al., 2013
Andc/s-M	Altiplano Peruano- Boliviano	Hp36	D	16189	16223	16310	16325	16362				Sandoval et al., 2013
Andc/s-M	Altiplano Peruano- Boliviano	Hp45	D	16223	16254	16325	16362					Sandoval et al., 2013
Andc/s-M	Altiplano Peruano- Boliviano	Hp51	D	16223	16293	16325	16362					Sandoval et al., 2013
	Altiplano Peruano-							40000	40000	40.474T		
Andc/s-M	Boliviano Altiplano Peruano-	Hp57	D	16129	16223	16249	16325	16362	16390	16471T		Sandoval et al., 2013
Andc/s-M	Boliviano Altiplano	Hp90	D	16142	16145	16223	16325	16362				Sandoval et al., 2013
Andc/s-M	Peruano- Boliviano	Hp114	D	16092	16140	16223	16325	16362				Sandoval et al., 2013
Andc/s-M	Altiplano Peruano- Boliviano	Hp117	D	16192	16223	16311	16325	16362				Sandoval et al., 2013

	Altiplano										
	Peruano-										
Andc/s-M	Boliviano	Hp118	D	16223	16325	16362					Sandoval et al., 2013
	Altiplano										
	Peruano-										
Andc/s-M	Boliviano	Hp121	D	16209	16223	16256	16325	16362			Sandoval et al., 2013
	Altiplano										
1	Peruano-		_	40000	40000	40040	4000=	40000			
Andc/s-M	Boliviano	Hp122	D	16093	16223	16243	16325	16362			Sandoval et al., 2013
	Altiplano										
	Peruano-	11.404		40000	40005	40000					
Andc/s-M	Boliviano	Hp124	D	16223	16325	16362					Sandoval et al., 2013
	Altiplano										
A = = 1 = / = B.4	Peruano-	11-420	_	40000	16258	16259	40000	40005	40000		0
Andc/s-M	Boliviano Altiplano	Hp130	D	16223	16258	16259	16302	16325	16362		Sandoval et al., 2013
	Peruano-										
Andc/s-M	Boliviano	Hp161	D	16223	16293	16325	16362				Sandoval et al., 2013
Alluc/5-IVI	Altiplano	Пртот		10223	10293	10323	10302				Sandovai et al., 2013
	Peruano-										
Andc/s-M	Boliviano	Hp162	D	16051	16209	16223	16291	16325	16362		Sandoval et al., 2013
7 11 100/0 171	Bollviano	110102		10001	10200	TOLLO	10201	10020	10002		Canadra of all, 2010
	Altiplano										
	Peruano-										
Andc/s-M	Boliviano	Hp163	D	16051	16209	16223	16291	16325	16362		Sandoval et al., 2013
	Altiplano										
	Peruano-		_								
Andc/s-M	Boliviano	Hp166	D	16223	16325	16362					Sandoval et al., 2013
	Altiplano										
	Peruano-	11-475	_	40000	40005	40000					
Andc/s-M	Boliviano	Hp175	D	16223	16325	16362					Sandoval et al., 2013
	Altiplano										
Andc/s-M	Peruano- Boliviano	Hp194	D	16223	16292	16325	16362				Sandoval et al., 2013
ATIUC/S-IVI	Altiplano	110194		10223	10232	10323	10302				Sandovai et al., 2013
	Peruano-										
Andc/s-M	Boliviano	Hp195	D	16189	16223	16325	16335	16362			Sandoval et al., 2013
ATIUU/3-IVI	Donviano	1110100		10103	10220	10020	10000	10002	<u> </u>		Januovai et al., 2013

	Altiplano Peruano-											
Andc/s-M	Boliviano	Hp198	D	16093	16223	16325	16362					Sandoval et al., 2013
A	Altiplano Peruano- Boliviano	Hp200	D	16223	16239	16325	16352	16362				Candonal et al. 2012
Andc/s-M	Cuenca del	Hp200	U	16223	16239	16325	16352	16362				Sandoval et al., 2013
Andc/s-M	Lago Titicaca	Titi29.Q	D	16223T	16325C	16362C						Barbieri et al., 2011
	Cuenca del											,
Andc/s-M	Lago Titicaca	Titi30.Q	D	16223T	16266T	16325C	16362C					Barbieri et al., 2011
Andc/s-M	Cuenca del Lago Titicaca	Titi31.A	D	16189C	16233T	16310A	16325C	16362C				Barbieri et al., 2011
	Cuenca del								400000			,
Andc/s-M	Lago Titicaca	Titi32.Q	D	16142T	16148T	16223T	16278T	16325C	16362C			Barbieri et al., 2011
Andc/s-A	Tompullo II, Perú	A.T2CH382	Α	16111T	16217C	16223T	16290T	16319A	16362C			Baca et al., 2014
Andc/s-A	Tompullo II, Perú	A.T2CH730 2	А	16111T	16217C	16223T	16290T	16319A	16362C			Baca et al., 2014
Andc/s-A	Puca, Perú	A.ANT04	Α	16111T	16223T	16290T	16319A	16362C				Baca et al., 2014
Andc/s-A	Puca, Perú	A.PUC26	Α	16111T	16223T	16290T	16319A	16362C				Baca et al., 2014
Andc/s-A	Puca, Perú	A.PUC54	Α	16111T	16223T	16290T	16319A	16362C				Baca et al., 2014
Andc/s-A	Puca, Perú	A.PUC24	Α	16111T	16223T	16290T	16319A	16357C	16362C			Baca et al., 2014
Andc/s-A	Puca, Perú	A.PUC28	Α	16111T	16223T	16290T	16319A	16357C	16362C			Baca et al., 2014
Andc/s-A	Puca, Perú	A.PUC32	Α	16111T	16223T	16290T	16319A	16357C	16362C			Baca et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP1	Α	16111T	16223T	16290T	16319A	16362C				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_LIP1	А	16111T	16223T	16290T	16311C	16319A	16362C			Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_LIP2	А	16111T	16223T	16290T	16296T	16319A	16362C			Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_LIP2_	Α	16111T	16140C	16223T	16290T	16319A	16362C			Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_MH3	А	16111T	16223T	16270T	16290T	16319A	16362C			Fehren-Schmitz et al., 2014

Andc/s-A	Cuenca de Río Grande, Perú	A.H MH6	Α	16111T	16129A	16210G	16223T	16290T	16319A	16362C	Fehren-Schmitz et al., 2014
71100/3 71	Cuenca de Río	7110_	- , ,	101111	1012071	102100	102201	102001	1001071	100020	Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.H_LIP7_	Α	16223T	16248T	16290T	16319A	16362C			al., 2014
	Cuenca	A.Concho23									
Andc/s-A	Ayacucho, Perú	12	Α	16111T	16189C	16223T	16274A	16290T	16319A	16325C	Kemp et al., 2009
	Cuenca	A.Concho23				16259.1					
Andc/s-A	Ayacucho, Perú	22	Α	16111T	16223T	Α	16290T	16319A	16362C		Kemp et al., 2009
	Cuenca	A.Huari043									
Andc/s-A	Ayacucho, Perú	2	A	16111T	16223T	16290T	16319A	16362C			Kemp et al., 2009
	Cuenca	A.Huari143						_	_	_	
Andc/s-A	Ayacucho, Perú	2	A	16111T	16129A	16223T	16260T	16290T	16319A	16362C	Kemp et al., 2009
	Tompullo II,		_								
Andc/s-A	Perú	A.T2CH122	В	16189C	16217C	16289G					Baca et al., 2014
	Tompullo II,		_								
Andc/s-A	Perú	A.T2CH142	В	16189C	16217C						Baca et al., 2014
1	Tompullo II,	4	_	101000	400470						
Andc/s-A	Perú	A.T2CH162	В	16189C	16217C						Baca et al., 2014
	Tompullo II,										
Andc/s-A	Perú	A.T2CH332	В	16168T	16189C	16217C					Baca et al., 2014
71100/3 71	Tompullo II,	7.112011002		101001	101000	102170					Buod of di., 2014
Andc/s-A	Perú	A.T2CH372	В	16168T	16189C	16217C					Baca et al., 2014
	Tompullo II,										,
Andc/s-A	Perú	A.T2CH612	В	16168T	16189C	16217C					Baca et al., 2014
	Tompullo II,										,
Andc/s-A	Perú	A.T2CH722	В	16168T	16189C	16217C					Baca et al., 2014
	Tompullo II,										
Andc/s-A	Perú	A.T2CH732	В	16189C	16217C	16247G	16261T				Baca et al., 2014
	Tompullo II,	A.T2CH711									
Andc/s-A	Perú	2	В	16189C	16217C	16247G	16261T				Baca et al., 2014
	Tompullo II,	A.T2CH712									
Andc/s-A	Perú	2	В	16178C	16189C	16217C					Baca et al., 2014
	Tompullo II,	A.T2CH715									
Andc/s-A	Perú	2	В	16178C	16189C	16217C					Baca et al., 2014
	Tompullo II,	A.T2CH728	_								
Andc/s-A	Perú	2	В	16178C	16189C	16217C	16218T				Baca et al., 2014

	Tompullo II,									
Andc/s-A	Perú	A.T2CH822	В	16168T	16189C	16217C	16295T			Baca et al., 2014
Andc/s-A	Tompullo II, Perú	A.T2CH832	В	16168T	16189C	16217C	16295T			Baca et al., 2014
Andc/s-A	Tompullo II, Perú	A.T2CH842	В	16168T	16189C	16217C	16295T			Baca et al., 2014
Andc/s-A	Tompullo II, Perú	A.T2CH852	В	16168T	16189C	16217C	16295T			Baca et al., 2014
Andc/s-A	Tompullo II, Perú	A.T2CH862	В	16168T	16189C	16217C	16295T			Baca et al., 2014
Andc/s-A	Acchaymarca, Perú	A.ACCH19	В	16189	16217C					Baca et al., 2014
Andc/s-A	Acchaymarca, Perú	A.ACCH8	В	16189	16217C					Baca et al., 2014
Andc/s-A	Acchaymarca, Perú	A.ACCH20	В	16168T	16189C	16217C	16295T			Baca et al., 2014
Andc/s-A	Acchaymarca, Perú	A.ACCH9	В	16189C	16217C	16289G				Baca et al., 2014
Andc/s-A	Acchaymarca, Perú	A.ACCH22	В	16189C	16217C	16289G				Baca et al., 2014
Andc/s-A	Acchaymarca, Perú	A.ACCH3	В	16189C	16213A	16217X	16298C	16362C		Baca et al., 2014
Andc/s-A	Acchaymarca, Perú	A.ACCH4	В	16157C	16189C	16217C				Baca et al., 2014
Andc/s-A	Acchaymarca, Perú	A.ACCH6	В	16178C	16189C	16217C				Baca et al., 2014
Andc/s-A	Puca, Perú	A.ANT01	В	16189C	16217C	16269G	16289G			Baca et al., 2014
Andc/s-A	Puca, Perú	A.ANT08	В	16189C	16217C					Baca et al., 2014
Andc/s-A	Puca, Perú	A.PUC22	В	16189C	16217C					Baca et al., 2014
Andc/s-A	Puca, Perú	A.PUC25	В	16186T	16189C	16217C				Baca et al., 2014
Andc/s-A	Puca, Perú	A.PUC31	В	16178C	16189C	16217C				Baca et al., 2014
Andc/s-A	Puca, Perú	A.PUC62	В	16111T	16168T	16189C	16217C			Baca et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP1	В	16189C	16217C					Fehren-Schmitz et al., 2014

Λ := d = /= . Λ	Cuenca de Río Grande, Perú	A.C LIP1	В	16189C	16217C						Fehren-Schmitz et
Andc/s-A	Cuenca de Río	A.C_LIFT	Ь	101090	102170						al., 2014
Andc/s-A	Grande, Perú	A.C_LIP12	В	16189C	16217C						Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP21	В	16183C	16189C	16217C					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP22	В	16183C	16189C	16217C					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_MH2	В	16183C	16189C	16217C					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_LIP21	В	16183C	16189C	16217C					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_LIP22	В	16183C	16189C	16217C					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_LIP23	В	16183C	16189C	16217C					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_LIP4	В	16183C	16189C	16217C	16239T				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_LIP5	В	16176T	16183C	16189C	16217C				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP61	В	16140C	16183C	16189C	16217C				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP62	В	16140C	16183C	16189C	16217C				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP63	В	16140C	16183C	16189C	16217C				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_LIP6	В	16140C	16183C	16189C	16217C				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_LIP7	В	16183C	16189C	16217C	16264T				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_LIP81	В	16168T	16183C	16189C	16217C				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_LIP82	В	16168T	16183C	16189C	16217C				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_LIP9	В	16183C	16189C	16217C	16261T	16266T	16299G		Fehren-Schmitz et al., 2014

	Cuenca de Río		_							Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_LIP10	В	16183C	16189C	16217C	16261T	16319A		al., 2014
	Cuenca de Río			404570	404000	404000	400470			Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_MH16	В	16157C	16183C	16189C	16217C			al., 2014
	Cuenca de Río	A O FIDO4	6	404000	400470	4004ET				Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP24	В	16189C	16217C	16245T				al., 2014
A A	Cuenca de Río	A.C_EIP25	В	161000	161900	16217C	162104			Fehren-Schmitz et
Andc/s-A	Grande, Perú Cuenca de Río	A.C_EIP25	Ь	16183C	16189C	102170	16319A			al., 2014
Andolo A	Grande, Perú	A.C_EIP26	В	16140C	16183C	16189C	16217C	16319A		Fehren-Schmitz et
Andc/s-A	Cuenca de Río	A.C_EIF20	Ь	10140C	101030	101090	102170	10319A		al., 2014
Andc/s-A	Grande, Perú	A.H_MH21_	В	16183C	16189C	16217C				Fehren-Schmitz et al., 2014
Alido/3 A	Cuença de Río	71.11_IVII 12 1_		101000	101000	102170				Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.H_MH22_	В	16183C	16189C	16217C				al., 2014
7 11 100 / 0 7 1	Cuença de Río	7		10.000	.0.000					Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.H_MH23_	В	16183C	16189C	16217C				al., 2014
	·									,
	Cuenca de Río									Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.H_MH24_	В	16183C	16189C	16217C				al., 2014
	Cuenca de Río									Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.H_LIP21_	В	16183C	16189C	16217C				al., 2014
	Cuenca de Río			404000	404000	400470				Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.H_LIP22_	В	16183C	16189C	16217C				al., 2014
	Cuenca de Río	A 11 1 1D00	6	404000	404000	400470				Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.H_LIP23_	В	16183C	16189C	16217C				al., 2014
A1 - /- A	Cuenca de Río	A LL ML124	В	161920	161000	16189C	16217C			Fehren-Schmitz et
Andc/s-A	Grande, Perú Cuenca de Río	A.H_MH31_	Ь	16182C	16183C	101090	162170			al., 2014
Andc/s-A	Grande, Perú	A.H_MH32_	В	16182C	16183C	16189C	16217C			Fehren-Schmitz et al., 2014
Aliuc/s-A	Cuenca de Río	A.I I_IVII 132_	ь	101020	101030	101090	102170			Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.H_MH33_	В	16182C	16183C	16189C	16217C			al., 2014
Alido/3 A	Cuenca de Río	71.11_1011100_		101020	101000	101000	102170			Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.H_MH34_	В	16182C	16183C	16189C	16217C			al., 2014
	Cuenca de Río			1212						Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.H_LIP3	В	16182C	16183C	16189C	16217C			al., 2014
	Cuenca de Río	_			_					Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.H_LIP4	В	16176T	16183C	16189C	16217C			al., 2014

Andc/s-A	Cuenca de Río Grande, Perú	A.H LIP6	В	16140C	16183C	16189C	16217C					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río	A.II_LIFO_	ь	101400	101030	101090	102170			+		· · · · · · · · · · · · · · · · · · ·
Andc/s-A	Grande, Perú	A.H_MH6_	В	16140C	16183C	16189C	16217C					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_MH8_	В	16168T	16183C	16189C	16217C					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_LIP81	В	16168T	16183C	16189C	16217C					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_LIP82	В	16168T	16183C	16189C	16217C					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_MH10	В	16183C	16189C	16217C	16261T	16319A				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_MH111	В	16183C	16189C	16217C	16289G					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_MH112	В	16183C	16189C	16217C	16289G					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_MH113	В	16183C	16189C	16217C	16289G					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_MH114	В	16183C	16189C	16217C	16289G					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_LIP12_	В	16168T	16182C	16183C	16189C	16217C				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_LIP131	В	16182C	16183C	16189C	16217C	16261T	16319A			Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_LIP132	В	16182C	16183C	16189C	16217C	16261T	16319A			Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_LIP14_	В	16183C	16189C	16194C	16217C					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_LIP15_	В	16183C	16189C	16194C	16217C	16258T	16270T	16362C		Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_MH171	В	16183C	16189C	16217C	16390A					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_MH172	В	16183C	16189C	16217C	16390A					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_MH18_	В	16168T	16183C	16189C	16217C	16344T				Fehren-Schmitz et al., 2014

Andc/s-A	Cuenca de Río Grande, Perú	A.H_MH191	В	16182C	16183C	16189C	16217C	16269G	16289G		Fehren-Schmitz et al., 2014
7 11 10 07 0 7 1	Cuenca de Río										Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.H_MH192	В	16182C	16183C	16189C	16217C	16269G	16289G		al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_MH193	В	16182C	16183C	16189C	16217C	16269G	16289G		Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_MH20_	В	16091G	16183C	16189C	16217C				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_MH211	В	16183C	16189C	16213A	16217C	16362C			Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_MH221	В	16183C	16189C	16217C	16362C				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_MH231	В	16168T	16183C	16189C	16217C	16291T			Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_MH271	В	16176T	16182C	16183C	16189C	16217C	16319A		Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_MH272	В	16176T	16182C	16183C	16189C	16217C	16319A		Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_MH273	В	16176T	16182C	16183C	16189C	16217C	16319A		Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_MH274	В	16176T	16182C	16183C	16189C	16217C	16319A		Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca Ayacucho, Perú	A.Concho12 2	В	16183C	16189C	16217C	16356C				Kemp et al., 2009
	Cuenca	A.Concho25	-	404000	404000	404000	100470	100500	400570		1/ / 1 0000
Andc/s-A	Ayacucho, Perú	2 A Canaba20	В	16182C	16183C	16189C	16217C	16258G	16357C		Kemp et al., 2009
Andc/s-A	Cuenca Ayacucho, Perú	A.Concho30 2	В	16182C	16183C	16189C	16217C	16298G			Kemp et al., 2009
Andc/s-A	Cuenca Ayacucho, Perú	A.Concho36 2	В	16114T	16179T	16182C	16183C	16189C	16217C		Kemp et al., 2009
Andc/s-A	Cuenca Ayacucho, Perú	A.Huari082	В	16182C	16183C	16189C	16217C	16261T			Kemp et al., 2009
Andc/s-A	Cuenca Ayacucho, Perú	A.Huari022	В	16017C	16182C	16183C	16189C	16217C			Kemp et al., 2009
Andc/s-A	Cuenca Ayacucho, Perú	A.Huari042	В	16189C	16217C	16270T					Kemp et al., 2009

	Tompullo II,			_	_	_		_			
Andc/s-A	Perú	A.T2CH711	С	16189C	16223T	16298C	16310A	16325C	16327T		Baca et al., 2014
Andc/s-A	Acchaymarca, Perú	A.ACCH12	С	16223T	16298C	16325C	16327T	16362C			baca et al., 2014
Andc/s-A	Acchaymarca, Perú	A.ACCH17	С	16223T	16298C	16325C	16327T				Baca et al., 2014
Andc/s-A	Puca, Perú	A.PUC64	С	16127G	16156A	16223T	16298C	16325C	16327T		Baca et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP1	С	16223T	16298C	16327T					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP21	С	16223T	16298C	16325C	16327T				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP22	С	16223T	16298C	16325C	16327T				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP23	С	16223T	16298C	16325C	16327T				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP24	С	16223T	16298C	16325C	16327T				Fehren-Schmitz et
	Cuenca de Río										al., 2014 Fehren-Schmitz et
Andc/s-A	Grande, Perú Cuenca de Río	A.C_EIP25	С	16223T	16298C	16325C	16327T				al., 2014 Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_LIP21	С	16223T	16298C	16325C	16327T				al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_LIP22	С	16223T	16298C	16325C	16327T				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C LIP23	С	16223T	16298C	16325C	16327T				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP3	С	16140C	16223T	16298C	16327T				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_LIP5	С	16220G	16223T	16298C	16325C	16327T			Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_LIP6	С	16223T	16256T	16298C	16325C	16327T			Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_LIP7	С	16189C	16223T	16298C	16325C	16327T			Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_MH14	С	16223T	16256T	16298C	16327T	100211			Fehren-Schmitz et al., 2014

	Cuenca de Río		•	404044	40000	400000	400050	4000TT			Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_MH15	С	16184A	16223T	16298C	16325C	16327T			al., 2014
	Cuenca de Río		•	101151	40400 T	40000 T	400000	100050	40007		Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_MH16	С	16145A	16192T	16223T	16298C	16325C	16327T		al., 2014
	Cuenca de Río		•	40000T	40004	400000	400050	4000T			Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_MH17	С	16223T	16261T	16298C	16325C	16327T			al., 2014
l	Cuenca de Río	4 O FIDO04	_	40400T	40000T	400000	100050	4.000ZT			Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP201	С	16192T	16223T	16298C	16325C	16327T		<u> </u>	al., 2014
	Cuenca de Río	4 O FIDOOO	_	40400T	40000T	400000	100050	40007T			Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP202	С	16192T	16223T	16298C	16325C	16327T			al., 2014
	Cuenca de Río	4 O FIDOOO	0	40400T	40000T	400000	400050	40007T			Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP203	С	16192T	16223T	16298C	16325C	16327T			al., 2014
	Cuenca de Río	A O FID044	0	404454	40400T	40000T	400000	400050	40007T	40404T	Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP211	С	16145A	16192T	16223T	16298C	16325C	16327T	16404T	al., 2014
	Cuenca de Río	A O FIDO04	0	400000	40400T	40000T	400000	400050	40007T		Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP221	С	16093C	16192T	16223T	16298C	16325C	16327T		al., 2014
	Cuenca de Río	4 O FIDOOO	0	400000	40400T	40000T	400000	400050	40007T		Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP222	С	16093C	16192T	16223T	16298C	16325C	16327T		al., 2014
	Cuenca de Río	A C FID004	С	40000T	4000CT	400000	400000	40007T			Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP231		16223T	16286T	16298C	16325C	16327T		+	al., 2014
A1 - /- A	Cuenca de Río	A C FID044	С	404400	40000T	400000	400000	40007T			Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP241	<u> </u>	16140C	16223T	16298C	16325C	16327T			al., 2014
A1 - /- A	Cuenca de Río	A.C EIP251	С	16223T	16298C	16325C	16327T	16362C			Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP251		102231	162960	163250	103271	16362C			al., 2014
	Cuenca de Río		_								Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP261	С	16145A	16192T	16223T	16298C	16325C	16327T	16362C	al., 2014
	Cuenca de Río	4 0 515074	•	40400T	40000	400000	400050	4000T	400000		Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP271	С	16192T	16223T	16298C	16325C	16327T	16362C		al., 2014
	Cuenca de Río	4 0 515070	•	40400T	40000	400000	400050	4000T	400000		Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP272	С	16192T	16223T	16298C	16325C	16327T	16362C		al., 2014
	Cuenca de Río	A O FIDOTO	•	40400	40000	400000	100050	40007	400000		Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP273	С	16192T	16223T	16298C	16325C	16327T	16362C		al., 2014
l	Cuenca de Río	A O FIDOS (•	40000	400000	400050	400000				Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP281	С	16223T	16298C	16325C	16362C				al., 2014
.	Cuenca de Río		•	400000	40000=	400050	4000==				Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP321	С	16093C	16223T	16325C	16327T				al., 2014

	Cuenca de Río											Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.H_MH21_	С	16223T	16298C	16325C	16327T					al., 2014
	Cuenca de Río											Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.H_MH22_	С	16223T	16298C	16325C	16327T					al., 2014
	Cuenca de Río		_		_	_						Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.H_MH23	С	16223T	16298C	16325C	16327T					al., 2014
	Cuenca de Río		_									Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.H_MH24_	С	16223T	16298C	16325C	16327T					al., 2014
1	Cuenca de Río		_	40000T	400000	400050	4.000= T					Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.H_MH25	С	16223T	16298C	16325C	16327T					al., 2014
A = = = A	Cuenca de Río	A LL MILIOS	С	46000T	162000	162250	16227T					Fehren-Schmitz et
Andc/s-A	Grande, Perú Cuenca de Río	A.H_MH26_	<u> </u>	16223T	16298C	16325C	16327T					al., 2014
Andc/s-A	Grande, Perú	A.H LIP2	С	16223T	16298C	16325C	16327T					Fehren-Schmitz et al., 2014
ATIUC/S-A	Cuenca de Río	A.H_LIFZ_		102231	102900	103230	103271					· · · · · · · · · · · · · · · · · · ·
Andc/s-A	Grande, Perú	A.H_MH51_	С	16220G	16223T	16298C	16325C	16327T				Fehren-Schmitz et al., 2014
Alido/3 A	Granac, r cra	71.11_1011101_		102200	102201	102300	100200	100271				al., 2014
	Cuenca de Río											Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.H_MH52_	С	16220G	16223T	16298C	16325C	16327T				al., 2014
	Cuenca de Río											Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.H_LIP6	С	16223T	16256T	16298C	16325C	16327T				al., 2014
	Cuenca de Río											Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.H_LIP81	С	16147A	16223T	16287T	16298C	16325C	16327T			al., 2014
1	Cuenca de Río	4 11 11500	_	404474	40000 T	4000 - -	100000	400050	4000==			Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.H_LIP82_	С	16147A	16223T	16287T	16298C	16325C	16327T			al., 2014
	Cuenca de Río	A 11 11D0	0	40000T	400000	400000	400050	4.000.7T	400004			Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.H_LIP9_	С	16223T	16298C	16302G	16325C	16327T	16390A			al., 2014
A1 - /- A	Cuenca de Río	A LI LID404	С	10102T	16223T	16298C	162250	16327T				Fehren-Schmitz et
Andc/s-A	Grande, Perú Cuenca de Río	A.H_LIP101	C	19193T	102231	102960	16325C	103271				al., 2014
Andc/s-A	Grande, Perú	A.H_LIP111	С	16093C	16223T	16298C	16325C	16327T				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río	A.H_LIFTTT		100930	102231	102900	103230	103271				· · · · · · · · · · · · · · · · · · ·
Andc/s-A	Grande, Perú	A.H_LIP121	С	16093C	16179T	16223T	16270T	16298C	16325C	16327T		Fehren-Schmitz et al., 2014
AHUU/5-A	Cuenca de Río	/\.II_EII 121		100300	101731	102201	102701	102300	100200	100211		Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.H_LIP131	С	16223T	16298C	16325C	16327T	16381C				al., 2014
	Cuenca de Río							, , , , ,				Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.H_LIP132	С	16223T	16298C	16325C	16327T	16381C				al., 2014

Andc/s-A	Cuenca de Río Grande, Perú	A.H MH181	С	16181G	16189C	16223T	16298C	16325C	16327T	16344T		Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_MH191	С	16181G	16189C	16223T	16298C	16325C	16327T			Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_MH291	С	16192T	16223T	16274A	16298C	16311C	16325C	16327T		Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_LIP301	С	16223T	16298C	16311C	16325C	16327T				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_LIP311	С	16223T	16298C	16311C	16325C	16327T	16390A			Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca Ayacucho, Perú	A.Concho22	С	16223T	16298C	16325C	16327T					Kemp et al., 2009
Andc/s-A	Cuenca Ayacucho, Perú	A.Huari030 51	С	16223T	16325C	16327T	16327T					Kemp et al., 2009
Andc/s-A	Cuenca Ayacucho, Perú	A.Huari061	С	16124C	16189C	16222T	16223T	16298C	16316G	16325C	16327T	Kemp et al., 2009
Andc/s-A	Cuenca Ayacucho, Perú	A.Huari091	С	16223T	16298C	16325C	16327T					Kemp et al., 2009
Andc/s-A	Cuenca Ayacucho, Perú		С	16093C	16192T	16223T	16298C	16325C	16327T			Kemp et al., 2009
Andc/s-A	Cuenca Ayacucho, Perú	A.Huari121	С	16260T	16298C	16325C	16327T					Kemp et al., 2009
Andc/s-A	Cuenca Ayacucho, Perú	A.Huari031	С	16156A	16157Y	16223T	16298C	16325C	16327T			Kemp et al., 2009
Andc/s-A	Tompullo II, Perú	A.T2CH131	D	16223T	16286T	16325C	16362C					Baca et al., 2014
Andc/s-A	Tompullo II, Perú	A.T2CH391	D	16223T	16286T	16325C	16362C					Baca et al., 2014
Andc/s-A	Tompullo II, Perú	A.T2CH719 1	D	16223T	16325C	16362C						Baca et al., 2014
Andc/s-A	Tompullo II, Perú	A.T2CH729 1	D	16223T	16325C	16362C						Baca et al., 2014
Andc/s-A	Acchaymarca, Perú	A.ACCH7	D	16209C	16223T	16233G	16290T	16325C	16362C			Baca et al., 2014
Andc/s-A	Puca, Perú	A.PUC33	D	16223T	16325C	16362C						Baca et al., 2014

Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP11	D	16223T	16325C	16362C					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP12_	D	16223T	16325C	16362C					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP13_	D	16223T	16325C	16362C					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP14_	D	16223T	16325C	16362C					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP15	D	16223T	16325C	16362C					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP16	D	16223T	16325C	16362C					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_MH11_	D	16223T	16325C	16362C					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_MH12_	D	16223T	16325C	16362C					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_MH13	D	16223T	16325C	16362C					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_LIP1	D	16223T	16325C	16362C					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_LIP2_	D	16173T	16223T	16290T	16311C	16319A	16362C		Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP31_	D	16086C	16223T	16311C	16325C	16362C			Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP32_	D	16086C	16223T	16311C	16325C	16362C			Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP5_	D	16185G	16223T	16325C	16362C				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_MH5	D	16185G	16223T	16325C	16362C				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_MH6	D	16223T	16263C	16311C	16325C	16362C			Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP91_	D	16093C	16223T	16325C	16362C				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP92_	D	16093C	16223T	16325C	16362C				Fehren-Schmitz et al., 2014

Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP111	D	16086T	16223T	16325C	16362C				Fehren-Schmitz et al., 2014
71100/371	Cuenca de Río	70_2 111		100001	102201	100200	100020				Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP121	D	16086T	16223T	16325C	16362C				al., 2014
	Cuenca de Río		_								Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP122	D	16187T	16223T	16325C	16362C				al., 2014
A A	Cuenca de Río Grande. Perú	A.C EIP131	D	16223T	16354T	16362C					Fehren-Schmitz et
Andc/s-A	Cuenca de Río	A.C_EIP131	D	102231	163541	10302C					al., 2014
Andc/s-A	Grande, Perú	A.C_EIP132	D	16223T	16354T	16362C					Fehren-Schmitz et al., 2014
7.1.00,071	Cuenca de Río	70									Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP141	D	16172C	16223T	16325C	16362C				al., 2014
	Cuenca de Río										Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP142	D	16172C	16223T	16325C	16362C				al., 2014
	Cuenca de Río		_								Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP151	D	16103G	16223T	16325C	16362C				al., 2014
A A	Cuenca de Río Grande, Perú	A.C_EIP161	D	16103G	16223T	16325C	16362C				Fehren-Schmitz et
Andc/s-A	Grande, Peru	A.C_EIF 101	U	10103G	102231	103230	103020				al., 2014
	Cuenca de Río										Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP171	D	16158G	16223T	16311C	16325C	16362C			al., 2014
	Cuenca de Río		_								Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP172	D	16140C	16223T	16311C	16325C	16362C			al., 2014
A = -1 = /= A	Cuenca de Río	A C FID404	_	40470T	40000T	400000	400000				Fehren-Schmitz et
Andc/s-A	Grande, Perú Cuenca de Río	A.C_EIP181	D	16179T	16223T	16325C	16362C				al., 2014
Andc/s-A	Grande, Perú	A.C_EIP191	D	16179T	16223T	16325C	16362C				Fehren-Schmitz et al., 2014
7111007071	Cuenca de Río	7OE 101		101701	102201	100200	100020				Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP201	D	16223T	16192T	16325C	16362C				al., 2014
	Cuenca de Río										Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP211	D	16179T	16223T	16311C	16325C	16362C			al., 2014
	Cuenca de Río										Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP221	D	16184T	16223T	16325C	16362C				al., 2014
1	Cuenca de Río	A O FIDOS 4	-	400000	40000 T	40044	400050	400500	400000		Fehren-Schmitz et
Andc/s-A	Grande, Perú	A.C_EIP231	D	16093C	16223T	16241T	16325C	16352C	16362C		al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP301	D	16223T	16310A	16325C	16362C				Fehren-Schmitz et al., 2014

Andc/s-A	Cuenca de Río Grande, Perú	A.C_EIP311	D	16158G	16223T	16263C	16311C	16325C	16362C			Fehren-Schmitz et al., 2014
Alluc/S-A	Cuenca de Río	A.O_LIFSTT	<u> </u>	101300	102231	102030	103110	103230	103020			
Andc/s-A	Grande, Perú	A.C_EIP321	D	16142T	16148T	16223T	16278T	16325C	16362C			Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_LIP11	D	16223T	16325C	16362C						Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_LIP12	D	16223T	16325C	16362C						Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_LIP13_	D	16223T	16325C	16362C						Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_LIP4_	D	16209C	16239T	16325C	16362C	10400T				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_MH71	D	16325C	16362C							Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_MH72_	D	16325C	16362C							Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_MH8	D	16166G	16223T	16325C	16362C					Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca de Río Grande, Perú	A.H_MH291	D	16108T	16189C	16223T	16325C	16362C				Fehren-Schmitz et al., 2014
Andc/s-A	Cuenca Ayacucho, Perú	A.Concho02	D	16223T	16325C	16362C						Kemp et al., 2009
Andc/s-A	Cuenca Ayacucho, Perú	A.Huari131	D	16223T	16325C	16362C						Kemp et al., 2009
Ands/Chn-M	Antofagasta, Chile	AT0992	Α	16111	16223	16290	16319	16362				de Saint Pierre e t al., 2012
Ands/Chn-M	Arica y Parinacota, Chile	AR0112	Α	16111	16223	16290	16319	16362				de Saint Pierre e t al., 2012
Ands/Chn-M	Antofagasta, Chile	AT0582	Α	16111	16223	16290	16319	16362				de Saint Pierre e t al., 2012
Ands/Chn-M	Antofagasta, Chile	AT1312	Α	16111	16223	16290	16319	16362				de Saint Pierre e t al., 2012
Ands/Chn-M	Antofagasta, Chile	AT1202	А	16111	16156	16223	16263	16290	16319	16362	16438	de Saint Pierre e t al., 2012
Ands/Chn-M	Antofagasta, Chile	AT1652	А	16111	16156	16223	16263	16290	16319	16362	16438	de Saint Pierre e t al., 2012

Ands/Chn-M	Antofagasta, Chile	AT1782	Α	16111	16156	16223	16263	16290	16319	16362	16438	de Saint Pierre e t al., 2012
Ands/Chn-M	Antofagasta, Chile	AT1792	Α	16111	16156	16223	16263	16290	16319	16362	16438	de Saint Pierre e t al.,
Ands/Chn-M	Arica y Parinacota, Chile	AR0442	A	16111	16270	16290	16319	16362	.00.0	. 3332	70.00	de Saint Pierre e t al., 2012
Ands/Chn-M	Arica y Parinacota, Chile	AR0662	В	16182	16183	16189	16217					de Saint Pierre e t al., 2012
Ands/Chn-M	Arica y Parinacota, Chile	AR0162	В	16183	16189	16217						de Saint Pierre e t al., 2012
Ands/Chn-M	Arica y Parinacota, Chile	AR0792	В	16086	16183	16189	16217					de Saint Pierre e t al., 2012
Ands/Chn-M	Arica y Parinacota, Chile	AR0332	В	16086	16183	16189	16217					de Saint Pierre e t al., 2012
Ands/Chn-M	Antofagasta, Chile	AT1732	В	16183	16189	16217	16223					de Saint Pierre e t al., 2012
Ands/Chn-M	Antofagasta, Chile	AT0942	В	16183	16189	16217						de Saint Pierre e t al., 2012
Ands/Chn-M	Antofagasta, Chile	AT1132	В	16183	16189	16217						de Saint Pierre e t al., 2012
Ands/Chn-M	Antofagasta, Chile	AT1232	В	16093	16183	16189	16217					de Saint Pierre e t al., 2012
Ands/Chn-M	Antofagasta, Chile	AT1422	В	16183	16189	16217	16294					de Saint Pierre e t al., 2012
Ands/Chn-M	Antofagasta, Chile	AT1762	В	16183	16189	16217	16294					de Saint Pierre e t al., 2012
Ands/Chn-M	Arica y Parinacota, Chile	AR0932	В	16183	16189	16217						de Saint Pierre e t al., 2012
Ands/Chn-M	Arica y Parinacota, Chile	AR0952	В	16183	16189	16217						de Saint Pierre e t al., 2012

	Arica y											
Ands/Chn-M	Parinacota, Chile	AR0752	В	16126	16183	16188	16189	16217				de Saint Pierre e t al., 2012
Ands/Cnn-IVI	Arica y	AR0752	Ь	10120	10103	10100	10109	10217				2012
	Parinacota,											de Saint Pierre e t al.,
Ands/Chn-M	Chile	AR0032	В	16084	16183	16188	16189	16217	16400			2012
	Arica y											
A se el e /Ole se NA	Parinacota,	A D 0 2 4 2		40400	40400	40400	40400	40047				de Saint Pierre e t al.,
Ands/Chn-M	Chile Arica y	AR0342	В	16183	16188	16189	16190	16217				2012
	Parinacota,											de Saint Pierre e t al.,
Ands/Chn-M	Chile	AR0412	В	16183	16188	16189	16217	16355	16364.1			2012
	Arica y											
	Parinacota,		_									de Saint Pierre e t al.,
Ands/Chn-M	Chile	AR0242	В	16183	16188	16189	16217					2012
	Arica y											
Ands/Chn-M	Parinacota, Chile	AR0352	В	16183	16188	16189	16214	16217	16245			de Saint Pierre e t al., 2012
Ands/Cnn-ivi	Arica y	AR0332	Ь	10103	10100	10109	10214	10217	10243			2012
	Parinacota,											de Saint Pierre e t al.,
Ands/Chn-M	Chile	AR0292	В	16183	16188	16189	16217					2012
	Antofagasta,											de Saint Pierre e t al.,
Ands/Chn-M	Chile	AT0132	В	16183	16188	16189	16217					2012
	Arica y Parinacota,											
Ands/Chn-M	Chile	AR0742	В	16183	16188	16189	16217					de Saint Pierre e t al., 2012
7 trias/ Crim Wi	Arica y	711107 12		10100	10100	10100	10217					2012
	Parinacota,											de Saint Pierre e t al.,
Ands/Chn-M	Chile	AR0822	В	16183	16188	16189	16217					2012
	Antofagasta,	171000		40400	40400	400400	4004					de Saint Pierre e t al.,
Ands/Chn-M	Chile	AT1632	В	16183	16188	162189	16217					2012
Ands/Chn-M	Antofagasta, Chile	AT0532	В	16183	16188	16189	16217					de Saint Pierre e t al., 2012
7 (1103/ OTH) IVI	Arica y	7110002		10100	10100	10103	10217					2012
	Parinacota,											de Saint Pierre e t al.,
Ands/Chn-M	Chile	AR0902	В	16093	16183	16188	16189	16217				2012

	Arica y												
	Parinacota,												de Saint Pierre e t al.,
Ands/Chn-M	Chile	AR0592	В	16093	16183	16188	16189	16217					2012
	Arica y Parinacota,												de Saint Pierre e t al.,
Ands/Chn-M	Chile	AR0272	В	16183	16189	16217	16289						2012
Ands/Chn-M	Antofagasta, Chile	AT0512	В	16182	16183	16189	16217						de Saint Pierre e t al., 2012
Ands/Chn-M	Antofagasta, Chile	AT0862	В	16183	16189	16194	16195	16217	16258	16270	16325	16362	de Saint Pierre e t al., 2012
Ands/Chn-M	Antofagasta, Chile	AT1482	В	16183	16189	16194	16195	16217	16258	16270	16325	16362	de Saint Pierre e t al., 2012
Ands/Chn-M	Arica y Parinacota, Chile	AR0732	В	16168	16182	16183	16189	16217	16362				de Saint Pierre e t al., 2012
Ands/Chn-M	Arica y Parinacota, Chile	AR0552	В	16093	16168	16183	16189	16217					de Saint Pierre e t al., 2012
Ands/Chn-M	Arica y Parinacota, Chile	AR0072	В	16183	16189	16212	16217	16261	16270	16319			de Saint Pierre e t al., 2012
Ands/Chn-M	Arica y Parinacota, Chile	AR0482	В	16183	16189	16217	16254	16261	16319				de Saint Pierre e t al.,
Ands/Chn-M	Arica y Parinacota, Chile	AR0392	В	16183	16189	16217	16359	10201	10010				de Saint Pierre e t al.,
Ands/Chn-M	Antofagasta, Chile	AT1032	В	16183	16189	16217							de Saint Pierre e t al., 2012
A = 1= /Ob = 14	Arica y Parinacota,	ADODO	_	40400	40400	40047							de Saint Pierre e t al.,
Ands/Chn-M	Chile Antofagasta,	AR0282	В	16183	16189	16217							de Saint Pierre e t al.,
Ands/Chn-M	Chile	AT1822	В	16183	16189	16217	16218	16233	16356				2012
Ands/Chn-M	Arica y Parinacota, Chile	AR0462	В	16051	16183	16189	16217	16360					de Saint Pierre e t al., 2012

Ands/Chn-M	Antofagasta, Chile	AT0452	В	16182	16183	16189	16217	16218	16278		de Saint Pierre e t al., 2012
Ands/Chn-M	Antofagasta, Chile	AT1622	В	16182	16183	16189	16233	16357			de Saint Pierre e t al.,
Ands/Chn-M	Antofagasta, Chile	AT1711b	С	16223	16298	16325	16327	10001			de Saint Pierre e t al., 2012
Ands/Chn-M	Arica y Parinacota, Chile	AR0091b	С	16223	16298	16325	16327				de Saint Pierre e t al., 2012
Ands/Chn-M	Arica y Parinacota, Chile	AR0701b	С	16189	16223	16298	16325	16327			de Saint Pierre e t al., 2012
Ands/Chn-M	Arica y Parinacota, Chile	AR0541b	С	16126	16223	16298	16325	16327			de Saint Pierre e t al., 2012
Ands/Chn-M	Antofagasta, Chile	AT1371b	С	16157	16209	16223	16298	16325	16327		de Saint Pierre e t al., 2012
Ands/Chn-M	Antofagasta, Chile	AT0891b13	С	16131	16223	16298	16325	16327			de Saint Pierre e t al., 2012
Ands/Chn-M	Arica y Parinacota, Chile	AR0011	D	16223	16325	16326					de Saint Pierre e t al., 2012
Ands/Chn-M	Arica y Parinacota, Chile	AR0131	D	16223	16325	16362					de Saint Pierre e t al.,
Ands/Chn-M	Antofagasta, Chile	AT1211	D	16223	16325	16362					de Saint Pierre e t al., 2012
Ands/Chn-M	Arica y Parinacota, Chile	AR0631	D	16223	16311	16325	16362				de Saint Pierre e t al., 2012
Ands/Chn-M	Arica y Parinacota, Chile	AR0781	D	16223	16311	16325	16362				de Saint Pierre e t al., 2012
Ands/Chn-M	Arica y Parinacota, Chile	AR0851	D	16223	16290	16325	16362				de Saint Pierre e t al., 2012

	Arica y Parinacota,											de Saint Pierre e	2 + 0
Ands/Chn-M	Chile	AR0171	D	16223	16290	16325	16362					2012	; t al.,
Ands/Chn-M	Antofagasta, Chile	AT0331	D	16223	16242	16311	16325	16362				de Saint Pierre e 2012	t al.,
Ands/Chn-M	Arica y Parinacota, Chile	AR0211	D	16223	16242	16311	16325	16362				de Saint Pierre e 2012	etal.,
Ands/Chn-M	Arica y Parinacota, Chile	AR0941	D	16187	16223	16325	16362	16390				de Saint Pierre e 2012	t al.,
Ands/Chn-M	Arica y Parinacota, Chile	AR071	D	16223	16241	16301	16342	16362				de Saint Pierre e 2012	etal.,
Ands/NOA-M	Jujuy, Argentina	ARG0052	Α	16111T	16223T	16290T	16319A	16362C				Cardoso et al., 2	2013
Ands/NOA-M	Jujuy, Argentina	ARG0242	Α	16111T	16223T	16290T	16319A	16362C				Cardoso et al., 2	2013
Ands/NOA-M	Jujuy, Argentina	ARG0812	Α	16111T	16189C	16223T	16290T	16319A	16362C			Cardoso et al., 2	2013
Ands/NOA-M	Jujuy, Argentina	ARG0862	Α	16111T	16223T	16290T	16311C	16319A	16362C			Cardoso et al., 2	2013
Ands/NOA-M	Jujuy, Argentina	ARG1492	Α	16111T	16151M	16223T	16290T	16319A	16362C			Cardoso et al., 2	2013
Ands/NOA-M	Jujuy, Argentina	ARG1692	Α	16223T	16290T	16319A	16362C					Cardoso et al., 2	2013
Ands/NOA-M	Jujuy, Argentina	ARG1802	Α	16111T	16215R	16223T	16286T	16290T	16319A	16362C		Cardoso et al., 2	2013
Ands/NOA-M	Jujuy, Argentina	ARG2532	Α	16223T	16290T	16311C	16319A	16362C				Cardoso et al., 2	2013
Ands/NOA-M	Jujuy, Argentina	ARG3042	Α	16111T	16223T	16290T	16319A	16362C				Cardoso et al., 2	2013
Ands/NOA-M	Jujuy, Argentina	ARG0232	Α	16111T	16223T	16290T	16319A	16362C				Cardoso et al., 2	2013
Ands/NOA-M	Jujuy, Argentina	ARG0692	Α	16111T	16223T	16290T	16319A	16362C				Cardoso et al., 2	2013
Ands/NOA-M	Jujuy, Argentina	ARG0702	Α	16111T	16223T	16290T	16319A	16362C				Cardoso et al., 2	2013
Ands/NOA-M	Jujuy, Argentina	ARG0732	Α	16111T	16223T	16290T	16319A	16362C				Cardoso et al., 2	2013
Ands/NOA-M	Jujuy, Argentina	ARG2482	Α	16111T	16176T	16223T	16290T	16319A	16362C			Cardoso et al., 2	2013
Ands/NOA-M	Jujuy, Argentina	ARG0292	Α	16111T	16223T	16290T	16291T	16319A	16362C	16465T		Cardoso et al., 2	2013
Ands/NOA-M	Jujuy, Argentina	ARG1912	Α	16111T	16223T	16290T	16291T	16319A	16362C	16465T		Cardoso et al., 2	2013

Jujuy, Argentina	ARG0072	Α	16111T	16184T	16223T	16290T	16319A	16362C	16512C				Cardoso et al., 2013
Jujuy, Argentina	ARG0642	Α	16223T	16290T	16319A	16362C							Cardoso et al., 2013
Jujuy, Argentina	ARG1322	Α	16223T	16290T	16319A	16362C							Cardoso et al., 2013
Jujuy, Argentina	ARG1472	Α	16223T	16290T	16319A	16362C							Cardoso et al., 2013
Jujuy, Argentina	ARG1612	Α	16111T	16223T	16290T	16319A	16362C	16512C					Cardoso et al., 2013
Jujuy, Argentina	ARG1712	Α	16111T	16223T	16290T	16319A	16362C	16512C					Cardoso et al., 2013
Jujuy, Argentina	ARG1182	Α	16092C	16223T	16234A	16256T	16290T	16319A	16325C	16362C			Cardoso et al., 2013
Jujuy, Argentina	ARG3032	Α	16111T	16217C	16223T	16287T	16290T	16319A	16362C				Cardoso et al., 2013
Jujuy, Argentina	ARG3142	Α	16111T	16217C	16223T	16287T	16290T	16319A	16362C				Cardoso et al., 2013
Jujuy y Salta, Argentina	Cova2	Α	16092	16223	16234	16256	16290	16319	16325	16362			Álvarez-Iglesias et al., 2007
Jujuy y Salta, Argentina	Coya2	А	16111	16189	16193.1 C	16209	16223	16290	16319	16362			Álvarez-Iglesias et al., 2007
Jujuy y Salta, Argentina	Coya2	А	16111	16223	16287	16290	16319	16362					Álvarez-Iglesias et al., 2007
Jujuy y Salta, Argentina	Coya2	А	16111	16223	16290	16311	16319	16362	16463				Álvarez-Iglesias et al., 2007
Jujuy y Salta, Argentina	Cova2	Α	16111	16223	16290	16311	16319	16362					Álvarez-Iglesias et al., 2007
Jujuy y Salta, Argentina	Coya2	А	16182C	16183C	16189	16223	16256	16260	16288	16290	16319		Álvarez-Iglesias et al., 2007
Jujuy y Salta, Argentina	Coya2	А	16223	16290	16319	16362							Álvarez-Iglesias et al., 2007
Jujuy, Argentina	ARG0852	В	16183C	16189C	16193.1 C	16217C	16241C	16263C	16390A	16483A			Cardoso et al., 2013
Jujuy, Argentina	ARG1814	В	16183C	16189C	16193.1 C	16193.2C	16194DEL	16195DEL	16217C	16258T	16270T		Cardoso et al., 2013
Jujuy, Argentina	ARG0014	В	16093C	16183C	16189C	16193.1C	16217C						Cardoso et al., 2013
Jujuy, Argentina	ARG0034	В	16145A	16156A	16157C	16183C	16189C	16193.1C	16217C	16278T			Cardoso et al., 2013
1 , , ,		В											Cardoso et al., 2013
													Cardoso et al., 2013
	Jujuy, Argentina Jujuy y Salta, Argentina Jujuy, Argentina Jujuy, Argentina Jujuy, Argentina Jujuy, Argentina Jujuy, Argentina	Jujuy, Argentina ARG0642 Jujuy, Argentina ARG1322 Jujuy, Argentina ARG1472 Jujuy, Argentina ARG1612 Jujuy, Argentina ARG1612 Jujuy, Argentina ARG1712 Jujuy, Argentina ARG3032 Jujuy, Argentina ARG3032 Jujuy, Argentina ARG3142 Jujuy y Salta, Argentina Coya2 Jujuy, Argentina ARG0852 Jujuy, Argentina ARG0014 Jujuy, Argentina ARG0034	Jujuy, Argentina ARG0642 A Jujuy, Argentina ARG1322 A Jujuy, Argentina ARG1472 A Jujuy, Argentina ARG1612 A Jujuy, Argentina ARG1712 A Jujuy, Argentina ARG1182 A Jujuy, Argentina ARG3032 A Jujuy, Argentina ARG3142 A Jujuy y Salta, Argentina Coya2 A Jujuy, Argentina ARG0852 B Jujuy, Argentina ARG0014 B Jujuy, Argentina ARG0034 B Jujuy, Argentina ARG0064 B	Jujuy, Argentina ARG0642 A 16223T Jujuy, Argentina ARG1322 A 16223T Jujuy, Argentina ARG1472 A 16223T Jujuy, Argentina ARG1612 A 16111T Jujuy, Argentina ARG1712 A 16111T Jujuy, Argentina ARG3032 A 16111T Jujuy, Argentina ARG3032 A 16111T Jujuy, Argentina ARG3142 A 16111T Jujuy, Argentina Coya2 A 16111T Jujuy y Salta, Argentina Coya2 A 16111 Jujuy, Argentina ARG0852 B 16183C Jujuy, Argentina ARG0014 B 16093C Jujuy, Argentina ARG0064 <td>Jujuy, Argentina ARG0642 A 16223T 16290T Jujuy, Argentina ARG1322 A 16223T 16290T Jujuy, Argentina ARG1472 A 16223T 16290T Jujuy, Argentina ARG1612 A 16111T 16223T Jujuy, Argentina ARG1712 A 16111T 16223T Jujuy, Argentina ARG3032 A 16111T 16217C Jujuy, Argentina ARG3032 A 16111T 16217C Jujuy, Argentina ARG3142 A 16111T 16217C Jujuy y Salta, Argentina Coya2 A 16092 16223 Jujuy y Salta, Argentina Coya2 A 16111 16189 Jujuy y Salta, Argentina Coya2 A 16111 16223 Jujuy y Salta, Argentina Coya2 A 16111 16223 Jujuy y Salta, Argentina Coya2 A 16182C 16183C Jujuy, Argentina ARG0852 B 16183C</td> <td>Jujuy, Argentina ARG0642 A 16223T 16290T 16319A Jujuy, Argentina ARG1322 A 16223T 16290T 16319A Jujuy, Argentina ARG1472 A 16223T 16290T 16319A Jujuy, Argentina ARG1612 A 16111T 16223T 16290T Jujuy, Argentina ARG1712 A 16111T 16223T 16290T Jujuy, Argentina ARG3182 A 16092C 16223T 16234A Jujuy, Argentina ARG3032 A 16111T 16217C 16223T Jujuy, Argentina ARG3142 A 16111T 16217C 16223T Jujuy, Argentina Coya2 A 16092 16223 16234 Jujuy y Salta, Argentina Coya2 A 16111 16189 C Jujuy y Salta, Argentina Coya2 A 16111 16223 16287 Jujuy y Salta, Argentina Coya2 A 16111 16223 16290</td> <td>Jujuy, Argentina ARG0642 A 16223T 16290T 16319A 16362C Jujuy, Argentina ARG1322 A 16223T 16290T 16319A 16362C Jujuy, Argentina ARG1472 A 16223T 16290T 16319A 16362C Jujuy, Argentina ARG1612 A 16111T 16223T 16290T 16319A Jujuy, Argentina ARG1712 A 16111T 16223T 16290T 16319A Jujuy, Argentina ARG1182 A 16092C 16223T 16290T 16319A Jujuy, Argentina ARG3032 A 16111T 16217C 16223T 16287T Jujuy, Argentina ARG3142 A 16111T 16217C 16223T 16287T Jujuy y Salta, Argentina Coya2 A 16092 16223 16234 16256 Jujuy y Salta, Argentina Coya2 A 16111 16223 16287 16290 Jujuy y Salta, Argentina Coya2 A</td> <td> Jujuy, Argentina ARG0642</td> <td> Jujuy, Argentina ARG0642 A 16223T 16290T 16319A 16362C Jujuy, Argentina ARG1322 A 16223T 16290T 16319A 16362C Jujuy, Argentina ARG1472 A 16223T 16290T 16319A 16362C Jujuy, Argentina ARG1612 A 16111T 16223T 16290T 16319A 16362C 16512C Jujuy, Argentina ARG1712 A 16111T 16223T 16290T 16319A 16362C 16512C Jujuy, Argentina ARG1182 A 16092C 16223T 16290T 16319A 16362C 16512C Jujuy, Argentina ARG3032 A 16111T 16217C 16223T 16287T 16290T 16319A Jujuy, Argentina ARG3032 A 16111T 16217C 16223T 16287T 16290T 16319A Jujuy, Argentina Coya2 A 16092 16223 16234 16256 16290 16319 Jujuy, Salta, Argentina Coya2 A 16111 16189 C 16209 16223 16290 Jujuy, Salta, Argentina Coya2 A 16111 16223 16287 16290 16319 16362 Jujuy, Salta, Argentina Coya2 A 16111 16223 16287 16290 16319 16362 Jujuy, Salta, Argentina Coya2 A 16111 16223 16290 16311 16319 16362 Jujuy, Salta, Argentina Coya2 A 16111 16223 16290 16311 16319 16362 Jujuy, Salta, Argentina Coya2 A 16111 16223 16290 16311 16319 16362 Jujuy, Salta, Argentina Coya2 A 16111 16223 16290 16311 16319 16362 Jujuy, Salta, Argentina Coya2 A 16182C 16183C 16189 16223 16256 16260 Jujuy, Salta, Argentina Coya2 A 16182C 16183C 16189 C 16217C 16241C 16263C Jujuy, Argentina ARG0852 B 16183C 16189C C 16193.1C 16194DEL 16195DEL Jujuy, Argentina ARG0014 B 16093C 16186 16189C 16193.1C Jujuy, Argentina ARG0034 B 16145A 16156A 16189C 16217C 16464G Jujuy, Argentina ARG0064 B 16183C 16188T 16189C 16217C 16464G Jujuy, Argentina ARG0064 B 16183C 16188T 16189C 16217C 16464G Jujuy, Argentina ARG0064 B 16183C 16188T 16189C 16217C 16464G Jujuy, Argentina ARG0064 B 16183C 16188T 16189C 16217C 164</td> <td> Jujuy, Argentina ARG0642</td> <td> Jujuy, Argentina ARG0642 A 16223T 16290T 16319A 16362C Jujuy, Argentina ARG1322 A 16223T 16290T 16319A 16362C Jujuy, Argentina ARG1472 A 16223T 16290T 16319A 16362C Jujuy, Argentina ARG1612 A 16111T 16223T 16290T 16319A 16362C 16512C Jujuy, Argentina ARG1712 A 16111T 16223T 16290T 16319A 16362C 16512C Jujuy, Argentina ARG1182 A 16092C 16223T 16290T 16319A 16362C 16512C Jujuy, Argentina ARG3032 A 16111T 16217C 16223T 16290T 16319A 16362C 16319A 16362C Jujuy, Argentina ARG3032 A 16111T 16217C 16223T 16287T 16290T 16319A 16362C Jujuy, Argentina ARG3142 A 16111T 16217C 16223T 16287T 16290T 16319A 16362C Jujuy y Salta, Argentina Coya2 A 16111 16182 16193.1 16329 16319 16325 16362 Jujuy y Salta, Argentina Coya2 A 16111 16182 C 16209 16233 16290 16319 16362 Jujuy y Salta, Argentina Coya2 A 16111 16223 16287 16290 16319 16362 Jujuy y Salta, Argentina Coya2 A 16111 16223 16290 16311 16319 16362 Jujuy y Salta, Argentina Coya2 A 16111 16223 16290 16311 16319 16362 Jujuy y Salta, Argentina Coya2 A 16111 16223 16290 16311 16319 16362 Jujuy y Salta, Argentina Coya2 A 16111 16223 16290 16311 16319 16362 Jujuy y Salta, Argentina Coya2 A 16111 16223 16290 16311 16319 16362 Jujuy y Salta, Argentina Coya2 A 16182C 16183C 16189 16223 16256 16260 16288 16290 Jujuy y Salta, Argentina Coya2 A 16182C 16183C 16189C C 16217C 16241C 16263C 16390A 16483A Jujuy, Argentina ARG0852 B 16183C 16189C C 16193.1C 16217C 16217C 16247C Jujuy, Argentina ARG0014 B 16183C 16189C 16193.1C 16193.1C 16217C Jujuy, Argentina ARG0044 B 16183C 16188T 16189C 16217C 16464G Jujuy, Argentina ARG0064 B 16183C 16188T 16189C 16217C 16464G Jujuy, Arg</td> <td> Jujuy, Argentina ARG0642 A 16223T 16290T 16319A 16362C </td> <td> Jujuy, Argentina ARG0642 A 16223T 16290T 16319A 16362C </td>	Jujuy, Argentina ARG0642 A 16223T 16290T Jujuy, Argentina ARG1322 A 16223T 16290T Jujuy, Argentina ARG1472 A 16223T 16290T Jujuy, Argentina ARG1612 A 16111T 16223T Jujuy, Argentina ARG1712 A 16111T 16223T Jujuy, Argentina ARG3032 A 16111T 16217C Jujuy, Argentina ARG3032 A 16111T 16217C Jujuy, Argentina ARG3142 A 16111T 16217C Jujuy y Salta, Argentina Coya2 A 16092 16223 Jujuy y Salta, Argentina Coya2 A 16111 16189 Jujuy y Salta, Argentina Coya2 A 16111 16223 Jujuy y Salta, Argentina Coya2 A 16111 16223 Jujuy y Salta, Argentina Coya2 A 16182C 16183C Jujuy, Argentina ARG0852 B 16183C	Jujuy, Argentina ARG0642 A 16223T 16290T 16319A Jujuy, Argentina ARG1322 A 16223T 16290T 16319A Jujuy, Argentina ARG1472 A 16223T 16290T 16319A Jujuy, Argentina ARG1612 A 16111T 16223T 16290T Jujuy, Argentina ARG1712 A 16111T 16223T 16290T Jujuy, Argentina ARG3182 A 16092C 16223T 16234A Jujuy, Argentina ARG3032 A 16111T 16217C 16223T Jujuy, Argentina ARG3142 A 16111T 16217C 16223T Jujuy, Argentina Coya2 A 16092 16223 16234 Jujuy y Salta, Argentina Coya2 A 16111 16189 C Jujuy y Salta, Argentina Coya2 A 16111 16223 16287 Jujuy y Salta, Argentina Coya2 A 16111 16223 16290	Jujuy, Argentina ARG0642 A 16223T 16290T 16319A 16362C Jujuy, Argentina ARG1322 A 16223T 16290T 16319A 16362C Jujuy, Argentina ARG1472 A 16223T 16290T 16319A 16362C Jujuy, Argentina ARG1612 A 16111T 16223T 16290T 16319A Jujuy, Argentina ARG1712 A 16111T 16223T 16290T 16319A Jujuy, Argentina ARG1182 A 16092C 16223T 16290T 16319A Jujuy, Argentina ARG3032 A 16111T 16217C 16223T 16287T Jujuy, Argentina ARG3142 A 16111T 16217C 16223T 16287T Jujuy y Salta, Argentina Coya2 A 16092 16223 16234 16256 Jujuy y Salta, Argentina Coya2 A 16111 16223 16287 16290 Jujuy y Salta, Argentina Coya2 A	Jujuy, Argentina ARG0642	Jujuy, Argentina ARG0642 A 16223T 16290T 16319A 16362C Jujuy, Argentina ARG1322 A 16223T 16290T 16319A 16362C Jujuy, Argentina ARG1472 A 16223T 16290T 16319A 16362C Jujuy, Argentina ARG1612 A 16111T 16223T 16290T 16319A 16362C 16512C Jujuy, Argentina ARG1712 A 16111T 16223T 16290T 16319A 16362C 16512C Jujuy, Argentina ARG1182 A 16092C 16223T 16290T 16319A 16362C 16512C Jujuy, Argentina ARG3032 A 16111T 16217C 16223T 16287T 16290T 16319A Jujuy, Argentina ARG3032 A 16111T 16217C 16223T 16287T 16290T 16319A Jujuy, Argentina Coya2 A 16092 16223 16234 16256 16290 16319 Jujuy, Salta, Argentina Coya2 A 16111 16189 C 16209 16223 16290 Jujuy, Salta, Argentina Coya2 A 16111 16223 16287 16290 16319 16362 Jujuy, Salta, Argentina Coya2 A 16111 16223 16287 16290 16319 16362 Jujuy, Salta, Argentina Coya2 A 16111 16223 16290 16311 16319 16362 Jujuy, Salta, Argentina Coya2 A 16111 16223 16290 16311 16319 16362 Jujuy, Salta, Argentina Coya2 A 16111 16223 16290 16311 16319 16362 Jujuy, Salta, Argentina Coya2 A 16111 16223 16290 16311 16319 16362 Jujuy, Salta, Argentina Coya2 A 16182C 16183C 16189 16223 16256 16260 Jujuy, Salta, Argentina Coya2 A 16182C 16183C 16189 C 16217C 16241C 16263C Jujuy, Argentina ARG0852 B 16183C 16189C C 16193.1C 16194DEL 16195DEL Jujuy, Argentina ARG0014 B 16093C 16186 16189C 16193.1C Jujuy, Argentina ARG0034 B 16145A 16156A 16189C 16217C 16464G Jujuy, Argentina ARG0064 B 16183C 16188T 16189C 16217C 16464G Jujuy, Argentina ARG0064 B 16183C 16188T 16189C 16217C 16464G Jujuy, Argentina ARG0064 B 16183C 16188T 16189C 16217C 16464G Jujuy, Argentina ARG0064 B 16183C 16188T 16189C 16217C 164	Jujuy, Argentina ARG0642	Jujuy, Argentina ARG0642 A 16223T 16290T 16319A 16362C Jujuy, Argentina ARG1322 A 16223T 16290T 16319A 16362C Jujuy, Argentina ARG1472 A 16223T 16290T 16319A 16362C Jujuy, Argentina ARG1612 A 16111T 16223T 16290T 16319A 16362C 16512C Jujuy, Argentina ARG1712 A 16111T 16223T 16290T 16319A 16362C 16512C Jujuy, Argentina ARG1182 A 16092C 16223T 16290T 16319A 16362C 16512C Jujuy, Argentina ARG3032 A 16111T 16217C 16223T 16290T 16319A 16362C 16319A 16362C Jujuy, Argentina ARG3032 A 16111T 16217C 16223T 16287T 16290T 16319A 16362C Jujuy, Argentina ARG3142 A 16111T 16217C 16223T 16287T 16290T 16319A 16362C Jujuy y Salta, Argentina Coya2 A 16111 16182 16193.1 16329 16319 16325 16362 Jujuy y Salta, Argentina Coya2 A 16111 16182 C 16209 16233 16290 16319 16362 Jujuy y Salta, Argentina Coya2 A 16111 16223 16287 16290 16319 16362 Jujuy y Salta, Argentina Coya2 A 16111 16223 16290 16311 16319 16362 Jujuy y Salta, Argentina Coya2 A 16111 16223 16290 16311 16319 16362 Jujuy y Salta, Argentina Coya2 A 16111 16223 16290 16311 16319 16362 Jujuy y Salta, Argentina Coya2 A 16111 16223 16290 16311 16319 16362 Jujuy y Salta, Argentina Coya2 A 16111 16223 16290 16311 16319 16362 Jujuy y Salta, Argentina Coya2 A 16182C 16183C 16189 16223 16256 16260 16288 16290 Jujuy y Salta, Argentina Coya2 A 16182C 16183C 16189C C 16217C 16241C 16263C 16390A 16483A Jujuy, Argentina ARG0852 B 16183C 16189C C 16193.1C 16217C 16217C 16247C Jujuy, Argentina ARG0014 B 16183C 16189C 16193.1C 16193.1C 16217C Jujuy, Argentina ARG0044 B 16183C 16188T 16189C 16217C 16464G Jujuy, Argentina ARG0064 B 16183C 16188T 16189C 16217C 16464G Jujuy, Arg	Jujuy, Argentina ARG0642 A 16223T 16290T 16319A 16362C	Jujuy, Argentina ARG0642 A 16223T 16290T 16319A 16362C

	Luinna Amarantina	AD00404	_	404000	404000	16193.1	400470	400500	400570			
Ands/NOA-M	Jujuy, Argentina	ARG0104	В	16183C	16189C	C 16193.1	16217C	16258G	16357C			Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0114	В	16183C	16189C	C	16217C	16258G	16357C			Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0174	В	16182C	16183C	16189C	16193.1C	16217C	16249C			Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0204	В	16183C	16189C	16193.1 C	16217C					Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0214	В	16183C	16189C	16193.1 C	16214T	16217C	16271C			Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0224	В	16182C	16183C	16189C	16193.1C	16217C				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0254	В	16183C	16189C	16193.1 C	16217C	16381C				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0274	В	16183C	16188T	16189C	16217C					Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0304	В	16183C	16189C	16193.1 C	16217C					Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0314	В	16086C	16182C	16183C	16189C	16193.1C	16217C	16454T	16455A	Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0334	В	16086C	16182C	16183C	16189C	16193.1C	16217C	16454T	16455A	Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0564	В	16183C	16189C	16193.1 C	16217C	16359C				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0584	В	16145A	16156A	16157C	16183C	16189C	16193.1C	16217C		Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0614	В	16145A	16156A	16157C	16183C	16189C	16193.1C	16217C		Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0634	В	16183C	16188T	16189C	16217C	16354T				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0664	В	16145A	16156A	16157C	16183C	16189C	16193.1C	16217C		Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0674	В	16183C	16188T	16189C	16217C					Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0684	В	16183C	16188T	16189C	16217C	16309G				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0714	В	16183C	16188T	16189C	16217C					Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0724	В	16183C	16188T	16189C	16217C					Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0744	В	16183C	16189C	16193.1 C	16217C					Cardoso et al., 2013

Ands/NOA-M	Jujuy, Argentina	ARG0774	В	16182C	16183C	16189C	16217C					Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0794	В	16111T	16183C	16189C	16217C	16512C				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0804	В	16182C	16183C	16189C	16217C	16261T	16311C			Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0834	В	16183C	16189C	16217C	16286T	16289G				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0844	В	16092C	16167T	16183C	16189C	16193.1C	16217C	16311C		Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0874	В	16183C	16189C	16193.1 C	16217C	16286T	16289G			Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0884	В	16182C	16183C	16189C	16193.1C	16217C				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0894	В	16183C	16189C	16217C						Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0904	В	16183C	16189C	16193.1 C	16217C					Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0914	В	16183C	16188T	16189C	16217C					Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0934	В	16182C	16183C	16189C	16217C					Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0944	В	16182C	16183C	16189C	16193.1C	16217C	16261T	16311C		Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0964	В	16183C	16189C	16193.1 C	16217C	16316G				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1064	В	16183C	16189C	16193.1 C	16217C	16519C				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1084	В	16183C	16189C	16193.1 C	16212G	16217C	16261T	16319A		Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1094	В	16182C	16183C	16189C	16193.1C	16217C				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1144	В	16183C	16189C	16193.1 C	16217C	16294T				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1154	В	16183C	16185T	16189C	16193DEL	16217C				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1174	В	16146G	16183C	16189C	16193.1C	16217C	16218T			Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1194	В	16179T	16183C	16189C	16193.1C	16217C	16295T			Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1204	В	16179T	16183C	16189C	16193.1C	16217C	16295T			Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1244	В	16093Y	16179T	16183C	16189C	16193.1C	16217C	16295T		Cardoso et al., 2013

Ands/NOA-M	Jujuy, Argentina	ARG1264	В	16093Y	16179T	16183C	16189C	16193.1C	16217C	16295T	Cardoso et al., 2013
AI - /NIO A NA	Indiana American	ADC407		404000	404000	16193.1	400470				0
Ands/NOA-M	Jujuy, Argentina	ARG127	В	16183C	16189C	C 16193.1	16217C				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1334	В	16183C	16189C	C	16217C	16311C			Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1374	В	16183C	16188T	16189C	16217C				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1384	В	16182C	16183C	16189C	16193.1C	16217C			Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1394	В	16092C	16183C	16189C	16193.1C	16217C			Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1444	В	16183C	16189C	16193.1 C	16217C				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1454	В	16183C	16188T	16189C	16217C	16465T			Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1504	В	16145A	16156A	16157C	16183C	16189C	16193.1C	16217C	Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1514	В	16183C	16189C	16193.1 C	16217C				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1524	В	16146G	16183C	16189C	16193.1C	16217C	16218T		Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1544	В	16051G	16094C	16183C	16189C	16193.1C	16217C		Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1554	В	16183C	16188T	16189C	16217C				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1584	В	16182C	16183C	16189C	16193.1C	16217C			Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1624	В	16183C	16188T	16189C	16217C				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1704	В	16183C	16188T	16189C	16217C				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1734	В	16182C	16183C	16189C	16193.1C	16217C			Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1754	В	16183C	16189C	16193.1 C	16217C	16256T	16288C		Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1764	В	16183C	16189C	16193.1 C	16217C	16289G			Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1834	В	16129R	16145A	16183C	16189C	16193.1C	16217C		Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1864	В	16183C	16189C	16193.1 C	16217C	16292T			Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1874	В	16183C	16189C	16193.1 C	16217C	16381C			Cardoso et al., 2013

						16193.1						
Ands/NOA-M	Jujuy, Argentina	ARG1884	В	16183C	16189C	C 16193.1	16217C					Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1924	В	16183C	16189C	C	16217C					Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1944	В	16092C	16183C	16189C	16193.1C	16217C	16311C			Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1954	В	16126C	16182C	16183C	16189C	16193.1C	16217C			Cardoso et al., 2013
			_			16193.1						·
Ands/NOA-M	Jujuy, Argentina	ARG2014	В	16183C	16189C	C 16193.1	16217C					Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG2024	В	16172C	16189C	C	16217C	16256T	16288C			Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG2084	В	16183C	16188T	16189C	16217C					Cardoso et al., 2013
	1	A D C C 4 C 4	1	404000	404000	16193.1	100170	40004T	400404	400000		
Ands/NOA-M	Jujuy, Argentina	ARG2124	В	16183C	16189C	С	16217C	16261T	16319A	16362C		Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG2134	В	16145A	16183C	16189C	16193.1C	16217C	16357C			Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG2164	В	16183C	16188T	16189C	16217C					Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG2264	В	16182C	16183C	16189C	16193.1C	16217C				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG2304	В	16183C	16188T	16189C	16217C					Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG2334	В	16183C	16188T	16189C	16217C					Cardoso et al., 2013
		1000011		404000	404000	16193.1	100170	400440				
Ands/NOA-M	Jujuy, Argentina	ARG2344	В	16183C	16189C	C 16193.1	16217C	16311C				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG2424	В	16183C	16189C	C	16217C	16241G				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG2714	В	16093C	16183C	16189C	16193.1C	16217C				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG3064	В	16126C	16183C	16189C	16193.1C	16217C				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG3094	В	16168T	16183C	16189C	16193.1C	16217C	16274A	16301A		Cardoso et al., 2013
			_			16193.1						
Ands/NOA-M	Jujuy, Argentina	ARG3114	В	16183C	16189C	C 16193.1	16217C					Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG3184	В	16183C	16189C	16193.1 C	16217C					Cardoso et al., 2013
						16193.1						
Ands/NOA-M	Jujuy, Argentina	ARG3254	В	16183C	16189C	С	16217C					Cardoso et al., 2013

Ands/NOA-M	Luine Argentine	ARG0044	В	16183C	16188T	16189C	16217C						Cardoso et al., 2013
	Jujuy, Argentina												, , , , , , , , , , , , , , , , , , , ,
Ands/NOA-M	Jujuy, Argentina	ARG0784	В	16183C	16188T	16189C	16217C					-	Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0824	В	16183C	16188T	16189C	16217C						Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1164	В	16183C	16188T	16189C	16217C						Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1574	В	16183C	16188T	16189C	16217C						Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1794	В	16183C	16188T	16189C	16217C						Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1894	В	16183C	16188T	16189C	16217C						Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG2214	В	16183C	16188T	16189C	16193DEL	16217C					Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG3164	В	16183C	16188T	16189C	16217C						Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG3204	В	16183C	16188T	16189C	16217C	16519C					Cardoso et al., 2013
Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16051	16183C	16189	16217	16360					Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16092	16183C	16189	16193.1C	16217	16311				Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16092	16183C	16189	16217						Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16093	16183	16189	16193.1C	16217					Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16111	16183C	16189	16217	16270					Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16111	16183C	16189	16217						Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16168	16183C	16189	16217						Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16176	16182C	16183C	16189	16193.1C	16217	16319	16422		Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16182C	16183C	16189	16193.1C	16217					Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16182C	16183C	16189	16217	16242					Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16182C	16183C	16189	16217	16249					Álvarez-Iglesias et al., 2007

Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16182C	16183C	16189	16217					Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16182C	16183C	16189	16217					Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16183C	16188	16189	16217	16311				Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16183C	16188	16189	16217	16354				Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16183C	16188	16189	16217					Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16183C	16189	16193.1 C	16217	16292				Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16183C	16189	16193.1 C	16217	16381				Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16183C	16189	16193.1 C	16217					Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16183C	16189	16217	16286	16289				Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16183C	16189	16217	16289					Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16183C	16189	16217	16359					Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16183C	16189	16217						Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16183D	16217	16428	16465					Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16183D	16217	16465						Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16182D	16217							Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya2	В	16189	16217	16381						Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy, Argentina	ARG0141	С	16169T	16192A	16209C	16223T	16298C	16325C	16327T		Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0151	С	16223T	16298C	16325C	16327T	16526A				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0121	С	16223T	16298C	16325C	16327T					Cardoso et al., 2013

						16193.1							
Ands/NOA-M	Jujuy, Argentina	ARG0181	С	16183C	16189C	С	16223T	16298C	16311C	16325C	16327T		Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0191	С	16092C	16223T	16298C	16325C	16327T	16400T	16463G			Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0551	С	16157C	16209C	16223T	16298C	16325C	16327T				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0571	С	16093C	16192T	16223T	16298C	16325C	16327T				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0591	С	16093C	16192T	16223T	16298C	16325C	16327T				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0601	С	16093C	16192T	16223T	16298C	16325C	16327T				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0651	С	16093C	16192T	16223T	16298C	16325C	16327T				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0921	С	16223T	16298C	16325C	16327T						Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1281	С	16223T	16298C	16325C	16327T	16344T					Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1311	С	16223T	16298C	16325C	16327T						Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1351	С	16157C	16183C	16189C	16193.1C	16223T	16298C	16311C	16325C	16327T	Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1361	С	16223T	16298C	16325C	16327T						Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1411	С	16111T	16183G	16223T	16298C	16325C	16327T	16368C			Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1641	С	16223T	16298C	16325C	16327T						Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1671	С	16223T	16298C	16325C	16327T						Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1771	С	16223T	16292T	16298C	16325C	16327T					Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1821	С	16086C	16092C	16223T	16298C	16325C	16327T				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1901	С	16223T	16298C	16325C	16327T	16384A					Cardoso et al., 2013
Ando/NOA M	Luiuw Argontina	ARG2031	С	16183C	16189C	16193.1 C	16223T	16298C	16311C	16325C	16327T		Cordona et al. 2012
Ands/NOA-M	Jujuy, Argentina										103271		Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG2541	С	16092C	16129A	16223T	16298C	16325C	16327T	16400T			Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG2701	С	16223T	16298C	16325C	16327T		73G				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG3021	С	16092C	16223T	16249C	16298C	16325C	16327T	16400T	16463G		Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG3071	С	16092C	16223T	16249C	16298C	16325C	16327T	16400T	16463G		Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG3081	С	16092C	16223T	16249C	16298C	16325C	16327T	16400T	16463G		Cardoso et al., 2013

Ands/NOA-M	Jujuy, Argentina	ARG3101	С	16092C	16223T	16249C	16298C	16325C	16327T	16400T	16463G	Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG3121	С	16092C	16223T	16249C	16298C	16325C	16327T	16400T	16463G	Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG3151	С	16092C	16223T	16249C	16298C	16325C	16327T	16400T	16463G	Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG3191	С	16092C	16223T	16249C	16298C	16325C	16327T	16400T	16463G	Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0261	С	16051G	16223T	16298C	16325C	16327T	16362C			Cardoso et al., 2013
Ands/NOA-M	Jujuy y Salta, Argentina	Coya1	С	16093	16145	16169	16223	16274	16298	16325	16327	Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya1	С	16093	16192	16223	16298	16325	16327			Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya1	С	16136	16223	16298	16325	16327				Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya1	С	16169	16192A	16209	16223	16298	16325	16327		Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya1	С	16182C	16183C	16189	16223	16298	16311	16325	16327	Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya1	С	16223	16224	16298	16325	16327				Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya1	С	16223	16298	16325	16327					Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya1	С	16223	16298	16325	16327	16354	16356			Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya1	С	16223	16298	16325	16327	16362				Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya1	С	16223	16298	16325	16327					Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya1	С	16223	16304	16325	16327	16400				Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy, Argentina	ARG0161	D	16223T	16270Y	16319A	16325C	16362C				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0281	D	16223T	16261Y	16325C	16362C					Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina		D	16223T	16325C	16362C						Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina		D	16223T	16292T	16325C	16362C					Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina		D	16223T	16325C	16362C						Cardoso et al., 2013

													1	ı
Ands/NOA-M	Jujuy, Argentina	ARG1681	D	16223T	16325C	16362C								Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1781	D	16190T	16223T	16325C	16362C							Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG3221	D	16223T	16293G	16325C	16362C							Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG3241	D	16223T	16293G	16325C	16362C							Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG3171	D	16142T	16148T	16223T	16278T	16325C	16356C	16362C				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG3231	D	16142T	16148T	16223T	16278T	16325C	16356C	16362C				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG3261	D	16142T	16148T	16223T	16278T	16325C	16356C	16362C				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina		D	16183C	16189C	16193.1 C	16223T	16242T	16311C	16325C	16362C			Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1071	D	16223T	16242T	16311C	16325C	16362C						Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1531	D	16223T	16242T	16311C	16325C	16362C						Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG2461	D	16223T	16242T	16311C	16325C	16362C						Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0761	D	16223T	16241G	16292Y	16294T	16301T	16342C	16362C				Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina		D	16223T	16241G	16294T	16301T	16342C	16362C					Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0971	D	16129A	16182C	16183C	16189C	16215G	16223T	16278T	16294T	16311C	16360 T	Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG1631	D	16209C	16223T	16311C								Cardoso et al., 2013
Ands/NOA-M	Jujuy, Argentina	ARG0951	D	16126C	16292T	16294T								Cardoso et al., 2013
Ands/NOA-M	Jujuy y Salta, Argentina	Coya1	D	16223	16242	16311	16325	16362						Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya1	D	16223	16325	16362								Álvarez-Iglesias et al., 2007
Ands/NOA-M	Jujuy y Salta, Argentina	Coya4h	D	16223	16241	16294	16301	16342	16362					Álvarez-Iglesias et al., 2007
Ands/NOA-A	Jujuy, Argentina	A.LAm12	Α	16111T	16223T	16290T	16319A	16362C						Mendisco et al., 2014
Ands/NOA-A	Jujuy, Argentina	A.LAm22	Α	16111T	16223T	16290T	16319A	16362C						Mendisco et al., 2014
Ands/NOA-A	Jujuy, Argentina	A.LAm32	Α	16111T	16223T	16290T	16319A	16362C						Mendisco et al., 2014
Ands/NOA-A	Jujuy, Argentina	A.LAm42	Α	16111T	16223T	16290T	16319A	16362C						Mendisco et al., 2014

													,
Ands/NOA-A	Jujuy, Argentina	A.LAm52	Α	16111T	16223T	16290T	16319A	16362C					Mendisco et al., 2014
Ands/NOA-A	Jujuy, Argentina	A.LAm62	Α	16111T	16223T	16290T	16319A	16362C					Mendisco et al., 2014
Ands/NOA-A	Jujuy, Argentina	A.LAm72	Α	16111T	16223T	16290T	16319A	16362C					Mendisco et al., 2014
Ands/NOA-A	Jujuy, Argentina	A.LAm82	Α	16111T	16223T	16290T	16319A	16362C					Mendisco et al., 2014
Ands/NOA-A	Jujuy, Argentina	A.LAm92	Α	16111T	16125A	16223T	16290T	16319A	16362C				Mendisco et al., 2014
Ands/NOA-A	Jujuy, Argentina	A.Til12	Α	16111T	16223T	16290T	16319A	16362C					Mendisco et al., 2014
Ands/NOA-A	Jujuy, Argentina	A.Hui2	Α	16111T	16223T	16266T	16290T	16319A	16362C				Mendisco et al., 2014
Ands/NOA-A	Jujuy, Argentina	A.Bpe12	Α	16111T	16223T	16290T	16319A	16362C					Mendisco et al., 2014
Ands/NOA-A	Salta, Argentina	A.Ter12	Α	16111T	16223T	16290T	16319A	16362C					Mendisco et al., 2014
Ands/NOA-A	Salta, Argentina	A.PG18414 2	А	16111	16223	16290	16319	16362					Carnese et al., 2010
Ands/NOA-A	Salta, Argentina	A.PG18365 2	А	16111	16223	16290	16319	16362					Carnese et al., 2010
Ands/NOA-A	Jujuy, Argentina	A.LAm102	В	16182C	16183C	16189C	16217C						Mendisco et al., 2014
Ands/NOA-A	Jujuy, Argentina	A.Til22	В	16111T	16126C	16183C	16189C	16217C					Mendisco et al., 2014
Ands/NOA-A	Jujuy, Argentina	A.Til32	В	16182C	16183C	16189C	16217C						Mendisco et al., 2014
Ands/NOA-A	Jujuy, Argentina	A.Til42	В	16183C	16188T	16189C	16217C						Mendisco et al., 2014
Ands/NOA-A	Jujuy, Argentina		В	16179T	16183C	16189C	16217C						Mendisco et al., 2014
Ands/NOA-A	Jujuy, Argentina		В	16183C	16189C	16217c							Mendisco et al., 2014
Ands/NOA-A	Jujuy, Argentina	A.Sar22	В	16183C	16189C	16217c							Mendisco et al., 2014
Ands/NOA-A	Salta, Argentina		В	16092C	16145A	16156A	16157C	16182C	16183C	16189C	16217C	16295T	Mendisco et al., 2014
Ands/NOA-A	Salta, Argentina	A.Ter32	В	16092C	16145A	16156A	16157C	16182C	16183C	16189C	16217C	16295T	Mendisco et al., 2014
Ands/NOA-A	Jujuy, Argentina		В	16183C	16189C	16217C	16289G						Mendisco et al., 2014
Ands/NOA-A	Salta, Argentina		В	16183	161289	16217							Carnese et al., 2010
Ands/NOA-A	Salta, Argentina	A.PG18430	В	16142	16182	16183	16189	16217					Carnese et al., 2010
Ands/NOA-A	Salta, Argentina		В	16145	16156	16157	16183	16189	16217				Carnese et al., 2010

Ands/NOA-A	Salta, Argentina	A.PG18416	В	16145	16156	16157	16183	16189	16217			Carnese et al., 2010
Ands/NOA-A	Salta, Argentina	A.PG17864	В	16145	16156	16157	16187	16183	16189	16217		Carnese et al., 2010
Ands/NOA-A	Salta, Argentina	A.PG17825	В	16145	16156	16157	16183	16189	16217	16278		Carnese et al., 2010
Ands/NOA-A	Salta, Argentina	A.PG17894	В	16145	16156	16157	16183	16189	16217	16278		Carnese et al., 2010
Ands/NOA-A	Salta, Argentina	A.PG17890	В	16145	16156	16157	16183	16189	16217	16278		Carnese et al., 2010
Ands/NOA-A	Salta, Argentina	A.PG17891	В	16145	16156	16157	16183	16189	16217	16278		Carnese et al., 2010
Ands/NOA-A	Jujuy, Argentina	A.LAm11	С	16183C	16189C	16223T	16298C	16311C	16325C	16327T		Mendisco et al., 2014
Ands/NOA-A	Jujuy, Argentina	A.SJo1	С	16223T	16292T	16298C	16325C	16327T				Mendisco et al., 2014
Ands/NOA-A	Jujuy, Argentina	A.Jue2	С	16223T	16298C	16325C	16327T					Mendisco et al., 2014
Ands/NOA-A	Salta, Argentina	A.Ter4	С	16129A	16223T	16298C	16325C	16327T				Mendisco et al., 2014
Ands/NOA-A	Jujuy, Argentina	A.Don2	С	16183C	16189C	16223T	16298C	16311C	16325C	16327T		Mendisco et al., 2014
Ands/NOA-A	Jujuy, Argentina	A.LAm12	D	16223T	16325C	16362C						Mendisco et al., 2014
Ands/NOA-A	Jujuy, Argentina	A.LAm13	D	16223T	16325C	16362C						Mendisco et al., 2014
Ands/NOA-A	Jujuy, Argentina	A.Hua1	D	16223T	16325C	16362C						Mendisco et al., 2014
Ands/NOA-A	Jujuy, Argentina	A.Jue3	D	16223T	16325C	16362C						Mendisco et al., 2014
Ands/NOA-A	Salta, Argentina	A.PG18432	D	16223	16325	16362						Carnese et al., 2010
Ands/NOA-A	Salta, Argentina	A.PG17863	D	16223	16325	16362						Carnese et al., 2010
Ands/NOA-A	Salta, Argentina	A.PG17809	D	16223	16325	16362						Carnese et al., 2010
Ands/NOA-A	Salta, Argentina	A.PG18417	D	16129	16223	16325	16362					Carnese et al., 2010
Ands/NOA-A	Salta, Argentina	A.PG17885	D	16129	16223	16325	16362					Carnese et al., 2010
Ands/NOA-A	Salta, Argentina	A.PG17895	D	16223	16287	16325	16362					Carnese et al., 2010
Ands/NOA-A	Salta, Argentina		D	16223	16287	16325	16362					Carnese et al., 2010
Ands/NOA-A	Salta, Argentina	A.PG18426	D	16223	16287	16325	16362					Carnese et al., 2010
NEA/BRs/Par- M	Chaco, Argentina	ToCh2	А	16051G	16111T	16223T	16290T	16319A	16362C			Cabana et al., 2006

		1							1				
NEA/BRs/Par- M	Formosa, Argentina	ToFo2	Α	16051G	16111T	16223T	16290T	16319A	16362C				Cabana et al., 2006
NEA/BRs/Par- M	Chaco, Argentina	WiCh2	А	16051G	16111T	16223T	16290T	16319A	16362C				Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	WiFo2	А	16051G	16111T	16223T	16290T	16319A	16362C				Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	PilFo2	А	16111T	16145A	16223T	16288C	16290T	16319A	16362C			Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	WiFo2	А	16111T	16145A	16223T	16288C	16290T	16319A	16362C			Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	PilFo2	А	16051G	16223T	16290T	16319A	16362C					Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	PilFo2	А	16223T	16290T	16319A	16362C						Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	PilFo2	А	16111T	16223T	16266T	16290T	16319A	16362C				Cabana et al., 2006
NEA/BRs/Par- M	Chaco, Argentina	ToCh2	А	16097C	16098G	16111T	16167T	16223T	16290T	16319A	16324C	16362C	Cabana et al., 2006
NEA/BRs/Par- M	Chaco, Argentina	ToCh2	А	16051G	16086C	16111T	16223T	16290T	16319A	16362C			Cabana et al., 2006
NEA/BRs/Par-	Mato Grosso do Sul, Paraná y Rio grande do Sul, Brasil	GUA.B1	А	16111T	16223T	16290T	16319A	16362C					Marrero et al., 2007
NEA/BRs/Par-	Mato Grosso do Sul, Paraná y Rio grande do Sul, Brasil	GUA.B2	A	16111T	16223T	16290T	16291T	16319A	16362C				Marrero et al 2007
NEA/BRs/Par-	Mato Grosso do Sul, Paraná y Rio grande do Sul, Brasil	GUA.B3	A	16111T	16209C	16223T	16290T	16319A	16362C				Marrero et al., 2007
NEA/BRs/Par-	Mato Grosso do Sul, Paraná y Rio grande do Sul, Brasil	GUA.B4	А	16111T	16223T	16266T	16290T	16319A	16362C				Marrero et al., 2007

	Mato Grosso do											
	Sul, Paraná y											
NEA/BRs/Par-	Rio grande do											
М	Sul, Brasil	GUA.B5	A	16111T	16153A	16223T	16239A	16266T	16290T	16319A	16362C	Marrero et al., 2007
	Mato Grosso do											
	Sul, Paraná y											
NEA/BRs/Par-	Rio grande do	OLIA DO		40444T	40000 T	40070T	40000 T	400404	400000			
М	Sul, Brasil	GUA.B6	Α	16111T	16223T	16270T	16290T	16319A	16362C			Marrero et al., 2007
	Mato Grosso do											
	Sul, Paraná y											
NEA/BRs/Par-	Rio grande do Sul. Brasil	KAIN.B1	۸	16111T	16223T	162000	16319A	16362C				Manage et al. 2007
M	Mato Grosso do	KAIN.DI	Α	16111T	102231	16290C	16319A	16362C				Marrero et al., 2007
NEA/DD-/D-	Sul, Paraná y Rio grande do											
NEA/BRs/Par- M	Sul. Brasil	KAIN.B2	Α	16111T	16223T	16290T	16291T	16319A	16362C			Marrero et al., 2007
IVI	Mato Grosso do	IVAIIN.DZ		101111	102231	102301	102911	10313A	103020			Marrero et al., 2007
	Sul, Paraná y											
NEA/BRs/Par-	Rio grande do											
M	Sul, Brasil	KAIN.B3	Α	16111T	16223T	16274A	16290T	16319A	16362C			Marrero et al., 2007
	Mato Grosso do						.0200.	100.071				marroro or any zoor
	Sul, Paraná y											
NEA/BRs/Par-	Rio grande do											
M	Sul, Brasil	KAIN.B4	Α	16126C	16223T	16278C	16290T	16319A	16362C			Marrero et al., 2007
NEA/BRs/Par-	Misiones,											
M	Argentina	MB.GU12	Α	16111T	16223T	16290T	16291T	16319A	16362C			Sala et al., 2010
NEA/BRs/Par-	Misiones,											
M	Argentina	MB.GU22	Α	16111T	16223T	16266T	16290T	16319A	16362C			Sala et al., 2010
NEA/BRs/Par-	Misiones,											·
M	Argentina	MB.GU32	Α	16111T	16223T	16290T	16291T	16319A				Sala et al., 2010
NEA/BRs/Par-	Misiones,											
M	Argentina	MB.GU42	Α	16111T	16223T	16290T	16319A	16362C				Sala et al., 2010
NEA/BRs/Par-	Misiones,											
М	Argentina	MB.GU52	Α	16108T	16111T	16223T	16290T	16319A	16362C			Sala et al., 2010
NEA/BRs/Par-	Chaco,		·									
М	Argentina	WiCh2	В	16179T	16182C	16183C	16189C	16198C	16217C			Cabana et al., 2006

NEA/BRs/Par-	Formosa,	WiFo2	В	16179T	16182C	16183C	16189C	161090	16217C				Cabana at al. 2000
M	Argentina Formosa,	VVIFOZ	Ь	101791	10102C	101030	161690	16198C	102170				Cabana et al., 2006
NEA/BRs/Par- M	Argentina	ToFo2	В	16092C	16182C	16183C	16189C	16214T	16217C	16355A			Cabana et al., 2006
NEA/BRs/Par- M	Chaco, Argentina	WiCh2	В	16092C	16182C	16183C	16189C	16214T	16217C	16355A			Cabana et al., 2006
NEA/BRs/Par- M	Chaco, Argentina	WiCh2	В	16140C	16182C	16183C	16189C	16217C					Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	WiFo2	В	16140C	16182C	16183C	16189C	16217C					Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	PilFo2	В	16182C	16183C	16189C	16198C	16217C					Cabana et al., 2006
NEA/BRs/Par- M	Chaco, Argentina	WiCh2	В	16182C	16183C	16189C	16198C	16217C					Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	WiFo2	В	16182C	16183C	16189C	16198C	16217C					Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	WiFo2	В	16095A	16183C	16189C	16217C	16260T					Cabana et al., 2006
NEA/BRs/Par- M	Chaco, Argentina	ToCh2	В	16182C	16183C	16189C	16217C						Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	ToFo2	В	16182C	16183C	16189C	16217C						Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	WiFo2	В	16182C	16183C	16189C	16217C						Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	WiFo2	В	16182C	16183C	16189C	16198C	16217C	16218T				Cabana et al., 2006
NEA/BRs/Par-	Formosa, Argentina	WiFo2	В	16183C	16189C	16217C	16309G						Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	WiFo2	В	16183C	16189C	16217C	16258G	16357C					Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	PilFo2	В	16183C	16188T	16189C	16217C						Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	WiFo2	В	16183C	16188T	16189C	16217C						Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	PilFo2	В	16182C	16183C	16189C	16212G	16217C	16261T	16319A	16344G		Cabana et al., 2006

NEA/BRs/Par-	Formosa,											
М	Argentina	PiLFo2	В	16183C	16189C	16217C	16261T	16319A				Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	PilFo2	В	16129A	16183C	16189C	16217C	16309G				Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	PilFo2	В	16093C	16182C	16183C	16189C	16217C	16242T	16390A		Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	PilFo2	В	16183C	16189C	16217C	16390A					Cabana et al., 2006
NEA/BRs/Par- M	Chaco, Argentina	ToCh2	В	16095A	16183C	16189C	16217C	16260T				Cabana et al., 2006
NEA/BRs/Par- M	Chaco, Argentina	ToCh2	В	16183C	16189C	16217C						Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	ToFo2	В	16183C	16189C	16217C						Cabana et al., 2006
NEA/BRs/Par- M	Chaco, Argentina	ToCh2	В	16182C	16183C	16189C	16217C	16316G				Cabana et al., 2006
NEA/BRs/Par-	Mato Grosso do Sul, Paraná y Rio grande do Sul, Brasil	KAIN.B5	В	16189C	16217C	16311C						Marrero et al., 2007
NEA/BRs/Par-	Misiones, Argentina	MB.GU62	В	16183C	16189C	16217C	16241G					Sala et al., 2010
NEA/BRs/Par- M	Misiones, Argentina	MB.GU72	В	16183C	16189C	16217C						Sala et al., 2010
NEA/BRs/Par- M	Misiones, Argentina	MB.GU82	В	16182C	16183C	16189C	16217C					Sala et al., 2010
NEA/BRs/Par-	Formosa, Argentina	WiFo1	С	16051G	16223T	16298C	16325C	16327T				Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	WiFo1	С	16051G	16223T	16259T	16271C	16298C	16311C	16325C	16327T	Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	PilFo1	С	16223T	16298C	16325C	16327T					Cabana et al., 2006
NEA/BRs/Par- M	Chaco, Argentina	ToCh1	С	16223T	16298C	16325C	16327T					Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	WiFo1	С	16223T	16298C	16325C	16327T					Cabana et al., 2006

NEA/DD-/D	Formosa,											
NEA/BRs/Par- M	Argentina	PilFo1	С	16223T	16298C	16325C	16327T	16344T				Cabana et al., 2006
NEA/BRs/Par-	Formosa,		<u> </u>	TOLLOT	102000	100200	100271	100111				Oubaria et al., 2000
M	Argentina	WiFo1	С	16223T	16298C	16325C	16327T	16344T				Cabana et al., 2006
NEA/BRs/Par-	Formosa,											
M	Argentina	WiFo1	С	16223T	16298C	16325C	16360T	16385G				Cabana et al., 2006
NEA/BRs/Par-	Formosa,											
M	Argentina	WiFo1	С	16092C	16223T	16298C	16325C	16327T				Cabana et al., 2006
NEA/BRs/Par-	Formosa,	\\\''\= 4		40000T	400000	400440	100050	4.0007T				
M	Argentina	WiFo1	С	16223T	16298C	16311C	16325C	16327T				Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	PilFo1	С	16093C	16192T	16223T	16298C	16325C	16327T			Cabana et al., 2006
NEA/BRs/Par-	Formosa,	T III 01		100930	101321	102231	102900	103230	103271			Cabana et al., 2000
M	Argentina	PilFo1	С	16169T	16192A	16209C	16239T	16298C	16325C	16327T		Cabana et al., 2006
NEA/BRs/Par-	Formosa,				1010271	.02000				.002		Casana et an, 2000
M	Argentina	PilFo1	С	16223T	16266T	16298C	16325C	16327T				Cabana et al., 2006
NEA/BRs/Par-	Formosa,											
M	Argentina	ToFo1	С	16136C	16223T	16298C	16325C	16327T				Cabana et al., 2006
	Santa María de											
NEA/BRs/Par-	los Moros,											
М	Paraguay	Ayo1	С	16169T	16223T	16298C	16325C	16325T	16357C			Dornelles et al., 2004
	Santa María de											
NEA/BRs/Par- M	los Moros, Paraguay	Ayo1	С	16223T	16298C	16325C	16327T	16357C				Dornelles et al., 2004
IVI	Faraguay	Ayor		102231	102900	103230	103271	103370				Domelles et al., 2004
	Santa María de											
NEA/BRs/Par-	los Moros,											
M	Paraguay	Ayo1	С	16148T	16169T	16223T	16298C	16325C	16327T	16257C		Dornelles et al., 2004
	Santa María de	7.90.				.02201	.02000	.00200		.020.0		2 011101100 01 0111, 200 1
NEA/BRs/Par-	los Moros,											
M	Paraguay	Ayo1	С	16103G	16169T	16223T	16298C	16325C	16327T	16357C		Dornelles et al., 2004
	Santa María de											
NEA/BRs/Par-	los Moros,											
M	Paraguay	Ayo1	С	16169T	16223T	16325C	16327T	16357C				Dornelles et al., 2004
	Santa María de											
NEA/BRs/Par-	los Moros,	Av. 0.1		16160T	46000T	162000	160E7C					Damallas et al. 0004
М	Paraguay	Ayo1	С	16169T	16223T	16298C	16357C					Dornelles et al., 2004

	Mato Grosso do												
	Sul, Paraná y												
NEA/BRs/Par-	Rio grande do												
M	Sul, Brasil	GUA.B7	С	16223T	16325C	16327T							Marrero et al., 2007
	Mato Grosso do												
	Sul, Paraná y												
NEA/BRs/Par-	Rio grande do												
M	Sul, Brasil	GUA.B8	С	16075C	16223T	16325C	16327T						Marrero et al., 2007
	Mato Grosso do												
	Sul, Paraná y												
NEA/BRs/Par-	Rio grande do												
M	Sul, Brasil	KAIN.B6	С	16223T	16298C	16325C	16327T						Marrero et al., 2007
	Mato Grosso do												
	Sul, Paraná y												
NEA/BRs/Par-	Rio grande do												
М	Sul, Brasil	KAIN.B7	С	16223T	16298C	16325C	16327T	16335G					Marrero et al., 2007
	Mato Grosso do												
	Sul, Paraná y												
NEA/BRs/Par-	Rio grande do												
M	Sul, Brasil	KAIN.B8	С	16051G	16172C	16223T	16295T	16298C	16311C	16325C	16327T	16335G	Marrero et al., 2007
	Mato Grosso do												
	Sul, Paraná y												
NEA/BRs/Par-	Rio grande do												
M	Sul, Brasil	KAIN.B9	С	16051G	16223T	16298C	16325C	16327T					Marrero et al., 2007
	Mato Grosso do												
	Sul, Paraná y												
NEA/BRs/Par-	Rio grande do												
M	Sul, Brasil	KAIN.B10	С	16051G	16039C	16223T	16298C	16325C	16327T				Marrero et al., 2007
NEA/BRs/Par-	Misiones,												
M	Argentina	MB.GU91	С	16187C	16223T	16298C	16325C	16327T					Sala et al., 2010
NEA/BRs/Par-	Misiones,												
M	Argentina	MB.GU101	С	16189C	16223T	16298C	16325C	16327T					Sala et al., 2010
NEA/BRs/Par-	Misiones,												
M	Argentina	MB.GU111	С	16051G	16172C	16223T	16298C	16325C	16327T				Sala et al., 2010
NEA/BRs/Par-	Misiones,												
M	Argentina	MB.GU121	С	16223T	16325C	16327T							Sala et al., 2010

NEA/BRs/Par-	Chaco,	T 01.4		101717	40000T	400000	400050	400044	400000	400004		
M	Argentina	ToCh1	D	16174T	16223T	16263C	16325C	16361A	16362C	16390A		Cabana et al., 2006
NEA/BRs/Par-	Formosa,	T- F- 4		40474T	40000T	400000	400050	400044	400000	400004		0 1 1 2000
M	Argentina	ToFo1	D	16174T	16223T	16263C	16325C	16361A	16362C	16390A		Cabana et al., 2006
NEA/BRs/Par-	Chaco,	14/2014		404747	40000	100000	400050	400044	400000	100001		
M	Argentina	WiCh1	D	16174T	16223T	16263C	16325C	16361A	16362C	16390A		Cabana et al., 2006
NEA/BRs/Par-	Formosa,											
M	Argentina	WiFo1	D	16174T	16223T	16263C	16325C	16361A	16362C	16390A		Cabana et al., 2006
NEA/BRs/Par-	Formosa,				_	_						
M	Argentina	PilFo1	D	16223T	16325C	16362C						Cabana et al., 2006
NEA/BRs/Par-	Chaco,											
М	Argentina	ToCh1	D	16223T	16325C	16362C						Cabana et al., 2006
NEA/BRs/Par-	Formosa,											
М	Argentina	ToFo1	D	16223T	16325C	16362C						Cabana et al., 2006
NEA/BRs/Par-	Chaco,											
М	Argentina	WiCh1	D	16223T	16325C	16362C						Cabana et al., 2006
NEA/BRs/Par-	Formosa,											
М	Argentina	WiFo1	D	16223T	16325C	16362C						Cabana et al., 2006
NEA/BRs/Par-	Formosa,											
М	Argentina	PilFo1	D	16223T	16242T	16311C	16325C	16362C				Cabana et al., 2006
NEA/BRs/Par-	Formosa,											
М	Argentina	WiFo1	D	16223T	16242T	16311C	16325C	16362C				Cabana et al., 2006
NEA/BRs/Par-	Formosa,											
M	Argentina	PilFo1	D	16223T	16311C	16325C	16362C	16391A				Cabana et al., 2006
NEA/BRs/Par-	Formosa,											
M	Argentina	WiFo1	D	16223T	16311C	16325C	16362C	16391A				Cabana et al., 2006
												,
NEA/BRs/Par-	Formosa,											
М	Argentina	WiFo1	D	16174T	16223T	16263C	16325C	16361A	16362C	16371G		Cabana et al., 2006
NEA/BRs/Par-	Formosa,											
M	Argentina	PilFo1	D	16223T	16298T	16362C						Cabana et al., 2006
NEA/BRs/Par-	Chaco,											
M	Argentina	ToCh1	D	16172C	16174T	16223T	16263C	16325C	16361A	16362C		Cabana et al., 2006
NEA/BRs/Par-	Formosa,											
M	Argentina	PilFo1	D	16263C	16291T	16362C					16390A	Cabana et al., 2006
NEA/BRs/Par-	Formosa,	-										2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
M	Argentina	PilFo1	D	16081G	16223T	16311C	16325C	16362C	16391A		16390A	Cabana et al., 2006

NEA/BRs/Par-	Chaco,										
M	Argentina	ToCh1	D	16093C	16223T	16291T	16362C				Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	ToFo1	D	16093C	16223T	16291T	16362C				Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	ToFo1	D	16223T	16263C	16325C	16362C	16390A			Cabana et al., 2006
NEA/BRs/Par- M	Formosa, Argentina	ToFo1	D	16111G	16223T	16325C	16362C				Cabana et al., 2006
NEA/BRs/Par-	Mato Grosso do Sul, Paraná y Rio grande do Sul, Brasil	GUA.B9	D	16223T	16325C	16362C					Marrero et al., 2007
NEA/BRs/Par- M	Misiones, Argentina	MB.GU131	D	16223T	16325C	16362C					Sala et al., 2010
NEA/BRs/Par- M	Misiones, Argentina	MB.GU141	D	16189C	16223T	16325C	16362C				Sala et al., 2010
NEA/BRs/Par- M	Misiones, Argentina	MB.GU153	D	16142T	16179T	16223T	16295C	16325C	16362C		Sala et al., 2010
NEA/BRs/Par- M	Misiones, Argentina	MB.GU161	D	16223T	16325C	16362C					Sala et al., 2010
PP-A	Buenos Aires, Argentina	A.AS22	Α	16111T	16192T	16223T	16290T	16319A	16362C		Llamas et al., 20166
PP-A	Buenos Aires, Argentina	A.AS21	D	16223T	16304C	16325C	16362C				Llamas et al., 20166
Pn-M	Trapa-trapa, Chile	T40	Α	16111	16129	16223	16290	16319	16362		de Saint Pierre e t al., 2012
Pn-M	Trapa-trapa, Chile	T69	Α	16111	16129	16223	16290	16319	16362		de Saint Pierre e t al., 2012
Pn-M	Trapa-trapa, Chile	T80	Α	16111	16129	16223	16290	16319	16362		de Saint Pierre e t al., 2012
Pn-M	Río Negro, Argentina	MARG13	А	16111	16129	16223	16290	16319	16362		de Saint Pierre e t al., 2012
Pn-M	Río Negro, Argentina	MARG42	А	16111	16223	16290	16319	16356	16362		de Saint Pierre e t al., 2012
Pn-M	Río Negro, Argentina	MARG87	А	16111	16223	16290	16319	16356	16362		de Saint Pierre e t al., 2012

Pn-M	Río Negro, Argentina	MARG148	А	16111	16223	16290	16319	16356	16362		de Saint Pierre e t al., 2012
Pn-M	Temuco, Chile	H93	А	16111	16156	16223	16263	16290	16319	16362	de Saint Pierre e t al., 2012
Pn-M	Temuco, Chile	H112	Α	16111	16156	16223	16263	16290	16319	16362	de Saint Pierre e t al., 2012
Pn-M	Temuco, Chile	H109	Α	16111	16156	16223	16263	16290	16319	16362	de Saint Pierre e t al., 2012
Pn-M	Temuco, Chile	H113	Α	16111	16156	16223	16263	16290	16319	16362	de Saint Pierre e t al., 2012
Pn-M	Temuco, Chile	H49	Α	16111	16156	16209Y	16223	16263	16290	16319	de Saint Pierre e t al., 2012
Pn-M	Río Negro, Argentina	MARG33	А	16111	16192	16223	16227	16290	16319	16362	de Saint Pierre e t al., 2012
Pn-M	Temuco, Chile	H24	Α	16111	16223	16290	16319	16357	16362		de Saint Pierre e t al., 2012
Pn-M	Río Negro, Argentina	Map.A618	А	16223T	16290T	16319A	16362C				
Pn-M	Río Negro, Argentina	Map.AG19	А	16223T	16290T	16319A	16362C				
Pn-M	Río Negro, Argentina	Map1012	А	16111T	16223T	16290T	16319A	16356C	16362C		Sala y Corach, 2014
Pn-M	Río Negro, Argentina	Map1482	А	16111T	16223T	16290T	16319A	16356C	16362C		Sala y Corach, 2014
Pn-M	Río Negro, Argentina	Map422	А	16111T	16223T	16290T	16319A	16356C	16362C		Sala y Corach, 2014
Pn-M	Río Negro, Argentina	Map872	А	16111T	16223T	16290T	16319A	16356C	16362C		Sala y Corach, 2014
Pn-M	Río Negro, Argentina	Map742	A	16111T	16129A	16223T	16290T	16319A	16362C		Sala y Corach, 2014
Pn-M	Temuco, Chile	MA19	В	16142	16183	16189	16217				de Saint Pierre e t al., 2012
Pn-M	Temuco, Chile	MA20	В	16142	16183	16189	16217				de Saint Pierre e t al., 2012
Pn-M	Río Negro, Argentina	MARG03	В	16183	16189	16217					de Saint Pierre e t al., 2012
Pn-M	Temuco, Chile	MA23	В	16183	16189	16217					de Saint Pierre e t al., 2012

Pn-M	Temuco, Chile	MA27	В	16183	16189	16217					de Saint Pierre e t al., 2012
Pn-M	Río Negro, Argentina	MARG111	В	16183	16189	16217					de Saint Pierre e t al., 2012
Pn-M	Trapa-trapa, Chile	T21	В	16183	16189	16217					de Saint Pierre e t al., 2012
Pn-M	Trapa-trapa, Chile	T46	В	16183	16189	16217					de Saint Pierre e t al., 2012
Pn-M	Temuco, Chile	H70	В	16183	16189	16217					de Saint Pierre e t al., 2012
Pn-M	Temuco, Chile	H10	В	16183	16189	16217					de Saint Pierre e t al., 2012
Pn-M	Temuco, Chile	H116	В	16183	16189	16217					de Saint Pierre e t al., 2012
Pn-M	Temuco, Chile	H122	В	16183	16189	16217					de Saint Pierre e t al., 2012
Pn-M	Temuco, Chile	H114	В	16183	16189	16217	16249				de Saint Pierre e t al., 2012
Pn-M	Temuco, Chile	H05	В	16183	16189	16217	16249				de Saint Pierre e t al., 2012
Pn-M	Temuco, Chile	H78	В	16183	16189	16217	16249				de Saint Pierre e t al., 2012
Pn-M	Temuco, Chile	H85	В	16183	16189	16217	16249				de Saint Pierre e t al., 2012
Pn-M	Temuco, Chile	H101	В	16183	16189	16217	16249				de Saint Pierre e t al., 2012
Pn-M	Temuco, Chile	H119	В	16183	16189	16217	16249				de Saint Pierre e t al., 2012
Pn-M	Río Negro, Argentina	MARG96	В	16183	16189	16217	16249				de Saint Pierre e t al., 2012
Pn-M	Río Negro, Argentina	MARG97	В	16183	16189	16217	16249				de Saint Pierre e t al., 2012
Pn-M	Río Negro, Argentina	MARG124	В	16183	16189	16217	16249				de Saint Pierre e t al., 2012
Pn-M	Río Negro, Argentina	MARG147	В	16183	16189	16217	16249				de Saint Pierre e t al., 2012
Pn-M	Temuco, Chile	MA13	В	16136	16183	16189	16217	16249			de Saint Pierre e t al., 2012
Pn-M	Temuco, Chile	H53	В	16183	16189	16217	16249				de Saint Pierre e t al., 2012

	Río Negro,												de Saint Pierre e t al.
Pn-M	Argentina	MARG48	В	16183	16189	16217	16249	16318					2012
Pn-M	Río Negro, Argentina	MARG69	В	16183	16189	16217	16249	16318					de Saint Pierre e t al. 2012
Pn-M	Río Negro, Argentina	MARG70	В	16183	16189	16217	16249	16318					de Saint Pierre e t al. 2012
Pn-M	Río Negro, Argentina	MARG106	В	16183	16189	16217	16249	16318					de Saint Pierre e t al. 2012
Pn-M	Río Negro, Argentina	MARG114	В	16183	16189	16217	16249	16318					de Saint Pierre e t al. 2012
Pn-M	Río Negro, Argentina	MARG120	В	16183	16189	16217	16249	16318					de Saint Pierre e t al. 2012
Pn-M	Temuco, Chile	H75	В	16182	16183	16189	16217	16249					de Saint Pierre e t al. 2012
Pn-M	Río Negro, Argentina	MARG09	В	16182	16183	16189	16217	16249	16289	16294	16390	16391	de Saint Pierre e t al. 2012
Pn-M	Río Negro, Argentina	MARG36	В	16182	16183	16189	16217	16249	16289	16294	16390	16391	de Saint Pierre e t al. 2012
Pn-M	Trapa-trapa, Chile	T28	В	16182	16183	16189	16213	16217	16249				de Saint Pierre e t al. 2012
Pn-M	Trapa-trapa, Chile	T97	В	16182	16183	16189	16213	16217	16249				de Saint Pierre e t al. 2012
Pn-M	Trapa-trapa, Chile	T110	В	16182	16183	16189	16213	16217	16249				de Saint Pierre e t al. 2012
Pn-M	Trapa-trapa, Chile	T42	В	16182	16183	16189	16213	16217	16234	16249			de Saint Pierre e t al. 2012
Pn-M	Río Negro, Argentina	MARG150	В	16183	16189	16217	16291						de Saint Pierre e t al. 2012
Pn-M	Trapa-trapa, Chile	T34	В	16183	16189	16217	16291						de Saint Pierre e t al. 2012
Pn-M	Trapa-trapa, Chile	T74	В	16183	16189	16217	16291						de Saint Pierre e t al. 2012
Pn-M	Río Negro, Argentina	MARG159	В	16183	16189	16217	16456						de Saint Pierre e t al. 2012
Pn-M	Río Negro, Argentina	MARG85	В	16183	16189	16217	16465						de Saint Pierre e t al. 2012

Pn-M	Temuco, Chile	MA28	В	16183	161889	16217	16465				de Saint Pierre e t al., 2012
Pn-M	Río Negro, Argentina	MARG80	В	16183	16189	16217	16465				de Saint Pierre e t al., 2012
Pn-M	Trapa-trapa, Chile	T56	В	16182	16183	16189	16217	16218			de Saint Pierre e t al., 2012
Pn-M	Temuco, Chile	H17	В	16183	16189	16207	16217				de Saint Pierre e t al., 2012
Pn-M	Río Negro, Argentina	MARG46	В	16182	16183	16189	16207	16217	16278		de Saint Pierre e t al., 2012
Pn-M	Temuco, Chile	MA07	В	16183	16189	16207	16217	16291			de Saint Pierre e t al., 2012
Pn-M	Río Negro, Argentina	MARG02	В	16183	16189	16207	16217	16291			de Saint Pierre e t al., 2012
Pn-M	Río Negro, Argentina	MARG32	В	16183	16189	16207	16217	16291			de Saint Pierre e t al., 2012
Pn-M	Río Negro, Argentina	MARG119	В	16183	16189	16207	16217	16291			de Saint Pierre e t al., 2012
Pn-M	Temuco, Chile	H72	В	16182	16183	16189	16207	16217	16291		de Saint Pierre e t al., 2012
Pn-M	Temuco, Chile	H97	В	16182	16183	16189	16207	16217	16291		de Saint Pierre e t al., 2012
Pn-M	Trapa-trapa, Chile	T29	В	16075	16183	16189	16207	16217	16291		de Saint Pierre e t al., 2012
Pn-M	Trapa-trapa, Chile	T64	В	16075	16183	16189	16207	16217	16291		de Saint Pierre e t al., 2012
Pn-M	Río Negro, Argentina	Map.AG1	В	16189C	16207G	16217C	16291T				Ginther et al., 1993
Pn-M	Río Negro, Argentina	Map.AG2	В	16189C	16217C	16294T					Ginther et al., 1993
Pn-M	Río Negro, Argentina	Map.AG3	В	16189C	16217C	16319C					Ginther et al., 1993
Pn-M	Río Negro, Argentina	Map.AG5	В	16124G	16189C	16217C	16294C				Ginther et al., 1993
Pn-M	Río Negro, Argentina	Map.AG6	В	16189C	16217C	16249C					Ginther et al., 1993
Pn-M	Río Negro, Argentina	Map322	В	16183C	16189C	16207G	16217C	16291T			Sala y Corach, 2014

	Río Negro,												
Pn-M	Argentina	Map1252	В	16183C	16189C	16207G	16217C	16291T					Sala y Corach, 2014
	Río Negro,												
Pn-M	Argentina	Map752	В	16183C	16189C	16217C							Sala y Corach, 2014
	Río Negro,												
Pn-M	Argentina	Map1502	В	16183C	16189C	16217C	16291T						Sala y Corach, 2014
	Río Negro,												
Pn-M	Argentina	Map1302	В	16183C	16189C	16217C							Sala y Corach, 2014
	Río Negro,												
Pn-M	Argentina	Map1592	В	16183C	16189C	16217C	16296T	16456A					Sala y Corach, 2014
	Río Negro,												
Pn-M	Argentina	Map62	В	16189C	16217C								Sala y Corach, 2014
	Río Negro,												
Pn-M	Argentina	Map462	В	16182C	16183C	16189C	16207G	16217C	16278T				Sala y Corach, 2014
	Río Negro,												
Pn-M	Argentina	Map92	В	16182C	16183C	16189C	16217C	16249C	16289G	16294T	16390A	16391A	Sala y Corach, 2014
	Río Negro,												
Pn-M	Argentina	Map962	В	16183C	16189C	16217C	16249C						Sala y Corach, 2014
	Río Negro,												
Pn-M	Argentina	Map1082	В	16183C	16189C	16217C	16249C	16318G					Sala y Corach, 2014
	Río Negro,												
Pn-M	Argentina	Map382	В	16183C	16189C	16217C	16249C	16318G					Sala y Corach, 2014
	Río Negro,												
Pn-M	Argentina	Map1382	В	16183C	16189C	16217C	16249C						Sala y Corach, 2014
	Río Negro,												
Pn-M	Argentina	Map1242	В	16183C	16189C	16217C	16249C						Sala y Corach, 2014
	Río Negro,												de Saint Pierre et al.,
Pn-M	Argentina	MARG134	С	16182	16183	16189	16223	16298	16311	16325	16327		2012
	Río Negro,												de Saint Pierre et al.,
Pn-M	Argentina	MARG56	С	16223	16239	16298	16325	16327					2012
													de Saint Pierre et al.,
Pn-M	Temuco, Chile	MA26	С	16223	16297	16298	16325	16327					2012
	Río Negro,	MAROOO		40000	40007	40000	40005	40007					de Saint Pierre et al.,
Pn-M	Argentina	MARG98	С	16223	16297	16298	16325	16327					2012
Pn-M	Temuco, Chile	H56	С	16223	16298	16325	16327						de Saint Pierre et al., 2012

Pn-M	Temuco, Chile	MA11	С	16126	16147	16223	16298	16325	16327		de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	MA15	С	16185	16223	16240	16298	16325	16327		de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H52	С	16223	16298	16325	16327				de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	MA08	С	16223	16298	16325	16327				de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	MA10	С	16223	16298	16325	16327				de Saint Pierre et al., 2012
Pn-M	Río Negro, Argentina	MARG55	С	16223	16298	16325	16327				de Saint Pierre et al., 2012
Pn-M	Río Negro, Argentina	MARG149	С	16223	16298	16325	16327				de Saint Pierre et al., 2012
Pn-M	Río Negro, Argentina	MARG145	С	16223	16298	16325	16327				de Saint Pierre et al., 2012
Pn-M	Trapa-trapa, Chile	T41	С	16223	16298	16325	16327				de Saint Pierre et al., 2012
Pn-M	Trapa-trapa, Chile	T47	С	16223	16298	16325	16327				de Saint Pierre et al.,
Pn-M	Trapa-trapa, Chile	T08	С	16223	16298	16325	16327				de Saint Pierre et al., 2012
Pn-M	Trapa-trapa, Chile	T17	С	16223	16298	16325	16327				de Saint Pierre et al.,
	Trapa-trapa, Chile	T31	С	16223	16298	16325	16327				de Saint Pierre et al.,
Pn-M Pn-M	Trapa-trapa, Chile	T52	С	16223	16298	16325	16327				de Saint Pierre et al., 2012
Pn-M	Trapa-trapa, Chile	T77	С	16223	16298	16325	16327				de Saint Pierre et al., 2012
Pn-M	Trapa-trapa, Chile	T04	С	16223	16298	16325	16327				de Saint Pierre et al.,
Pn-M	Temuco, Chile	H26	С	16223	16298	16325	16327				de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H106	С	16223	16298	16325	16327				de Saint Pierre et al., 2012
Pn-M	Trapa-trapa, Chile	T38	С	16223	16298	16325	16327				de Saint Pierre et al., 2012

Pn-M	Trapa-trapa, Chile	T16	С	16223	16298	16325	16327					de Saint Pierre et al., 2012
Pn-M	Trapa-trapa, Chile	T67	С	16223	16298	16325	16327					de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H03	С	16223	16298	16325	16327					de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H38	С	16223	16298	16325	16327					de Saint Pierre et al., 2012
Pn-M	Río Negro, Argentina	MARG81	С	16172	16223	16298	16325	16327				de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	MA22	С	16221	16223	16298	16325	16327				de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H08	С	16223	16298	16311	16325	16327				de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H125	С	16223	16298	16311	16325	16327				de Saint Pierre et al., 2012
Pn-M	Trapa-trapa, Chile	T22	С	16067	16223	16298	16311	16325	16327			de Saint Pierre et al., 2012
Pn-M	Río Negro, Argentina	MARG25	С	16223	16298	16311	16325	16327				de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H33	С	16223	16298	16311	16325	16327				de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H19	С	16223	16298	16325	16327	16471				de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	MA09	С	16075	16223	16234	16298	16325	16327			de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	MA25	С	16223	16266	16294	16298	16325	16327			de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H95	С	16223	16298	16311	16325	16327	16368	16390		de Saint Pierre et al., 2012
Pn-M	Río Negro, Argentina	MARG142	С	16051	16223	16274	16298	16311	16325	16327		de Saint Pierre et al., 2012
Pn-M	Río Negro, Argentina	Map.AG7	С	16223T	16298C	16325C	16327T					Ginther et al., 1993
Pn-M	Río Negro, Argentina	Map.AG9	С	16189C	16223T	16298C	16325C	16327T				Ginther et al., 1993
Pn-M	Río Negro, Argentina	Map.AG10	С	16051G	16223T	16298C	16325C	16327T				Ginther et al., 1993

	Río Negro,											
Pn-M	Argentina	Map981	С	16223T	16297C	16298C	16325C	16327T				Sala y Corach, 2014
	Río Negro,											
Pn-M	Argentina	Map141	С	16223T	16298C	16325C	16327T					Sala y Corach, 2014
	Río Negro,											
Pn-M	Argentina	Map1401	С	16051G	16223T	16274A	16298C	16311C	16325C	16327T		Sala y Corach, 2014
	Río Negro,	1404		100510	40000T	400744	400000	400440	400050	40007T		
Pn-M	Argentina	Map1421	С	16051G	16223T	16274A	16298C	16311C	16325C	16327T		Sala y Corach, 2014
D. M	Río Negro,	Man 4 404		40000T	400000	400050	4.0007T					0-1 0
Pn-M	Argentina Río Negro,	Map1491	С	16223T	16298C	16325C	16327T					Sala y Corach, 2014
Pn-M	Argentina	Map341	С	16051G	16223T	16298C	16325C					Sala y Corach, 2014
FII-IVI	Río Negro,	IVIAPS41		100310	102231	102300	103230					Sala y Colacii, 2014
Pn-M	Argentina	Map541	С	16223T	16298C	16325C	16327T					Sala y Corach, 2014
1 11 101	Río Negro,	IVIAPO I I		102201	102000	100200	100271					Gala y Gordon, 2014
Pn-M	Argentina	Map551	С	16223T	16298C	16325C	16327T					Sala y Corach, 2014
	Río Negro,											
Pn-M	Argentina	Map561	С	16223T	16239T	16298C	16325C	16327T				Sala y Corach, 2014
	Río Negro,	•										
Pn-M	Argentina	Map811	С	16172C	16223T	16298C	16325C	16327T				Sala y Corach, 2014
		1100		40000	40000	40005	40000					de Saint Pierre et al.,
Pn-M	Temuco, Chile	H80	D	16093	16223	16325	16326			+		2012 de Saint Pierre et al.,
Pn-M	Temuco, Chile	H34	D	16126	16223	16325	16326					de Saint Pierre et al., 2012
1 11 101	Río Negro,	1101		10120	10220	10020	10020			†		de Saint Pierre et al.,
Pn-M	Argentina	MARG100	D	16159	16223	16325	16362					2012
	Río Negro,			10.00	10==0							de Saint Pierre et al
Pn-M	Argentina	MARG127	D	16223	16188	16223	16325	16356	16362			2012
	Río Negro,											de Saint Pierre et al
Pn-M	Argentina	MARG71	D	16187	16242	16311	16325	16362				2012
												de Saint Pierre et al.,
Pn-M	Temuco, Chile	MA18	D	16187	16223	16325	16362					2012
5	Río Negro,	MADOOO		40407	40000	40005	40000					de Saint Pierre et al.,
Pn-M	Argentina	MARG83	D	16187	16223	16325	16362			+		2012
Do M	Río Negro,	MARG151	D	16187	16223	16325	16362					de Saint Pierre et al., 2012
Pn-M	Argentina	IVIARGIST	U	10107	10223	10323	10302			+	+	de Saint Pierre et al.,
Pn-M	Temuco, Chile	H92	D	16187	16223	16325	16362					2012

Pn-M	Temuco, Chile	H41	D	16187	16223	16325	16362			de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H123	D	16187	16223	16325	16362			de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H86	D	16187	16223	16325	16362			de Saint Pierre et al., 2012
Pn-M	Trapa-trapa, Chile	T88	D	16187	16223	16325	16362			de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H02	D	16187	16223	16325	16362			de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H115	D	16187	16223	16325	16362			de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H105	D	16187	16223	16325	16362			de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H01	D	16187	16223	16325	16362			de Saint Pierre et al., 2012
Pn-M	Río Negro, Argentina	MARG137	D	16187	16223	16325	16362			de Saint Pierre et al., 2012
Pn-M	Río Negro, Argentina	MARG113	D	16187	16223	16325	16362			de Saint Pierre et al., 2012
Pn-M	Río Negro, Argentina	MARG152	D	16178	16223	16325	16356	16362		de Saint Pierre et al.,
Pn-M	Río Negro, Argentina	MARG102	D	16178	16187	16223	16325	16362		de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H09	D	16178	16187	16223	16325	16362		de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H13	D	16187	16187	16223	16325	16362		de Saint Pierre et al., 2012
Pn-M	Río Negro, Argentina	MARG133	D	16187	16223	16304	16325	16362		de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	MA24	D	16187	16223	16304	16325	16362		de Saint Pierre et al., 2012
Pn-M	Trapa-trapa, Chile	T19	D	16187	16223	16304	16325	16362		de Saint Pierre et al., 2012
Pn-M	Trapa-trapa, Chile	T83	D	16187	16223	16304	16325	16362		de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	MA29	D	16187	16189	16223	16325	16362		de Saint Pierre et al., 2012

Pn-M	Temuco, Chile	H04	D	16187	16189	16223	16325	16362				de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H27	D	16092	16189	16223	16325	16362				de Saint Pierre et al., 2012
Pn-M	Trapa-trapa, Chile	T24	D	16092	16187	16189	16223	16362				de Saint Pierre et al., 2012
Pn-M	Trapa-trapa, Chile	T27	D	16092	16187	16189	16223	16362				de Saint Pierre et al., 2012
Pn-M	Trapa-trapa, Chile	T44	D	16092	16187	16189	16223	16362				de Saint Pierre et al., 2012
Pn-M	Trapa-trapa, Chile	T48	D	16092	16187	16189	16223	16362				de Saint Pierre et al., 2012
Pn-M	Trapa-trapa, Chile	T58	D	16092	16187	16189	16223	16362				de Saint Pierre et al., 2012
Pn-M	Trapa-trapa, Chile	T78	D	16092	16187	16189	16223	16362				de Saint Pierre et al., 2012
Pn-M	Trapa-trapa, Chile	T81	D	16092	16187	16189	16223	16362				de Saint Pierre et al., 2012
Pn-M	Trapa-trapa, Chile	T99	D	16092	16187	16189	16223	16362				de Saint Pierre et al., 2012
Pn-M	Río Negro, Argentina	MARG90	D	16187	16187	16189	16223	16362				de Saint Pierre et al., 2012
Pn-M	Río Negro, Argentina	MARG39	D	16187	16189	16209	16223	16325	16362			de Saint Pierre et al., 2012
Pn-M	Trapa-trapa, Chile	T09	D	16187	16189	16209	16223	16325	16362			de Saint Pierre et al., 2012
Pn-M	Trapa-trapa, Chile	T63	D	16187	16189	16209	16223	16325	16362			de Saint Pierre et al., 2012
Pn-M	Trapa-trapa, Chile	T94	D	16187	16189	16209	16223	16325	16362			de Saint Pierre et al., 2012
Pn-M	Trapa-trapa, Chile	T33	D	16187	16189	16209	16223	16325	16362			de Saint Pierre et al., 2012
Pn-M	Trapa-trapa, Chile	T72	D	16187	16189	16209	16223	16325	16362			de Saint Pierre et al., 2012
Pn-M	Río Negro, Argentina	MARG99	D	16187	16189	16209	16223	16325	16362			de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H07	D	16187	16189	16223	16234	16325	16362	16445		de Saint Pierre et al., 2012

Pn-M	Temuco, Chile	H54	D	16187	16189	16223	16234	16325	16362		de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H32	D	16187	16189	16223	16234	16325	16362		de Saint Pierre et al., 2012
Pn-M	Río Negro, Argentina	MARG110	D	16187	16223	16325	16362	16390			de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H68	D	16187	16223	16325	16362	16390			de Saint Pierre et al., 2012
Pn-M	Río Negro, Argentina	MARG44	D	16187	16223	16325	16362	16390			de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H98	D	16187	16223	16245	16325	16362	16390		de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H11	D	16187	16223	16245	16325	16362	16390		de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H15	D	16187	16223	16245	16325	16362	16390		de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H61	D	16187	16223	16245	16325	16362	16390		de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H73	D	16187	16223	16245	16270	16325	16362	16390	de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H37	D	16187	16223	16325	16352	16362	16390	16399	de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H28	D	16223	16241	16301	16342	16362			de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	MA14	D		16223	16241	16301	16342	16362		de Saint Pierre et al., 2012
Pn-M	Temuco, Chile	H108	D		16051	16223	16241	16342	16362		de Saint Pierre et al., 2012
Pn-M	Río Negro, Argentina	Map.AG12	D	16223T	16242T	16311C	16325C	16362C			Ginther et al., 1993
Pn-M	Río Negro, Argentina	Map.AG13	D	16187T	16223T	16325C	16362C				Ginther et al., 1993
Pn-M	Río Negro, Argentina	Map.AG15	D	16187T	16223T	16325C	16390A				Ginther et al., 1993
Pn-M	Río Negro, Argentina	Map.AG16	D	16189T	16223T	16245T	16270T	16325C	16362C	16390A	Ginther et al., 1993
Pn-M	Río Negro, Argentina	Map.AG17	D	16092C	16187T	16189C	16362C				Ginther et al., 1993
Pn-M	Río Negro, Argentina	Map1051	D	16223T	16242T	16311C	16325C	16362C			Sala y Corach, 2014

	Río Negro,	N 4404	_	40407T	40000T	100050	400000	400004				
Pn-M	Argentina	Map1101	D	16187T	16223T	16325C	16362C	16390A				Sala y Corach, 2014
Pn-M	Río Negro, Argentina	Map1261	D	16187T	16189C	16209C	16223T	16325C	16362C			Sala y Corach, 2014
Pn-M	Río Negro, Argentina	Map1331	D	16187T	16223T	16304C	16325C	16362C				Sala y Corach, 2014
Pn-M	Río Negro, Argentina	Map531	D	16223T	16242T	16311C	16325C	16362C				Sala y Corach, 2014
Pn-M	Río Negro, Argentina	Map841	D	16187T	16223T	16325C	16362C					Sala y Corach, 2014
	Río Negro,											
Pn-M	Argentina Río Negro,	Map891	D	16187T	16223T	16325C	16362C					Sala y Corach, 2014
Pn-M	Argentina	Map904	D	16092C	16187T	16189C	16223T	16362C				Sala y Corach, 2014
Pcs-M	Punta Arena, Chile	K06	А	16111	16223	16290	16319	16362				de Saint Pierre et al., 2012
Pcs-M	Chiloe, Chile	Chil25.M2	Α	16192T	16209C	16223T	16290T	16319A	16362C			Horai et al., 1993
Pcs-M	Chiloe, Chile	Chil26.M2	Α	16192T	16223T	16290T	16319A	16362C				Horai et al., 1993
Pcs-M	Chiloe, Chile	Chil22	В	16184.3 C	16184.4 C	16189C	16217C	16249C	16289G	16294T	16319A	Horai et al., 1993
Pcs-M	Chiloe, Chile	Chil32	В	16184.3 C	16184.4 C	16189C	16217C					Horai et al., 1993
Pcs-M	Chiloe, Chile	Chil42	В	16184.3 C	16184.4 C	16189C	16207G	16217C	16265G			Horai et al., 1993
Pcs-M	Chiloe, Chile	Chil52	В	16184.4 C	16189C	16207G	16217C	16291T				Horai et al., 1993
	,			16184.3	16184.4				40004T			
Pcs-M	Chiloe, Chile	Chil62	В	C 16184.3	C 16184.4	16189C	16207G	16217C	16291T			Horai et al., 1993
Pcs-M	Chiloe, Chile	Chil72	В	С	С	16189C	16207G	16209C	16217C	16291T		Horai et al., 1993
Pcs-M	Chiloe, Chile	Chil92	В	16184.3 C	16184.4 C	16189C	16217C	16311C	16456A			Horai et al., 1993
Pcs-M	Chubut,Argentin	LR01	В	16153	16183	16189	16217					de Saint Pierre et al., 2012
Pcs-M	Chubut, Argentin	Teh18	В	16183	16189	16217	16231					de Saint Pierre et al., 2012

Pcs-M	Chubut, Argentina	Teh35	В	16183	16189	16217							de Saint Pierre et al., 2012
Pcs-M	Chubut,Argentina	Teh03	В	16182	16183	16189	16207	16217	16291				de Saint Pierre et al., 2012
Pcs-M	Chubut, Argentina	Teh19	В	16182	16183	16189	16207	16217	16291				de Saint Pierre et al., 2012
Pcs-M	Chubut, Argentina	Teh101	В	16182	16183	16189	16207	16217	16291				de Saint Pierre et al., 2012
Pcs-M	Chubut, Argentina	Teh1012	В	16182C	16183C	16189C	16207G	16217C	16291T				de Saint Pierre et al., 2012
Pcs-M	Chubut, Argentina	Teh212	В	16182C	16183C	16189C	16207G	16217C	16291T				de Saint Pierre et al., 2012
Pcs-M	Chubut, Argentina	Teh182	В	16183C	16189C	16217C	16231C						de Saint Pierre et al., 2012
Pcs-M	Chubut, Argentina	Teh12	В	16153A	16183C	16189C	16217C						de Saint Pierre et al., 2012
Pcs-M	Chubut, Argentina	Teh122	В	16182C	16183C	16189C	16207G	16217C	16290T				de Saint Pierre et al., 2012
Pcs-M	Chubut, Argentina	Teh342	В	16183C	16189C	16217C							de Saint Pierre et al., 2012
Pcs-M	Valdivia, Chile	Mapu12	В	16189C	16207G	16217C	16291T						Moraga et al., 2000
Pcs-M	Valdivia, Chile	Mapu22	В	16189C	16207G	16217C	16249C	16291T					Moraga et al., 2000
Pcs-M	Punta Arena, Chile	K09	С	16223	16298	16325	16327						de Saint Pierre et al., 2012
Pcs-M	Punta Arena, Chile	K12	С	16223	16298	16325	16327						de Saint Pierre et al., 2012
Pcs-M	Ukika, Chile	YA17	С	16223	16298	16325	16327						de Saint Pierre et al., 2012
Pcs-M	Ukika, Chile	YA22	С	16223	16298	16325	16327						de Saint Pierre et al., 2012
Pcs-M	Ukika, Chile	YA26	С	16223	16298	16325	16327						de Saint Pierre et al., 2012
Pcs-M	Ukika, Chile	YA15	С	16223	16298	16325	16327						de Saint Pierre et al., 2012
Pcs-M	Ukika, Chile	YA16	С	16223	16298	16325	16327						de Saint Pierre et al., 2012
Pcs-M	Ukika, Chile	YA18	С	16223	16298	16325	16327						de Saint Pierre et al., 2012
Pcs-M	Punta Arena, Chile	K05	С	16093	16126	16183	16189	16223	16298	16325	16327	16344	de Saint Pierre et al., 2012

Pcs-M	Ukika, Chile	YA06	С	16223	16291	16298	16325	16327				de Saint Pierre et al., 2012
Pcs-M	Ukika, Chile	YA11	С	16223	16291	16298	16325	16327				de Saint Pierre et al., 2012
Pcs-M	Chubut, Argentina	Teh17	С	16129	16223	16298	16325	16327				de Saint Pierre et al., 2012
Pcs-M	Chubut, Argentina	Teh23	С	16223	16298	16325	16327					de Saint Pierre et al., 2012
Pcs-M	Punta Arena, Chile	K13	С	16223	16298	16325	16327					de Saint Pierre et al., 2012
Pcs-M	Chubut, Argentina	LR05	С	16223	16298	16325	16327					de Saint Pierre et al., 2012
Pcs-M	Ukika, Chile	YA21	С	16223	16298	16311	16325	16327	16343			de Saint Pierre et al., 2012
Pcs-M	Ukika, Chile	YA23	С	16223	16298	16325	16327					de Saint Pierre et al., 2012
Pcs-M	Chubut, Argentina	Teh37	С	16129	16189	16207	16223	16298	16325	16327	16399	de Saint Pierre et al., 2012
Pcs-M	Chubut, Argentina	Teh51	С	16129	16189	16207	16223	16298	16325	16327	16399	de Saint Pierre et al., 2012
Pcs-M	Chubut, Argentina	Teh15	С	16223	16298	16325						de Saint Pierre et al., 2012
Pcs-M	Punta Arena, Chile	K10	С	16051	16223	16274	16298	16311	16325	16327		de Saint Pierre et al., 2012
Pcs-M	Chubut, Argentina	Teh231	С	16223T	16298C	16325C	16327T					Sala y Corach, 2014
Pcs-M	Chubut, Argentina	Teh281	С	16223T	16298C	16325C	16327T					Sala y Corach, 2014
Pcs-M	Chubut, Argentina	Teh361	С	16129A	16189C	16207G	16223T	16298C	16325C	16327 T	16399G	Sala y Corach, 2014
Pcs-M	Chubut, Argentina	Teh511	С	16129A	16189C	16207G	16223T	16298C	16325C	16327 T	16399G	Sala y Corach, 2014
Pcs-M	Chubut, Argentina	Teh51	С	16223T	16298C	16325C	16327T					Sala y Corach, 2014
Pcs-M	Chubut, Argentina	Teh151	С	16223T	16298C	16325C						Sala y Corach, 2014
Pcs-M	Chubut, Argentina	Teh531	С	16223T	16298C	16325C						 Sala y Corach, 2014
Pcs-M	Valdivia, Chile	Mapu41	С	16223T	16298C	16325C	16327T					Moraga et al., 2000
Pcs-M	Chiloe, Chile	Chil341	С	16223T	16298C	16325C	16327T					Horai et al., 1993

Pcs-M	Chiloe, Chile	Chil351	С	16223T	16298C	16311C	16325C	16327T	16343G		Horai et al., 1993
Pcs-M	Chiloe, Chile	Chil361	С	16223T	16298C	16311C	16325C	16327T			Horai et al., 1993
Pcs-M	Chiloe, Chile	Chil371	С	16223T	16298C	16325C	16327T	16362C			Horai et al., 1993
Pcs-M	Chiloe, Chile	Chil391	С	16223T	16298C	16327T					Horai et al., 1993
Pcs-M	Chiloe, Chile	Chil401	С	16223T	16298C	16325C	16327T				Horai et al., 1993
Pcs-M	Chiloe, Chile	Chil411	С	16223T	16263C	16325C	16327T				Horai et al., 1993
Pcs-M	Chiloe, Chile	Chil421	С	16129G	16223T	16298C	16325C	16327T			Horai et al., 1993
Pcs-M	Chiloe, Chile	Chil431	С	16171G	16223T	16298C	16325C	16327T			Horai et al., 1993
Pcs-M	Ukika, Chile	YA02	D	16223	16325	16362					de Saint Pierre etal., 2012
Pcs-M	Ukika, Chile	YA20	D	16223	16325	16362					de Saint Pierre etal., 2012
Pcs-M	Punta Arena, Chile	K01	D	16223	16311	16325	16362				de Saint Pierre etal., 2012
Pcs-M	Chubut, Argentina	LR02	D	16187	16223	16325	16362				de Saint Pierre etal., 2012
Pcs-M	Chubut, Argentina	LR06	D	16187	16223	16325	16362				de Saint Pierre etal., 2012
Pcs-M	Chubut, Argentina	LR08	D	16187	16223	16325	16362				de Saint Pierre etal., 2012
Pcs-M	Chubut, Argentina	LR04	D	16187	16223	16325	16362				de Saint Pierre etal., 2012
Pcs-M	Ukika, Chile	YA05	D	16086	16187	16189	16223	16286	16325	16362	de Saint Pierre etal., 2012
Pcs-M	Ukika, Chile	YA08	D	16086	16187	16189	16223	16286	16325	16362	de Saint Pierre etal., 2012
Pcs-M	Ukika, Chile	YA14	D	16086	16187	16189	16223	16286	16325	16362	de Saint Pierre etal., 2012
Pcs-M	Ukika, Chile	YA19	D	16086	16187	16189	16223	16286	16325	16362	de Saint Pierre etal., 2012
Pcs-M	Ukika, Chile	YA24	D	16086	16187	16189	16223	16286	16325	16362	de Saint Pierre etal., 2012
Pcs-M	Ukika, Chile	YA25	D	16086	16187	16189	16223	16286	16325	16362	de Saint Pierre etal., 2012
Pcs-M	Ukika, Chile	YA09	D	16086	16187	16189	16223	16286	16325	16362	de Saint Pierre etal., 2012

Pcs-M	Chubut, Argentina	Teh56	D	16092	16187	16189	16223	16362			de Saint Pierre etal., 2012
Pcs-M	Chubut,Argentina	Teh50	D	16092	16187	16189	16223	16362			de Saint Pierre etal., 2012
Pcs-M	Chubut, Argentina	LR03	D	16187	16189	16209	16223	16325	16362		de Saint Pierre etal., 2012
Pcs-M	Chubut, Argentina	Teh13	D	16187	16223	16245	16325	16362	16390		de Saint Pierre etal., 2012
Pcs-M	Chubut, Argentina	Teh26	D	16187	16223	16245	16325	16362	16390		de Saint Pierre etal., 2012
Pcs-M	Chubut,Argentina	Teh30	D	16051	16223	16241	16301	16342	16362		de Saint Pierre etal., 2012
Pcs-M	Chubut,Argentina	Teh52	D	16051	16223	16241	16301	16342	16362		de Saint Pierre etal., 2012
Pcs-M	Chubut, Argentina	Teh33	D	16051	16223	16241	16301	16342	16362		de Saint Pierre etal., 2012
Pcs-M	Chubut, Argentina	Teh105	D	16051	16223	16241	16301	16342	16362		de Saint Pierre etal., 2012
Pcs-M	Chubut,Argentina	Teh27	D	16051	16223	16241	16301	16342	16362		de Saint Pierre etal., 2012
Pcs-M	Chubut,Argentina	Teh29	D	16051	16223	16241	16301	16342	16362		de Saint Pierre etal., 2012
Pcs-M	Chubut, Argentina	LR09	D	16051	16223	16241	16342	16362			de Saint Pierre etal., 2012
Pcs-M	Chubut,Argentina	Teh14	D	16051	16223	16241	16342	16362			de Saint Pierre etal., 2012
Pcs-M	Punta Arena, Chile	K08	D	16051	16223	16241	16342	16362			de Saint Pierre etal., 2012
Pcs-M	Punta Arena, Chile	K11	D	16051	16223	16241	16342	16362			de Saint Pierre etal., 2012
Pcs-M	Punta Arena, Chile	K02	D	16051	16223	16241	16311	16342	16362		de Saint Pierre etal., 2012
Pcs-M	Punta Arena, Chile	K03	D	16051	16223	16241	16311	16342	16362		de Saint Pierre etal., 2012
Pcs-M	Punta Arena, Chile	K04	D	16051	16223	16241	16311	16342	16362		de Saint Pierre etal., 2012
Pcs-M	Punta Arena, Chile	K07	D	16051	16223	16241	16311	16342	16362		de Saint Pierre etal., 2012
Pcs-M	Ukika, Chile	YA10	D	16051	16223	16234	16241	16311	16342	16362	de Saint Pierre etal., 2012

Pcs-M	Ukika, Chile	YA13	D	16051	16223	16234	16241	16311	16342	16362	de Saint Pierre etal., 2012
Pcs-M	Chubut,Argentina	Teh101	D	16187T	16223T	16325C	16362C				Sala y Corach, 2014
Pcs-M	Chubut,Argentina	Teh41	D	16187T	16223T	16325C	16362C				Sala y Corach, 2014
Pcs-M	Chubut,Argentina	Teh131	D	16187T	16223T	16245T	16325C	16362C	16390A		Sala y Corach, 2014
Pcs-M	Chubut,Argentina	Teh261	D	16187T	16223T	16245T	16325C	16362C	16390A		Sala y Corach, 2014
Pcs-M	Chubut, Argentina	Teh21	D	16187T	16223T	16325C	16362C				Sala y Corach, 2014
Pcs-M	Chubut, Argentina	Teh31	D	16187T	16189C	16209C	16223T	16325C	16362C		Sala y Corach, 2014
Pcs-M	Chubut,Argentina	Teh504	D	16092C	16187T	16189C	16223T	16362C			Sala y Corach, 2014
Pcs-M	Chubut,Argentina	Teh564	D	16092C	16187T	16189C	16223T	16362C			Sala y Corach, 2014
Pcs-M	Valdivia, Chile	Mapu84h	D	16223T	16241G	16301T	16342C	16362C			Moraga et al., 2000
Pcs-M	Valdivia, Chile	Mapu91	D	16187T	16223T	16325C					Moraga et al., 2000
Pcs-M	Valdivia, Chile	Mapu111	D	16187T	16189C	16223T	16270T	16362C			Moraga et al., 2000
Pcs-M	Valdivia, Chile	Mapu131	D	16187T	16223T	16362C					Moraga et al., 2000
Pcs-M	Valdivia, Chile	Mapu161	D	16153A	16223T	16325C	16362C				Moraga et al., 2000
Pcs-M	Chiloe, Chile	Chil131	D	16223T	16325C	16362C					Horai et al., 1993
Pcs-M	Chiloe, Chile	Chil141	D	16187T	16189C	16223T	16325C	16362C			Horai et al., 1993
Pcs-M	Chiloe, Chile	Chil151	D	16187T	16189C	16209C	16223T	16325C	16362C		Horai et al., 1993
Pcs-M	Chiloe, Chile	Chil171	D	16187T	16223T	16325C	16362C				Horai et al., 1993
Pcs-M	Chiloe, Chile	Chil181	D	16187T	16223T	16304C	16325C	16362C			Horai et al., 1993
Pcs-M	Chiloe, Chile	Chil191	D	16187T	16223T	16290T	16325C	16335G	16362C		Horai et al., 1993
Pcs-M	Chiloe, Chile	Chil201	D	16172C	16187T	16223T	16325C	16362C			Horai et al., 1993
Pcs-M	Chiloe, Chile	Chil211	D	16187T	16223T	16325C	16362C	16390A			Horai et al., 1993
Pcs-M	Chiloe, Chile	Chil221	D	16187T	16223T	16245T	16325C	16362C	16390A		Horai et al., 1993
Pcs-A	Canal de Beagle, Argentina	A.CdB1258 91	С	16145A	16223T	16298C	16325C	16327T			Dejean et al., 2008

	Isla Capitan	A 14 A 140		10000 T	400000	100100	100050	100077			
Pcs-A	Aracena, Chile	A.Kaw.MK3	С	16223T	16298C	16318G	16325C	16327T			Moraga et al., 2010
Pcs-A	Isla Capitan Aracena, Chile	A.Kaw.MK2	С	16223T	16298C	16318G	16325C	16327T			Moraga et al., 2010
Pcs-A	Englefield, Chile	A.kaw.IPO3	С	16223T	16298C	16318G	16325C	16327T			Moraga et al., 2010
Pcs-A	Archipiélagos del sur de Chile	A.IPK12	С	16223	16298	16325	16327				de la Fuente et al., 2015
Pcs-A	Archipiélagos del sur de Chile	A.IPY01	С	16223	16298	16325	16327				de la Fuente et al., 2015
Pcs-A	Archipiélagos del sur de Chile	A.IPY02	С	16223	16298	16325	16327				de la Fuente et al., 2015
Pcs-A	Archipiélagos del sur de Chile	A.IPY03	С	16223	16291	16298	16325	16327			de la Fuente et al., 2015
Pcs-A	Archipiélagos del sur de Chile	A.IPY04	С	16223	16291	16298	16325	16327			de la Fuente et al., 2015
Pcs-A	Archipiélagos del sur de Chile	A.IPY05	С	16223	16298	16325	16327				de la Fuente et al., 2015
Pcs-A	Archipiélagos del sur de Chile	A.IPY06	С	16145	16223	16298	16325	16327			de la Fuente et al., 2015
Pcs-A	Archipiélagos del sur de Chile	A.IPY07	С	16223	16291	16298	16325	16327			de la Fuente et al., 2015
Pcs-A	Archipiélagos del sur de Chile	A.IPY09	С	16223	16291	16298	16325	16327			de la Fuente et al., 2015
Pcs-A	Archipiélagos del sur de Chile	A.IPY10	С	16145	16223	16298	16325	16327			de la Fuente et al., 2015
Pcs-A	Archipiélagos del sur de Chile	A.MG04	С	16223	16291	16298	16325	16327			de la Fuente et al., 2015
Pcs-A	Archipiélagos del sur de Chile	A.MG10	С	16069	16126	16223	16298	16325	16327		de la Fuente et al., 2015
Pcs-A	Archipiélagos del sur de Chile	A.MG11	С	16223	16291	16298	16325	16327			de la Fuente et al., 2015
Pcs-A	Archipiélagos del sur de Chile	A.MG15	С	16223	16291	16298	16325	16327			de la Fuente et al., 2015
Pcs-A	Archipiélagos del sur de Chile	A.MG21	С	16223	16291	16298	16325	16327			de la Fuente et al., 2015

Pcs-A	Archipiélagos del sur de Chile	A.MG22	С	16223	16291	16298	16325	16327			de la Fuente et al., 2015
Pcs-A	Archipiélagos del sur de Chile	A.MG23	С	16223	16298	16325	16327				de la Fuente et al., 2015
Pcs-A	Archipiélagos del sur de Chile	A.MG30a	С	16223	16291	16298	16325	16327			de la Fuente et al., 2015
Pcs-A	Canal de Beagle, Argentina	A.CdB1259 01	D	16223T	16325C	16362C					Dejean et al., 2008
Pcs-A	Cueva de la Cruz, Chile	A.Kaw.IPO4 1	D	16223T	16241G	16311C	16342C	16362C			Moraga et al., 2010
Pcs-A	Cueva de la Cruz, Chile	A.Kaw.IPO8 1	D	16223T	16241G	16311C	16342C	16362C			Moraga et al., 2010
Pcs-A	Canal Maule, Chile	A.kaw.IPO1 01	D	16223T	16241G	16342C	16362C				Moraga et al., 2010
Pcs-A	Archipiélagos del sur de Chile	A.IP1	D	16051	16223	16241	16342	16362			de la Fuente et al., 2015
Pcs-A	Archipiélagos del sur de Chile	A.IPK01	D	16223	16325	16362					de la Fuente et al., 2015
Pcs-A	Archipiélagos del sur de Chile	A.IPK03	D	16187	16223	16245	16325	16362			de la Fuente et al., 2015
Pcs-A	Archipiélagos del sur de Chile	A.IPK05	D	16051	16213	16223	16241	16271	16342	16362	de la Fuente et al., 2015
Pcs-A	Archipiélagos del sur de Chile	A.IPK06	D	16051	16213	16223	16241	16271	16342	16362	de la Fuente et al., 2015
Pcs-A	Archipiélagos del sur de Chile	A.IPK07	D	16051	16213	16223	16241	16271	16342	16362	de la Fuente et al., 2015
Pcs-A	Archipiélagos del sur de Chile	A.IPK08	D	16051	16223	16241	16311	16342	16362		de la Fuente et al., 2015
Pcs-A	Archipiélagos del sur de Chile	A.IPK09	D	16051	16223	16241	16311	16342	16362		de la Fuente et al., 2015
Pcs-A	Archipiélagos del sur de Chile	A.IPK10	D	16051	16223	16241	16342	16362			de la Fuente et al., 2015
Pcs-A	Archipiélagos del sur de Chile	A.IPK11	D	16187	16189	16209	16223	16325	16362		de la Fuente et al., 2015
Pcs-A	Archipiélagos del sur de Chile	A.IPK13	D	16051	16213	16223	16241	16271	16342	16362	de la Fuente et al., 2015

	N.MG14	U	16051	16223	16241	16342	16362				2015
chipiélagos del de Chile A	A.MG30b	D	16086	16187	16189	16223	16286	16325	16362		de la Fuente et al., 2015

Tabla anexa 3. Distancias P mínimas de las muestras analizadas con las de la BDSC

Dentro del Haplogrupo A			
Individuo en estudio	individuo comparativo más cercano	Distancia P	
DC4-A	PilFo.M3-A2	0.000	
DC4-A	ARG169-A2	0.000	
DC4-A	ARG064-A2	0.000	
DC4-A	ARG132-A2	0.000	
DC4-A	ARG147-A2	0.000	
DC4-A	LPAZ059-A	0.000	
DC4-A	SantaCruz22-A	0.000	
DC4-A	Coya.M7-A2	0.000	
DC4-A	Map.A618-A	0.000	
DC4-A	Map.AG19-A	0.000	
DC7-A	T40-A	0.000	
DC7-A	T69-A	0.000	
DC7-A	T80-A	0.000	
DC7-A	MARG13-A	0.000	
DC7-A	Titi2.Q-A	0.000	
DC7-A	Map74.M-A2	0.000	
DC9-A	Cochabamba21-A	0.003	
DC9-A	Hp50-A	0.003	
DC16-a	PilFo.M2-A2	0.004	
DC16-a	PilFo.M3-A2	0.004	
DC16-a	ARG169-A2	0.004	
DC16-a	ARG064-A2	0.004	
DC16-a	ARG132-A2	0.004	
DC16-a	ARG147-A2	0.004	
DC16-a	LPAZ059-A	0.004	
DC16-a	SantaCruz22-A	0.004	
DC16-a	Coya.M7-A2	0.004	
DC3-A2	LPAZ090-A	0.006	
DC3-A2	Aym.M1-A2	0.006	
DC3-A2	Aym.M4-A2	0.006	
DC3-A2	Que.M3-A2	0.006	

	Ţ	Т
Individuo en estudio	individuo comparativo más cercano	Distancia P
DC3-A2	Que.M5-A2	0.006
DC3-A2	LaPaz8-A	0.006
DC3-A2	Beni9-A	0.006
DC3-A2	Pando10-A	0.006
DC3-A2	AymaraA01-A	0.006
DC3-A2	AymaraA02-A	0.006
DC3-A2	Нр19-А	0.006
DC3-A2	Hp41-A	0.006
DC3-A2	Hp52-A	0.006
DC3-A2	Hp82-A	0.006
DC3-A2	Hp85-A	0.006
DC3-A2	Hp119-A	0.006
DC3-A2	Hp193-A	0.006
DC3-A2	Titi1.Q-A	0.006
DC3-A2	GUA.B1-A	0.006
DC3-A2	KAIN.B1-A	0.006
DC3-A2	MB.GU4-A2	0.006
DC3-A2	LAm1A2	0.006
DC3-A2	LAm2A2	0.006
DC3-A2	LAm3A2	0.006
DC3-A2	LAm4A2	0.006
DC3-A2	LAm5A2	0.006
DC3-A2	LAm6A2	0.006
DC16-a	Map.A618-A	0.004
DC16-a	Map.AG19-A	0.004
DC16-a	LAm9A2	0.004
DC3-A2	K06-A	0.006
DC3-A2	ToCh.M3-A2	0.006
DC3-A2	ARG005-A2	0.006
DC3-A2	ARG024-A2	0.006
DC3-A2	ARG149-A2	0.006

Individuo en estudio	individuo comparativo más cercano	Distancia P
DC3-A2	ARG304-A2	0.006
DC3-A2	ARG023-A2	0.006
DC3-A2	ARG069-A2	0.006
DC3-A2	ARG070-A2	0.006
DC3-A2	ARG073-A2	0.006
DC3-A2	ARG161-A2	0.006
DC3-A2	ARG171-A2	0.006
DC3-A2	Quechua545-A	0.006
DC3-A2	LPAZ048-A	0.006
DC3-A2	LAm7A2	0.006
DC3-A2	LAm8A2	0.006
DC3-A2	Til1A2	0.006
DC3-A2	Bpe1A2	0.006
DC3-A2	Ter1A2	0.006
DC3-A2	PG18414A2	0.006
DC3-A2	PG18365A2	0.006
DC3-A2	ANT04A	0.006
DC3-A2	PUC26A	0.006
DC3-A2	PUC54A	0.006
DC3-A2	C EIP A1	0.006
DC3-A2	C LIP A1	0.006
DC3-A2	Huari043A2	0.006
DC2-A	Chil26.M-A2	0.011
DC12-A	T40-A	0.011
DC12-A	T69-A	0.011
DC12-A	T80-A	0.011
DC12-A	MARG13-A	0.011
DC12-A	QuechPeru3-A	0.011
DC12-A	AymaraA06-A	0.011
DC12-A	Titi2.Q-A	0.011
DC12-A	Map74.M-A2	0.011

	individuo	
Individuo	comparativo más	Distancia
en estudio	cercano	Р
DC12-A	Н МН А6	0.011
DC12-A	Huari143A2	0.011
De	ntro del haplogrupo E	3
DC14-B	PilFo.M6-B2	0
DC14-B	WiFo.M11-B2	0
DC14-B	ARG006-B4	0
DC14-B	ARG008-B4	0
DC14-B	ARG027-B4	0
DC14-B	ARG063-B4	0
DC14-B	ARG067-B4	0
DC14-B	ARG068-B4	0
DC14-B	ARG071-B4	0
DC14-B	ARG072-B4	0
DC14-B	ARG091-B4	0
DC14-B	ARG137-B4	0
DC14-B	ARG145-B4	0
DC14-B	ARG155-B4	0
DC14-B	ARG162-B4	0
DC14-B	ARG170-B4	0
DC14-B	ARG208-B4	0
DC14-B	ARG216-B4	0
DC14-B	ARG230-B4	0
DC14-B	ARG233-B4	0
DC14-B	ARG004-B4	0
DC14-B	ARG078-B4	0
DC14-B	ARG082-B4	0
DC14-B	ARG116-B4	0
DC14-B	ARG157-B4	0
DC14-B	ARG179-B4	0
DC14-B	ARG189-B4	0
DC14-B	ARG316-B4	0

		1
	individuo	
Individuo	comparativo más	Distancia
en estudio	cercano	P
DC14-B	ARG320-B4	0
DC14-B	QuechPeru7-B	0
DC14-B	LPAZ005-B	0
DC14-B	LAPZ006-B	0
DC14-B	LPAZ007-B	0
DC14-B	LPAZ012-B	0
DC14-B	LPAZ018-B	0
DC14-B	LPAZ022-B	0
DC14-B	LPAZ024-B	0
DC14-B	LPAZ025-B	0
DC14-B	LPAZ033-B	0
DC14-B	LPAZ040-B	0
DC14-B	LPAZ070-B	0
DC14-B	LPAZ088-B	0
DC14-B	LPAZ089-B	0
DC14-B	LPAZ091-B	0
DC14-B	LPAZ095-B	0
DC14-B	LPAZ097-B	0
DC14-B	Aym.M9-B2	0
DC14-B	Aym.M10-B2	0
DC14-B	Aym.M11-B2	0
DC14-B	Aym.M12-B2	0
DC14-B	Que.M10-B2	0
DC14-B	Aym.M13-B2	0
DC14-B	Aym.M14-B2	0
DC14-B	Aym.M15-B2	0
DC14-B	Que.M11-B2	0
DC14-B	Aym.M16-B2	0
DC14-B	Aym.M17-B2	0
DC14-B	Que.M13-B2	0
DC14-B	Hp91-B	0

Individuo en estudio	individuo comparativo más cercano	Distancia P
DC14-B	Нр92-В	0
DC14-B	Нр93-В	0
DC14-B	Нр94-В	0
DC14-B	Нр95-В	0
DC14-B	Нр96-В	0
DC14-B	Нр97-В	0
DC14-B	Hp101-B	0
DC14-B	Нр132-В	0
DC14-B	Нр135-В	0
DC14-B	Нр147-В	0
DC14-B	Нр174-В	0
DC14-B	Нр176-В	0
DC14-B	Hp178-B	0
DC14-B	Hp181-B	0
DC14-B	Нр201-В	0
DC14-B	Нр202-В	0
DC14-B	Нр203-В	0
DC14-B	Titi5.Q-B	0
DC14-B	Titi6.Q-B	0
DC14-B	Titi15.Q-B	0
DC14-B	Titi18.A-B	0
DC14-B	Titi19.A-B	0
DC14-B	Titi23.A-B	0
DC14-B	Coya.M21-B2	0
DC14-B	Coya.M22-B2	0
DC14-B	Coya.M23-B2	0
DC14-B	Til4B2	0
DC1-B	PilFo.M11-B2	0.008
DC1-B	ToCh.M6-B2	0.008
DC1-B	ToFo.M4-B2	0.008
DC1-B	ARG001-B4	0.008

	individuo	
Individuo	comparativo más	Distancia
en estudio	cercano	Р
DC1-B	ARG020-B4	0.008
DC1-B	ARG025-B4	0.008
DC1-B	ARG030-B4	0.008
DC1-B	ARG074-B4	0.008
DC1-B	ARG089-B4	0.008
DC1-B	ARG090-B4	0.008
DC1-B	ARG106-B4	0.008
DC1-B	ARG127 B4	0.008
DC1-B	ARG139-B4	0.008
DC1-B	ARG144-B4	0.008
DC1-B	ARG151-B4	0.008
DC1-B	ARG154-B4	0.008
DC1-B	ARG187-B4	0.008
DC1-B	ARG188-B4	0.008
DC1-B	ARG192-B4	0.008
DC1-B	ARG201-B4	0.008
DC1-B	ARG271-B4	0.008
DC1-B	ARG311-B4	0.008
DC1-B	ARG318-B4	0.008
DC1-B	ARG325-B4	0.008
DC1-B	QuechPeru8-B	0.008
DC1-B	LPAZ001-B	0.008
DC1-B	LPAZ003-B	0.008
DC1-B	LPAZ004-B	0.008
DC1-B	LPAZ008-B	0.008
DC1-B	LPAZ010-B4	0.008
DC1-B	LPAZ014-B	0.008
DC1-B	LPAZ021-B	0.008
DC1-B	LPAZ023-B	0.008
DC1-B	LPAZ026-B	0.008
DC1-B	LPAZ031-B	0.008

	individuo	
Individuo	comparativo más	Distancia
en estudio	cercano	Р
DC1-B	LPAZ039-B	0.008
DC1-B	Aym.M30-B2	0.008
DC1-B	Aym.M31-B2	0.008
DC1-B	Que.M26-B2	0.008
DC1-B	Que.M31-B2	0.008
DC1-B	Que.M35-B2	0.008
DC1-B	Aym.M43-B2	0.008
DC1-B	Нр12-В	0.008
DC1-B	Нр14-В	0.008
DC1-B	Нр87-В	0.008
DC1-B	Нр120-В	0.008
DC1-B	Нр139-В	0.008
DC1-B	Hp142-B	0.008
DC1-B	Нр143-В	0.008
DC1-B	Нр183-В	0.008
DC1-B	Titi4.Q-B	0.008
DC1-B	Chil3.M-B2	0.008
DC1-B	MB.GU7-B2	0.008
DC1-B	Coya.M10-B2	0.008
DC1-B	Coya.M11-B2	0.008
DC1-B	Coya.M25-B2	0.008
DC1-B	Coya.M26-B2	0.008
DC1-B	Coya.M30-B2	0.008
DC1-B	Map75.M-B2	0.008
DC1-B	Map130.M-B2	0.008
DC1-B	Teh34.M-B2	0.008
DC1-B	Sar1B2	0.008
DC1-B	Sar2B2	0.008
DC1-B	PG17886B2	0.008
DC1-B	C EIP B21	0.008
DC1-B	C EIP B22	0.008

Individuo en estudio	individuo comparativo más cercano	Distancia P
DC1-B	C MH B2	0.008
DC1-B	C LIP B21	0.008
DC1-B	C LIP B22	0.008
DC1-B	C LIP B23	0.008
DC1-B	H MH B21	0.008
DC1-B	H MH B22	0.008
DC1-B	H MH B23	0.008
DC1-B	H MH B24	0.008
DC1-B	H LIP B21	0.008
DC1-B	H LIP B22	0.008
DC1-B	H LIP B23	0.008
DC1-B	H MH B171	0.008
DC1-B	H MH B172	0.008
DC1-B	H MH B20	0.008
De	ntro del Haplogrupo (C
DC5-C	AR070-C1b	0
DC5-C	Yu015-C	0
DC5-C	Hp107-C	0
DC5-C	MB.GU10-C1	0
DC5-C	Map.AG9-C	0
DC5-C	C LIP C7	0
DC11-C	AT171-C1b	0
DC11-C	AR009-C1b	0
DC11-C	K09-C	0
DC11-C	K12-C	0
DC11-C	YA17-C	0
DC11-C	YA22-C	0
DC11-C	YA26-C	0
DC11-C	YA15-C	0
DC11-C	YA16-C	0
DC11-C	YA18-C	0

	individuo	
Individuo	comparativo más	Distancia
en estudio	cercano	Р
DC11-C	H56-C	0
DC11-C	H52-C	0
DC11-C	MA08-C	0
DC11-C	MA10-C	0
DC11-C	MARG55-C	0
DC11-C	MARG149-C	0
DC11-C	MARG145-C	0
DC11-C	T41-C	0
DC11-C	T47-C	0
DC11-C	T08-C	0
DC11-C	T17-C	0
DC11-C	T31-C	0
DC11-C	T52-C	0
DC11-C	T77-C	0
DC11-C	T04-C	0
DC11-C	H26-C	0
DC11-C	Teh23-C	0
DC11-C	H106-C	0
DC11-C	K13-C	0
DC11-C	T38-C	0
DC11-C	T16-C	0
DC11-C	H03-C	0
DC11-C	H38-C	0
DC11-C	LR05-C	0
DC11-C	YA23-C	0
DC11-C	H19-C	0
DC11-C	PilFo.M12-C1	0
DC11-C	ToCh.M8-C1	0
DC11-C	WiFo.M14-C1	0
DC11-C	ARG015-C1	0
DC11-C	ARG012-C1	0

	individuo	
Individuo	comparativo más	Distancia
en estudio	cercano	P
DC11-C	ARG092-C1	0
DC11-C	ARG131-C1	0
DC11-C	ARG136-C1	0
DC11-C	ARG164-C1	0
DC11-C	ARG167-C1	0
DC11-C	ARG190-C1	0
DC11-C	ARG270-C1	0
DC11-C	TPE09-C	0
DC11-C	APNO09-C	0
DC11-C	QuechPeru13-C	0
DC11-C	LPAZ052-C	0
DC11-C	LPAZ061-C	0
DC11-C	LPAZ065-C	0
DC11-C	LPAZ073-C	0
DC11-C	LPAZ074-C	0
DC11-C	Que.M40-C1	0
DC11-C	Aym.M47-C1	0
DC11-C	Aym.M48-C1	0
DC11-C	Que.M43-C1	0
DC11-C	Beni28-C	0
DC11-C	Beni33-C	0
DC11-C	LaPaz35-C	0
DC11-C	Beni36-C	0
DC11-C	Cochabamba43-C	0
DC11-C	AymaraC01-C	0
DC11-C	Нр56-С	0
DC11-C	Нр99-С	0
DC11-C	Hp128-C	0
DC11-C	Titi27.Q-C	0
DC11-C	Chil34.M-C1	0
DC11-C	Chil40.M-C1	0

	1	
	individuo	
Individuo	comparativo más	Distancia
en estudio	cercano	Р
DC11-C	KAIN.B6-C	0
DC11-C	Coya-M41-C1	0
DC11-C	Coya.M44-C1	0
DC11-C	Map.AG7-C	0
DC11-C	Teh23.M-C1	0
DC11-C	Teh28.M-C1	0
DC11-C	Teh5.M-C1	0
DC11-C	Map14.M-C1	0
DC11-C	Map149.M-C1	0
DC11-C	Map54.M-C1	0
DC11-C	Map55.M-C1	0
DC11-C	Mapu4.M-C1	0
DC11-C	Kaw.MK3-C1	0
DC11-C	Jue2C1	0
DC11-C	IPK12-C	0
DC11-C	IPY01-C	0
DC11-C	IPY02-C	0
DC11-C	IPY05-C	0
DC11-C	MG23-C	0
DC11-C	ACCH17C	0
DC11-C	C EIP C21	0
DC11-C	C EIP C22	0
DC11-C	C EIP C23	0
DC11-C	C EIP C24	0
DC11-C	C EIP C25	0
DC11-C	C LIP C21	0
DC11-C	C LIP C22	0
DC11-C	C LIP C23	0
DC11-C	H MH C21	0
DC11-C	H MH C22	0
DC11-C	H MH C23	0

Individuo	individuo comparativo más	Distancia
en estudio	cercano	P
DC11-C	H MH C24	0
DC11-C	H MH C25	0
DC11-C	H MH C26	0
DC11-C	H LIP C2	0
DC11-C	H LIP C101	0
DC11-C	H LIP C131	0
DC11-C	H LIP C132	0
DC11-C	Concho22C1	0
DC11-C	Huari09C1	0
PA19-C1	AT171-C1b	0
PA19-C1	AR009-C1b	0
PA19-C1	AR070-C1b	0
PA19-C1	AR054-C1b	0
PA19-C1	AT089-C1b13	0
PA19-C1	K09-C	0
PA19-C1	K12-C	0
PA19-C1	YA17-C	0
PA19-C1	YA22-C	0
PA19-C1	YA26-C	0
PA19-C1	YA15-C	0
PA19-C1	YA16-C	0
PA19-C1	YA18-C	0
PA19-C1	H56-C	0
PA19-C1	MA11-C	0
PA19-C1	Teh17-C	0
PA19-C1	H52-C	0
PA19-C1	MA08-C	0
PA19-C1	MA10-C	0
PA19-C1	MARG55-C	0
PA19-C1	MARG149-C	0
PA19-C1	MARG145-C	0

Individuo	individuo comparativo más	Distancia
en estudio	cercano	P
PA19-C1	T41-C	0
PA19-C1	T47-C	0
PA19-C1	T08-C	0
PA19-C1	T17-C	0
PA19-C1	T31-C	0
PA19-C1	T52-C	0
PA19-C1	T77-C	0
PA19-C1	T04-C	0
PA19-C1	H26-C	0
PA19-C1	Teh23-C	0
PA19-C1	H106-C	0
PA19-C1	K13-C	0
PA19-C1	T38-C	0
PA19-C1	T16-C	0
PA19-C1	H03-C	0
PA19-C1	H38-C	0
PA19-C1	LR05-C	0
PA19-C1	MARG81-C	0
PA19-C1	YA23-C	0
PA19-C1	H19-C	0
PA19-C1	PilFo.M12-C1	0
PA19-C1	ToCh.M8-C1	0
PA19-C1	WiFo.M14-C1	0
PA19-C1	ToFo.M5-C1	0
PA19-C1	ARG015-C1	0
PA19-C1	ARG012-C1	0
PA19-C1	ARG092-C1	0
PA19-C1	ARG131-C1	0
PA19-C1	ARG136-C1	0
PA19-C1	ARG141-C1	0
PA19-C1	ARG164-C1	0

	individuo	
Individuo	comparativo más	Distancia
en estudio	cercano	Р
PA19-C1	ARG167-C1	0
PA19-C1	ARG190-C1	0
PA19-C1	ARG270-C1	0
PA19-C1	Yu015-C	0
PA19-C1	Yu016-C	0
PA19-C1	TPE09-C	0
PA19-C1	QPNO17-C	0
PA19-C1	APNO09-C	0
PA19-C1	QuechPeru13-C	0
PA19-C1	LPAZ046-C	0
PA19-C1	LPAZ047-C	0
PA19-C1	LPAZ052-C	0
PA19-C1	LPAZ061-C	0
PA19-C1	LPAZ062-C	0
PA19-C1	LPAZ065-C	0
PA19-C1	LPAZ073-C	0
PA19-C1	LPAZ074-C	0
PA19-C1	LPAZ078-C	0
PA19-C1	Que.M40-C1	0
PA19-C1	Aym.M47-C1	0
PA19-C1	Aym.M48-C1	0
PA19-C1	Que.M43-C1	0
PA19-C1	Cochabamba10-C	0
PA19-C1	SantaCruz11-C	0
PA19-C1	Beni12-C	0
PA19-C1	Beni19-C	0
PA19-C1	Beni21-C	0
PA19-C1	Beni28-C	0
PA19-C1	Beni33-C	0
PA19-C1	LaPaz35-C	0
PA19-C1	Beni36-C	0

Individuo			
en estudio cercano P PA19-C1 Cochabamba43-C 0 PA19-C1 AymaraC01-C 0 PA19-C1 AymaraC05-C 0 PA19-C1 Hp56-C 0 PA19-C1 Hp58-C 0 PA19-C1 Hp72-C 0 PA19-C1 Hp83-C 0 PA19-C1 Hp99-C 0 PA19-C1 Hp107-C 0 PA19-C1 Hp107-C 0 PA19-C1 Hp128-C 0 PA19-C1 Hp145-C 0 PA19-C1 Hp157-C 0 PA19-C1 Hp173-C 0 PA19-C1 Hp173-C 0 PA19-C1 Chil34.M-C1 0 PA19-C1 Chil40.M-C1 0 PA19-C1 Chil42.M-C1 0 PA19-C1 KAIN.B6-C 0 PA19-C1 MB.GU9-C1 0 PA19-C1 MB.GU9-C1 0 PA19-C1 Coya.M37-C1 0<		individuo	
PA19-C1 Cochabamba43-C 0 PA19-C1 AymaraC01-C 0 PA19-C1 AymaraC05-C 0 PA19-C1 Hp56-C 0 PA19-C1 Hp58-C 0 PA19-C1 Hp72-C 0 PA19-C1 Hp83-C 0 PA19-C1 Hp99-C 0 PA19-C1 Hp107-C 0 PA19-C1 Hp128-C 0 PA19-C1 Hp145-C 0 PA19-C1 Hp173-C 0 PA19-C1 Hp173-C 0 PA19-C1 Hp173-C 0 PA19-C1 Titi27.Q-C 0 PA19-C1 Chil40.M-C1 0 PA19-C1 Chil40.M-C1 0 PA19-C1 Chil43.M-C1 0 PA19-C1 KAIN.B6-C 0 PA19-C1 MB.GU10-C1 0 PA19-C1 Coya.M37-C1 0 PA19-C1 Coya.M44-C1 0 PA19-C1 Map.AG7-C <	Individuo	comparativo más	Distancia
PA19-C1 AymaraC01-C 0 PA19-C1 AymaraC05-C 0 PA19-C1 Hp56-C 0 PA19-C1 Hp58-C 0 PA19-C1 Hp72-C 0 PA19-C1 Hp83-C 0 PA19-C1 Hp99-C 0 PA19-C1 Hp107-C 0 PA19-C1 Hp128-C 0 PA19-C1 Hp145-C 0 PA19-C1 Hp157-C 0 PA19-C1 Hp173-C 0 PA19-C1 Titi27.Q-C 0 PA19-C1 Chil34.M-C1 0 PA19-C1 Chil40.M-C1 0 PA19-C1 Chil43.M-C1 0 PA19-C1 Chil43.M-C1 0 PA19-C1 MB.GU9-C1 0 PA19-C1 MB.GU9-C1 0 PA19-C1 MB.GU9-C1 0 PA19-C1 Coya.M37-C1 0 PA19-C1 Coya.M44-C1 0 PA19-C1 Map.AG9-C <td< td=""><td>en estudio</td><td>cercano</td><td>Р</td></td<>	en estudio	cercano	Р
PA19-C1 AymaraC05-C 0 PA19-C1 Hp56-C 0 PA19-C1 Hp58-C 0 PA19-C1 Hp72-C 0 PA19-C1 Hp83-C 0 PA19-C1 Hp99-C 0 PA19-C1 Hp107-C 0 PA19-C1 Hp128-C 0 PA19-C1 Hp145-C 0 PA19-C1 Hp173-C 0 PA19-C1 Hp173-C 0 PA19-C1 Hp173-C 0 PA19-C1 Chil34.M-C1 0 PA19-C1 Chil40.M-C1 0 PA19-C1 Chil43.M-C1 0 PA19-C1 Chil43.M-C1 0 PA19-C1 KAIN.B6-C 0 PA19-C1 MB.GU10-C1 0 PA19-C1 MB.GU10-C1 0 PA19-C1 Coya.M37-C1 0 PA19-C1 Coya.M44-C1 0 PA19-C1 Map.AG9-C 0 PA19-C1 Teh23.M-C1 0	PA19-C1	Cochabamba43-C	0
PA19-C1 Hp56-C 0 PA19-C1 Hp58-C 0 PA19-C1 Hp72-C 0 PA19-C1 Hp83-C 0 PA19-C1 Hp99-C 0 PA19-C1 Hp99-C 0 PA19-C1 Hp107-C 0 PA19-C1 Hp107-C 0 PA19-C1 Hp128-C 0 PA19-C1 Hp145-C 0 PA19-C1 Hp157-C 0 PA19-C1 Hp173-C 0 PA19-C1 Titi27.Q-C 0 PA19-C1 Chil34.M-C1 0 PA19-C1 Chil40.M-C1 0 PA19-C1 Chil43.M-C1 0 PA19-C1 KAIN.B6-C 0 PA19-C1 MB.GU9-C1 0 PA19-C1 MB.GU10-C1 0 PA19-C1 Coya.M37-C1 0 PA19-C1 Coya.M41-C1 0 PA19-C1 Coya.M44-C1 0 PA19-C1 Map.AG7-C 0 PA19-C1 Map.AG9-C 0 PA19-C1 Teh23.M-C1 0 PA19-C1 Teh23.M-C1 0 PA19-C1 Teh28.M-C1 0 PA19-C1 Teh28.M-C1 0 PA19-C1 Teh28.M-C1 0 PA19-C1 Teh5.M-C1 0	PA19-C1	AymaraC01-C	0
PA19-C1 Hp58-C 0 PA19-C1 Hp72-C 0 PA19-C1 Hp83-C 0 PA19-C1 Hp99-C 0 PA19-C1 Hp107-C 0 PA19-C1 Hp107-C 0 PA19-C1 Hp128-C 0 PA19-C1 Hp128-C 0 PA19-C1 Hp145-C 0 PA19-C1 Hp157-C 0 PA19-C1 Hp173-C 0 PA19-C1 Titi27.Q-C 0 PA19-C1 Chil40.M-C1 0 PA19-C1 Chil42.M-C1 0 PA19-C1 Chil43.M-C1 0 PA19-C1 KAIN.B6-C 0 PA19-C1 MB.GU9-C1 0 PA19-C1 Coya.M37-C1 0 PA19-C1 Coya.M37-C1 0 PA19-C1 Coya.M41-C1 0 PA19-C1 Map.AG7-C 0 PA19-C1 Map.AG7-C 0 PA19-C1 Teh23.M-C1 0 PA19-C1 Teh23.M-C1 0 PA19-C1 Teh23.M-C1 0 PA19-C1 Teh28.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Teh5.M-C1 0	PA19-C1	AymaraC05-C	0
PA19-C1 Hp72-C 0 PA19-C1 Hp83-C 0 PA19-C1 Hp99-C 0 PA19-C1 Hp107-C 0 PA19-C1 Hp128-C 0 PA19-C1 Hp145-C 0 PA19-C1 Hp157-C 0 PA19-C1 Hp173-C 0 PA19-C1 Titi27.Q-C 0 PA19-C1 Chil34.M-C1 0 PA19-C1 Chil40.M-C1 0 PA19-C1 Chil43.M-C1 0 PA19-C1 KAIN.B6-C 0 PA19-C1 MB.GU9-C1 0 PA19-C1 MB.GU10-C1 0 PA19-C1 Coya.M37-C1 0 PA19-C1 Coya.M41-C1 0 PA19-C1 Map.AG7-C 0 PA19-C1 Map.AG9-C 0 PA19-C1 Teh23.M-C1 0 PA19-C1 Teh23.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Map14.M-C1	PA19-C1	Нр56-С	0
PA19-C1 Hp83-C 0 PA19-C1 Hp99-C 0 PA19-C1 Hp107-C 0 PA19-C1 Hp128-C 0 PA19-C1 Hp145-C 0 PA19-C1 Hp145-C 0 PA19-C1 Hp157-C 0 PA19-C1 Hp173-C 0 PA19-C1 Titi27.Q-C 0 PA19-C1 Chil34.M-C1 0 PA19-C1 Chil42.M-C1 0 PA19-C1 KAIN.B6-C 0 PA19-C1 MB.GU9-C1 0 PA19-C1 MB.GU10-C1 0 PA19-C1 Coya.M37-C1 0 PA19-C1 Coya.M41-C1 0 PA19-C1 Map.AG9-C 0 PA19-C1 Map.AG9-C 0 PA19-C1 Teh28.M-C1 0 PA19-C1 Teh28.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Teh5.M-C1 0	PA19-C1	Нр58-С	0
PA19-C1 Hp99-C 0 PA19-C1 Hp107-C 0 PA19-C1 Hp128-C 0 PA19-C1 Hp145-C 0 PA19-C1 Hp145-C 0 PA19-C1 Hp157-C 0 PA19-C1 Hp173-C 0 PA19-C1 Titi27.Q-C 0 PA19-C1 Chil34.M-C1 0 PA19-C1 Chil42.M-C1 0 PA19-C1 Chil43.M-C1 0 PA19-C1 KAIN.B6-C 0 PA19-C1 MB.GU9-C1 0 PA19-C1 MB.GU10-C1 0 PA19-C1 Coya.M37-C1 0 PA19-C1 Coya.M41-C1 0 PA19-C1 Map.AG7-C 0 PA19-C1 Map.AG9-C 0 PA19-C1 Teh23.M-C1 0 PA19-C1 Teh28.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Teh5.M-C1 0	PA19-C1	Нр72-С	0
PA19-C1 Hp107-C 0 PA19-C1 Hp128-C 0 PA19-C1 Hp145-C 0 PA19-C1 Hp157-C 0 PA19-C1 Hp173-C 0 PA19-C1 Titi27.Q-C 0 PA19-C1 Chil34.M-C1 0 PA19-C1 Chil40.M-C1 0 PA19-C1 Chil43.M-C1 0 PA19-C1 KAIN.B6-C 0 PA19-C1 MB.GU9-C1 0 PA19-C1 MB.GU10-C1 0 PA19-C1 Coya.M37-C1 0 PA19-C1 Coya.M41-C1 0 PA19-C1 Map.AG7-C 0 PA19-C1 Map.AG9-C 0 PA19-C1 Teh23.M-C1 0 PA19-C1 Teh28.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Map14.M-C1 0	PA19-C1	Нр83-С	0
PA19-C1 Hp128-C 0 PA19-C1 Hp145-C 0 PA19-C1 Hp157-C 0 PA19-C1 Hp173-C 0 PA19-C1 Titi27.Q-C 0 PA19-C1 Chil34.M-C1 0 PA19-C1 Chil40.M-C1 0 PA19-C1 Chil42.M-C1 0 PA19-C1 Chil43.M-C1 0 PA19-C1 KAIN.B6-C 0 PA19-C1 MB.GU9-C1 0 PA19-C1 MB.GU10-C1 0 PA19-C1 Coya.M37-C1 0 PA19-C1 Coya.M41-C1 0 PA19-C1 Map.AG7-C 0 PA19-C1 Map.AG9-C 0 PA19-C1 Teh23.M-C1 0 PA19-C1 Teh28.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Map14.M-C1 0	PA19-C1	Нр99-С	0
PA19-C1 Hp145-C 0 PA19-C1 Hp157-C 0 PA19-C1 Hp173-C 0 PA19-C1 Titi27.Q-C 0 PA19-C1 Chil34.M-C1 0 PA19-C1 Chil40.M-C1 0 PA19-C1 Chil42.M-C1 0 PA19-C1 Chil43.M-C1 0 PA19-C1 KAIN.B6-C 0 PA19-C1 MB.GU9-C1 0 PA19-C1 MB.GU10-C1 0 PA19-C1 Coya.M37-C1 0 PA19-C1 Coya.M41-C1 0 PA19-C1 Map.AG7-C 0 PA19-C1 Map.AG9-C 0 PA19-C1 Teh23.M-C1 0 PA19-C1 Teh28.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Map14.M-C1 0	PA19-C1	Hp107-C	0
PA19-C1 Hp157-C 0 PA19-C1 Hp173-C 0 PA19-C1 Titi27.Q-C 0 PA19-C1 Chil34.M-C1 0 PA19-C1 Chil40.M-C1 0 PA19-C1 Chil42.M-C1 0 PA19-C1 Chil43.M-C1 0 PA19-C1 KAIN.B6-C 0 PA19-C1 MB.GU9-C1 0 PA19-C1 MB.GU10-C1 0 PA19-C1 Coya.M37-C1 0 PA19-C1 Coya.M41-C1 0 PA19-C1 Map.AG7-C 0 PA19-C1 Map.AG9-C 0 PA19-C1 Teh23.M-C1 0 PA19-C1 Teh28.M-C1 0 PA19-C1 Map14.M-C1 0	PA19-C1	Hp128-C	0
PA19-C1 Hp173-C 0 PA19-C1 Titi27.Q-C 0 PA19-C1 Chil34.M-C1 0 PA19-C1 Chil40.M-C1 0 PA19-C1 Chil42.M-C1 0 PA19-C1 Chil43.M-C1 0 PA19-C1 KAIN.B6-C 0 PA19-C1 MB.GU9-C1 0 PA19-C1 Coya.M37-C1 0 PA19-C1 Coya.M37-C1 0 PA19-C1 Coya.M41-C1 0 PA19-C1 Map.AG7-C 0 PA19-C1 Map.AG9-C 0 PA19-C1 Teh23.M-C1 0 PA19-C1 Teh28.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Map14.M-C1 0	PA19-C1	Hp145-C	0
PA19-C1 Titi27.Q-C 0 PA19-C1 Chil34.M-C1 0 PA19-C1 Chil40.M-C1 0 PA19-C1 Chil42.M-C1 0 PA19-C1 Chil43.M-C1 0 PA19-C1 KAIN.B6-C 0 PA19-C1 MB.GU9-C1 0 PA19-C1 MB.GU10-C1 0 PA19-C1 Coya.M37-C1 0 PA19-C1 Coya.M41-C1 0 PA19-C1 Coya.M44-C1 0 PA19-C1 Map.AG7-C 0 PA19-C1 Teh23.M-C1 0 PA19-C1 Teh28.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Map14.M-C1 0	PA19-C1	Hp157-C	0
PA19-C1 Chil34.M-C1 0 PA19-C1 Chil40.M-C1 0 PA19-C1 Chil42.M-C1 0 PA19-C1 Chil43.M-C1 0 PA19-C1 KAIN.B6-C 0 PA19-C1 MB.GU9-C1 0 PA19-C1 MB.GU10-C1 0 PA19-C1 Coya.M37-C1 0 PA19-C1 Coya.M41-C1 0 PA19-C1 Coya.M44-C1 0 PA19-C1 Map.AG7-C 0 PA19-C1 Map.AG9-C 0 PA19-C1 Teh23.M-C1 0 PA19-C1 Teh28.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Map14.M-C1 0	PA19-C1	Hp173-C	0
PA19-C1 Chil40.M-C1 0 PA19-C1 Chil42.M-C1 0 PA19-C1 Chil43.M-C1 0 PA19-C1 KAIN.B6-C 0 PA19-C1 MB.GU9-C1 0 PA19-C1 Coya.M37-C1 0 PA19-C1 Coya.M37-C1 0 PA19-C1 Coya.M41-C1 0 PA19-C1 Coya.M44-C1 0 PA19-C1 Map.AG7-C 0 PA19-C1 Teh23.M-C1 0 PA19-C1 Teh28.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Map14.M-C1 0	PA19-C1	Titi27.Q-C	0
PA19-C1 Chil42.M-C1 0 PA19-C1 Chil43.M-C1 0 PA19-C1 KAIN.B6-C 0 PA19-C1 MB.GU9-C1 0 PA19-C1 MB.GU10-C1 0 PA19-C1 Coya.M37-C1 0 PA19-C1 Coya.M41-C1 0 PA19-C1 Coya.M44-C1 0 PA19-C1 Map.AG7-C 0 PA19-C1 Map.AG9-C 0 PA19-C1 Teh23.M-C1 0 PA19-C1 Teh28.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Map14.M-C1 0	PA19-C1	Chil34.M-C1	0
PA19-C1 Chil43.M-C1 0 PA19-C1 KAIN.B6-C 0 PA19-C1 MB.GU9-C1 0 PA19-C1 MB.GU10-C1 0 PA19-C1 Coya.M37-C1 0 PA19-C1 Coya.M41-C1 0 PA19-C1 Coya.M44-C1 0 PA19-C1 Map.AG7-C 0 PA19-C1 Map.AG9-C 0 PA19-C1 Teh23.M-C1 0 PA19-C1 Teh28.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Map14.M-C1 0	PA19-C1	Chil40.M-C1	0
PA19-C1 KAIN.B6-C 0 PA19-C1 MB.GU9-C1 0 PA19-C1 MB.GU10-C1 0 PA19-C1 Coya.M37-C1 0 PA19-C1 Coya.M41-C1 0 PA19-C1 Coya.M44-C1 0 PA19-C1 Map.AG7-C 0 PA19-C1 Map.AG9-C 0 PA19-C1 Teh23.M-C1 0 PA19-C1 Teh28.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Map14.M-C1 0	PA19-C1	Chil42.M-C1	0
PA19-C1 MB.GU9-C1 0 PA19-C1 MB.GU10-C1 0 PA19-C1 Coya.M37-C1 0 PA19-C1 Coya.M41-C1 0 PA19-C1 Coya.M44-C1 0 PA19-C1 Map.AG7-C 0 PA19-C1 Map.AG9-C 0 PA19-C1 Teh23.M-C1 0 PA19-C1 Teh28.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Map14.M-C1 0	PA19-C1	Chil43.M-C1	0
PA19-C1 MB.GU10-C1 0 PA19-C1 Coya.M37-C1 0 PA19-C1 Coya.M41-C1 0 PA19-C1 Coya.M44-C1 0 PA19-C1 Map.AG7-C 0 PA19-C1 Map.AG9-C 0 PA19-C1 Teh23.M-C1 0 PA19-C1 Teh28.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Map14.M-C1 0	PA19-C1	KAIN.B6-C	0
PA19-C1 Coya.M37-C1 0 PA19-C1 Coya.M41-C1 0 PA19-C1 Coya.M44-C1 0 PA19-C1 Map.AG7-C 0 PA19-C1 Map.AG9-C 0 PA19-C1 Teh23.M-C1 0 PA19-C1 Teh28.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Map14.M-C1 0	PA19-C1	MB.GU9-C1	0
PA19-C1 Coya-M41-C1 0 PA19-C1 Coya.M44-C1 0 PA19-C1 Map.AG7-C 0 PA19-C1 Map.AG9-C 0 PA19-C1 Teh23.M-C1 0 PA19-C1 Teh28.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Map14.M-C1 0	PA19-C1	MB.GU10-C1	0
PA19-C1 Coya.M44-C1 0 PA19-C1 Map.AG7-C 0 PA19-C1 Map.AG9-C 0 PA19-C1 Teh23.M-C1 0 PA19-C1 Teh28.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Map14.M-C1 0	PA19-C1	Coya.M37-C1	0
PA19-C1 Map.AG7-C 0 PA19-C1 Map.AG9-C 0 PA19-C1 Teh23.M-C1 0 PA19-C1 Teh28.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Map14.M-C1 0	PA19-C1	Coya-M41-C1	0
PA19-C1 Map.AG9-C 0 PA19-C1 Teh23.M-C1 0 PA19-C1 Teh28.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Map14.M-C1 0	PA19-C1	Coya.M44-C1	0
PA19-C1 Teh23.M-C1 0 PA19-C1 Teh28.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Map14.M-C1 0	PA19-C1	Map.AG7-C	0
PA19-C1 Teh28.M-C1 0 PA19-C1 Teh5.M-C1 0 PA19-C1 Map14.M-C1 0	PA19-C1	Map.AG9-C	0
PA19-C1 Teh5.M-C1 0 PA19-C1 Map14.M-C1 0	PA19-C1	Teh23.M-C1	0
PA19-C1 Map14.M-C1 0	PA19-C1	Teh28.M-C1	0
'	PA19-C1	Teh5.M-C1	0
PA19-C1 Map149.M-C1 0	PA19-C1	Map14.M-C1	0
	PA19-C1	Map149.M-C1	0

	individuo	
Individuo	comparativo más	Distancia
en estudio	cercano	Р
PA19-C1	Map54.M-C1	0
PA19-C1	Map55.M-C1	0
PA19-C1	Map81.M-C1	0
PA19-C1	Mapu4.M-C1	0
PA19-C1	CdB12589-C1	0
PA19-C1	Kaw.MK3-C1	0
PA19-C1	Jue2C1	0
PA19-C1	Ter4C1	0
PA19-C1	IPK12-C	0
PA19-C1	IPY01-C	0
PA19-C1	IPY02-C	0
PA19-C1	IPY05-C	0
PA19-C1	IPY06-C	0
PA19-C1	IPY10-C	0
PA19-C1	MG23-C	0
PA19-C1	ACCH17C	0
PA19-C1	C EIP C21	0
PA19-C1	C EIP C22	0
PA19-C1	C EIP C23	0
PA19-C1	C EIP C24	0
PA19-C1	C EIP C25	0
PA19-C1	C LIP C21	0
PA19-C1	C LIP C22	0
PA19-C1	C LIP C23	0
PA19-C1	C LIP C7	0
PA19-C1	C MH C15	0
PA19-C1	C MH C16	0
PA19-C1	C EIP C201	0
PA19-C1	C EIP C202	0
PA19-C1	C EIP C203	0
PA19-C1	C EIP C211	0

	individuo	
Individuo	comparativo más	Distancia
en estudio	cercano	Р
PA19-C1	C EIP C241	0
PA19-C1	H MH C21	0
PA19-C1	H MH C22	0
PA19-C1	H MH C23	0
PA19-C1	H MH C24	0
PA19-C1	H MH C25	0
PA19-C1	H MH C26	0
PA19-C1	H LIP C2	0
PA19-C1	H LIP C101	0
PA19-C1	H LIP C131	0
PA19-C1	H LIP C132	0
PA19-C1	H MH C191	0
PA19-C1	Concho22C1	0
PA19-C1	Huari09C1	0
PA19-C1	Huari03C1	0
DB2-C1	LPAZ037-C	0.003
DB2-C1	Beni7-C	0.003
DB2-C1	LaPaz8-C	0.003
DB2-C1	Hp62-C	0.003
DB2-C1	Hp155-C	0.003
DB2-C1	H LIP C111	0.003
DC6-C	LaPaz34-C	0.003
DC6-C	Chil37.M-C1	0.003
DC6-C	Coya.M43-C1	0.003
DC6-C	ACCH12C	0.003
DC6-C	C EIP C251	0.003
DC10-C	T67-C	0.011
DC10-C	Teh15-C	0.011
DC10-C	QPNO19-C	0.011
DC10-C	Cochabamba1-C	0.011
DC10-C	SantaCruz3-C	0.011

	individuo	
Individuo	comparativo	Distancia
en estudio	más cercano	Р
DC10-C	AymaraC02-C	0.011
DC10-C	Chil39.M-C1	0.011
DC10-C	GUA.B7-C	0.011
DC10-C	GUA.B8-C	0.011
DC10-C	MB.GU12-C1	0.011
DC10-C	Coya.M40-C1	0.011
DC10-C	Teh15.M-C1	0.011
DC10-C	Teh53.M-C1	0.011
DC10-C	C EIP C1	0.011
DC10-C	C EIP C321	0.011
DC10-C	Huari0305C1	0.011
Dontro dal hanlagrupo D		

Dentro	del	hap	logrupo) D
--------	-----	-----	---------	-----

LA1-D1	AR094-D1g	0
LA1-D1	MARG83-D	0
LA1-D1	MARG151-D	0
LA1-D1	H92-D	0
LA1-D1	H41-D	0
LA1-D1	H123-D	0
LA1-D1	H86-D	0
LA1-D1	LR02-D	0
LA1-D1	T88-D	0
LA1-D1	H02-D	0
LA1-D1	H115-D	0
LA1-D1	H105-D	0
LA1-D1	H01-D	0
LA1-D1	LR06-D	0
LA1-D1	LR08-D	0
LA1-D1	LR04-D	0
LA1-D1	MARG137-D	0
LA1-D1	MARG113-D	0
LA1-D1	MARG110-D	0

r		
	individuo	
Individuo	comparativo	Distancia
en estudio	más cercano	Р
LA1-D1	H68-D	0
LA1-D1	MARG44-D	0
LA1-D1	Chil17.M-D1	0
LA1-D1	Chil21.M-D1	0
LA1-D1	Map.AG13-D	0
LA1-D1	Teh10.M-D1	0
LA1-D1	Teh4.M-D1	0
LA1-D1	Teh2.M-D1	0
	Map110.M-	
LA1-D1	D1	0
LA1-D1	Map84.M-D1	0
LA1-D1	Map89.M-D1	0
LA1-D1	C EIP D111	0
LA2-D1	MARG39-D	0
LA2-D1	T09-D	0
LA2-D1	T63-D	0
LA2-D1	T94-D	0
LA2-D1	LR03-D	0
LA2-D1	T33-D	0
LA2-D1	T72-D	0
LA2-D1	MARG99-D	0
LA2-D1	Chil15.M-D1	0
LA2-D1	Teh3.M-D1	0
LA2-D1	IPK11-D	0
DB4-D1	MARG39-D	0
DB4-D1	T09-D	0
DB4-D1	T63-D	0
DB4-D1	T94-D	0
DB4-D1	LR03-D	0
DB4-D1	T33-D	0
DB4-D1	T72-D	0
DB4-D1	MARG99-D	0

	individuo	
Individuo	comparativo	Distancia
en estudio	más cercano	Р
DB4-D1	Chil15.M-D1	0
DB4-D1	Teh3.M-D1	0
DB4-D1	IPK11-D	0
DB4-D1	LA2-D1	0
PA8-D1	Map.AG15-D	0
PA8-D1	Mapu9.M-D1	0
PA10-D1	AR094-D1g	0
PA10-D1	MARG83-D	0
PA10-D1	MARG151-D	0
PA10-D1	H92-D	0
PA10-D1	H41-D	0
PA10-D1	H123-D	0
PA10-D1	H86-D	0
PA10-D1	LR02-D	0
PA10-D1	T88-D	0
PA10-D1	H02-D	0
PA10-D1	H115-D	0
PA10-D1	H105-D	0
PA10-D1	H01-D	0
PA10-D1	LR06-D	0
PA10-D1	LR08-D	0
PA10-D1	LR04-D	0
PA10-D1	MARG137-D	0
PA10-D1	MARG113-D	0
PA10-D1	MARG110-D	0
PA10-D1	H68-D	0
PA10-D1	MARG44-D	0
PA10-D1	Chil17.M-D1	0
PA10-D1	Chil21.M-D1	0
PA10-D1	Map.AG13-D	0
PA10-D1	Teh10.M-D1	0

individuo	
comparativo	Distancia
más cercano	Р
Teh4.M-D1	0
Teh2.M-D1	0
Map110.M-	
D1	0
Map84.M-D1	0
Map89.M-D1	0
C EIP D111	0
LA1-D1	0
AR094-D1g	0
MARG83-D	0
MARG151-D	0
H92-D	0
H41-D	0
H123-D	0
H86-D	0
LR02-D	0
T88-D	0
H02-D	0
H115-D	0
H105-D	0
H01-D	0
LR06-D	0
LR08-D	0
LR04-D	0
MARG137-D	0
MARG113-D	0
MARG110-D	0
H68-D	0
MARG44-D	0
Chil17.M-D1	0
Chil21.M-D1	0
Map.AG13-D	0
	comparativo más cercano Teh4.M-D1 Teh2.M-D1 Map110.M-D1 Map84.M-D1 Map89.M-D1 C EIP D111 LA1-D1 AR094-D1g MARG83-D MARG151-D H92-D H41-D H123-D H86-D LR02-D T88-D H02-D H115-D H105-D H105-D H01-D LR06-D LR08-D LR04-D MARG137-D MARG113-D MARG113-D MARG113-D MARG110-D H68-D MARG44-D Chil17.M-D1 Chil21.M-D1

	individuo	
Individuo	comparativo	Distancia
en estudio	más cercano	Р
PA11-D1	Teh10.M-D1	0
PA11-D1	Teh4.M-D1	0
PA11-D1	Teh2.M-D1	0
	Map110.M-	
PA11-D1	D1	0
PA11-D1	Map84.M-D1	0
PA11-D1	Map89.M-D1	0
PA11-D1	C EIP D111	0
PA11-D1	LA1-D1	0
PA11-D1	PA10-D1	0
DB6-D1	AR063-D1	0
DB6-D1	AR078-D1	0
DB6-D1	K01-D	0
DB6-D1	PilFo.M19-D1	0
	WiFo.M22-	
DB6-D1	D1	0
DB6-D1	PilFo.M23-D1	0
DB6-D1	C EIP D31	0
DB6-D1	C EIP D32	0
PA15-D1	AR094-D1g	0
PA15-D1	MARG83-D	0
PA15-D1	MARG151-D	0
PA15-D1	H92-D	0
PA15-D1	H41-D	0
PA15-D1	H123-D	0
PA15-D1	H86-D	0
PA15-D1	LR02-D	0
PA15-D1	T88-D	0
PA15-D1	H02-D	0
PA15-D1	H115-D	0
PA15-D1	H105-D	0
PA15-D1	H01-D	0
PA15-D1	LR06-D	0

	individuo	
Individuo	comparativo	Distancia
en estudio	más cercano	Р
PA15-D1	LR08-D	0
PA15-D1	LR04-D	0
PA15-D1	MARG137-D	0
PA15-D1	MARG113-D	0
PA15-D1	MARG110-D	0
PA15-D1	H68-D	0
PA15-D1	MARG44-D	0
PA15-D1	Chil17.M-D1	0
PA15-D1	Chil21.M-D1	0
PA15-D1	Map.AG13-D	0
PA15-D1	Teh10.M-D1	0
PA15-D1	Teh4.M-D1	0
PA15-D1	Teh2.M-D1	0
	Map110.M-	
PA15-D1	D1	0
PA15-D1	Map84.M-D1	0
PA15-D1	Map89.M-D1	0
PA15-D1	C EIP D111	0
PA18-D1	AR094-D1g	0
PA18-D1	MARG83-D	0
PA18-D1	MARG151-D	0
PA18-D1	H92-D	0
PA18-D1	H41-D	0
PA18-D1	H123-D	0
PA18-D1	H86-D	0
PA18-D1	LR02-D	0
PA18-D1	T88-D	0
PA18-D1	H02-D	0
PA18-D1	H115-D	0
PA18-D1	H105-D	0
PA18-D1	H01-D	0
PA18-D1	LR06-D	0

	individuo	
Individuo	comparativo	Distancia
en estudio	más cercano	Р
PA18-D1	LR08-D	0
PA18-D1	LR04-D	0
PA18-D1	MARG137-D	0
PA18-D1	MARG113-D	0
PA18-D1	MARG110-D	0
PA18-D1	H68-D	0
PA18-D1	MARG44-D	0
PA18-D1	Chil17.M-D1	0
PA18-D1	Chil21.M-D1	0
PA18-D1	Map.AG13-D	0
PA18-D1	Teh10.M-D1	0
PA18-D1	Teh4.M-D1	0
PA18-D1	Teh2.M-D1	0
	Map110.M-	
PA18-D1	D1	0
PA18-D1	Map84.M-D1	0
PA18-D1	Map89.M-D1	0
PA18-D1	C EIP D111	0
PA18-D1	PA15-D1	0
AMZ5-D1	AR013-D1	0
AMZ5-D1	AT121-D1	0
AMZ5-D1	AR094-D1g	0
AMZ5-D1	YA02-D	0
AMZ5-D1	YA20-D	0
AMZ5-D1	H80-D	0
AMZ5-D1	H34-D	0
AMZ5-D1	MARG100-D	0
AMZ5-D1	MARG83-D	0
AMZ5-D1	MARG151-D	0
AMZ5-D1	H92-D	0
AMZ5-D1	H41-D	0
AMZ5-D1	H123-D	0

	1	
	individuo	
Individuo	comparativo	Distancia
en estudio	más cercano	Р
AMZ5-D1	H86-D	0
AMZ5-D1	LR02-D	0
AMZ5-D1	T88-D	0
AMZ5-D1	H02-D	0
AMZ5-D1	H115-D	0
AMZ5-D1	H105-D	0
AMZ5-D1	H01-D	0
AMZ5-D1	LR06-D	0
AMZ5-D1	LR08-D	0
AMZ5-D1	LR04-D	0
AMZ5-D1	MARG137-D	0
AMZ5-D1	MARG113-D	0
AMZ5-D1	MARG102-D	0
AMZ5-D1	H09-D	0
AMZ5-D1	H13-D	0
AMZ5-D1	MA29-D	0
AMZ5-D1	H04-D	0
AMZ5-D1	H27-D	0
AMZ5-D1	MARG110-D	0
AMZ5-D1	H68-D	0
AMZ5-D1	MARG44-D	0
AMZ5-D1	PilFo.M17-D1	0
	ToCh.M10-	
AMZ5-D1	D1	0
AMZ5-D1	ToFo.M7-D1	0
AMZ5-D1	WiCh.M7-D1	0
	WiFo.M20-	
AMZ5-D1	D1	0
AMZ5-D1	ToFo.M11-D1	0
AMZ5-D1	ARG148-D1	0
AMZ5-D1	ARG166-D1	0
AMZ5-D1	ARG168-D1	0
AMZ5-D1	ARG178-D1	0

	individuo	
Individuo	comparativo	Distancia
en estudio	más cercano	Р
AMZ5-D1	Yu017-D	0
AMZ5-D1	Yu019-D	0
AMZ5-D1	Yu020-D	0
AMZ5-D1	QuechPeru20-D	0
AMZ5-D1	LPAZ009-D	0
AN475 D1	Aum 1440 D1	0
AMZ5-D1	Aym.M49-D1	0
AMZ5-D1	Aym.M50-D1	0
AMZ5-D1	SantaCruz2-D	0
AMZ5-D1	Cochabamba3-D	0
AMZ5-D1	LaPaz4-D	0
AMZ5-D1	LaPaz8-D	0
AMZ5-D1	Beni9-D	0
AMZ5-D1	Beni11-D	0
	Cochabamba17-	
AMZ5-D1	D	0
AMZ5-D1	Hp16-D	0
AMZ5-D1	Hp90-D	0
AMZ5-D1	Hp114-D	0
AMZ5-D1	Hp118-D	0
AMZ5-D1	Hp124-D	0
AMZ5-D1	Hp163-D	0
AMZ5-D1	Hp166-D	0
AMZ5-D1	Hp175-D	0
AMZ5-D1	Hp198-D	0
AMZ5-D1	Titi29.Q-D	0
AMZ5-D1	Chil17.M-D1	0
AMZ5-D1	Chil20.M-D1	0
AMZ5-D1	Chil21.M-D1	0
AMZ5-D1	GUA.B9-D	0
AMZ5-D1	MB.GU13-D1	0
AMZ5-D1	MB.GU14-D1	0
AMZ5-D1	MB.GU16-D1	0

Individuo	individuo comparativo	Distancia
en estudio	más cercano	Р
AMZ5-D1	Coya.M47-D1	0
AMZ5-D1	Map.AG13-D	0
AMZ5-D1	Teh10.M-D1	0
AMZ5-D1	Teh4.M-D1	0
AMZ5-D1	Teh2.M-D1	0
AMZ5-D1	Map110.M- D1	0
AMZ5-D1	Map84.M-D1	0
AMZ5-D1	Map89.M-D1	0
AMZ5-D1	Mapu16.M- D1	0
AMZ5-D1	CdB12590-D1	0
AMZ5-D1	LAm12D1	0
AMZ5-D1	LAm13D1	0
AMZ5-D1	HuaD1	0
AMZ5-D1	Jue3D1	0
AMZ5-D1	PG18432D1	0
AMZ5-D1	PG17863D1	0
AMZ5-D1	PG17809D1	0
AMZ5-D1	PG18417D1	0
AMZ5-D1	PG17885D1	0
AMZ5-D1	IPK01-D	0
AMZ5-D1	T2CH719D1	0
AMZ5-D1	T2CH729D1	0
AMZ5-D1	PUC33D	0
AMZ5-D1	C EIP D11	0
AMZ5-D1	C EIP D12	0
AMZ5-D1	C EIP D13	0
AMZ5-D1	C EIP D14	0
AMZ5-D1	C EIP D15	0
AMZ5-D1	C EIP D16	0
AMZ5-D1	C MH D11	0
AMZ5-D1	C MH D12	0

	individuo	
Individuo	comparativo	Distancia
en estudio	más cercano	Р
AMZ5-D1	C MH D13	0
AMZ5-D1	C LIP D1	0
AMZ5-D1	C EIP D5	0
AMZ5-D1	C MH D5	0
AMZ5-D1	C EIP D91	0
AMZ5-D1	C EIP D92	0
AMZ5-D1	C EIP D111	0
AMZ5-D1	C EIP D131	0
AMZ5-D1	C EIP D132	0
AMZ5-D1	C EIP D141	0
AMZ5-D1	C EIP D142	0
AMZ5-D1	C EIP D171	0
AMZ5-D1	C EIP D172	0
AMZ5-D1	C EIP D181	0
AMZ5-D1	C EIP D201	0
AMZ5-D1	H LIP D11	0
AMZ5-D1	H LIP D12	0
AMZ5-D1	H LIP D13	0
AMZ5-D1	H MH D8	0
AMZ5-D1	H MH D291	0
AMZ5-D1	Concho02D1	0
AMZ5-D1	Huari13D1	0
PA12-D1	AR094-D1g	0
PA12-D1	MA18-D	0
PA12-D1	MARG83-D	0
PA12-D1	MARG151-D	0
PA12-D1	H92-D	0
PA12-D1	H41-D	0
PA12-D1	H123-D	0
PA12-D1	H86-D	0
PA12-D1	LR02-D	0

	individuo	
Individuo	comparativo	Distancia
en estudio	más cercano	Р
PA12-D1	T88-D	0
PA12-D1	H02-D	0
PA12-D1	H115-D	0
PA12-D1	H105-D	0
PA12-D1	H01-D	0
PA12-D1	LR06-D	0
PA12-D1	LR08-D	0
PA12-D1	LR04-D	0
PA12-D1	MARG137-D	0
PA12-D1	MARG113-D	0
PA12-D1	MARG152-D	0
PA12-D1	MARG133-D	0
PA12-D1	MA24-D	0
PA12-D1	T19-D	0
PA12-D1	T83-D	0
PA12-D1	MARG110-D	0
PA12-D1	H68-D	0
PA12-D1	MARG44-D	0
PA12-D1	H98-D	0
PA12-D1	H11-D	0
PA12-D1	H15-D	0
PA12-D1	H61-D	0
PA12-D1	Teh13-D	0
PA12-D1	Teh26-D	0
PA12-D1	H73-D	0
PA12-D1	H37-D	0
PA12-D1	Chil17.M-D1	0
PA12-D1	Chil18.M-D1	0
PA12-D1	Chil19.M-D1	0
PA12-D1	Chil21.M-D1	0
PA12-D1	Chil22.M-D1	0

	individuo	
Individuo	comparativo	Distancia
en estudio	más cercano	Р
PA12-D1	Map.AG13-D	0
PA12-D1	Map.AG15-D	0
PA12-D1	Teh10.M-D1	0
PA12-D1	Teh4.M-D1	0
PA12-D1	Teh13.M-D1	0
PA12-D1	Teh26.M-D1	0
PA12-D1	Teh2.M-D1	0
PA12-D1	Map110.M- D1	0
PA12-D1	Map133.M- D1	0
PA12-D1	Map84.M-D1	0
PA12-D1	Map89.M-D1	0
PA12-D1	Mapu9.M-D1	0
	Mapu13.M-	
PA12-D1	D1	0
PA12-D1	IPK03-D	0
PA12-D1	C EIP D111	0
DB1-D1	MA29-D	0.003
DB1-D1	H04-D	0.003
DB1-D1	H27-D	0.003
DB3-D1	MARG39-D	0.003
DB3-D1	T09-D	0.003
DB3-D1	T63-D	0.003
DB3-D1	T94-D	0.003
DB3-D1	LR03-D	0.003
DB3-D1	T33-D	0.003
DB3-D1	T72-D	0.003
DB3-D1	MARG99-D	0.003
DB3-D1	Chil15.M-D1	0.003
DB3-D1	Teh3.M-D1	0.003
DB3-D1	IPK11-D	0.003
DB3-D1	LA2-D1	0.003
DB5-D4	Yu019-D	0.003

I		
	individuo	
Individuo	comparativo	Distancia
en estudio	más cercano	Р
DB5-D4	PG18417D1	0.003
DB5-D4	PG17885D1	0.003
RP2-D1	MARG39-D	0.003
RP2-D1	T09-D	0.003
RP2-D1	T63-D	0.003
RP2-D1	T94-D	0.003
RP2-D1	LR03-D	0.003
DD2 D4	T22 D	0.000
RP2-D1	T33-D	0.003
RP2-D1	T72-D	0.003
RP2-D1	MARG99-D	0.003
RP2-D1	Chil15.M-D1	0.003
RP2-D1	Teh3.M-D1	0.003
RP2-D1	IPK11-D	0.003
RP2-D1	LA2-D1	0.003
RP2-D1	DB4-D1	0.003
PA16-D1	AR085-D1	0.003
PA16-D1	AR017-D1	0.003
PA16-D1	AR094-D1g	0.003
PA16-D1	MARG83-D	0.003
PA16-D1	MARG151-D	0.003
PA16-D1	H92-D	0.003
PA16-D1	H41-D	0.003
PA16-D1	H123-D	0.003
PA16-D1	H86-D	0.003
PA16-D1	LR02-D	0.003
PA16-D1	T88-D	0.003
PA16-D1	H02-D	0.003
PA16-D1	H115-D	0.003
PA16-D1	H105-D	0.003
PA16-D1	H01-D	0.003
PA16-D1	LR06-D	0.003

	T	ı
	individuo	
Individuo	comparativo	Distancia
en estudio	más cercano	Р
PA16-D1	LR08-D	0.003
PA16-D1	LR04-D	0.003
PA16-D1	MARG137-D	0.003
PA16-D1	MARG113-D	0.003
PA16-D1	MARG110-D	0.003
PA16-D1	H68-D	0.003
PA16-D1	MARG44-D	0.003
PA16-D1	QuechPeru19- D	0.003
PA16-D1	Chil17.M-D1	0.003
PA16-D1	Chil19.M-D1	0.003
PA16-D1	Chil21.M-D1	0.003
PA16-D1	Map.AG13-D	0.003
PA16-D1	Teh10.M-D1	0.003
PA16-D1	Teh4.M-D1	0.003
PA16-D1	Teh2.M-D1	0.003
PA16-D1	Map110.M-D1	0.003
PA16-D1	Map84.M-D1	0.003
PA16-D1	Map89.M-D1	0.003
PA16-D1	C EIP D111	0.003
PA16-D1	LA1-D1	0.003
PA16-D1	PA10-D1	0.003
PA16-D1	PA11-D1	0.003
PA3-D1	AR094-D1g	0.004
PA3-D1	MARG83-D	0.004
PA3-D1	MARG151-D	0.004
PA3-D1	H92-D	0.004
PA3-D1	H41-D	0.004
PA3-D1	H123-D	0.004
PA3-D1	H86-D	0.004
PA3-D1	LR02-D	0.004
PA3-D1	T88-D	0.004

	individuo	
Individuo	comparativo	Distancia
en estudio	más cercano	Р
PA3-D1	H02-D	0.004
PA3-D1	H115-D	0.004
PA3-D1	H105-D	0.004
PA3-D1	H01-D	0.004
PA3-D1	LR06-D	0.004
PA3-D1	LR08-D	0.004
PA3-D1	LR04-D	0.004
PA3-D1	MARG137-D	0.004
PA3-D1	MARG113-D	0.004
PA3-D1	MARG110-D	0.004
PA3-D1	H68-D	0.004
PA3-D1	MARG44-D	0.004
PA3-D1	Chil17.M-D1	0.004
PA3-D1	Chil21.M-D1	0.004
PA3-D1	Map.AG13-D	0.004
PA3-D1	Teh10.M-D1	0.004
PA3-D1	Teh4.M-D1	0.004
PA3-D1	Teh2.M-D1	0.004
PA3-D1	Map110.M-D1	0.004
PA3-D1	Map84.M-D1	0.004
PA3-D1	Map89.M-D1	0.004
PA3-D1	C EIP D111	0.004
DC21-D1	AR013-D1	0.004
DC21-D1	AT121-D1	0.004
DC21-D1	YA02-D	0.004
DC21-D1	YA20-D	0.004
DC21-D1	H80-D	0.004
DC21-D1	H34-D	0.004
DC21-D1	PilFo.M17-D1	0.004
DC21-D1	ToCh.M10-D1	0.004
DC21-D1	ToFo.M7-D1	0.004

	T	
	individuo	
Individuo	comparativo	Distancia
en estudio	más cercano	Р
DC21-D1	WiCh.M7-D1	0.004
DC21-D1	WiFo.M20-D1	0.004
DC21-D1	ARG148-D1	0.004
DC21-D1	ARG166-D1	0.004
DC21-D1	ARG168-D1	0.004
DC21-D1	Yu017-D	0.004
	QuechPeru20-	
DC21-D1	D	0.004
DC21-D1	LPAZ009-D	0.004
DC21-D1	Aym.M50-D1	0.004
DC21-D1	SantaCruz2-D	0.004
DC21-D1	LaPaz8-D	0.004
DC21-D1	Beni9-D	0.004
DC21-D1	Beni11-D	0.004
DC21-D1	Hp16-D	0.004
DC21-D1	Hp118-D	0.004
DC21-D1	Hp124-D	0.004
DC21-D1	Hp163-D	0.004
DC21-D1	Hp175-D	0.004
DC21-D1	Hp198-D	0.004
DC21-D1	Titi29.Q-D	0.004
DC21-D1	GUA.B9-D	0.004
DC21-D1	MB.GU13-D1	0.004
DC21-D1	MB.GU16-D1	0.004
DC21-D1	Coya.M47-D1	0.004
DC21-D1	CdB12590-D1	0.004
DC21-D1	LAm12D1	0.004
DC21-D1	LAm13D1	0.004
DC21-D1	HuaD1	0.004
DC21-D1	Jue3D1	0.004
DC21-D1	PG18432D1	0.004
DC21-D1	PG17863D1	0.004

	individuo	
Individuo	comparativo	Distancia
en estudio	más cercano	Р
DC21-D1	PG17809D1	0.004
DC21-D1	IPK01-D	0.004
DC21-D1	T2CH719D1	0.004
DC21-D1	T2CH729D1	0.004
DC21-D1	PUC33D	0.004
DC21-D1	C EIP D11	0.004
DC21-D1	C EIP D12	0.004
DC21-D1	C EIP D13	0.004
DC21-D1	C EIP D14	0.004
DC21-D1	C EIP D15	0.004
DC21-D1	C EIP D16	0.004
DC21-D1	C MH D11	0.004
DC21-D1	C MH D12	0.004
DC21-D1	C MH D13	0.004
DC21-D1	C LIP D1	0.004
DC21-D1	C EIP D91	0.004
DC21-D1	C EIP D92	0.004
DC21-D1	C EIP D121	0.004
DC21-D1	C EIP D122	0.004
DC21-D1	H LIP D11	0.004
DC21-D1	H LIP D12	0.004
DC21-D1	H LIP D13	0.004
DC21-D1	Concho02D1	0.004
DC21-D1	Huari13D1	0.004
PA7-D4	DB5-D4	0.003
PA7-D4	Yu019-D	0.006
PA7-D4	PG18417D1	0.006
PA7-D4	PG17885D1	0.006
PA13-D1	AR094-D1g	0.006
PA13-D1	MA18-D	0.006
PA13-D1	MARG83-D	0.006

	individuo	
Individuo	comparativo	Distancia
en estudio	más cercano	Р
PA13-D1	MARG151-D	0.006
PA13-D1	H92-D	0.006
PA13-D1	H41-D	0.006
PA13-D1	H123-D	0.006
PA13-D1	H86-D	0.006
PA13-D1	LR02-D	0.006
PA13-D1	T88-D	0.006
PA13-D1	H02-D	0.006
PA13-D1	H115-D	0.006
PA13-D1	H105-D	0.006
PA13-D1	H01-D	0.006
PA13-D1	LR06-D	0.006
PA13-D1	LR08-D	0.006
PA13-D1	LR04-D	0.006
PA13-D1	MARG137-D	0.006
PA13-D1	MARG113-D	0.006
PA13-D1	MARG152-D	0.006
PA13-D1	MARG133-D	0.006
PA13-D1	MA24-D	0.006
PA13-D1	T19-D	0.006
PA13-D1	T83-D	0.006
PA13-D1	MARG110-D	0.006
PA13-D1	H68-D	0.006
PA13-D1	MARG44-D	0.006
PA13-D1	H98-D	0.006
PA13-D1	H11-D	0.006
PA13-D1	H15-D	0.006
PA13-D1	H61-D	0.006
PA13-D1	Teh13-D	0.006
PA13-D1	Teh26-D	0.006
PA13-D1	H73-D	0.006

	individuo	
Individuo	comparativo	Distancia
en estudio	más cercano	Р
PA13-D1	H37-D	0.006
PA13-D1	Yu019-D	0.006
PA13-D1	QuechPeru14- D	0.006
PA13-D1	Hp57-D	0.006
PA13-D1	Chil17.M-D1	0.006
PA13-D1	Chil18.M-D1	0.006
PA13-D1	Chil19.M-D1	0.006
PA13-D1	Chil21.M-D1	0.006
PA13-D1	Chil22.M-D1	0.006
PA13-D1	Map.AG13-D	0.006
PA13-D1	Map.AG15-D	0.006
PA13-D1	Teh10.M-D1	0.006
PA13-D1	Teh4.M-D1	0.006
PA13-D1	Teh13.M-D1	0.006
PA13-D1	Teh26.M-D1	0.006
PA13-D1	Teh2.M-D1	0.006
PA13-D1	Map110.M-D1	0.006
PA13-D1	Map133.M-D1	0.006
PA13-D1	Map84.M-D1	0.006
PA13-D1	Map89.M-D1	0.006
PA13-D1	Mapu9.M-D1	0.006
PA13-D1	Mapu13.M-D1	0.006
PA13-D1	PG18417D1	0.006
PA13-D1	PG17885D1	0.006
PA13-D1	IPK03-D	0.006
PA13-D1	C EIP D111	0.006
PA13-D1	PA12-D1	0.006
PA14-D1	Mapu13.M-D1	0.008
DC18-D1	Mapu13.M-D1	0.008
PA5-D1	AR013-D1	0.009
PA5-D1	AT121-D1	0.009

	T	
	individuo	
Individuo	comparativo	Distancia
en estudio	más cercano	Р
PA5-D1	YA02-D	0.009
PA5-D1	YA20-D	0.009
PA5-D1	PilFo.M17-D1	0.009
PA5-D1	ToCh.M10-D1	0.009
PA5-D1	ToFo.M7-D1	0.009
PA5-D1	WiCh.M7-D1	0.009
PA5-D1	WiFo.M20-D1	0.009
PA5-D1	ARG148-D1	0.009
PA5-D1	ARG166-D1	0.009
PA5-D1	ARG168-D1	0.009
PA5-D1	Yu017-D	0.009
	QuechPeru20-	
PA5-D1	D	0.009
PA5-D1	LPAZ009-D	0.009
PA5-D1	Aym.M50-D1	0.009
PA5-D1	LaPaz8-D	0.009
PA5-D1	Beni9-D	0.009
PA5-D1	Beni11-D	0.009
PA5-D1	Hp16-D	0.009
PA5-D1	Hp118-D	0.009
PA5-D1	Hp124-D	0.009
PA5-D1	Hp163-D	0.009
PA5-D1	Hp175-D	0.009
PA5-D1	Titi29.Q-D	0.009
PA5-D1	GUA.B9-D	0.009
PA5-D1	MB.GU13-D1	0.009
PA5-D1	MB.GU16-D1	0.009
PA5-D1	Coya.M47-D1	0.009
PA5-D1	CdB12590-D1	0.009
PA5-D1	LAm12D1	0.009
PA5-D1	LAm13D1	0.009
PA5-D1	HuaD1	0.009

	individuo	
Individuo	comparativo	Distancia
en estudio	más cercano	Р
PA5-D1	Jue3D1	0.009
PA5-D1	PG18432D1	0.009
PA5-D1	PG17863D1	0.009
PA5-D1	PG17809D1	0.009
PA5-D1	IPK01-D	0.009
PA5-D1	T2CH719D1	0.009
PA5-D1	T2CH729D1	0.009
PA5-D1	PUC33D	0.009
PA5-D1	C EIP D11	0.009
PA5-D1	C EIP D12	0.009
PA5-D1	C EIP D13	0.009
PA5-D1	C EIP D14	0.009
PA5-D1	C EIP D15	0.009
PA5-D1	C EIP D16	0.009
PA5-D1	C MH D11	0.009
PA5-D1	C MH D12	0.009
PA5-D1	C MH D13	0.009
PA5-D1	C LIP D1	0.009
PA5-D1	H LIP D11	0.009
PA5-D1	H LIP D12	0.009
PA5-D1	H LIP D13	0.009
PA5-D1	Concho02D1	0.009
PA5-D1	Huari13D1	0.009
DC19-D1	MA29-D	0.01
DC19-D1	H04-D	0.01
DC19-D1	H27-D	0.01
DC19-D1	YA05-D	0.01
DC19-D1	YA08-D	0.01
DC19-D1	YA14-D	0.01
DC19-D1	YA19-D	0.01
DC19-D1	YA24-D	0.01

	individuo	
Individuo	comparativo	Distancia
en estudio	más cercano	Р
DC19-D1	YA25-D	0.01
DC19-D1	YA09-D	0.01
DC19-D1	T24-D	0.01
DC19-D1	T27-D	0.01
DC19-D1	T44-D	0.01
DC19-D1	T48-D	0.01
DC19-D1	T58-D	0.01
DC19-D1	T78-D	0.01
DC19-D1	T81-D	0.01
DC19-D1	T99-D	0.01
DC19-D1	Teh56-D	0.01
DC19-D1	MARG90-D	0.01
DC19-D1	Teh50-D	0.01
DC19-D1	MARG39-D	0.01
DC19-D1	T09-D	0.01
DC19-D1	T63-D	0.01
DC19-D1	T94-D	0.01
DC19-D1	LR03-D	0.01
DC19-D1	T33-D	0.01
DC19-D1	T72-D	0.01
DC19-D1	MARG99-D	0.01
DC19-D1	H07-D	0.01
DC19-D1	H54-D	0.01
DC19-D1	H32-D	0.01
DC19-D1	Chil15.M-D1	0.01
DC19-D1	Map.AG17-D	0.01
DC19-D1	Teh3.M-D1	0.01
DC19-D1	Teh50.M-D4	0.01
DC19-D1	Teh56.M-D4	0.01
	Map126-M-	
DC19-D1	D1	0.01
DC19-D1	Map90.M-D4	0.01

	individuo	
Individuo	comparativo	Distancia
en estudio	más cercano	Р
	Mapu11.M-	
DC19-D1	D1	0.01
DC19-D1	IPK11-D	0.01
DC19-D1	MG30b-D	0.01
RP4-D1	YA09-D	0.011
RP4-D1	T24-D	0.011
RP4-D1	T27-D	0.011
RP4-D1	T44-D	0.011
RP4-D1	T48-D	0.011
RP4-D1	T58-D	0.011
RP4-D1	T78-D	0.011
RP4-D1	T81-D	0.011
RP4-D1	T99-D	0.011
RP4-D1	Teh56-D	0.011
RP4-D1	MARG90-D	0.011
RP4-D1	Teh50-D	0.011
RP4-D1	MARG39-D	0.011
RP4-D1	T09-D	0.011
RP4-D1	T63-D	0.011
RP4-D1	T94-D	0.011
RP4-D1	LR03-D	0.011
RP4-D1	T33-D	0.011
RP4-D1	T72-D	0.011
RP4-D1	MARG99-D	0.011
RP4-D1	Chil15.M-D1	0.011
RP4-D1	Teh3.M-D1	0.011
RP4-D1	Teh50.M-D4	0.011
RP4-D1	Teh56.M-D4	0.011
RP4-D1	Map90.M-D4	0.011
RP4-D1	IPK11-D	0.011
DC22-D	YA09-D	0.011
DC22-D	T24-D	0.011

Individuo	individuo comparativo	Distancia
en estudio	más cercano	P
DC22-D	T27-D	0.011
DC22-D	T44-D	0.011
DC22-D	T48-D	0.011
DC22-D	T58-D	0.011
DC22-D	T78-D	0.011
DC22-D	T81-D	0.011
DC22-D	T99-D	0.011
DC22-D	Teh56-D	0.011
DC22-D	MARG90-D	0.011
DC22-D	Teh50-D	0.011
DC22-D	QPNO23-D	0.011
DC22-D	Chil13.M-D1	0.011
	MB.GU14-	
DC22-D	D1	0.011
DC22-D	Teh50.M-D4	0.011
DC22-D	Teh56.M-D4	0.011
D.022 D	Map90.M-	0.044
DC22-D	D4	0.011
RP1-D1	MARG39-D	0.012
RP1-D1	T09-D	0.012
RP1-D1	T63-D	0.012
RP1-D1	T94-D	0.012
RP1-D1	LR03-D	0.012
RP1-D1	T33-D	0.012
RP1-D1	T72-D	0.012
RP1-D1	MARG99-D	0.012
RP1-D1	Chil15.M-D1	0.012
RP1-D1	Teh3.M-D1	0.012
RP1-D1	IPK11-D	0.012
RP1-D1	LA2-D1	0.012
RP1-D1	DB4-D1	0.012

NOTA: La tabla anexa 2B y las figuras anexas 1 a 4 se encuentran adjuntas en el CD debido a su gran tamaño. Las figuras anexas 1, 3 y 4 se encuentran en formato PDF. La Figura digital anexa 2, por el contrario se encuentra en formato JPG porsu gran extensión. Los epígrafes de las mismas también se encuentran en archivo separado incluido en el zip.