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The  Zika  virus,  one  of the  new  epidemic  diseases,  is  reported  to  have  affected  millions  of people  in  the
past  year.  The  suitable  climate  conditions  of  the  areas  where  Zika  virus  has  been  reported,  especially
in  areas  with  a  high  population  density,  are  the  main  cause  of  the  current  outbreak  and  spread  of  the
disease.  Indeed,  the suitable  climatic  conditions  of  certain  territories  constitute  perfect  breading  nest  for
the propagation  and  outbreak  of  worldwide  diseases.  The  main  objective  of  this  research  is  to analyze
the  global  distribution  and  predicted  areas  of  both  mosquitoes  Ae. aegypti  and  Ae. albopictus  which  are
the  main  vectors  of Zika  virus.  Physical  (SRTM)  and  climatic  variables  (WorldClim)  were  used  to  obtain
the  susceptibility  maps  based  on  the  optimum  conditions  for  the  development  of these  mosquitoes.  The
susceptibility  model  was  developed  using  a Species  Distribution  Model  – correlative  model,  namely  the
Maximum  Entropy,  that used  as input  the spatial  references  of  both  vectors  (Dryad  Digital  Repository).

The results  show  the  most  important  classes  of each  independent  variable  used  in assessing  the  pres-
ence  of  each  species  of  mosquitoes  and  the areas  susceptible  to the  presence  of  these  vector  species.
It  turns  out  that Ae.  aegypti  has  greater  global  dispersion  than  the  Ae. albopictus  specie,  although  two
common  regions  stand  out as  the  most  prone  to the presence  of both  mosquito  species  (tropical  and
subtropical  zones).

The  crossing  of  these  areas  of greater  susceptibility  with  areas  of  greater  population  density  (e.g.  India,

China,  Se  of  USA  and  Brazil)  shows  some  agreement,  and  these  areas  stand  out  due to the  presence  of
several  records  of Zika  virus  (HealthMap  Project).

In  this  sense,  through  the intersection  of  susceptibility  and  human  exposure  the  areas  with  increased
risk  of  development  and  spread  of Zika  virus are  pinpointed,  suggesting  that  there  may  be  a new  outbreak
of  this  virus  in  these  places,  if  preventive  measures  are  not  adopted.

©  2017  Elsevier  B.V.  All  rights  reserved.
. Introduction

Certain species of mosquitoes are responsible for the trans-
ission of several viruses that affect humans and animals, as for

xample Flavivirus type mosquitoes that belong to the Flaviviri-
ae family (Wikan et al., 2016). Several recently published studies

stablish cause-effect relationships in the dissemination of certain
pidemic viruses (Ayres, 2016; Capinha et al., 2014; Kraemer et al.,
015a,b).
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B.M. Meneses).

ttp://dx.doi.org/10.1016/j.actatropica.2017.01.015
001-706X/© 2017 Elsevier B.V. All rights reserved.
Among the many known viruses the dengue, yellow fever,
Japanese encephalitis, West Nile and Zika (ZIKV) are examples of
viruses transmitted by mosquitoes that cause millions of infec-
tions every year around the world (Wikan et al., 2016). The ZIKV,
transmitted by vectors Ae. aegypti and Ae. albopictus, is an emerg-
ing pathogen regarded as a major epidemic in many parts of the
world (e.g. French Polynesia, Thailand, Philippines, Easter Island-
South Pacific, Brazil, and others) (Ayres, 2016; Bierlaire et al., 2014;
Buathong et al., 2015; Ioos et al., 2014; Lancet, 2016; Musso et al.,
2014; Petersen et al., 2016).
ZIK is an arbovirus (virus transmitted by arthropods) of the Fla-
viviridae family (Ioos et al., 2014) that was  first isolated in Uganda
(1947) (Ioos et al., 2014) from a batch of Aedes mosquitoes caught in

dx.doi.org/10.1016/j.actatropica.2017.01.015
http://www.sciencedirect.com/science/journal/0001706X
http://www.elsevier.com/locate/actatropica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actatropica.2017.01.015&domain=pdf
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mailto:bmeneses@campus.ul.pt
dx.doi.org/10.1016/j.actatropica.2017.01.015
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he wild (Boorman and Porterfield, 1956; Dick, 1952). Despite this
rst report ZIKV has only been deemed as emergent since 2007.

The virus transmission is mostly done via the bite of mosquitoes
f the Culicidae family and the Aedes genus (Ioos et al., 2014), namely
he species Ae. aegypti, Ae. albopictus and Aedes polynesiensis; the
atter specie is manly confined to Polynesia. The species Ae. aegypti
nd Ae. albopictus (more commonly known as Asian Tiger Mosquito)
re the two most common vectors in the areas where ZIKV has been
solated (Musso et al., 2014). There is a comprehensive literature
bout both species due to their importance in the transmission of
everal diseases including dengue, yellow fever and several other
orldwide diseases. The transmission potential of ZIKV is compa-

able to those of dengue and chikungunya viruses (Nishiura et al.,
016).

The ZIKV virus has recently been the focus of study all over
he world, due to its fast spread and transmission via mosquitoes
nd due to the high number of people infected (400.000 cases
stimated in 24 states of Brazil) (Ayres, 2016); the studies stress
he cases associated with microcephaly in newborn babies (Ayres,
016; Goorhuis et al., 2016; Lancet, 2016; Petersen et al., 2016).
nother key factor in ZIKV transmission is the spread via people
ho travel from infected locations to their home countries con-

ributing towards an increase in the number of infections (Goorhuis
t al., 2016; Nhan et al., 2014) outside the affected areas. To address
his problem several countries (e.g. EU/EEA Member states) have
dopted mitigation measures to control the ZIKV epidemic, particu-
arly the screening of people and goods coming from countries with
ngoing Zika virus transmission. In this sense, the determination
f the geographical locations with higher probability for the occur-
ence of ZIKV main vectors, bearing in mind the existence of this
irus and its potential spread, has become increasingly important.

The evaluation of the susceptibility of the occurrence of a given
henomenon, such as the spread of ZIKV or of natural phenom-
na, depends on the integration of specific factors that allow the
dentification of areas of probability for the occurrence of the phe-
omenon (Julião et al., 2009; Meneses, 2011). In the case of ZIKV,
he integration of variables that allow the determination of optimal
ocations for its spread are based mainly on the optimum condi-
ions for the development of vector mosquitoes responsible for
IKV transmission. By crossing the susceptibility with human expo-
ure, it is possible to determine the areas at risk of development
nd spread of ZIKV. This assumption is based on other works that
rossed the probability of occurrence of a given phenomenon in a
erritory with the human exposure to that phenomenon (Bell and
lade, 2004; Julião et al., 2009; Kappes et al., 2012; Meneses, 2011;
chmidt et al., 2011).

The identification of the bioclimatic optimum conditions such as
emperature, humidity, among others, are fundamental to under-
tand the development of certain species of mosquitoes (Kraemer
t al., 2015a,b; Luz et al., 2008). Other researches point out the
mportance of selecting predictor variables in spatial modeling that
hould be biologically meaningful to the species, eco-physiological
olerances, or habitat requirements (Bennetsen et al., 2016; Guisan
nd Zimmermann, 2000).

Some studies that aim to assess the global distribution of other
iruses also used environmental information to estimate the trans-
ission and for the identification of areas where the virus may

pread to in the future, e.g. the global distribution and environ-
ental suitability for the chikungunya virus (Nsoesie et al., 2016).
owever, the optimal ranges of the environmental variables that

ntegrate the assessments of the presence of certain species of
osquitoes responsible for the transmission where are not dis-
ussed.
Following these assumptions, the main goal of this research is

o predict, at global level, the most suitable spatial locations for the
evelopment of Ae. aegypti and Ae. albopictus mosquitoes and to
opica 168 (2017) 80–90 81

determine, based on occurrence records, the locations where the
virus is most likely to develop. The results obtained are fundamen-
tal to establish preventive measures to mitigate and control the
ZIKV virus epidemic.

In this paper, a correlative Species Distribution Model (SDM)
commonly known as Maximum Entropy was  used. SDM are numer-
ical tools that combine observations of species occurrence or
abundance with environmental estimates (Elith and Leathwick,
2009). These models which combine statistical models, environ-
mental data and information technology are very useful tools to
describe biological patterns in terms of their relationship with
geographical and environmental conditions (Elith and Leathwick,
2009).

2. Data and methods

2.1. Climate, elevation and population data

Four climate variables were used, namely mean temperature
of warmest quarter and coldest quarter, precipitation of wettest
quarter and driest quarter, which represent seasonal and extreme
temperatures (Capinha et al., 2014). These variables were obtained
from WorldClim (Hijmans et al., 2005) for the period 1950–2000
with a spatial resolution of 30 arc-seconds (1 km and 0.86 km2 at the
equator). The use of environmental information of quarter provides
a better understanding and geographical representation of trends
between climate variations. A quarter (three months) represents
an extreme and limiting environmental factor that can be used to
produce higher predicted values response.

To explain the variation of the height at which both mosquito
species occur, the elevation of the location was  chosen as another
physical variable. This variable was  extracted from the Shuttle
Radar Topography Mission (SRTM). The elevation of the site does
not affect directly the species distribution but rather the changes
in temperature and air pressure which vary with the elevation
(Pearson, 2008).

The bioclimatic conditions were defined based on the available
literature (Kraemer et al., 2015a,b; Musso et al., 2014).

The population density of the World for the years 2015 was pro-
vided by the Socioeconomic Data and Applications Center (SEDAC)
at a grid basis.

All these variables are described in Table 1. The records of the
selected climatic variables are restricted to the 1950–2000 period
(Hijmans et al., 2005).

2.2. Vector data

The main Zika vectors are the species Ae. aegypti and Ae.
albopictus (Musso et al., 2014). The geographical distribution of
both species was obtained from the Dryad Digital Repository. The
database, containing the occurrence records of the Ae. aegypti and
Ae. albopictus,  has information for the period 1960–2014 collected
from multiple sources. The methods of data collection, description
and validation of this database are described in (Kraemer et al.,
2015a,b).

The database contains a total of 19,930 and 22,137 spatially
unique occurrence records for Ae. aegypti and Ae. albopictus respec-
tively. According to the authors (Kraemer et al., 2015a,b) this
database aimed to provide a comprehensive set of data based
on occurrences ever recorded globally, including their respective

dates, to allow researches and policy makers to use it for their
own purposes. These assumptions from the authors and methods
used were a fundamental factor for selecting this database for our
work. Another reason to choose this database is that it can be used
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Table 1
Variables and data occurrence from Zika species vector.

Data Format Spatial Resolution Source

Mean temperature of warmest quarter Raster 30 Arc-seconds (1 km)  WorldClim
Mean  temperature of coldest quarter Raster 30 Arc-seconds (1 km) WorldClim
Precipitation of wettest quarter Raster 30 Arc-seconds (1 km)  WorldClim
Precipitation of driest quarter Raster 30 Arc-seconds (1 km)  WorldClim
Altitude (elevation above sea level) (m)  Raster 30 Arc-seconds (1 km)  Shuttle Radar Topography Mission (SRTM)
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Ae.  aegypti (occurrence records) Vector 

Ae.  albopictus (occurrence records) Vector 

Population Density 2015 Raster 

o investigate and to predict locations and it was first used in an
cological niche modeling framework (Kraemer et al., 2015a,b).

The occurrence records for the period 1960–2000 alone were
riginally selected from the database to comply with the temporal
esolution of the selected climate data set (see below). The records
ertaining to both species were substantially reduced to a final
umber of occurrence of 2273 and 1924 spatially unique occur-
ence records for Ae. aegypti (Fig. 1) and Ae. albopictus,  respectively
Fig. 2). These occurrences were registered in 87 countries most of
hich are located in Southeast Asia/America (Ae. aegypti) and North
merica/Southeast Asia (Ae. albopictus).

The occurrences between 2001 and 2014 have been used to val-
date the predicted distribution of the occurrence data between
960 and 2000. To validate this model the predicted and ROC
receiver operating characteristic) curves were used. The ROC plot
s obtained by plotting all sensitivity values on the Y axis against
heir equivalent values for all available thresholds on the x axis
Fielding and Bell, 1997). The x axis represents the specificity (frac-
ional predicted area) and the y axis represents the sensitivity
omission rate).

The area under the ROC curve (AUC) ranges from 0 to 1 where 1
ndicates a perfect discrimination, 0.5 a predictive discrimination
hat is no better than a random guess and <0.5 indicate performance
orse than random (Elith et al., 2011, 2006).

The two mosquito species have different geographical distri-
utions because Ae. aegypti is a predominantly urban vector that
ses the abundance of artificial containers as larval sites and feeds
lmost exclusively on human blood, whereas Ae. albopictus is more

ften found in peri-urban and rural environment (Kraemer et al.,
015a,b).

The analysis of the spatial distribution of both species shows that
e. aegypti is predominantly found in the tropics and sub-tropics

Fig. 1. Ae. aegypti worldwide spatial distrib
t applicable Dryad Digital Repository
t applicable Dryad Digital Repository
Arc-seconds (1 km)  SEDAC

where climate conditions are more propitious for its development.
Although climate conditions are crucial for this specie, urban micro-
environments provide good conditions for their establishment due
to the artificial thermal shelters and human-mediated water sup-
ply which overcome unsuitable macroclimatic conditions (Kearney
et al., 2009).

Conversely, the Ae. albopictus specie has spread to Europe
(mainly to Italy), Asia (Japan and Vietnam) and North America (with
a higher incidence in the states of Georgia, Tennessee, Kentucky and
Missouri). The Ae. albopictus specie is a new emerging threat due to
the novel association of its unusual natural life cycle in urban envi-
ronments with a highly invasive geographic range, which is still
expanding across the world (Grard et al., 2014).

Although there are many databases with records of occur-
rence of both vector species, such as GBIF and VectorMap, it was
found from published literature and national entomological sur-
veys (Kraemer et al., 2015a,b) that the chosen database contains
the most comprehensive occurrence dataset to date.

2.3. Modeling and validating the predicted conditions

Correlative models, which rely on the association between the
species distribution and a set of environmental factors to deduce
the drivers of distribution (Capinha et al., 2014), are commonly used
by numerous authors to model species spatial distribution (Bell and
Schlaepfer, 2016; Jarnevich et al., 2015). These correlative models
differ from physiologically-based models, which focus instead on
the study of the biological behavior of the specie (Capinha et al.,

2014; Phillips et al., 2006).

A correlative model based on the algorithm of maximum
entropy – the Maxent model-was used in the current work. This
algorithm estimates the target distribution and species occurrence

ution (1950–2000 and 2001–2014).
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Fig. 2. Ae. albopictus worldwide spatia

ecords, by finding the distribution of maximum entropy (i.e., that
s most spread-out or closest to uniform) (Phillips et al., 2004).

The Maxent software is a general-purpose method for making
redictions or inferences from incomplete data (Phillips et al., 2006)
nd provides an output map  with the better predicted conditions
or the species under analysis. One of the main advantages of using
he Maxent software is that it uses presences-only datasets because
he data is linked with environment information. Although the use
f absence records in SDM has been shown to improve the model
erformance (Brotons et al., 2004) these records (absence and false
bsences) should be used carefully since some of them are unreli-
ble and could skew the final models.

Some methodologies have been developed for the validation of
he prediction results, for example the modeling of the probabil-
ty of the occurrence of a natural phenomenon (landslides, forest
res, etc.) using the Fuzzy Logic or Information Value method. The
esults are validated at the end of the process through the intersec-
ion of the cases used to model it or with a part of the dependent
ariable (Meneses et al., 2016). Other methodologies use some of
he dependent variable for modeling and the remaining to vali-
ate the results obtained (random partition). These methods allow
he development of success or prediction curves (Tehrany et al.,
013). The partitioning of the dependent variable was  used in this
ork, i.e., the presence records of the mosquitoes for the period

960–2000 integrated the modeling and the most recent records
between 2001 and 2014) integrated the spatial prediction vali-
ation (resulting from the modeling) of the presence of mosquito
pecies under study.

This procedure was performed with the Geographic Information
ystems (GIS) (Ilwis software), crossing points of occurrences and
he predicted distribution areas in raster (resolution 1 × 1 km).

.4. Assessment of susceptible zones to Zika virus development
nd propagation

The presence of ZIKV vectors represents a high probability of
n outbreak and spread of the virus if the climate conditions
re expected to be the optimum. These high probability classes
oincide with areas of high population density that pose health
roblems and have the potential for an outbreak of the disease and
 rise in the number of infections. The spatial representation of this
usceptibility was obtained using the following equation:

Z = (Aae + Asl) × Pd (1)
ibution (1950–2000 and 2001–2014).

Where RZ is the localization of the ZIKV; Aae is the predicted pres-
ence of Ae. aegypti; Asl is the predicted presence of the Ae. albopictus;
Pd is the population density.

These results were compared with ZIKV presence records pro-
vided by the Center for Disease Control and Prevention (CDC) and
HealthMap Project (2016 Zika Outbreak) (HealthMap database –
http://www.healthmap.org/).

3. Results

3.1. Model performance

The model performance was  evaluated based on the gain of
each modeled specie. The gain is closely related to deviance which
is a measure used in generalized additive and generalized linear
models.

The model output for the Ae. aegypti specie has a gain of 1.093,
which means the average likelihood of the presence samples is
e1.093 ≈ 2.98 times higher than a random background pixel. This
value indicates how closely the model is concentrated around the
presence samples.

The result obtained from the model gain for the specie Ae.
albopictus was  e1.405 ≈ 4.075. This value is higher than the one
obtained with the model for Ae. aegypti specie which means that
the former model (Ae. albopictus)  has a better gain defined as the
average log probability of the presence samples.

The model used in this study allowed to identify, at global
level, the predicted conditions for the presence of vectors ZIKV, Ae.
aegypti and Ae. albopictus,  i.e., it allowed the distinction between
the sites with greater and less probability of occurrence of these
vectors and the definition of thresholds in the independent vari-
ables associated with the most likely sites (Figs. 3 and 5). Areas
shown in red indicate a high probability of suitable conditions for
the species, yellow indicates conditions typical of those where the
species are found and green implies low predicted probability of
suitable conditions. The environmental suitability for virus trans-
mission in an area does not necessarily mean that the virus will
arrive and/or become established in that location (Messina et al.,

2016). An example of this assumption is the prediction results
obtained for the occurrence of the specie Ae. aegypti in Europe and
for the occurrence in Africa of the specie Ae. albopictus which will
be describe in the next paragraphs.

http://www.healthmap.org/
http://www.healthmap.org/
http://www.healthmap.org/
http://www.healthmap.org/
http://www.healthmap.org/
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Fig. 3 shows a higher probability of the presence of Ae. aegypti
n tropical and sub-tropical areas due to the suitable climate con-
itions. The specie also has a very high probability of occurrence in
orth America, namely in the southeast coast (e.g. State of Florida),
long the coast of China and Southern Asia where most of the
ccurrences have been reported. Although, so far, there have been
o reported occurrences in Portugal, Spain and Italy the predicted
verall result is 0.50. This value indicates that it may  be a matter of
ime until this specie is reported and identified in these countries
s a consequence of climate change. The range of distribution of
e.aegypti is much higher than the range for the specie Ae. albopic-

us, which is more restricted to certain areas (see Fig. 5).

Fig. 4 shows the receiver operating curve for training data under
he ROC curve (AUC). The AUC scores indicate that predictions

Fig. 4. ROC Curve fo
d distribution of Ae. aegypti.

based on presence-only data can be sufficiently accurate to be used
in conservation planning (Pearce and Ferrier, 2000).

In this model, the red line shows the fit of the model to the train-
ing data and the AUC = 0.88 means a near perfect discrimination,
hence a high predictive performance of the model.

Most of best models for each species had AUCs > 0.75 and an
additional 14% had AUCs between 0.7 and >0.75 (Elith et al., 2006);
The result of this model is largely superior to the models mentioned
in Elith et al. (2006).

Ae. albopictus and Ae. aegypti have different geographic distribu-
tions due to their different optimum climate conditions tolerance.

Fig. 5 shows clearly the very high probability of occurrence of the
former specie in parts of the United States of America where it is
rapidly expanding its range, as well as in Europe (namely in Italy)
and in the southeastern coast of Asia.

r Ae. aegypti.
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Ae. albopictus has been reported in some African countries,
amely in Nigeria, Cameroon, Gabon, the Central African Republic,
ongo, Côte dı́Ivoire, South Africa and Madagascar (Kraemer et al.,
015a,b). Although the number of reported occurrences in Africa

s small, it is not clear if this specie is absent or if it has a small
ncidence on this continent.

In Brazil, the prediction values for its incidence are also very
ow compared with the specie Ae. aegypti which allow to assume
ifferentiated variation of each species as a function of climatic
onditions. Indeed, the geographical dispersion of Ae. albopictus is
uch smaller than that of Ae. aegypti.

The ROC curve (Fig. 6) for Ae. albopictus yielded a value of

UC = 0.90 which is higher than the Ae. aegypti model (AUC = 0.88).
his AUC result (0.90 for Ae. albopictus)  relates to a high predic-
ive performance which indicates the quality of the model and

Fig. 6. ROC Curve for
 distribution of Ae. albopictus.

corresponding cross validation. Ae. albopictus higher AUC modeled
value can be related with its geographical spread which is more
restricted to certain areas, i.e. an accuracy than the more common
ones (Elith et al., 2006).

3.2. Variables contribution

The model applied to Ae. aegypti is crucial for assessing the con-
tribution and importance of each variable to the spatial distribution
model fit. This variable importance is calculated heuristically and
thus sensitive to collinearity and the order of variable importance

(Wilson et al., 2013). The percent contribution is determined in each
iteration of the training algorithm; the increase of the model gain is
added to each corresponding variable in the model. The permuta-
tion importance is obtained with values of each variable, on training

 Ae. albopictus.
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Table 2
Variable contribution for the specie Ae. aegypti.

Variable Percent Contribution (%) Permutation Importance (%)

Mean Temperature of Coldest Quarter 44.7 42.2
Precipitation of Wettest Quarter 24.7 21.7
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Elevation 21.3 

Mean Temperature of Warmest Quarter 7.0 

Precipitation of Driest Quarter 2.2 

resence and background data, which are randomly permuted. The
ariable contributions from the maximum entropy model for the
pecie Ae. aegypti are described in Table 2. The variable with more
ercent contribution is the Mean Temperature of Coldest Quarter
ith a contribution, to the Maxent model, of 44.7%. The Precipita-

ion of Wettest Quarter and Elevation have similar contributions
24.7% and 21.3%) and the variable with the smallest percent con-
ribution is the Precipitation of the Driest Quarter (2.2%).

The variable with a higher permutation importance for the
odel prediction and reliability is the Mean Temperature of Coldest
uarter (42.2%) followed by the Precipitation of Wettest Quar-

er (21.7%). The variables Elevation and Mean Temperature of
armest Quarter are similar with an importance of 17.5% and 14.6%

espectively. The variable with the poorest model prediction is the
recipitation of Driest Quarter (3.9%).

The variable contributions to the Maxent modeled Ae. albopictus
pecie are shown in Table 3. The variable with a higher percent
ontribution to predict Ae. albopictus presence is precipitation of
riest Quarter (48.7%) followed by Mean Temperature of Warmest
uarter (24.7%) and Mean Temperature of Coldest Quarter (15.9%).
he Precipitation of Wettest Quarter (8.1%) and Elevation (2.6%)
ere the less contributive variables.

In terms of permutation importance, which is less sensitive to
ariable order than to variable importance values (Wilson et al.,
013), the highest contribution with an almost identical permu-
ation value is Precipitation of Driest Quarter (31.7%) and Mean
emperature of Warmest Quarter (31.4%). The Mean Temperature
f Coldest Quarter and Precipitation of Wettest Quarter have also an
lmost identical contribution (16% and 17.8%). Regarding permuta-
ion importance, the Precipitation of Wettest Quarter has a higher
alue than the Mean Temperature of Coldest Quarter although in
erms of percent contribution it is the opposite. The variable with
ess importance is Elevation with 3.2% of permutation.

The response curves show how each environmental variable
ffects the Maxent prediction. The curves show how the logis-
ic prediction changes as each environmental variable is varied
Phillips et al., 2006).

The plots shown in Fig. 7, for both species, reflect the depen-
ence of predicted suitability on both the selected variable and
n dependencies induced by correlations between the selected
ariable and other variables. This approach has been chosen since
trong correlations could exist between variables and the Maxent
odel makes it easier to interpret.
The assessment of the probability presence of Ae. albopictus
as a response curve for the variable “Elevation” in which the
est probability of presence occurs in the range of 0 to 150m.
bove 150 m the probability decreases consistently. The mean

able 3
ariable contribution for the specie Ae. albopictus.

Variable Percent Contributio

Precipitation of Driest Quarter 48.7 

Mean Temperature of Warmest Quarter 24.7 

Mean Temperature of Coldest Quarter 15.9 

Precipitation of Wettest Quarter 8.1 

Elevation 2.6 
17.5
14.6
3.9

temperature of warmest quarter has its maximum value of prob-
ability of occurrence between 22◦ and 27 ◦C although the drop of
probability between 24◦ and 26 ◦C maybe due to missing data. The
suitable conditions of temperature for the probability of occurrence
of the specie decreases from the 30 ◦C mark. The mean tempera-
ture of Coldest Quarter increases with the temperature as expected.
However, it decreases from 12◦ to 21 ◦C and it increases again from
21 ◦C until it reaches its highest value of 29 ◦C. The plot of the pre-
cipitation of wettest quarter shows an increase of the probability of
occurrence from 120 mm  until its maximum around 400 mm.  After
this highest value, there is a decreased followed by a slight increase
due to the number of occurrences on that range of values. The pre-
cipitation of the driest quarter shows that the highest probability of
occurrence of Ae. albopictus lies between 200 and 300 mm of precip-
itation. The number of records drops as the precipitation increases
and stabilizes between 350 and 500 mm.  The same phenomenon
occurs in the range of 510–630 mm.

The analysis of the response curves (Fig. 7) showed that results
for the probability of presence of Ae. aegypti are similar to those of
Ae. albopictus when the variable elevation is considered This hap-
pens due to both species presence at low altitudes and to the same
pattern when the altitude increases. Although the decreasing value
of probability of Ae. aegypti presence has its break point at 200m.
For higher altitudes, Ae. aegypti has a more irregular variation than
Ae. albopictus.  The mean temperature of warmest quarter has its
highest probability of occurrence between 27◦ and 29 ◦C. Above this
optimum interval, there is a consistent drop in the probability of
presence which translates the biological response of this specie to
very high temperatures. A similar interpretation of the plot in Fig. 7
can be adopted for the mean temperature of coldest quarter: the
probability increases with the temperature up to a maximum value
between 28◦ and 30 ◦C. The plot of Fig. 7 shows that in the wettest
quarter the probability of occurrence increases with precipitation
and, although the probability has a small drop at 600 mm of precip-
itation, it increases consistently at 1150 mm Ae. aegypti response
curve to the precipitation of driest quarter indicates a maximum
probability of presence at 420 mm.  After this maximum value the
probability decreases with the increase of precipitation.

The validation of the results of the predicted distribution dis-
cussed above show that the most recent records of the presence of
mosquitoes (2001–2014) are in good agreement with the areas of
greater probability of presence of these species.

The graphs of Fig. 8 show that the AUC between the presence of
Ae. aegypti (A) and Ae. albopictus (B) (2001–2014) together with the

predicted spatial distribution of these mosquitoes, obtained from
the records between 1960 and 2000, is very high (0.904 for the Ae.
aegypti and 0.88 for the Ae. albopictus). In other words, these results

n (%) Permutation Importance (%)

31.7
31.4
16.0
17.8
3.2
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Fig. 7. Response curves for all independent variables that integrated the assessment of the probability presence to Ae. aegypti and Ae. albopictus.
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ig. 8. Prediction curves between occurrences (points) of mosquitoes Ae. aegypti (A)
y  the occurrence records from the years between 1960 and 2000.

estify the high performance of the model in the determination of
reas with higher probability of presence of these species.

.3. Potentially susceptible zones to the Zika virus

To determine the zones potentially susceptible to the Zika virus
n populated areas, the overall susceptibility to the two  main vec-
ors responsible for the ZIKAV propagation was determined and
hen this layer was crossed with the population density in the year
015. The population density was the vulnerable element which
llowed the calculation of this overall susceptibility model (Fig. 9).
n Fig. 9 the areas with higher susceptibility are clearly in northern
ndia and southern China, that. register high population density
ut also high values of predicted distribution of Ae. aegypti and Ae.
lbopictus. In Africa, the countries closest to the equator are high-
ighted, particularly Nigeria, whereas in America the South of Brazil
s well as the Southeast sector of the United States are highlighted

s these are the regions of this continent where the presence of
e. aegypti has mostly been reported. These results are in line with
he areas more vulnerable and propitious to ZIKV infections and
issemination through human population that have recently been

Fig. 9. Global localization of the zon
. albopictus (B) (2001–2014) and predicted distribution area of this species obtained

reported by the Center for Disease Control and Prevention (CDC)
and HealthMap Project (2016 Zika Outbreak).

Other world locations also stand out albeit with a lower sus-
ceptibility index, as is the case of Northern Australia and the entire
equatorial zone. In these cases, the low index is mainly due to the
lower population density and the lowest probability of presence
of the mosquitoes Ae. aegypti and Ae. albopictus. These results are
slightly different than expected since some areas with more reports
regarding the presence of both spices have a low population density
which has the same results as areas with higher population density
and low presence of Ae. aegypti and Ae. albopictus.

4. Discussion: Ae. aegypti and albopictus presence and Zika
virus

The model used in this research identified areas with high pre-
dictive probability for the presence of the species Ae. aegypti and

Ae. albopictus at a global scale. The results obtained in this study
are similar to those of other recent studies, namely in particular in
the identification of areas with high susceptibility where the virus
has a high incidence (Bogoch et al., 2016; Rodriguez-Morales et al.,

es with susceptibility to ZIKV.
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016), highlighting the importance of the obtained results for the
etermination of new locations where a ZIKV outbreak is likely.

However, these results are similar to other models (Kraemer
t al., 2015a,b) despite the different SDM used (Boosted Regression
rees) and ROC Curve value, the maximum entropy algorithm had

 very good performance in determining the predicted distribution
f Ae. aegypti and Ae. albopictus due to ROC values.

The formation of well-defined niches with the highest prob-
bility of presence of these vectors is closely linked to the high
oncentration of points in each location with occurrence records
data considered for this model input).

Each independent variable considered in this study of predicted
robability of occurrence of Ae. aegypti and Ae. albopictus has differ-
nt weight or importance on the obtained results; the precipitation
nd temperature are the most important variables. These climatic
actors, which allow the identification of the optimum conditions
or the location sites and propagation of these two  mosquitoes
ypes, have been mentioned as the most important variables in
he prediction of the distribution of these mosquitoes (Kraemer
t al., 2015a,b; Luz et al., 2008). Other studies also identified areas
f probability of presence of these species of mosquitoes, but the
iscussion of the contribution of each independent variable (or
iophysical bioclimatic) for their presence in a particular location

s still incipient and varied depending on the models used in the
esearch (Bogoch et al., 2016; Capinha et al., 2014; Kraemer et al.,
015a,b).

Under the effects of global warming there is a higher probabil-
ty of ZIKV transmission and spreading to new geographic areas
t a higher latitude, in particular areas where the temperature is
ncreasing, for example the Southern European countries (Giorgi
nd Lionello, 2008; Liu-Helmersson et al., 2015), North and South
merica, Africa and Asia (projections of surface temperatures by

ntergovernmental Panel on Climate Changes − IPCC), due to the
avorable future bioclimatic conditions for the development of Ae.
egypti and Ae. albopictus.  The climate change applied to species
patial distribution is a common topic of research and is also
eferred by other authors, namely in the study of Aedes a genus
f mosquitoes responsible for the transmission of several diseases
Bogoch et al., 2016; Capinha et al., 2014; Kearney et al., 2009;
hormi and Kumar, 2014; Kraemer et al., 2015a,b). This work has
elped to identify the optimal ranges of each climate variable and
hus estimate the emergence of new areas with optimal climate
onditions for the development of these species of mosquitoes.
t has further stressed the integration of climate change spatial
nformation (Aström et al., 2012; Campbell et al., 2015) allowing
he adoption of mitigating measures for ZIKV prevention. How-
ver, there are other questions that must be answered concerning
he transmission of ZIKV, in particular the possible involvement of
ther species of Aedes mosquitoes in the propagation of the ZIKV,
r issues related with reinfection, transmission by blood transfu-
ions, congenital or sexual transmission, as already reported by
ther authors (Zanluca and Duarte dos Santos, 2016).

The areas of highest susceptibility to ZIKV identified in this
esearch are in line with previous results presented by the
ealthMap Project (2016 Zika Outbreak), i.e., areas with more
ases of people infected by ZIKV correspond to places with greater
usceptibility identified in this study, except for India where the
nformation of the total number of people infected is non-existent.
n this case, the evaluation was performed using GIS software
Ilwis), where it crossed the results obtained with the points of
he sites where the presence of ZIKV has been registered (Health

ap). The accuracy obtained in this crossing exceeds 80%.

In this way, the results of susceptibility to ZIKV allowed the

dentification of certain areas with a higher population density and
igher susceptibility (e.g. North and southeast of India, Bangladesh,
outheast of USA, São Paulo and Rio de Janeiro in Brazil, southwest
opica 168 (2017) 80–90 89

of Nigeria, and southeast of China, in particular the big cities −
Xangai, Hong Kong). The identification of these areas has great rel-
evance for prevention and reaction to a possible outbreak of ZIKV.

Other studies have assessed the spatial probability of occurrence
of the mosquitoes under study (e.g. Late, 2016; Messina et al., 2016),
but unlike this study they did not identify the areas at risk of devel-
opment and spread of ZIKV as they did not consider the human
exposure and other variables needed for this type of evaluation.

5. Conclusions

The current work has achieved the global spatial representation
of the predict areas for the presence of the species Ae. aegypti and Ae.
albopictus.  The climatic variables used, particularly the temperature
and precipitation, represent extreme or limiting environmental
factors. Ranges in different periods of the year favorable to the pres-
ence of these species were crucial to determine the propensity for
occurrence of both species and corresponding worldwide spatial
distribution. It was found that the higher concentration of pres-
ence records of the two species under study, Ae. aegypti and Ae.
albopictus, are correlated with locations where many current ZIKV
infections have been reported. Thus, through the predicted areas
of ZIKV main vectors it was  possible to predict the global distribu-
tion and to identify the areas with higher susceptibility. Although
this information is very important it only makes sense when it is
related with population density, which allows us to quantify more
precisely the areas susceptible to ZIKV outbreak and correspond-
ing increase of transmission. In this sense, the results are important
for the adoption of preventive measures in the control of ZIKV as
the control of epidemic proliferation will be more effective once
the places with bioclimatic characteristics suitable for the devel-
opment of the species Ae. aegypti and Ae. albopictus mosquitoes
have been determined.

Future assessments of predicted areas need to take into account
the data on climate change, as this would allow the determina-
tion of new sites with optimal conditions for the development of
mosquito species under study. These results combined with human
exposure would be important to identify new areas with potential
risk for ZIKV spread.

Acknowledgment

This work was  financed through a grant given by the Institute of
Geography and Spatial Planning and Universidade de Lisboa, IGOT-
UL (BD2015).

References

Aström, C., Rocklöv, J., Hales, S., Béguin, A., Louis, V., Sauerborn, R., 2012. Potential
distribution of dengue fever under scenarios of climate change and economic
development. Ecohealth 9, 448–454, http://dx.doi.org/10.1007/s10393-012-
0808-0.

Ayres, C.F., 2016. Comment Identifi cation of Zika virus vectors and implications for
control. Lancet Infect. Dis. 3099, 4–5, http://dx.doi.org/10.1016/S1473-
3099(16)00073-6.

Bell, R., Glade, T., 2004. Multi-hazard analysis in natural risk assessments. Risk
Anal. IV, 197–206.

Bell, D.M., Schlaepfer, D.R., 2016. On the dangers of model complexity without
ecological justification in species distribution modeling. Ecol. Modell. 330,
50–59, http://dx.doi.org/10.1016/j.ecolmodel.2016.03.012.

Bennetsen, E., Gobeyn, S., Goethals, P.L.M., 2016. Species distribution models
grounded in ecological theory for decision support in river management. Ecol.
Modell. 325, 1–12, http://dx.doi.org/10.1016/j.ecolmodel.2015.12.016.

Bierlaire, D., Beau, F., Lastere, S., Musso, D., Broult, J., 2014. Virus ZIKA en Polynésie
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