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Resumo 

 Os anidridos são compostos orgânicos, bastante utilizados pela sua maior 

reatividade, comparativamente à dos ácidos carboxílicos, estando presentes em 

vários tipos de reações, tais como condensação, esterificação, entre outras. No setor 

farmacêutico, estes compostos apresentam diversas aplicações, em múltiplos 

processos da produção de fármacos e síntese de péptidos. Uma área em que o seu 

interesse tem, também, crescido ultimamente é no desenvolvimento de novos 

sistemas de libertação de fármacos.  

 Tendo em conta a sua importância e aplicação, vários métodos de síntese 

destes compostos têm sido desenvolvidos ao longo dos anos, com o objetivo de 

chegar a uma alternativa eficiente e económica, que possa ser aplicada a um largo 

espetro de reagentes. 

 Os métodos clássicos para a síntese de anidridos envolvem o tratamento de 

ácidos carboxílicos com um agente acilante. Este último vai ativar o grupo carbonilo, 

permitindo o ataque por outros nucleófilos. É comum que se utilizem cloretos de acilo 

como reagentes primários desta reação. Uma alternativa a este processo é a 

combinação de ácidos carboxílicos com um forte agente desidratante. No entanto, os 

processos acima mencionados apresentam algumas desvantagens, tais como o 

emprego de reagentes tóxicos e/ou caros e a necessidade de decorrerem em 

condições extremas e utilizarem agentes catalisadores. Para além disso, os seus 

rendimentos são baixos e os produtos obtidos apresentam uma elevada instabilidade, 

sendo necessário um processamento dos produtos que pode ser extenso. Todas 

estas características limitam a sua aplicabilidade em processos de larga escala e têm 

levado à busca pelo desenvolvimento de novos métodos. 

 Como forma de ultrapassar as limitações referidas, têm surgido várias 

metodologias inovadoras, que incluem o uso de catalisadores metálicos ou de reações 

fotoredox com luz visível. Atualmente, uma alternativa que está a ganhar cada vez 

mais destaque prende-se com a substituição dos ácidos carboxílicos e derivados 

como reagentes primários por aldeídos e álcoois, pela sua maior disponibilidade. 

Vários métodos têm sido propostos nesta linha de procedimento, podendo ou não 

recorrer a metais catalisadores. No entanto apresentam algumas desvantagens, tais 

como o baixo número de produtos obtidos, uma vez que apenas um determinado 

espetro de aldeídos aromáticos é compatível com este processo de síntese. Os 

rendimentos obtidos não são, também, tão elevados quanto o desejável. 
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 Neste trabalho, é proposto um novo procedimento para a síntese de anidridos 

a partir de aldeídos e álcoois, utilizando a radiação solar como catalisador. O método 

em questão foi baseado em estudos anteriores e está dividido em dois passos 

sequenciais, sendo iniciado pela oxidação do aldeído ou do álcool através do ácido 

tricloroisocianúrico, em diclorometano e à temperatura ambiente. Após a ativação pela 

luz solar, é possível obter um cloreto de acilo no final do primeiro passo. De seguida, 

procede-se à adição do ácido carboxílico correspondente e de trietilamina a 0 ºC, o 

que leva à síntese do anidrido simétrico com bom rendimento.  

 Apesar de nos estudos anteriores ainda não se ter estabelecido o mecanismo 

pelo qual se rege a reação, é feita uma proposta neste trabalho. Assim, sugere-se que 

o processo se inicie com a conversão do aldeído num cloreto de acilo, através da 

oxidação pelo TCCA, que segue um mecanismo radicalar catalisado pela luz solar. 

No segundo passo da reação, dá-se o ataque nucleofílico do cloreto de acilo pelo 

ácido carboxílico, previamente ativado pela trietilamina. No caso dos álcoois, supõe-

se que o mecanismo seja o mesmo que o proposto para os aldeídos, sendo necessário 

a conversão prévia do álcool primário num aldeído, pela formação de um hipoclorito.  

O estudo iniciou-se com a utilização de aldeídos como reagentes primários, 

aplicando as condições ótimas de reação, determinadas num estudo simultâneo. 

Foram utilizados vários tipos de aldeídos, tanto aromáticos como alifáticos, de forma 

a determinar-se o campo de aplicação do método. Relativamente à utilização de 

aldeídos aromáticos, estes permitiram a obtenção de anidridos simétricos com bons 

rendimentos, especialmente recorrendo a aldeídos com substituintes eletrodadores. 

No entanto, foram também obtidos bons resultados com substituintes eletrofílicos, à 

exceção do 4-nitrobenzaldeído e 4-cianobenzaldeído, devido à pouca reatividade 

destes compostos, e do 4-trifluorometillbenzaldeído. Os maus resultados deste último 

deveram-se a falhas no procedimento.  

 Quanto à utilização de álcoois como reagentes primários, o ponto de partida 

foi a determinação das condições ótimas da reação, de modo a estabelecer o tempo 

de reação e a quantidade de TCCA e solvente utilizados no primeiro passo, bem como 

a quantidade de trietilamina e a utilização de ácido carboxílico ou de água para a 

realização do segundo passo. Depois de determinadas as melhores condições, estas 

foram aplicadas à síntese de anidridos, tendo sido possível obter um produto, com 

bom rendimento. No entanto, o tempo do estudo foi limitado, pelo que se devem 

proceder a investigações futuras. 
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Tendo em conta os resultados, este estudo apresenta-se como uma boa 

alternativa aos atuais procedimentos de produção de anidridos, sendo um método 

bastante seletivo que evita a formação de produtos secundários. Para além disso, é 

também um método bastante económico, uma vez que utiliza uma razão 

estequiométrica ótima de reagentes, evitando o seu uso em excesso. Os reagentes 

utilizados foram escolhidos pelas suas características ecológicas e económicas, 

sendo compostos facilmente disponíveis e vantajosos a baixo custo. 

 

Palavras-chave: Álcoois, aldeídos, anidridos, luz solar, oxidação, ácido 

tricloroisocianúrico.  
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Abstract 

 Anhydrides are important organic compounds, applied in pharmaceutical 

sciences to a number of processes during drug production and synthesis of peptides. 

Furthermore, these compounds have been displaying an increasing interest and 

applicability in the development of new drug delivery systems. Thus, it is important to 

find an effective method for the synthesis of anhydrides, that is both green and 

economic. In this work, a metal-free oxidative cross-coupling process for the synthesis 

of anhydrides from aldehydes or benzylic alcohols is presented. The aldehydes or 

alcohols were oxidized in situ into their corresponding acyl chlorides, using the sun 

light as an activator. The acyl chloride was then reacted with the corresponding 

carboxylic acid, in the presence of triethylamine to give the desired anhydride. All 

reagents applied in this method are green and readily available and are used in an 

optimal stoichiometric ratio. Using aldehydes, it was possible to obtain a number of 

aromatic and aliphatic symmetric anhydrides, in good yields. Regarding the use of 

alcohols, this study focused on determining the optimal reaction conditions and 

afterwards it was possible to obtain one product in good yield. The method has a 

general applicability, being a selective, economical and green alternative for the 

synthesis of anhydrides. 

 

Keywords: Alcohols, aldehydes, anhydrides, oxidation, solar light, trichloroisocyanuric 

acid. 
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1 Introduction 

1.1 Structure and Chemistry 

The carboxyl group is one of the most widely occurring functional groups in 

chemistry. There are several related compounds, called carboxylic acid derivatives, 

that contain a carbonyl group with an electronegative atom attached to the carbonyl 

carbon, leading to major changes in reactivity. Carboxylic acid derivatives include four 

major families of related compounds: halides, anhydrides, esters, and amides, and 

many of which have an important role in biology. Carboxylic anhydrides can be 

perceived as a carboxylic acid with an acyl group as a substituent attached to the 

oxygen (Figure 1.1). (1,2)  

 

Figure 1.1 General structure of an anhydride 

 

1.2 Anhydrides importance and major applications 

In organic chemistry, carboxylic anhydrides are important acylating 

compounds, due to their high reactivity when compared with carboxylic acids, and are 

commonly used as functional reagents in many types of reactions, such as 

condensation reactions, esterification reactions, etc. (3) In pharmaceutical sciences, 

anhydrides can be applied in a number of processes during drug production and 

synthesis of peptides. (4,5) In addition to that, these compounds have been displaying 

an increasing interest and applicability in the development of new drug delivery 

systems. Due to predictable drug release profiles, anhydride-based polymers have 

been presenting a prominent role in controlled-release applications and, for the past 

few years, nanoparticles containing anhydrides have been developed for oral drug 

delivery systems, immunization and allergy treatment, with great results regarding their 

efficacy. (6,7) Furthermore, Jie Fu et al have produced a new family of ether-anhydride 

copolymers that allow efficient drug release following inhalation. (8)  Also in 

biochemistry anhydrides seem to have an important role, serving as reagents for the 

synthesis of peptides and as labelling agents in quantitative proteomics. (9) 
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1.3 Methodologies for the synthesis of anhydrides 

The classical pathway for the formation of anhydrides involves treating 

carboxylic acids with an acylating agent, such as acyl halides, activated esters or 

reactant anhydrides, that activates the carbonyl function to attack by other nucleophiles 

(Figure 1.2). (10) Acyl chlorides, as one of the most common acyl halides, are widely 

used as starting reagents for this reaction (11,12). Traditionally, these compounds are 

formed from the parent carboxylic acid, by reacting it with thionyl chloride (SOCl2) or 

phosphorus tribromide (PBr3) (Figure 1.3). (2,13) 

 

Figure 1.2: Synthesis of symmetric anhydrides from carboxylic acids treated with an 
acylating agent. 

 

 

Figure 1.3: Preparation of acyl chloride. 

Alternatively, anhydrides can also be obtained by combining carboxylic acids 

with a powerful dehydrating coupling agent, such as phosphoranes, isocyanates, 

phosgene, sulfonyl chloride, carbodiimides, 1,3,5-triazines and pyridazine-3(2H)-ones 

(Figure 1.4). (14) However, many of these methods struggle with a few drawbacks, 

including the use of expensive and/or toxic reagents, low yields, instability of the 

products, need of high temperature and/or harsh conditions, need of catalyst and 

tedious work-up procedures, which can limit their applications and have led to attempts 

to develop new approaches. (15) 

 

Figure 1.4: Synthesis of symmetric anhydrides from carboxylic acids treated with a 

dehydrating agent. 

To overcome these limitations, different and ground-breaking strategies have 

been developed for the synthesis of anhydrides. These approaches include metal-

catalysed reactions, such as Pd-catalysed and nano CuO-catalysed reactions, and the 
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conversion of carboxylic acids to symmetrical anhydrides catalysed by a photoredox 

reaction with visible light. (16)  

 

1.4 Obtaining anhydrides from aldehydes and alcohols 

Many new methods lean towards the replacement of carboxylic acids and their 

derivatives with aldehydes and alcohols as starting reagents, due to their high 

availability. Patel et al. have  proposed the first example for the synthesis of carboxylic 

anhydrides from aromatic aldehydes, using tert-butylhydroperoxide (TBHP) as an 

oxidant and nano CuO as catalyst, at 120 ºC for 5h. (17) In recent years, other 

methodologies, both metal-catalysed and metal-free, have been proposed for 

producing anhydrides from aldehydes, using TBHP as an oxidant and occurring at high 

temperatures (Figure 1.5). (18) However, these methods suffer from major drawbacks, 

like their restricted reaction scope, as only a number of aromatic aldehydes are 

compatible with these procedures, and the low yields for the desired anhydrides. (18) 

 

Figure 1.5: Strategies for obtaining carboxylic anhydrides from aldehydes. (18: p. 2534)  

 Recently, L. de Luca and co-workers have established a new process to obtain 

carboxylic anhydrides directly from aromatic and aliphatic aldehydes, using 

trichloroisocyanuric acid (TCCA) (Figure 1.6) as an oxidative and chlorinating agent. 

(19) This compound is often preferred for its safety, low toxicity and efficiency, also on 

large scale. All three chlorine atoms present in this structure are active, making it an 

economic reagent, together with its general high solubility in organic solvents that 

allows the reduction of the necessary volume of solvent. (20,21).  

 Figure 1.6: Trichloroisocyanuric Acid (TCCA) 
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The investigators propose a mechanism that involves the reaction of an 

aldehyde with TCCA in dichloromethane at room temperature, with the formation of an 

acyl chloride. This compound is later treated with the correspondent acid and 

triethylamine (Et3N), at 0 ºC. After 1h at room temperature, the desired anhydride is 

formed in a good yield (Figure 1.7). (22) 

 

 

Figure 1.7: Synthesis of carboxylic anhydrides from aromatic and aliphatic aldehydes, 
using TCCA as an oxidizing agent. 

 As alcohols are stable compounds, with a good availability, the investigators 

also thought it would be interesting and efficient to be able to convert them directly into 

acid anhydrides. The same oxidative reagent as the previously mentioned method was 

used in this mechanism, in dichloromethane and at room temperature. Subsequently, 

an acyl chloride was generated and treated with the correspondent acid and Et3N, at 

0 ºC, producing the desired anhydride after 1h at room temperature, in a good yield. 

With this methodology they found it possible to synthesise both symmetric and pure 

mixed anhydrides from primary benzylic alcohols with carboxylic acids. The proposed 

mechanism, based on previous papers, includes the reaction between the alcohol and 

TCCA, producing a hypochlorite that readily loses hydrogen chloride to form an 

aldehyde. This last compound is then converted into the acyl chloride, through a radical 

pathway. From this point on, the mechanism is similar to the one previously described 

for the reaction with aldehyde as a starting reagent (Figure 1.8). (22) 

 

Figure 1.8: Reaction mechanism for the synthesis of anhydrides from primary alcohols. 
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After optimizing the conditions in which it took place, the scope of the reaction 

was investigated. It was possible to obtain symmetrical anhydrides from both electron-

rich aromatic aldehydes and aromatic aldehydes with electron-withdrawing 

substituents in good yields. Aliphatic aldehydes also gave good yields for the 

production of the corresponding symmetric anhydrides, an unprecedent observation. 

The array of alcohols investigated gave the desired symmetrical anhydrides in good 

yields. Using this procedure, it was also possible to obtain, isolate and characterize 

mixed anhydrides, despite their instability. (22) 

Although this new methodology makes it possible to produce anhydrides from 

readily available and green reagents, while using mild reaction conditions, previous 

studies have shown that the first step of the reaction can be extensive, taking up to 5 

days to give the desired product in a good yield. Consequently, the reaction needed to 

occur under an Argon atmosphere, to avoid product degradation. (23) (18)  

 

1.5 Objectives 

Following the work of L. de Luca (19), in this study we aimed to optimize the 

previously proposed methodology to prepare anhydrides from aldehydes and alcohols, 

via generation in situ of an acyl chloride. Using the same reagents as the previous 

method, this pathway includes a photochemical activation of the substrate to shorten 

the total reaction time. TCCA was the chosen chlorinating and oxidative agent, due to 

the abovementioned characteristics. Based on previous studies, Et3N was selected as 

base for the second step of the reaction, as this was the reagent that has given the 

best result. (19) In these conditions, we disregarded the need to use an Argon 

atmosphere to avoid product degradation, achieving a more efficient and feasible 

methodology.  
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2 Methodology 

2.1 General experimental chemistry 

Flash chromatography was generally performed on silica gel (pore size 60 Å, 32-

63 nm particle size). 

Thin-layer chromatography (TLC) analysis was performed with Merck Kieselgel 

60 F254 plates. Results were visualized using UV light at 254 nm, cerium ammonium 

molybdate (CAM) and 2,4-dinitrophenylhydrazine (2,4-DNP) staining.  

1H NMR spectra were measured on a Bruker Avance III 400 spectrometer 400 

MHz, using CDCl3 solutions and TMS as an internal standard. Chemical shifts are 

reported in parts per million (ppm, d) relative to internal tetramethylsilane standard 

(TMS, d 0.00). The peak patterns are indicated as follows: s, singlet; d, doublet; t, 

triplet; m, multiplet; q, quartet; dd, doublet of doublets; br, broad. The coupling 

constants, J, were determined using MestreNova and are reported in Hertz (Hz). 

13C NMR were measured on a Bruker Avance III 100 MHz, using CDCl3 solutions 

and TMS as an internal standard. Chemical shifts are reported in parts per million 

(ppm, d) relative to internal tetramethylsilane standard (TMS, d 0.00).  

Melting points were determined in open capillary tubes and are uncorrected. 

 

2.2 Equipment 

• Abet tech sun 2000 simulator (under 100 mW/cm2 simulated AM 1.5G 

irradiance); 

• Vilber Lourmat VL-208.G lamp (2 tubes, 8W each, 254 nm); 

• Rotavapor BUCHI; 

• Leitz Laborlux S for melting point; 

• IKA Stirrer Magnetic Color IKAMAG; 

• Kern analytical balance 

 

2.3 Reagents and Solutions 

All reagents and solvents were obtained by commercial source. All solvents were 

dried by usual methods and distilled under Argon. Aldehydes were fresh distilled before 

use. 
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• 2,4-dinitrophenylhydrazine for TLC staining: 2,4-DNP (sigma-aldrich, 97%), 

sulfuric acid (sigma-aldrich, 99.999%) and ethanol (sigma-aldrich, 95%); 

• Cerium ammonium molybdate for TLC staining: ammonium molybdate (sigma-

aldrich, 99.98%), ceric ammonium sulfate (sigma-aldrich) and sulfuric acid 

(sigma-aldrich, 99.999%); 

• CDCl3 (Sigma-Aldrich, 99.96 atom % D, ≥99%) as a solvent for 1H NMR and 

13C NMR spectra; 

• Tetramethylsilane (TMS) (Sigma-Aldrich, ≥ 99.5%) as internal standard for 1H 

NMR and 13C NMR spectra; 

• TCCA (Sigma-Aldrich, ≥ 95%); 

• Et3N (Sigma-Aldrich, ≥ 99.5%); 

• Hexane (sigma-aldrich, solvent grade); 

• Ethyl acetate (EtOAc) (sigma-aldrich, solvent grade); 

• Water; 

• HCl (Sigma-Aldrich, 37%); 

• NaHCO3 (Sigma-Aldrich, ≥ 99.7%); 

• Na2SO4 (Sigma-Aldrich, 99%); 

• Aldehydes: benzaldehyde (Sigma-Aldrich, ≥ 99%); 4-chlorobenzaldehyde 

(Sigma-Aldrich, 97%); 4-nitrobenzahdehyde (Sigma-Aldrich, ≥ 98%); 

pivalaldehyde (Sigma-Aldrich, ≥ 96%); hydrocinnamaldehyde (Sigma-Aldrich, 

≥ 95%); cyclohexanecarboxaldehyde (Sigma-Aldrich, 97%); 4-

fluorbenzaldehyde (Sigma-Aldrich, 98%); 2,4-dichlorobenzaldehyde (Sigma-

Aldrich, ≥ 99%); 4-(trifluoromethyl)benzaldehyde (Sigma-Aldrich, ≥ 98%); 4-

cyanobenzaldehyde (Sigma-Aldrich, ≥ 98%);  

• Carboxylic acids: benzoic acid (Sigma-Aldrich, ≥ 99.5%); 4-chlorobenzoic acid 

(Sigma-Aldrich, 99%); 4-nitrobenzoic acid (Sigma-Aldrich, 98%); pivalic acid 

(Sigma-Aldrich, 99%); hydrocinnamic acid (Sigma-Aldrich, 99%); 

cyclohexanecarboxylic acid (Sigma-Aldrich, ≥ 98%); 4-fluorbenzoic acid 

(Sigma-Aldrich, 98%); 2,4-dichlorobenzoic acid (Sigma-Aldrich, 98%);   

• Alcohols: benzyl alcohol (Sigma-Aldrich, 99.8%); 4-chlorobenzyl alcohol 

(Sigma-Aldrich, 99%). 

 

 

 



 21 

2.4 Experimental Procedure 

2.4.1 General method for aldehydes 

TCCA (256 mg; 1.1 mmol) was portionwise added to a solution of an aldehyde 

(1.1 mmol), at room temperature. In case the starting aldehyde was a solid, 1 mL of 

DCM was added to the mixture. The resulting suspension was sealed from the external 

conditions with Parafilm and stirred in the solar simulator for 1.5 hours. After this time, 

the reaction was monitored by TLC and when deemed necessary, the TLC plates were 

stained with 2,4-DNP or CAM. Next, the second step was performed. The reaction 

mixture was cooled to 0 ºC in an ice bath and stirred and the carboxylic acid (122 mg; 

1 mmol) was then added to the mixture, followed by the addition of Et3N (202 mg; 2 

mmol) at a dropwise rate. 2 mL of DCM were added as solvent. Next to the addition of 

all reagents, the reaction was stirred at room temperature and monitored by TLC. The 

reaction was complete after 2 hours. For the products R1, R2, R3, R6, R8 and R9 the 

solvent was evaporated under vacuum and the residue was purified by flash 

chromatography. 

For the products R4, R5 and R7 the reaction mixture was washed three times 

with a solution of 5% HCl and then three times with a solution of 5% NaHCO3. The 

organic phase was dried over anhydrous Na2SO4 and the solvent was then evaporated 

under vacuum, providing the desired anhydride. 

Benzoic anhydride R1 

 

  Purified by flash chromatography (Hexane/EtOAc, 4.5:0.5). 

Obtained as colourless oil (180 mg, 0.79 mmol, 80%): Rf 0.33 (Hexane/EtOAc, 

4.5:0.5); 1H NMR (400 MHz, CDCl3) : 8.16 (d, J = 7.6 Hz, 4H, Ar-H), 7.67 (t, J = 7.4 

Hz, 2H, Ar-H), 7.52 (t, J = 7.5 Hz, 4H, Ar-H) (22); 13C NMR (100 MHz, CDCl3) : 162.2 

(C=O), 134.4 (Ar(C4)-C), 130.4 (Ar(C2,6)-C), 128.8 (Ar(C3,5)-C), 128.7 (Ar(C1)-C) 

(22). 
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4-Chlorobenzoic anhydride R2 

  Purified by flash chromatography (Hexane/EtOAc, 4:1). 

Obtained as white solid (quantitative): Rf 0.32 (Hexane/EtOAc, 4:1); mp 193-194 ºC; 

1H NMR (400 MHz, CDCl3) : 8.16 (d, J = 7.6 Hz, 4H, Ar-H), 7.67 (t, J = 7.4 Hz, 2H, 

Ar-H), 7.52 (t, J = 7.5 Hz, 4H, Ar-H) (22); 13C NMR (100 MHz, CDCl3) : 161.3 (C=O), 

141.4 (Ar(C4)-Cl), 131.9 (Ar(C2,6)-C), 129.4 (Ar(C3,5)-C), 127.1 (Ar(C1)-C) (22). 

 

Pivalic anhydride R4 

  Purified by flash chromatography (Hexane/EtOAc, 4:1). Obtained as 

yellow oil (179 mg, 0.96 mmol, 96%): Rf 0.58 (Hexane/EtOAc, 4.5:0.); 1H NMR (400 

MHz, CDCl3) : 1.19 (s, 18H, C(CH3)3); 13C NMR (100 MHz, CDCl3) : 173.7 (C=O), 

39.9 (C(CH3)3), 26.3 (C(CH3)3). (22) 

 

4-fluorobenzoic anhydride R6 

  Purified by flash chromatography (Hexane/EtOAc, 4:1). 

Obtained as white solid (quantitative) Rf 0.43 (Hexane/EtOAc, 4.5:0.5); mp 113-115 

ºC; 1H NMR (400 MHz, CDCl3) : 8.20 – 8.14 (m, 4H, Ar-H), 7.24 – 7.18 (m, 4H, Ar-

H); 13C NMR (100 MHz, CDCl3) : 166.7 (C=O), 161.2 (Ar(C4)-F), 133.3 (Ar(C2,6)-C), 

125.0 (Ar(C1)-C), 116.5 (Ar(C3,5)-C) (22) 

 

Cyclohexanecarboxylic anhydride R7 

  Reaction mixture washed three times with a solution of 5 % HCl 

and then three times with a solution of 5 % NaHCO3; the organic phase was dried over 

anhydrous Na2SO4 and the solvent was evaporated under reduced pressure providing 

the desired anhydride. Obtained as colourless oil (217 mg, 0.91 mmol, 91%); 1H NMR 

(400 MHz, CDCl3) : 2.39 (tt, J = 11.1, 3.6 Hz, 2H, H-CHx)), 1.97 – 1.91 (m, 4H, H-
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CHx)), 1.80 – 1.73 (m, 4H, H-CHx)), 1.66 – 1.60 (m, 2H, H-CHx)), 1.53 – 1.41 (m, 4H, 

H-CHx)), 1.34 – 1.19 (m, 6H, H-CHx)); 13C NMR (100 MHz, CDCl3) : 171.8 (C=O), 

43.9 (CHx-C1), 28.4 (CHx-C2, C6), 25.5 (CHx-C4), 25.1 (CHx-C3, C5). (22) 

 

2,4-dichlorobenzoic anhydride R8 

  Purified by flash chromatography (Hexane/EtOAc, 4.5:0.5). 

Obtained as white solid (186 mg, 0.51 mmol, 51%) Rf 0.4 (Hexane/EtOAc, 4.5:0.5); mp 

102-106 ºC; 1H NMR (400 MHz, CDCl3) 7.97 (d, J = 8.5 Hz, 2H, Ar-H), 7.54 (d, J = 1.9 

Hz, 2H, Ar-H), 7.38 (dd, J = 8.5, 1.9 Hz, 2H, Ar-H).; 13C NMR (300 MHz, TMS) : 159.4 

(C=O), 136.3 (Ar(C2)-C), 133.6 (Ar(C6)-C), 131.5 (Ar(C4)-Cl), 130.2 (Ar(C1)-C), 127.5 

(Ar(C3)-C), 126.2 (Ar(C5)-C). (24) 

 

 

2.4.1.1 Exceptions  

TCCA (256 mg; 1.2 mmol) was portionwise added to a solution of an aldehyde 

(1.1 mmol), at room temperature. In case the starting aldehyde was a solid, 1 mL of 

DCM was added to the mixture. The resulting suspension was sealed from the external 

conditions with Parafilm and stirred in the solar simulator for 1.5 hours. After this time, 

the reaction was monitored by TLC and then the second step was performed. The 

reaction mixture was cooled to 0 ºC in an ice bath and stirred and the water (18 mg; 1 

mmol) was then added to the mixture, followed by the addition of Et3N (202 mg; 2 

mmol) at a dropwise rate. 2 mL of DCM were added as solvent. Next to the addition of 

all reagents, the reaction was stirred at room temperature and monitored by TLC. The 

reaction was complete after 2 hours. Then, the solvent was evaporated under vacuum 

and the residue was purified by flash chromatography. This methodology was applied 

to reactions 9 and 10 (R9 and R10). 

 

4-Trifluoromethylbenzoic anhydride R9 

  Purified by flash chromatography (Hexane/EtOAc, 4:1). 

Obtained as white solid (41 mg, 0.011 mmol, 22%) Rf 0.34 (Hexane/EtOAc, 4.0:1); mp 

131-133 ºC; 1H NMR (400 MHz, CDCl3) : 8.28 (d, J = 8.2 Hz, 4H, Ar-H), 7.82 (d, J = 
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8.3 Hz, 4H, Ar-H); 13C NMR (125 MHz, CDCl3) δ 123.30 (J 1 = 271.3 Hz) (CF3), 126.05 

(J 3 = 3.8 Hz) (Ar(C3,5)-C), 130.96 (Ar(C2,3)-C), 131.68 (Ar(C1)-C), 136.11 (J 2 = 32.5 

Hz) (Ar(C4)-CF3), 160.77 (C=O). (25) 

 

For the reaction using hydrocinnamaldehyde (R5), TCCA (256 mg; 1.1 mmol) 

was portionwise added to the liquid aldehyde (1.1 mmol), at room temperature, and 1 

mL of DCM was added to the mixture. The resulting suspension was sealed from the 

external conditions with Parafilm and stirred in the solar simulator for 1.5 hour. After 

this time, the reaction was monitored by TLC and then the second step was performed. 

The reaction mixture was cooled to 0 ºC in an ice bath and stirred and the water (18 

mg; 1 mmol) was then added to the mixture, followed by the addition of Et3N (202 mg; 

2 mmol) at a dropwise rate. 2 mL of DCM were added as solvent. Next to the addition 

of all reagents, the reaction was stirred at room temperature and monitored by TLC. 

The reaction was complete after 2 hours. Then, the solvent was evaporated under 

vacuum and the residue washed three times with a solution of 5% HCl and then three 

times with a solution of 5% NaHCO3. The organic phase was dried over anhydrous 

Na2SO4 and the solvent was then evaporated under vacuum, providing the desired 

anhydride. 

 

Hydrocinnamic anhydride R5 

  Purified by flash chromatography (Hexane/EtOAc, 4:1). 

Obtained as colourless oil (223 mg, 0.79 mmol, 79%): Rf 0.57 (Hexane/EtOAc, 4.5:0.5) 

(18); 1H NMR (400 MHz, CDCl3) : 7.37 – 7.29 (m, 4H, CH2-COOR), 7.27 – 7.08 (m, 

6H, Ar-H), 2.99 (t, J = 7.6 Hz, 4H, CH2-Ar), 2.77 (t, J = 7.6 Hz, 4H, Ar-H); 13C NMR 

(100 MHz, CDCl3) : 168.4 (C=O), 139.4 (Ar(C1)-C), 128.5 (Ar(C3,5)-C), 128.2 

(Ar(C2,6)-C), 126.4 (Ar(C4)-C), 36.6 (CH2-COOR), 30.0 (CH2-Ar) (22) 

 

2.4.2 Optimization of the time of the reaction conditions for alcohols 

TCCA (255.7 mg; 1.1 mmol) was added to benzylic alcohol (119 mg; 1.1 mmol) 

in 1 mL of DCM, at room temperature. The resulting suspension was sealed from the 

external conditions with Parafilm and stirred in the solar simulator. The reaction was 

monitored by TLC (Hex:EtOAc, 4:1) until the disappearance of the alcohol, staining the 

TLC plates with 2,4-DNP. The reaction was complete after 1.5 hours. Then, the 
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reaction mixture was cooled to 0 ºC in an ice bath and stirred. The benzoic acid (122 

mg; 1 mmol) was then added to the mixture, followed by the addition of Et3N (202 mg; 

2 mmol) at a dropwise rate. 2 mL of DCM were added as solvent. Next to the addition 

of all reagents, the reaction was stirred at room temperature and monitored by TLC 

(Hex:EtOAc, 4:1) until the disappearance of the carboxylic acid. Then the solvent was 

evaporated under vacuum and the residue was purified by flash chromatography. 

In order to find the optimal amount of TCCA as starting reagent for the first step, 

a second reaction was performed. TCCA (302 mg; 1.3 mmol) was added to the 

benzylic alcohol (119 mg; 1.1 mmol) in 1 mL of DCM, at room temperature. The 

resulting suspension was sealed from the external conditions with Parafilm and stirred 

in the solar simulator. The reaction was monitored by TLC (Hex:EtOAc, 4:1) until the 

disappearance of the alcohol staining the TLC plates with 2,4-DNP. The reaction was 

complete after 1.5 hours. Then, the reaction mixture was cooled to 0 ºC in an ice bath 

and stirred. The benzoic acid (122 mg; 1 mmol) was then added to the mixture, 

followed by the addition of Et3N (202 mg; 2 mmol) at a dropwise rate. 2 mL of DCM 

were added as solvent. Next to the addition of all reagents, the reaction was stirred at 

room temperature and monitored by TLC (Hex:EtOAc, 4:1) until the disappearance of 

the carboxylic acid. Then the solvent was evaporated under vacuum and the residue 

was purified by flash chromatography. 

Afterwards, a third reaction was carried out to test the use of a different reagent 

in the second step. TCCA (255.7 mg; 1.1 mmol) was added to benzylic alcohol (119 

mg; 1.1 mmol) in 1 mL of DCM, at room temperature. The resulting suspension was 

sealed from the external conditions with Parafilm and stirred in the solar simulator. The 

reaction was monitored by TLC (Hex:EtOAc, 4:1) until the disappearance of the 

alcohol, staining the TLC plates with 2,4-DNP. The reaction was complete after 1.5 

hours. Then, the reaction mixture was cooled to 0 ºC in an ice bath and stirred. Water 

(18 mg; 1 mmol) was then added to the mixture, followed by the addition of Et3N (134 

mg; 1.1 mmol) at a dropwise rate. Next to the addition of all reagents, the reaction was 

stirred at room temperature and monitored by TLC (Hex:EtOAc, 4:1) until the 

disappearance of the benzoyl chloride. Then the solvent was evaporated under 

vacuum and the residue was purified by flash chromatography. 

With the aim of testing the results of a longer first step, a fourth reaction was 

performed. TCCA (255.7 mg; 1.1 mmol) was added to benzylic alcohol (119 mg; 1.1 

mmol) in 1 mL of DCM, at room temperature. The resulting suspension was sealed 

from the external conditions with Parafilm and stirred in the solar simulator for 2 hours. 

The reaction was monitored by TLC (Hex:EtOAc, 4:1), staining the TLC plates with 
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2,4-DNP. Then, the reaction mixture was cooled to 0 ºC in an ice bath and stirred. The 

benzoic acid (122 mg; 1 mmol) was then added to the mixture, followed by the addition 

of Et3N (202 mg; 2 mmol) at a dropwise rate. 2 mL of DCM were added as solvent. 

Next to the addition of all reagents, the reaction was stirred at room temperature and 

monitored by TLC (Hex:EtOAc, 4:1) until the disappearance of the carboxylic acid. 

Then the solvent was evaporated under vacuum and the residue was purified by flash 

chromatography. 

Finally, to test the influence of the amount of Et3N used in the second step 

together with water, a fifth reaction was carried out. TCCA (255.7 mg; 1.1 mmol) was 

added to benzylic alcohol (119 mg; 1.1 mmol) in 1 mL of DCM, at room temperature. 

The resulting suspension was sealed from the external conditions with Parafilm and 

stirred in the solar simulator. The reaction was monitored by TLC (Hex:EtOAc, 4:1) 

until the disappearance of the alcohol, staining the TLC plates with 2,4-DNP. The 

reaction was complete after 1.5 hours. Then, the reaction mixture was cooled to 0 ºC 

in an ice bath and stirred. Water (18 mg; 1 mmol) was then added to the mixture, 

followed by the addition of Et3N (134 mg; 1.1 mmol) at a dropwise rate. 2 mL of DCM 

were added as solvent. Next to the addition of all reagents, the reaction was stirred at 

room temperature and monitored by TLC (Hex:EtOAc, 4:1) until the disappearance of 

the benzoyl chloride. Then the solvent was evaporated under vacuum and the residue 

was purified by flash chromatography. 

 

2.4.3 General method for alcohols 

TCCA (302 mg; 1.3 mmol) was portionwise added to a solution of an alcohol 

(1.1 mmol) in 2 mL of DCM, at room temperature. The resulting suspension was sealed 

from the external conditions with Parafilm and stirred in the solar simulator for 1.5 

hours. After this time, the reaction was monitored by TLC and when deemed 

necessary, the TLC plates were stained with 2,4-DNP or CAM. Next, the second step 

was performed. The reaction mixture was cooled to 0 ºC in an ice bath and stirred and 

the carboxylic acid (122 mg; 1 mmol) was then added to the mixture, followed by the 

addition of Et3N (202 mg; 2 mmol) at a dropwise rate. 2 mL of DCM were added as 

solvent. Next to the addition of all reagents, the reaction was stirred at room 

temperature and monitored by TLC. The reaction was complete after 2 hours. Then, 

the solvent was evaporated under vacuum and the residue was purified by flash 

chromatography. 
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4-Chlorobenzoic anhydride R16 

  Purified by flash chromatography (Hexane/EtOAc, 4:1). 

Obtained as colourless oil (202 mg, 0.68 mmol, 68%): Rf 0.32 (Hexane/EtOAc, 4:1); 

mp 193-194 ºC; 1H NMR (400 MHz, CDCl3) : 8.16 (d, J = 7.6 Hz, 4H, Ar-H), 7.67 (t, 

J = 7.4 Hz, 2H, Ar-H), 7.52 (t, J = 7.5 Hz, 4H, Ar-H) (22); 13C NMR (100 MHz, CDCl3) 

: 161.3 (C=O), 141.4 (Ar(C4)-Cl), 131.9 (Ar(C2,6)-C), 129.4 (Ar(C3,5)-C), 127.1 

(Ar(C1)-C) (22). 

  



 28 

3 Results and Discussion 

3.1 Chemistry 

3.1.1 Aldehydes 

Previous studies (22) have tried to establish an accurate mechanism for this 

reaction. However, so far, none has been fully determined. A possible mechanism is 

presented in Figure 3.1. The reaction begins with the conversion of an aldehyde to an 

acyl chloride, via oxidation with TCCA, following a radical pathway catalysed by 

sunlight. The second step of the reaction proceeds by reacting the acyl chloride with 

the carboxylic acid, in presence of Et3N. The nucleophilic attack of the acyl chloride by 

the carboxylate readily gives the corresponding anhydride 

 

For some reactions, it was not possible to perform the second step of the reaction 

with the direct use of the corresponding carboxylic acid, due to these not being 

available. In these cases, these reagents were generated in situ. A proposed 

mechanism for this step of the reaction is presented in Figure 3.2. The mechanism 

differs from the previous one in the second step of the reaction, where Et3N converts 

water into a good nucleophile, capable of attacking the carbonyl group of the acyl 

chloride and generating the corresponding carboxylic acid. From this point on, the 

reaction follows the same mechanism as the one previously described. 

 

Figure 3.1: Proposed reaction mechanism. 

Figure 3.2: Proposed reaction mechanism, using water in the second step. 
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3.1.2 Alcohols 

Also regarding the use of alcohols to obtain an acyl chloride, the mechanism of 

this reaction is not yet completely understood. A possible mechanism is presented in 

Figure 3.3, based on previous studies (22). In the first step of the reaction a series of 

radical pathways are catalysed by the sunlight. Firstly, the alcohol reacts with TCCA 

by a radical pathway and generates a hypochlorite, which easily loses HCl to form an 

aldehyde. From this point, the reaction follows the same mechanism proposed for 

aldehydes. 

 

 

3.2 Using aldehydes as starting reagents 

3.2.1 Optimal reaction conditions 

For the reactions using aldehydes as starting reagents, the optimal conditions 

had been determined in a simultaneous study and are presented in Figure 3.4 and 

Figure 3.5. The aforementioned conditions were applied to all reactions, with the 

exception of reactions 5, 9 and 10. 

 

Figure 3.3: Proposed reaction mechanism. 

Figure 3.4: General reaction for solid aldehydes. 



 30 

 

 In reaction 5, using hydrocinnamaldehyde, it was necessary to add 1 mL of 

solvent to the reaction mixture, although this is a liquid aldehyde. The methodology 

without DCM was applied at first but the reaction turned to a dark colour and started to 

release white smoke, which can be associated with the compound reactivity to highly 

oxidizing agents. 

For reactions 9 and 10, using 4-trifluoromethylbenzoic aldehyde and 4-

cyanobenzoic aldehyde as starting reagents, respectively, the carboxylic acid in the 

second step of the reaction was replaced by water. This alteration to the procedure 

was due to the fact that the corresponding carboxylic acids were not available as 

reagents. This issue was resolved by originating the carboxylic acids in situ, as 

demonstrated in Figure 3.2. 

 

3.2.2 Evaluation of aromatic aldehydes substrate scope 

The study started by investigating the reactivity of aryl aldehydes with aryl 

benzoic acids, to provide symmetrical anhydrides.  

 

Figure 3.5: General reaction for liquid aldehydes. 

Figure 3.6: Evaluation of aromatic aldehydes scope. 
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3.2.2.1 Electron-rich aromatic aldehydes 

 

Figure 3.7: Step 1 and 2 of R1 

The benzaldehyde, an electron-rich aromatic aldehyde, gave the best result, 

furnishing the corresponding anhydride in 80% yield (Figure 3.7, R1).  

 

3.2.2.1 Electron-withdrawing aromatic aldehydes 

The next group of compounds to be investigated was the aromatic aldehydes 

with electron-withdrawing substituents, namely fluorine, chlorine, nitro and cyanide. 

The 4-chlorobenzaldehyde and 4-fluorobenzaldehyde were converted to the 

corresponding anhydrides in good yields (Figure 3.6, R2 and R6).  

 

The 4-nitrobenzaldehyde was subjected to the same optimal reaction 

conditions but the corresponding 4-nitrobenzoic anhydride (Figure 3.6, R3) was 

originated only in trace amounts. The TLC for the second step of the reaction showed 

a considerable amount of 4-nitrobenzoyl chloride. Thus, the reaction was left overnight 

and was monitored after 24h by TLC, using a mix of Hex:EtOAc  (4:1). It was treated 

with 2,4-dinitrophenylhydrazine and molybdate to confirm the compounds observed 

were indeed the 4-nitrobenzoyl chloride, observing there was no product in significant 

amounts. This may be related to the poor reactivity of the corresponding carboxylate 

ion, which may require a longer reaction time or a different catalyst base to reach better 

yields. (14)  

Figure 3.8: Step 1 and 2 of R2, R3 and R6. 
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The 2,4-dichlorobenzoic and 4-tifluoromethylbenzoic anhydrides were also 

obtained in good yields (Figure 3.6, R8 and R9). The lower yields of these reactions 

are normal, since it was necessary to perform a second flash chromatography to purify 

the desired anhydride, which may have led to the loss of some product. 

 

 

 

The reaction to furnish 4-cyanobenzoic anhydride (Figure 3.6, R10) was 

performed under the same optimal conditions and one product was isolated and 

purified. However, upon the analysis of the 1H-NMR spectrum, it was observed that the 

desired anhydride had not been synthesized and there were considerable amounts of 

the carboxylic acid present in the product. A possible explanation for this fact may be 

that the cyano group considerably weakens the nucleophilicity of the carboxylic acid, 

leading to a decreased ability to attack the acyl chloride. 

 

Figure 3.9: Step 1 and 2 of R8. 

Figure 3.10: Step 1 and 2 of R9. 

Figure 3.11: Step 1 and 2 of R10. 



 33 

3.2.3 Evaluation of aliphatic aldehydes substrate scope 

After analysing the scope for aromatic aldehydes, the same conditions were 

applied to aliphatic aldehydes. Although these compounds cannot typically survive 

under strong oxidative conditions (22), the corresponding anhydrides were furnished 

in good yields (Figure 3.12)  

 

 The reaction with pivalaldehyde gave the best result, with a 91% yield, even 

under strong oxidative conditions, without any solvent.  

 

 Regarding R5 and R7, after the addition of the TCCA to the aldehyde, the 

reaction mixture turned brown and released a lot of smoke, due to the high reactivity 

of these substrates under strong oxidative conditions. For this reason, the same 

reaction was performed with the addition of DCM as solvent. 

 

Figure 3.12: Evaluation of aliphatic aldehydes scope. 

Figure 3.13: Step 1 and 2 of R4. 

Figure 3.14: Step 1 and 2 of R5 and R7. 
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An analysis to the 1H-NMR spectra for these reactions confirms the desired 

products were attained, including the pivalic anhydride that could have a worst result 

due to the sterically hindered substrate. However, although the products were purified, 

it was not possible to obtain the desired anhydrides in a pure state, which can be 

observed from the 1H-NMR spectra. 

 

3.3 Using alcohols as starting reagents 

3.3.1 Optimal reaction conditions  

In order to determine the optimal reaction conditions for the production of 

anhydrides from alcohols, the same compound was synthesised under different 

conditions and the results were compared. The various reactions performed are 

summarized in Table 3.1. 

Table 3.1: Determining the optimal reaction conditions. 

REACTION FIRST STEP SECOND STEP YIELD 

DCM TCCA Time Carboxylic Acid Water Et3N 

R11 1 mL 1.1 Eq 1.5 h 1 Eq --- 2 Eq 50% 

R12 1 mL 1.3 Eq 1.5 h 1 Eq --- 2 Eq 80% 

R13 1 mL 1.1 Eq 1.5 h --- 1 Eq 2 Eq 34% 

R14 1 mL 1.1 Eq 2 h 1 Eq --- 2 Eq 49% 

R15 1 mL 1.1 Eq 1.5 h --- 1 Eq 1.1 Eq 48% 

  

The investigation started by treating benzaldehyde (1.1 mmol) with TCCA (1.1 

mmol), at room temperature. We observed the first step of the reaction didn’t work 

under these conditions so we repeated it with the addition of 1 mL of DCM as solvent 

to the reaction mixture. Following the procedure described in the experimental section, 

the benzoic anhydride was generated in 50% yield.  

Afterwards, we tested the possibility that increasing the amount of TCCA in the 

first step of the reaction would give a better yield. Treating the benzaldehyde (1.1 

mmol) with 1.3 mmol of TCCA proved to be a more efficient methodology, giving an 

80% yield, maintaining all the other conditions.  

The next step was to analyse the effect of using water in the second step, to 

generate the corresponding carboxylic acid in situ. The desired anhydride was 
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obtained in 34% yield, proving to be less effective then the direct use of a carboxylic 

acid. 

 In attempt to make the method using water more efficient, the same reaction 

was performed, reducing the amount of Et3N in the second step (1.1 mmol). All the 

other conditions were maintained and the desired anhydride was generated in 48% 

yield. Facing this result, it was observed that it is more effective to use a lower amount 

of Et3N with water. However, this methodology is still not as efficient as the previous 

one, using the carboxylic acid directly (48% vs. 80%). 

The next variable to be investigated was the duration of the first step of the 

reaction, which was prolonged for 30 minutes, to a total of 2 hours. Maintaining all the 

other parameters, the desired anhydride was obtained in a 49% yield. 

An interpretation of all the above mentioned results determines the optimal 

reaction conditions as stated in Figure 3.15.  

 

 

3.3.2 Producing aromatic anhydrides 

The optimal reaction conditions previously determined were applied to 4-

chlorobenzilic alcohol, originating the 4-chlorobenzoic anhydride in a 68% yield. 

  rea 

 

 

 

 

 

 

 

   

Figure 3.15: General reaction for alcohols. 

Figure 3.16: Step 1 and 2 of R16. 
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4 Conclusions  

 In order to develop a new metal free methodology for the production of 

carboxylic anhydrides from aromatic and aliphatic aldehydes and primary benzylic 

alcohols, using TCCA as chlorinating reagent and sunlight as catalyst, a number of 

anhydrides were synthesised under optimal reaction conditions.  

 The study was divided in two parts, according to the molecule used as starting 

reagent. For the generation of anhydrides from aldehydes, it was possible to obtain 

nine symmetrical anhydrides, both aromatic and aliphatic, although one of these was 

only present in trace amounts. The optimal reaction conditions had already been 

determined in a simultaneous study and were applied to all the reactions. According to 

the yields obtained with aromatic aldehydes, it seems that the reaction works best with 

electron-rich reagents, such as benzaldehyde. The results for the reaction with 

pivalaldehyde also appear to indicate that the reaction is not affected by sterically 

hindered substrates. Nevertheless, it would be prudent to perform supplementary 

studies that can attest to this theory, using additional electron-rich and sterically 

hindered reagents. All generated anhydrides were pure, as the 1H-NMR didn’t show 

the presence of any other molecules, apart from some solvents.  However, not all 

products were subjected to 1H-NMR analysis, due to a malfunction in the equipment 

that prevented its use for a period of time. Thus, future studies should include a 

complete characterization of all products. In addition to this, it would also be interesting 

to understand the scope of this reaction, in regard to the production of mixed 

anhydrides. 

 Among the tested products, the worst results were observed with 4-

nitrobenzoic anhydride (R3), 4-trifluoromethylbenzoic anhydride (R9) and 4-

cyanobenzoic anhydride (R10). In R3, the product was only obtained in trace amounts, 

which can be related to the poor reactivity of the substrate. The nitro group as 

substituent in the benzylic ring decreases the reactivity of the corresponding 

carboxylate ion and makes it more difficult to achieve the best results. The low yield 

attained with 4-trifluoromethylbenzoic anhydride may be related to the second flash 

chromatography that was required to purify the product.  

 Regarding the synthesis of anhydrides from alcohols, due to the limited amount 

of time, this study focused on determining the optimal reaction conditions. Afterwards, 

these conditions were used to test the production of different anhydrides.  To define 

the optimal reaction conditions, specific factors of the reaction, were altered, 

individually, and the results were interpreted. The settings under evaluation were the 
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amount of solvent and TCCA used in the first step of the reaction, the use of water to 

generate the carboxylic acid in situ during the second step of the reaction, the amount 

of Et3N utilized in conjunction with water and the duration of the first step of the 

reaction. After analysing all the results, the best conditions were fixed as stated in Erro! 

A origem da referência não foi encontrada.. 

 After determining the optimal reaction conditions, these were applied to 

synthesize 4-chlorobenzoic anhydride from 4-chlorobenzilic alcohol. The desired 

anhydride was produced in a good yield. However, due to the limited time available, it 

was not possible to extend this study to a bigger number of reagents. Further studies 

should include a set of aromatic and aliphatic alcohols as starting reagents, in order to 

determine the scope of this reaction, both for symmetrical and mixed anhydrides.  

Overall, this method presents itself as an efficient and green alternative to the 

already established ones for the production of anhydrides, using TCCA as chlorinating 

agent and solar radiation as an activator. Using cheap and readily available reagents 

in a stoichiometric ratio, the products were selectively obtained, without any side-

products detected.  
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6 Appendix 1 – NMR Spectra 

Reaction 4 1H-NMR  

 

Reaction 5 1H-NMR  
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Reaction 6 1H-NMR  

 

Reaction 7 1H-NMR  
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Reaction 8 1H-NMR  

 

 

Reaction 9 1H-NMR  
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Reaction 11 1H-NMR  

 

Reaction 15 1H-NMR  

 

 


