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Abstract  

 

The global threat of multidrug resistant Staphylococcus aureus to healthy individuals poses a 

pressing need to develop new tools and explore alternative targets for the discovery of new antibiotics 

derived from natural compounds against this human pathogen. 

 In this work we aimed to construct new tools for antibiotic discovery by constructing reporter 

strains, in the background of methicillin-resistant S. aureus strain JE2, which sense inhibition/damage 

of essential metabolic pathway/structures in the bacterial cell. Bacteria respond to various environmental 

stresses by triggering the expression of specific genes. We have focused on the response to loss of 

membrane potential and inhibition of fatty acid biosynthesis and constructed reporter S. aureus strains 

that become fluorescent upon detection of compounds causing these phenotypes. This was achieved by 

placing the gene encoding the fluorescent protein mNeonGreen under the control of the lrg and fap 

promoters that respond to loss of membrane potential and inhibition of fatty acid biosynthesis, 

respectively. The lrg operon takes part in the response of LytSR, a two-component regulatory system 

that senses the decrease of membrane electric potential due to the ever-changing environmental 

conditions. This response is based on the activity of Lrg proteins, which attempt to prevent cell 

membrane permeabilization and therefore ensure survival of stressed bacterial cells. The fap regulon is 

monitored by FapR, a repressor which controls the status of fatty acid biosynthesis and phospholipid 

metabolism. When a compound interferes with this pathway, intracellular levels of malonyl-CoA 

increase and FapR repression is inhibited, allowing fap genes expression. We concluded that induction 

of mNeonGreen expression driven by the lrg promoter upon loss of membrane potential was too weak 

for these reporter strains to be used in high-throughput screenings. However, induction of fap led to a 

two-fold increase of cells fluorescence, indicating that this is a promising tool for the discovery of 

antimicrobial compounds that act through inhibition of fatty acid biosynthesis.  

 

Keywords: Staphylococcus aureus; multidrug resistance; cell membrane homeostasis; 

membrane potential; fatty acid biosynthesis 
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Resumo  

 

Staphylococcus aureus é uma bactéria patogénica nosocomial, versátil e com grande capacidade 

de adaptação a diversos ambientes. A penicilina constituiu a primeira linha de tratamento eficaz contra 

graves infeções causadas por esta bactéria. No entanto, a evolução da mesma levou ao aparecimento e 

posterior disseminação de estirpes produtoras de penicilinases. De forma a contornar este problema 

inicial de resistência antimicrobiana, foram desenvolvidos compostos sintéticos derivados da penicilina, 

nomeadamente, meticilina e oxacilina. Estes compostos passaram a ser utilizados como terapia 

antimicrobiana contra infeções de estirpes resistentes à penicilina. O uso clínico destes antibióticos 

conduziu à emergência de estirpes resistentes à meticilina (methicillin-resistant Staphylococcus aureus 

- MRSA) e subsequente evolução da sua resistência a todos os antibióticos disponíveis. Posteriormente, 

ocorreu a disseminação da multirresistência de algumas destas estirpes até à situação atual, o que levou 

a um aumento, à escala mundial, da mortalidade associada a infeções causadas por S. aureus, mesmo 

em indivíduos considerados saudáveis (sem outras patologias associadas). Dado que esta bactéria 

patogénica surge em formas resistentes a vários antibióticos, aos quais era previamente suscetível, o 

número de opções de tratamento ao qual se pode recorrer é reduzido, sendo na maioria dos casos 

utilizada vancomicina, ou alternativamente daptomicina e linezolida. Contudo, já existem casos e 

estudos de estirpes de S. aureus resistentes a estes compostos. Embora em Portugal a prevalência de 

MRSA esteja aparentemente a diminuir, estas estirpes continuam a ser um problema bastante grave, 

correspondendo a cerca de 50% das estirpes isoladas, o que constitui um dos números mais elevados a 

nível europeu. Deste modo, a investigação de novas estratégias que permitam o tratamento eficaz destas 

infeções é de elevada importância. Para o desenvolvimento de novos tratamentos antimicrobianos é 

necessário compreender não só os mecanismos de ação dos antibióticos, como também os que estão 

subjacentes à resistência aos mesmos e que foram adquiridos por S. aureus.  

 

O problema mundial da (multi)resistência a antibióticos em conjunto com as dificuldades 

recorrentes em descobrir novos compostos eficazes no combate a infeções microbianas, requerem a 

urgente inovação no desenvolvimento de técnicas que auxiliem no processo de identificação de novos 

alvos. Limitações na diversidade de químicos eficazes e identificação de alvos, juntamente com 

reduzidas concentrações disponíveis de produtos naturais, levaram à estagnação do processo de 

descoberta de antibióticos. Como tal, as técnicas base envolvidas na descoberta de compostos 

antimicrobianos são atualmente combinadas, de forma a contornar as suas restrições individuais e 

possibilitar resultados mais robustos. Os ensaios de screening direcionados a alvos específicos são um 

exemplo claro desta inovação, analisando e comparando a resposta de estirpes geneticamente 

modificadas com a da estirpe parental. Podendo utilizar sistemas de fluorescência ou de 

bioluminescência e requerendo quantidades reduzidas de compostos de interesse/a testar durante os 

estudos/ensaios, este tipo de estirpes modificadas constituem ferramentas úteis para a descoberta de 

antibióticos, nomeadamente compostos derivados de produtos naturais. Considerando os alvos clássicos 

de antimicrobianos, estes tipos de screening realizados em células bacterianas possibilitam a descoberta 

de novos compostos que atuem em enzimas e/ou estruturas envolvidas na síntese da parede celular, 

metabolismo do ácido fólico, ribossomas, polimerases do RNA, entre outros alvos mais comuns. 

Todavia, ao aplicar estes screenings a alvos menos estudados e que estão envolvidos em processos 

igualmente essenciais como, por exemplo, a divisão celular, homeostasia da membrana celular ou 

biossíntese de ácidos gordos, poderão ser descobertos novos compostos, ou formas mais eficazes de 

utilizar os já conhecidos, para o tratamento de infeções por MRSA.  

Devido à constante interação com o ambiente externo e fatores de stress associados, as bactérias 

utilizam diversos mecanismos para manter a integridade celular, nomeadamente membranar, 

assegurando, assim, a sua sobrevivência. A membrana citoplasmática está, por isso, envolvida em 
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inúmeros processos desde o transporte de moléculas, respiração, comunicação celular, produção de 

energia, até à manutenção da força protomotriz. A alteração do potencial de membrana, uma das 

componentes da força protomotriz, é integrada como estímulo ambiental pela cinase de histidina LytS 

do sistema regulatório LytSR, que posteriormente desencadeia (via LytR) a reposta celular adequada. 

Outra forma possível de ativar e induzir uma resposta do sistema LytSR tem por base a fosforilação do 

regulador de resposta LytR como resultado da acumulação metabólica de acetato em células que se 

encontram na presença de concentrações elevadas de glucose. A resposta celular mediada por LytR 

consiste na ativação dos genes do operão lrgAB. Este operão está envolvido na regulação do programa 

de morte celular programada e tolerância a antibióticos, como a penicilina, funcionando de modo oposto 

ao operão cidABC dado que os produtos destes genes são homólogos aos sistemas de bacteriófagos de 

antiholinas e holinas, respetivamente. Quando LytS deteta a dissipação do potencial de membrana, 

fosforila o ativador LytR que irá, consequentemente, induzir a expressão dos genes lrg. LrgA funciona 

como uma antiholina, contrariando o efeito de permeabilização membranar da holina CidA, impedindo, 

assim, a morte celular e subsequente lise. 

 Outro parâmetro que contribui para a sobrevivência e homeostasia da membrana celular é a 

composição lipídica da mesma. As bactérias produzem ácidos gordos e fosfolípidos através de um 

sistema diferente do dos seres humanos e outros organismos eucariotas, sendo o metabolismo destes 

lípidos controlado pelo regulão fap desse mesmo sistema. No centro desta regulação encontra-se o 

repressor FapR, capaz de regular a sua própria expressão através do controlo do gene fapR que o 

codifica. Deste modo, a indução do regulão, por compostos que inibam as enzimas desta via de 

biossíntese lipídica, é conseguida após inibição da atividade do FapR. Por sua vez, repressão mediada 

pelo FapR é inibida aquando do aumento dos níveis intracelulares de malonil-CoA, um intermediário 

da biossíntese de ácidos gordos e fosfolípidos, cuja concentração pode ser aumentada ao bloquear/inibir 

um dos passos enzimáticos da via. Devido à importância desta via para a estabilidade/homeostasia da 

estrutura membranar, as várias enzimas da biossíntese de ácidos gordos e fosfolípidos podem 

teoricamente ser consideradas como alvos eficazes de antibióticos. 

 

O presente trabalho tem por objetivo a construção de novas ferramentas para a descoberta de 

compostos antimicrobianos através da modificação genética da estirpe MRSA JE2, de forma a construir 

novas estirpes repórter fluorescentes. Deste modo, as estirpes repórter construídas serão capazes de 

detetar a inibição ou dano de vias metabólicas ou estruturas essenciais para a célula bacteriana. Como a 

resposta bacteriana a vários estímulos ambientais tem por base a indução da expressão de genes 

específicos, neste trabalho foram escolhidos os sistemas ou vias que respondem à diminuição ou perda 

de potencial de membrana e à inibição da biossíntese de ácidos gordos para construção das estirpes 

repórteres. Desta forma as bactérias repórter construídas ficam fluorescentes após deteção de compostos 

que causam os fenótipos anteriores, e a sua resposta é quantificável com base na fluorescência 

apresentada. Para construção dos repórteres, o gene que codifica a proteína mNeonGreen foi colocado 

sob o controlo dos promotores do operão lrg e do regulão fap, que respondem à redução do potencial de 

membrana e inibição da síntese de ácidos gordos, respetivamente.  

Nesta dissertação, concluímos que a indução da expressão de mNeonGreen sob o controlo do 

promotor de lrg após diminuição do potencial de membrana era demasiado reduzida para este repórter 

ser considerado adequado num screening de bibliotecas de compostos naturais. Todavia, os resultados 

da indução do repórter fap apontam para uma duplicação dos níveis de fluorescência das células, o que 

indica que esta estirpe é uma ferramenta promissora para a descoberta de compostos antimicrobianos 

que atuam através da inibição da via de biossíntese dos ácidos gordos. 

 

Palavras-chave: Staphylococcus aureus; multirresistência a antibióticos; potencial de membrana; 

biossíntese de ácidos gordos; homeostasia da membrana celular. 
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1. Introduction 

 

1.1. Staphylococcus aureus, a case of evolution of antibiotic resistance 

 

Originally described and classified by Rosenbach1, Staphylococcus aureus is a Gram-positive 

cocci-shaped bacterium with low GC genomic content. As a commensal bacterium present in the normal 

microbiota of humans, S. aureus commonly colonizes mucosal surfaces and the skin2 of nearly 30% of 

the human population3,4. To go from colonization to infection, this bacterium only requires a window of 

opportunity, i.e., a breach in the host’s defences to act as a pathogen3. S. aureus is an extremely versatile 

pathogen, responsible for numerous cases of skin infections, pneumonia, endocarditis, pyaemia, 

bacteraemia, septicaemia, toxic shock syndrome, and is one of the major causes of nosocomial 

infections2,5,6. Staphylococci transmission between individuals mainly occurs through skin-to-skin 

contact or contaminated objects6,7.  

Prior to the antibiotic era, S. aureus versatility greatly concerned clinicians due to 75% or higher 

bacteraemia mortality rates8. In 1929, Alexander Fleming accidently discovered penicillin while 

observing the inhibition halo in staphylococci plates contaminated with Penicillium mould. The 

antibacterial activity of penicillin is known to target the synthesis of the cell wall of bacteria. Specifically 

the β-lactam ring irreversibly inactivates penicillin-binding proteins (PBPs), preventing their 

transpeptidase catalytic activity, i.e., inhibiting the crosslinking of peptidoglycan (PGN), weakening the 

cell wall and leading to cell lysis9,10. 

From 1939, penicillin started being used to treat staphylococcal and other Gram-positive 

infections11. Reflecting its efficacy, penicillin was afterwards extensively used worldwide and thus the 

first hospital isolated S. aureus strains exhibiting resistance to penicillin were reported shortly after, in 

194612. These first resistant strains contained a plasmid which encoded for a β-lactamase, i.e., a 

penicillase capable of inactivating the antimicrobial activity of penicillin by hydrolysing its β-lactam 

ring13. Consequently, penicillin-resistant strains spread throughout the community to a point where more 

than 80% of hospital and community S. aureus isolates were resistant to the β-lactam14. Since penicillin 

treatment was no longer effective against staphylococcal infections, synthetic β-lactamase-resistant 

penicillins were developed, such as methicillin and oxacillin15. However, a few years after the 

introduction of these new β-lactams, the first methicillin-resistant Staphylococcus aureus (MRSA) strain 

was isolated from a hospital patient in Colindale, United Kingdom. This hospital-acquired MRSA (HA-

MRSA) strain was named COL and is still one of the most studied MRSA strains16,17. Even though its 

resistance mechanism was not based on antibiotic degradation, the β-lactams methicillin, cephalosporins 

and carbapenems were ineffective against this MRSA strain18. Clones of S. aureus COL spread around 

the globe, which greatly contributed to the increasing number of nosocomial infections by resistant 

strains19. The situation aggravated into the current existence of S. aureus strains which are virtually 

resistant to all known antibiotics20, more commonly known as multidrug resistant Staphylococcus 

aureus. Another consequence was the non-exclusivity of MRSA to hospital environments. The first 

infection case of a healthy individual with a community-acquired MRSA (CA-MRSA) strain was 

reported in the 1980s21. Although CA-MRSA strains are usually less resistant to β-lactams22,23, they tend 

to be more virulent and infect healthy individuals24,25. Community MRSA clones are typically non–

multidrug resistant22. However, clones of these strains have also spread into clinical settings, 

successfully causing nosocomial infections and healthcare-associated bacteremias. One of these strains 

is USA300 (or JE2)26,27, which emerged as an epidemic clone in the USA28, but has since been reported 

in Europe, South America, Asia and Australia29–31. 

After the spread of MRSA strains, the only effective antibiotic against these strains was 

vancomycin. As β-lactams, vancomycin also targets the synthesis of the bacterial cell wall, but via a 

different mechanism: this glycopeptide prevents both transglycosylation (elongation of PGN chains) 
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and transpeptidation (PGN cross-linking) enzymatic activities by binding directly to the dipeptide D-

Ala4-D-Ala5 of the precursor for cell wall synthesis, lipid II32. However, with the increased and 

prolonged use of vancomycin in hospital facilities (higher selective pressure), intermediate and 

vancomycin-resistant S. aureus strains emerged33,34. This resistance was even reported in some isolates 

of USA30035, but fortunately these strains have not become prevalent20. As MRSA strains have 

demonstrated resistance to the entire class of penicillin-like antibiotics and to glycopeptides, like 

vancomycin, and others36, daptomycin and linezolid are currently used as alternative anti-MRSA 

therapies20. Nevertheless, with its use, even resistance to these antibiotics has been reported and 

studied37–39. 

The struggle to find new effective antimicrobials is based on the fundamental fact that exposure 

to antibiotics will eventually lead to tolerance or even resistance by the pathogen24,40,41. This never-

ending cycle has considerable economic and clinical implications. In 2005, the CDC reported 18 650 

estimated deaths due to S. aureus infections in the USA28, while tuberculosis was the official cause of 

less than 700 American deaths42. In Europe, there is a great variability of CA-MRSA clones, being 

USA300 or related clones the most predominant43. Although the prevalence of MRSA in Portugal has 

been diminishing, these strains still constitute a serious issue: 50% of detected S. aureus strains are 

resistant to methicillin44. For that reason, treatment of patients with S. aureus infections resistant to 

almost all known antibiotics urgently needs to be attended. A better understanding of recent resistance 

mechanisms of S. aureus, especially in MRSA strains, and search for new antibiotic therapies may 

contribute to prevent and more effectively treat staphylococci infections. 

 

 

1.2. Targets and tools for antibiotic discovery  

 

 As mentioned above, β-lactams were the first antibiotics to be used as treatment for Gram-

positive infections, namely the naturally produced penicillin. However, the Golden Age of antibiotic 

discovery suffered a decline after the late 70s, quickly shifting to an innovation gap which eventually 

led to the so-called discovery void 45,46. Therefore, during the past 40 years antibiotic resistance has been 

a global issue, whereas the discovery of new antimicrobials remains mostly stagnated since it is much 

easier to find compounds that kill bacteria non-specifically, such as non-target specific detergents, than 

finding new antibacterial classes worthy of development46. 

The major bottlenecks in drug discovery are target identification and limited diversity of 

chemicals46, with the additional challenge of natural products being present in low concentrations in 

extracts. Conventionally, discovery of natural products was based in desired phenotypic effects, either 

by empirical screening using inhibition of growth assays, without knowledge of mechanism of action 

(MOA), or by in vitro biochemical assays of enzymatic inhibition 46,47. Even though in vivo assays were 

useful for the identification of numerous natural products, assessment of whole-cell activity frequently 

resulted in the discovery of nonspecific toxic compounds48. 

 The development of target-based biochemical and macromolecular strategies allowed specific 

knowledge of target-antibiotic affinity and activity. However, in vitro assays failed to address 

permeability of in vivo barriers and frequency of resistance through efflux upon compound entry in the 

cells46,49. Another limitation is that in vitro assays identify compounds with specific MOAs against 

single targets, which result in the development of resistance at higher frequencies than what is accepted 

for clinical use46,47. 

 Evidently, in vitro and in vivo techniques complement each other by circumventing individual 

limitations, which eventually resulted in target-directed phenotypic screenings. These assays are usually 

based in the analysis of differences between a wild-type (WT) parental strain and a genetically 

engineered reporter strain. The bioreporter strains may be drug resistant, overexpress a selected target 
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or deleted of a gene of interest48. These reporter strains can be genetically modified to produce an easily 

quantifiable dose-dependent signal in response to the presence of the inducing chemical or stress 

factor50,51. One approach is to genetically modify bacteria by fusing a promoter sequence (previously 

known to respond to the target compound) to a reporter system such as gfp, mneongreen, or mcherry for 

fluorescence or the luxCDABE genes for bioluminescence. Such reporter bacteria have been useful tools 

for antibiotic discovery52. Recent studies use bioreporter bacteria either harbouring reporter plasmids51,53 

or having integrated reporters into the genome54,55. With a definition of MOA from the onset, reporter 

gene assays allow further analysis on cell morphology changes and specific phenotypic alterations due 

to inhibition of precise pathways48,56. Whole-cell mechanism-based screenings combined with reporter 

assays provide a better characterization of MOA and potential applicability to any desired target, while 

often requiring low amounts of compounds of interest, namely from natural microbial extracts.  

The common/classic targets of antibiotics are enzymes involved in bacterial cell wall synthesis, 

enzymes of folic acid metabolism, topoisomerases, RNA polymerases, ribosomes and other protein 

synthesis machinery/molecules. As mentioned previously β-lactams and vancomycin inhibit synthesis 

of PGN. Linezolid binds to peptidyl transferase centre in the 50S ribosome subunit, inhibiting translation 

of mRNA/protein synthesis. Nonetheless, there are already reports and, in most cases, studies on the 

resistance mechanisms adopted by S. aureus for the majority of natural and synthetic compounds that 

act on these targets20. Still, old targets can continue to be explored. A recent screening study reported 

teixobactin as a new lipid II inhibitor that therefore inhibits PGN biosynthesis, to which S. aureus does 

not display resistance57,58.  

Besides trying to find new compounds against old targets, we should also consider methods that 

allow discovery of antibiotics that act on unexplored/less explored targets, such as cell division, 

persistence mechanisms, teichoic acid biosynthesis, fatty acid synthesis and membrane 

stability/integrity20.  

In this thesis, we chose to develop reporters for compounds that act through two MOA, closely 

involved with the bacterial cytoplasmic membrane: loss of membrane potential and inhibition of 

phospholipid biosynthesis. 

 

 

1.3. Membrane potential is essential for cell survival 

 

 The cytoplasmic membrane of bacteria is directly involved in the transport of nutrients and 

metabolic “waste” products, respiration, production of ATP and cell-cell communication, as well as in 

establishing a proton motive force (PMF), a key parameter for the energetic pathway of cell 

membranes59. Required for several cellular processes, the PMF can be defined as an electrochemical 

gradient of protons resulting from proton extrusion by the electron transport chain. The PMF has two 

components: the electric potential (ΔΨ, membrane potential) and the transmembrane proton gradient 

(ΔpH)60. Furthermore, membrane potential has an important role in modulating the distribution of 

several proteins during cell division61. 

Perturbation of the cell membrane electrical potential is sensed by the S. aureus LytSR two-

component regulatory system (TCRS)62, which is also involved in adaptation of these bacteria to cationic 

antimicrobial peptides that are released by the host innate immune system after colonization by S. 

aureus63. Upon recognition of ΔΨ disruption, the membrane-bound histidine kinase LytS 

autophosphorylates a conserved histidine residue at position 390 (His390) (Figure 1.1.). Acting as 

phosphodonor, phosphorylated LytS transfers the phosphate to a conserved aspartate residue at position 

53 (Asp53) of the response domain of the regulator LytR (primary pathway). LytS also displays 

phosphatase activity that may contribute to regulate LytR dephosphorylation64,65. Additionally, in vitro 

and in vivo studies report phosphorylation of the activator LytR through acetyl phosphate as a result of 
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accumulation of acetate during metabolism in the presence of excess glucose, a LytS-independent 

activation pathway (secondary pathway)64,65. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. The two pathways for activation of LytR. The primary pathway consists on signal transduction from the sensor 

kinase LytS to the effector LytR, i.e., phosphorylation of LytR by LytS after sensing changes on membrane potential, whereas 

the secondary pathway is based on LytR phosphorylation via acetyl phosphate (AcP) in response to excess of glucose 

metabolism. The activated LytR will then bind to promoters regulated by LytSR two-component regulatory system. Protein 

domains: GAF – cyclic Guanosine monophosphate specific phosphor-diesterases, Adenylyl cyclases and the Fhl; DHp – 

Dimerization and Histidine phosphotransfer; CA – Catalytic and ATP-binding; R – Receiver, E – Effector 64. 

 

One of the operons regulated by the LytSR TCRS is the dicistronic lrgAB (lrg) operon, which 

is immediately downstream of lytR in the chromosome of S. aureus64,66. Through the effector domain, 

the phosphorylated LytR will then bind to DNA adjacently to the promoter (Plrg) of the lrg operon and 

allowing its activation64,66.  

The lrg operon takes part in murein hydrolase activity, penicillin sensitivity67, and, along with 

the cid operon, regulates the balance between autolysis rate during programmed cell death and biofilm 

formation68,69. While cid gene products enhance murein hydrolase activity and antibiotic tolerance, the 

lrg gene products inhibit these same processes in a similar way to bacteriophage-encoded holins and 

antiholins, respectively67,70. Holins oligomerize in the bacterial cytoplasmic membrane causing cell 

death and, due to their effects on murein hydrolase activity, cell lysis. Antiholins inhibit holin 

oligomerization and, therefore, prevent bacterial death and lysis.  

Therefore, it has been proposed that LytS detects and responds to ΔΨ dissipation through 

phosphorylation of LytR, proceeded by LytR induction of the antiholin-like protein LrgA and its cellular 

attempt to prevent total membrane permeabilization caused by oligomerization of holin-like CidA 

proteins (Figure 1.2.)68,71.  
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Figure 1.2. Balance between holin-like CidA and antiholin-like LrgA. The Staphylococcus aureus proteins CidA and LrgA 

are considered to function as a holin and antiholin, respectively. CidA controls the timing of cell death and lysis through 

oligomerization at the cytoplasmic membrane, whereas LrgA is a homologous protein which has an inhibitory effect on CidA 

holin activity 68.  

 

Under specific stress conditions, Plrg-controlled genes respond to compounds that target 

membrane potential like the lipopeptide daptomycin or the protonophore carbonyl cyanide m-

chlorophenylhydrazone (CCCP)72–74. CCCP is an uncoupling agent capable of diffusion across the 

cytoplasmic membrane in either of its forms. In response to a pH gradient, the protonated form of CCCP 

easily diffuses into the cell where it releases a proton, whereas the non-protonated form is protonated at 

the external surface of the membrane prior to diffusion across it72. It has been reported that CCCP-

induced Plrg activity and subsequent lrgAB expression are dependent on the LytS signal transduction65. 

 The cyclic lipopeptide daptomycin is used to treat infections with Gram-positive bacteria, 

namely MRSA strains75–77. This anionic compound requires calcium ions for its antimicrobial activity78. 

However, the MOA of daptomycin is not yet fully understood. This antibiotic may have a dual action, 

targeting both the cytoplasmic membrane and the cell wall73,79.  

Daptomycin is able to destabilize the membrane by formation of calcium-daptomycin 

complexes (Ca-Dap) and interaction with phosphatidylglycerol (PG, a negatively charged phospholipid 

and the most abundant in the membrane of Staphylococcus), resulting in decrease or complete 

dissipation of membrane potential (so called disruption) and cell death78. This membrane-targeting 

MOA is supported by resistance studies in Gram-positive bacteria, which show a correlation between 

increased daptomycin resistance and more positively-charged cell membranes79–81. These studies show 

that daptomycin-resistant strains frequently exhibit single mutations in the multipeptide resistance factor 

gene (mprF), which is responsible for the synthesis and translocation of the positively charged 

phospholipid, lysyl-phosphatidylglycerol, to the outer surface of the cell membrane, increasing its 

charge and therefore repelling Ca-Dap37,82. Firstly discovered in enterococci, genetic cues for an 

alternative strategy to change membrane lipid composition were also found in S. aureus. Activity-

enhancing mutations in cardiolipin synthase may alter the ratio of PG:CL in the membrane, allowing 

the subsequent protective effect of cardiolipin (CL, another negatively charged phospholipid present in 

Staphylococcus membrane) against Ca-Dap complexes81,83. Another membrane-changing mechanism 

associated with resistance to daptomycin is the alteration from a fluid to an excessively rigid state of the 

membrane as a result of increased production of the carotenoid staphyloxanthin37,84. 
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Daptomycin can also lead to aberrant cellular morphologies, with abnormal division septa and 

bulging membranes without lysis84–87. Further studies on the subject led to the proposal of a new 

resistance mechanism of S. aureus through membrane phospholipid shedding which sequestered and 

inactivated daptomycin38. Besides the lrg operon, transcriptional-profiling analysis showed that 

daptomycin also induces cell wall-related genes73,88, raising the possibility that daptomycin directly or 

indirectly inhibits PGN synthesis. 

 

 

1.4. Essentiality of fatty acid biosynthesis 

 

The bacterial synthesis of fatty acids has been exploited for development of new compounds to 

treat staphylococci infections. Contrary to humans, bacteria produce their own fatty acids through the 

type II fatty acid synthesis pathway (FASII), presenting multiple and common targets for antibiotic 

discovery. Moreover, the most effective known antimicrobials against FASII are natural products 89,90. 

In S. aureus the cyclic elongation step of fatty acid biosynthesis is performed by four enzymes encoded 

by the fap regulon: FabG, FabZ, FabI and FabF (Figure 1.3.)89,90.  

In Gram-positive bacteria, the fap regulon is constituted by six operons and the fab genes are 

responsible for converting acetyl-CoA or malonyl-CoA into the long-chain fatty acids (Figure 1.3.). 

Largely conserved in bacteria, including S. aureus, the global regulator of FASII is the fatty acid and 

phospholipid regulator (FapR). Hence, induction of the fap regulon is performed by inactivating the 

transcriptional repressor FapR and, consequently, allowing an increased expression of genes belonging 

to the fap regulon. FapR, which also regulates the expression of its own encoding gene, fapR, binds to 

a consensus 17 bp inverted repeat DNA sequence that is highly conserved in several Gram-positive 

bacteria91,92.  

In vitro transcription assays of several promoters of the fap regulon demonstrated that increased 

levels of malonyl-CoA (Figure 1.3.), an intermediate in fatty acid biosynthesis, lead to a decreased 

FapR-mediated repression of the fap regulon91,93. This vital effector and intermediate of fatty acid 

synthesis offers a mechanism to monitor/assess phospholipid homeostasis mediated by FapR and, if 

necessary, subsequently adjust the fap regulon expression92. 

 

Due to the essentiality of this pathway in bacteria, FASII inhibitors have been developed. One 

of these antimicrobial compounds is triclosan (Figure 1.3.), a widely used biocide and disinfectant agent. 

At low concentrations triclosan targets FabI and, by forming stable FabI-NAD+-triclosan ternary 

complexes, prevents the elongation of the fatty acid chain in the last reaction step of each elongation 

cycle94,95. Inhibition of this step leads to accumulation of malonyl-CoA and, consequently, to increased 

expression of genes belonging to the fap regulon. 

  Emergence of triclosan resistant strains, with chromosomal mutations or that harbour a second 

fabI, leading to an increase of the target amount96, and the ability of S. aureus to use lipoproteins of 

hosts as exogenous fatty acids97, are relevant to further consider scientific and financial investments in 

the development of new drugs98,99. Nevertheless, triclosan-derived antimicrobials for therapy of 

staphylococci infections are being developed100,101, but there is a significant risk that resistance 

phenotypes emerge due to missense mutations in fabI, as these inhibitors have a single target46,102. 
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Figure 1.3. Bacterial type II fatty acid biosynthesis pathway. The Staphylococcus aureus enzymes are in red and isoforms 

are in black. Fatty acid biosynthesis starts with acetyl-CoA, which is converted in malonyl-CoA (blue elipse) by acetyl-CoA 

carboxylase (Acc), and subsequently converted in malonyl-ACP by malonyl-CoA:ACP transacylase (FabD). The β-ketoacyl-

ACP synthase (FabH) performs the first condensation reaction. During the first elongation cycle, the β-ketoacyl-ACP is 

converted to a saturated acyl-ACP by the actions of the NADPH-dependent reductase FabG, the dehydrase FabZ, and the 

mostly NADH-dependent enzyme FabI. The saturated acyl-ACP is the substrate for additional rounds of elongation in which 

FabF catalyzes the condensation reaction. The long-chain acyl-ACP products are subsequently partially transformed into 

membrane lipids (a typical S. aureus phosphatidylglycerol is shown at the top). Contrary to most bacteria, S. aureus FabH 

prefers branched-chain acyl-CoAs which yield branched-chain fatty acids. Triclosan (green rectangle) is one of the inhibitors 

of the NADPH-dependent FabI from S. aureus. BAT – branched-chain aminotransferase; BKD – branched-chain α-ketoacid 

dehydrogenase; PlsXYC – acyltransferase system; AAS – acyl-ACP synthetase; CPP – 5-chloro-2-phenoxyphenol; EPP – 5-

ethyl-2-phenoxyphenol95.  

 

 

1.5. Aims 

 

Considering the importance to discover novel antimicrobial compounds, in this work we chose 

to construct new membrane-related bioreporters and test them by following promoter activity through 

fluorescence detection, assessing whether these reporters would constitute a good tool for future high-

throughput screenings (HTS). 
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2. Materials and Methods 

 

2.1. Bacterial strains and growth conditions 

 

The bacterial strains and plasmids used during this study are listed in Table 2.1.  

 

Table 2.1. Bacterial strains and plasmids. 

Strain/Plasmid Relevant Characteristicsa Source/Reference 

Strain   

Escherichia coli   

DC10B 
Cloning strain, Δdcm in the DH10B 

background; Dam methylation only 
103 

DH5α pJ201 mNeonGreen #1 

recA endA1 gyrA96 thi-1 

hsdR17 supE44 relA1 ϕ80 ΔlacZΔM15  

with pJ201 mNeonGreen #1 

Gibco-BRL 

Staphylococcus aureus   

RN4220 
MSSA strain, restriction deficient derivative 

of NCTC8325-4 
104 

RN4220_Plrg_mNeonGreen RN4220 with pMAD_Plrg_mNeonGreen This study 

RN4220_lrg_mNeonGreen 
RN4220 with 

pMAD_lrgB_rbs_mNeonGreen 
This study 

RN4220_Pfap_mNeonGreen RN4220 with pMAD_Pfap_mNeonGreen This study 

JE2 CA-MRSA USA300 strain 105 

JE2_Plrg_mNeonGreen JE2::Plrg-mNeonGreen This study 

JE2_lrgB_mNeonGreen JE2::lrgB-mNeonGreen This study 

JE2_Pfap_mNeonGreen JE2::Pfap-mNeonGreen This study 

JE2 AS-fabZ JE2 with pEPSA::AS-020, CmR This study 

JE2_Pfap_mNeonGreen AS-fabZ 
JE2_Pfap_mNeonGreen with pEPSA::AS-

020, CmR 
This study 

Plasmid   

pMAD 

Thermosensitive plasmid used for allelic 

replacement in Gram-positive bacteria, lacZ, 

AmpR EryR 

106 

pJ201 mNeonGreen #1 
Plasmid encoding mNeonGreen with codon 

optimized sequence for S. aureus, KanR 

Pereira and Pinho, 

unpublished 

pMAD_Plrg_mNeonGreen 

Integrative pMAD derivative containing the 

up- and downstream regions of the lrg 

promoter with a Plrg-mneongreen, AmpR 

EryR 

This study 

pMAD_lrgB_rbs_mNeonGreen 

Integrative pMAD derivative containing the 

up- and downstream regions of the lrgB and 

and an extra RBS of lrg operon before 

mneongreen, AmpR EryR 

This study 

pMAD_Pfap_mNeonGreen 

Integrative pMAD derivative containing the 

up- and downstream regions of the fap 

promoter with a Pfap-mneongreen, AmpR 

EryR 

This study 

pEPSA::AS-020 
pEPSA5 derivative with a xylose-inducible 

antisense RNA for fabZ, AmpR CmR 
107 

a abbreviations: AmpR – Ampicillin resistant; CmR – Chloramphenicol resistant; EmR – Erythromycin resistant 
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Escherichia coli DC10B and DH5α were grown at 37 °C with aeration in Lysogeny Broth (LB-

Miller, Sigma-Aldrich) or LB agar (LA-Miller, VWR) supplemented with ampicillin (100 μg.mL-1, 

Apollo Scientific) or kanamycin (50 μg.mL-1, Apollo Scientific) when necessary. 

Unless mentioned otherwise, S. aureus strains were grown at 37 or 30 °C with aeration in tryptic 

soy broth (TSB, Difco) or on tryptic soy agar (TSA, Difco) supplemented with erythromycin                      

(10 μg.mL-1, Apollo Scientific), chloramphenicol (15 μg.mL-1, Sigma-Aldrich), or 5-bromo-4-chloro-3-

indolyl-beta-D-galactoside (100 μg.mL-1, X-Gal, Apollo Scientific) as appropriate.  

 Culture growth was followed by monitoring the optical density at 600 nm (OD600nm). 

 

2.2. Molecular Cloning 

 

2.2.1. DNA manipulation 

 

Total DNA was purified from S. aureus cells grown overnight on TSA plates at 37 °C. Cells 

were collected and resuspended in 100 μL of 50 mM EDTA (VWR) containing lysostaphin                      

100 μg.mL-1 (Sigma-Aldrich) and RNase 200 μg.mL-1 (Sigma-Aldrich) and incubated at 37 °C for 30 

min. 400 μL of 50 mM EDTA and 500 μL of Nuclei Lysis solution (Promega) were added and the 

samples incubated at 80 °C for 5 min. After cooling the samples to room temperature, 200 μL of Protein 

Precipitation Solution (Promega) were added, followed by a 10 min incubation on ice. After 

centrifugation (10 min at 16000 g), the supernatant was collected and the DNA was precipitated with 

isopropanol (VWR) and centrifuged again to pellet the DNA. The obtained pellet was washed with      

500 μL of 70 % (v/v) ethanol and resuspended in sterile water. Plasmid DNA was purified from E. coli 

DC10B or DH5α cells using the Wizard® Plus SV Miniprep kit (Promega) according to manufacturer’s 

instructions.  

PCR amplifications were performed using Phusion High-Fidelity DNA polymerase (Thermo 

Fisher Scientific) following manufacturer’s instructions. Primers used are listed in Table 2.2. PCR 

products and digested DNA fragments were purified using the Wizard® SV Gel and PCR Clean-Up 

System (Promega).  

DNA ligations were performed using Gibson Assembly® Master Mix (New England Biolabs) 

according to manufacturer’s instructions108.  

All constructed plasmids and strains were confirmed by DNA sequencing (GATC Biotech). 

 

2.2.2. E. coli transformation 

 

DC10B competent cells were prepared according to the Rubidium Chloride Protocol described 

in Sambrook 1989, and stored at -80 °C. Plasmids or Gibson Assembly reaction products were added to 

competent cells and kept on ice for 15 min. The transformation mixture was then incubated for 1 min at 

42 °C to promote exogenous DNA incorporation, and for 5 min in ice. Cells were allowed to recover by 

adding 1 mL LB was added and the transformation mixture and incubating for 60 min at 37 °C with 

aeration, followed by plating in LA supplemented with ampicillin 100 μg.mL-1. 

 

2.2.3. S. aureus transformation and transduction 

 

RN4220 competent cells were prepared as previously described109. Briefly, cells were grown at 

37 °C with aeration until OD600nm was 0.4-0.5 and then collected by centrifugation (1438 g for 15 min 

at 4 °C). The cell pellet was washed with an initial culture volume (Vi) of ice-cold filter-sterilized sucrose 

0.5 M (Sigma-Aldrich), harvested and washed again in 1/2 Vi of sucrose 0.5 M. Cells were then 

incubated on ice for 15 min, resuspended in 1/100 Vi of sucrose 0.5 M and stored at -80 °C. For 
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transformation, 0.5 μg of purified plasmid DNA were added to RN4220 competent cells and incubated 

in ice for 5 min. Cells were electroporated (2.5 kV, 25 μF, 100 Ω) in a 0.2 cm electroporation cuvette 

(BioRad) using a Gene Pulser Xcell apparatus (BioRad). Electroporated cells were immediately 

resuspended in 1 mL of TSB, incubated at 37 °C with aeration for 1 h (or 2 h at 30 °C when using a 

thermosensitive plasmid), and plated on TSA supplemented with erythromycin 10 μg.mL-1. 

 

 Transduction was performed using bacteriophage 80α as previously described110. In order to 

prepare phage lysates, cells from the donor strain were grown overnight on TSA plates supplemented 

with erythromycin, collected and resuspended in 1 mL of TSB supplemented with CaCl2 5 mM. Phage 

80α was serially diluted to 10-7 in phage buffer (MgSO4 1 mM; CaCl2 4 mM; Tris-HCl 50 mM pH 7.8; 

NaCl 5.9 g.L-1 gelatin 1 g.L-1). 10 μL of each phage dilution and 10 μL the cell suspension were mixed 

together and added to 3 mL of phage top agar (casamino acids 3 g.L-1, Difco; yeast extract 3 g.L-1, Difco; 

sodium chloride 5.9 g.L-1, Sigma-Aldrich; agar 5 g.L-1, Difco; pH 7.8), supplemented with 5 mM CaCl2. 

The mixtures were poured onto phage bottom agar (phage top agar with 15 g.L-1 of agar) supplemented 

with 5 mM CaCl2 and incubated overnight at 30 °C. The plates showing confluent lysis were selected 

and incubated with 4 mL of ice-cold phage buffer for 1 h at 4 °C. The top agar and phage buffer were 

collected and vortexed to disrupt the agar. Samples were kept for 1 h at 4 °C to allow phage release from 

the agar, and then centrifuged at 1,438 g for 15 min at 4 °C to sediment the top agar. The supernatant 

was collected and filtered through a 0.45 μm-pore diameter sterile filter (Sarstedt). 

For the transduction, the receiving strain was grown overnight on TSA at 37 °C and resuspended 

in 1 mL TSB supplemented with 5 mM CaCl2. Different volumes of phage lysate (1 μL, 10 μL and      

100 μL) were mixed with 100 μL of cell suspension and phage buffer to a final volume of 300 μL. A 

control tube in which no phage lysate was added was also prepared. The transduction mixtures were 

incubated for 20 min at 37 °C and then added to 3 mL 0.3GL top agar (casamino acids 3 g.L-1, Difco; 

yeast extract 3 g.L-1, Difco; NaCl 5.9 g.L-1, Sigma-Aldrich; sodium lactate 60 % syrup 3.3 mL.L-1, 

Sigma-Aldrich; glycerol 50%, 2 mL.L-1, Sigma-Aldrich; Tri-sodium citrate, 0.5 g.L-1, Sigma-Aldrich; 

and agar               7.5 g.L-1, Difco; pH 7.8). Transduction mixtures were poured onto plates containing a 

lower layer of 10 mL of 0.3GL bottom agar (0.3GL top agar with 15 g.L-1 agar) with 30 μg.mL-1 

erythromycin and a top layer of 20 mL of 0.3GL bottom agar without antibiotics, prepared in the 

previous hour. 

 

2.3. Construction of reporter S. aureus strains  

 

To construct the lrg reporter strain with a transcriptional fusion of mneongreen to the lrgAB 

promoter (Plrg), the regions upstream (1062 bp) and downstream (1078 bp) of the promoter were 

amplified separately, from S. aureus RN4220 (Table 2.1.) genomic DNA (followed by sequencing 

confirmation), using primers PlrgUpFwd/PlrgUpRev and PlrgDownFwd/PlrgDownRev (Table 2.2.), 

respectively. An alternative lrg reporter strain in which mneongreen was inserted at the end of the lrgAB 

operon was also constructed. The regions located immediately upstream (956 bp) and downstream (948 

bp) of the stop codon of lrgB were amplified in two separate PCR reactions using primers 

lrg_mNeonGreen_Fwd/lrg_mNeonGreen_Rev and mNeonGreen_mngR_Fwd/ 

mNeonGreen_mngR_Rev, respectively. For the construction of the fap reporter strain with a 

transcriptional fusion of mneongreen to the fapR promoter (Pfap), the regions upstream (961 bp) and 

downstream (993 bp) of the promoter were amplified separately by PCR using primers 

PfapUpFwd/PfapUpRev and PfapDownFwd/PfapDownRev, respectively. For all constructions, a third 

PCR reaction was performed using pJ201 mNeonGreen #1 DNA as template and primers 

mNeonGreen_Fwd/mNeonGreen_Rev, resulting in a 712bp DNA fragment containing the mNeonGreen 

coding sequence. For each construct, the three amplification products were assembled together with 
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pMAD, previously linearized with FastDigest SmaI (Thermo Fisher Scientific) and dephosphorylated 

with FastAP Thermosensitive Alkaline Phosphatase (Thermo Fisher Scientific), using Gibson 

Assembly. The resulting plasmids (pMAD_Plrg_mNeonGreen, 12419 bp; 

pMAD_lrg_rbs_mNeonGreen, 12189 bp; pMAD_Pfap_mNeonGreen, 12224 bp) were introduced into 

RN4220 by electroporation and subsequently transduced into JE2. The insertion of the transcriptional 

reporters into the chromosome of S. aureus JE2 using the constructed pMAD-based vectors was 

performed according to the procedure described by Arnaud et al., 2004. Briefly, plasmids were 

integrated into the during a single recombination event, promoted by growth at a nonpermissive 

temperature for plasmid replication (43 °C). A second single recombination event during growth at a 

permissive temperature allowed reconstruction of the parental WT genotype or loss of the plasmid and 

the insertion of the reporter allele without introduction of antibiotic resistance determinants. The latter 

was identified by PCR using primers Plrg-mNeon_conf_fwd/Plrg-mNeon_conf_rev (for strain 

JE2_Plrg_mNeonGreen), lrg_mNeon_conf_Fwd/lrg_mNeon_conf_Rev (for strain 

JE2_lrgB_mNeonGreen) and Pfap-mNeon_conf_fwd/Pfap-mNeon_conf_rev (for strain 

JE2_Pfap_mNeonGreen), and also by sequencing. 

 

Table 2.2. Primers used for construction of S. aureus reporter strains. 

Primer name Sequence (5’-3’) 

mNeonGreen_Fwd ATGGTATCAAAAGGTGAAGAAGATAATATGG 

mNeonGreen_Rev TTATTTGTATAACTCATCCATGCCCATTAC 

PlrgUpFwd 
CTATCGATGCATGCCATGGTACCCCTGTAGAATCAGAGTCTGGAAC

TGG 

PlrgUpRev 
ATCTTCTTCACCTTTTGATACCATTGCCTCCTACGTTTGATTTAACT

AAAG 

PlrgDownFwd 
GGCATGGATGAGTTATACAAATAAGAAAGATTTTAAAGCGTCGAT

AGG 

PlrgDownRev 
GAAGCTTCTAGAATTCGAGCTCCCTATACCACCGATACCAGCTGAT

AC 

Plrg-mNeon_conf_fwd GGTAACGATATTGACGTGTC 

Plrg-mNeon_conf_rev CTAATCCTCGGGCAATAGG 

PfapUpFwd 
CTATCGATGCATGCCATGGTACCCCTTGGGCAAAGCATGAGCAAT

ACG 

PfapUpRev 
ATTATCTTCTTCACCTTTTGATACCATTTTTTAGTACCTAGTCTTAA

ACATTCC 

PfapDownFwd 
ATGGGCATGGATGAGTTATACAAATAAGCCATGCTGATTTGTCAAT

TTGAGTGC 

PfapDownRev 
GCAGAAGCTTCTAGAATTCGAGCTCCCTGTCTAAATTCGATTCGTT

CATGG 

Pfap-mNeon_conf_fwd GTGTTATTTATGACAGCAACC 

Pfap-mNeon_conf_rev GACACACATCCATCTGCCTC 

lrg_mNeonGreen_Fwd 
CTATCGATGCATGCCATGGTACCCCAGCCGGTATCTCAGTTGTTAA

CTCTTTAGG 

lrg_mNeonGreen_Rev 
CACCTTTTGATACCATACACACCCTCCTACACACTTAGAAGAATAT

TGCTACAAAGAC 

mNeonGreen_mngR_Fwd 
TAATGGGCATGGATGAGTTATACAAATAAAACGAAAAACCTAAGC

AAGATAATAGC 

mNeonGreen_mngR_Rev GCTTCTAGAATTCGAGCTCCCGTACCGGTTCAATTTGTAAACG 

lrg_mNeon_conf_Fwd TATGCCTGCATCAGTAATCG 

lrg_mNeon_conf_Rev CAGCTGTAAGAATGTCTTGG 
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 For the construction of JE2 AS-fabZ and JE2_Pfap_mNeonGreen AS-fabZ strains, encoding an 

inducible antisense RNA targeting fabZ, the plasmid pEPSA::AS-020 was transduced into the WT and 

the fap reporter (JE2_Pfap_mNeonGreen) strains. 

 

2.4. Determination of minimum inhibitory concentrations 

 

MIC determination by microdilution in liquid medium was performed in sterile 96-well plates 

(Grenier Bio-One). Overnight cultures were diluted 1:1000 in Mueller Hinton broth (MHB, Quilaban) 

or TSB and 5 µL were inoculated in wells containing the following compounds, sequentially diluted 

two-fold in MHB or TSB: 0.125-64 µg.mL-1 daptomycin (Cubist Pharmaceutical) in the presence of     

50 mg.L-1 of Ca2+  (according to CLSI 2015 guidelines), 0.125-64 µg.mL-1 CCCP (Sigma-Aldrich), or 

0.004-2 µg.mL-1 triclosan (Merck). Plates were incubated at 37 °C without agitation and assessed for 

growth after 24 and 48 h. MICs were defined as the lowest concentration of compound at which visible 

growth was not observed. All MIC determinations were performed in triplicate. 

 

2.5. Growth analysis of S. aureus strains 

 

Growth curves of S. aureus strains were determined by measuring the OD600nm of growing liquid 

cultures. Briefly, strains were grown overnight at 37 °C with aeration in MHB or TSB. Cultures were 

diluted to an initial OD600nm of 0.05 in fresh medium, supplemented with CaCl2 when required, and 

allowed to grow to mid-exponential phase (OD600nm ≈ 0.4–0.5). Daptomycin and CCCP were added at 

sub-MIC, MIC and supra-MIC conditions to cultures of lrg reporter strains, which were incubated for 

further 4 h. Triclosan was added at MIC and supra-MIC conditions to fap reporter strain, which was 

incubated for further 4 h. 

 

2.6. fabZ antisense RNA induction 

 

S. aureus JE2 (WT) and JE2_Pfap_mNeonGreen (harbouring the pEPSA5-based plasmid with 

the xylose-inducible antisense RNA for fabZ, pEPSA::AS-020) strains were grown overnight at 37 °C 

with aeration in TSB supplemented with chloramphenicol. Cultures were diluted to an initial OD600nm 

of 0.05 in fresh TSB. Antisense induction was performed by adding 2% xylose (Sigma-Aldrich) to 

early-exponentially growing cultures (OD600nm ≈ 0.09–0.10) and incubating for further 3 h at 37 °C with 

aeration. 

 

2.7. Fluorescence microscopy 

 

Strains were grown overnight at 37 °C with aeration in MHB or TSB. Cultures were diluted to 

an initial OD600nm of 0.05 in fresh MHB or TSB, supplemented with CaCl2 when required, and allowed 

to grow until mid-exponential phase. Sub-, MIC and supra-MIC of triclosan, daptomycin and CCCP,  

35 mM of glucose, 10 mM of potassium acetate and 100mM of sodium bicarbonate were added and the 

cultures incubated in the same conditions for further 3 h. Cells were pelleted by centrifugation (16000 

g, 2 min), then washed and resuspended in phosphate-buffered saline (PBS) pH 7.4. Resuspended cells 

were mounted on microscope slides covered with a thin layer of 1.2 % agarose in PBS. 

S. aureus DNA labelling was performed using Hoechst 33342 (Invitrogen). Prior to imaging, 

cells were incubated for 5 min with 1 µg.mL-1 of Hoechst, in a ThermoMixer (Eppendorf) set at 37 °C 

and 800 rpm. 

Fluorescence microscopy was performed using a Zeiss Axio Observer.Z1 microscope equipped 

with a Photometrics CoolSNAP HQ2 camera (Roper Scientific), using phase contrast objective Plan-



 

 13   

Apochromat 100 x/1.4 oil Ph3, with 0.24 μm resolution and 0.55 numerical aperture. The software used 

was black edition ZEN (Zeiss). Images of fluorescence microscopy were acquired using 1500 ms 

exposition time for mNeonGreen and 50 ms exposition time for Hoechst, when appropriate. 

Analyses of microscopy images were performed using eHooke111 and Fiji 

(http://imagej.net/Fiji). 

 

2.8. Fluorimeter analysis 

 

Strains were grown and cells collected as previously described for Fluorescence Microscopy. 

Fluorescence in each well of the black 96-well plates (BRANDplates® immunoGrade; Sigma-Aldrich) 

was then quantified using the FLUOstar OPTIMA microplate reader (excitation 485 nm and emission 

520 nm; BMG Labtech) with 3 replicates per sample. As controls for autofluorescence and promoter-

dependent mNeonGreen expression levels, WT and non-induced reporter strains were used, 

respectively. To determine the detection limit, JE2 WT parental strain was labelled with cell wall dye 

vancomycin conjugated to BODIPY™ FL (Van-FL, Invitrogen). Prior to imaging, cells were incubated 

for 5 min with a final concentration of 0.8 µg.mL-1 (1x) for Van-FL, in a ThermoMixer (Eppendorf) set 

at 37 °C and 800 rpm112. 

 

2.9. Statistical analysis 

 

Statistical analyses were done using GraphPad Prism 6 (GraphPad Software). After eHooke 

quantifications, independent sample/unpaired Student’s t-tests with Welch’s correction (or Welch t-test) 

were used to compare mean of cells fluorescence between the positive control and the different induction 

conditions for each reporter strain. Therefore, Welch t-test defined whether the fluorescent inducible 

response was a significant difference113. 

 

Fluorescence data from the fluorimeter analysis was compared after calculations of mean, 

median and standard deviation (SD). 
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3. Results 

 

3.1. Construction of mNeonGreen reporter strains 

 

To analyse the promoter activity of the lrg operon and fap regulon in the presence of compounds 

known to decrease bacterial cell membrane potential or to prevent lipid synthesis, respectively, promoter 

sequences were fused to a gene encoding the green fluorescent protein mNeonGreen114. These constructs 

were inserted adjacently to the native S. aureus chromosomal locus for each promoter (Figure 3.1.A and 

Figure 3.1.C), which allowed the native operons to remain intact while monitoring promoter activity. 

Since this led to a duplication of the promoter region, an alternative strategy for the lrg reporter was also 

used, in which the gene encoding mNeonGreen was inserted at the end of the lrgAB operon (Figure 

3.1.B), thus being co-transcribed with the lrg genes as a single polycistronic unit. The RBS of lrgA and 

fapR (same sequence and spacing to the start codon) were used for mneongreen translation in 

JE2_Plrg_mNeonGreen and JE2_Pfap_mNeonGreen strains, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Schematic representation of the chromosomal organization of strains expressing different promoter fusions. 

Integration of the different constructs into the native locus resulted in a duplication of promoter sequences in A and C.  The 

activity of the different promoters can be followed while maintaining the integrity of the native operons: A – Plrg promoter 

fusion to mneongreen, B – expression of mneongreen from the lrg operon, C – Pfap promoter fusion to mneongreen. 

 

To check if the genetic constructs introduced in the lrg and fap regions affected susceptibility 

to compounds that trigger expression of these operons, we tested if the reporter strains displayed a 

similar susceptibility phenotype to CCCP and daptomycin (which activate the lrg reporters), and 

triclosan (which inhibit lipid biosynthesis and activate the fap reporter) as the WT parental strain. For 

that purpose, MICs were determined (Table 3.1.). 

According to the results presented in Table 3.1., the insertion of the fluorescence reporters in 

the chromosome of JE2 did not significantly impact the MICs, when compared with WT JE2 strain, to 

the tested compounds. MICs were also determined in TSB (Supplementary Table 1) and the results were 

comparable with those obtained using MHB. 

 



 

 15   

Table 3.1. MICs of reporter strains to compounds that affect membrane potential or fatty acid biosynthesis. The MIC 

of each compound was determined by microdilution method in MHB and values were obtained based on the average of three 

independent experiments. 

Strain 
CCCP 

MIC (µg.mL-1) 

Daptomycinb 

MIC (µg.mL-1) 

Triclosan 

MIC (µg.mL-1; 24 h) 

Triclosan 

MIC (µg.mL-1; 48 h) 

JE2 1 1 7.8×10−3 6.25×10−2 

JE2_Plrg_mNeonGreen 1 1   

JE2_lrgB_mNeonGreen 1 1   

JE2_Pfap_mNeonGreen   7.8×10−3 6.25×10−2 

bMICs determined in: MHB supplemented with 50 mg.L-1 of Ca2+ (Ca-MHB) 
 

 To find the best conditions to test the previously mentioned compounds, the reporter strains 

were grown in liquid MHB with aeration, and different concentrations of the compounds used for MIC 

determination were added after cultures reached the mid-exponential phase (Figures 3.2. and 3.3.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Growth curves of lrg reporter strains. Cultures from JE2_Plrg_mNeonGreen and JE2_lrgB_mNeonGreen were 

grown overnight in MHB at 37 °C and re-inoculated in fresh MHB, supplemented with 50 mg.L-1 CaCl2 for daptomycin. Both 

figures A and B show growth curves obtained through regular measurements of optical density at 600 nm. Time of induction 

with appropriate concentration of either daptomycin or CCCP is indicated by the black arrow. Addition of sub MIC 

concentrations of CCCP, significantly slowed bacterial growth of Plrg promoter fusion to mneongreen (A) and lrg fusion to 

mneongreen (B) reporter strains, while daptomycin has a milder effect. 
 

A 

B 
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Figure 3.3. Growth curves of Pfap reporter strain. Cultures from JE2_Pfap_mNeonGreen were grown overnight in MHB at 

37 °C, re-inoculated in fresh media and regular measurements of optical density at 600 nm were made. Time of induction with 

appropriate concentration of triclosan is indicated by the black arrow. 
 

For all three reporter strains, growth profiles in the absence of inducers are similar to that of the 

WT strain, confirming that the fluorescent reporter alleles have no impact in fitness in the conditions 

tested. As expected, growth slows down upon addition of daptomycin, CCCP or triclosan to growing 

cultures. CCCP has a faster and stronger effect on lrg reporter strains than daptomycin at any 

concentration tested (Figure 3.2.). For the fap reporter strain, a noticeable decrease in the growth rate is 

observed 1 h after addition of triclosan (Figure 3.3.). Growth curves were also determined for this 

reporter strains in TSB and the results were comparable with those obtained using MHB (Supplementary 

Figure 1). 

Therefore, the set of constructed strains (Figure 3.1.) was deemed suitable to monitor the activity 

of Plrg and Pfap in response to the presence of compounds by measuring total fluorescence of individual 

cells using fluorescence microscopy. 

 

 

3.2. Induction of lrg reporter 

 

To further assess the best conditions to test the response of the transcriptional fusion of 

mneongreen to the promoter of lrgAB to the dissipation of membrane potential, growing cultures of the 

JE2_Plrg_mNeonGreen strain were challenged with 0.25x, 1x and 4x MIC of daptomycin (Figure 3.4.) 

or CCCP (Figure 3.5.). Cells were imaged at different times of induction and microscopy images were 

used to quantify total average fluorescence of individual cells in a sample. The obtained results are 

depicted in Figure 3.6.  

 

Changes in total fluorescence levels from Plrg-dependent mNeonGreen expression in the 

presence of daptomycin were only observed when cells were challenged for longer periods with supra-

MIC antibiotic concentrations. Moreover, the measured activity of the lrg promoter in the presence of 

daptomycin is highly heterogeneous between cells of the same sample (Figure 3.6.). In addition, the 

presence of higher concentrations of daptomycin led to cell enlargement (Figure 3.4.). Similarly, CCCP-

challenged cells display a slightly increased fluorescence signal when compound concentrations are 

used above the determined MIC and for longer incubation periods (Figure 3.6.E and 3.6.F). In contrast 

with the results obtained with daptomycin, the lrg system response to the presence of CCCP is less 

heterogeneous. Plrg activation was also tested in the same conditions using TSB as growth media and 

results were comparable with those obtained when using MHB (data not shown). 
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Figure 3.4. Microscopy images of JE2_Plrg_mNeonGreen exposed to daptomycin. JE2 reporter cells expressing 

mNeonGreen under the control of Plrg promoter without daptomycin, with 0.25x, 1x and 4x MIC of daptomycin. Each two-

panels show cells at 1 h, 2 h and 3 h of incubation/induction with daptomycin. For each two-panel example: left – phase contrast 

image; right – GFP filter image. Scale bars = 1 μm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Microscopy images of JE2_Plrg_mNeonGreen exposed to CCCP. JE2 reporter cells expressing mNeonGreen 

under the control of Plrg promoter without CCCP, with 0.25x, 1x and 4x MIC of daptomycin. Each two-panels show cells at    

1 h, 2 h and 3 h of incubation/induction with daptomycin. For each two-panel example: left – phase contrast image; right – 

GFP filter image. Scale bars = 1 μm. 
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Figure 3.6. Plrg promoter activity in the absence or presence of daptomycin and CCCP. JE2 reporter cells challenged with 

0.25x, 1x and 4x MIC of daptomycin induction as well as with 0.25x, 1x and 4x MIC of CCCP, during 1 h, 2 h and 3 h. N=500 

cells were analysed for each condition tested. Each quantified cell is represented by a dot in the graphics. Grey lines, blue lines 

and red lines represent median (Md) with interquartile range for samples with non-induced cells, daptomycin and CCCP-

challenged cells, respectively. The median value for each tested condition is indicated. 
 

 To sum up, microscopy assays indicate an heterogenous and inconsistent activation of the Plrg 

reporter strain by daptomycin and weak activation of the system by CCCP. 

 

In order to assess whether the activation of Plrg could be triggered through a different approach, 

the accumulation of acetate in the presence of excess glucose was also tested115. Additionally, the effect 

of sodium bicarbonate116 in the activation of the lrg response system by altering the membrane potential 

was assessed (Figure 3.7.). 

 

The data presented in Figure 3.7. indicate that the fluorescence levels of induced cells did not 

increase in any of the conditions tested. Interestingly, fluorescence is lower in the presence of glucose 

suggesting that it is apparently leading to repression of the lrg response system. After 2 h of induction 

with potassium acetate, the fluorescence of challenged cells also decreased. However, at 1 h and 3 h of 

induction this effect was not observed. Using this approach, Plrg activation was also tested in the same 

conditions using TSB as growth media and results were comparable with those obtained when using 

MHB (data not shown).  
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Figure 3.7. Microscopy images and quantification of Plrg promoter activity of JE2_Plrg_mNeonGreen exposed to 

glucose, acetate and bicarbonate. JE2 reporter cells expressing mNeonGreen under the control of Plrg promoter without 

inducer, with 35 mM glucose115, 10 mM potassium acetate and 100 mM sodium bicarbonate (116 supplementary data). Each 

two-panels show cells at 1 h, 2 h and 3 h of incubation with the appropriate inducer. For each two-panel example: left – phase 

contrast image; right – GFP filter image. Scale bars = 1 μm. Plrg promoter activity was measured by quantification of total 

average fluorescence of individual cells in a sample in the conditions previously mentioned are shown at 1 h, 2 h and 3 h of 

induction. N=500 cells were analysed for each condition tested. Each quantified cell is represented by a dot in the graphics. 

Grey, orange, green and white lines represent median (Md) with interquartile range for samples with non-induced cells, glucose, 

acetate and bicarbonate-challenged cells, respectively. The median value for each tested condition is indicated. 
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3.3. Alternative lrg reporter 

 

As described above, despite having tested several approaches to activate this Plrg reporter strain, 

low induction of mNeonGreen expression was always observed. We reasoned that one possible 

explanation was the duplication of the promoter, present in this strain, led to a titration of the available 

molecules of activator LyR/promoter. We therefore constructed a new strain, JE2_lrg_mNeonGreen, 

where the mneongreen reporter gene was placed as the last gene of the lrgAB operon, thus avoiding the 

duplication of the promoter. The response of this new reporter strain to membrane potential decrease, 

caused by the presence of daptomycin (Figure 3.8.) and CCCP (Figure 3.9.), was then assessed. Cells 

were imaged after 1 h and 2 h of induction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Microscopy images of JE2_lrgB_mNeonGreen exposed to daptomycin. JE2 reporter cells expressing 

mNeonGreen under the control of Plrg promoter without inducer, with 0.5x, 1x, 2x and 4x MIC of daptomycin. In every 

condition tested, non-induced cells were labelled with DNA dye Hoechst 33342 and then mixed with cells non-challenged or 

challenged by daptomycin, as appropriate. Each three-panels show cells at 1 h and 2 h of incubation with the appropriate 

concentration of daptomycin/inducer. For each three-panel example: left – phase contrast image; middle – GFP filter image; 

right – DAPI filter image. Scale bars = 1 μm. 

 

In order to obtain measurements of the fluorescence levels more comparable between different 

conditions, a culture of non-induced cells was used as internal control in every experiment. These cells 

were labelled with DNA dye Hoechst 33342 and then mixed with cells challenged by daptomycin or 

CCCP. This allowed the identification of induced and non-induced cells and the quantification of their 

total fluorescence separately (Figure 3.10.), after which the ratio between the two values of median was 
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calculated. The reverse experiment was also performed to assess whether this additional staining had 

any effect on mNeonGreen expression. Quantification of these results allowed us to conclude that the 

DNA dye did not alter fluorescence of mNeonGreen in challenged cells (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. Microscopy images of JE2_lrgB_mNeonGreen exposed to CCCP. JE2 reporter cells expressing mNeonGreen 

under the control of Plrg promoter without inducer, with 0.125x, 0.25x, 0.5x and 1x MIC of CCCP. In every condition tested, 
non-induced cells were labelled with DNA dye Hoechst 33342 and then mixed with cells non-challenged or challenged by 

daptomycin, as appropriate. Each three-panels show cells at 1 h and 2 h of incubation with the appropriate concentration of 

CCCP/inducer. For each three-panel example: left – phase contrast image; middle – GFP filter image; right – DAPI filter image. 

Scale bars = 1 μm.  
 

Similarly to the results obtained for strain JE2_Plrg_mNeonGreen, induction of mNeonGreen 

expression in the presence of daptomycin was heterogeneous, and comparable only when using an 

antibiotic concentration above the MIC (Figure 3.10.). For this alternative strain, a sub-MIC 

concentration of CCCP was sufficient to activate the response of the lrg system and, consequently, to 

increase the total fluorescence of cells challenged by the uncoupler agent (Figure 3.10.). Identical results 

were obtained from mixing non-induced with DAPI-stained induced-cells (data not shown). However, 

this improvement in the fluorescence results of the lrg reporter strain is, however, insufficient for this 

strain to be used as a tool in future HTS. 
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Figure 3.10. Promoter activity of lrgB fusion to mneongreen in the absence or presence of daptomycin and CCCP 

through quantification of mNeonGreen fluorescence. JE2 reporter cells were challenged with 0.5x, 1x, 2x and 4x MIC of 

daptomycin induction as well as with 0.125x, 0.25x, 0.5x and 1x MIC of CCCP equally during 1 h and 2 h. Bars represent the 

calculated ratio of the medians between daptomycin or CCCP induced cells and non-induced but DNA-labelled cells. N=500 

cells were analysed for each condition tested. Blue and red lines indicate de increase of fluorescence ratios compared to the 

JE2_Pfap_mNeonGreen control, due to daptomycin and CCCP induction, respectively. 
 

 

3.4. Induction of fap reporter 

 

To test the transcriptional fusion of mneongreen to the promoter of fapR and the cellular 

response of the constructed reporter to FapR de-repression, growing cultures of strain 

JE2_Pfap_mNeonGreen were challenged with 1x and 2x MIC (Table 3.1.) for triclosan (Figure 3.11). 

The DNA labelling process was also performed during assays with the Pfap reporter strain. DNA labelling 

allowed identification of induced and non-induced cells and subsequent quantification of total 

fluorescence, used for calculating ratios of median fluorescence (Figure 3.12.). 
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Figure 3.11. Microscopy images of JE2_Pfap_mNeonGreen exposed to triclosan. JE2 reporter cells expressing 

mNeonGreen under the control of Pfap promoter without inducer, with 1x and 2x MIC of triclosan (in TSB). In every condition 

tested, non-induced cells were labelled with DNA dye Hoechst and then mixed with cells non-challenged or challenged by 

daptomycin, as appropriate. Each three-panels show cells at 1 h and 2 h of incubation with the appropriate concentration of 

triclosan/inducer. As a control, WT parental cells were mixed with triclosan and imaged. For each three-panel example: left – 

phase contrast image; middle – GFP filter image; right – DAPI filter image. Scale bars = 1 μm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12. Pfap promoter activity in the absence or presence of triclosan through quantification of mNeonGreen 

fluorescence. JE2 reporter cells were previously challenged with 1x and 2x MIC of triclosan induction for 1 h and 2 h. Bars 

represent the calculated ratio of the medians between triclosan induced cells and non-induced but DNA-labelled cells. N=500 

cells were analysed for each condition tested. Coloured lines indicate de increase of fluorescence ratios compared to the 

JE2_Pfap_mNeonGreen control. 
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Increase in total fluorescence levels (data not shown) was reflected in higher fluorescence ratios 

regarding Pfap-dependent mNeonGreen expression in the presence of triclosan. This increase was 

immediately observed when cells were challenged for 1 h with MIC or supra-MIC antibiotic 

concentrations, and it corresponds to almost a two-fold change in mNeonGreen fluorescence intensity 

(Figure 3.12.). The presence of higher concentrations of triclosan led to cell enlargement (Figure 3.11.), 

which was also already noticeable at 1 h with MIC conditions (Figure 3.11.A). Identical results were 

obtained from mixing non-induced with DAPI-stained induced-cells (data not shown). Contrary to the 

previous reporter strains, Pfap activation was only tested using TSB as growth media.  

 

To further validate the fap reporter strain, a different approach was taken by targeting fabZ with 

an RNA antisense system (Figure 3.13.). This leads to the inhibition of one of the elongation steps of 

the fatty acid biosynthesis, which subsequently results in the increase of malonyl-CoA concentration 

inside the cell, followed de-repression and expression of the fap regulon91,93. Similarly to the previous 

approach, microscopy assays (Figure 3.13.) were just performed using cultures grown in TSB.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13. Microscopy images of fabZ RNA antisense induction of fap reporter strain. JE2_Pfap_mNeonGreen AS-fabZ 

expressing mNeonGreen under the control of Pfap promoter without xylose-induction, with 2% xylose, without xylose-induction 

but in the presence of 15 µg.mL-1 of chloramphenicol (Cm15) and with 2% xylose and chloramphenicol (in TSB). Cm15 was 

added in half of the cultures as a selective pressure control for plasmid with a xylose inducible antisense RNA for fabZ. Each 

two-panels show cells at 2 h and 3 h of induction. For each two-panel example: left – phase contrast image; right – GFP filter 

image. Scale bars = 1 μm.  
 

Microscopy images were used to quantify total average fluorescence of individual cells in a 

sample in the conditions tested. The obtained results are depicted in Figure 3.14. 
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Figure 3.14. Pfap promoter activity upon induction of fabZ antisense RNA and fluorescence from mNeonGreen 

expression was quantified. JE2 reporter cells were challenge with 2% of xylose, in the absence or in the presence of                      

15 µg.mL-1 of chloramphenicol (Cm15),  for 2 h and 3 h of induction. Cm15 was added in half of the cultures as a selective 

pressure control for plasmid with a xylose inducible antisense RNA for fabZ. N=500 cells were analysed for each condition 

tested. Each quantified cell is represented by a dot in the graphics. Black and yellow lines represent median (Md) with 

interquartile range for samples with non-induced cells and triclosan-challenged cells, respectively. The median value for each 

tested condition was added. 

 

Data presented in Figure 3.14. shows that a 2 h induction period with xylose does not result in 

significant changes in fluorescence levels, even though cell enlargement is already noticeable (Figure 

3.13.). However, fluorescence levels of induced cells increased after 3 h of xylose-induction, indicating 

a significant upregulation of the fap genes. 

 

Considering all previous results, the fap reporter strain was deemed the most suitable tool, 

constructed in this work, for a future HTS. 

 

 

3.5. Initial optimization for subsequent high-throughput screening 

 

             Since microscopy studies are not compatible with HTS of large libraries of compounds, we 

chose to perform an initial test on a fluorimeter microplate system. By maintaining the same tested 

conditions (1 h and 2 h of induction with 1x and 2x MIC of triclosan) for the strain with the 

transcriptional fusion of mneongreen to the promoter of fapR, cultures of JE2_Pfap_mNeonGreen and 

JE2 WT were grown and then inoculated in microplates as detailed in Materials and Methods. For this 

set of experiments the OD600 nm was adjusted to 0.1 in PBS, to prevent background autofluorescence, 

and measurements were performed in black 96-well microplates, to avoid light scattering. 

 

 

Data obtained from fluorimeter assays (Figure 3.15.) was non-reproducible and did not correlate 

with the previously observed two-fold increment in mNeonGreen fluorescence ratio (Figure 3.12.). 

Moreover, fluorescence of triclosan-challenged cells was inferior to the positive control of vancomycin-

labelled cells at any tested concentration. Therefore, detection of the fap reporter fluorescence using a 

fluorimeter requires further optimization studies. 
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Figure 3.15. Quantification of mNeonGreen fluorescence levels of JE2_Pfap_mNeonGreen in the absence or presence 

of triclosan using a fluorimeter microplate system. JE2 WT strain and non-induced fap reporter cells represent controls for 

autofluorescence and basal promoter-dependent mNeonGreen expression levels, respectively. JE2 cells labelled with 

0.8 µg.mL-1 (1x), 1.6 µg.mL-1 (2x) and 3.2  µg.mL-1 (4x) of a fluorescence derivative of the cell wall dye vancomycin-FL (Van-

FL) were used as a positive control. Floating bars represent minimum and maximum value of fluorescence and lines at the 

middle correspond to the medians. 
 

 

3.6. Daptomycin fluorescence 

 

While performing induction assays of daptomycin-challenged cultures with the lrg reporter 

strains, fluorescence of daptomycin in the DAPI channel was detected during the controls of previous 

assays of lrg reporter strains (Figure 3.16).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16. Microscopy images of JE2 exposed to CCCP and daptomycin. WT cells were incubated without and with 

inducer. Each three-panels from the second row show JE2 cells in the presence of CCCP and daptomycin. For each three-panel 

example: left – phase contrast image; middle – GFP filter image; right – DAPI filter image. Scale bars = 1 μm. 
 

In Figure 3.16, an unexpected midcell/septal-like fluorescence pattern can be observed on the 

image obtained with the DAPI filter in WT JE2 cells challenged with daptomycin. However, this pattern 

was not common to all the cells (Figure 3.16.). 

 

To briefly study this intriguing phenomenon, the CA-MRSA JE2 WT strain was grown in MHB 

and Ca-MHB and the microscopy assay was repeated. The WT strain displayed similar growth rates 

when comparing liquid cultures in both media with and without calcium (Supplementary Figure 4). The 

fluorescence of this S. aureus strain in the presence of daptomycin (Figure 3.17.) was assessed. 
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Figure 3.17. Microscopy images of JE2 exposed to daptomycin. WT cells in MHB without and with antibiotic, in Ca-MHB 

without and with antibiotic. Each three-panels show cells at time zero, 30 min and 1 h of growth after reaching OD600 nm ≈ 0.8. 

For each three-panel example: left – phase contrast image; middle – GFP filter image; right – DAPI filter image. The GFP 

channel only displayed cell autofluorescence. Scale bars = 1 μm.  
 

Data from Figure 3.17. illustrates either a whole cell surface-like labelling or a midcell/septal 

pattern only detectable with the DAPI filter. Interestingly, midcell labelling was exclusive to cells grown 

in MHB supplemented with calcium (Ca-MHB), whereas whole cell surface-like labelling pattern is 

more predominant in cultures grown in calcium-free MHB but still detectable in Ca-MHB. 1 h after 

reaching exponential phase, intensity for this staining decreased. 

Importantly, daptomycin fluorescence was not detected in the GFP filter and, therefore, did not 

interfere with the assays described above. 

To better understand how the presence of daptomycin causes these labelling patterns, further 

experiments are required. 
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4. Discussion and Conclusions 

 

Cell membranes are vital for bacterial survival89,117, thus have been proposed as a target for 

compounds which are used as treatment to multidrug resistant and persistent bacteria20,48,77,118. 

Therefore, its integrity/stability (proton motive force) and composition, namely in phospholipids, can 

serve as starting points to discover new compounds that affect or inhibit clinically relevant bacteria, 

such as Staphylococcus aureus USA300 (JE2). In this work, we constructed fluorescent reporter fusions 

to assess whether membrane potential and phospholipids biosynthesis could be insightful targets in a 

HTS for compounds with antibacterial activity. Every experiment was performed in constructs with the 

background of CA-MRSA JE2 strain to ensure that all results were relevant in this pathogen of interest. 

Since proton motive force plays a key role in several metabolic pathways involving ATP 

synthesis61,119, bacteria keep it monitored by a two-component regulatory system, lytSR63,72. In S. aureus, 

this system regulates the downstream dicistronic operon lrgAB, which is known to be activated by 

CCCP72 and daptomycin73,80. Thus, we firstly constructed a reporter fusion of mneongreen to the 

promoter of lrg, by duplicating the native promoter in the JE2 background. Introduction of this construct 

in the genome did not alter strain growth, when compared with a WT background (Figure 3.2.A) neither 

its susceptibility to daptomycin or CCCP (Table 3.1). In liquid medium with agitation, the presence of 

CCCP abolishes the membrane potential and the number of cells in the culture decreases, even in sub-

MIC conditions (Figure 3.2.A). The disruptive effect of daptomycin is not as evident as that of CCCP 

in line with the fact that their MOA, yet to be fully understood, seem to be different72,73,78. 

Following the expression of lrg genes through mNeonGreen fluorescence allowed to verify that 

Plrg displayed increased activity only in the presence of 4x MIC of CCCP and daptomycin, from the 

various conditions tested. However, its activation is low comparing with previously reported 

transcription levels, where a 2.7 and 3.6-fold increase was measured for upregulation of lrgA and lrgB 

by daptomycin, respectively73. Daptomycin induction was heterogeneous and prolonged exposure to the 

inducer resulted in phenotypical alterations such as cell enlargement (Figures 3.4., 3.5. and 3.6.). 

Seeing the rapid effect of CCCP in abolishing membrane potential61,72, cultures of the reporter 

strain were incubated with 1x and 4x MIC of the uncoupler agent for 5 min, 10 min and 15 min after 

reaching early exponential phase and for 45 min with 2x MIC. However, 15 min or less for induction 

did not allow a comparable activation of the Plrg promoter (Supplementary Figure 2). The same results 

were obtained for the 45 min experiment (Supplementary Figure 3). 

To assess Plrg promoter activation through the secondary LytS-independent pathway (Figure 

1.1.) while avoiding cell enlargement, glucose and potassium acetate were used as inducers. Bicarbonate 

was also tested as another possible inducer of the primary/LytS-dependent pathway (Figure 1.1.) by 

interference with membrane potential116. The results in Figure 3.7. suggest that glucose acts as a 

repressor, which may be possible due to catabolic repression by the carbon catabolite protein A 

(CcpA)120. Potassium acetate also might have repressed the activation of Plrg after 2 h of induction. 

Although acetate and bicarbonate did not activate the promoter, the concentrations might not have been 

ideal for this reporter and further testing is required. 

Considering the results obtained, the reported strain containing a duplication of the Plrg native 

promoter shows low activation levels. Therefore, an alternative strategy was considered for the lrg 

reporter (Figure 4.1.), which consisted in constructing a reporter strain by placing the mneongreen 

sequence after the lrgB native gene, i.e., cloning the gene encoding the mNeonGreen fluorescent protein 

at the end of the operon lrgAB, to minimize disturbance of its expression. Instead of duplicating the 

promoter and possibly diluting the activator LytR due to having two promoter regions for the regulator 

to bind to, this new strategy could potentially cause an alteration in the expression of the lrg genes or a 

destabilization of the resulting transcript. Still, no perceptible changes were detected regarding MICs 

(Table 3.1.) or growth profiles in liquid media (Figure 3.2.B). Although the daptomycin and CCCP 
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induction results obtained with this strategy show an improvement to the previous construction, 

quantifications (Figure 3.10.) demonstrated that the fluorescence increase after induction is inferior to a 

two-fold difference to the positive control with non-induced culture of this alternative reporter strain. In 

view of the results for both strategies, we concluded that the constructed lrg fluorescent reporter is not 

adequate to be used in a HTS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Scheme of LytR binding sites for each lrg reporter strategy. Duplication of the native promoters can lead to 

dilution of the activator LytR, decreasing expression of mneongreen due to existence of two LytR DNA-binding sites in the 

genome. On the other hand, addition of the codifying sequence for mNeonGreen fluorescent protein at the end of the operon 

avoids this dilution effect, allowing maintenance of a single target for the regulator protein. However, this alternative strategy 

can compromise mRNA stability and subsequent protein production.  

 

 Another important aspect of membranes is its phospholipids composition. The Gram-positive 

bacteria S. aureus has a FASII system to synthetize its own phospholipids121 though it can also make 

use of exogenous fatty acids during host infection97. In order to evaluate whether the FASII could serve 

as a target for a fluorescent-based HTS, a fluorescent reporter fusion was also constructed by duplication 

of the Pfap promoter adjacently to the fapR locus (Figure 3.1.C). Contrary to the previous reporter where 

LytR was an activator, FapR is a transcriptional repressor whose DNA/operator-binding function is 

inhibited by the intermediate metabolite of FASII, malonyl-CoA93. 

To activate the fap reporter strain and observe if there was an increase of mNeonGreen 

fluorescence, triclosan was used as an inducer. The compound blocks the FabI-mediated step of the 

elongation cycle of bacterial FASII (Figure 1.3.), leading to malonyl-CoA accumulation and 

consequently loss of FapR repression121.  Similarly to the first set of experiments with the lrg reporter, 

duplication of the native promoter did not change growth (Figure 3.3.) nor resistance (Table 3.1.). In 
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liquid media, triclosan induction resulted in almost a two-fold increase of mNeonGreen fluorescence 

levels during the first hour (Figure 3.13.).  

The second approach used to validate the reporter strain was based on a xylose-inducible RNA 

antisense system against fabZ. In the absence of FabZ, the conversion of β-hydroxyacyl-ACP to trans-

2-enoyl-ACP (Figure 1.3.) is blocked, which leads to the accumulation of intracellular malonyl-CoA 

and a decrease of FapR-mediated repression. Hence with this approach, fluorescence quantification of 

xylose-induced cells demonstrated that the Pfap promoter could be activated by targeting a different gene 

of the fatty acid synthesis pathway/cycle, being therefore a useful reporter for new antimicrobials. 

Taking together these results, the fap reporter strain was considered promising for a HTS based 

on a fluorimeter microplate system. However, differences in fluorescence levels detected during the 

testing of the reporter in the fluorimeter did not correlate with data from microscopy analysis. A possible 

explanation may be the 200-fold scale-up from the sample volume used in microscopy to the volume 

usually used in microplate assays.  

Triclosan-induced cells exhibited fluorescence levels below the minimum detection limit of the 

fluorimeter. This was evaluated by the vancomycin-labelling of WT parental strain. Additionally, the 

OD600 nm adjustments to 0.1 mentioned in Results reduced the total amount of cells in each microplate 

well, which consequently decreased total mNeonGreen protein available in the sample. 

 

Interestingly, while doing the studies described in this thesis, a daptomycin fluorescence signal 

was detected on the DAPI filter. It has been reported that the kynurenine aminoacid of this lipopeptide 

undergoes a blue shift upon interaction with calcium and negatively charged phospholipid membranes, 

namely with PG in its composition. A weaker shift in the fluorescence can also happen with neutral 

membranes86. Although this explains the signal detected in Figures 3.16. and 3.17., it does not justify 

the different staining patterns: the midcell pattern indicated that Ca-Dap complexes may bind to the 

septum of S. aureus cells, while in the absence of this cation daptomycin can also label the whole cell 

surface of the bacteria. Still, further research on this subject is required. Due to this fluorescence (Figure 

3.16), the assays with daptomycin induction were repeated by staining the induced-cells instead of the 

positive control (non-induced lrg reporter cells). Quantification of these results (data not shown) allowed 

to conclude that daptomycin blue-shit did not interfere with analysis of mNeonGreen fluorescence levels 

from previously discussed results of lrg reporter strains constructed in this work. 

 

In conclusion, a fluorescence based HTS using the fap reporter could be useful to identify new 

compounds and study their mode of action on MRSA S. aureus strains. Yet, an alternative to overcome 

detection limits of the mNeonGreen fluorescence would be to construct these reporters with bacterial 

luciferase (lux genes) and monitor promoter activities by measuring luminescence levels, as using this 

technique in target-based reporter assays may provide better results with higher sensitivity122. 
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6. Supplementary Information 

 

Supplementary Table 1. MICs of reporter strains to compounds that affect membrane potential or fatty acid 

biosynthesis in TSB. For each compound, MIC was determined by microdilution method in TSB and values were obtained 

based on the average of three independent experiments. 

Strain 
CCCP 

MIC (µg.mL-1) 

Daptomycinb 

MIC (µg.mL-1) 

Triclosan 

MIC (µg.mL-1; 24h) 

Triclosan 

MIC (µg.mL-1; 48h) 

JE2 1 2 7.8×10−3 6.25×10−2 

JE2_Plrg_mNeonGreen 1 2   

JE2_lrgB_mNeonGreen 1 1   

JE2_Pfap_mNeonGreen   7.8×10−3 6.25×10−2 

bMICs determined in: TSB supplemented with 50 mg.L-1 of Ca2+ 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1. Growth curves of Pfap reporter strain in TSB. Cultures from JE2_Pfap_mNeonGreen were grown 

overnight in TSB at 37 °C, re-inoculated in fresh media and regular measurements of optical density at 600nm were made. 

Time of induction with appropriate concentration of triclosan is indicated by the black arrow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 2. Plrg promoter activity in the absence or presence of CCCP during short periods of incubation. 

JE2_Plrg_mNeonGreen cells were challenged with 1x and 4x MIC of CCCP during 5, 10 and 15 min of induction, after cultures 

reached OD600nm ≈ 0.4–0.5. Each quantified cell is represented by a dot in the graphics. Grey and coloured lines represent 

median (Md) with interquartile range for samples with non-induced and induced cells, respectively. The median value for each 

tested condition is indicated. 
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Supplementary Figure 3. Plrg promoter activity in the absence or presence of supra-MIC conditions of inducer during 

45 min. JE2_Plrg_mNeonGreen cells were challenged with 4x MIC of CCCP and 2x daptomycin of CCCP during 45 min of 

induction, after cultures reached OD600nm ≈ 0.4–0.5. Each quantified cell is represented by a dot in the graphics. Grey and 

coloured lines represent median (Md) with interquartile range for samples with non-induced and induced cells, respectively. 

The median value for each tested condition is indicated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 4.  Growth curves of JE2 in both MHB and Ca-MHB. Cultures of JE2 were grown overnight in 

MHB and MHB supplemented with 50 mg.L-1 of Ca2+  at 37 °C, re-inoculated in fresh media and regular measurements of 

optical density at 600nm were made. 
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