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Resumo 
 

As lectinas são proteínas com diversas funções biológicas existindo em todos os 

organismos vivos. Para cada organismo as lectinas endógenas exibem importantes 

funções na manutenção da homeostasia do organismo e na defesa frente a ameaças 

externas. As lectinas purificadas de outras fontes podem ser utilizadas de modo a exibirem 

as sua bioactividades em outros organismos. 

Uma das mais marcantes propriedades das lectinas é a sua afinidade para hidratos de 

carbono aberrantes presentes em proteínas e lípidos na superfície das células. As 

alterações sofridas por estes hidratos de carbono é uma característica associada ao 

processo de mutação celular presente no cancro que afecta o processo de diferenciação 

celular, um dos processos de modificação pós-tradução mais importantes a nível das 

proteínas da superfície celular. 

Esta especificidade associada à citotoxicidade descrita de diversas lectinas vegetais, 

permite que as lectinas vegetais induzam morte celular programa, levando ao 

desenvolvimento de estudos na área da terapêutica tumoral no sentido de utilizar as 

lectinas vegetais como agentes anticancerígenos com capacidade de actuar apenas em 

células malignas sem afectar células saudáveis. 

Assim, esta monografia foca-se essencialmente nas aplicações terapêuticas das lectinas 

de leguminosas no cancro, tentando antes contextualizar o que são lectinas, as suas 

aplicações e mecanismos de acção, assim como a sua relevância actual e potencial futuro. 
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Abstract 

 

Lectins are proteins that exist in all living organisms and possess a multitude of biological 

functions. In each organism endogenous lectins play a major role both in maintaining 

homeostasis and protection from external threats. Lectins purified from other sources can 

be utilized as exhibit they biological functions in different organisms from the one from 

which they were extracted. 

One of the most defining properties of lectins is their affinity towards aberrant 

carbohydrates expressed by cell surface proteins and lipids. This carbohydrate aberration 

is a hallmark associated with the malignant transformation of cells associated with cancer, 

which alters the cellular glycosylation process, one of the most important post-

translational modification processes in cell surface proteins. 

This affinity, in conjuction with the citotoxicity associated with several legume lectins, 

reported to be able to induce programmed cell death by several different studies, lead to 

the development of studies in the tumour therapeutic field with the intention of utilizing 

legume lectins as anticancer agents with the ability to affect malignant cells without 

affecting healthy cells. 

This work focuses mainly in the therapeutic applications of legume lectins in cancer, 

providing beforehand context of what lectins are, their applications, how they exert their 

action and their current relevance as well as future potential. 
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Methodology 

 

This work was based on previously published documents, consisting of books and 

scientific articles. The survey was done using the pubmed database by keyword, selecting 

articles relating to the study in question. These articles, after consultation allowed to 

further extend the research. This research focuses on the characterization, biological 

activities and the role that lectins contemplate upon a specific recognition mechanism to 

carbohydrates, allowing their application in cancer as a therapeutic agent. The research 

focused on articles published in the last 20 years, including comments, as well as some 

older articles, which were part of history and that became important to contextualize. 

 Key words: Legume lectin, Cancer therapy, Aberrant glycosylation  
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1. Introduction 

 

With the improvement of healthcare through vaccination, antibiotics, improved sanitation 

and efforts to increase public awareness and promote better living and health habits there 

has been a noticeable decrease in infectious diseases during the last century. This 

increased control over the spreading of such diseases has diminished the threat that these 

diseases pose, as such cancer related diseases have overtaken infectious diseases as the 

most pressing concern for healthcare and hence the interest and research effort in this area 

has increased dramatically. However, cancer is not a recent disease with documents 

pertaining to these diseases dating back to ancient Egypt and Greece while also being 

described in Chinese and Arabic medical writings. It was not however until the end of the 

18th century that cancer diseases started being intensively and systematically studied.  

Cancer is a broad term applied to diseases that are characterized by the uncontrolled and 

continuous growth of abnormal cells beyond their usual activity which leads to malignant 

growth with invasion of adjacent tissues and organs and/or spreading through metastasis 

being able to affect almost any part of the body. It is the second leading cause of death 

globally and accounted for 8.8 million deaths in 2015 according to the World Healthcare 

Organization.  

Lung, prostate, colorectal, stomach and liver cancer are the most common types of cancer 

in men, while breast, colorectal, lung, cervix and stomach cancer are the most common 

among women. There are many anatomic and molecular subtypes of cancer diseases that 

each require specific management strategies. 

The continuous and recent advances in biotechnology have allowed researchers to find 

many different resources and methods to combat cancer. The natural resources are the 

main area of interest when it comes to finding new methods of combatting cancer and 

their related diseases, as the cancer inhibitory action of natural products derived from 

plants has been confirmed in several animal tumour models (Valadez-Vega et al., 2011).  

The lectin family of proteins plays an important role when it comes to the research of 

natural anticancer therapy methods. 

Lectins are defined as non-enzymatic carbohydrate binding proteins of non-immune 

origin  with at least one catalytic domain that binds either a soluble carbohydrate or the 
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carbohydrate portion of a glycoconjugate in a reversible, noncovalent and highly specific 

manner (Van Damme et al., 1998; Fu et al., 2011; Lam & Ng, 2011; Kumar et al., 2012). 

Due to their high specificity and reversible carbohydrate binding combined with vast 

anticancer potential due to their ability to induce apoptosis and even autophagy, plant 

lectins are the ideal research subject for finding and improving treatment options against 

cancer cells. Although lectins have been known for more than a century, they became a 

focus of interest when it was found that they interact with specific carbohydrate residues 

on the cell membrane and due to this specificity they are capable of distinguishing 

between different cell types, such as normal and malignant cells (Valadez-Vega et al., 

2011). Lectins have therefore become a subject of intense investigation and as more of 

them are discovered and further studies are conducted on their biological activities and 

mechanisms of action their production can be optimised and novel applications can be 

discovered (Lam & Ng, 2011). Not all proteins in the lectin family necessarily need to 

induce apoptosis to be considered for cancer therapy as many of them show potential as 

biomarkers allowing early detection of malignant growth or as autophagy inducers (Yau, 

Dan, Ng, & Ng, 2015).   

This work intends to explore the applications of lectins in cancer therapy while providing 

context and exploring what are lectins, some of their uses other than cancer therapy, how 

they exert their action and their overall relevance and importance in the healthcare field. 

 

2. Distribution and Occurrence 

 

Lectins are found in plants, animals and bacteria being very prevalent in living organisms. 

Being produced by such an ample array of different organisms, some of which so 

phylogenetically remote, it is not a surprising fact that lectins are widely different in 

several aspects according to their origin, for example mushroom lectins, animal lectins 

and plant lectins have distinct characteristics such as molecular weight, amino acid 

sequencing and sugar specificity to name a few. Animal lectins mostly aid in cells 

interactions while plant lectins are responsible for defending against potential predators 

and pathogens. However, all lectins share the property of involvement in both normal and 

pathological biological processes and all have varying degrees of interaction with the 

immune system (Lam & Ng, 2011; Yau et al., 2015). 
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The Leguminosae family has the largest group of well-characterized legume lectins, 

which are interesting due to a variety of carbohydrate specificity and greater availability 

in nature (Coelho et al., 2017). Over 100 legume lectins have been characterised, the vast 

majority having been isolated from the seeds of the plants in which they are found 

(Ambrosi, Cameron, & Davis, 2005). In plants lectins are found in all organs with the 

vast majority of them located in storage organs such as seeds. 

 

3. Classification 

 

3.1. Plant lectins 

 

There are three different forms of classifying lectins, one of the methods used is based on 

sequence similarities and structural homology according to which plant lectins can be 

grouped into 12 different families : Agaricus bisporus agglutinin homologs, Amaranthins, 

Class V chitinase homologs with lectin activity, Cyanovirin family, EEA family, GNA 

family, proteins with hevein domains, Jacalins, proteins with legume lectin domains, 

LysM domain, Nictaba family, Ricin- B family which can be seen in Table 1 (Van 

Damme, Lannoo, & Peumans, 2008). 

Another division is according to the structure and active center. Lectins are divided in 

‘merolectins’, ‘hololectins’, ‘chimerolectins’, and ‘superlectins’ exists (Figure 1): 

Merolectins consist of a single carbohydrate-binding domain.  Hololectins consist 

exclusively of carbohydrate-binding domains but contain at least two such domains that 

are either identical or very homologous and bind either the same or structurally similar 

sugar(s) (most plant lectins fall into this category). Chimerolectins are fusion proteins 

consisting of one or more carbohydrate-binding domain(s) tandemly arrayed to an 

unrelated domain. Superlectins consist exclusively of at least two carbohydrate binding 

domains however, unlike the hololectins the carbohydrate binding domains of the 

superlectins recognize structurally unrelated sugars (Van Damme et al., 1998). 

Another commonly used way of differentiating plant lectins is grouping them according 

to their carbohydrate binding specificity according to which there are six families 

depending which carbohydrates they preferentially interact with which can be glucose, 

galactose, mannose, fucose, N-acetylglucosamine, N-acetylgalactosamine or sialic acids, 
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even existing some lectins that bind exclusively with oligosaccharides (Kumar et al., 

2012; Walker, 2014; Coelho et al., 2017). The six families are divided (according to their 

binding specificity) as follows: (1) glucose/mannose; (2) galactose/ N-

acetylgalactosamine; (3) N-acetylglucosamine; (4) L-fucose; (5) Sialic acid; (6) 

Oligosaccharides and complex polysaccharides (Ribeiro, 2008) 

  

Table 1  

Taxonomical Distribution of Carbohydrate Domains found in Embryophyta  

(Van Damme et al., 2008) 

 

Figure 1. Schematic representation of merolectins, hololectins, 

chimerolectins, and superlectins  

(Van Damme et al., 1998) 
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3.2. Animal Lectins 

 

Just like plant lectins, animal lectins can be grouped according to several criteria the main 

of which is the structure and composition of their carbohydrate recognition domain 

as can be seen in table 2 along with some of their ligand specificities, their subcellular 

localization and some examples of their functions. It is of value to note that only 4 of the 

13 described families of animal lectins are known as intracellular lectins (M-types, P-

type, L-type and calnexin family) due to being located in the luminal compartments of 

the secretory pathway (Gupta, Gupta, & Gupta, 2009; Kumar et al., 2012; Drickamer, 

2014). 

 

 

 

 

 

 

 

 

Table 2 

Lectin family, location specificity and functions  

(Kumar et al., 2012) 
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4. Plant Lectins Structural Features 

 

As were previously mentioned plant lectins can be classified into 12 families according 

to their carbohydrate recognition domains (CRDs) and respective polypeptide 

sequencing. Each family is comprised by all the known lectins of related evolutionary 

CRD structure (in terms of sequence similarity) that are characteristic of said family. The 

different CRDs are characterized by their own amino acidic sequencing, lectin 

polypeptide folding, and the structure of the binding site and while CRDs differ in their 

sequences, they can show reactivity towards similar carbohydrates indicating that 

specificity is not linked to a particular CRD (Walker, 2014). 

Despite the well preserved monomeric unit shared by lectins it is in the quaternary 

structure, the way that the monomeric units oligomerize, that reside the differences that 

determine the different carbohydrate binding tendencies and activity that set apart each 

of the lectin families (Loris, Hamelryck, Bouckaert, & Wyns, 1998). 

 

4.1. Legume lectin Monomer 

 

The legume lectin monomer is structurally well conserved. Studies revealing high 

similarity in both sequence and structure only existing minor variations in loop and strand 

length (Lagarda-Diaz, Guzman-Partida, & Vazquez-Moreno, 2017). Approximately 20% 

of the amino acid residues are invariant in all legume lectins and another 20% are similar 

with the conserved amino acids including several of those involved in the interaction with 

the saccharide and almost all the residues that coordinate the metal ions (Ambrosi et al., 

2005).  

The monomer consists of two large β-pleated sheets that form a scaffold on which the 

carbohydrate binding region is grafted (Figure 2) (Loris et al., 1998). The architecture of 

the monomer displays a jerryroll motif, also known as “lectin fold”, that contains a CRD 

and metal binding sites for divalent cations (tightly bound Ca2+ and a transition metal, 

usually Mn2+) (Ambrosi et al., 2005). The three-dimensional structure is characterized by 

three β-sheets that are connected by α turns, β turns and bends. The three β-sheets consist 

of a 6-stranded back sheet, a 7-stranded front sheet and a smaller 5-stranded sheet that 
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plays a major role in holding the two large sheets together (Lagarda-Diaz et al., 2017; 

Loris et al., 1998). The main hydrophobic core is located between the back and the front 

sheet. No α-helix is present and about 50% of the residues are in loop regions with one of 

these loops curling over the front sheet and resulting in the formation of a second 

hydrophobic core (Loris et al., 1998). 

 

 

 

 

 

Figure 2. 3D structure of legume lectin monomer (top) 

and topology diagram of the legume lectin fold 

(bottom) (Loris et al., 1998) 
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4.2. Quaternary structure  

 

The quaternary structure is responsible for the considerable variation exhibited by legume 

lectins. This is due to small differences in the aminoacidic sequences at the monomer-

monomer interfaces and to different post-translational processing  (such as proteolytic 

cleavage of precursor chain and C- terminal trimming, among other examples) (Loris et 

al., 1998; Ambrosi et al., 2005). 

The majority of known legume lectins have tendency to assemble as homodimers or 

homo-tetramers with most known legume lectins containing a structure termed “canonical 

legume lectin dimer” which is characterized by anti-parallel side-by-side alignment of the 

flat six-stranded β-sheets of the two monomers, resulting in the formation of a continuous 

12- stranded sheet that extends across the dimer interface (Figure 3) (Ambrosi et al., 2005; 

Lagarda-Diaz et al., 2017). Some exceptions to this are lectins from coral tree (Erythrina 

corallodendron) and lectin IV from Griffonia simplicifolia which have more “open” 

structures (Loris et al., 1998). 

As with most legume lectins the pH is a determining factor in the quaternary structure as 

it can cause the dissociation of tetramers into dimers depending on the conditions 

(Ambrosi et al., 2005).   

 
Figure 3. Tetramerisation in concanavalin A (Ambrosi et al., 2005) 
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4.3. Carbohydrate binding site 

 

The advancement of biotechnology in recent years significant progress was made in the 

molecular and structural understanding of the carbohydrate binding site. It is known that 

while lectins bind to mono and oligosaccharides, they show specificity for complex 

sugars and glycoproteins with higher association constants for di-, tri- and tetra- 

saccharides than for monosaccharides (Ambrosi et al., 2005; Lagarda-Diaz et al., 2017).  

The carbohydrate binding sites appear to be preformed as few conformational changes 

occur upon binding (Ambrosi et al., 2005). In all known plant lectins, the binding of the 

carbohydrate involves four amino acid residues that are invariant irrespectively of their 

specificity. These amino acids consist of an aspartic acid, an asparginate, a glycine and 

an aromatic amino acid or leucine (Ambrosi et al., 2005; Lagarda-Diaz et al., 2017). 

Despite the well preserved amino acids, the carbohydrate specificity still exists which 

suggests that amino acid residues from other regions of the pocket are responsible for the 

specificity. 

The sugar-combining site is made up by amino acid residues residing in four different 

loops (A, B, C and D): the aspartic acid and glycine belong to A and B respectively, 

whereas the asparagine and the hydrophobic residue are in loop C with additional 

interactions being attributed to amino acids in loop D which appears to be responsible for 

carbohydrate specificity (Ambrosi et al., 2005). Loop D is highly variable in terms of 

length, sequence and conformation with its length, for example, being similar in all 

mannose-specific lectins (Ambrosi et al., 2005) further suggesting its role in determining 

the specificity of the lectin families. 

Aside from the amino acid residues activity and three-dimensional structure of the 

binding site, there are two other major components in the carbohydrate binding activity 

of the legume lectin binding site: water molecules in the CRD and the metal binding 

sites for divalent cations (previously mentioned). 

The divalent metals, generally Ca2+ and Mn2+, are essential for carbohydrate-binding 

activity with the metal binding located in close proximity with the CRD, aiding in the 
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binding activity but not often directly involved in the binding itself (Lagarda-Diaz et al., 

2017). 

Several studies showed, in different lectins (for example concanavalin A), a loss of said 

activity when demetallisation essays were performed. As such it is not a surprising fact 

that the metal binding sites (namely the amino acid residues that interact with the metal 

ions), first observed in concanavalin A, have been found to be extremely well conserved 

in all other legume lectin structures (Figure 4) (Loris et al., 1998). 

Contacts between the ligand and the protein are often mediated by water molecules with 

small size and its ability to behave as both hydrogen donor and acceptor make it near-

ideal for this function (Ambrosi et al., 2005). In general, water molecules in the 

carbohydrate-binding region mimic the ligand to a substantial extent not only at the 

primary site, but also in the regions adjacent to it (Figure 5) (Ambrosi et al., 2005). The 

position of water molecules in the binding site are well conserved within single species 

but appear to be poorly conserved in lectins from different species (Loris et al., 1998). 

The increase of water mediated H-bonds seems to increase the affinity for complex 

carbohydrates as opposed to simple sugars (Van Damme et al., 2008). A notable example 

of water activity in the binding of sugars is the complex of peanut agglutinin with T-

antigen disaccharide where a substantial (twenty fold) increase in affinity is observed 

when compared to the complex of peanut agglutinin and lactose which is entirely due to 

water mediated protein-carbohydrate interactions (Figure 6) showing that water mediated 

specificity can be present in carbohydrate recognition (Loris et al., 1998). 

Figure 4 Schematic representation of the double metal binding site 

of concanavalin A (Loris et al., 1998) 
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Figure 5. Schematic representation of protein–carbohydrate interactions in the 

Peanut agglutinin binding site showing the role of water in the binding process 

(Ambrosi et al., 2005) 

Figure 6. Schematic diagrams of the binding of lactose a and the T-

antigen disaccharide b to peanut agglutinin. The main difference 

between both complexes are the additional water-mediated 

interactions in the T-antigen complex (Loris et al., 1998). 
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5. Functions and Bioactivity 

 

Being such a diverse and widespread group of proteins, lectins are involved in several 

vital processes that ensure the survival of its host. Their functions range from protection 

of the organism from external threats to maintaining homeostasis through mediation of 

cell to cell interactions. The communication based on the carbohydrate-lectin interactions 

is at the focus of biological processes such as transformation, cell growth, cancer 

metastasis, inflammation and host-pathogen interactions (Majee & Biswas, 2013). Their 

therapeutic applications are of major importance due to the vast array of intra and inter-

cellular processes in which they are a key component.  

 

5.1. Antifungal and Antibacterial Activity 

 

Several studies, have described the role played by lectins in the protection from and 

elimination of microorganisms. Plant lectins investigated for antifungal potential, 

mainly against phytopathogenic species, have most reported antifungal effects binding to 

hyphae, causing inhibition of growth and prevention of spore germination, examples of 

this are, amongst many others, lectins isolated from Phaseolus vulgaris seeds that were 

shown to inhibit the growth of Coprinus comatus and Rhizoctonia solani; jackin and 

frutackin, two chitin-binding lectins from the genus Artocarpus, demonstrated 

inhibition of the germination of Fusarium moniliforme spores (Coelho et al., 2017). It is 

also worth mentioning, regarding the antifungal properties of lectins, that both human and 

animal pathogens can be affected, an example of this is lectins extracted from Helianthus 

annuus seeds showed the ability to inhibit growth and alter membrane permeability of 

Candida tropicalis, Candida parapsilosis, Candida albicans, and Pichia 

membranifaciens while also inducing the production of reactive oxygen species in  

Candida Tropicalis (Regente et al., 2014).  

It is also worth mentioning that lectins, regarding the role in the protection from 

microorganisms, play a role in the bacterial virulence (like in fungal activity) through the 

binding of the exogenous lectins to the specific carbohydrates present in the endogenous 

cells being a factor of significant importance in the recognition and adhesion phase of the 

infection. 
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5.2. Anti insect and Antiparasitic Activity   

 

In contrast to fungi and bacteria, many plant lectins are moderately to highly toxic for 

insects and higher animals (Van Damme et al., 2008). The role of protection against 

external threats played by lectins against insects and parasites is performed through 

different means than its antibacterial and antifungal activity. Whereas as previously 

mentioned the antifungal and antibacterial properties of lectins consists mainly in the 

inhibition of the microorganisms through indirect means such as decreasing its adhesion 

and recognition and impairing its ability to reproduce and spread, the anti-insect and anti-

parasitic effect of lectins is more direct consisting in increasing mortality and delaying 

development. There are many reported examples such as Arisaema jacquemontii lectin 

adversely affected the development of Bactrocera cucurbitae larvae (Lam & Ng, 2011); 

lectins isolated from Coprinopsis cinerea, Aleuria aurantia, and Laccaria bicolor 

showed larvistatic effect on Haemonchus contortus (Barber’s poleworm), resulting in 

arresting at L1 phase; and an example of note where lectins isolated from  Moringa 

oleifera seeds demonstrated larvicidal, ovicidal, and oviposition-stimulant effects on A. 

aegypti, being considered important candidates for using in control of mosquito 

population, including in traps for egg capture (Coelho et al., 2017). 

The anti-insect activity of plant lectins is one of its most notable qualities as there have 

been recent studies that show that insect stimulus induces the production of specific 

lectins in plants as a means of defense, these lectins are called insect-induced lectins. 

Interestingly the production of these lectins is not induced by wounding which indicates 

an insect specific defense mechanism through lectin production (Van Damme et al., 

2008).   
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5.3. Antiviral Activity 

 

Due to the high glycoprotein content that is characteristic of the viral envelopes, which 

are the target of the plant lectins action, this type of application is worthy of note with 

many possibilities of management in disease therapeutic. 

There are many reported plant lectins with antiviral activity. Different lectins have 

different anti-HIV mechanisms: snowdrop lectin, Concanavalin A and jacalin-related 

lectin from banana fruit, among others, exhibited antiretroviral activity inhibiting the 

syncytium formation and therefore preventing the entry of the virus into de CD4 cells; 

extra long autumn purple bean lectin displayed anti-HIV activity by inhibition of reverse 

transcriptase (Majee & Biswas, 2013); the sea worm (Serpula vermicularis) lectin 

suppressed the production of viral p24 antigen and cytopathic effect induced by HIV-1 

(Lam & Ng, 2011). 

 

5.4. Toxicity  

 

Lectins are considered antinutritional factors due to their inherent toxicity. Due to 

resistance to digestive enzymes and bacteria they may pose a threat when ingested by 

animals interacting and binding to the digestive tract of higher animals inhibiting growth 

and causing diarrhea, vomiting and even death. Their main mechanism of toxicity 

consists of damaging the cellular membrane, setting off inflammatory processes with 

internalization, inhibiting protein synthesis or even activating apoptotic pathways. 

Because the ability of the lectins to cause intestinal malabsorption is dependent on the 

presence of enteric bacteria, it has been hypothesized that lectins may also produce 

toxicity by facilitating bacterial growth in the gastrointestinal tract (Dolan, Matulka, & 

Burdock, 2010) 

The specificity of legume lectins for some typical animal glycans, has further supported 

the idea that legume lectins play a role in plant defense against insects and/or predator 

animals.  

They have been found to be highly immunogenic to varying degree, inducing 

inflammatory response and cause GI irritation. In sensitive individuals, lectins can induce 
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severe intestinal damage disrupting digestion, provoke IgG and IgM antibodies 

responsible for food allergies and in extreme cases, can cause anemia, which is why 

lectin based drug delivery systems should never be used in people with reported food 

allergies (Majee & Biswas, 2013). 

Lectins have been reported to cause damage, including food poisoning by uncooked 

kidney beans and also hemolytic anemia and jaundice by Mexican fava beans (Kumar et 

al., 2012). 

A noteworthy example is the castor bean lectin ricin (one of the most toxic natural 

substances known) which is notorious for causing deaths of children, and has been used 

as an instrument of bioterrorism (Dolan et al., 2010). 

 

5.5. Anticancer activity 

 

The anticancer applications of lectins can be split up into two groups, the diagnostic 

applications and the therapeutic ones. While the therapeutic applications of lectins are 

the main focus of this paper it is of note that the role of lectins in diagnostics is of 

significant importance. They serve as powerful tools in immunological studies and can 

be employed as immunohistochemistry markers in diagnosis of cancer and profiling of 

cell surface types due to expression of aberrant glycans on diseased and transformed cells 

(Majee & Biswas, 2013). As such lectins are frequently used as diagnostic probes and 

tumour-specific surface markers. 

Their anticancer activity per say is related to their activity to specifically bind to the 

aberrant cells through the identification of the malignant cells surface carbohydrates and 

then acting as cytotoxins, causing apoptosis in mitochondrial dependent pathway, 

increasing the content of reactive oxygen species, triggering autophagy or necrosis in 

cancer cells (Majee & Biswas, 2013). This approach can be improved through the 

conjugation of said lectins with targeting agents improving their specificity, with lectins 

also being able to be used as targeting agents. In addition, many anticancer lectins usually 

possess low cytotoxicity to nontransformed cells. 

Hitherto many studies have reported anticancer activity of lectins. European mistletoe  

demonstrates anticancer properties in, amongst others, Ewing sarcoma (Twardziok et al., 
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2016),  Concanavalin A extracted from Jack bean seeds has been found to induce caspase 

dependent apoptosis in human melanoma A375 cells (Yau et al., 2015), antiproliferative 

and cytotoxic effects of the tepary bean lectins on C33-A and Sw480 cells lines has been 

reported (Valadez-Vega et al., 2011). 

It is also worthy of note that, unlike plant lectins, the endogenous animal lectins that we 

possess play a major role in cell adhesion which shows potential for advanced stage 

cancer treatment as it can hinder the metastasis process and improve the prognostic by 

impeding the spreading of the cancer diseases. Lebecin lectin extracted from 

Macrovipera lebetina inhibited the integrin-mediated attachment of human breast cancer 

cells to fibronectin and fibrinogen (Jebali et al., 2014); Bauhinia forficata seed lectin 

inhibited adhesion of MCF-7 cells to laminin, collagen I, and fibronectin (Silva et al., 

2014). 

 

6. Aberrant glycosylation caused by malignant transformation 

 

Altered glycosylation is a universal feature of cancer cells, but only certain 

specific glycan changes are frequently associated with tumors. These include (1) 

increased β1-6GlcNAc branching of N-glycans; (2) changes in the amount, linkage, and 

acetylation of sialic acids; (3) truncation of O-glycans, leading to expression of Tn and 

sialyl Tn antigens; (4) expression of the nonhuman sialic acid N-glycolylneuraminic acid, 

likely incorporated from dietary sources; (5) expression of sialylated Lewis structures 

and selectin ligands; (6) altered expression and enhanced shedding of glycosphingolipids; 

(7) increased expression of galectins and poly-N acetyllactosamines; (8) altered 

expression of ABH(O) blood-group-related structures; (9) alterations in sulfation 

of glycosaminoglycans; (10) increased expression of hyaluronan; and (11) loss of 

expression of GPI lipid anchors (Varki & Freeze, 2009).  

However the two main glycan classes found at the cell surface glycoproteins are O-

glycans (most common) synthesized in the Golgi complex, and N-glycans whose 

biosynthesis takes place in the endoplasmatic reticulum (with less common forms of 

protein glycosylation include O-Fucosylation, O-GlucNAcylation and O-

Mannosylation), as such the most frequent and relevant glycosylation alterations caused 
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by malignant processes will be the ones affecting both O- and N-glycans with O-glycan 

alterations being the most important and frequent of the two (Ferreira et al., 2017). The 

changes in cancer cells surface properties generally manifest through overexpression of 

aberrant O- and N-glycans exposed at the cell surface (Poiroux, Barre, van Damme, 

Benoist, & Roug, 2017). 

Branching and truncation of both N- and O-glycans, but also sialylation and fucosylation 

(both core and terminal), appear to be a common theme amongst the cancer-associated 

changes in glycan structures and can be seen illustrated in Figure 7 (Christiansen et al., 

2014). 

The most frequent aberrant O-glycans expressed at the surface of cancer cells consist of 

Tn antigen, T antigen, Lewis a, and Lewis x antigens, and an oncofetal glycotope, the 

Forssman pentasaccharide antigen which are illustrated in Figure 8 (Poiroux et al., 2017) 

With the multitude of different relevant alterations in glycosylation caused by malignant 

processes the reader is directed to the papers cited above for a further, in depth look at the 

mechanisms and specific alterations on a molecular level, but also to the works of (Gill, 

Clausen, & Bard, 2011; Stowell, Ju, & Cummings, 2015; Hanson & Hollingsworth, 2016; 

Munkley & Elliott, 2016; Dall’Olio & Trinchera, 2017). 

Figure 7. N-and O-glycan changes in breast, colorectal, ovarian, liver and 

melanoma cancers. R indicates N-and O-glycans (Christiansen et al., 2014) 
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Figure 8. Molecular Structure of mutated O-glycans expressed on the cancer 

cell surface (Poiroux et al., 2017) 
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7. Anticancer activity mechanism 

 

Legume lectins have been shown to induce programmed cell death in multifactorial ways, 

affecting many different signaling pathways and a wide range of both pro- and anti- cell 

death factors. 

Many studies have reported the involvement of lectins in the expression of members of 

the Bcl-2, Autophagy related gene (ATG), and caspase families, as well as p53, ERK, 

Ras-Raf, and BNIP3 and, being all the mentioned examples integral components of the 

different programmed cell death pathways,  thereby induce both apoptosis and autophagy 

(Lagarda-Diaz et al., 2017; Yau et al., 2015).  

Programmed cell death (PCD) occurs through two main processes: Apoptosis (type I 

PCD) and Autophagy (type II PCD) with both processes presenting a wide range of 

different pathways that can be employed some of which are not still fully understood and 

potentially some not even known. Both processes will be briefly explained bellow and 

examples of the multitude of lectins and respective PCD pathways can be found in Table 

3 as well as Figure 9 which depicts both apoptotic pathways and Figure 10 depicting the 

autophagic process. 

 

7.1. Apoptosis  

 

Apoptosis, or type I programmed cell death, is a highly regulated and controlled 

biological process that allows the organism to eliminate defective and unwanted cells 

allowing for a controlled means of disposal of potentially harmful elements. Apoptosis is 

characterized by cytoplasmic cell shrinkage, chromatin condensation and DNA 

fragmentation, and segmentation into apoptotic bodies (called blebbing) and can occur in 

response to extrinsic and intrinsic stimuli (Fujita et al., 2017). 

There are two main apoptotic pathways, the extrinsic one and the intrinsic one. 
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7.1.1. Extrinsic pathway 

 

The extrinsic apoptosis pathway (Figure 9), or death-receptor pathway, is triggered by 

binding of external ligation to cell surface death receptors which then bind to specific 

ligands (which include Tumor Necrosis Factor (TNF), FAS-Fas Ligand (FasL), TNF-

related apoptosis-inducing ligand (TRAIL)), after ligation the intracellular death domains 

and adapter proteins, such as Fas-Associated protein with Death domain (FADD) and 

TNF Receptor-1 associated Death Domain protein (TRADD), construct a death inducing 

signaling complex (DISC) that recruits and activates initiator caspase-8/10 (Estaquier, 

Vallette, Vayssiere, & Mignotte, 2012; Fujita et al., 2017).   

 

 

 

 

Figure 9. Mechanisms of apoptosis in cancer. Extrinsic pathway 

(top) and Intrinsic pathway (bottom) (Jiang et al., 2015) 
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7.1.2. Intrinsic pathway 

 

The intrinsic apoptosis pathway (Figure 9), or mitochondrial pathway, is activated by 

various stress signals, such as severe genetic damage, hypoxia and oxidative stress and is 

controlled by the Bcl-2 protein family through the regulation of the mitochondrial 

membrane permeability (Wang, 2014). In response to such stimuli mitochondrial pro-

apoptotic proteins, BH3-only members (including Bad, Bik, Bid among others), 

antagonize anti-apoptotic proteins Bcl-2, Bcl-xL and Mcl-1 creating a pro-apoptotic 

balance that increases the mitochondrial permeability resulting in the release of specific 

mitochondrial proteins into the cytosol, such as cytochrome c which forms a complex 

with Apaf-1, called the apoptosome, which assists in auto-activation of initiator pro-

caspase-9 (Jiang et al., 2015; Fujita et al., 2017). 

 

7.2. Autophagy  

 

Autophagy is an evolutionary conserved mechanism that disassembles unnecessary or 

dysfunctional components, through the use of autophagosomes and lysosomes, allowing 

for the elimination and recycling of cellular components, it constitutes a stress adaptation 

that avoids cell death (in normal physiological conditions). While there are two main 

types of autophagy—micro autophagy and macro autophagy—the general term 

autophagy is commonly used to refer to the process of macro autophagy (Yau et al., 

2015): In micro autophagy the lysosome surface directly surrounds and engulfs the 

cytoplasm and target organelles while in macro autophagy there is a creation of an 

autophagosome through the isolation of the cytoplasm and creating of a new separate 

vesicle which then fuses with the lysosome (Li et al., 2011). 

In the context of cancer however autophagy can be used by the malignant cells as a 

physiological mechanism of survival thus becoming a detrimental process to the overall 

organism (Jiang et al., 2015).  

Autophagic programmed cell death (type II PCD), despite the role of autophagy in the 

survival of the cell, can occur when induced in a massive or prolonged fashion (Lei & 
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Chang, 2009). Autophagy as a process of PCD refers to macro autophagy since it requires 

the formation of autolysosomes (Lei & Chang, 2009). 

There is an increase in the permeability of the autolysosome membrane which originates 

leakage of catabolic hydrolases, cathepsins and reactive oxygen species (ROS) into the 

cytosol which can cause mitochondrial membrane increased permeabilization thus 

activating caspases in an intrinsic apoptosis manner (Figure 10) (Lei & Chang, 2009). 

Compared to plant lectins involved in apoptosis, a limited number of plant lectins, such 

as concanavalin A, Mistletoe lectin and P. cyrtonema lectin, have shown activity 

targeting the autophagic signalling pathways of different types of cancer cells (table 3) 

(Jiang et al., 2015).  

While pro apoptotic factor and pathways are more abundant in cells and more plant lectins 

have been shown to target such elements, autophagy is nonetheless and important 

mechanism that should be studied in more detail as it can complement apoptosis and even 

act as a replacement in treatment of apoptosis resistant cancer cell lines. 

  
Figure 10. Mechanisms of (macro)autophagy in cancer 

(Jiang et al., 2015) 
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Table 3 

Plant lectins targeting apoptotic/autophagic signalling pathways in cancer. 

 

(Jiang et al., 2015) 
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8. Biomedical applications 

 

As before mentioned in this work lectins, and particularly plant lectins, have properties 

that allow their use in healthcare taking advantage of their highly specific interactions and 

affinities but also with a wide array of possible applications. They take center stage in 

both the treatment and management of cancer related diseases as the malignant alterations 

in cells increase the interaction with legume lectins and its specificity. 

The use of plant lectins in biomedical applications can be divided into diagnosis and 

therapeutics. 

 

 

Table 3 (continued) 

(Jiang et al., 2015) 
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8.1. Diagnosis 

 

With the knowledge that plant lectins show affinity towards altered cell surface glycans, 

which are characteristic of aberrant glycosylation caused by cancer diseases, it is not 

surprising that one of their first uses was as cell surface markers in biochemical assays. 

The advancement of science, and the means of mitigating plant lectins toxicity, their use 

grew and expanded with the capability of their use in vivo. Nowadays plant lectins, and 

also animal endogenous lectins, are used as a major diagnostic, prognostic and therapy 

management tool in cancer as important biomarkers due to their capability of detecting 

malignant cells with adequate specificity. 

Lectin based serological assays are currently used in clinical practice to detect and 

quantify glycans in the serum of cancer patients with the measurement of circulating 

glycoconjugates being used for (a) diagnosis, (b) monitoring of clinical course under 

therapy, (c) detection of early disease recurrence, and (d) prognosis (Tuccillo et al., 2014). 

Several plant lectins have shown their use as T/Tn- specific markers in many cancers 

(Poiroux et al., 2017). Peanut agglutinin has shown application in identifying 

hematopoietic cell subpopulations (Lu et al., 2012), CA125 (transmembrane mucin) is 

one of the best available biomarkers of ovarian cancer (Tuccillo et al., 2014), Parkia 

pendula lectin has been used as a marker for characterization of meningothelial tumor 

tissue (Beltrão et al., 2003).  

Lectins when used in association with for example fluorescent markers, due to their 

specificity, can be used to determine the spreading of tumors marking the affected tissues 

that appear as colored areas in the tests. 
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8.2. Therapeutics 

 

8.2.1. Direct antitumor activity 

 

Plant lectins initial and most obvious use in therapeutics came from its cytotoxic 

capabilities capable of inducing programmed cell death (apoptosis and/or autophagy) 

conjugated with their affinity towards malignant cells. A plethora of studies have shown 

the direct anticancer activity of the many plant lectins on many different cancer cell lines 

(table 3). However, this type of investigation must continue as new lectins and types of 

cancer cell lines are discovered as different lectins have different specificities and elicit 

different reactions while many cancer lines show resistance to several specific lectins.  

The most studied and better understood plant lectin is Concanavalin A which shows the 

ability to induce apoptosis, autophagy and having anti angiogenic capabilities targeting 

many different pathways of each process, described in (Li et al., 2011), thus having a 

multitude of applications. Others examples of plant lectins cytotoxic antitumor activity 

include Polygonatum Odoratum lectin found to induce signs of apoptosis in A549 lung 

cancer cells without affecting healthy lung cells (Yau et al., 2015), Korean mistletoe 

lectin (Viscum album L. coloratum agglutinin) eliciting apoptosis in human 

hepatocarcinoma cells (Lyu, Choi, & Park, 2002), Sambucus nigra agglutinin exhibited 

selectivity towards ovarian carcinoma cells and induced their cell death through 

mitochondrial disfuction (Chowdhury, Ray, Chatterjee, & Roy, 2017), among others. 

There exist many different pathways and, within those pathways, different ways with 

which plant lectins induce their activity even when belonging to the same family of lectins 

or acting on the same type of cancer cells which is one of the reasons why their use in 

cancer related therapeutics is so appealing, if one pathway is inefficient at causing PCD 

in a certain type of cancer cell line other lectins from the same family or different ones 

may still be useful.  
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8.2.2. Biological response modifier 

 

Several plant lectins have shown capabilities of modulating the immune system, being 

powerful mitogens for human lymphocytes aiding in the combat of cancer facilitating the 

production of host immune cells, with examples including pokeweed mitogen, 

concanavalin A and Maclura pumifera agglutinin (Mody, Joshi, & Chaney, 1995). 

Other plant lectins have shown the ability to nonspecifically modulate and boost the 

immune system capabilities through activation of natural killer cells  and enhancement of 

monocyte cell line activity, for example galactose binding mistletoe lectin ML-I, thus 

inhibiting tumor growth (Mody et al., 1995). 

Another important biological response modification which isn’t as relevant in plant 

lectins but shows great promise in cancer treatment is the regulation of cell adhesion. This 

process is mainly regulated by animal endogenous lectins such as Galectin-8 (only 

galectin that appears to have this role from its family) and selectins (of the C-type animal 

lectin family) making them extremely important and worth mentioning as the adhesion 

process of cancer is intimately related to its prognostic (Hadari et al., 2000; Nakahara & 

Raz, 2008). The targeting of the cell adhesion related lectins involved in cancer is an 

extremely useful tool as, by greatly decreasing or even halting the metastatic process, it 

both improves the treatment options and their efficiency and also reduces one of the main 

difficulties of cancer diseases stopping its systemic effects and restricting it to a more 

treatable level.  

 

8.2.3. Site Specific Drug Delivery Systems  

 

Targeted therapy is most likely the most difficult and rewarding application of lectins in 

therapy. With the advancement of technology and science, targeted therapy will without 

a doubt become the most useful and important lectin mediated biomedical application in 

cancer and possibly in other areas since it provides a way to balance the efficiency of the 

treatment with the known toxicity that plant lectins have and that is a relevant downside 

when considering any plant lectin mediated treatment. In addition to using the lectins as 

the only active agent in a formulation (taking advantage of the lectin specificity), they 
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can also be used in complex drug delivery systems that allow a more specific, prolonged 

and safe therapeutic usage.  

There are two ways in which lectins are used in this field: as carriers for the intended 

drug, acting as targeting agents, or acting as the active ingredient themselves, being 

attached to a different targeting agent; the first method frequently applies reverse lectin 

targeting (the lectin targets the cell surface carbohydrates), while the second method often 

uses direct lectin targeting (where the targeting agent has affinity towards endogenous 

cell lectins) (Gupta et al., 2009).  

The controlled deliverance techniques (liposomes, nanosuspensions, bioadhesive 

systems) provide an adequate release rate and duration, producing the desired effect and 

reducing the toxic effects of plant lectins but have a main disadvantage of non-specificity 

to substrate while lectin mediated bioadhesion allows direct binding to target cells 

establishing specific interactions (Coelho et al., 2017). 

The plant lectins specificity towards mutated cells makes them an ideal targeting agent 

allowing for an effective delivery of the drug to the intended tissues and reducing 

systemic side effects often related to cancer therapy due to the difficulty of finding an 

effective targeting agent. Chemotherapy and Radiotherapy are fitting examples of this 

with patients experiencing severe side effects associated with the lack of effective means 

with which to target the affected tissues.  

 

8.2.3.1 Nanoparticle systems 

 

The use of nanoparticle drug delivery systems is an expanding field that shows great 

promise as it increases the half-life of drugs, reduces its side effects and increases its 

specificity and efficacy by both inhibiting the drugs deliverance to healthy cells and 

directly conducting the drugs to the tumor site and promoting its accumulation there 

(Bahrami et al., 2017). There are several different types of nanoparticle systems such as 

Nanoconstructed lipid carriers, dendrimers and liposomes to name a few (Bahrami et 

al., 2017). 

Nanoparticle internalization in cancer cells occurs predominantly through its endocytosis 

in target cells, which can be further classified as phagocytosis or pinocytosis. 
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Glycotargeting is the main application of lectin and lectin based therapy in the nano drug 

delivery system field due to the lectin high biocompatibility and specific cell surface 

carbohydrate recognition with the main criteria of choice of ligand in the drug delivery 

system being the affinity level of the carbohydrates for their receptors and the expression 

levels of said receptors in the target cells (Bahrami et al., 2017; Malekzad et al., 2017). 

 Long circulating lectin conjugated paclitaxel loaded magnetic nanoparticles have shown 

to increase uptake in Bcr-Abl positive chronic myelogenous leukemia (Singh, Dilnawaz, 

& Sahoo, 2011), wheat germ agglutinin and Ulex europaeus agglutinin showed high 

specifity towards human urinary carcinoma 5637 cells, which allowed their targeting of 

bladder cancer cells (Plattner, Wagner, Ratzinger, Gabor, & Wirth, 2008),   Concanavalin 

A was associated with clarithromycin in an mucoadhesive microparticles complex against 

Helicobacter pylori improving adhesion (Adebisi & Conway, 2014), among many other 

reported studies (table 4). 

Plants lectins also have been shown to be able to be used in site specific drug delivery 

systems for pulmonary, epithelial and ocular tissues (Majee & Biswas, 2013).  

Drug delivery to gut epithelium requires specificity for epithelial cells and stability at 

low pHs which is why plant lectins are considered such good reagents for this purpose, 

with their propensity to interact with mucins present on the absorptive epithelial cells 

leading to bioadhesion, with Peanut agglutinin and Wheat germ agglutinin having been 

used in such studies (Bahrami et al., 2017; Lavín de Juan et al., 2017; Malekzad et al., 

2017). It is also worth noting that nasal mucosa is also covered in M-cells being the 

equivalent of the gastrointestinal tract and as such, also possessing the same potential for 

targeted drug delivery mediated by lectins with studies in rats using Griffonia 

simplicifolia I isolectin-B4 and isolectin B4 from Bandeiraea simplicifolia 1 (seen in 

table 4) having shown promise (Lavín de Juan et al., 2017). 

Pulmonary drug delivery activity of wheat germ agglutinin, Concanavalin A and 

soybean agglutinin has also been reported in functionalized liposomes causing increase 

in uptake of the drug delivery systems (Gupta et al., 2009; Lavín de Juan et al., 2017; 

Majee & Biswas, 2013). 

Lectins tend to bind on corneal and conjunctival surfaces presenting suitable 

bioadhesive properties for ocular drug delivery, which is promising since tearing, mucin 

secretion and blinking all contribute to the difficult ocular drug absorption (Majee & 
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Biswas, 2013).  Studies in rats and rabits using Solanum tuberosum lectin and wheat germ 

agglutinin have shown promise increasing the binding of the drug delivery systems (Lavín 

de Juan et al., 2017) 

  

Table 4 

Examples of lectins used in drug targeting (tissue specific) 

(Lavín de Juan et al., 2017) 
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8.2.3.2 Immunotoxins 

 

Immunotoxins are a specific type of nanoparticle drug delivery systems that most 

commonly couple a toxic unit with an antibody (or antibody related) unit allowing for 

extremely high specificity (Lavín de Juan et al., 2017).  

The lectins used in this type of system are usually ribosome inactivating lectins (also 

known as type 2 ribosome inactivating proteins) consisting of polypeptide lectin chain 

(B chain) connected by a disulfide bridge with a ribosome inactivating chain (A chain), 

with the A chain exhibiting the ribosomal specificity and being responsible for the protein 

synthesis inhibition in mammals and as such, the immunotoxin formulations that include 

these lectins are composed only by these A-chain that is extracted from said lectins (Lavín 

de Juan et al., 2017).   

Lectins used in such systems include Abrin (isolated from Abrus precatorius), which 

showed increase in the activity of systems in a specific manner through targeting of the 

gonadotropin releasing hormone receptor (GnRH- R) molecule which is overexpressed 

in breast carcinoma cells (Gadadhar & Karande, 2013), and Maackia amurensis seed 

lectin that showed results in targeting podoplanin (which is transmembrane receptor that 

promotes tumor cell mobility) and inducing mitochondrial membrane permeability and 

consequential cell death (Ochoa-Alvarez et al., 2015). 

  

Figure 11. Basic illustration of the composition of an immunotoxin  
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9. Conclusions 

 

As was explored throughout this work, lectin have major potential applications and used 

in a plethora of areas, however their applications in healthcare, and specifically in cancer 

related diseases, shows the most promise. With the growing control over infectious 

diseases combined with the general improvement of living conditions and healthcare, life 

expectancy has suffered a dramatic increase and as such diseases of chronic, genetic and 

age-related character have become the main focus of studies as they now pose a bigger 

problem to our quality of life. Cancer, now more than ever, is in the spotlight as with 

longer lifespans, with its previous relatively slow onset of symptoms and deterioration of 

health condition has now become more apparent. 

Plant lectin use has always been limited by our knowledge of them and technological 

means for both their study and application. As science evolves, and our techniques and 

understanding advance along with it, lectin use will without a doubt become as ubiquitous 

as their presence in living organisms has shown to be. 

As our structural understanding of lectins grows, so do the applications with which to use 

them. The more studies are conducted, the more unknown specific interactions will be 

found and mechanisms of action, through both poorly understood and completely new 

pathways, will become available to be utilized and put to proper use.  

The studying and application of lectins has increased at an astounding rate in the last few 

decades. Ever since the 1960s, with the realization that these readily available proteins 

are invaluable tools for the study of carbohydrates both simple and complex, in solution 

and on cell surfaces, as well as for cell characterization, this field has been extensively 

explored and studied. We have progressed from the mere knowledge that plant lectins 

have anticancer properties, among many others, to being able to create nanodrug delivery 

systems that utilize them. 

While plant lectin toxicity will always be a concern in any form on in vivo application, 

the drastic advancement in every area of our life that technology has provided in the last 

century has shown that studies in this field will surely bear fruit in the near future and that 

further investment in this area is required and will surely pay dividends. 
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