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Abstract 

Introduction & Aims: Nanotechnology is a new trend in cosmetology and lipid nanoparticles 

have shown higher degree of biocompatibility and versatility in this field compared to other 

systems. The aim of this research project was to evaluate the influence of three different 

systems containing lipid nanoparticles previously well characterized on skin hydration and 

transepidermal water loss (TEWL). 

Methods: Several formulations of lipid nanoparticles based systems (solid lipid nanoparticles 

(SLN), nanostructured lipid carriers (NLC) with Dynasan
®
 114 (D114) or Glycerol 

monostearate (GMS) and nanoemulsions (NE)) were fully characterized (particle size, 

polydispersity index and zeta potential), and then incorporated into hydrogel form to study 

different skin parameters such as skin hydration and TEWL on forearms of six human 

volunteers. 

Results: The capacitance basal values of human volunteers before application of any 

hydrogel containing lipid nanoparticles were 31,48 (Control), 31,73 (SLN), 30,98 (NE), 30,42 

(NLC
D114

) and 32,07 a.u. (NLC
GMS

). The TEWL basal values were 7,70 (Control), 7,55 

(SLN), 7,72 (NE), 7,50 (NLC
D114

) and 7,67 g/h/m
2
 (NLC

GMS
). One hour after hydrogels` 

application, the capacitance values measured were 40,07 (Control), 43,20 (SLN), 41,22 (NE), 

41,15 (NLC
D114

) and 44,15 a.u. (NLC
GMS

). At the same time, the TEWL values obtained were 

6,58 (Control), 4,67 (SLN), 4,13 (NE), 3,90 (NLC
D114

) and 4,22 g/h/m
2
 (NLC

GMS
). 

Conclusion: The present study showed an increase in skin hydration after exposure to 

different systems of lipid nanoparticles (even not statistically significant). On the other hand, 

there was a statistically significant decrease in TEWL after that exposure, compared to the 

control. In this way, nanolipid systems, i.e. solid lipid nanoparticles, nanostructured lipid 

carriers and nanoemulsions, are promising systems to improve skin’s biophysical parameters 

in cosmetodermatology. 

Keywords: solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, 

transepidermal water loss, skin hydration 
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Resumo 

Introdução & Objetivos: A nanotecnologia é uma nova tendência no ramo da cosmetologia 

e as nanopartículas lipídicas têm demonstrado um maior grau de biocompatibilidade e 

versatilidade nesta área, comparando com outros sistemas já bem conhecidos. Este projeto de 

investigação teve como objetivo principal a avaliação da influência de três sistemas diferentes 

de nanopartículas lipídicas previamente bem caracterizados ao nível de parâmetros biofísicos 

da pele, nomeadamente hidratação da pele e perda transepidérmica de água. 

Métodos: Diversas formulações de sistemas baseados em nanopartículas lipídicas 

(nanopartículas lípidicas sólidas (SLN), vetores lipídicos nanoestruturados (NLC) formulados 

com Dynasan
®
 (D114) ou Monoestearato de glicerol (GMS) e nanoemulsões (NE)) foram 

rigorosamente caracterizadas (nomeadamente o tamanho das partículas, índice de 

polidispersão e potencial zeta), sendo depois incorporadas na forma de hidrogel para ser 

avaliada a influência destes nanosistemas lipídicos em diferentes parâmetros biofísicos da 

pele, como a hidratação da pele e a perda transepidérmica de água nos antebraços de seis 

voluntários.  

Resultados: Os valores basais de capacitância nos voluntários antes da aplicação de qualquer 

hidrogel contendo nanopartículas foram 31,48 (controlo), 31,73 (SLN), 30,98 (NE), 30,42 

(NLC
D114

) e 32,07 a.u. (NLC
GMS

). Os valores basais da perda transepidérmica de água foram 

7,70 (controlo), 7,55 (SLN), 7,72 (NE), 7,50 (NLC
D114

) e 7,67 g/h/m
2
 (NLC

GMS
). Os valores 

da capacitância, uma hora após a aplicação dos hidrogeles, foram 40,07 (controlo), 43,2 

(SLN), 41,22 (NE), 41,15 (NLC
D114

) e 44,15 a.u. (NLC
GMS

) e os valores de perda 

transepidérmica de água medidos após o mesmo período de tempo foram 6,58 (controlo), 4,67 

(SLN), 4,13 (NE), 3,90 (NLC
D114

) e 4,22 g/h/m
2
 (NLC

GMS
). 

Conclusão: O presente estudo demonstrou um aumento na hidratação da pele após exposição 

a diferentes sistemas de nanopartículas lipídicas, mesmo não tendo sido estatisticamente 

significativo. Por outro lado, houve uma diminuição estatisticamente significativa na perda 

transepidérmica de água após essa mesma exposição, comparativamente ao valor registado no 

hidrogel controlo. Desta forma, os nanosistemas lipídicos (nanopartículas lipídicas sólidas, 

vetores lipídicos nanoestruturados e nanoemulsões) são sistemas promissores ao nível da 

melhoria dos parâmetros biofísicos da pele em Cosmética e Dermatologia. 

Palavras-chave: nanopartículas lipídicas sólidas, vetores lipídicos nanoestruturados, 

nanoemulsões, perda transepidérmica de água, hidratação da pele 
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1. Introduction 

 

 

1.1. Skin – A physiological barrier 

 

  Skin is a viscoelastic organ and the largest organ of the human body constituted by 

two mutually dependent layers, the epidermis, formed by keratinocytes in different stages of 

differentiation and divided by different layers - stratum corneum, stratum lucidum, stratum 

granulosum, stratum spinosum, stratum germinativum - and dermis (as well as the 

subcutaneous fat tissue). This organ  has several essential functions for human survival, such 

as defensive (as a physical barrier), immunologic, thermoregulatory, metabolic and sensorial 

(1).  

  Stratum corneum (SC) is the most external layer of the epidermis with corneocytes 

molding a cornified envelope embedded in lipid bilayers, responsible for mechanical 

resistance and involved in water permeability and exchange of substances with the external 

environment, and thus contributing for skin barrier function. The last step of keratinocyte 

differentiation is characterized by the constant replacement of corneocytes leading to a 

renewable skin process (2). This outermost layer of the skin is also able to prevent invasion of 

microbes and penetration of chemicals/radiation as well as to protect the body from excessive 

water loss, sustaining the homeostasis. However, epidermis is not totally impermeable to 

substances applied on its surface (3).   

  Some substances can pass through skin surface, more specifically compounds with 

low molecular mass (approx. 600 Da), lipophilic and uncharged. Taking into account these 

particularities, it is possible to obtain formulations with controlled drug release, allowing 

specific pharmacologic effects and avoiding toxicological side effects (4). In fact, dermal 

delivery has been highlighted among different routes of drug delivery for local and systemic 

action, and it has been studied for delivery of several types of carriers, including 

nanoparticles. Noteworthy, skin should be in good conditions regarding topical parameters 

such as skin hydration, transepidermal water loss (TEWL) and transepidermal flux of carbon 

dioxide, oxygen and ions (5). 
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1.2. Nanotechnology in cosmetics – an overview  

  Nanotechnology is an innovative science involved in the design, synthesis, 

characterization, and application of structures, materials, devices and systems at the 

nanometer scale, in the size range from 1 to 1000 nanometers (6). In this field, it is possible to 

control the macroscopic chemical and physical properties of individual molecules and 

interacting groups. In the last years, it has been observed an increasing interest  in 

nanoscience and nanotechnology in several fields, including cosmetic and pharmaceutical 

products (7). 

  Therapy with nanocarriers has been developed since this drug delivery system allows 

controlling the drug release, and thus leading to an improvement of pharmacokinetic 

properties of drugs. For example, lipid nanoparticles have been studied for cancer therapy, 

bacterial infections and dermatological disorders, due to their own characteristics as resistance 

to chemical degradation, easy penetration through biological barriers and co-delivery of 

different active substances among other advantages (8).  

  Nanotechnology is also a new trend in cosmetology, since nanoparticles present 

several advantages compared to other systems, including a higher degree of biocompatibility 

and versatility. Regarding their safety, no adverse effects of lipid nanoparticles on human skin 

have been described so far (9). In this way, many cosmetic manufacturers already use 

nanoscale products to provide an improvement on their effectiveness, such as higher UV 

protection, deeper skin penetration and, consequently, long-lasting effects (10). 

  The potential that nanocosmetics brings is multifaceted as already referred, leading to 

an improvement on the current production and characterization techniques with different 

safety assessments (9). Concerns over the safety of nanoparticles are raised since their 

properties (smaller size, chemical composition, surface structure, solubility, shape and 

aggregation) may cause different risks to human life (direct or occupational risk) and also to 

the environment. In the last years, a large number of in vitro and in vivo studies using 

nanoparticles has been performed to prove their safety taking into account relevant 

toxicological endpoints, like penetration through physiological barriers, cellular uptake and 

translocation, cell damage or cytotoxicity, induction of cellular stress and mutagenicity/ 

genotoxicity (10). These studies have been conducted through different routes of 
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administration (inhalation, oral and dermal absorption), with special attention concerning the 

entrance through skin, since there is less information about skin permeation (11).  

  In order to ensure the safety and efficacy of such nanocosmetics, FDA issued a report 

prepared by its Nanotechnology Task Force (12). The Task Force report, formed in August 

2006, presents an assessment of scientific and regulatory deliberations concerning the security 

and effectiveness of FDA-regulated products that use nanotechnology materials. In the 

meantime, this report submits recommendations regarding these considerations and 

encourages the development of innovative, safe, and effective FDA-regulated nanoproducts 

(13). European Comission has also a guidance on the safety assessment of nanomaterials in 

cosmetics (14). 

1.3. Lipid nanoparticles 

  Lipid nanoparticles have been investigated for different pharmaceutical applications 

(parenteral, peroral, dermal, ocular and pulmonary). Since the last decade, a huge interest in 

lipid nanoparticles for dermal use (in pharmaceutical and cosmetic products) has been clearly 

emerged (15). Overall, these studies showed that lipid nanoparticles can be useful for topical 

delivery of drugs and active compounds. Simultaneously, they offer several advantages in  

this field, such as the enhancement of chemical stability of actives sensitive to light oxidation 

and hydrolysis as well as the ability to increase the occlusion skin effect (decreasing 

transepidermal water loss) and improve skin hydration (16). 

  These lipid-based nanodelivery systems are innovative carriers since they cover all the 

advantages of other nanometric carriers (like emulsions, liposomes and polymeric 

nanoparticles) (17). Different types of lipid nanoformulations have been studied so far, as 

nanoemulsions, solid lipid nanoparticles and, the newest, nanostructured lipid carriers. 

   

1.3.1. Nanoemulsions (NE) 

 An emulsion is composed by two immiscible phases (water and oil phases) and a 

surfactant (steric stabilizer) on the interface between them. This surfactant decreases surface 

tension, stabilizing the emulsion during the emulsification process, and its nature determines 

the external phase of the emulsion (18). Several types of surfactants, like ionic surfactants and 

non-ionic surfactants, can be used to stabilize the oil-in-water (O/W) emulsions.  
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When the surfactant cannot reduce surface tension, the addition of a co-surfactant can 

play an important role, decreasing the percentage of the surfactant needed to stabilize 

emulsions. This additive effect of surfactant and co-surfactant is important to avoid potential 

toxic risks associated with the use of a high amount of the individual surfactant.  Although 

studies have already been developed in this area, there is still limited information regarding 

the influence of a mixture of both emulsifiers on the reduction of the amount of the surfactant 

needed (19). 

In the last decades, progresses in nanotechnology have led to the development of 

nanoemulsions, metastable dispersions of droplets (with a diameter from 50 to 1000 nm) of 

one liquid within another (20). These emulsions can be O/W or W/O, and sometimes they are 

confused with microemulsions. Microemulsions can be formed by a spontaneous process with 

low energy since they are thermodynamically stable. However, these systems do not present 

kinetic stability, and thus a huge concentration of surfactant in formulation would be needed 

compared to emulsions, which may increase their irritation potential. Nevertheless, 

nanoemulsions are produced by mechanical shear (high-energy methods) with less 

concentration of surfactants. Nanoemulsions are also metastable instead of 

thermodynamically stable (21).  

Although microparticles (10
-6

) are 

bigger than nanoparticles (10
-9

), in this case is 

different as droplets in microemulsions are 

smaller than in nanoemulsions due to historical 

development of these formulations (i.e. the term 

‘microemulsion’ was firstly published, and just 

after three decades the term ‘nanoemulsion’ 

appeared) (Figure 1) (22).   

In this work, nanoemulsions were formulated with liquid lipid Miglyol
®
 812, a 

mixture of medium-chain triglycerides (Caprylic/Capric Triglyceride) with excellent 

emolliency and good user properties (23). This compound is able to form reservoir-type drug 

delivery systems in the liquid oil core, where some drugs insoluble in water can be dissolved 

with an increased payload (24). 

 

 
Figure 1 – Microemulsion vs Nanoemulsion (20) 
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1.3.2. Solid lipid nanoparticles (SLN) 

Solid lipid nanoparticles (SLN) were developed to combine the advantages of three 

other systems: emulsions, liposomes and solid particles. SLN are produced by replacing the 

liquid lipid (oil) of an O/W emulsion by a solid lipid or a mixture of solid lipids at 37⁰C (15).  

These systems are produced with excipients generally recognized as safe (GRAS) 

status for oral and dermal delivery, an important advantage concerning toxicity related with 

previous formulations among other several benefits (25).  

Incorporation of active substances in SLN can protect them from degradation, 

increasing drug stability (26), and consequently, allowing a target strategy (27). In addition, 

SLN allow a controlled drug release, since biphasic release profiles were observed in several 

studies (an initial burst drug release followed by a prolonged release) (28). SLN also 

incorporate lipophilic and hydrophilic drugs with no need of organic solvents (29). Despite 

these advantages, SLN have shown several limitations, as drug expulsion during storage, 

reduced particle concentration and drug loading and high water content of SLN dispersions. 

 

1.3.3. Nanostructured lipid carriers (NLC) 

  The disadvantages of SLN led to the development of a new generation of 

nanosystems: nanostructured lipid carriers (NLC) (30). In this second generation, particles are 

produced not only with solid lipids but also with liquid lipids (oils). To produce these blends 

of lipids, solid lipids are mixed with liquid lipids (ratio from 70:30 up to 99.9:0.1) (26). There 

is a melting point depression in NLC, compared with SLN, but the matrix is also solid at body 

temperature (15). One problem verified with SLN is that during storage, a ‘perfect crystal’ is 

formed (a matrix totally ordered in conditions of low energy that leads to drug expulsion). In 

NLC preparation, the use of different molecules gives rise to an imperfect matrix that 

accommodates the drug in its imperfections. To solve this question, there are three types of 

NLC (26). 

  In type I, the highly imperfect type, exists a blend of low liquid lipid (oil) concentration 

with solid lipid with the formation of a solid particle characterized by an extremely disordered 

matrix. Type II, known as the multiple type, is processed with a higher liquid lipid 

concentration, compared to type I, and this increase of lipid concentration leads to phase 
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separation of both lipids and then, during cooling-down step, to the precipitation of oily 

nanocompartment and its incorporation into the solid matrix. In this way, this addition of 

higher oil content prevents drug 

expulsion.  In the amorphous type, 

type III, as the designation means, an 

amorphous state is maintained 

through the control of blend of lipids 

instead of a perfect crystal with an 

ordered matrix (Figure 2) (30).  

 

 

1.4. Production and incorporation of lipid nanoparticles into hydrogel 

1.4.1. High-energy mechanism  

Lipid nanoparticles can be produced through different methods usually with one 

mutual step: the formation of a nanoemulsion. Regarding SLN, after this step, a successive 

solidification of the dispersed lipid phase occurs. In this process, the critical stage is 

nanoemulsion preparation, since it is essential to obtain particles nanosized with a slight 

polydispersity index (measure of the width of molecular weight distributions) (17). 

The solution to avoid high polydispersity index and particle sizes outside the 

nanoscale, is based on the manipulation of the formed nanoemulsions with strong mechanical 

forces: high shear homogenization, ultrasonication, high pressure homogenization or 

microfluidization and membrane emulsification. 

High shear homogenization (HSH) and ultrasonication (US) are both common 

dispersing techniques and easy to handle. In the HSH, the rotor-stator homogenizer is used to 

break big droplets into small ones since product goes to the center of the stator and is 

subjected to an intense shear through the gap of the rotor stator, producing a final 

homogenous mixture. This gap is adjustable for different shear levels and flow rates, 

depending on the product in cause. In the US exists a succession of mechanical depressions 

and compression of the system, which causes an implosion sufficiently strong to increase the 

interfacial area of the droplets (20). Though, some problems, regarding dispersion quality, 

Figure 2 – Different type of NLC. From left to right:  Highly 

imperfect type (I); multiple type (II); amorphous type (III)(28) 
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were observed when these techniques were used, such as the presence of microparticles and 

metal contamination in case of HSH and US, respectively. An emulsifying agent (surfactant) 

is a good solution when the problem is due to the average particle size, since the surfactant 

allows the formation of nanoemulsion under simple high shear mixing. Another option could 

be the simultaneous use of different methods to obtain better results, such as two short cycles 

of HSH and US (to decrease processing intervals and obstacles associated to long preparation 

times) (31) or different methods used in different steps (for example, one technique to get 

macroemulsion as a pre-emulsion, and then another one to form nanoscale droplets) (20). 

In the nineties, Muller applied a new technique, high pressure homogenization (HPH), 

which is recognized nowadays as the main and most efficient technique to produce lipid 

nanoparticles. This method is characterized by different steps in order to increase efficiency 

and valuable results, and it is subdivided into hot and cold homogenization with dissolution, 

solubilization or dispersion of the active in the melted lipid (26). Hot homogenization is the 

most frequently applied technique since temperature sensitive compounds can be processed 

by this way (exposure time is not so long). However, this technique is not able to incorporate 

hydrophilic substances as well as extremely temperature sensitive compounds, and to solve 

this limitation, cold homogenization was developed (32). Hot homogenization involves the 

dissolution of the drug in the lipid and afterward this lipid should be melted at a specific 

temperature (5-10ºC above its melting point) (33). After this optimization, this drug dissolved 

in melted lipid is dispersed in an aqueous surfactant solution at the same temperature to form 

a pre-emulsion. This pre-emulsion is homogenized with a piston-gap homogenizer and then 

the lipid re-crystallizes when this O/W nanoemulsion is cooled down (to room temperature). 

Overall, this procedure leads to lipid nanoparticles production at the end (31). Usually hot 

homogenization is referred in association with high pressure homogenization since this type 

of homogenization is on the cutting edge. However, to improve the effectiveness of 

techniques as HSH and US, the principle of hot homogenization can be applied in these 

techniques if a pre-emulsion is obtained as described before, and then the homogenization 

process continues under hot temperature (26, 28). This association can be useful when is not 

possible to use high pressure homogenization, for example, in the laboratory scale.  

This work was performed following the hot homogenization principle since it was 

produced a pre-emulsion subsequently subjected to high shear homogenization process to 

obtain lipid nanoparticles. 
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1.4.2. Particle size, polydispersity index (PdI) and zeta potential analysis 

  Some properties of particles can play an important role regarding the efficacy of 

dermal products based on nano-scale particles, such as particle size, polydispersity index 

(PdI) and zeta potential.  

  Particle size influences skin penetration since smaller particles are more able to 

pass through skin. Thus, nanoparticles have suitable topical and dermal delivery (10). In this 

way, it is essential to measure particle size distributions to understand how this physical 

property can affect the performance of products with nanoparticles. In addition, it is also 

important to measure the width of molecular weight distributions (MWD), known as 

polydispersity index (PdI), which should be at a narrow range (35). Photon correlation 

spectroscopy is the method used to measure particle size and PdI by detecting the Brownian 

motion of the particles subjected to dynamic light scattering (DLS). The oscillations intensity 

of dispersed light arising from Brownian motion is analyzed (smaller particles have faster 

diffusion than larger particles), and the particle size is obtained using the Stokes-Einstein 

equation (16). To produce high quality data, it is important to dilute all samples (3) and 

control the measurement temperature since different temperatures can influence the speed of 

Brownian motion (36). 

  On another hand, it is important to measure zeta potential of the particles since this 

property is also related with physical stability. This stability is due to an electric charge on the 

particle surface that can repel other particles and avoid particle aggregation/flocculation. This 

electric charge depends on the medium in which the particles are dispersed and some 

alterations can decrease the stability. Therefore, it is important to control some formulation 

parameters such as surfactants, pH and the type/concentration of ions. To keep particle 

stability, zeta potential values usually should be more negative than -30 mV or more positive 

than +30 mV (37). Zeta potential measurement is based on electrophoretic mobility of 

particles, since particles with an electric charge will migrate to an electrode in the presence of 

an electric field. There is a higher migration speed with stronger field and higher zeta 

potential (in absolute values) (36). 
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1.4.3. Nanolipidgel 

  After the optimization and production of nanoparticles formulations, these dispersions 

should be incorporated into a suitable dermal carrier with semi-solid consistency for topical 

application. Due to adverse systemic effects of oral and parenteral formulations, topical 

treatment has been extensively studied and used, as it offers many benefits: a) first-pass 

metabolism is avoided; b) it is usually well accepted by patients since it is convenient, easy to 

use and suitable for self-administration; c) its efficiency is achieved with a lower daily dose; 

d) it prevents local fluctuations on the concentration of the active substance; e) active 

substance is selectively delivered at the target site; f) it has fewer risks associated with oral or 

intravenous administration, such as interactions or infections (38). 

  Among many topical formulations, the hydrogel is a good choice to incorporate 

nanoparticles due to all advantages associated with this topical delivery system (39). 

Hydrogels are constituted by a system of polymer chains with the ability to absorb huge 

amounts of water due to their hydrophilic properties, with cross-linked compounds that 

protect them from the dissolution. The water inside the hydrogel allows the free distribution 

of some particles and the polymer works as a matrix to hold water. Gel is a system that is 

considered neither liquid nor solid, exhibiting a semi-solid consistency (40).  

  When nanoparticles are embedded in a semi-solid form, using a gelling agent, 

interactions between the constituents of the final formulation could lead to changes in the 

physicochemical properties of nanolipid preparations. These modifications can be assessed 

using rheological analysis, particle size and zeta potential measurement. Some studies were 

performed to understand the influence of different gel-forming polymers used for hydrogel 

preparation. According to the results, the performance of these systems is highly dependent on 

the structure of these polymers and some polymers as Hydroxyethylcellulose 4000 (HEC) and 

Carbopol
®
 934 preserve physical stability of nanoparticles (41). 

1.5. Effectiveness testing – skin’s biophysical parameters measurement 

 In order to provide an adequate barrier effect, skin needs to be in good conditions as 

was previously mentioned, including skin hydration conditions, TEWL and pH. Some dermal 

products are designed to improve these skin’s biophysical parameters (42). Nowadays,  

noninvasive techniques have been developed to measure these parameters with high 

sensitivity and maintaining the skin barrier intact (5).  
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However, only two parameters (skin hydration and TEWL) will be discussed 

according to the aim of this work. It is important to take into account that different factors 

(age, sex, and anatomical site) and different environmental conditions (temperature, relative 

humidity) can influence these values. Therefore, these measurements should be performed at 

controlled conditions.   

 

1.5.1. Skin hydration measurement 

The water content of epidermis and dermis layers defines the skin hydration. Stratum 

corneum (SC) is able to hold water, due to the presence of corneocytes (with hygroscopic 

compounds inside mentioned as natural moisturizing factors, NMF) and intercellular lipids 

bilayer matrix organized to prevent TEWL, and acting as a barrier. SC is characterized by the 

presence of free water, involved in diffusion processes between skin and the environment, and 

bound water, associated with NMF present in the epidermis. Lack of water in the skin leads to 

defective hydration, responsible for dry and flaky skin surface (sometimes related with some 

dermatological disorders). Moisturizers play an important role on skin hydration which is 

fundamental to protect and maintain a healthy skin (43,44). 

Skin hydration analysis is related with capacitance measurement of a dielectric 

medium, detected by corneometry with high sensitivity. As the skin is a dielectric medium, 

variations in hydration show up through changes in the dielectric constant. The corneometer 

measures the change in the dielectric constant, changing the capacitance (defined as the 

ability to store energy in an electric field) of a precision capacitor. In a final step, these 

changes regarding water content are converted to arbitrary units of hydration (16,45). 

 

1.5.2. Transepidermal water loss measurement 

  Transepidermal water loss (TEWL) is the loss of water from the stratum corneum, 

affecting the level of epidermis moisture. During the normal skin metabolism, some water 

evaporates from the skin continuously in a passive way depending on the relative humidity of 

the environment, temperature, season and skin hydration. If the natural barrier function of the 

skin is damaged, the water loss will increase, so TEWL is a sensitive indicator of the 

defective skin barrier function (46). In this way, it is important to measure for all cosmetic 

and dermatological products the influence of this parameter. 
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 In order to measure TEWL under in vivo conditions, three techniques can be 

performed:  closed chamber, ventilated chamber and open chamber. In the closed chamber 

method, a capsule is applied on the skin surface and then an electric hygrosensor measures the 

water that evaporates and goes into the capsule. Ventilated chamber method is based on the 

passage of a gas chamber (with gas and a pre-determined water content) along the skin and 

the posterior measurement of the amount of water captured by the gas in the chamber. Then, 

this collected water is analyzed by an incorporated hygrometer in the chamber.  Despite being 

a method that provides a continuous measurement of TEWL, incorrect results may occur in 

case the gas inside the chamber becomes dehydrated, leading to an increase of water 

evaporation from skin (5). Finally, the most approached method for determining TEWL is the 

open chamber method based on the diffusion principle in an open chamber. There are several 

instruments to measure TEWL by open chamber, but it will be discussed only the apparatus 

used in this experiment: tewameter. This instrument has an open chamber that measures the 

density gradient of the water evaporation from the skin by two pairs of sensors (temperature 

and relative humidity) inside the cylinder (head of probe). This head of probe minimizes the 

influence of air turbulence inside the probe. One pair is higher than the other one, and the 

moisture at two different places is measured to determine the TEWL. During this 

measurement, a microprocessor analyses the values expressing the evaporation rate in g/h/m
2
 

(47). 

 

 

 

 

 

 

2. Aim of the work 

 

The aim of this research project was to evaluate the influence of three well 

characterized different lipid nanosystems (solid lipid nanoparticles, nanostructured lipid 

carriers and nanoemulsions) on skin hydration and transepidermal water loss on human 

volunteers. 
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3. Materials and Methods 
 

3.1. Materials 

 

Lipids 

➔ Dynasan
®
 114 (Sasol, Germany): Trimyristin, m.p. 55-58ºC (48) 

➔ Glycerol monostearate 35-50 (Lex, Slovenia): Monoester of glycerin and stearic 

acid, m.p. 56-59ºC (49) 

➔ Miglyol
®
 812 (Sasol, Germany): Caprylic/Capric Triglyceride 

Emulsifiers/Steric stabilizers  

➔ Surfactant – Phospholipon
®
 80 (Phospholipid GmbH, Germany)  

➔ Co-surfactant – Lutrol
®
 F68: Poloxamer 188 (BASF, Germany)  

➔ Co-surfactant – Tween
®
 80: Polysorbate 80 (Sigma-Aldrich Chemie GmbH, 

France) 

Ingredients of hydrogel 

➔ Hydroxyethylcellulose 4000 (Merck, Germany) 

➔ Glycerol 85% (Caesar&Loretz, Germany) 

➔ Sodium methylparahydroxybenzoate (Lex, Slovenia) 

Reagents/Solvents 

➔ Purified water (Faculty of Pharmacy, University of Ljubljana) 

3.2. Equipments 

➔ Dual range Analytical Balance
®
 AG245 (Mettler Toledo, Switzerland) 

➔ Precision Balance
®
 XP4002S (Mettler Toledo, Switzerland) 

➔ Magnetic hotplate stirrer
®
 RH basic 2 IKAMAG (IKA, Brasil) 

➔ GFL multi-station water bath
®
 TYP 1041 (GFL, Germany) 

➔ Hotplate
®
 EKP 3582 (Clatronic International GmbH, Germany) 

➔ Ultra-Turrax
®
 T25D rotor-stator homogenizer (IKA, Germany) 

➔ PCS naprava Zetasizer Nano ZS
®
 (Malvern Instruments, United Kingdom) 

➔ Probe Heater
®
 PR 100 (Courage & Khazaka GmbH, Germany) 

➔ Tewameter
®
 TM 300 (Courage & Khazaka GmbH, Germany) 

➔ Corneometer
®
  CM 825 (Courage & Khazaka GmbH, Germany) 



13 
 

3.3. Preparation of lipid nanoparticles 

 (Local: Faculty of Pharmacy, University of Ljubljana) 

 

 

3.3.1. SLN 

➔ To prepare SLN, the following ingredients were used: solid lipid (Dynasan
®

 114, 

D114, or Glycerol monostearate ,GMS), surfactant (Phospholipon
®
 80), co-surfactant 

(Lutrol
®
 F68 or Tween

®
 80) and purified water; 

➔ 2.5 g co-surfactant was solubilized in boiled 

purified water (qs 100 g) under stirring (Magnetic 

hotplate stirrer
®

 RH basic 2 IKAMAG); 

➔ Lipid phase (solid lipid and emulsifier) and water 

phase (co-surfactant solution) were heated at 80ºC 

in the GFL multi-station water bath
®
 TYP 1041; 

➔ When solid lipid was melted, water phase was 

added to lipid phase; 

➔ This mixture was homogenized by Ultra-Turrax
®

 

T25D rotor-stator homogenizer as shown in 

Figure 3 at different times (5, 8 or 10 min) and 

shear rates (15,000; 17,000 or 20,000 rpm). 

During this homogenization, the water 

temperature was maintained at 80 ± 3ºC; 

➔ When the O/W emulsion obtained cooled down to 

room temperature, SLN were obtained. 

 

3.3.2. NLC 

➔ To prepare NLC, the following ingredients were used: solid lipid (Dynasan
®
 114 or 

Glycerol monostearate) and surfactant (Phospholipon
®
 80), co-surfactant (Lutrol

®
 

F68) and purified water; 

➔ NLC were produced as described for SLN. However, all formulations were 

homogenized at the same time (10 min) and shear rate (20,000 rpm). These conditions 

were previously set according to better results obtained during SLN preparation; 

➔ When the O/W emulsion obtained cooled down to room temperature, NLC were 

obtained. 

 Figure 3 – Homogenization of the 

mixture 
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3.3.3. NE 

➔ To prepare NLC the following ingredients were used: liquid lipid (Miglyol
®
 812) and 

surfactant (Phospholipon
®
 80), co-surfactant (Lutrol

®
 F68) and purified water; 

➔ NLC were produced as described for SLN and NLC (homogenization at 20,000 rpm 

for 10 min); 

➔ When the O/W emulsion obtained cooled down to room temperature, NE were 

produced.  

 

The final composition of each nanolipid system is represented on Table 1. 

 

Table 1 – Composition (expressed in percentage) of each nanolipid system 

 

3.4. Evaluation of the physical parameters of nanosystems 

 

After the production of these nanosystems, particle size, PdI and zeta potential of the 

individual dispersions were measured on the Zetasizer Nano ZS
®
, to evaluate the main 

physical parameters of the lipid formulations. The samples were previously diluted with 

purified water.  

 

 

3.4.1. Particle size and polydispersity index  

These parameters were evaluated under the following conditions: 

 Dispersant: Water (Temperature: 25 ° C, Viscosity: 0.8872 mPa.s, RI: 1.330) 

 Temperature (T): 25 ° C  

 Equilibration time: 30 s 

 Cell type: DTS0012 - Disposable sizing cuvette 

 Measurement angle: 173 ° Backscatter (NIBS default) 

 SLN NLCD114 NLCGMS NE 

Dynasan
®

 114 3.5 2.8 ----- ----- 

GMS ----- ----- 2.8 ----- 

Miglyol
®

 812 ----- 0.7 0.7 3.5 

Lutrol® F68 1.5 1.5 1.5 1.5 

Phospholipon® 80 1 1 1 1 

Purified water qs 100 qs 100 qs 100 qs 100 



15 
 

 

3.4.2. Zeta potential 

This parameter was evaluated under the following conditions: 

 Dispersant: Water (Temperature: 25 ° C, Viscosity: 0.8872 mPa.s, RI: 1.330, 

Dielectric constant: 78.5) 

 F(Ka) selection: Model Smoluchowski 

 Temperature (T): 25 ° C  

 Equilibration time: 30 s 

 Cell type: DTS1060C – Clear disposable zeta cell 

3.5. Preparation of hydrogels 

➔ To prepare hydrogels (21 g), the following ingredients were used: 

hydroxyethylcellulose 4000, glycerol 85%, sodium benzoate (preservative), nanolipid 

systems (3 g x 7 samples of each 

system) and purified water 

according to Table 2; 

➔ Hydroxyethylcellulose and glycerol 

were mixed apart in a mortar. Then, 

this mixture was added to the rest of 

formulation under stirring; 

➔ After 24 hours, the hydrogels were 

conditioned in a centrifuge tube 

(Figure 4). 

 

Table 2 – Composition (expressed in percentage) of each hydrogel 

 
Hydrogel - 

Control 

SLN-based 

Hydrogel  

NE-based 

Hydrogel 
NLCD114-based 

Hydrogel 

NLCGMS-based 

Hydrogel  

Hydroxyethylcellulose 2.5 2.5 2.5 2.5 2.5 

Glycerol 85% 5.0 5.0 5.0 5.0 5.0 

Sodium benzoate 0.1 0.1 0.1 0.1 0.1 

SLN ----- qs 100 ----- ----- ----- 

NE ----- ----- qs 100 ----- ----- 

NLCD114 ----- ----- ----- qs 100 ----- 

NLCGMS ----- ----- ----- ----- qs 100 

Purified water qs 100 ----- ----- ----- ----- 

Figure 4 – Hydrogels. From left to right: hydrogel-

control, SLN-based hydrogel, NLC
D114

-based hydrogel, 

NLC
GMS

-based hydrogel, NE-based hydrogel 
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3.6. Design of the clinical study 

3.6.1. Subjects 

The clinical study was performed in 6 healthy volunteers. These participants received 

and signed an informed consent form, in order to prove that they accepted the test conditions 

(Annex 1 (A1)). All procedures of this study were performed in accordance with the 

principles of the Declaration of Helsinki and respective revisions.  

The criteria for inclusion and exclusion in this study were previously established. 

The inclusion criteria of volunteers were as follows: subjects aged between 21 and 27 

years old; few or no hair on the volar forearms; absence of dermatological diseases, tattoos, 

scars and/or history of frequent sunburns; to be present in the Faculty of Pharmacy of the 

University of Ljubljana on the pre-set day to perform the measurements; to be cooperative, 

discerning and able to follow instructions and comply with the study requirements. 

On the other hand, the exclusion criteria taken into account were as follows: subjects 

aged less than 18 years old; excessive hairiness on the forearms; presence of dermatological 

diseases, tattoos, scars and/or history of frequent sunburns on the arms or forearms; the use of 

other cosmetics products on the forearms that were not defined in the study protocol; known 

history of allergy and/ or hypersensitivity to the ingredients contained in the composition of 

the hydrogels tested; pregnant or lactating women; the presence of severe disease in the last 6 

months prior to the beginning of the study; the presence of clinically relevant skin diseases or 

any other physical disorder with cutaneous manifestations; the presence of mental/psychiatric 

illness or systemic disease in the beginning of the study; the presence of any type of 

immunological alterations, including autoimmune diseases; the presence of fever for more 

than 24 hours, for less than 8 days before the beginning of the study; the participation in other 

cosmetic or clinical studies for less than 2 weeks before the beginning of the study; recent 

dermo-cosmetic or aesthetic treatments, 2 months prior to the beginning of the study; recent 

(one month prior to the study) and intense exposure to ultraviolet radiation (sun/tanning beds); 

the application of any topical medication in the forearms for less than 1 month prior the study 

initiation; recent vaccinations, 2 weeks prior to the commencement of the study; taking any 

systemic medication such as corticosteroids or antihistamines for less than 4 weeks, anti-

inflammatory or antibiotics for less than 2 weeks and retinoids for less than 3 months before 
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the beginning of the study; to have strong smoking habits (≥ 20 cigarettes per week over more 

than 2 years); to be a consumer of drugs.  

The participants were also asked not to apply any cream in the test area two days 

before the measurement and not to smoke, exercise or drink coffee/tea or any other energy 

drink in the measurement day.  

 

3.6.2. Measurement conditions 

The clinical study was carried out in a specific room in the Faculty of Pharmacy, 

University of Ljubljana. It was attempted to control the temperature (T), to minimize sweat 

production, and the relative humidity (RH) of the environment in order to perform all 

measurements under certain room conditions (T: 20°C; RH: 40-60%) to obtain reproducible 

results. 

Accordingly, all volunteers were previously set in a comfortable position and prepared 

removing the clothing from the arm area to be tested and letting the skin to acclimatize to 

these environmental conditions for 20 minutes before the measurement.    

During this clinical study, non-invasive biophysical measuring methods were used in 

order to measure the influence of formulated hydrogels in skin hydration and TEWL. All 

measurements were performed by one of the principal investigators. 

 

3.6.3.  Application of the hydrogel  

The selected area to be tested was 

the volar forearm, 3 centimeters below the 

antecubital fossa, since this region 

presents low amount of hair follicles and 

sebaceous glands.  

After volunteers` preparation and 

acclimatization, 5 squares (4 cm
2 

of 

surface area) were drawn in the test area: 

3 squares in the left volar forearm and the 

 Figure 5 – Tested area: 1) Hydrogel-control; 2) SLN-

based hydrogel; 3) NE-based hydrogel; 4) NLC
D114

-

based hydrogel; 5) NLC
GMS 

-based hydrogel 
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others in the right volar forearm. Hydrogels with and without nanolipid systems (0.5 ml) 

where applied as shown in Figure 5. 

The study was designed as single blind. Therefore, the hydrogels were assigned by a 

number, so that the volunteers were unaware of the type of system under test in each square.  

Two measurements were performed in each square for both parameters (skin hydration 

and TEWL). A first measurement was performed before hydrogels` application, to obtain the 

basal values.  Then, hydrogels were applied on the corresponding areas. After 30 minutes the 

remnants of hydrogels were removed, and second measurements were performed after 60 

minutes, measuring TEWL followed by skin hydration. Measurements were carried out in the 

counterclockwise direction. 

 

3.6.4. Skin hydration measurement 

Skin hydration was measured using a Corneometer
®
 CM 825. The probe was placed 

perpendicularly to the skin area to be measured. The spring inside the probe head 

ensures constant pressure (1.0 N ± 10 %) on the skin enabling exact and reproducible 

measurement (uncertainty degree: ± 3%) (45).  This spring covers an area of 49 mm
2 

and 

assesses the epidermal water content from 20 to 30 µm (50). 

Measurements were performed three times in each area. The display shows 

immediately the measured values in arbitrary units (arbitrary Corneometer
®
 units), and it is 

necessary to wait about 5 seconds between each measurement. Between different squares, the 

probe head was cleaned softly with dry paper. 

  To evaluate the level of skin hydration, the table below (Table 3) was used as 

reference (this table was described in the data sheet of the corneometer used in this 

experiment, Corneometer 
®
 CM 825) (51). 

Table 3 – Interpretation of measured values of skin hydration with Corneometer 
®

 CM 825    

Skin hydration – arbitrary units 

 
Interpretation 

<30 Very dry 

30-40 Dry 

>40 Sufficiently moisturized 
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3.6.5. TEWL measurement 

TEWL measurements were carried out with Tewameter
®
 TM 300. The water 

evaporated from the skin is measured indirectly by two pairs of sensors (T and RH), and it is 

analyzed by a microprocessor. The results obtained are expressed in g/h/m
2
.  

The probe was sited tightly on the skin surface, for approximately 90 seconds. During 

this time, the volunteer could not move the arm to ensure reliable results. Between each 

measurement, the probe was cleaned softly with wet paper (with deionized water). 

The sensors in the probe usually have room temperature, however they should reach 

skin temperature (32ºC) since the amount of evaporating water measured with the probe is 

particularly low. Thus, the probe head is constantly warmed up to around 32 ºC in Probe 

Heater
®
 PR 100 in order to get very quickly accurate and stable results before and between 

different measurements. 

To evaluate TEWL, the table below (Table 4) was used as reference (this table was 

described in the data sheet of the tewameter used in this experiment, Tewameter 
®
 TM 300) 

(52). 

Table 4 – Interpretation of measured values of transepidermal water loss with Tewameter 
®

 TM 300   

TEWL –  g/h/m
2 

 
Interpretation 

0-10 Very healthy condition 

10-15 Healthy condition 

15-25 Normal condition 

25-30 Strained skin 

>30 Critical condition 

 

 

3.6.6. Statistical analysis 

The results were reported as mean + standard deviation (SD) of at least three samples. 

The results of all these experiments were statistically analyzed using SigmaPlot 11.0 

software
®
. The differences were considered statistically significant when p < 0.05. 
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4. Results and Discussion 

 

 

4.1. Pre-experimental work: the influence of different production parameters on the 

particle size, polydispersity index and zeta potential  

 

The first step of this experimental work was to study the influence of different 

dynamic parameters (time and stirring rate of homogenization) as well as the effect of lipids 

and co-surfactants (type and concentration) on the preparation of lipid nanoparticle systems. 

In order to characterize the best formulations, the particle size (mean size), polydispersity 

index and zeta potential were measured. 

Regarding particle size, these particles should exhibit nanosize (from 1 to 1000 nm) 

and be as small as possible, since an increase in the particle size will lead to lower physical 

stability (16). It is important to obtain the optimal nanoparticle size range. In fact, several 

studies, that have been developed in this field, showed the best clinical results with 

nanoparticles at the size range of approximately 10–250 nm (53).  

Measurement of PdI of nanoparticles is essential to obtain their size distribution. PdI is 

dimensionless and scaled, so dispersity values range from 0 to 1. Samples are not suitable for 

DLS technique if they have a very large size distribution, i.e. PdI values higher than 0.7 (54). 

The higher the PdI value, the less monodispersed nanoparticle system is (55). 

Nanoparticles should have zeta potential (ZP) more negative than -30 mV or more 

positive than +30mV to be physically stable (16). Charged particles, with high zeta potential 

modulus, repeal each other and prevent particle aggregation, allowing storage stability of 

colloidal systems (56). In this case, the zeta potential of the developed systems (NE, SLN and 

NLC) was negative due to the anionic nature of the surfactant components (Phospholipon
®
 80 

has phosphatidylcholine with negatively charged phospholipids) (57).  

These preliminary formulation studies were performed before the experimental design 

in order to select the appropriate lipid, co-surfactant and homogenization conditions. These 

conditions were firstly set during SLN preparation. 
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i. Type of lipid and co-surfactant (SLN formulations) 

The influence of lipid (Dynasan
®

 114, D114 or Glycerol monostearate, GMS) and co-

surfactant (Lutrol
®
 F68 or Tween

®
 80) on physical parameters of SLN is presented in Table 

5. The surfactant was the same for tested formulations (Phospholipon
®
 80) which were 

prepared at the same conditions.  

 

Table 5 – Composition and parameters of SLN formulated with different lipids and steric stabilizers and 

prepared at same conditions (results expressed as mean  standard deviation, n= 3) 

 

According to these results, the effect of Dynasan
®

 114 on the particle size was similar 

to GMS, being the major difference obtained when using different steric stabilizers. SLN 

formulated with Lutrol
®
 F68 showed improved parameters, compared to SLN formulated with 

Tween
®
 80, since those particles were smaller and less polydispersed. As zeta potential was 

higher than -30 mV (absolute values) in all samples, a predictable physical stability should be 

observed. 

In other reported studies, SLN produced with GMS (the lipid with the lowest 

molecular weight) showed the smallest particle size (58,59). Nevertheless, it would be 

necessary to develop further studies to prove some correlation between molecular weight of 

the solid lipids and particle size (59). Regarding the effect of co-surfactant, our results are in 

accordance with another experimental work where formulations prepared with Lutrol
®
 F68 

produced smaller particles than those with Tween
®

 80 (19). 

 Thus, both solid lipids and Lutrol
®
 F68 were used on the preparation of nanosystems 

for following studies. 

 

SLN 
Solid 

Lipid 

Steric 

stabilizer 

Homogenization 

rate (rpm) 
Homogenization 

time (min) 
% of 

lipid 

% of steric 

stabilizer 

Results 

Particle 

size 

(d.nm) 

PdI 

Zeta 

Potential 

(mV) 

1.1 D114 
Lutrol® 

F68 
20,000 10 2.5 0.5 121.1 0.496 -35.8±0.9 

1.2 GMS 
Lutrol® 

F68 
20,000 10 2.5 0.5 105.5 0.362 -37.2±1.2 

2.1 D114 
Tween® 

80 
20,000 10 2.5 0.5 204.9 0.592 -31.6±0.1 

2.2 GMS 
Tween® 

80 
20,000 10 2.5 0.5 229.0 0.554 -34.0±0.8 
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ii. Homogenization time and shear rate (SLN formulations) 

It is crucial to optimize the homogenization conditions, i.e. shear rate, temperature and 

time of homogenization to obtain a stable emulsion with nanoparticles, avoiding the formation 

of microparticles.  

Regarding temperature, the lipid is heated at approx. 5-10ºC above its melting point 

for the hot pressure homogenization (HPH) process (33). Since high-shear homogenization 

(HSH) was used in this experimental work, instead of HPH, a higher recommended 

temperature, at least 10ºC above lipid melting point, was used (60). In that way, the lipids 

were heated at 20ºC above their melting point to increase the effectiveness of this method. In 

fact, higher temperature is beneficial for emulsification process due to reduction of surface 

tension (61). 

The influence of homogenization time and shear rate on physical parameters of SLN is 

presented in Table 6. 

 

Table 6 – Composition and parameters of two SLN formulations prepared at different homogenization 

conditions (results expressed as mean  standard deviation, n= 3) 

 

 

SLN 
Solid 

Lipid 

Steric 

stabilizer 
Homogenization 

rate (rpm) 

Homogenization 

time (min) 

% of 

lipid 

% of 

steric 

stabilizer 

Results 

Particle 

size 

(d.nm) 

PdI 

Zeta 

Potential 

(mV) 

3.1 D114 Lutrol® F68 20,000 5 2.5 0.5 259.7 0.790 -30.4±1.2 

3.2 D114 Lutrol® F68 20,000 8 2.5 0.5 208.4 0.582 -38.4±0.1 

3.3 D114 Lutrol® F68 20,000 10 2.5 0.5 110.9 0.248 -34.0±0.8 

3.4 GMS Lutrol® F68 20,000 5 2.5 0.5 220.5 0.575 -31.8±1.2 

3.5 GMS Lutrol® F68 20,000 8 2.5 0.5 201.4 0.523 -34.8±0.9 

3.6 GMS Lutrol® F68 20,000 10 2.5 0.5 178.5 0.345 -35.0±1.0 

4.1 D114 Lutrol® F68 15,000 10 2.5 0.5 218.8 0.667 -36.5±1.0 

4.2 D114 Lutrol® F68 17,000 10 2.5 0.5 163.5 0.491 -35.1±0.3 

4.3 D114 Lutrol® F68 20,000 10 2.5 0.5 110.9 0.359 -39.4±1.1 

4.4 GMS Lutrol® F68 15,000 10 2.5 0.5 233.4 0.452 -30.7±0.7 

4.5 GMS Lutrol® F68 17,000 10 2.5 0.5 215.8 0.416 -31.4±1.0 

4.6 GMS Lutrol® F68 20,000 10 2.5 0.5 101.0 0.286 -30.2±1.8 
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According to this table, the average SLN diameter and PdI were reduced with 

increasing homogenization time (from 5 to 10 min) and shear rate (from 15,000 to 20,000 

rpm), as theoretically expected. In addition, all formulations presented acceptable zeta 

potential values.  

It was previously observed that smaller particles were obtained by increasing the shear 

rate. However, above 20,000 rpm (25,000 rpm) the average particle diameter did not 

significantly changed. On the other hand, the shear rates below 15,000 rpm were not sufficient 

for the formation of suitable SLNs, since large particles were visible in the dispersion. If 

homogenization extends for more than 10 minutes, particles may become unstable due to high 

energy input, leading to the formation of microparticles (60). 

Therefore, better results were obtained for 10 minutes and 20,000 rpm, which were the 

values selected to produce all lipid formulations. 

 

iii. Percentage of solid lipid and steric stabilizer (SLN formulations)  

To investigate the influence of solid lipid and steric stabilizer concentrations, a study 

was performed with 3.5% and 2.5% of solid lipid and 1.5% and 0.5% of steric stabilizer 

(Table 7).  

To maintain a low PdI, it is essential to optimize both type and percentage of steric 

stabilizer, since these emulsifiers play an important role in stabilizing emulsions and 

preventing aggregation of the droplets (19). Accordingly, the percentage of selected 

emulsifier (Lutrol
®
 F68) was studied. This percentage was not higher than 1.5% since high 

concentration of steric stabilizer (≥2%) could decrease its emulsifying effect and contribute to 

toxic effects. On the other hand, if this percentage is lower than 0.5%, nanoparticles may not 

be effectively obtained and particle agglomeration may also occur (58).  

Lipid content should not be too high (up to 5%) to produce small particles since the 

homogenization process is less effective for a more viscous formulation, and thus 

microparticles may be formed (62). Notwithstanding, the amount of lipid cannot be less than 

2.5%, otherwise the consequent low viscosity of hydrogel-based nanoparticles will 

compromise the topical application (27).  
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Accordingly, it is quite perceptible that it is essential to balance all possible 

phenomena to optimize the composition of both steric stabilizer and lipid in formulation 

study. This study was performed with two different percentages of each parameter since the 

main goal was to understand whether a proportional correlation would be observed between 

them. 

 

 

Table 7 – Composition and parameters of SLN formulated with different solid lipid and steric stabilizer 

concentrations and prepared at same conditions (results expressed as mean  standard deviation, n= 3) 

 

 

 

Table 7 shows that best results (regarding particle size and PdI) were obtained with 

the formulations 5.1 (3.5% of D114 with 1.5% of Lutrol
®
 F68), 5.4 (2.5% of D114 with 0.5% 

of Lutrol
®
 F68), 5.5 (3.5% of GMS with 1.5% of Lutrol

®
 F68), and 5.8 (2.5% of GMS with 

0.5% of Lutrol
®
 F68). Zeta potential presented good values in all formulations. 

These values suggest that to obtain smaller particles with narrower PdI, the amount of 

solid lipid and steric stabilizer should be proportional, i.e. if a higher percentage of lipid is 

used (3.5%), then a higher percentage of steric stabilizer should be used as well (1.5%), and 

vice versa, a lower content of steric stabilizer (0.5%) should be used with a lower lipid 

amount (2.5).  

 

SLN 
Solid 

Lipid 

Steric 

stabilizer 
Homogenization 

rate (rpm) 

Homogenization 

time (min) 

% of 

lipid 

% of 

steric 

stabilizer 

Results 

Particle size 

(d.nm) 
PdI 

Zeta 

Potential 

(mV) 

5.1 D114 
Lutrol® 

F68 
20,000 10 3.5 1.5 214.6 0.431 -31.0±1.1 

5.2 D114 
Lutrol® 

F68 
20,000 10 3.5 0.5 291.2 0.761 -31.2±0.6 

5.3 D114 
Lutrol® 

F68 
20,000 10 2.5 1.5 265.5 0.792 -33.6±0.7 

5.4 D114 
Lutrol® 

F68 
20,000 10 2.5 0.5 174.4 0.590 -34.1±1.0 

5.5 GMS 
Lutrol®F6

8 
20,000 10 3.5 1.5 190.7 0.401 -32.1±0.9 

5.6 GMS 
Lutrol® 

F68 
20,000 10 3.5 0.5 289.9 0.762 -33.4±0.6 

5.7 GMS 
Lutrol® 

F68 
20,000 10 2.5 1.5 280.7 0.753 -32.4±1.0 

5.8 GMS 
Lutrol® 

F68 
20,000 10 2.5 0.5 210.4 0.421 -31.0±0.9 
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iv. Percentage of solid lipid (NLC formulations) 

 

  To study the influence of solid (s) lipid concentration in NLC, two solid lipids 

(Dynasan
®
 114 and GMS) were used at different concentrations (2.8% and 2.1%, 

respectively). On the contrary, the liquid (l) lipid, Miglyol
®
 812, was maintained at the same 

concentration (0.7%) (Table 8).   

  Regarding steric stabilizer in this formulation, 1.5% was the selected amount (Table 

8), taking into account the results from the last experiment (iii) (Table 7). 

  Since it was already studied the influence of liquid lipid percentage in NLC 

formulations (using the same solid lipid content) reported in literature (63), here we proposed 

to study the influence of only solid liquid percentage in NLC and how different total lipid 

concentration and ratio solid/liquid lipid influences the particle size and zeta potential. 

 

Table 8 – Composition and parameters of NLC formulated with different solid lipid type and 

concentration and prepared at same conditions (results expressed as mean  standard deviation, n= 3). 

 

Smaller particle size and lower PdI values were obtained at higher solid lipid 

concentration (samples 6.1 and 6.3), especially in NLC formulated with GMS. Some literature 

reports suggest that the optimum solid / liquid lipid ratio to produce NLC varies from 70:30 to 

99.9:0.1. Thus, samples 6.1 and 6.3 which presented a ratio of 70:30 are in accordance with  

these reports (15). 

 

 

NLC 
Solid 

lipid 

Liquid 

lipid 

Steric 

stabilizer 

Homogenization 

rate (rpm) 

Homogenization 

time (min) 

% of 

lipid  

(s/l) 

% of 

steric 

stabilizer 

Results 

Particle 

size 

(d.nm) 

PdI 

Zeta 

Potential 

(mV) 

6.1 D114 
Miglyol® 

812 

Lutrol® 

F68 
20,000 10 2.8 / 0.7 1.5 271.3 0.601 -31.4±1.2 

6.2 D114 
Miglyol® 

812 
Lutrol® 

F68 
20,000 10 2.1 / 0.7 1.5 294.5 0.705 -36.2±0.7 

6.3 GMS 
Miglyol® 

812 

Lutrol® 

F68 
20,000 10 2.8 / 0.7 1.5 128.1 0.448 -38.5±0.5 

6.4 GMS 
Miglyol® 

812 

Lutrol® 

F68 
20,000 10 2.1 / 0.7 1.5 138.7 0.301 -37.6±1.3 
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v. Percentage of liquid lipid (NE formulations) 

 

To produce an emulsion, it is important to consider the optimum liquid lipid and steric 

stabilizer ratio, which lead to a low surface tension and spontaneous droplet formation. It has 

been reported that the surface tension between oil and water phases has a huge influence on 

droplet size of the dispersed phase (even more than the oil viscosity). In this way, the 

concentration of the liquid lipid and the liquid lipid/co-surfactant ratio are critical to optimize 

droplet size through the influence of a lower interfacial tension (23,64). 

Accordingly, the effect of the percentage of liquid lipid on nanoemulsions (NE) 

formulations was also evaluated (Table 9), using the same percentage of steric stabilizer used 

before in the design of NLC formulations (1.5%), and their ratio as well.  

 

Table 9 – Composition and parameters of NE formulated with different liquid lipid concentration and 

prepared at same conditions (results expressed as mean  standard deviation, n= 3) 

 

These results show that the use of both liquid lipid concentrations presented quite 

similar and favorable results (nanoparticles with an acceptable PdI and zeta potential). 

Regarding liquid lipid content, the percentages chosen were used to compare with the 

results of another previous formulation with 3.5% of lipid and 1.5% of steric stabilizer (63). 

Accordingly, 3.5% of liquid lipid was a good choice to produce a nanoemulsion with suitable 

medium droplet size, being in accordance with the results here presented. 

Finally, it is important to consider the liquid lipid/co-surfactant ratio. Several studies 

proved that the use of Miglyol
®
 812/co-surfactant at 7:3 or 6:4 ratios presented similar results, 

exhibiting an optimal droplet size (65). Since samples 7.1 and 7.2 with similar ratios showed 

good results, it can be concluded that those ratios can decrease the interfacial tension, and 

consequently, optimize the droplet size. 

NE 
Liquid 

lipid 

Steric 

stabilizer 
Homogenization 

rate (rpm) 

Homogenization 

time (min) 

% of 

lipid 

% of steric 

stabilizer 

Results 

Droplet 

size 

(d.nm) 

PdI 

Zeta 

Potential 

(mV) 

7.1 
Miglyol® 

812 

Lutrol® 

F68 
20,000 10 3.5 1.5 181.0 0.341 -34.6±0.5 

7.2 
Miglyol® 

812 

Lutrol® 

F68 
20,000 10 2.5 1.5 185.0 0.391 -35.0±1.2 



27 
 

NLCGMS 

Sample Size (nm) 

10.1 141.5 

10.2 162 

10.3 157.9 

10.4 131.2 

10.5 178.7 

10.6 151.2 

10.7 141.9 

Average 152.1 

SD 15.8 

RSD % 10.4 

 

SLN 

Sample Size (nm) 

8.1 205.2 

8.2 201.5 

8.3 244.9 

8.4 216.5 

8.5 214.5 

8.6 229.6 

8.7 198.4 

Average 215.8 

SD 16.6 

RSD % 7.7 

 

NLCD114 

Sample Size (nm) 

9.1 174.8 

9.2 183.6 

9.3 194.3 

9.4 202.5 

9.5 209.4 

9.6 173.4 

9.7 211.2 

Average 192.7 

SD 15.8 

RSD % 8.1 

 

NE 

Sample Size (nm) 

11.1 225 

11.2 214.2 

11.3 216 

11.4 196.5 

11.5 188.7 

11.6 180.2 

11.7 201.4 

Average 203.1 

SD 16.1 

RSD % 7.9 

 

4.2. Final lipid nanoformulations  

 

After these preliminary studies, the final formulation of each system was defined 

according to Table 1, taking into account all parameters optimized in the pre-experimental 

work. 

 

i. Mean particle size measurement 

 

To evaluate the mean particle size of each formulation, 7 samples (3 g) of each final 

system were prepared and characterized (Table 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Overall, an average particle size of around 200 nm was obtained as expected. Among 

all formulations developed, NLC presented significantly smaller particles compared to NE 

and SLN (with the worst mean size). These outcomes confirm the results of other experiments 

performed before in which particle size was optimized in different carriers (66–68).  

Regarding NLC formulated with different solid lipids, NLC with GMS presented the 

smallest particles, which coincides with the results from other experiments involving SLN 

(58,59). As mentioned before (in topic 4.1.i.), this could be related with the lowest molecular 

weight of GMS compared to D114. 

 

Table 10 – Size parameters of lipid formulations (SLN, NLC and NE) 
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ii. Evaluation of the physical stability  

 

The selection of suitable lipids and steric stabilizers, as well as their ratio, is an 

important prerequisite for the production of physically stable nanolipids based hydrogels. The 

physical stability of the final lipid nanoformulations was performed at room temperature for 

30 days. Particle size, PdI and zeta potential were measured on the 1
st
, 15

th
 and 30

th
 days 

(Table 11). 

 

Table 11 – Physical stability of final lipid nanoformulations 

 

It can be observed that all final formulations showed suitable parameters and good 

physical stability after that period. Only NE presented a small size increase but not 

statistically significant.   

 

 

 

 

 

Formulation Time Particle size (d.nm) PdI Zeta Potential (mV) 

SLN 

(5.1) 

t=0 days 214.6 0.431 -31.0±1.1 

t=15 days 198.0 0.410 -36.4±1.3 

t=1 month 148.0 0.389 -40.5±1.2 

NLC 
D114

 

(6.1) 

t=0 days 271.3 0.601 -31.4±1.2 

t=15 days 254.5 0.598 -35.7±0.80 

t=1 month 245.9 0.476 -43.3±0.87 

NLC 
GMS

 

(6.3) 

t=0 days 128.1 0.448 -38.5±0.5 

t=15 days 120.6 0.404 -34.0±1.2 

t=1 month 114.7 0.305 -33.2±0.9 

NE 

(7.1) 

t=0 days 181.0 0.341 -34.6±0.5 

t=15 days 187.6 0.401 -37.6±1.0 

t=1 month 209.5 0.420 -43.5±0.79 
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4.3. The influence of SLN, NLC and NE – based hydrogels on skin hydration 

and transepidermal water loss 

After all preliminary formulation studies, the final lipid nanocarriers were incorporated 

into hydrogel form to evaluate the influence of these systems on skin hydration and TEWL in 

human volunteers. 

 

i. Skin hydration measurement  

 

Figure 6 – Influence of different nanolipid based hydrogels on skin hydration 

 

 

To understand the effect of different nanolipid based hydrogels on skin hydration, 

capacitance values were measured before the application of hydrogel (basal values) and one 

hour after application of all hydrogels (hydrogel control without nanolipids and the optimized 

nanolipid based hydrogels).  

In Annex 2 (A2) it is possible to observe the influence of different nanolipid based 

hydrogels on skin hydration of each volunteer. Figure 6 shows this parameter on skin 

hydration regarding 6 volunteers.  Values of skin hydration before the application of 

hydrogels (basal values) were 31.48 (Control), 31.73 (SLN), 30.98 (NE), 30.42 (NLC
D114

) and 

32.07 a.u. (NLC
GMS

). One hour after hydrogels` application, skin hydration increased as 
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expected, and the values measured were 40.07 (Control), 43.20 (SLN), 41.22 (NE), 41.15 

(NLC
D114

) and 44.15 a.u. (NLC
GMS

). According to control measurements, the hydrogel 

(without nanoparticles) has a slight moisturizing effect by itself (63,69,70). Since basal values 

are between 30 and 40 a.u., all volunteers presented a ‘Dry’ condition regarding skin 

hydration. After hydrogels` application, all volunteers shown higher capacitance values, 

above 40 a.u., which means a ‘Sufficiently moisturized’ skin. 

Overall, there was not a statistically significant difference detected by One way 

Annova for the skin hydration measurement after each formulation exposure (for both time 

points). Nevertheless, there was a statistically significant difference (*, p < 0.05) detected by 

t-test between the skin hydration measured at basal and 1 hour after NLC
GMS

 exposure. This 

result may be related to the smallest particles of this formulation compared to others, which 

may form a coherent film on the skin surface, leading to higher occlusive effect, and 

therefore, an improved effect on skin hydration (3,16,71). Although NE provided a good 

moisturizing effect, increasing skin hydration and skin permeation in literature reports (72–

74), here NLC presented higher increase of skin hydration compared to NE (15,16,75).  

 

ii. TEWL measurement 

 

 

Figure 7 – Influence of different nanolipid based hydrogels on TEWL 
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The influence of different nanolipid based hydrogels on TEWL was evaluated 

following the procedure described before.  

According to Figure 7, basal values of TEWL were 7.70 (Control), 7.55 (SLN), 7.72 

(NE), 7.50 (NLC
D114

) and 7.67 g/h/m
2
 (NLC

GMS
). One hour after hydrogels´ application, this 

parameter decreased as expected, and the values measured were 6.58 (Control), 4.67 (SLN), 

4.13 (NE), 3.90 (NLC
D114

) and 4.22 g/h/m
2
 (NLC

GMS
). These results are discriminated for 

each volunteer in Annex 3 (A3). Since these values are between 0 and 10 g/h/m
2
, all 

volunteers presented a ‘Very healthy condition’ regarding TEWL (even before hydrogels ´ 

application). 

As shown in Figure 7, there was a statistically significant difference (*, p < 0.05) 

detected by t-test between the TEWL measured at basal and 1 hour for all formulations, 

except the control group. There was also a statistically significant difference (*, p < 0.05) 

detected by One way Annova Pairwise Multiple Comparison Procedures (Holm-Sidak 

method) between the TEWL measured 1 hour after each formulation exposure and the 

control. However, no significant differences were obtained among nanolipid formulations for 

this parameter. Therefore, it can be concluded that nanolipid systems incorporated into 

hydrogels can lead to a decrease in TEWL, being in accordance with the preliminary findings 

of some researchers (76). 

Accordingly, a smaller particle size is associated with a decrease in TEWL since it 

promotes a larger surface area of the particles reducing water evaporation from the skin 

surface (3,16). Thus, it would be expected a higher reduction in TEWL after the application of 

NLC-based hydrogel compared to SLN formulation. In addition, NLC usually decreases 

TEWL more efficiently than NE due to a higher effect on skin hydration as well, leading to an 

improved barrier function of the stratum corneum (16). However, no statistical differences 

were detected among these formulations in this study, as mentioned before. In order to 

understand these outcomes, it is important to approach the factors behind skin hydration and 

TEWL measurements as described below. 
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iii. Factors behind skin hydration and TEWL measurements  

 

 

Although the nanolipid systems were optimized before their incorporation in hydrogel 

form, it should be noticed that some external conditions were not possible to control, which 

might affect the final results.  

Regarding environment conditions, measurements should be ideally obtained at 20°C 

and 40 to 60% of RH, however, the room temperature and relative humidity varied from 23 to 

26°C and 33% to 47% (respectively). This dry surrounding environment may have affected 

the skin hydration and TEWL (77).  

Concerning human error, the position and the pressure used between the probe and the 

skin surface should be maintained through all measurements to obtain reproducible results. 

However, it was difficult for the investigator to apply always the same exact pressure. 

Moreover, the possible presence of remaining hydrogel should be considered as well since it 

was difficult to select the optimal strength to remove all formulation of the skin of the 

volunteers. If this strength was too high, it would affect skin properties, and on the other hand, 

if it was too soft, the hydrogel would not be removed was supposed (50).  

It is also important to consider the differences between volunteers, despite the 

selection of a homogenous group following restrict inclusion and exclusion criteria. In fact, 

some previous studies reported the influence of personal differences in skin’s biophysical 

parameters (such as age, gender and race) but the results were controversial (78,79). 

Regarding this work, the volunteers were Caucasian, 21-27 years old, four men and two 

women. The gender is quite important mainly to the difference between the amount of hair on 

the volunteers` forearms, which could affect the removal and drying of the hydrogel (79). 

Finally, it is essential to focus the number of volunteers and the duration of this 

clinical study. In future perspective, this study will be conducted on a larger number of 

volunteers (at least 25 volunteers) (80) and under strict control conditions. 
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5. Conclusion 

 

According to pre-experimental results, it can be concluded that particle parameters 

such as particle size, PdI and zeta potential clearly affected the physical stability of these 

nanosystems. Firstly, the optimal homogenization conditions were achieved at 20,000 rpm for 

10 minutes. Besides homogenization parameters, different types of lipids have also influenced 

the particle size in NLC production. The smallest nanoparticles were obtained with GMS 

probably due to the lowest molecular weight of this lipid compared to D114. Regarding the 

co-surfactants used, Lutrol
®
 F68 produced smaller particles than Tween

®
 80. Moreover, the 

amount of solid lipid and steric stabilizer should be added at a proportional ratio. At least, 

considering the liquid lipid/co-surfactant ratio, an optimal droplet size was obtained using 

Miglyol
®
 812/ Lutrol

®
 F68 at 7:3 ratio. After formulation selection, all final formulations 

showed suitable parameters and good physical stability for a month after its production.  

Regarding skin hydration and TEWL measurements, the hydrogel-control had a slight 

moisturizing effect by itself. In fact, none of skin hydration results presented statistical 

significant differences for each formulation exposure, compared with the control. 

Nevertheless, a statistically significant difference was observed for basal values 1 hour after 

NLC
GMS

 exposure. Moreover, all volunteers presented dry skin regarding basal values and a 

sufficiently moisturized skin after the hydrogels` application. Towards TEWL values, all 

volunteers presented a very healthy condition. In addition, a statistically significant difference 

was observed between the basal values and the TEWL values 1 hour after nanolipid-based 

hydrogels` application for each formulation compared with the control. Accordingly, 

nanolipid-based hydrogels could decrease TEWL values. 

Notwithstanding, some factors might influence the measurement of skin’s biophysical 

parameters such as environmental conditions, the human error and the skin differences 

between participants. The number of participants and the duration of the study were quite 

important as well. Thus, the standardization of all these conditions will be taken into account 

in future studies. 
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Annexes  

A1.  Informed Consent Form 

 

 

 

INFORMED CONSENT FORM 

 

The influence of different nanocarriers on skin’s biophysical parameters 

 
 

Principal Investigators:  assist. prof. dr.  Pegi Ahlin Grabnar and Sara Andrade 

Organization: Faculty of Pharmacy – University of Ljubljana 

 

This Informed Consent Form is for healthy subjects aged 21-27 years, who we are inviting to 

participate in a research project in the framework of a Master's Thesis of Pharmaceutical Sciences. 

The aim of our research project is to evaluate the influence of three well characterized 

different lipid nanosystems (solid lipid nanoparticles, nanostructured lipid carriers and 

nanoemulsions) on skin hydration and transepidermal water loss on human volunteers. 

 

Nanotechnology is a new trend in cosmetology, since nanoparticles have shown higher 
degree of biocompatibility and versatility in this field compared to other systems. Several 
formulations of lipid nanoparticles were produced to control different parameters referred to dermal 
preparations such as TEWL and skin hydration. Because of their biocompatible chemical nature, no 
adverse effects of these compounds on human skin have been described so far. 

 
This research will involve one application of four different nanolipid formulations (one with 

SLN, two with NLC (different type of lipids) and one with NE) incorporated into hydrogel and one 

control on your forearms. Therefore, you should come to the Faculty of Pharmacy on the scheduled 

day. During this day, you will need to spend approximately two hours, twenty minutes to acclimatize 

the skin and approximately one hour and a half to measure the biophysical parameters. 

Your participation in this research is entirely voluntary and you may refuse or stop 

participating at any time that you wish. If you have any questions you may ask us now or later. 

 

 

After reading the foregoing information and explanations, I consent voluntarily to participate 

as a participant in this research. 

 

 

 

Signature of Participant:               Date: 
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A2.  Results of skin hydration in six volunteers 
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A3.  Results of TEWL in six volunteers 
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NOTE: 

In a pre-experimental work, three different measurements were performed: 1
st
) before 

application of the hydrogel; 2
nd

) 30 min after the application of all hydrogels and 3
rd

) 1 h after 

the application of all hydrogels.  After 30 min, it was possible to observe a great increase on 

skin hydration that slightly decreased after 60 min. However, these results were discarded 

since they might measure the hydration of the remaining gel that had not been yet absorbed 

(whereas hydrogel was removed 30 min after hydrogels` application, immediately before the 

second measurement). 
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