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Summary 

Cystic fibrosis is a condition caused by mutations in the cystic fibrosis transmembrane 

conductance regulator (CFTR), a chloride and bicarbonate channel. The epithelial 

sodium channel (ENaC) may also be affected. The defective function of these ion 

channels is thought to reduce the airway surface liquid (ASL) and lead to the 

accumulation of mucus in the airways that characterizes the disease and causes the 

recurrent pulmonary infections and inflammation that will ultimately destroy the lungs 

of the affected subjects.  

Phosphoinositides are rare signaling lipids that constitute a complex network regulating 

many cellular processes. One of phosphoinositides’ many functions is as cell membrane 

protein regulators, and several studies implicate phosphatidylinositol 4,5-biphosphate 

(PI(4,5)P2) in ENaC regulation.  

Diacylglycerol kinase (DGK), an enzyme of the phosphoinositide pathway that 

catalyses the phosphorylation of diacylglycerol (DAG) into phosphatidic acid (PA). 

When DGK is inhibited, it will cause the moderation of ENaC function, and this could 

be exploited as a therapeutic in cystic fibrosis. But the mechanism of ENaC regulation 

by DGK is not completely understood. The usually accepted hypothesis is that DGK 

influences PI(4,5)P2 production by halting the phosphoinositide recycling.  

In Chapter 2 we present a model of the phosphoinositide pathway that simulates one 

square micrometer of the inner layer of the membrane. The objective of this project was 

to create a model that could simulate the phosphoinositide pathway and be used to study 

how perturbations to the pathway impact the levels of pertinent lipids, especially the 

ones known to affect ENaC.  

The model replicates the steady-state of the phosphoinositide pathway as recorded in 

the literature and replicates most known dynamic phenomena. Furthermore, sensitivity 

analysis demonstrates that the model is robust to moderate perturbations to the 

parameters. The model suggests that the main source of material to the PI(4,5)P2 pool 

is a flux representing the direct transformation of phosphatidylinositol (PI) into 

PI(4,5)P2  that defies the traditional view that the main source is the sequential 

phosphorylation of phosphoinositol into phosphatidylinositol 4-phosphate (PI(4)P) by 

the enzyme phosphoinositol 4-kinase (PI4K) followed by the transformation to 
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PI(4,5)P2 by phosphoinositide 4-phosphate 5-kinase I (PIP5KI). The model also 

suggests that phosphatidylinositol 5-phosphate (PI(5)P) could be a significant source 

for PI(4,5)P2 production. We compared the model results to data from a siRNA screens, 

where the expression of several enzymes in the pathway were knocked down and the 

activity of ENaC was monitored. Our model suggests control strategies where the 

activity of the enzyme PIP5KI or the PI4K+PIP5KI+DVL protein complex are 

decreased and cause an efficacious reduction in PI(4,5)P2 levels while avoiding 

undesirable alterations in other phosphoinositide pools.  

In Chapter 3 we present a model that enables the study of the interplay between ENaC, 

CFTR, airway surface liquid (ASL), PI(4,5)P2 and the protein SPLUNC1 (short palate, 

lung, and nasal epithelial clone). It presents a good fit to experimental observations, 

and the available data can constrain the model’s parameters without ambiguities. The 

model analysis shows that ASL at the steady state is sensitive to small changes in 

PI(4,5)P2 abundance, particularly in cystic fibrosis conditions, which suggests that 

manipulation of phosphoinositide metabolism may promote therapeutic benefits for 

cystic fibrosis patients. 

Finally, in Chapter 4, we bring the phophoinositide pathway and ENaC/ASL model 

together. These models enabled us to study DGK and ENaC and strongly suggest that, 

contrary to the usually accepted hypothesis, this regulation is effected by the control of 

PI(4,5)P2 production by the PIP5KI that in turn is controlled by PA, the product of 

DGK.  

In this work we also use a model of the phosphoinositide cycle to test the hypothesis 

that DGK influence PI(4,5)P2 production by halting the phosphoinositide recycling. 

This model is unable to replicate the available data if the activation of PIP5KI by PA is 

not implemented, which strengthens our belief that ENaC regulation by 

phosphoinositides is accomplished through PA and PIP5KI.  

 

Key Words: Cystic fibrosis, ENaC, phosphoinositides. 
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Resumo 

A fibrose quística é uma condição causada por mutações no regulador da condutância 

transmembranar da fibrose quística (CFTR), um canal de cloreto e bicarbonato. É um 

distúrbio autossómico recessivo monogénico: monogénico porque é um distúrbio 

causado por um único gene defeituoso; autossómico porque o gene está num 

autossoma, um cromossoma que não é um cromossoma sexual; recessivo porque a 

condição só se expressa se um indivíduo tiver duas cópias do gene defeituoso. Esta 

doença foi descrita pela primeira vez em 1938, mas somente em 1989 o gene causador 

foi identificado. Apesar da causa ser conhecida há 29 anos, uma cura definitiva para 

esta doença ainda não foi encontrada. 

A fibrose quística surge por mau funcionamento das glândulas exócrinas do organismo 

(as de secreção externa). Existe uma grande variabilidade nos fenótipos dos pacientes 

com fibrose quística. Após o nascimento, os sintomas mais comuns são a concentração 

elevada de cloreto no suor e, em mais 85% dos pacientes, a insuficiência pancreática. 

Inicialmente, a insuficiência pancreática era considerada a principal complicação da 

fibrose quística, sendo os problemas pulmonares uma consequência da desnutrição. 

Hoje em dia, corrigidos os problemas pancreáticos e de desnutrição, as complicações a 

nível pulmonar mantêm-se. 

Embora os pulmões não estejam afetados no nascimento, inflamações e infeções por 

bactérias aparecerão pouco depois. Isso é causado, acredita-se, pela acumulação de 

muco. Esta é uma consequência de um transporte deficiente de iões, ou seja, redução 

da secreção de cloreto e aumento da absorção de sódio. Inflamação continuada e 

infeções por bactérias como Pseudomonas aeruginosa irão desencadear uma resposta 

inflamatória persistente. A infeção e a inflamação contínuas acabarão por destruir os 

pulmões e esta é a principal causa de morbilidade e mortalidade dos indivíduos com 

fibrose quística.   

É uma das doenças genéticas mais comuns, sendo os indivíduos caucasianos os mais 

atingidos. Segundo a Associação Nacional de Fibrose Quística, na Europa, em média, 

1 em cada 2000 – 6000 recém-nascidos tem a doença. Em Portugal, estima-se que 

nasçam por ano cerca de 20–40 crianças com fibrose quística. A nível mundial, estima-
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se que 75000 pessoas sofram da doença e que 7 milhões sejam portadores do gene 

defeituoso.  

O canal epitelial de sódio (ENaC) também pode ser afetado, aumentando a absorção de 

sódio e água. A função defeituosa desses canais iónicos promove a acumulação de 

muco espesso nos brônquios, o que caracteriza a doença e causa as infeções pulmonares 

recorrentes e a inflamação que acabará por destruir os pulmões dos indivíduos afetados. 

Vários estudos apontam para uma regulação do ENaC por fosfatidilinositóis, 

especialmente o fosfatidilinositol 4,5-bifosfato (PI(4,5)P2) e o fosfatidilinositol 3,4,5-

trifosfato (PI(3,4,5)P3). 

Os fosfatidilinositóis são lipídios raros com várias funções que constituem uma rede 

complexa que regula muitos processos celulares. Uma das muitas funções dos 

fosfatidilinositóis é como reguladores de proteínas da membrana celular, e vários 

estudos implicam que o PI(4,5)P2 na regulação ENaC. 

A diacilglicerol quinase (DGK) é um enzima da via dos fosfatidilinositóis que catalisa 

a fosforilação do diacilglicerol (DAG) em ácido fosfatídico (PA). Inibição do DGK 

causa a moderação a função do ENaC e isso pode ser explorado como uma estratégia 

terapêutica na fibrose quística. Mas o mecanismo de regulação do ENaC pelo DGK não 

é completamente entendido. A hipótese geralmente aceite é que o DGK influencia a 

produção de PI(4,5)P2 interrompendo a reciclagem dos fosfatidilinositóis.  

Esta hipótese tem alguns problemas. DGK e ENaC estão localizados na membrana 

plasmática, enquanto a síntese de fosfatidilinositóis se dá no retículo endoplasmático. 

Não é claro como o ácido fosfatídico produzido na membrana plasmática influencia um 

processo que ocorre no retículo endoplasmático. Também não é claro como os 

fosfatidilinositóis, produzidos no retículo endoplasmático, vão afetar o ENaC que está 

na membrana plasmática.  

Neste trabalho testamos uma hipótese alternativa. O PA gerado pelo DGK ativa o 

PIP5KI, o enzima que catalisa a transformação de PI(4)P em PI(4,5)P2. Sugerimos que, 

quando o DGK é inibido, a diminuição de PA vai reduzir a produção de PI(4,5)P2, que 

por sua vez irá moderar a atividade do ENaC. Esta hipótese tem a vantagem de ter um 

menor número de intervenientes e de todos estarem localizados na membrana 

plasmática.    
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No Capítulo 2 apresentamos um modelo da via dos fosfatidilinositóis que simula a 

camada interna de um micrometro quadrado de membrana. O objetivo foi criar um 

modelo que pudesse simular a via dos fosfatidilinositóis e ser usado para estudar como 

as perturbações na via afetam os níveis dos lipídios, especialmente aqueles que regulam 

o ENaC. 

O modelo replica as quantidades dos fosfatidilinositóis que constituem a via, conforme 

registrado na literatura, e replica os fenómenos dinâmicos mais conhecidos. Além disso, 

a análise de sensibilidade demonstra que o modelo é robusto relativamente a 

perturbações moderadas dos parâmetros. O modelo sugere que a principal fonte de 

material para o pool PI(4,5)P2 é um fluxo que representa a transformação direta de 

fosfatidilinositol (PI) em PI(4,5)P2 , que desafia a visão tradicional de que a fonte 

principal é a transformação de fosfatidilinositol em  fosfatidilinositol 4-fosfato (PI(4)P) 

pelo enzima fosfatidilinositol 4-quinase (PI4K) e, seguidamente, a transformação deste 

lípido em PI(4,5)P2 pelo enzima fosfatidilinositol 4-fosfato 5-quinase I (PIP5KI). O 

modelo também sugere que fosfatidilinositol 5-fosfato (PI(5)P) poderia ser uma fonte 

significativa para a produção de PI(4,5)P2. Comparámos os resultados do modelo com 

os dados da atividade do ENaC perturbada com inibições da expressão de vários 

enzimas da via recorrendo a siRNA. O nosso modelo sugere estratégias de controle 

onde a atividade do enzima PIP5KI ou do complexo de proteínas PI4K + PIP5KI + 

DVL estão diminuídas e causam uma redução eficaz nos níveis de PI(4,5)P2, evitando 

alterações indesejáveis em outros pools de fosfatidilinositóis. 

No Capítulo 3 apresentamos um modelo que permite o estudo da interação entre ENaC, 

CFTR, líquido que cobre a superfície das vias aéreas (ASL), PI(4,5)P2 e o clone curto 

epitelial de palato, pulmão e nariz (SPLUNC1). Este modelo apresenta um bom ajuste 

às observações experimentais e os dados disponíveis restringem os parâmetros do 

modelo sem ambiguidades. A análise do modelo mostra que a ASL é sensível a 

pequenas mudanças na abundância de PI(4,5)P2, particularmente nas condições de 

fibrose quística, o que sugere que a manipulação do metabolismo do fosfatidilinositóis 

pode promover benefícios terapêuticos para pacientes com fibrose quística. 

Finalmente, no Capítulo 4, juntámos o modelo da via dos fosfatidilinositóis e o modelo 

ENaC / ASL. Estes modelos permitem estudar a regulação do ENaC pelo DGK e 

sugerem que, ao contrário da hipótese geralmente aceite, esta regulação seja efetuada 
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pelo controle da produção de PI(4,5)P2 pelo PIP5KI que por sua vez é controlado por 

PA, o produto de DGK. 

Ainda neste trabalho, usámos um modelo do ciclo dos fosfatidilinositóis para testar a 

hipótese de que o DGK influencia a produção de PI(4,5)P2 interrompendo a reciclagem 

dos fosfatidilinositóis. Este modelo não reproduz os dados experimentais se não for 

implementado a ativação do PIP5KI pelo PA, o que reforça a nossa conclusão de que a 

regulação do ENaC pelos fosfatidilinositóis se processa através do PA e do PIP5KI.  

Apesar destes resultados, que sugerem que a manipulação dos níveis de 

fosfatidilinositóis seja uma estratégia promissora para proceder à moderação da 

atividade do ENaC, é prudente salientar que os fosfatidilinositóis influenciam muitos 

processos celulares e várias proteínas de membrana. Baixar os níveis de PI(4,5)P2 e de 

PA tem grande probabilidade de originar efeitos imprevisíveis ou indesejados.  

 

Palavras-Chave : Fibrose quística, ENaC, fosfatidilinositóis. 
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 Introduction 

 

1.1. Modelling 

A model is a partial representation or abstraction of a system of interest.  

As Griffiths [1] puts it, “…the world is very complex and hard to understand, no matter 

how brainy you are. To make things easier to grasp, reality is generally broken down 

into bite-size chunks. These chunks are abstracted from the real world and simplified 

into things called models.”   

We use models for several reasons: to help us understand and explain a system, test our 

assumptions or hypotheses and make predictions. Models are especially well suited for 

testing the interactions between elements of a system. An important feature of model 

construction is to distinguish the components that are relevant to answer the questions 

at hand from the ones that are not. By only using the relevant features, researchers can 

simplify a study and potentially notice details that could be masked or shadowed by 

non-essential complexity.  

Models are always approximations of the system under study and, because of this, no 

model is entirely correct. As a consequence, one should always judge models by their 

usefulness than for their alleged correctness.  

Also, a model that is closer to the structure of the system of interest is not necessarily 

a better model. Take for example the London underground maps in Figure 1.1, an 

example taken from Walter Kolch’s talks. In the beginning of the XXth Century, the 

maps where geographically accurate, but this made them disorganised and confusing. 

Today, the maps are much more abstract, and simplicity is as important as the accuracy 

of representation. This compromise makes them more efficient in their function of 

conveying information (Kolch, conference communication, 2017).  
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Figure 1.1. Maps of London underground.  

(Left) Old London underground map that is geographically accurate. (Right) Modern London 

underground map: A simpler and a better conveyer of information [2], [3]. 

 

There are many different types of models and many ways to classify them. Let’s refer 

to some examples that are close to biochemistry. Conceptual models are representations 

of a system that have been used constantly and from the dawn of humanity, like maps 

or workflow charts. In vivo models are organisms that hopefully function more or less 

in the same way as the organism that is actually of interest; an example is the use of a 

lab rat as a substitute for the human organism. Due to the complexity of these 

organisms, which sometimes overshadows the system under study, the rise of ethical 

concerns with animal experimentation and their great maintenance cost, many 

researchers use in vitro models. These are simplifications of the conditions of the in 

vivo models, like a Petri dish with culture medium. Continuing this line of abstraction, 

we arrive at computer-based models (also known as in silico models, if the use of cod 

Latin is not a problem), which are the subject of this work. These are computational 

representations and mathematical descriptions of a system and they are the most 

versatile type of models. These different types of models shouldn’t be used individually 

but be used together, to exploit their advantages and mitigate their limitations. 

1.2. Biochemical Systems Theory 

Biochemical systems theory (BST) is a mathematical modelling framework for 

biochemical systems, based on ordinary differential equations (ODE), in which 

processes are represented using power-laws. It was developed by Savageau [4]–[6], 
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Voit [7]–[9], and many others. The objective of this field of study is to find general 

laws, or at least appropriate representations, that govern the biochemical processes and 

use then to build models that mimic biochemical systems.  

BST is useful because biochemical systems are difficult to study. Also, researchers have 

a very limited toolbox to work with. A biochemist studying an organism or a biological 

system is like a person from the XVIIIth Century trying to understand, with notions of 

the scientific method, how a computer works [10], [11]. He will unplug it from the 

socket and find out if it will not work. He will open the computer and remove a piece 

and see if it still works or if its function is affected in some manner. Or he will add 

several similar components in the same machine and see what happens. To complicate 

things even further, these biological “computers” appear in all sorts of shapes and sizes, 

their components were designed to have many redundancies and display a fair amount 

of variability. Like a computer with multiple heterogeneous hard drives with different 

operating systems.  

As mentioned before, biochemists have been using in vivo and in vitro models for some 

while, but these are usually costly and time consuming. Also, some promising 

perturbations are simply not feasible with current technology, are very difficult to 

perform in a lab, or simply unethical. With mathematical and computational models, 

we can execute many simulations in the same time it takes to make a single wet lab 

experiment and at a fraction of the cost. Also, the control we have over a model is much 

greater than what we have over a biological system. There is a trade-off, however, as  

computer-based models are artificial approximations and their results must be validated 

in the original biological system in order to be certain that simulation results are not 

unintended artefacts.  

BST is a canonical modelling framework which offers valuable guidelines for the 

design, analysis and simulation of biological systems. Once the biochemical map is 

drafted, the rules of BST make the construction of the mathematical model a 

straightforward process. 

In BST, all fluxes are represented as products of power-laws. Equation 1.1 shows the 

general representation of a flux in this framework. 
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,

1

a b j

n m
f

a b a b j

j

v X →

+

→ →

=

=        (1.1) 

va→b represents flux from a to b, Xj represent the different dependent or independent 

variables that affect the flux and n and m are the number of dependent and independent 

variables respectively. γa→b is the rate constant of the flux and fa→b,j  is the kinetic order 

of the Xj variable in the va→b flux. The rate constant and kinetic orders are parameters 

that can be calculated using information from data, from the literature, or present in 

databases with enzyme functional data like BRENDA [12].  

But why this formalism? Biochemical reactions are well represented by the Michaelis-

Menten (MM) equation if the conditions underlying this formalism apply, but these 

conditions are seldom truly satisfied in living cells. Furthermore, MM is a rational 

function, which has the drawback that sums of rational functions are difficult to deal 

analytically. Power-laws are alternatives that become linear in log space, even in high 

dimensions. They can be designed directly based on data and knowledge of a pathway, 

and they are also good approximations for MM equations, especially near the operating 

point, which is typically the steady state of the system. They can efficiently simulate 

nonlinear behaviors in the S-system form (1.13 [6], [8] and provide an analytical 

solution for the steady-states.  

MM equations have the form 

 
 

Vmax S
v

Km S


=

+
         (1.2) 

v is the rate of reaction represented by in this specific flux, Vmax is the maximum 

velocity achieved by the reaction, Km is the Michaelis constant that represents the 

concentration of substrate needed for the reaction to progress at a rate half of the Vmax 

and [S] represents the concentration of subtract. 

Bode [13] found that a rational function in log-space is linearized in a part of its domain 

(Figure 1.2). To understand the log-space, consider a function of areal variable x, f(x); 

in Log space the abscissa are log(xi) and the ordinate is log(f(xi)).  
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Figure 1.2. Representation of the rational function f(x) = 5x / (10 + x) in Cartesian 

space (top) and in log-space (bottom). 

In the latter, the function plot is more similar to a linear function, at least in the initial part. 

 

Any function that is differentiable at the operating point can be approximated with a 

power law, and saturating functions typically become more linear, which increases the 

range of valid approximation. 

Taylor, with his well-known formula, proposed the approximation of any function with 

a polynomial. If we use a first-order polynomial, this will not produce a good 

approximation of the whole function, only at the operating point will we get a 

satisfactory approximation. This operating point is a value from a region of interest of 

the function’s domain. For example, it is a point in a region that we believe will supply 

the function with most of its inputs.    

'( )
( ) ( ) ( )

1!

f p
f x f p x p+ −         (1.3) 

Let’s use Taylor’s formula to approximate a function in log space to a first-degree 

polynomial (Figure 1.3). Here, log represents the natural logarithm. 
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( ) ( )( )

( )( )
( )

( ) ( )( )

log

log
log log log log

1!

d f p

d p
f x f p x p+ −    (1.4) 

Let’s turn our attention to the derivative and try to simplify it.  

( )( )
( )

( )( )

( )

( )( )

( ) ( )( )
( )

log

log

1loglog

d f p

d f p dp

d f p d f pf p pdp

d pd p dp f p

pdp

= = =    (1.5) 

So we can write ( 1.4 ) as 

( ) ( )( )
( )( )

( )
( ) ( )( )log log log log

d f p p
f x f p x p

dp f p
+   −     (1.6) 

This is a linear function in log-space. We can write it in reduced form m[log(x)]+b 

where 

( )( )
( )

( )( )
( )( )

( )
( )log log

d f p p
m

dp f p

d f p p
b f p p

dp f p

= 

= −  

      (1.7) 

Now we have an approximation, in log-space, of a linear function to the rational 

function. Let’s write the approximation in Cartesian space. 

( )( ) ( ) ( ) ( )

( )
( )

( )

log

log

log log

m

m x b

x b m b

f x m x b f x e

f x e e f x x e

 +
 +  

   

     (1.8) 

The function, written in this form, is a power law. The power of the dependent variable 

is called a kinetic order and is usually represented with a g and the multiplicative 

constant is called the rate constant and usually represented with a γ. 
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Figure 1.3. Representation of the rational function f(x) = 5x / (10 + x) in Cartesian 

space (top) and in log-space (bottom) in blue. 

In grey, the power law approximation at operating point x=5.  

 

In practice, the kinetic order will be calculated in following manner: 

( )( )
( )

( )

operating point

g

operating point

kineticorder

rateconstant

x

x

d f x x
g

dx f x

f x x

=

−

=

= = 

= = 

      (1.9) 

For multiple variable functions the calculations are similar and for that and more 

information please see Voit [7], [8]. 

Because the MM equations are so important, let’s turn our attention to the power-law 

approximation for these equations. We need to calculate the rate constants and kinetic 

orders, and these can be calculated from Km values, specific activities and quantities of 

the enzymes obtained from BRENDA [12] and Genecards  databases. 

The kinetic order, for a given concentration of substrate (S), is 
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( )

 
 

 
 

 
 

 
 

 

 ( )  

 ( )

   ( )
 

 

 
 

operating point

operating point

2

operating point

operating point

Vmax

Vmax

Vmax Vmax

Vmax

x

S

S

S

d v S
kinetic order

d S v

S Sd

Sd S Km S

Km S

Km S S S Km S

SKm S

Km

Km S

=

=

=

=

=  =


=  =

+

+

 + −  +
=  =

+

=
+

  (1.10) 

The rate constants are computed for a given substrate concentration S with specific 

activities and quantities of the enzymes. Note that Vmax = specific activity * enzyme 

quantity.  

 
 

 

 
 

 

kinetic order

kinetic order

Vmax.
rateconstant

specific activity enzyme amount

S
S

Km S

S
S

Km S

−

−

=  =
+

 
= 

+

   (1.11) 

In the construction of the differential equations there are three options: Generalized 

Mass Action (GMA), S-systems and Half-systems.  

The GMA format of ordinary differential equations consists of a sum of all fluxes that 

are directly related to a dependent variable. Examples of a generic GMA system are 

given in Eq. 1.12. 

( ) ( )
1 1

i j

a b
i

s i s i i p i p

s p

f

i j i j i j i

dX
n v m v

dt

v E X →

→ → → →

= =

→ → →

=  − 

=  

 
    (1.12) 

Xi represent the dependent variables, which are quantities that change due to the action 

of the model. vs→i and vi→p represent influxes and effluxes of the dependent variable, 

γi→i represent the rate constant of the flux and Ei→i the amount of enzyme that catalyze 
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the reaction represented by the flux. ns→i and mi→p are the stoichiometric coefficients 

for the influxes and effluxes. a denote the number of influxes and b the number of 

outfluxes of material for the Xi dependent variable. With GMA one sees directly what 

the contribution of each flux is, but in general, no analytical solution for the differential 

equations is available. We can go around this difficulty with numerical integrators and 

the enormous computational power available to us nowadays by calculating 

approximated solutions.     

In S-systems, the input and output fluxes are condensed into a single input and a single 

output term. The result is 

1 1

ij ij

n m n m
g hi

i j i j

j j

dX
X X

dt
 

+ +

= =

= −        (1.13) 

αi and βi are constants, Xj are dependent and independent variables that influence 

variable Xi and gij and hij are kinetic orders. n and m are the number of dependent and 

independent variables respectively.  

With this approach we no longer see the contribution of individual fluxes directly, 

although these fluxes can be reconstructed. In return, we can calculate an exact 

analytical solution for the system’s steady state [9] as can be seen in Box 1.   

Finally, in half-systems, all fluxes are assembled into one term.  

1

ij

n m
ki

i j

j

dX
X

dt


+

=

=          (1.14) 

δi is a constant, one for each dependent variable. Xj are dependent and independent 

variables that influence the equation variable and kij is a kinetic order. n and m are the 

number of dependent and independent variables respectively. This format is the 

simplest, but it is inconvenient for metabolic modelling as it does not permit non-trivial 

steady states where no variable is 0. 
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1.2.1. Parameter estimation 

After the construction of the system equations, the next task is to populate the model’s 

parameters with values. This is considered the bottleneck of model construction, as it 

is typically difficult and very time consuming. In biology and biochemistry, assigning 

values is not an easy task due to the great variability present in biological systems, for 

Box 1 – Calculation of the S-systems steady states.  

 

We start with an S-system 

g hdX ij iji X X
i j i jdt j j

 = −   

To calculate the steady states, we substitute the left side of the equations by zero. 

0
g h g h
ij ij ij ij

X X X X
i j i j i j i j

j j j j

   = −  =     

Let’s put logarithms on both sides of the equations to transform the multiplications into sums of logarithms.   

( ) ( ) ( ) ( )log log log log log log
1

g h
ij ij

X X g X h X
i j i j i ij j i ij j

j jj j

   

   
     =  +  = +         =   

 

Now let’s isolate log(Xj) to obtain an expression from the solution. 

( ) ( ) ( ) ( ) ( ) ( )log log log log log log
1 1

ig X h X g h X
ij j ij j i i ij ij j

j j j i


 



 
     −  = −  −  =
   = =  

 

The sum on the j index has n dependent and m independent variables. So we can divide the sum in the following 

way. 

( ) ( ) ( ) ( )log log log

1 1

n n m
ig h X g h X

ij ij j ij ij j
j j n i





 +
     −  + −  =         = = +  

 

Usually, independent variables are known, so the second sum is known. 

( ) ( ) ( ) ( )log log log

1 1

n n m
ig h X g h X

ij ij j ij ij j
j j ni





  +
    −  = − −         = = + 

 

Now, for convenience, let’s write the equations in matrix form. 

( ) ( )

( ) ( )

log  will be written as .  
1

log  will be written as .

1
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example metabolites [14]. Even more unfortunate for modelers is that this difficulty 

drive biologists and biochemists to avoid reporting concrete values altogether [15].  

There are multiple methods to perform parameter estimation. Unfortunately, there is no 

known methodology that produces consistently the best results for every case. The 

standard methods are divided into top-down and bottom-up approaches. Bottom-up 

methods consist of studying parts of the system using, for example, kinetic information 

from the literature or from wet lab experiments and assemble these parts into flux 

representations. Top-down approaches consist of algorithms like, for example, least 

square regression that will search the parameter space for values that best fit the model 

to available data. Both approaches have positive and negative features. Bottom-up 

approaches usually need extensive parameter tuning to fit properly the experimental 

data and top-down approaches are slow and sometimes produce parameter values with 

doubtful biological relevance. An intermediate approach is to start with a bottom-up 

approach and use a top-down strategy to fill the holes in the information or to fine-tune 

the model to an acceptable fit. 

After the model is complete, the next task is to study the steady state values. Because 

there is no change in the values of the dependent variables when the system is at steady 

state, one can substitute the left side of the differential equations with zero and try to 

find solutions. Unfortunately, this is not always possible explicitly, but one can turn to 

numerical integrators, that will provide an approximate solution.   

1.2.2. Steady state stability 

System steady states are stable if after slightly perturbed the system returns to the 

previous steady state; or unstable if after a small perturbation the system goes to a 

different steady state or enters in a different dynamic regime like, for example, 

oscillations.  

A convenient way to study steady state stability is to calculate the eigenvalues of the 

Jacobian matrix of the system. These eigenvalues are often complex numbers. If the 

real parts of all eigenvalues are negative, the system has a stable steady state. If the 

imaginary part is different from zero, the system can exhibit oscillations.  

To understand the intuition behind this, let’s start with a very simple equation. 
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Figure 1.4. Analysis of the stability of the two steady states in dy/dt = y – y2. 

 (top) 0 is an unstable steady state and the function will slip away from it if perturbed. (bottom) 1 is a 

stable steady state and will return to it if slightly perturbed.  

 

As can be seen in Figure 1.4, this equation has two steady states: 0 and 1. The equivalent 

of a Jacobian for this function is its derivative with respect to y: 1 – 2y. For the steady 

state at 0, we obtain df/dy(0) = 1, so 0 is a unstable steady state. For y = 1, df/dy(1) = -

1, so 1 is a stable steady state.  The fundamental concept here is that the function dy/dt 

= f(y) gives the rate of change of y. So, if dy/dt is positive, y will increase and a negative 

dy/dt will signal a decrease in y. Note that in one dimension the use of the derivative 

was unnecessary because the sign of the function would suffice.   

In multidimensional systems, the intuition is analogous, with eigenvalues of the 

Jacobian matrix taking the place of the derivative. Positive eigenvalues indicate that 

there are directions that the function uses to distance itself from a steady state. All 

negative eigenvalues signal that, near a stable steady state, in every direction, the 

function will converge back to the former stable steady state.    
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1.2.3. Sensitivity analysis 

In a model that is representing a system we can distinguish three types of quantities: 

dependent variables, independent variables and parameters. Dependent variables have 

their value determined by the model. This does not happen to independent variables 

and parameters. The distinction between these last two is subtle. Independent variables 

describe elements of the environment or within the system that influence the system 

but are not altered by the system. Parameters describe characteristics intrinsic to the 

system that do not change during a computational experiment or that are in a time scale 

so different from the object of study that their change will be too slow to be relevant 

[7]. To provide an example, consider a phosphorylation reaction catalyzed by an 

enzyme. The quantity of product and substrate are dependent variables, the quantity of 

enzyme is an independent variable and the rate constant and kinetic order of the reaction 

are parameters.  

In a sensitive analysis one will perturb the independent variables or parameters to 

measure their influence on the dependent variables, typically at the steady state. Each 

independent variable and parameter value will be increased by a small amount (usually 

1%) and the new steady states of the dependent variables will be recorded [8]. Next, 

these values are compared to the old steady states to access the magnitude and sign of 

the change. Of special interest are alterations in the dependent variables that are higher 

than 1% of the unperturbed steady state. We call these sensitivities high sensitivities, 

while the ones with absolute value lower than 1% are low sensitivities. In mathematical 

terms, sensitivities are the partial derivatives of the dependent variable at steady state 

with respect to one of the parameters. Note that an ODE system is composed of the 

derivatives of the dependent variable functions with respect to time, so these cannot be 

directly used to study sensitivities. However, sensitivities are easily computed at the 

steady state. Good models have mainly low sensitivities because this will make the 

model resistant to normal perturbations. But there are exceptions, like signaling systems 

where high sensitivities relate to signal amplification [8].  

Other techniques for assessing sensitivity exist if the use of a steady state is not 

convenient. In this approach we can use a time course of the model and alter the 

parameters one by one, recording the originated time courses. The sensitivity is 
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accessed by calculating the sum of the absolute differences of the original time course 

to the ones originated by the perturbations in the parameters.  

Sensitivity analysis has two types of results: sensitivities and logarithmic gains. They 

are essentially the same, calculated in the same fashion and interpreted in the same way. 

The difference between the two is that logarithmic gains are attained from independent 

variables and sensitivities from parameters [16].   

The results of the sensitivity analysis are conditional on the parameter set that provides 

realistic steady-state values and replicates observed phenomena. However, multiple 

small or intermediate errors in parameter values could collectively have a larger impact 

on performance of the system. To address this question, combined sensitivities can be 

studied using a Monte-Carlo approach. We can assign uncertainty to every parameter 

and create new parameter sets and use these to study local sensitivity. This allows us to 

investigate whether the distributions of sensitivities might suggest a different behavior 

associated with a parameter change than the one suggested by the local sensitivities. 

Generally, if the sensitivity of a parameter exhibits great variability, it might suggest a 

lack of system robustness [17].      

1.2.4. Identifiability analysis 

If a model is only slightly perturbed even in response to large changes in a parameter 

value, how can we know what is the parameter value that best replicates observed data? 

This question becomes more complicated if the sensitivities of two or more parameters 

are correlated and the increase in one can be compensated with an alteration in one or 

multiple parameters. The issue is related to the existence of infinite parameter 

combinations that produce essentially the same model output. This redundancy is 

especially important if we want to suggest an experimental design to populate the model 

with parameters values. These issues are related to the problem of parameter 

identifiability, which is defined as the ability to identify the true value of a model 

parameter [18]. 

There are two types of identifiability. Global or structural identifiability asks if 

parameters are identifiable at all. For example, if two parameters are correlated for any 

data, changing one will compensate the other alteration. In this way, we will never 

know the two parameters’ true values using the model’s behavior. Local or practical 
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identifiability concerns conditions that can make parameters identifiable. Parameters 

are locally non-identifiable if this can be reverted by, for example, adding more data or 

adding data of a different nature.   

The method described by Srinath and Gunawan [18] and Yao et al. [19] can be used to 

find the best identifiable parameters, which is based on the local sensitivity matrix. For 

each column of the matrix, the Euclidian norm is calculated and the column with the 

highest magnitude is selected. If the magnitude exceeds a certain threshold, the 

parameter corresponding to this column is identifiable. This column is removed from 

the local sensitivity matrix. The projection of the removed column on the remaining 

columns is computed and subtracted from them. This procedure creates a new local 

sensitivity matrix. The process is repeated until the highest magnitude is below the 

threshold. All remaining parameters are considered non-identifiable.  

1.3. Cystic Fibrosis 

Cystic Fibrosis (CF) is a monogenic autosomal recessive disorder. It is called 

monogenic because it is a disorder caused by a single defective gene. It is autosomal 

because the gene is in an autosome, a chromosome that is not a sex chromosome. It is 

recessive because the condition only expresses itself if an individual has two copies of 

the abnormal gene [20]. 

This diseased was first described in 1938, but only in 1989 the gene causing CF was 

identified [21]–[23]. CF patients present mutations in two alleles of the Cystic Fibrosis 

Transmembrane Conductance Regulator (CFTR) gene, that encode a chloride (Cl-) 

channel. The gene that encodes CFTR resides on the long arm of chromosome 7 at 

q31.2, consists of 27 exons and 26 introns, is approximately 190 kb in size and encodes 

a protein of 1,480 amino acids. As of March of 2018, 2026 mutations were identified 

in the CFTR gene [24] and 312 CFTR mutations have been confirmed as CF-causing 

in the CFTR2 database [25] and they are usually classified as shown in Figure 1.5. Of 

the different mutations, F508Del, the deletion of a phenylalanine in the position 508, 

accounts for 70% of CF chromosomes and 50% of CF patients in the United States are 

homozygous for this mutation [26].  

CFTR is expressed in many epithelial cells, including sweat duct, airway, pancreatic 

duct, intestine, biliary tree, and vas deferens [26]. It only transports the chloride ion 
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down the electrochemical gradient: in the sweat gland CFTR absorbs chloride into the 

epithelial cell, in the gut CFTR secretes chloride from the epithelial cell and in the lung 

CFTR can do both, secretion or absorption, depending on the direction of the gradient 

[27]. 

 

 

Figure 1.5. Classes for CF mutations. 

(Used with permission from the author, Sofia Ramalho, and complemented with information from Fajac 

and Wainwright [28]) 

 

There is a great variability in the phenotypes of CF patients [26], [27]. Still, at birth, 

the most common symptoms are elevated sweat chloride concentration and more than 

85% CF patients have pancreatic insufficiency that will cause impaired development 

due to malnutrition [26]. Initially, pancreatic insufficiency was thought to be the major 

complication of CF, causing lung problems through severe malnutrition, but that point 

of view changed.   

While the lungs are unaffected at birth, inflammation and infections by bacteria will 

appear shortly after. This is caused, it is thought, by an accumulation of thick, 

dehydrated mucus. This is a consequence of ion transport deregulation, namely, 

reduced chloride secretion and increased sodium absorption. Continued inflammation 
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and infections by bacteria like Pseudomonas aeruginosa will elicit a persistent 

neutrophilic inflammatory response. The continuous infection and inflammation will 

ultimately destroy the lungs and this is the major cause of morbidity and mortality for 

individuals with CF [26].  

 

 

Figure 1.6. Life expectancy evolution of CF patients. 

 (Reproduced and adapted with permission of the Cystic Fibrosis foundation [29]) 

 

Initially, health care providers focused on treating CF symptoms but recently the focus 

shifted to correcting the mutated CFTR. This led to the development of compounds like 

the corrector lumacaftor (VX-809) that corrects the protein folding, increasing the 

number of CFTR protein molecules that are trafficked to the cell surface. Also, the 

potentiator ivacaftor (VX-770) improves the open probability of the channel. At the 

beginning, these compounds were only effective for a small percentage of cases and 

types of mutations, but new advances were made and they are now approved for use in 

the most common mutations [30] and commercialized with the name Orkambi. Still, 

there are mutations which cannot be treated with these compounds. 

A better understanding of the disease and improvements in the therapeutics have led to 

a dramatic improvement of the life expectancy of CF patients [29], [31], as can be seen 

in Figure 1.6. As a consequence, soon, the majority of the CF patients will be adult [32] 

and this is already a fact in the US [29].  
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Figure 1.7. Estimated prevalence of cystic fibrosis per 100,000 habitants. 

Data compiled from the latest registry reports of Europe (European Cystic Fibrosis Society [ECFS], 

2016), United States (Cystic Fibrosis Foundation [CFF], 2015), Canada (Cystic Fibrosis Canada [CFC], 

2016), Australia (Cystic Fibrosis Federation Australia [CFFA], 2016) and Brazil (Brazilian Cystic 

Fibrosis Study Group [GBEFC], 2016). Grey represents no available data. [33] 

 

In a 2004 study on the prevalence of cystic fibrosis in the European Union by Philip M. 

Farrell [34], 27 European Union countries had 35806 CF patients for a total population 

of 486,114,000, resulting in a mean prevalence of 7.37 per 100,000, similar to the 

United States. In the same study, Portugal had a total population of 10,524,000 and 285 

CF patients which corresponds to a prevalence of 2.71 per 100000. It is interesting to 

note that in the European Lung White Book Respiratory Health and Disease in Europe, 

2nd Ed [31] a decrease of CF incidence was reported for countries where new-born 

screening for CF has been introduced and they attribute this to the couples alternative 

reproductive choices after the birth of a first CF child. A map in Figure 1.7 shows an 

estimate of CF prevalence in several countries.   

It is not clear why CF became the most common autosomal disease in Caucasians. A 

popular belief among researchers is that mutations in CFTR may confer a degree of 

protection against some diseases like cholera and other secretory diarrhoeas and 

typhoid fever. Poolman et al. [35] advanced the hypothesis that tuberculosis is the main 

force behind the selection of CF genes in Caucasian populations. They provide 
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molecular, clinical and temporal-geographical distribution evidence supporting this 

hypothesis. The main argument is that only tuberculosis had enough selective pressure 

over the human population to generate the observed frequencies of CF. The casualties 

and time of effect of other candidates like cholera or typhoid fever were not enough to 

cause a selection on a protected population. 

1.4. ENaC regulation 

The epithelial sodium channel is a membrane bound heterotrimeric protein, i.e., it is 

formed by three  out of four possible heterologous subunits: α, δ, β, or γ. Usually, one 

ENaC channel is composed with a α, β and γ.  EnaC is ubiquitinated by NEDD4-2, an 

E3 ubiquitin ligase [36].  

In the lungs, there is paracellular permeability for water and ions. ENaC Na transport 

generates a transepithelial potential difference that is the driving force of ion transport 

[37]. In this tissue, CFTR secretes chloride and bicarbonate. In CF, CFTR function is 

deficient and the transport of sodium through ENaC is thought to be up-regulated. This 

will cause a decrease of ions and water in the extracellular space by the lack of chloride 

secretion and hyperabsorption of sodium. This is one of the causes of the accumulation 

of mucus in the lungs that characterizes CF [38] and it is believed to make the lungs of 

CF patients very susceptible to infections of which Pseudomonas aeruginosa remains 

the most strongly associated with clinical disease severity, frequency of hospitalization 

and decreased survival [32]. But this is not generally accepted. Other researchers, 

presenting trans-epithelial conductance data in pigs, argue that ENaC function is normal 

in CF [39]. In mice, CFTR mutations do not cause CF like symptoms in lungs, but 

inhibition of NEDD4-2  [40] or overexpression of β-ENaC subunit [41] will cause lung-

CF like symptoms. 

Chemical inhibitors of ENaC, such as amiloride, denzanil or PS552, which are typically 

used with other therapeutic substances, yield disappointing results because their effect 

is sustained for a short period of time or dysregulate ENaC in other organs, as for 

example in the kidneys [38].  

In the sweat grands, on the other hand, the tighter epithelia with less water permeability 

compels both CFTR and ENaC to absorb ions in a coordinated fashion [37]. This means 

that ENaC activity is directly proportional to CFTR activity. Consequently, ENaC 
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function is downregulated in CF sweat glands, because there is no CFTR activity [42]. 

This will lead to the salt rich sweet that characterizes CF.  

The mechanism of ENaC and CFTR interactions is still unknown [43] [38] [44].  

Initially, it has believed that CFTR regulated ENaC through PKA and cAMP [45] but 

this was disproved [42].  

Berdiev et al. [44] present strong arguments in favor of a protein interaction between 

ENaC and CFTR. A protein that could be important for the interaction between ENaC 

and CFTR is COMMD1. This protein binds to CFTR and protects it from ubiquitination 

[46], while it has the opposite effect on ENaC [47]. A lack of CFTR could remove 

COMMD1 from the plasma membrane and produce the observed ENaC activity 

increase.  

Farinha and Matos [48] have shown evidence that RAB GTPases control the transport 

of both CFTR and ENaC and also play a role in the recycling/degradation of these 

channels.  

Tarran and colleagues [49], [50] explain the relation between CFTR and ENaC in the 

following way. These authors believe that the protein SPLUNC1 (short palate, lung, 

and nasal epithelial clone) regulates the number of ENaCs and consequently the air 

surface liquid (ASL) height. When ASL is high, SPLUNC1 will be diluted and not 

interact with ENaC. This will increase ENaC numbers in the cell membrane, which in 

turn will increase the absorption of sodium and water and decrease the ASL height. 

When the ASL is low, SPLUNC1 will associate with the sodium channel and promote 

its disassembly, ubiquitination and internalization of the  and  subunits [50]. This 

will reduce the numbers of ENaC, reduce the absorption of sodium and water and 

increase the ASL height. 

This conceptual model can also explain the interaction between CFTR and ENaC. 

SPLUNC1 is inactivated by low pH levels. This chloride channel also secretes 

bicarbonate, increasing the extracellular pH. In CF, without CFTR, the more acidic 

extracellular environment will inactivate SPLUNC1 and cause the observed ENaC up-

regulation through the increase of channel numbers in the plasma membrane. Tarran 

and colleagues developed and are currently testing a compound that has the ENaC 
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activity of SPLUNC1 and is insensitive to pH. The results are very promising so far 

[51]. 

It is known that ENaC is influenced by phosphoinositides [52]–[54]. Negatively 

charged phosphoinositides like PI(4,5)P2 and PI(3,4,5)P3 interact with positively 

charged lysine residues (K+) at the N terminus of β- and γ-ENaC [54] which are 

important for channel activation. This interaction will cause a change in the 

conformation of ENaC, releasing the extracellular loops and enabling them to be 

cleaved by proteases [55]. This cleavage will increase the open probability of ENaC. 

The search for compounds that normalize ENaC activity led Almaça et al. [38] to 

perform a silencing RNA screen with a live cell automatic microscopy assay, which 

enabled the functional assessment of ENaC activity in human respiratory epithelial 

cells. They found that the phosphoinositide pathway was the most enriched among the 

silenced mRNAs that significantly changed ENaC activity and identified diacylglycerol 

kinase (DGK) has a promising therapeutic target.  

DGK catalyzes the transformation of diacylglycerol (DAG) into phosphatidic acid 

(PA). PA is the precursor for the formation of all phosphoinositides lipids, including 

PI(4,5)P2. Almaça et al. propose that DGK inhibition stops the transformation of DAG 

into PA, and consequently stops the production of PI(4,5)P2. This leads to the depletion 

of the PI(4,5)P2 pool and to the decrease of  ENaC open probability [38]. The problem 

with this hypothesis is that the transformation from PA into inositol lipids occurs in the 

ER, not in the plasma membrane. It seems improbable that a change in PA in the plasma 

membrane will affect a process in the ER that subsequently will almost immediately 

influence the levels of PI(4,5)P2 or PI(3,4,5)P3 in the plasma membrane. Also, the PA 

pool is much smaller than the PI pool. The study of mechanisms of how DGK affects 

the phosphoinositide pathway is the main focus of this PhD project. 

PA can also activate PIP5KI, the enzyme that transforms PI(4)P into PI(4,5)P2 [56]–

[59]. This alternative mechanism is more plausible than Almaça’s et al. hypothesis for 

two reasons: PA activation of PIP5KI is a process that occurs only in the plasma 

membrane and this hypothesis is much simpler, i.e., involves fewer components, 

transports and cell compartments than the alternative.   
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1.5. Phosphoinositide pathway  

Phosphoinositides are rare lipids present in the cell membranes representing about 1% 

of total cellular phospholipids, and with phosphatidylinositol, the unphosphorylated 

species, representing about 10% [60]. The percentages of major lipid groups in a 

mammalian cell can be seen in Table 1.1.  

All phospholipids are directly or indirectly derived from PA [61], [62]. The de novo 

synthesis of this lipid occurs in the ER. PA can be transformed by phosphatidic acid 

phosphatase-1 (PAP-1) into DAG, that will supply the Kennedy pathway to become 

PC, PE and PS. Alternatively, PA can be transformed into CDP-DAG that will be the 

base for phosphatidylinositol (PI) and the phosphoinositides, the inositol lipids [62].  

 

Table 1.1. Percentages of major lipid groups in a mammalian cell. 

Adapted from [62]. 

 Percentage 

of total 

lipids 

Phosphatidylcholine (PC) 45–55 

Phosphatidylethanolamine (PE) 15–25 

Phosphatidylinositol (PI) 10–15 

Phosphatidylserine (PS) 5–10 

Phosphatidic acid (PA) 1–2 

Sphingomyelin (SM) 5–10 

Cardiolipin (CL) 2–5 

Phosphatidylglycerol (DAG) <1 

Glycosphingolipids  2–5 

Cholesterol  10–20 
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The phospholipids can be transported to the different cell compartments by lipid 

transport proteins (LPT’s), membrane contact sites and vesicles [62], [63] and there is 

evidence that vesicle transport of lipids is not as relevant as the others [62].  

Phosphoinositides are phospholipids that are formed by a glycerol backbone that has 

three carbons, which are usually called positions SN1, SN2 and SN3, as can be seen in 

Table 1.2. Two fatty acids are attached to positions SN1 and SN2; stearic acid (18:0) 

being the most common in the SN1 position and arachidonic acid (20:4) at SN2 [64]. 

At position SN3, an inositol group is attached by a phosphodiester bond, forming the 

polar head that gives these lipids a negative charge.   

The inositol ring of phosphatidylinositol can be phosphorylated in the third, fourth and 

sixth carbons, and these phosphorylations give rise to the different subspecies of 

phosphoinositides: PI(3)P, PI(4)P, PI(5)P, PI(3,4)P2, PI(3,5)P2, PI(4,5)P2 and finally 

PI(3,4,5)P3. The information on inositol lipids is presented in Tables 1.4 to 1.11 located 

at the end of the present subsection. 

Inositol lipids represent 10% to 15% of all cellular phospholipids, but they are not as 

structurally important as, for example, PC, which represents around 50% of all 

phospholipids in eukaryotic cell membranes [62]. Phosphoinositides have many 

functions and influence almost every cell process. They function as identifiers to the 

different cell membranes, as second messengers, precursors to other signaling 

molecules, as membrane protein docking sites and regulators, shape the cell membrane, 

control vesicular trafficking, and organelle physiology, as well as a variety of other 

tasks [63].  

We now have an idea of the total amount of inositol lipids in mammalian cells, but there 

is some variation in the number presented by the different authors, as can be seen in 

Table 2.1. Alexis Traynor-Kaplan and colleagues [65] found differences in the amount 

of inositol lipids in different types of cells. 

Unfortunately, the exact amount of inositol lipids in each cellular organelle is still 

unknown. In this work, when necessary, we follow the principle observed in 

phospholipids by Vance [62], that “…,in general, the differences in lipid composition 

are quantitative rather than qualitative.”  
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Table 1.2. Structure, percentage and cellular localization of phosphoinositides. 

Adapted from [66]. Structural representations created with the online drawing tool of the Lipid maps 

site. 

 

 (http://www.lipidmaps.org/tools/structuredrawing/StrDraw.pl?Mode=SetupGPStrDraw). 

*Not present in the original Table by Viaud, but the presence  of PI(4)P in the plasma membrane is 

supported by Balla [63], De Creane et al. [67]  and, strangely enough, by Viaud et al. [66], in the same 

paper where the Table originated. 

 

Also, one can still subdivide the subspecies of phosphoinositides relative to their acyl 

chain composition. Despite much more work being needed for identifying the different 

http://www.lipidmaps.org/tools/structuredrawing/StrDraw.pl?Mode=SetupGPStrDraw
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acyl chains in the different subspecies of phosphoinositides, some progress was made 

by Alexis Traynor-Kaplan and colleagues [65].     

In higher plants, the PI : PIP : PI(4,5)P2-ratio is 100:1.7:1.3 according to radio labeling. 

PI(4,5)P2 levels are about 10 times lower than in animals or lower plants, PI(4)P makes 

up 80% of monophosphorylated phosphoinositides and PI(5)P amounts to 3% to 18%, 

which is far more than the 2% in animals. No PI(3,4,5)P3 exists but PTEN, the 

PI(3,4,5)P3 phosphatase, does. In Arabidopsis, PI(3,4)P2 was never recorded [77] 

Concerning the cellular location of phosphoinositides, some information is available 

concerning the major inositol lipids present in the different organelles. Unfortunately, 

there are still many unanswered questions that are fundamental to a complete 

understanding of the phosphoinositide distribution in the cell. For example, we know 

that the total cellular amounts of PI(4)P and PI(4,5)P2 are similar but we are not certain 

that this also happens in the plasma membrane. We know that PI is much more abundant 

than PI(4)P or PI(4,5)P2, that it is very common in the ER and that this organelle has a 

membrane much larger that the plasma membrane. Considering these facts, I wonder if 

the ratios between PI, PI(4)P and PI(4,5)P2 in the plasma membrane are similar to the 

ratio for the total cell.    

The different subspecies of phosphoinositides interconvert into each other. These 

interconversions are represented in Figures 2.1; the enzymes that are responsible for 

these interconversions were extensively reviewed in a paper by Sazaki and colleagues 

[78]. The modelling of this reaction network is the subject of Chapter 2 of this thesis.    

PI(4,5)P2 is a substrate for PLC (Phospholipase C) that cleaves the phosphoinositide 

into IP3 and DAG. DAG is then converted into PA that can be transported to the ER. 

PA is also created de novo in the ER. In the ER, PA can supply the Kennedy pathway 

or be transformed into PI that can subsequently be transported to the plasma membrane 

and be phosphorylated into PI(4,5)P2. This is commonly known as the phosphoinositide 

cycle that suggests a close system view of the phosphoinositides in a cell. An attempt 

to model this view of the phosphoinositides was proposed by Suratekar et al. [79]. A 

representation of the phosphoinositide cycle is presented in Figure 1.8.   
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This view is very dependent on lipid transport proteins (LPTs). Our knowledge about 

these proteins has seen great developments in the last years. Still, we are far from 

completely identifying and understanding LPTs.  

PTEN has been known to be a tumor suppressor for almost twenty years  [63]. This 

phosphatase hydrolyses the third position of the inositol ring in PI(3,4,5)P3 and to a 

lesser degree PI(3,4)P2 [63], [78], [80]. As a phosphatase, it blocks the AKT/PI(3,4,5)P3 

pathway. As a nuclear protein, it activates proteins responsible for DNA repair and 

chromosome stability [72], [81].  

 

 

Figure 1.8. Representation of the phosphoinositide cycle. 

In this simplified representation of the cycle, is shown the transformations that occur in the ER and in 

the plasma membrane. Nir2 is an LTP that transports PI and PA between the ER and the plasma 

membrane.  

 

PI3KI phosphorylates the third position of the inositol ring in PI(4,5)P2 into PI(3,4,5)P3, 

the inverse reaction of PTEN. The product of PI3KI will activate AKT, also known as 

protein kinase B that controls cell energetic and metabolism functions, start a series of 
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processes preceding cell division and proliferation and plays a key role in cancer 

development [63], [81]. 

Bryant, and others [80], [82], reported that PI(4,5)P2 marks the apical membrane and 

PI(3,4,5)P3 the basolateral side of epithelial cells. From the literature it is clear that the 

distribution of PI(3,4,5)P3 exists in the basolateral side, while it is very rare, if not 

absent in the apical part. Things are less clear concerning the distribution of PI(4,5)P2. 

In many images we see the apical site marked with PI(4,5)P2 [80] and read sentences 

like “ PIP2 is apically localized …” [83] or “PIP2 localizes to apical membranes”  [84]. 

These statements cause the spread of the idea that, in a polarized cell, PI(4,5)P2 is 

increased in the apical part of the plasma membrane and PI(3,4,5)P3 is the dominant 

phosphoinositide in the basolateral part.   

The pool of PI(3,4,5)P3 is sixteen times smaller than the PI(4,5)P2 pool, simply too 

small for its consumption to cause a noticeable increase in PI(4,5)P2. Also, our model 

presented in Chapter 2 predicts, at best, an increase in PI(4,5)P2 of only 5% when we 

pass from a basal to apical configuration of the membrane. This increase is too small to 

be detected with the usual florescence microscopy technics.  

To increase the confusion, there are data that support both hypotheses, the more recent 

and more plausible of which points to the uniform distribution of PI(4,5)P2 along the 

plasma membrane [75].   

My belief is that PI(4,5)P2 levels are similar in both parts of the membrane. What makes 

the apical and basolateral sides of the membrane different concerning the lipid content 

is PI(3,4,5)P3, which is present in the basolateral part and absent in the apical part.  

PTEN and PI3KI are responsible for this difference. PTEN, by being present in the 

apical part and at the tight junctions, PI3KI is located in the basolateral part of the 

membrane.  

There is a fair amount of regulation involving PTEN, PI3KI, PI(4,5)P2 and PI(3,4,5)P3 

[72], [82], [85]. Both these enzymes are activated by their products causing two parallel 

and opposite positive feedback loops. Also, PI(3,4,5)P3 accumulation promotes the 

release of PTEN from the plasma membrane [85]. 
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Table 1.3. Features of PI 

PI (phosphoinositol) 

 

Cellular location 

Ubiquitous phospholipid in eukaryotic cells. Greater concentrations in the plasma 

membrane and in the ER. [67] 

 

Quantities 

80% - 90% of inositol lipids in human cells. [63][63] [68] [69] [66] 

10% of phospholipids in human cells. [60] 

 

Generation 

PA is transformed into CDP-DAG that together with inositol forms PI.  

PI synthesis occurs in the cytoplasmic face of the ER membrane, the Golgi, 

mitochondria and microsomes. [86] 

The enzyme catalyzing this reaction is PtdIns synthase. 

 

PI is also created by hydrolysis of PI(3)P, PI(4)P and PI(5)P.  

The enzymes that catalyze these reactions are myotubularins (MTM1), 

myotubularins related phosphatases (MTM1-4, MTM6, MTM7) and suppressor of 

actin 1 (SAC1). [78] 

 

Degradation / Consumption 

PI is transformed into PI(3)P by PI3KIII, PI(4)P by PI4K and PI(5)P by PIKfyve.  

[78] 

 

Functions  

Marker of the ER membrane. 

Precursor to the phosphoinositide’s.  

 

Open questions 

What is percentage of PI in the ER and in the plasma membrane.  

What is the rate of de novo synthesis of PI in the ER? 
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Table 1.4. Features of PI(3)P 

PI(3)P (Phosphatidylinositol 3-Phosphate) 

 

Cellular location 

Enriched in membranes of early endosomes [87] and multivehicular bodies. 

  

Quantities 

0.05 to 1.5% of phosphoinositide’s in human cells. [66]  

Less than 15% of monophosphorylated phosphoinositides. [60] 

 

Generation 

PI3P is created from PI mainly by PI3KIII. It is also created by hydrolysis of 

PI(3,5)P2 by FIG4 and PI(3,4)P2 by INPP4. [78] 

 

Degradation / Consumption  

PI(3)P is hydrolyzed to PI by SAC1, MTM1-4,6-8 and SYNJs. 

PI(3)P is phosphorylated in the 5th position into PI(3,5)P2 by PIKfyve. [78]  

 

Functions  

Involved in the endosomal sorting of proteins, sorting of endosomes to the 

membrane, the lysosome and returning to the Golgi and the formation of the MVB. 

[88]  

 

Open questions 

What is the amount of PI(3)P in the plasma membrane?   
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Table 1.5. Features of PI(4)P 

PI(4)P (Phosphatidylinositol 4-Phosphate) 

 

Cellular location 

Golgi membrane and plasma membrane. [89] [90] 

Secretory vesicles [91]. Late endosomes and lysosome [87]. 

 

Quantities 

10% of phosphoinositides. [66]  

45% of monophosphorylated phosphoinositides in human cells. [60] 

 

Generation  

PI(4)P is created from PI by PI4K’s.  

PI(4)P is created by hydrolysis of PI(4,5)P2 by INPP5, ORCL and also SAC2, 

SYNJ1/2 and SKIP. Is also created from PI(3,4)P2 by PTEN. [78] 

 

Degradation / Consumption  

PI(4)P is phosphorylated in the 5th position by PIP5KI’s. It is also phosphorylated in 

the 3rd position by PI3KII.  

PI(4)P is hydrolyzed to PI by SYNJ1/2 and SAC1. [78] 

  

Functions  

Marks the Golgi membrane.  

Is a precursor for PI(4,5)P2. 

OSBP locates to the Golgi though interaction with PI(4)P and ARF. It exchanges 

PI(4)P in the Golgi for sterols in the ER. This ER PI(4)P is rapidly transformed to PI 

by SACs phosphatases. [92] 

ORP5 and ORP8 localize to ER contact sites with the plasma membrane or the 

mitochondria. They exchange PS from the ER by PI(4)P from the plasma membrane 

and mitochondria. [93] 

 

Open questions 

What is the ratio between the amount of PI(4)P in the Golgi and the plasma 

membrane? 

What is the amount of PI(4)P that is transported by LTP’s and vesicles from the Golgi 

to the ER and from the Golgi to the plasma membrane? 

Is the PI(4)P consumed or degraded during the vesicle migration? 

How much SAC phosphatases are in the ER? What makes them so effective in 

degrading PI(4)P? 
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Table 1.6. Features of PI(5)P 

PI(5)P (Phosphatidylinositol 5-Phosphate) 

 

Cellular location 

PI(5)P is present in the plasma membrane, endosome and nucleus in small amounts. 

[67] 

 

Quantities 

Similar to PI(3)P. [63] 

0.1 - 0.5% of phosphoinositides. [66] 

Less than 10% of monophosphorylated phosphoinositides. [60] 

 

Generation  

PI(5)P can be generated from PI by PIKfyve. 

PIKfyve will also produce PI(3,5)P2 out of PI(3)P. PI(3,5)P2 will then be hydrolyzed 

at the 3rd position by myotubularins. This will generate the bulk of PI(5)P. 

PI(5)P is also produced by the hydrolysis of PI(4,5)P2 in the 4th position into by 

SYNJ1/2 and TMEM55. [78] 

 

Degradation / Consumption  

PI(5)P can be phosphorylated in the 4th position by PIP5KII (also known as PIP4KII).  

PI(5)P can be hydrolyzed to PI by SYNJ1/2 and SAC1. [78] 

 

Functions  

Some scholars believe that PI(5)P is just a byproduct of errors that occur in the 

process of phosphorylating and hydrolysis of phosphoinositides. [94][74] 

Modulating the transcriptional activity of chromatin regulator ING2 in the nucleus. 

In the plasma membrane, PI(5)P is involved in actin remodeling by the activation of 

RAC1, thus influencing cell migration [95].  

Endosomal protein sorting through interaction with TOM1. [96] 

 

Open questions 

The role of PI(5)P in human cells is still poorly understood. 

 

 

 

 

 

  



32  

 

Table 1.7. Features of PI(3,4)P2 

PI(3,4)P2 (Phosphatidylinositol 3,4-bisphosphate) 

 

Cellular location 

Mainly in the plasma membrane. [60] 

 

Quantities 

0.1 – 1% of phosphoinositides. [66] 

Less than 10% of phosphoinositides. [60] 

 

Generation  

PI(3,4)P2 is mainly produced by phosphorylation of the 3rd position of PI(4)P by 

PI3KII. 

It is also produced by hydrolysis of the 5th position of PI(3,4,5)P3 by INPP5, ORCL 

and also SAC2, SYNJ1/2, SKIP and SHIP2. [78] 

 

Degradation / Consumption  

PI(3,4)P2 can be hydrolyzed in the 4th position by INPP4 to produce PI(3)P. 

It also can be hydrolyze in the 3rd position by PTEN to produce PI(4)P. [78] 

 

Functions  

Recruits AKT, phosphoinositide-dependent kinase 1 (PDK1) or Pleckstrin to the 

plasma membrane. [97] 

Rule in endocytosis, signaling in early endosomes and clathrin-coated pits 

maturation. [98] 

 

Open questions 

It is still unclear whether PI(3,4)P2 and its effector protein Lpd regulate focal 

adhesion dynamics and migration in breast cancer cells. [99] 
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Table 1.8. Features of PI(3,5)P2 

PI(3,5)P2 (Phosphatidylinositol 3,5-bisphosphate) 

 

Cellular location 

Mostly on early endosomes and lysosome. [100] [101] 

 

Quantities 

Less than 5% of phosphoinositides. [67] 

7 to 50 fold less than PI(5)P. [76] 

0.1 – 1% of phosphoinositides. [66] 

 

Generation  

PI(3,5)P2 is generated by phosphorylation PI(3)P 5th position by PIKfyve. [78] 

 

Degradation / Consumption  

PI(3,5)P2 is hydrolyzed in the 3rd position by myotubularin’s (MTMR) to produce 

the bulk of the PI(5)P pool. SAC1, SAC3 and SYNJ1/2 also hydrolyze PI(3,5)P2 in 

the 5th position to generate PI(3)P. [78] 

 

Functions  

PI(3,5)P2 plays an essential role in protein sorting at the late endosomes and in the 

multivehicular body. Also involved in autophagy. [102] 

 

Open questions 

The upstream pathways and many of the downstream pathways specific for 

PI(3,5)P2 are poorly understood.  
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Table 1.9. Features of PI(4,5)P2 

 

 

 

PI(4,5)P2 (Phosphatidylinositol 4,5-bisphosphate) 

 

Cellular location 

Mainly located in the plasma membrane. [63], [100] 

 

Quantities 

45% of phosphoinositide’s in human cells and 90% of biphosphorylated 

phosphoinositides. [100] 

Around 2% of cellular inositol lipids. [63] 

10% of phosphoinositides. [66] 

 

Generation  

PI(4,5)P2 is created from PI(4)P by PIP5KI.  

PI(4,5)P2 is created from PI(5)P by PIP5KII. (apparently in the Golgi???) 

PI(4,5)P2 is created from PI(3,4,5)P3 by PTEN and TPIP. 

There is evidence of scaffolding of PI4K and PIP5KI kinases to essentially rapidly 

produce PI(4,5)P2 from the much abundant PI. [78] 

 

Degradation / Consumption  

PI(4,5)P2 is phosphorylated in the 3rd position into PI(3,4,5)P2 by PI3KI. 

PI(4,5)P2 is hydrolyzed in the 5th position into PI(4)P by INPP5, ORCL and also 

SAC2, SYNJ1/2 and SKIP.  

PI(4,5)P2 is hydrolyzed in the 4th position into PI(5)P by SYNJ1/2 and TMEM55.  

SYNJ1/2 has the ability to hydrolyze the 4th and 5th position of phosphoinositides, 

being able to transform PI(4,5)P2 rapidly into PI. [78] 

  

Functions  

Identifier of the plasma membrane. [63] 

Precursor for PI(3,4,5)P3. 

Precursor for IP3 and DAG, important in calcium ER release. [63]  

Actin cytoskeleton and endocytic regulator. [100] 

At the nucleus, PI(4,5)P2 regulates pre-mRNA splicing and gene expression 

though poly(A) polymerase, termed Star-PAP. [103], [104] 

 

Open questions 

What is the PI(4,5)P2, PI ratio in the plasma membrane?  

Can the manipulation of the levels of PI(4,5)P2 be an effective means to influence 

the activity of proteins in the plasma membrane?  
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Table 1.10. Features of PI(3,4,5)P3 

PI(3,4,5)P3 (Phosphatidylinositol 3,4,5-trisphosphate) 

 

Cellular location 

Mainly in the plasma membrane. [67] 

 

Quantities 

Less than 5% of total phosphoinositides. [60] 

0.1 - 1% of total phosphoinositides. [66] 

Almost non-detectable in quiescent cells.  

Intracellular level rapidly and transiently increases up to 100-fold in response to an 

agonist. [105] 

 

Generation 

Created by PI3KI from PI(4,5)P2. [78] 

There is evidence that scaffolding kinases can transform PI to PI(3,4,5)P3. [106] 

 

Degradation / Consumption 

PI(3,4,5)P3 is transformed back into PI(4,5)P2 by PTEN or TPIP. 

PI(3,4,5)P3 is also hydrolyzed in the 5th position. [78] 

 

Functions  

Control of cell proliferation and cell survival, cytoskeleton dynamics, cell motility, 

membrane trafficking and apoptosis by interacting with the Arf GTPases family, 

PDK1 and AKT kinases and phospholipase C. [107], [108] 

 

Open questions 

In the apical part of a polarized epithelial cell, the absence of PI(3,4,5)P3 is 

accompanied by an increase of PI(4,5)P2? There is experimental evidence that 

supports both sides, but the evidence with better quality points to no alteration of 

PI(4,5)P2 levels. [75] 
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1.6. Thesis outline 

The biological motivation and theoretical background for this work are introduced in 

Chapter 1.   

There were four objectives to this PhD project that were accomplished and reported in 

the central chapters of this thesis. The first objective was to build a dynamic model of 

the phosphoinositide pathway, which is reported in Chapter 2. 

The creation of an ENaC/ASL model (described in Chapter 3) enabled us to achieve 

the second objective, namely, to expand the model to include ion channels. This task 

was completed in the paper presented in Chapter 4 with the joining of the 

phosphoinositide and the ENaC/ASL models. 

Throughout the three aforementioned Chapters, the third objective, the search for 

therapeutic approaches in the context of cystic fibrosis was implemented.  

Finally, in Chapter 5, two suggested experiments are proposed, completing the fourth 

objective of planning laboratory experiments. Also, in this Chapter, the results of 

Chapters 2, 3 and 4 are revisited, discussed and directions for future research are 

proposed.   
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 A Mathematical Model of the Phosphoinositide Pathway  
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2.1. Abstract 

Phosphoinositides are signalling lipids that constitute a complex network regulating 

many cellular processes. We propose a computational model that accounts for all 

species of phosphoinositides in the plasma membrane of mammalian cells. The model 

replicates the steady-state of the pathway and most known dynamic phenomena. 

Sensitivity analysis demonstrates model robustness to alterations in the parameters. 

Model analysis suggest that the greatest contributor to phosphatidylinositol 4,5-

biphosphate (PI(4,5)P2) production is a flux representing the direct transformation of 

PI into PI(4,5)P2, also responsible for the maintenance of this pool when 

phosphatidylinositol 4-phosphate (PI(4)P) is decreased. PI(5)P is also shown to be a 

significant source for PI(4,5)P2 production. The model was validated with siRNA 

screens that knocked down the expression of enzymes in the pathway. The screen 

monitored the activity of the epithelium sodium channel (ENaC), which is activated by 

PI(4,5)P2. While the model may deepen our understanding of other physiological 

processes involving phosphoinositides, we highlight therapeutic effects of ENaC 

modulation in Cystic Fibrosis (CF). The model suggests control strategies where the 

activities of the enzyme phosphoinositide 4-phosphate 5-kinase I (PIP5KI) or the 

PI4K+PIP5KI+DVL protein complex are decreased and cause an efficacious reduction 

in PI(4,5)P2 levels while avoiding undesirable alterations in other phosphoinositide 

pools.  
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2.2. Introduction 

Biological systems have evolved by improving the efficiency with which complex 

regulatory networks control multiple mechanisms in the cell through the fine-tuned 

balancing of enzymatic reactions. Phosphoinositides are important lipids that are 

interconverted into each other by multiple enzymatic reactions, which together 

constitute an example of such a complex network regulating critical cellular functions. 

Phosphoinositides are key signalling messengers, and several play important parts in 

regulating physiological processes including vesicular trafficking, transmembrane 

signalling, ion channel regulation, lipid homeostasis, cytokinesis and organelle identity 

as characteristic identifiers for different membranes in the cell[1]–[5]. It is thus not 

surprising that phosphoinositides play critical roles in a number of pathological 

conditions including immunological defence, mediating replication of a number of 

pathogenic RNA viruses, in the development of the parasite responsible for malaria, in 

tumorigenesis, Alzheimer's disease, diabetes, and numerous others[6]–[9]. 

The inositol head of phosphoinositides can be phosphorylated at its third, fourth and 

fifth carbon, thus creating different subspecies. The responsible pathway connects eight 

metabolites through a dense network of 21 chemical reactions, which are catalysed by 

19 kinases and 28 phosphatases[10] (Figure 2.1). The resulting degree of complexity 

prevents simple interpretations and renders intuitive predictions of pathway behaviour 

and regulation unreliable. It is especially difficult to pinpoint the roles of less abundant 

phosphoinositides, such as phosphatidylinositol 5-phosphate (PI(5)P) and 

phosphatidylinositol 3,4-biphosphate ( PI(3,4)P2 ). PI(4,5)P2 is present throughout the 

plasma membrane and considered a general marker for the cell membrane. By contrast, 

phosphatidylinositol 3,4,5-triphosphate ( PI(3,4,5)P3 ), marks the basolateral part of a 

polarized cell’s membrane but is absent from the apical part[1], [11].  

Other phosphoinositides characterize intracellular membranes (Figure 2.2). 

Phosphatidylinositol 3,5-biphosphate ( PI(3,5)P2 ) is typical for multivesicular bodies 

and lysosomes, whereas PI(4)P is found in the Golgi, and phosphatidylinositol (PI) is 

located in the endoplasmic reticulum (ER)[12]. To achieve this distinctive variability 

in phosphoinositide composition among different membrane compartments, the cell 

must be able to modulate phosphoinositide metabolism in a targeted, localized manner.  
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Phosphoinositides also serve as precursors for various signalling molecules, as in the 

case of PI(4,5)P2, which can be transformed into diacylglycerol (DAG) and inositol 

triphosphate (IP3) through the action of phospholipase C (PLC). They are furthermore 

docking sites in the plasma membrane, for instance, for AKT (also known as Protein 

Kinase B) in the case of PI(3,4,5)P3.  

 

Figure 2.1. Map of the phosphoinositide pathway. 

Red arrows represent fluxes of phosphorylation and blue arrows fluxes of hydrolysis. For each flux, 

the name (vi→j) and the group of enzymes that catalysed the reaction are shown. Black arrows represent 

influxes and effluxes of material entering and leaving the system. SIOSS is a group of phosphatases, 

consisting of SYNJ 1/2, INPP5 B/J/E, OCRL1, SAC2 and SKIP. PI4K + PIP5KI + DVL denotes a 

complex formed by the three proteins. Proteins separated by commas catalyzed the same reaction. 

SYNJ: Synaptojanins; INPP5: Inositol polyphosphate 5-phosphatases; OCRL1: Lowe 

Oculocerebrorenal Syndrome Protein; SAC2: Suppressor of actin; SKIP: Skeletal muscle and kidney 

enriched inositol polyphosphate phosphatase. 

 

Interestingly, phosphoinositides are also key regulators of ion channel activity[11]. The 

epithelial sodium channel (ENaC) is of interest, as it plays a critical role in Cystic 
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Fibrosis (CF), a genetic condition caused by mutations in the gene encoding CFTR, a 

chloride channel that also regulates other ion conductance, namely through ENaC, 

across epithelia. In order to keep ENaC open, lysine residues present at the N terminus 

of the  and  subunits need to be bound to PI(4,5)P2[13]. This channel function is 

upregulated in the lungs of individuals with CF, and the increased absorption of sodium 

and water is considered to be the major cause of lung disease due to critical dehydration 

of airway surface liquid (ASL)[14]. The dehydrated ASL and consequent impairment 

of mucociliary clearance, in turn, is a major cause of respiratory problems in CF[13]. 

Thus, a better understanding of the phosphoinositide pathway is of paramount 

importance, as it may contribute to ameliorating the CF phenotype by manipulating the 

levels of PI(4,5)P2, which moderate the action of ENaC. 

To address the challenge of complexity, it is advantageous to resort to mathematical 

models, which indeed have already been proposed for particular components of the 

phosphoinositide pathway. Narang[12], Xu[15], Nishioka[16] and Purvis[17] proposed 

models mainly focused on understanding the dynamics of PI(4,5)P2, PLC, IP3 and 

DAG, since these molecules are directly associated with calcium release and protein 

kinase C (PKC) activation, which are important signalling events. Other models, such 

as those developed by Araia[18] and MacNamara[19], focus on PI(4,5)P2, PI(3,4,5)P3, 

phosphoinositide 3-kinase (PI3K), phosphatase and tensin homolog  (PTEN) and their 

roles in cancer. None of these models account for all phosphoinositide species. 

However, the inclusion of less abundant species is important for understanding the 

distinctions between membrane compartments and for rationalizing the observed 

impact of several enzyme knock-downs on PI(4,5)P2-mediated ENaC modulation[13].  
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Figure 2.2. Functions of phosphoinositides in the cell. 

Phosphoinositides are signalling lipids that are cell membrane identifiers. PI(4,5)P2 marks the plasma 

membrane, PI(3)P the early endosomes, PI(4)P the Golgi, PI(3,5)P2 the late endosomes, PI the ER; 

finally, PI(3,4,5)P3 is present in the basolateral part of the plasma membrane and absent from the apical 

part. Phosphoinositides are also second messengers, precursors to other signalling molecules and 

membrane protein docking sites and regulators. 

 

Here, we propose a mathematical model of the complete phosphoinositide pathway. 

Our primary goal is to shed light on the dynamics of this pathway. Moreover, the model 

will facilitate a deeper understanding of the unique composition of membranes in 

different compartments and thereby provide an effective tool for exploring various 

physiological conditions and their potential treatments, including possible therapeutic 

targets for CF, cancer and other diseases in which the phosphoinositide pathway plays 

a critical role.  

2.3. Results 

The prime result of this study is a mathematical model of the phosphoinositide pathway 

that contains all allegedly relevant molecular components and captures pertinent 

features of the pathway documented in the literature. The model is certainly not all-
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encompassing but detailed enough to serve as a launch pad for future extensions. For 

instance, it is known that the actual pathway is distributed and compartmentalized. 

Here, we simulate it restricted to a 1 μm2 patch of plasma membrane, which we consider 

spatially homogeneous. Nonetheless, the model is designed in a manner that is flexible 

enough to simulate membrane patches in different compartments, and once the 

necessary data become available to allow such an extension, it will be easy to block a 

given reaction a priori if it is known to be absent in that compartment. Alternately, one 

may perform the same type of parameter optimization as we have done here, but fit 

experimental observations in different compartments, and this strategy would lead to 

very low enzyme activities for the corresponding reactions.  

The pathway map underlying the model is exhibited in Figure 2.1. To facilitate the 

presentation and discussion of results, each flux is represented by vi➔j, and the group 

of enzymes catalysing it by Ei➔j, where the subscripts i and j identify the phosphorylated 

positions of the substrate and product phosphoinositide species, respectively. The 

modelled reaction network is based on a review by Balla[11], but expanded with 

information from other sources[2], [3], [10]. In particular, we added four fluxes: v0➔45, 

v45➔0, v4➔34 and v34➔4. The first, v0➔45, transforms PI into PI(4,5)P2 through a ternary 

complex of proteins PI4K, PIP5KI and DVL[20]. This complex is included as one 

possible molecular complex facilitating the direct channelling of PI into PI(4,5)P2, and 

it is possible that other protein assemblies could perform this function as well[21]. v45➔0 

represents the opposite reaction, which is catalysed by synaptojanins, which are 

phosphatases that have both a 5-phosphatase domain and a suppressor of actin 1 

(SAC1) domain. Balla[11] and Hsu[22] speculate that the 5-phosphatase domain can 

transform PI(4,5)P2 into PI(4)P by feeding the SAC1 domain, which dephosphorylates 

PI(4)P, into PI. Although v0➔45 and v45➔0 are based on molecular mechanisms that are 

not generally accepted, their inclusion in the model turned out to be necessary for the 

maintenance of the PI(4,5)P2 pool when the level of PI(4)P is low. The inclusion of 

v4➔34 has been suggested by Sasaki[10], Shewan and Mostov[3]. Di Paolo and De 

Camilli [2] reported the existence of both v4➔34 and v34➔4. 



 

53 

 

Figure 2.3. Perturbations to the phosphoinositide pathway. 

Blue lines represent experimental observations and bars represent model predictions. a) Perturbation of 

PI levels, PI4K and PI5KI activities and resulting effects in PI(4,5)P2 and PI(4)P. ➔0 is decreased to 50% 

to trigger a decrease of 50% in PI. b) Perturbation of input fluxes to the levels of PI(4)P and PI(4,5)P2. 

After stopping all inputs into PI(4)P and PI(4,5)P2, the inputs are re-activated, one at a time, to test if 

they are sufficient to restore PI(4,5)P2 levels. Enzyme knockouts were simulated by setting the rate 

constant of the corresponding flux to zero, except for ➔4, which was decreased to 20% of its original 

value, in order to avoid numerical errors in the simulation due to very small levels of PI(4)P. c) 

Perturbations to MTMR, SYNJ_TMEM55 and PIKfyve that were used to fit the model to the behaviour 

of phosphoinositides with small pools: PI5P, PI(3,5)P2 and PI(3)P. d) Consequences of Golgi PI(4)P 

input (➔4) for the levels of PI(4)P and PI(4,5)P2 pools. Golgi PI(4)P has a significant impact on the 

PI(4)P pool but barely affects the PI(4,5)P2 pool. The graphs were created in R[26] and the x axis labels 

were added with PowerPoint.  
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Figure 2.4. High-sensitivity network. 

Arrows represent amplifying sensitivities with absolute magnitude greater than 1. Red and blue arrows 

represent positive and negative sensitivities, respectively. The thickness of each arrow is proportional to 

the magnitude of the corresponding sensitivity. 

 

2.3.1.  Consistency of the Model with Data 

As described in the Methods section, model equations were formulated according to 

Biochemical Systems Theory (BST)[23], [24]. Initial parameter estimates were derived 

from the literature and from the BRENDA database[25]. The parameter values were 

subsequently optimized with a genetic algorithm such that the model matched reported 

phosphoinositide steady-state levels (Supplementary Table 2.1) and dynamic 

phenomena reported in the literature (Figure 2.3 a,c and Supplementary Table 2.2). This 

model successfully mimics steady-state levels and 11 out of 13 observed phenomena. 

The observations that were not replicated are: 1) when the PI levels are reduced, the 
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drop in PI(4,5)P2 levels is not as evident as reported in the literature (Figure 2.3a); and 

2) the knockout of myotubularin MTMR2 effects are only partially replicated (Figure 

2.3c). 

2.3.2.  Model sensitivities 

The profile of model sensitivities is a double-edged sword. On the one hand, high 

sensitivities make the model susceptible to unreasonable responses from small 

perturbations or noise. On the other hand, if the system has a signalling function, small 

signals must be amplified to have appropriate effects. The model presented here has a 

stable steady state that is mostly insensitive to parameter changes (Supplementary 

Table 2.8). In fact, the system is robust even to large changes in parameter values 

(Supplementary Figure 2.8). At the same time, the model does exhibit clusters of high 

sensitivities that are associated with signalling compounds, which one should expect 

(Figure 2.4).  

 

Figure 2.5. Sum of squared errors for parameter sets detected through Monte-

Carlo exploration of the parameter space. 

All parameter sets shown comply with the following conditions: 1. phosphoinositide steady-state levels 

are within the intervals retrieved from the literature; 2. the relative amounts between the phosphoinositide 

pools match the data; 3. influxes are less than 25% of the corresponding phosphoinositide pools; 4. 

effluxes are less than 7% of the corresponding phosphoinositide pools. The black bar at zero represents 

the score of a perfect model, the best set found by the genetic algorithm is shown as a blue triangle and 

the manually found set is the cyan bar. The boxplot concerns the 116 admissible alternative parameter 

sets. Figure created in R [26]. 
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2.3.2.1. Analysis of low sensitivities and parameter identifiability  

Even though most sensitivities are low, one must question how many of the parameters 

are actually identifiable. To address this question, we performed a Monte Carlo search 

of the parameter space, which revealed that only 166 out of 79,993 parameter sets tested 

yield correct steady-state levels (less than 0.15%), given an acceptable material influx 

into the pathway. All of these 166 solutions have a worst adjustment score than the 

manually fitted set and the set found with a genetic algorithm (Figure 2.5). These results 

suggest that the model parameterization is sufficiently specific, given the available 

experimental information. 

2.3.2.2. High-sensitivity sub-networks 

The pairs of model variables and parameters with high sensitivities (Figure 2.4) form a 

network that clusters into four groups around: 1) PI, which is the source of the 

phosphoinositides; 2) PI(4)P and PI(4,5)P2, which are responsible for plasma 

membrane identification and PI(4,5)P2 maintenance; 3) the small lipids pools (PI(3)P, 

PI(5)P and PI(3,5)P2); and  4) PI(3,4,5)P3 and its derivate PI(3,4)P2.  

This high-sensitivity network is reflected in a map of parameters that are best poised to 

serve as “master regulators” for controlling the variables in the different groups. For 

example, an increase in the levels of PI(3,4,5)P3 and PI(3,4)P2 is most easily 

accomplished by altering the kinetic order in the flux V45➔345. An increase in V345➔45 

elicits a reduction of PI(3,4,5)P3, which highlights the importance of PI3KI and PTEN 

for this part of the pathway. If simultaneous increases in the levels of the three 

phospholipids PI(3)P, PI(5)P and PI(3,5)P2 are required, a researcher should boost 

V0➔3. As an alternative, he could decrease each phospholipid independently 

manipulating the respective consumption fluxes.  

2.3.3.  New Insights into the Phosphoinositide System 

The model can be used to shed light on the control of the phosphoinositide pathway. 

Particularly pertinent insights are described in the following subsections. 
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2.3.3.1. PI(4,5)P2 is sensitive to PI, PI4K and PIP5KI 

Model simulations replicating reported experimental results demonstrate that PI(4,5)P2 

is sensitive to the level of PI and to the activities of phosphoinositide 4-kinase (PI4K) 

and phosphoinositide 4-phosphate 5-kinase (PIP5KI) (Figure 2.3a).  

2.3.3.1.1. PI4K controls PI(4,5)P2 levels. 

According to the literature, a knockout of phosphoinositide 4-kinase (PI4K) leads to a 

decrease in PI(4)P and PI(4,5)P2 to 50% of their basal level[27]. Decreasing PI4K will 

cause not only the decrease of v0➔4 but also V0➔45 because this kinase is part of the 

protein complex that catalyses V0➔45. The model mimics this phenomenon for PI(4,5)P2 

although it predicts a more severe drop in the levels of PI(4)P. 

2.3.3.1.2. PIP5KI controls PI(4,5)P2 levels.  

One strategy for reducing PI(4,5)P2 levels is to decrease the amount of PIP5KI. This 

mechanism is probably viable in vivo because a single allele of the PIP5KI gene is 

sufficient to sustain life in mice embryos, whereas knock-out PIP5KI mice die shortly 

after birth[28]. The same study also showed that  and  genes are not necessary to 

maintain viability, and their roles are still unclear. Volpicelli-Daley et al.[28] 

furthermore reported that PI(4,5)P2 levels drop around 50% in PIP5KI KO mice. 

Decreasing the activities of PIP5KI (E4➔45) and PI4K/PIP5KI (E0➔45) to 50% in the 

model, reduces PI(4,5)P2 to roughly 50% of its basal level.    

2.3.3.1.3. PI controls PI(4,5)P2 levels. 

Kim[29] reported that a 50% drop in the PI pool causes a similar decrease in PI(4,5)P2 

levels. PI(4,5)P2 in the model is sensitive to a reduction in PI but does not drop as much 

as reported in the literature. Specifically, a 50% drop in PI will only lead to a reduction 

of 11% in PI(4,5)P2. A 50% drop of PI in the whole cell would also affect other 

membrane compartments responsible for the production of PI(3)P and PI(4)P. To 

include this effect, we closed v➔4 and v➔3. However, this intervention decreases 

PI(4,5)P2 only to 88% of its basal level. Interestingly, PI(4)P drops to 47%. To achieve 

a 50% drop in the PI(4,5)P2 pool we would have to shut down v➔4 and v➔3 completely 

and reduce the influx of PI,v➔0, to 2% of its original value.  
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2.3.3.2. PI(3,4,5)P3 levels are sensitive to the concentrations of PTEN and PI3KI 

PTEN has been known to be a tumour suppressor for almost twenty years[11]. This 

phosphatase hydrolyzes the third position of the phosphoinositide inositol ring in 

PI(3,4,5)P3 into PI(4,5)P2 and, to a lesser degree, in PI(3,4)P2 into PI(4)P [1], [10], [11]. 

PI3KI phosphorylates the third position of the inositol ring of PI(4,5)P2 into PI(3,4,5)P3, 

thereby catalysing the inverse reaction of PTEN. This kinase is known to control the 

cell energetic state and metabolism and thus playing a key role in tumorigenesis[11]. 

Bryant and Mostov[1] reported that PI(3,4,5)P3 is present at the basolateral membrane, 

but absent in the apical part, of polarized epithelial cells. PTEN and PI3K are believed 

to be responsible for this difference. PTEN is present in the apical part and at the tight 

junctions, where it transforms PI(3,4,5)P3 into PI(4,5)P2. By contrast, PI3K is located 

in the basolateral part of the membrane and catalyses the opposite reaction from 

PI(4,5)P2 to PI(3,4,5)P3.  

2.3.3.2.1. Regulation of PTEN and PI3KI. 

Cell polarization is highly regulated through mechanisms involving PTEN, PI3K, 

PI(4,5)P2 and PI(3,4,5)P3[18], [30], [31]. We investigated to what degree high activity 

of PTEN (2.3e-15 mg/µm2) and low activity of PI3KI (6.1e-16 mg/µm2) are sufficient 

to deplete PI(3,4,5)P3 to about 2 molecules/µm2 and thereby mimic the apical 

membrane configuration. Conversely, we asked if low PTEN (3.9e-17 mg/µm2) and 

high PI3KI (1.5e-14 mg/µm2) could replicate the basolateral membrane configuration, 

which is rich in PI(3,4,5)P3 (760 molecules/µm2). Interestingly, model simulations 

readily mimicked both membrane configurations, which suggests that the model is a 

satisfactory approximation of the observed phenomena characterizing epithelial and 

basolateral membrane states (Figure 2.6).  

2.3.3.2.2. Flux v345➔34 modulates the effects of PTEN. 

If the flux v345➔34 is accelerated to values close to those ones described in the literature 

for SH2 domain-containing phosphatidylinositol 5-phosphatase (SHIP1), the model 

predicts a decrease in PI(3,4,5)P3. The surprising consequence of this prediction is that 

this decrease will lock the membrane in a basal-like configuration and that a 

knockdown of PTEN will no longer increase PI(3,4,5)P3 (Figure 2.6). 
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Figure 2.6. PI(3,4,5)P3 is sensitive to PTEN when v345➔34 is slow. 

A decrease in PTEN is sufficient to increase the levels of PI(3,4,5)P3 and change the membrane 

configuration form apical (low PI(3,4,5)P3) to basolateral (high PI(3,4,5)P3). A fast v345➔34 will decrease 

PI(3,4,5)P3 and make the membrane much less sensitive to a PTEN change. A PTEN knockdown of 

98.33% does not alter the amount of PI(4,5)P2 in either fast or slow v345➔34 conditions. Fast v345➔34 

increases the levels of PI(3,4)P2 and makes the levels of this lipid dependent on the PI(3,4,5)P3 pool. 

Slow v345➔34 is modelled as ➔34 = 1e11 and f345➔34 = 0.9982. Fast v345➔34 is modelled as 345➔34 = 6e13 

and f345➔34 = 0.9998. Rate constants are in molecules1-g μm2g/min or μm2/min/mg where g is the kinetic 

order of the corresponding variable, kinetic orders are dimensionless. The graph was created in R42 and 

the x axis labels were added with PowerPoint. 

 

2.3.3.3. Control of PI(4,5)P2 levels  

The proposed model is a powerful tool for exploring how the cell controls the 

phosphoinositide levels in its cell membrane. Due to the multiple functions of PI(4,5)P2, 

including ion channel activity regulation, cell polarization, and signalling, the control 

of this phosphoinositide is of particular relevance. 

PI(4,5)P2 can be synthesized from three phosphoinositide species in addition to PI 

(through v0➔45), namely PI(4)P, PI(5)P and PI(3,4,5)P3 (Figure 2.1). PI(3,4,5)P3 is 

present in low concentrations and transformed into PI(4,5)P2 mainly by the phosphatase 

PTEN. The cellular location of this enzyme is tightly regulated, as it is located in non-
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polarized cells in the cytosol and nucleus most of the time[32]. PI(5)P also exists as a 

small pool and its role is not clearly understood. That leaves PI(4)P as the only 

reasonable candidate for maintaining PI(4,5)P2 levels, besides PI. PI(4)P is a substrate 

for the kinase PIP5KI and has a physiological concentration roughly similar to 

PI(4,5)P2 pool, i.e., around 10,000 molecules/µm2. However, it has been observed that 

PI(4,5)P2 levels can be maintained even with low PI(4)P levels[11], [27]. Figure 2.3b 

shows the changes in PI(4)P and PI(4,5)P2 levels predicted by the model when different 

sources are perturbed.  

2.3.3.3.1. Contribution of v0➔45 to PI(4,5)P2 levels. 

The flux v0➔45 represents the direct transformation of PI into PI(4,5)P2 by means of a 

ternary complex of proteins containing PI4K and PIP5KI[20]. The model suggests that 

v0➔45 alone can maintain 80% of the basal level of PI(4,5)P2, thereby making it the main 

source of PI(4,5)P2 (Figure 2.3b). This direct transformation of PI into PI(4,5)P2 should 

exist to ensure the stability of the PI(4,5)P2 pool, and reports in the literature[20], [33] 

seem to support this finding.  

2.3.3.3.2. Contribution of PI(4)P influx to PI(4,5)P2 levels. 

The flux v➔4 represents the amount of PI(4)P coming from the Golgi through vesicle 

trafficking or non-vesicle transfer (Figure 2.2), which has been reported to constitute a 

sizeable contribution to the maintenance of plasma membrane PI(4)P, but contributes 

only moderately to the maintenance of PI(4,5)P2[33], [34]. Indeed, the model 

simulations show that v➔4 by itself can maintain PI(4)P at 30% of its basal level and 

only generates a 9% increase in the PI(4,5)P2 pool (Figure 2.3d). 

2.3.3.3.3. Contribution of PI(5)P to PI(4,5)P2 levels. 

The flux v5➔45 can maintain the PI(4,5)P2 pool at 34% of its basal level (Figure 2.3b). 

However, the influence of this flux is highly dependent on v➔3. If v➔3 increases 25 

times, which makes this input flux similar to the one for PI(4)P, v5➔45 can sustain 

PI(4,5)P2 levels at 71%. If v➔3 increases 50 times, v5➔45 can sustain 100% of PI(4,5)P2. 

This result suggests that PI(5)P may have an influential role in the maintenance of 

PI(4,5)P2 levels and function as a means of channelling material from PI(3)P toward 

the linear pathway of PI(4)P, PI(4,5)P2 and PI(3,4,5)P3.  
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Taken together, these results suggest that the cell employs at least four mechanisms to 

maintain adequate PI(4,5)P2 levels. This level of redundancy highlights the importance 

of PI(4,5)P2. Indeed, PI(4,5)P2 is known as a characteristic component of the cell 

membrane[11], [27], and it is to be expected that down-regulation of PI(4,5)P2 levels 

would interfere with the proper functioning of the proteins in the membrane. 

Compromising these proteins, in turn, would have a negative impact on fundamental 

processes, such as cellular nutrient intake, information sensing, chemical messaging 

and the secretion of waste.  

2.3.4. Therapeutic Targets for the Modulation of ENaC Activity in CF 

The components of the phosphoinositide pathway, and PI(4,5)P2 in particular, are 

involved in numerous physiological processes, and our model has the potential to 

deepen our understanding in many of these areas. One specific motivation for us to 

develop this model was to explore the role of the phosphoinositide pathway in the 

modulation of the epithelial Na+ channel (ENaC) activity in the lung tissue of patients 

with CF. ENaC is a sodium and water channel whose activity is upregulated in CF. It 

is well established that PI(4,5)P2 promotes ENaC activity[11], [35]. We have also 

previously identified the phosphoinositide pathway to be a key regulator of ENaC[13] 

. Indeed, performing an siRNA screen in the CF context using a microscopy-based live-

cell assay, we identified 30 enzymes in the phosphoinositide pathway as significant 

modulators of ENaC activity. We performed independent siRNA knockdowns of 

phosphoinositide enzymes and re-evaluated ENaC activity with the same live-cell 

assay. Assuming that if a siRNA increases PI(4,5)P2 it will enhance ENaC activity, we 

compared ENaC activity results (Supplementary Table 2.10) with model predictions of 

an siRNA effect on PI(4,5)P2 .  

Our model predictions are consistent with four out of five siRNA assays targeting 

phosphoinositide kinases. As these assays were not used to calibrate model parameters, 

this agreement of model predictions with experimental observations supports the 

validity of our model. Furthermore, model simulations allow us to check if the tested 

siRNA perturbations may have undesirable side effects on the steady-state profile of 

the pathway, which were not observable in the original experiments. The results for 

specific pathway perturbations are discussed in the next sections.   
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Figure 2.7. Predicted changes in PI(4,5)P2 and PI(3,4)P2 levels as a consequence 

of siRNA knockdown assays. 

Each kinase is inactivated, one at the time, and phosphatases are upregulated. The protein complex 

catalysing v0➔45 is composed of PIP5KI and PI4K; therefore, when one of these enzymes is knocked out, 

the complex should be also knocked out. There is also the possibility of knocking out only the complex. 

Enzymes are coloured according to the classification in the siRNA screens: enzymes activating ENaC 

are marked red, those inhibiting ENaC are marked green and those exhibiting both effects are marked 

black. The graph was created in R[26] and the x axis labels were added with PowerPoint.  

 

2.3.4.1. PIP5KI 

The most direct and effective way to decrease PI(4,5)P2 levels is by decreasing PIP5KI 

(E4➔45 and E0➔45) or enhancing the 5-phosphatases of the SIOSS enzyme group that 

hydrolyse the fifth position of PI(4,5)P2 (E45➔4). It is documented in the literature that 

decreasing PIP5KI will significantly affect PI(4,5)P2 levels[28]. The model predicts 

that a knock-out of PIP5KI will trigger a decrease in PI(4,5)P2 to 13% of its basal steady 

state (Figure 2.7). The performed siRNAs validation tests corroborate the model 

prediction (Supplementary Table 2.10).  
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An alternative to trigger the decrease in PI(4,5)P2 levels is to increase the activity of 5-

phosphatases in the SIOSS enzyme group. Doubling the activity of this phosphatase 

group in the model results in a 35% decrease in PI(4,5)P2 (Figure 2.7). Both our 

previous dataset[13] and results  from the new siRNAs validation tests included in the 

present study (Supplementary Table 2.10) are not as conclusive about the SIOSS 

phosphatases, as for most of the phosphatases tested, which could be a consequence of 

the unspecific activity that characterizes phosphatases. For example, synaptojanins 

catalyse several reactions in the pathway and perturbing them would probably cause 

unexpected side effects.  

2.3.4.2. PI4K 

A PI4K knockout affects the fluxes v0➔4 and v0➔45. It decreases PI(4,5)P2 in 59% 

(Figure 2.7). Accordingly, the model suggests that PI4K should be classified as an 

ENaC activating gene, which is in line with our previous observations[13]. An 

undesirable side effect within these model predictions is the change of the PI(3,4)P2 

concentration, a lipid involved in clathrin-coated vesicle formation and activation of 

AKT. According to the model, this perturbation would cause a 54% decrease in the 

level of PI(3,4)P2. 

2.3.4.3. PI4K, PIP5KI and DVL protein complex  

A knockout of the protein complex formed by PI4K, PIP5KI and segment polarity 

protein dishevelled homolog (DVL) (PI4K+PIP5KI+DVL, E0➔45), which transforms PI 

directly into PI(4,5)P2, causes a 57% decrease in this lipid (Figure 2.7). This 

perturbation also causes a 7% decrease in the levels of PI(3,4)P2. The 

PI4K+PIP5KI+DVL protein complex is formed upon wingless-Type MMTV 

Integration Site Family, Member 3A (Wnt3a) stimulation. The possibility of targeting 

the segment polarity protein Dishevelled homolog DVL (DVL) to suppress the 

formation of the protein complex is interesting because it would avoid interfering with 

other reactions in the pathway.  

2.3.4.4. PIP5KII and SYNJ/TMEM55 

An increase of SYNJ/TMEM55 (E45➔5) phosphatases and a decrease of the kinase 

PIP5KII (E5➔45) could decrease PI(4,5)P2 (Figure 2.7). The model predicts that 
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SYNJ/TMEM55 has a negligible effect, which is consistent with the literature[11] and 

our previous data[13] concerning synaptojanins. However, no phosphatases belonging 

to the TMEM55 group were screened in the Almaça et al. study. Knocking out PIP5KII 

reduces the pool of PI(4,5)P2 by 16%. PIP5KII was classified as an ENaC enhancer in 

both our previous screens[13] and in the present siRNA validation tests (Supplementary 

Table 2.10), in agreement with the model prediction. Altering PIP5KII function only 

causes a 2% decrease in PI(3,4)P2, however perturbing PIP5KII activities could have 

unforeseen consequences since the role of PI(5)P is not clearly understood and the flux 

catalyzed by PIP5KII, v5➔45, is the main efflux for the PI(5)P pool. 

2.3.4.5. PI3KI and PI3KII 

The model predicts that PI(4,5)P2 levels are insensitive to knockouts of PI3KI and 

PI3KII. We previously classified PI3KI as an ENaC activating gene[13], and this is 

corroborated here by the siRNA validation tests. The PI3KI knockdown increases the 

level of PI(4,5)P2 if the model parameters are configured to reproduce a basolateral-

like membrane composition (enriched in PI(3,4,5)P3). At the same time, this simulated 

PI3KI knockdown decreases PI(3,4,5)P3 levels, which is also known to control 

ENaC[11]. One should note that in polarized cells ENaC localizes to the apical part of 

the membrane which contains neither PI(3,4,5)P3 nor PI3KI. Therefore, the effect of 

PI3KI on ENaC may only be observable in non-polarized cells.  

The model predicts a negligible influence of PI3KII on PI(4,5)P2 and PI(3,4,5)P3 but 

causes an almost complete depletion of PI(3,4)P2. We previously[13] classified PI3KII 

as an ENaC inhibiting gene. If this is so, the model suggests that this inhibition could 

be caused by the depletion of PI(3,4)P2 or components not belonging to the 

phosphoinositide pathway. 

2.4. Discussion 

In this work, we developed a new mathematical model that captures the complex 

metabolic network of phosphoinositides. The proposed model successfully replicates 

the phosphoinositide metabolite levels in mammalian cells and reflects numerous 

observed phenomena. The model is also able to reproduce the differentiation of the cell 

membrane into apical and basolateral types. 
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Using model simulations we were able to dissect the control of the levels of PI(4,5)P2, 

for which the low abundant phosphoinositide PI(5)P seems to have a significant role as 

an alternative source. This finding was not detectable in previous models of the 

pathway, due to their simplifying assumptions.  

The results obtained here are of potential interest for a variety of physiological 

conditions, because the different phosphoinositides play uncounted roles in lipid 

signalling and membrane dynamics. Of particular interest to us was the fact that the 

model was helpful in explaining observed effects in a siRNA screen of ENaC 

modulators in CF. Namely, the model suggested targeting the enzyme that catalyses 

v4➔45, PIP5KI, as the most effective way to decrease the levels of PI(4,5)P2. Targeting 

PI4K would also reduce PI(4,5)P2 levels significantly, but model simulations point to a 

possible undesired side effect, namely, the simultaneous reduction of PI(3,4)P2 levels. 

Targeting the PI4K+PIP5KI+DVL protein complex does not significantly alter other 

lipids (Supplementary Figure 2.9) while yielding a large PI(4,5)P2 reduction. Because 

this reduction is not as extensive as the one induced by PIP5KI targeting, it may 

moderate ENaC activity without drastic negative effects in the activity of other proteins 

regulated by PI(4,5)P2. 

The model also suggests that, in order to replicate phenomena retrieved from the 

literature, v0➔45 should be the main flux producing PI(4,5)P2. In particular, this flux 

may explain the maintenance of PI(4,5)P2 levels when the levels of PI(4)P are low. This 

result suggests the importance of a close functional relationship between PI4K and 

PIP5KI. This relationship does not imply that the two kinases must be in physical 

proximity through this particular protein complex[20]. They may also work in close 

proximity within lipid raft-like structures, for example.  

The coupling of PI4K and PIP5KI activities may define two configurations of the 

system. One, where the two kinases are working together closely, in which case they 

are more sensitive to alterations in PI and in the levels of PI4K. The other configuration 

is more robust in terms of PI(4,5)P2 levels, where the bulk of this phosphoinositide is 

created through PI(4)P.  

Of course, the model could be improved in the future when new experimental data 

regarding phosphatases and higher parameter precision are available, but this 
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information is much scarcer than that of kinases. For instance, it is unclear how exactly 

phosphatases act on the system. Their versatility may suggest the existence of 

competitive inhibition among their substrates, but this competition could cause 

substrate coupling, when all substrates of a phosphatase are influenced by the alteration 

of a single substrate, especially if the phosphatase is saturated[36].  

Along the same lines, some kinases catalyse multiple reactions. It would thus make 

sense to consider substrate competition at a more general level. In preliminary studies, 

we already considered substrate competition, but did not detect significant differences 

in model behaviours.  

Although the model is quite robust, it has few shortcomings. For instance, we estimated 

values for the parameters 5➔45, f5➔45, 3➔35 and 35➔5, which differed somewhat from 

literature reports, in order to replicate the levels of PI(5)P and PI(3,5)P2. Also, not all 

phenomena were fully replicated by the model: PI(4,5)P2 did not decrease 

proportionally to PI, and when MTMR was reduced to 65% (simulating the knockout 

of MTMR2), PI(5)P did not drop to 20%, only to 98.97%. These discrepancies could 

be due to gaps in the information about the system. In particular, most of the 

quantitative data address the total cell and are not membrane specific. Also, in vitro 

experimental results used to parameterize the model may not truly replicate the system 

behaviour in vivo.  

The current model does not incorporate some regulatory mechanisms which 

nevertheless may be implemented in future versions. For instance, Bulley et al.[37] 

report the activation of PTEN and PI3KI by their own products, as well as activation of 

myotubularins and PTEN, and inhibition of SHIP by PI(5)P. 

Finally, because the phosphoinositide pathway acts differently in different organelle 

membranes[2], it could be interesting to model not only a cell membrane patch but also 

the membranes of the Golgi, nucleus and the endoplasmic reticulum with a multiple 

compartment model featuring lipid transport between them (Figure 2.2). 

In spite of these simplifications, the proposed model is the first to successfully replicate 

phosphoinositide metabolism in the mammalian cell membranes. In contrast to earlier 

models, the model accounts for all known phosphoinositide species and permits 

unprecedented explorations of the roles of those phosphoinositide’s that are 
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physiologically present in small amounts. The current model, as it is designed, focuses 

on a single, very small membrane patch of one particular compartment, the plasma 

membrane, and is not really geared to describe analyses of multiple compartments. One 

reason is that we simply do not have sufficient metabolic information about fluxes 

between compartments. If this information were available, we could “multiply” our 

model several times, eliminate those reactions that are not present in any specific sub-

model and use the inter-compartmental fluxes to connect these models.   

The model was used to identify the best approaches to control PI(4,5)P2 levels with the 

goal of establishing new therapeutic targets in the context of CF. The model suggests 

that the most effective way to accomplish this goal is to decrease the activity of the 

enzyme PIP5KI (v4➔45). Additionally, v0➔45 was also found to be very important in the 

maintenance of PI(4,5)P2 levels. Targeting proteins that are part of the protein complex 

of PI4K, PIP5KI and DVL or contribute to its control should offer an effective way to 

control PI(4,5)P2 levels. 

In this work, we tried to arrange the current knowledge on the phosphoinositide 

pathway into a coherent structure. This is an important tool into the understanding of a 

complex layer of cell regulation that is usually overlooked and can impact fields of 

study with great potential to improve the human well-being like CF and cancer.   

2.5. Methods 

2.5.1. Model Equations 

A dynamical model of phosphoinositide metabolism was designed within the 

framework of Biochemical Systems Theory (BST)[24], [38]–[42], using ordinary 

differential equations (ODEs) in the format of a generalized mass action (GMA) 

system. In this approach, each ODE describes the dynamics of a dependent variable Xi, 

which is formulated as a sum of all fluxes that are directly related to this variable; 

furthermore, each flux vi➔j is formulated as a power law function, as indicated in 

equation (2.1). 
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n and m represent the number of dependent and indepented variables. The dependent 

variables (Xi) represent the actual numbers of phosphoinositide molecules (X3: PI(3)P; 

X4: PI(4)P; X5: PI(5)P; X34: PI(3,4)P2; X35: PI(3,5)P2; X45: PI(4,5)P2; and X345: 

PI(3,4,5)P3), and of PI (X0: PI) in a membrane patch of size 1µm2. If more than one 

substrate contributes to the reaction, or if the reaction is modulated by other variables, 

the flux term in (2.1) contains these contributors as additional X’s with their own 

powers. Because all modelled reactions transform one molecule of some 

phosphoinositide species into one molecule of another phosphoinositide species, all 

stoichiometric coefficients are 1 and Eq. (2.1), therefore,  does not explicitly show these 

coefficients. Kinase catalysed reactions consume ATP and produce ADP, while 

phosphatase catalysed reactions consume H20 and produce one phosphate ion. These 

four metabolites were considered to be available in sufficient quantities and not to affect 

reaction rates.   

The model accounts for fluxes transporting PI (v➔0), PI(4)P (v➔4) and PI(3)P (v➔3) into 

the membrane from the ER, Golgi and endosome, respectively. Additionally, all 

included species were allowed to be transported out of the membrane via fluxes vi➔. 

We assume that these effluxes follow first-order kinetics (fi➔ = 1) and share one 

common rate constant. The input flux values were restricted in order to allow 4.5% of 

the membrane phosphoinositides to recycle per minute (see Supplementary 

Information). Both influxes and effluxes represent transport of lipids that enters or exits 

the plasma membrane by vesicle- or non-vesicle-mediated transport. The latter can be 

mediated by specialized proteins like LTP’s or occur spontaneously at membrane 

contact sites. 

2.5.2. Parameter Estimation 

Rate constants (→j) and kinetic orders (f i→j) were derived from enzyme kinetic 

parameters obtained in BRENDA or in the literature, as detailed in the Supplementary 

Information. Enzyme activities (E i→j) and transport fluxes where manually set to 

approximate reported phosphoinositide steady-state values. This manually adjusted 

parameter set was used as an initial input for a genetic algorithm (detailed in 

Supplemental Information). This algorithm found a parameter set that minimized the 

deviations between model predictions and experimental observations and computing 

an adjustment score. The parameterized model was characterized through sensitivity 
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and identifiability analysis, and the parameter space was explored with a Monte-Carlo 

approach (see Supplemental Information). 

2.5.3. Model Implementation 

The model was implemented in the programming language R v3.1.0 [26] together with 

the package deSolve [43]. We used the ODE integration function with the LSODA 

method. Figures 2.1, 2.2 and 2.4 were created in MS PowerPoint, Figure 2.5 and 2.8 

were created in R[26] and finally 2.3, 2.6, 2.7 and 2.9 were created in R[26] and 

modified in WS PowerPoint.   

2.5.4. Code Availability 

The R code is available in GITHUB at the following URL:  

https://github.com/dolivenca/MK15_phosphoinositide_pathway_model 

2.5.5. siRNA knockdown validity test 

To confirm model predictions, selected phosphoinositide pathway hits identified in a 

large scale siRNA screen[13] were validated with an independent round of siRNA 

knockdown assays. Human alveolar type II epithelial A549 cells (ATCC, Cat no. CCL-

185) were transfected with 2 or 3 different siRNAs targeting phosphoinositide pathway 

enzymes. After transfection the FMP/Amiloride live-cell assay[13] was applied to 

measure ENaC activity. Detailed methods and analysis are described in the 

Supplementary Information. 

2.5.6. Data Availability 

All data generated or analysed during this study are included in this published article. 

Please see Supplementary Table 2.10 in the Supplementary Information file. 
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2.8. Supplements: 

2.8.1. Supplementary methods and results 

2.8.1.1. Background 

We assume that phospholipids may move freely across the cell membrane and that 

phosphoinositides are in the inner leaflet of the plasma membrane, as reported by van 

Meer [1] and Fadeel [2]. Model reactions take place at the inner leaflet of a 1 μm2 patch 

of plasma membrane and in an adjacent region of the cytoplasm, with a height of 0.01 

µm. We assume that influxes and effluxes of lipids by diffusion from or to adjacent 

patches are balanced. Within this 3D environment, we suppose that the enzyme kinetics 

in the model follow generalized mass action processes. We do not account for the 

binding of cytoplasmic enzymes to the membrane prior the initialization of their 

catalytic activity.  

2.8.1.2. Model Design  

2.8.1.2.1. Transport fluxes  

Transport fluxes reflect vesicle and non-vesicle-mediated transport [3]–[5]. It is unclear 

what percentage of the total transport is vesicle-independent. The transport can be 

accomplished by specialized proteins, called lipid transport proteins (LTPs), or can 

happen spontaneously at membrane contact sites (MCSs). We assume that these 

effluxes have first-order kinetics (fi➔ = 1) and have one common rate constant. This 
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last assumption is not trivial. For example, some species of phosphoinositides are 

necessary for the initiation of vesicle formation so they might have a slightly higher 

exit rate. At the same time, non-vesicle mediated transport is facilitated by LTPs, and 

LTPs with varying affinities for different phosphoinositides are presently not known. 

Overall, we do not possess enough information to include different efflux rate constants 

for each model variable.  

Alberts et al.  [6] reported that a macrophage ingests 3% of its plasma membrane per 

minute, while a fibroblast only ingests 1%. As a compromise, we set the amount of 

internalized plasma membrane due to endocytosis as 2% per minute. We added 2.5% 

for non-vesicle transport, resulting in a total of 4.5% per minute. The input flux values 

were restricted in order to allow 4.5% of the membrane phosphoinositides to recycle 

per minute. This setting made the levels of PI robust to alterations in other 

phosphoinositide pools. We also tested a level of 1% per minute. The model exhibited 

a similar behaviour, but the PI pool fluctuated considerably in response to alterations 

in other phosphoinositide pools. For example, manipulations in the PI(4)P and 

PI(4,5)P2 levels caused an undue increase of more than 15% in the PI pool. Of course, 

it is imaginable that such fluctuations could exist and have a physiological meaning, 

for instance, to signal to the kinases responsible for PI(4)P and PI(4,5)P2 production 

that these lipids are being depleted. However, we found no reports in the literature of 

this phenomenon, and therefore chose the model setting corresponding to a more stable 

PI pool. 

2.8.1.3. Parameter Estimation 

The phosphoinositide literature is vast. However, many experimental results are 

presented in ways that are difficult, if not impossible, to translate into numerical values 

of model variables or relative changes. Other publications present results that involve 

manipulations or perturbations of genes or proteins that are not included in our model. 

In the end, the experimental data used in the following to parameterize the model 

consist of all data from the literature that permitted reliable translation into model 

variables or changes in model parameters. 

Each flux vi➔j contains three parameters, namely a rate constant i➔j, one or more kinetic 

orders fi➔j, and the available quantity of enzyme that catalyses the reaction in this flux 
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(Ei➔j). These three types of parameters need to be estimated to populate the model 

equations.  

If parameter values are found in the literature, they are typically given as Km and 

specific activity values. Many of such values have been collected in the database 

BRENDA [7]. While BST does not use these parameters, they are easily converted into 

values for rate constants and kinetic orders of GMA model [8]. Enzyme kinetic 

parameters retrieved from literature and BRENDA are shown in Table 2.4. 

Km and specific activity values collected in BRENDA are in mM and µmol/min/mg 

respectively. Before using these parameters in the estimation of rate constants and 

kinetic orders, Km’s were converted to molecules/µm2 and the specific activities to 

molecules/min/mg. While converting volume units to area units, we considered that the 

number of molecules present in a 1 µm2 membrane patch is the same number present 

in a 1 µm3 volume including the membrane patch and a thin layer of surrounding 

cytosol. 

Table 2.4 also presents the known cellular localization of each enzyme as retrieved 

from UNIPROT annotations and described by Sasaki et al. [9]. Since the model aims 

to simulate a patch of the plasma membrane, enzymes should be considered if they are 

present in the cytosol or in the plasma membrane. This is true for all enzymes except 

the three SAC phosphatases. However, there is evidence that these phosphatases can 

control directly the levels of PI(4)P at the plasma membrane by acting at membrane 

contact sites between the ER and the plasma membrane [10].   

For enzymes that are present in multiple cellular compartments it is difficult to assess 

their relative contributions to the catalysis of a given reaction in each of the 

compartments. This lack of information is not critical in our approach since the 

parameters defining the amount of enzyme catalysing each flux in the plasma 

membrane patch (Ei➔j) are numerically adjusted to optimize the model fit to the 

experimental data.  

The parameters in Table 2.4 could not directly be applied to the model since there is no 

one-to-one relationship between each enzyme and each flux. Some enzymes catalysed 

more than one flux and many fluxes may be catalysed by more than one enzyme. 

Because quantitative details regarding these multiple processes are lacking, enzymes 



 

77 

catalysing the same reaction were grouped using information in Balla [11] and Sasaki 

et al. [9].  

For each group, one enzyme was chosen to define the flux parameters. The chosen 

enzyme was normally the one identified in the literature as the main catalyst of the 

respective flux. The enzymes and associated fluxes are presented in in Table 2.5 for 

kinases and in Table 2.6 for phosphatases.  

Generally, more information is available for kinases than for phosphatases. Moreover, 

there is a difference concerning the assignment of kinases and phosphatases to different 

fluxes. As Delage et al. [12] observed, kinases are often specific while phosphatases 

are polyvalent. Of the ten fluxes catalysed by phosphatases, seven can be catalysed by 

synaptojanins (SYNJ) and five by suppressor of actin (SAC) [9]. This redundancy is in 

stark contrast with the kinases that catalyze one or two reactions at most. An exception 

is phosphoinositide 3-kinase (PI3K), which is polyvalent if one allows for primary and 

secondary reactions. It is also noteworthy that PTEN, probably the most studied 

phosphatase as a consequence of its role as tumour suppressor, is specific for 

PI(3,4,5)P3 and PI(3,4)P2 substrates [13].  

Fine-tuning of the model was accomplished by adjusting the levels of enzymes (Ei➔j) 

and fluxes entering and exiting the system (➔0, ➔3, ➔4, i➔). These parameters were 

manually tuned until the model reached a steady state where phosphoinositide levels 

agreed with values reported for the cell membrane (Table 2.1) and model simulations 

replicated observed phenomena (Table 2.2 and Figure 2.3). Most of the remaining 

parameters, that is, rate constants and kinetic orders derived from the literature were 

not altered. PIP5KII parameters had to be adjusted to allow a steady-state composition 

compatible with literature values. This enzyme catalyses the flux v5➔45 [11] [9]. Using 

the original parameters for this enzyme would make v5➔45 rather slow, yielding an 

accumulation of PI(5)P at around 700 molecules per µm2, which is outside the intervals 

reported in the literature. One could slow down the sources of PI(5)P in order to obtain 

a smaller pool, but that would reduce the turnover of PI(5)P which is supposed to be 

high [11], and the model would no longer replicate the observations regarding PI(5)P, 

PI(3)P and PI(3,5)P2 documented in the literature. Further, using the reported PIP5KII 

parameterization found in the literature [14], PI(5)P and v5➔45 would not sustain the 

PI(4,5)P2 pool. We also had to re-estimate two rate constants, ➔35 and 35➔5. Values 
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retrieved from BRENDA were too small to replicate observed phenomena. For 

example, Bulley et al. [15] stated that the majority of the PI(5)P pool is formed from 

PI(3,5)P2. With the values retrieved from the literature [16] v0➔5 would have a greater 

contribution to the PI(5)P pool than v35➔5. Increasing 35➔5 forced us to increase 3➔35, 

which subsequently increased the PI_Kfyve activity when PI(3)P was used as substrate 

rather than PI. The increase of 35➔5 could be explained by a regulation that is not 

implemented in the model: the activation of MTMRs by PI(5)P [17]. The amount of 

PIP5KII in the model is the highest as kinases are concerned. There is evidence in the 

literature of higher abundance of PIP5KII than PIP5KI [18].   

After the manual adjustments, as described above, a genetic algorithm was used to 

search for a parameter set that produced the closest fit to a set of observed phenomena.  

The implemented genetic algorithm has two mechanisms to create diversity: mutation 

and recombination. The mutated parameters are obtained multiplying the initial value 

by a random value from a normal distribution of mean 1 and standard deviation of 0.3 

or 0.5. Each new parameter set is only accepted if a set of validity conditions is met 

(Table 2.7). Higher standard deviation values would make the algorithm run very 

slowly due to a high number of invalid sets. Recombination combines two parameter 

sets and thereby generates a new set where each parameter is the average of the 

corresponding parameters in the two parent sets. 

Each generation starts with 10 distinct parameters sets. In the first generation, the initial 

set consists of the manual solution and 9 viable mutants are obtained from this parent 

set. All pairs of these 10 sets are combined producing 45 recombined sets. Additional 

10 parameter sets are created by mutating all enzyme levels, inputs and outputs 

parameters from 10 of the existing 55 sets picked randomly. Next, 35 new sets are 

created recombining a random mutant with one of the previous 55 sets. The resulting 

100 sets are the source for further 100 minor mutant sets that alter between 1 and 5 

parameters of the 100 existing sets. The final 200 parameter sets are then scored and 

the 10 sets with the best score are selected to start the next generation. The criteria for 

scoring the sets are presented in Table 2.7.  

Two versions of the genetic algorithm were employed: one where the 10 initial 

progenitor sets of each generation could be part of the next generation and one where 
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they were excluded. The former algorithm converged rapidly but the latter found best 

scores more quickly. In the long run, both algorithms delivered sets with similar scores 

that were 50% better than the manually determined set. Final parameters for the fluxes 

and protein amounts per µm2 are shown in Table 2.3. 

2.8.1.4. Sensitivity Analysis 

Local sensitivity analysis was implemented as described in Chen et al. [8] and 

combined sensitivities, also known as global sensitivities, were computed as detailed 

in Kent et al. [19]. 

Parameter sensitivities were assessed numerically by increasing each parameter, one at 

a time, by 1% and computing the new steady state of the system. When the relative 

change in the steady-state value of a dependent variable is higher than 1% (or lower 

than -1%) the sensitivity indicates that a change in the parameter value is amplified in 

the steady-state of the dependent variable. Smaller sensitivities indicate attenuation of 

a perturbation. Although there are exceptions, most biological systems are expected to 

show sensitivity values between about -3 and +3. However, in signalling systems, the 

sensitivities may be much higher.  

The model contains 64 parameters but the sensitivity analysis can be reduced to 46 

parameters, because there are 21 pairs of rate constants (i➔j) and a corresponding 

enzyme quantity (Ei➔j) that always appear as a product in a flux equation. Multiplying 

a constant to Ei➔j or to the corresponding i➔j will give the same relative change in flux 

and, thus, in steady state. Consequently, the sensitivities for the rate constants are 

identical to the corresponding enzyme quantity. 

The results of the sensitivity analysis are conditional on the parameter set that provides 

realistic steady-state values and replicate the observed phenomena. Furthermore, they 

reflect responses to changes in individual parameters. However, multiple small or 

intermediate errors in parameter values could collectively have a larger impact on the 

performance of the system. To address this question, combined sensitivities were 

studied using a Monte-Carlo approach. Specifically, we assigned a random uncertainty 

of ±5%, ±10%, ±20%, ±50% or ±100% for every parameter. With every combination, 

we created a new parameter set and recorded those combinations that led to a steady 

state in up to a simulation time of 1000 minutes. With this method, 5,000 new parameter 
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sets were retrieved for each level of uncertainty. For each parameter set sampled we 

calculated the local sensitivities.  

2.8.1.4.1. Sensitivity Analysis Results 

The complete list of local sensitivities is presented in Table 2.8. Only 20 out of 368 

(~5%) computed sensitivities have an absolute value greater than 1. The highest 

sensitivity value indicates an decrease of 4.15% in PI(5)P when f5➔45 is increased by 

1%. The parameter f0➔3 has the highest number of high sensitivities, and these are 

related to PI(3)P, PI(5)P and PI(3,5)P2.  

The high proportion of low sensitivities shows that the model system is very robust to 

environmental and mutational challenges that perturb a parameter value. It also implies 

that small errors in model parameterization will not affect model behavior in a 

significant manner.    

We intended to investigate whether the distributions of sensitivities might suggest a 

different behaviour associated with a parameter change than the one suggested by the 

local sensitivities. Generally, if the sensitivity of a parameter exhibits large variability, 

it might suggest a lack of system robustness [19].      

The combined sensitivity results suggest that most parameter sensitivities are 

concentrated closely around the local sensitivity value. 112 out of 368 sensitivities 

(30.4%) led to a low overall sensitivity, even if the parameters were allowed to vary up 

to ±100%. Of the 256 that presented higher combined sensitivities, only 42 exhibited 

this behaviour with uncertainties lower or equal than 50%. 

Considering these results, we can conclude that small changes in parameter values do 

not alter the sensitivity profile of the dependent variables. These observations suggest 

that the model is robust with respect to uncertainties in parameters. 

Studying the sets with 100% uncertainty we found that i➔ (the rate constant of the 

effluxes of all pools) presented high sensitivities in all dependent variables. f0➔4, f45➔4, 

f45➔345 and f0➔45 presented high sensitivities in 7 dependent variables, f45➔0 in six and 

f4➔0, f45➔5, f345➔45, f345➔34 and f4➔34 in five. This result highlights the importance of 

the linear pathway of PI, PI(4)P, PI(4,5)P2 and PI(3,4,5)P3 in the model.  
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The result is consistent with the earlier traditional sensitivity analysis. All parameters 

that in the combined sensitivity study cause high sensitivities in five or more dependent 

variables are also presented in the individual sensitivity analysis, except for f45➔0, f0➔45 

and f45➔5. This suggests that the model was parameterized so that v0➔45 and v45➔0 fluxes 

have a small influence, although their potential for high sensitivities is considerable. 

2.8.1.5. Identifiability Analysis 

If a model is only slightly perturbed even in response to large changes in a parameter 

value, does it mean that the parameter value is correct? This question becomes 

complicated if the sensitivities of two or more parameters are correlated and the 

increase in one can be compensated with an alteration in one or more others. The issue 

is related to the existence of infinite parameter combinations that produce essentially 

the same model output. This redundancy is especially important if we want to suggest 

an experimental design to populate the model with parameters values. These issues are 

related with the problem of parameter identifiability, which is defined as the ability to 

identify the true value of a model parameter [20]. 

To find the best identifiable parameters we implemented the method described by 

Srinath and Gunawan [20] and Yao et al. [21], which is based on the local sensitivity 

matrix. For each column of the matrix, the Euclidian norm is calculated and the column 

with the highest magnitude is selected. If the magnitude exceeds a certain threshold, 

the parameter corresponding to this column is identifiable. This column is removed 

from the local sensitivity matrix. The projection of the removed column on the 

remaining columns is computed and subtracted from them. This procedure creates a 

new local sensitivity matrix. The process is repeated until the highest magnitude is 

below the threshold. All remaining parameters are considered non-identifiable. 

2.8.1.5.1. Results of the Identifiability Analysis  

In the phosphoinositide pathway model, the best-identifiable parameters are f4➔0, f3➔35, 

f5➔45, f45➔345, f35➔5, f4➔34, f45➔4 and finally i➔ (Figure 2.8d). These parameters 

constitute a subset of those parameters that exhibited high local sensitivities. The 

parameters that were considered non-identifiable either have very small sensitivities, or 

their effect on the dependent variables may be replicated by a linear combination of 

perturbations in identifiable parameters. 
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2.8.1.6. Monte-Carlo Exploration of the Parameter Space  

The identifiability analysis suggests the existence of alternative parameter sets that 

replicate both, the reported steady-state levels of phosphoinositides and the observed 

relationships between steady-state levels. To identify possible alternative parameter 

sets satisfying these conditions, we explored 79,993 random parameter sets using a 

Monte Carlo approach. Only the most identifiable parameters (discussed in the previous 

section) plus the input and output fluxes were allowed to vary between 50 and 150 per 

cent from their reference value. These parameter sets were only accepted if they reached 

a steady state in up to 5000 minutes of simulation time.  

Non-identifiable parameters were not varied in order to optimize the parameter space 

exploration, because varying non-identifiable parameters would yield small changes in 

system behavior. Additionally, linear combinations of perturbations in identifiable 

parameters can mimic most of the effects of perturbations in non-identifiable 

perturbations. Input fluxes were also varied although they were not identifiable. This 

variation was necessary to accommodate changes in effluxes (i➔) and still allow for 

the system to achieve a steady state.  

2.8.1.6.1. Results of the Monte-Carlo Exploration of the Parameter Space  

Among the initial 79,993 combinations of parameter values, 79,985 reach a steady-state 

within 5000 minutes and 1452 have phosphoinositide levels within the intervals 

retrieved from the literature. Among these, 231 replicate the relative amounts between 

the phosphoinositide pools. Intriguingly, only 117 (the set used to parameterize the 

model and 116 alternatives), less than 0.15% of all surveyed sets, satisfy the previous 

conditions plus the fact that effluxes are less in magnitude than 7% and the influxes are 

less than 25% of the respective phosphoinositide pools. Indeed, the 116 alternative sets 

of parameters have outputs that are similar to the ones produced by the optimized 

parameter set but are less concordant with of the phenomena retrieved in the literature. 

For example, as can be seen in Figure 2.5, taking the score of the manually found 

parameter set as a base score of 20, all of the 116 admissible alternative parameter sets 

have a higher score, i.e., present less concordance with the conditions of the scoring 

function. 
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The results of this analysis suggest that the information available is sufficient to restrict 

the parameter space to a region that is compatible with all experimental observations. 

The alternative parameter sets are characterized by alterations that cancel each other in 

the system’s input of PI, PI(3)P and PI(4)P and output fluxes.  

The conditions imposed to find alternative parameter sets are not very restrictive. For 

example, we accepted data sets with the levels of PI between 200,000 and 400,000 and 

for PI(4)P and PI(4,5)P2 between 5,000 and 20,000. As such, the small number of 

parameter sets that satisfy all the tests was not due to narrow test conditions but a 

genuine scarcity of combinations of parameters that satisfy all pertinent phenomena 

reported in the literature. 

It is impossible to discern which set is the best representation of reality, not only 

because there are gaps in information, like missing measurements of the input fluxes, 

but also because these parameter sets can correspond to different cell types, states or 

membrane configurations. However, the initial parameter set used in the model has 

kinetic parameters in accordance with the literature and steady-state values that are 

closest to the center of the reported intervals for phosphoinositide levels.   

2.8.1.7. Validity Test Using an siRNA Knockdown 

2.8.1.7.1. Preparation of siRNA coated multi-well plates 

Multi-well plates (384-well plates) (BD Falcon #353962) were coated with customized 

siRNAs (Silencer® Select, Ambion) for solid-phase reverse transfection adapted from 

a previously reported protocol (Erfle H et al., 2007). An aqueous 0.2% (w/v) gelatine 

solution was prepared and filtered with 0.45µM pore size filter and a 0.4M glucose 

solution was prepared in Opti-MEM (Gibco #51985). Then, a transfection mix was 

prepared by mixing 1.662mL of the sucrose/Opti-MEM solution, 969µL of 

Lipofectamine® 2000 (Gibco #12566014) and 969µL doubly distilled water. This 

transfection mix was distributed into a 96-conic well plate (35µL/well, “Plate A”). In 

parallel, fibronectin was diluted in the 0.2% gelatine solution to a concentration of 1%. 

This solution was distributed into another 96-conic well plate (96µL/well, “Plate B”). 

Then, 5µL of a 3µM siRNA solution and 7µL of the transfection mix (“Plate A”) were 

incubated in each well of a low volume 384 well plate (“Plate C”). After 20-min 

incubation, 7µL of the fibronectin solution (“Plate B”) were added. 3µL of the contents 
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of each well in “Plate C” were diluted fifty fold in a 384 deep well plate using doubly 

distilled water. Finally, 15µL of each well were transferred to a 384-well imaging plate, 

lyophilized and stored in an anhydrous atmosphere before cell seeding. 

2.8.1.7.2. ENaC microscopy-based live-cell functional assay 

2.8.1.7.2.1. Preparation of the functional assay 

The live-cell assay used to identify the novel regulators of ENaC activity constricted 

on transfecting A549 cells with different siRNAs by solid-phase reverse transfection 

(previously described in the section Preparation of siRNA coated multi-well plates). 

Cells were plated in 384-well plates containing different human siRNAs (2500 cells per 

well) and incubated for 48h or 72h at 37ºC with 5% CO2. Afterwards, cell nuclei were 

stained for 1h with Hoechst-33342 dye (Sigma-Aldrich #B2261) (1/10000) diluted in 

Ringer solution (145mmol/L NaCl, 0.4mmol/L KH2PO4, 1.6mmol/L K2HPO4, 

5mmol/L D-glucose, 1mmol/L MgCl2 and 1.3mmol/L Ca-gluconate) (30µL/well) at 

37ºC. After washing with Ringer solution, cells were incubated for another 10min with 

diluted voltage-sensitive FLIPR® Membrane Potential Assay (FMP) (Molecular 

Devices, #R8042) staining solution (20µL/well) at 37ºC in the pre-warmed and 

humidity saturated (50-70% of humidity) microscope chamber of an automated 

epifluorescence Scan^R screening microscope (Olympus Biosystems), comprising a 

cooled 12 bit 1344x1024 pixel resolution C8484 CCD camera (Hamamatsu), 

Marzhauser SCAN IM IX2 scanning stage, metal halide light source (MT20), standard 

filter sets and an automated liquid dispenser.  

2.8.1.6.2.2.  Image Acquisition 

The first row of the cells in the 384-well plate was imaged in the wide-field Olympus 

Scan^R microscope with a 10x objective (Olympus, UPSAPO) in the Cy3 channel and 

DAPI channel with an exposure time of 5ms and coarse auto-focus (two images per 

well, 5min/row). Then FMP containing 30µM amiloride hydrochloride (Sigma 

#A7410) was added by an automatic liquid dispenser adapted to the microscope stage. 

The image acquisition was initiated after 5min of incubation with amiloride.  
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2.8.1.6.2.3. Image Analysis 

Overall transfection efficiency was assessed by observing if cells transfected with 

siRNAs compromising chromosome segregation exhibited mitotic phenotypes 

(Simpson et al., 2012). Failure to observe these phenotypes in more than 75% of images 

implied the rejection of the corresponding plate from analysis. 

The intensity of FMP fluorescence (IF) before and after adding amiloride was 

quantified using the open source cell image analysis software CellProfiler. Nuclei were 

identified as primary objects and FMP fluorescence measured in Cy3 channel as 

secondary object. The amiloride-sensitive fluorescence ratio for each cell was 

calculated applying the following formula:  

before amil after amil

before amil

100
IF IF

Ratio
IF

−
=        (2.2) 

Each image was corrected for the background and several quality controls were applied: 

cells with too high or too low intensity; abnormal area shape, eccentricity; low number 

of cells per well; cells out-of-focus, localized near the edges or that changed their 

position in the well were not quantified. The amiloride-sensitive ratios were further 

analysed in R in order to automatically identify the potential "hits", which are the ones 

whose ratio deviate more than two standard deviations from the ratio of the negative 

control, as calculated from the following formula:  

siRNA Negative control

Negative control2

Ratio Ratio
Deviation

SDM

−
=


     (2.3) 

Where SDM is a standard deviation of the mean and “scrambled” siRNA was used as 

a negative control.  

We considered as significant Amil-sensitive ENaC functional effects, those whose 

magnitudes were larger than twice the negative control´s SDM. Therefore, we defined 

ENaC function enhancers as those conditions having a Deviation Score above +1 and 

ENaC function inhibitors as those having a Deviation Score below -1. Additionally, 

Student´s t-test was performed to quantify statistical significance versus the 

corresponding negative control. 
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2.9. Supplementary Figures 

 

Figure 2.8. Evolution of sensitivities due to an increasing level of uncertainty and 

parameter identifiability. 

a) Evolution of the number of extreme sensitivities with absolute values greater than 1 as a function of 

the level of uncertainty in parameter values. MAX corresponds to the total number of extremes in the 

model (736 extremes, which is twice the number of parameters). A noticeable increase begins around the 

50% uncertainty level.  b) Evolution of the standard deviations of sensitivities due to increasing 

uncertainty. The boxplot corresponding to 100% uncertainty does not show all outliers, the highest of 

which is 48.09. This finding suggests that the variance in sensitivity is moderate at least up to 50% 

uncertainty. c) Evolution of the percentage of positive sensitivities according to parameter value 

uncertainty. Each line corresponds to one pair of a parameter and a dependent variable. For low levels 

of uncertainty, the majority of the observed sensitivities are almost all positive or all negative, which 
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means that the sign of the sensitivities are constant for small perturbations. The reason for this 

consistency is that the background parameter sets lead to models with similar behaviour. The result also 

suggests that the model behaviour is consistent even under moderate uncertainty and only starts to vary 

for 50% or more uncertainty in parameter values. d) Plot showing the best-identifiable parameters. i➔ 

represents for the rate constant for all exit fluxes. Graphs created in R[22]. 
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Figure 2.9. Alterations in all pools of the model as a consequence of perturbations 

in enzyme activities. 

Changes in enzyme activity simulate the effect of an siRNA screen performed by Almaça and 

colleagues[23]. Graph was created in R[22] and x axis labels added in PowerPoint.   
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2.10. Supplementary Tables 

Table 2.1. Levels of phosphatidylinositol and phosphoinositides in the membranes 

of mammalian cells and corresponding steady-state values in the model. 

Molecule (mol %) of total cellular 

inositol lipids 

Molecules / µm2 Source Model 

values at 

steady state 

PI 90% 

80% 

200000 – 400000 

40000 - 160000 

[11] [1] [24] 

[25]  

 

304372.1 

PI(3)P 0.36% 

0.05% - 1.5% 

0.2% 

0.175% 

0.3% 

800 – 6000 

25 – 3000 

600 

525 

100 

[11] 

[25] 

[26] 

[27] 

[13]  

 

100.0 

PI(4)P 2,24% 

6% 

3% 

5000 – 20000 

18000 

9000 

[11] [28] [24] [25] 

[26] 

[27]  

 

10040.1 

PI(5)P Very small 

0.5% - 2% of PI(4)P 

4% 

.3% 

0.1% – 0.5% 

Very small 

75 – 300 

1200 

900 

50 – 1000 

[11] 

[15] 

[26] 

[27] 

[25]  

 

100.5 

PI(4,5)P2 2,24% 

3% 

5% 

5000 – 20000 

9000 

15000 

[11] [28] [24] [25]  

[26] 

[27] 

 

10001.0 

PI(3,5)P2 7 to 50 fold less than PI(5)P 

0.1% - 1% 

0.055% 

0.04% 

1 – 57 

50 – 2000 

165 

120 

[29] 

[25] 

[26] 

[27] 

 

20.2 

PI(3,4)P2 Very small 

0.1% - 1% 

Very small 

50 - 2000 

[11] 

[25]  

20.6 

PI(3,4,5)P3 0.036% 

0.1% - 1% 

 

80 – 1000 

50 - 2000 

[11] [28] 

[25] 

639.5 

Total 100% 

 

220000 – 450000 

50000 - 200000 

[11] 

[25]  

325294.0 
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Table 2.2. Observed experimental phenomena used to calibrate the model and 

model performance for each phenomenon. 

  

 

 

Phenomenon 

 

Model 

 

 
1 

 
PI(4,5)P2 should drop (proportionally) as a 
consequence of depletion of PI. [5]  

 

A 50% decrease in ➔0 will decrease PI to 50%. This 
will only cause PI(4,5)P2 to decrease to 88% of 
steady state. (Figure 2.3a) 
 

2 PI(4,5)P2 is independent of PI(4)P. [11] [30]  Even with PI(4)P at 7% of its original steady state 
levels, PI(4,5)P2 only dropped 20%. (Figure 2.3b) 
 

3 PI(4,5)P2 is dependent on PI4K [30]. PI4K 
knock-down decreases PI(4)P and PI(4,5)P2 
by 50%. [11]  

A decrease of 95% in PI4K will decrease PI(4,5)P2 to 
45% and PI(4)P to 24% of original steady state 
values. (Figure 2.3a) 
 

4 PI(5)P is of similar or higher abundance as 
compared to PI(3)P and ~20-100-fold below 
the levels of PI(4)P and PI(4,5)P2. Steady-
state PI(5)P levels are more than 5-fold higher 
than those of PI(3,5)P2. [11], [13], [15], [26], 
[27], [29]  
 

PI(5)P = 100.49      PI(3)P = 100.00      
PI(4)P = 10040.13 (10040.13 / 100.49 = 99.91)     
PI(4,5)P2 = 10000.97 (10000.97 / 100.49 = 99.52)      
PI(3,5)P2 = 20.21 (100.49 / 20.21 = 4.97) (Table 2.1)     

5 Golgi PI(4)P makes a sizeable contribution to 
the plasma membrane supply of PI(4)P but it 
is dispensable in the maintenance of 
PI(4,5)P2. [31]  
 

Closing ➔4 will decrease PI(4)P to 61% of the 
steady-state values but only decrease PI(4,5)P2 by 
1% (Figure 2.3d). 

6 PI(3,4,5)P3 depend on PTEN concentration. 
[13], [32]  
 

PI(3,4,5)P3 increases 16 fold when PTEN is knocked 
down (Figure 2.5) 

7 PTEN knockdown does not decrease the 
levels of PI(4,5)P2 significantly. [33]  
 

PI(4,5)P2 decreases 1% when PTEN is knocked 
down (Figure 2.5) 

8 PI(4,5)P2 levels drop around 50% if PIP5KI is 
knocked down 50%. [34]  
 

A decrease in 50% on PIP5KI will decrease PI(4,5)P2 
to 55% of the steady-state (Figure 2.3a) 

9 When PIKfyve is reduced to 10%, PI(5)P and 
PI(3,5)P2 decrease 50%. [15]  

When PIKfyve is reduced to 10%, PI(5)P and 
PI(3,5)P2 decrease to 50.05% and 49.70% 
respectively (Figure 2.3c).  
 

10 When PIKfyve is reduced to undetectable 
levels PI(3)P rises 5 fold, PI(5)P decreases to 
15%, PI(3,5)P2 is undetectable as well and 
PI(4,5)P2 decreases to 67-80%. [15]  

When PIKfyve is reduced to 0.1%, PI(3)P will 
increase 8.85 fold, PI(5)P decreases to 10.08%, 
PI(3,5)P2 to 0.88% and PI(4,5)P2 to 85.78% of 
original steady state levels (Figure 2.3c). 
 

11 When MTMR2 is knocked out, PI(5)P is 
reduced to 20% and PI(3,5)P2 increases to 
150%. [15]  

When MTMR is reduced to 65% (simulating the 
knockout of MTMR2), PI(5)P is only reduced to 
98.97% but PI(3,5)P2 is increased to 152.17% 
(Figure 2.3c).  
 

12 Majority of the PI(5)P pool is created from 
PI(3,5)P2 via myotubularins. [15]  

Three fluxes supply material to the PI(5)P pool: v0➔5 

= 5.49 molecules/s, v45➔5 = 17.04 molecules/s and 
v35➔5 = 102molecules/s. v35➔5 , which is catalysed by 
myotubularins, is responsible for 81.91% of PI(5)P 
production (Figure 2.3c). 
 

13 PI(5)P is important in the synthesis of 
PI(4,5)P2. [15]  

The flux v5➔45 alone is capable of maintaining 
PI(4,5)P2 with 34% of its original steady state levels 
(Figure 2.3b). 
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Table 2.3. Values of model parameters. 

Fluxes 

vi➔j 

i➔j (molecules1-g 

μm2g/min or 

μm2/min/mg) 

where g is the 

kinetic order of 

the corresponding 

variable 

fi➔j 

(dimensionless) 

Ei➔j (mg) 

v0➔3 1.09e+15 0.11 2.23e-14 
v3➔0 3.07e+12 1.00 2.56e-14 
v0➔4 5.10e+14 0.29 2.78e-14 
v4➔0 6.65e+12 0.91 8.93e-15 
v0➔5 2.87e+14 0.06 8.54e-15 
v5➔0 3.07e+12 1.00 8.93e-15 
v3➔35 1.34e+14 1.00 8.54e-15 
v35➔3 3.06e+12 1.00 1.71e-13 
v4➔45 8.49e+15 0.05 1.74e-14 
v45➔4 6.65e+12 0.91 6.35e-15 
v4➔34 1.04e+13 0.50 1.23e-15 
V34➔4 7.60e+12 1.00 5.30e-17 
v5➔45 2.95e+13 0.88 6.89e-14 
v45➔5 4.13e+12 0.65 1.05e-14 
v35➔5 4.16e+14 1.00 1.21e-14 
v34➔3 1.33e+12 1.00 3.81e-14 
v0➔45 2.67e+14 0.29 4.15e-14 
V45➔0 6.65e+12 0.91 2.79e-18 
v45➔345 1.89e+14 0.31 1.53e-14 
v345➔45 4.81e+14 0.98 5.30e-17 
v345➔34 1.68e+12 1.00 7.76e-15 

v➔0 16588.74 - - 
v➔3 12.37 - - 
v➔4 297.26 - - 

v0➔, v3➔, v4➔, 

v5➔, v34➔, v35➔, 

v45➔, v345➔, ( vi➔) 

0.0519 - - 
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Table 2.4. Kinetic parameters associated with enzymes in the model. 

The first column contains the enzyme name and the second the corresponding gene name. The third and 

fourth columns exhibit Km and specific activity values, along with literature references.  

 

Protein 

(EC number) 

 

Human 

gene name 

 

Km 

(mM) 

 

Specific activity 

(µmol/min/mg) 

Localization 

PI3K IA  (2.7.1.137) PIK3CA 

0.011 [35]   

0.0086 [36]  C, PM 

PI3K IA  (2.7.1.137) PIK3CB 0.0017 [36]  N, C, PM 

PI3K IA  (2.7.1.137) PIK3CD 0.0026 [36]  C, PM 

PI3K IB  (2.7.1.137) PIK3CG 0.0016 [36]  C, PM 

PI3KII  (2.7.1.154) PIK3C2A 

0.25 [37]  

- N, C, G, PM 

PI3KII  (2.7.1.154) PIK3C2B - N, C, ER, E, PM 

PI3KII  (2.7.1.154) PIK3C2G - C, G, PM 

PI3KIII (2.7.1.137) PIK3C3 0.064 [37]  - C, E 

PI4KII  (2.7.1.67) PI4K2A 
0.2 [38]  0.044 [39]   

M, E, G, PM 

PI4KII  (2.7.1.67) PI4K2B N, C, G, E, PM 

PI4KIII  (2.7.1.67) PIK4CA - - C, G, PM 

PI4KIII  (2.7.1.67) PIK4CB - - C, M, ER, G 

PIPK I  (2.7.1.68) PIP5K1A 0.0012 [14]  

0.023 [14] 

N, C, PM 

PIPK I  (2.7.1.68) PIP5K1B 0.262 [40]  C 

PIPK I  (2.7.1.68) PIP5K1C - N, C, PM 

PIPK II  (2.7.1.68) PIP4K2A 0.05 [40] 

0.015 [14] 

N, C, PM 

PIPK II  (2.7.1.68) PIP4K2B - N, C, ER, PM 

PIPK II  (2.7.1.68) PIP4K2C - C, PM 

PIPK III (2.7.1.68) PIP5K3 - - C, G, E 

PTEN (3.1.3.67) PTEN 0.07 [41]  30.318 [41] N, M, C, PM 

TPIP (3.1.3.67) TPTE2 - - C, G, ER 

MTM1 (3.1.3.64) MTM1 0.039 or 0.017 [42]  - C, E, PM 

MTMR1 (3.1.3.64) MTMR1 

0.0008 or 0.0037 [43] 

- C, PM 

MTMR2 (3.1.3.64) MTMR2 - C, E, PM 

MTMR3 (3.1.3.64) MTMR3 - C 

MTMR4 (3.1.3.64) MTMR4 - C, E 

MTMR6 (3.1.3.64) MTMR6 - N, C 

MTMR7 (3.1.3.64) MTMR7 - C 

MTMR8 (3.1.3.64) MTMR8 - N, C 

MTMR14 (3.1.3.64) MTMR14 - C 

INPP4A (3.1.3.66) INPP4A 
0.049 [44] 

- C, E, PM 

INPP4B (3.1.3.66) INPP4B - C 

TMEM55A (3.1.3.78) TMEM55A 
0.046 [44]  0.01 [45]  

C, E 

TMEM55B (3.1.3.78) TMEM55B N, C, E 

SYNJ1 (3.1.3.36) SYNJ1 

0.25 [46] [47]  0.765 [47]  

C 

SYNJ2 (3.1.3.36) SYNJ2 C, PM 

OCRL1 (3.1.3.36) OCRL N, C, G, E, PM 

INPP5B (3.1.3.36) INPP5B C, G, ER, E, PM 

INPP5J (3.1.3.36) INPP5J C, PM 

SKIP (3.1.3.36) SKIP N, C, G, ER, PM 

SHIP1 (3.1.3.36) INPP5D C, PM 

SHIP2 (3.1.3.36) INPPL1 C, G, PM 

INPP5E (3.1.3.36) INPP5E C, G, PM 

SAC1 (3.1.3.36) SACM1L G, ER 

SAC2 (3.1.3.36) INPP5F E 

SAC3 (3.1.3.36) FIG4 G, ER, E 

The last columns exhibit the localization of the enzyme. Abbreviations: PLIP: PTEN-like lipid 

phosphatase; TPIP: PTEN-Like Inositol Lipid Phosphatase; N: Nucleus, C: Cytosol; M: Mitochondria; 

G: Golgi; E: Endosome; ER: Endoplasmic Reticulum; PM: Plasma Membrane.   
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Table 2.5. Groups of kinases associated with each flux in the model. 

 

 

Km in mM an SA in µmol/min/mg. 

  

 

Group 

 

 

Enzymes 

 

Flux 

 

Values 

 

Reference 

pi_3KII_III 

 

PI3KII  /  / , 

PI3K III (Vps34), (primary) 

PI3K IA  /  / ,  

PI3K IB  (secondary) 

 

v0➔3 Km = 0.064 

SA = 0.0086 

 

[37] 

[36] 

 

pi_4K 

 

PI4KII   / ,  

PI4KIII   /  

 

v0➔4  Km = .2 

SA = 0.044 

[38]  

[48]  

pi_Kfyve  

 

PIPK III (secondary) v0➔5  Km = 0.0034 

No from humans. Bus Taurus. 

SA = 0.0028 

(both from PI3K) 

 

[49]  

 

[36]  

 

pi_Kfyve 

 

PIPK III (primary) v3➔35  Km = 0.12 

SA estimated 

[40] 

[50]  

pi_3KII 

 

PI3K IA   /  / ,  

PI3K IB ,  

PI3KII   /  /    

(all secondary) 

 

v4➔34  Km = 0.25 

SA = 0.0043 (estimated) 

[37] 

[51]  

 

pip_5KI 

 

PIPK I  /  /  v4➔45  Km = 0.0012 

SA = 0.023 

 

[14] 

[14]  

pip_5KII 

 

PIPK II  /  /  v5➔45  Km = 0.012 

(No PI(5)P  Km . Using PIP_5KI  

Km and SA.) 

SA = 0.023 

 

[14] 

 

 

[14] 

pi_3KI 

 

PI3K IA  /  / ,  

PI3K IB  

v45➔345   Km = 0.011 

SA = 0.0086 

 

[35] 

[36] 

pi_4K_pip_5KI 

 

PI4K, PIP5KI and Dvl v0➔45  Km = .2 (Km of the first enzyme to 

contact substrate) 

SA = 0.023 (SA of the slowest) 

[38]  

 

[14] 
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Table 2.6. Groups of phosphatases and associated fluxes. 

 

Group 

 

 

Enzymes 

 

Flux 

 

Values (problems) 

 

Reference 

SYNJ_SAC1_MTMR SYNJ 1/2, SAC1, MTMR 

(9 forms) 

 

v3➔0  

 

Km = 0.25 

(Using PI(4,5)P2 Km of 5 

phosphatase) 

SA = 0.765 

 

 

[46] 

 

 

[47]  

SYNJ_SAC1 

 

SYNJ 1/2, SAC1 v4➔0 

SYNJ_SAC1 

 

SYNJ 1/2, SAC1 v5➔0 

SYNJ_SAC1_SAC3 

 

SYNJ 1/2, SAC1, SAC3 v35➔3 

SYNJ Not yet documented. 

Possibly synaptojanins. 

 

v45➔0 

S_I_O_S_S 

 

SYNJ 1/2, INPP5 B/J/E, 

OCRL1, SAC2, SKIP 

v45➔4 Km = 0.25 

(Using PI(4,5)P2 Km of 5 

phosphatase) 

SA = 0.765 

 

[46] 

 

 

[47] 

S_I_O_S_S_SHIP2 

 

SYNJ 1/2, INPP5 B/J/E, 

OCRL1, SAC2, SKIP, 

SHIP2 

v345➔34 Km = 0.25 

(Using PI(4,5)P2 Km of 5 

phosphatase) 

SA = 0.0765 

(SA estimated) 

 

[46] 

 

 

SYNJ_TMEM55 

 

SYNJ 1/2, TMEM55 v45➔5 Km = 0.046 

(Using Inositol134P3 Km) 

SA = 0.01 

 

[44] 

 

[45]  

PTEN 

 

PTEN, TPTE v345➔45 Km = 0.07 

SA = 30.3 

 

[41] 

[41] 

MTMR 

 

MTMR 7 forms, TPIP, 

INPP5E 

v35➔5 Km = 0.0037 

(Rattus Inositol13P2 Km. 

No SA 

(SA estimated) 

 

[43] 

 

[47]  

INPP4 

 

INPP4 A/B v34➔3 Km = 0.046 

(Using Inositol134P3 Km. 

No SA. Using PI(4,5)P2_4P SA) 

SA = 0.061 

 

[44] 

 

 

[45]  

PTEN 

 

not yet documented v34➔4 Km = 0.72 

SA = 5.47 

[52]  

[52] 

 

Km in mM an SA in µmol/min/mg. 
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Table 2.7. Performance and Score Criteria for the Genetic Algorithm. 

Performance criteria: 

• The solution must exist; it must not be composed of NA or NaN values 

• The system must reach a stable steady state 

• 200000 < PI < 400000 

• 0.1< PI(3)P < 6000 

• 5000 < PI(4)P < 20000 

• 0.1< PI(5)P < 200 

• 0.1< PI(3,5)P2 < 200 

• 5000 < PI(4,5)P2 < 20000 

• 0.1< PI(3,4)P2 < 200 

• 0.1< PI(3,4,5)P3 < 5000 

• The sum of all phosphoinositides must be between 220000 and 450000 

 

Score criteria: 

• Similar levels of PI(4)P and PI(4,5)P2 

• Similar levels of PI(3)P and PI(5)P 

• PI(5)P levels are 5 fold of PI(3,5)P2 levels 

• PI(4)P and PI(4,5)P2 levels are 100 times higher than PI(5)P and PI(3)P 

• Steady-state value of PI close to 300000 

• Steady-state value of PI(4,5)P2 close to 10000 

• Steady-state value of PI(3)P close to 100 

• Similar levels of PI(3,5)P2 and PI34P2 

• PI(4,5)P2 will decrease by the same percentage as PI 

• PI(4)P drops to 50% after PI4K knockout 

• PI(4,5)P2 drops to 50% after PI4K knockout 

• PI(4,5)P2 drops to 50% after PIP_5KI knockdown 

• PI(5)P drops to 20% after MTMR2 knockdown (MTMR estimated to be reduced to 

65%) 

• PI(3,5)P2 raises to 150% after MTMR2 knockdown (MTMR estimated to be reduced 

to 65%) 

• PI(5)P should drop to 50% if pi_Kfive is reduced to 10% 

• PI35P2 should drop to 50% if pi_Kfive is reduced to 10% 

• PI(5)P should drop to 15% if pi_Kfyve is knockout 

• PI(3,5)P2 should drop to 0.1% if pi_Kfyve is knockout 

• PI(4,5)P2 should drop to 80% if pi_Kfyve is knockout  

• PI(3)P should increase 5-fold if pi_Kfyve is knockout 
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Table 2.8. Local sensitivity analysis. Each parameter was altered by 1% and the 

consequent alteration in each pool was measured. Induced changes greater than 

1% are highlighted. 

         

 PI PI(3)P PI(4)P PI(5)P PI(3,5)P2 PI(4,5)P2 PI(3,4)P2 PI(3,4,5)P3 

➔0 1.03456 0.10471 0.24441 0.11920 0.10457 0.19251 0.09790 0.05926 

➔4 0.00570 0.00165 0.38978 0.00224 0.00165 0.00698 0.12026 0.00215 

➔3 0.00012 0.10674 0.00318 0.09998 0.10661 0.01453 0.00271 0.00448 

0➔3 -0.00544 0.88524 0.02484 0.82935 0.88412 0.11939 0.02188 0.03676 

f0➔3 -0.00788 1.28161 0.03596 1.20096 1.27999 0.17285 0.03167 0.05321 

3➔0 0.00042 -0.06751 -0.00189 -0.06322 -0.06743 -0.00911 -0.00167 -0.00281 

f3➔0 0.00195 -0.31694 -0.00889 -0.29675 -0.31655 -0.04275 -0.00784 -0.01317 

0➔4 -0.02276 -0.00041 0.68316 0.00017 -0.00041 0.00622 0.20991 0.00192 

f0➔4 -0.08381 -0.00155 2.51637 0.00057 -0.00155 0.02259 0.76967 0.00696 

4➔0 0.01114 0.00020 -0.33438 -0.00009 0.00020 -0.00307 -0.10300 -0.00095 

f4➔0 0.09480 0.00164 -2.84494 -0.00085 0.00164 -0.02664 -0.88199 -0.00821 

0➔5 -0.00031 -0.00002 0.00152 0.05046 -0.00002 0.00727 0.00133 0.00224 

f0➔5 -0.00025 -0.00002 0.00123 0.04087 -0.00002 0.00589 0.00108 0.00181 

5➔0 0.00016 0.00001 -0.00076 -0.02521 0.00001 -0.00363 -0.00067 -0.00112 

f5➔0 0.00073 0.00005 -0.00357 -0.11872 0.00005 -0.01711 -0.00314 -0.00527 

3➔35 -0.00036 -0.88106 0.00320 0.10443 0.11136 0.01509 0.00279 0.00465 

f3➔35 -0.00164 -3.98069 0.01448 0.47192 0.50315 0.06820 0.01259 0.02100 

35➔3 0.00003 0.08270 -0.00030 -0.00980 -0.01045 -0.00142 -0.00026 -0.00044 

f35➔3 0.00010 0.25230 -0.00092 -0.02990 -0.03189 -0.00432 -0.00080 -0.00133 

4➔45 -0.00329 -0.00061 -0.22535 0.03145 -0.00061 0.31978 -0.03098 0.09840 

f4➔45 -0.00140 -0.00026 -0.09563 0.01335 -0.00026 0.13571 -0.01313 0.04179 

45➔4 0.00266 0.00049 0.18242 -0.02548 0.00049 -0.25884 0.02496 -0.07981 

f45➔4 0.02277 0.00418 1.56142 -0.21880 0.00418 -2.21482 0.21030 -0.68757 

5➔45 -0.00014 0.00001 0.00257 -1.04473 0.00001 0.01195 0.00222 0.00368 

f5➔45 -0.00056 0.00002 0.01020 -4.15151 0.00002 0.04751 0.00880 0.01463 

45➔5 0.00002 0.00000 -0.00038 0.15426 0.00000 -0.00177 -0.00033 -0.00054 

f45➔5 0.00013 -0.00001 -0.00233 0.95018 -0.00001 -0.01087 -0.00202 -0.00335 

45➔345 -0.00015 0.00340 -0.01062 -0.00175 0.00340 -0.04880 0.38096 0.99045 

f45➔345 -0.00044 0.00973 -0.03037 -0.00501 0.00972 -0.13959 1.08973 2.83323 

345➔45 0.00005 -0.00101 0.00316 0.00052 -0.00101 0.01451 -0.11324 -0.29441 

f345➔45 0.00029 -0.00650 0.02027 0.00334 -0.00649 0.09317 -0.72733 -1.89095 

35➔5 -0.00003 -0.08108 0.00059 0.01908 -0.97009 0.00276 0.00051 0.00085 

f35➔5 -0.00008 -0.24026 0.00176 0.05653 -2.87469 0.00819 0.00152 0.00252 

34➔3 0.00000 0.00456 0.00013 0.00427 0.00455 0.00062 -0.48909 0.00019 

f34➔3 0.00001 0.01376 0.00039 0.01289 0.01375 0.00187 -1.47765 0.00058 

345➔34 0.00000 0.00343 0.00003 0.00317 0.00342 0.00012 0.38195 -0.01704 

f345➔34 0.00002 0.02280 0.00020 0.02112 0.02277 0.00078 2.54154 -0.11336 

i➔ (i=0,3,4,5,35,34,45,345) -0.98865 -0.15655 -1.07621 -0.30012 -0.16558 -0.96498 -1.21047 -0.98028 

0➔45 -0.02376 -0.00143 0.12280 0.05741 -0.00143 0.58758 0.10772 0.18064 

f0➔45 -0.08750 -0.00528 0.45199 0.21086 -0.00527 2.16408 0.39516 0.66172 

4➔34 -0.00002 0.00549 -0.00153 0.00514 0.00548 0.00072 0.61188 0.00022 

f4➔34 -0.00009 0.02592 -0.00723 0.02426 0.02589 0.00339 2.89031 0.00104 

34➔4 0.00000 -0.00004 0.00001 -0.00003 -0.00004 0.00000 -0.00391 0.00000 

f34➔4 0.00000 -0.00011 0.00003 -0.00010 -0.00011 -0.00001 -0.01202 0.00000 

45➔0 0.00000 0.00000 -0.00002 -0.00001 0.00000 -0.00011 -0.00002 -0.00004 

f45➔0 0.00004 0.00000 -0.00021 -0.00010 0.00000 -0.00100 -0.00018 -0.00031 
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Table 2.9. Phenomena used to train the model, formulae used to evaluate the 

model for each phenomenon, and respective non-normalized scores. 

Data Formula to calculate non-normalized score 
non-normalized 

score 

 

Similar levels of PI4P and PI45P2 abs( [ PI(4)P ] - [ PI(4,5)P2 ] ) 
617.82 

Similar levels of PI3P and PI5P abs( [ PI(3)P ] - [ PI(5)P ] ) 17.86 

PI5P levels are 5 fold of PI35P2 levels abs( [ PI(5)P ] - 5 * [ PI(3,5)P2 ] ) 7.64 

PI4P or PI45P2 is 100 times more than PI5P or PI3P abs( [ PI(4)P ] - 100 * [ PI(5)P ] ) 930.43 

Stst value of PI close to 300000 abs( [ PI ] - 300000 ) 19618.60 

Stst value of PI45P2 close to 10000 abs( [ PI(4,5)P2 ] - 10000 ) 519.09 

Stst value of PI3P close to 100 abs( [ PI(3)P ] - 100 ) 7.57 

similar levels of PI35P2 and PI34P2 abs( [ PI(3,5)P2 ] - [ PI(3,4)P2 ] ) 17.05 

PI45P2 will decrease in the same percentage as PI 

abs( [ PI with PI input KD] / [ Steady-state PI ] - [ PI(4,5)P2 with PI input 

KD ] / [ Steady-state PI(4,5)P2 ] ) 
0.46 

PI4P drops to .5 after PI4K knockout abs( 0.5 - [ PI(4)P with PI4K KO ] / [ Steady-state PI(4)P ] ) 0.41 

PI45P2 drops to .5 after PI4K knockout abs( 0.5 - [ PI(4,5)P2 with PI4K KO ] / [ Steady-state PI(4,5)P2 ] ) 0.31 

PI45P2 drops to .5 after PIP_5KI knockdown abs( 0.5 - [ PI(4,5)P2 with PIP5KI KD ] / [ Steady-state PI(4,5)P2 ] ) 0.04 

PI5P drops to .2 after MTMR2 knockdown (MTMR 

estimated to be reduced to 65%) abs( 0.2 - [ PI(5)P with MTMR 35% KD ] / [ Steady-state PI(5)P ] ) 
0.71 

PI35P2 raises to 1.5 after MTMR2 knockdown (MTMR 

estimated to be reduced to 65%) abs( 1.5 - [ PI(3,5)P2 with MTMR 35% KD ] / [ Steady-state PI(3,5)P2 ] ) 
0.03 

PI5P should drop to 50% if pi_Kfive is reduced to 10% abs( 0.5 - [ PI(5)P with PIKfyve 90% KD ] / [ Steady-state PI(5)P ] ) 0.07 

PI35P2 should drop to 50% if pi_Kfive is reduced to 10% 

abs( 0.5 - [ PI(3,5)P2 with PIKfyve 90% KD ] / [ Steady-state PI(3,5)P2 ] 

) 
0.03 

PI5P should drop to .15 if pi_Kfyve is knockout abs( 0.15 - [ PI(5)P with PIKfyve KO ] / [ Steady-state PI(5)P ] ) 0.07 

PI35P2 should drop to undetectable levels if pi_Kfyve is 

knockout abs( 0.001 - [ PI(3,5)P2 with PIKfyve KO ] / [ Steady-state PI(3,5)P2 ] ) 
0.01 

PI45P2 should drop to .8 if pi_Kfyve is knockout abs( 0.8 - [ PI(4,5)P2 with PIKfyve KO ] / [ Steady-state PI(4,5)P2 ] ) 0.04 

PI3P should increase 5-fold if pi_Kfyve is knockout abs( 5 - [ PI(3)P with PIKfyve KO ] / [ Steady-state PI(3)P ] ) 3.07 
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Table 2.10. siRNAs screen used to identify candidate CF drug targets. 

Effect of siRNA is measured by ENaC activity. Scores above 1 classify a gene as ENaC inhibiting and 

below -1 as ENaC-activating. The screen is described in detail in theses supplementary methods and in 

Almaça et al. [23]. 

First round of siRNA screens 

(Almaça et al. [23]) 

Second round of siRNA screens 

(siRNA KD validation tests)  

Gene 

name Results 

Gene 

name 

First 

siRNA test 

Second 

siRNA test 

Third 

siRNA test Results 

INPP5A ENaC-activating gene INPP5A 4.628 -2.796 x both effects 

INPPL1 ENaC-activating gene INPPL1 3.400 -1.025 x both effects 

OCRL both effects OCRL 1.947 0.465 -4.844 both effects 

PI4KA ENaC-activating gene PI4KA -0.861 -5.739 4.752 both effects 

PIK3C2B ENaC-inhibiting gene PIK3C2B 5.777 -0.019 x 1 of 2 ENaC-inhibiting 

PIK3CA ENaC-activating gene PIK3CA -1.761 1.109 -1.385 both effects 

PIK3CB ENaC-activating gene PIK3CB -0.509 -4.154 x 1 of 2 ENaC-activating 

PIK3CD ENaC-activating gene PIK3CD -2.944 -1.903 0.952 2 of 3 ENaC-activating 

PIK3R3 ENaC-inhibiting gene PIK3R3 5.877 -11.030 2.551 both effects 

PIP4K2A ENaC-activating gene PIP4K2A -2.992 -4.393 -3.249 3 of 3 ENaC-activating 

PIP5K1B both effects PIP5K1B -1.986 -3.728 x 2 of 2 ENaC-activating 
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Table 2.11. System equations. 

Fluxes 

V➔0 = ➔0 

V➔4 = ➔4 

V➔3 = ➔3 

V0➔3 = 0➔3 * PI^f0➔3 * (PI3KII+PI3III) 

V3➔0 = 3➔0 * PI(3)P^f3➔0 * (SYNJ+SAC1+MTMR) 

V0➔4 = 0➔4 * PI^f0➔4 * PI4K  

V4➔0 = 4➔0 * PI(4)P^f4➔0 * (SYNJ+SAC1)  

V0➔5 = 0➔5  * PI^f0➔5 * PIKfyve  

V5➔0 = 5➔0 * PI(5)P^f5➔0 * (SYNJ+SAC1)  

V3➔35 = 3➔35 * PI(3)P^f3➔35 * PIKfyve  

V35➔3 = 35➔3 * PI(3,5)P2^f35➔3 * (SYNJ+SAC1+SAC3)  

V4➔45 = 4➔45 * PI(4)P^f4➔45 * PIP5KI  

V45➔4 = 45➔4 * PI(4,5)P2^f45➔4 * (SIOSS)  

V5➔45 = 5➔45 * PI(5)P^f5➔45 * PIP5KII  

V45➔5 = 45➔5 * PI(4,5)P2^f45➔5 * (SYNJ+TMEM55)  

V45➔345 = 45➔345 * PI(4,5)P2^f45➔345 * PI3KI  

 

V345➔45 = 345➔45 * PI(3,4,5)P3^f345➔45 * PTEN  

V35➔5 = 35➔5 * PI(3,5)P2^f35➔5 * MTMR  

V34➔3 = 34➔3 * PI(3,4)P2^f34➔3 * INPP4  

V345➔34 = 345➔34 * PI(3,4,5)P3^f345➔34 * (SIOSS+SHIP2)  

V45➔ = 45➔ * PI(4,5)P2 

V0➔ = 0➔ * PI 

V4➔ = 4➔ * PI(4)P 

V345➔ = 345➔ * PI(3,4,5)P3 

V3➔ = 3➔ * PI(3)P 

V35➔ = 35➔ * PI(3,5)P2 

V5➔ = 5➔ * PI(5)P 

V34➔ = 34➔ * PI(3,4)P2 

V0➔45 = 0➔45 * PI^f0➔45 * (PI4K+PIP5KI)  

V4➔34 = 4➔34 * PI(4)P^f4➔34 * PI3KII  

V34➔4 = 34➔4 * PI(3,4)P2^f34➔4 * PTEN  

V45➔0 = 45➔0 * PI(4,5)P2^f45➔0 * SYNJ 

 

 

 

Differential equations 

dPI = V➔0 + V3➔0 + V4➔0 + V5➔0 + V45➔0 - V0➔3 - V0➔4 - V0➔5 - V0➔45 - V0➔  

dPI3P = V➔3  + V0➔3 + V35➔3 + V34➔3 - V3➔0 - V3➔35 - V3➔ 

dPI4P = V➔4 + V0➔4 + V45➔4+ V32 - V4➔0 - V4➔45  - V24 - V4➔ 

dPI5P = V0➔5 + V35➔5 + V45➔5 - V5➔0 - V5➔45 - V5➔ 

dPI35P2 = V3➔35 - V35➔5 - V35➔3 - V35➔ 

dPI45P2 = V4➔45 + V5➔45 + V345➔45 + V0➔45 - V45➔4 - V45➔5 - V45➔345 - V45➔0 - V45➔ 

dPI34P2 = V345➔34 + V4➔34 - V34➔4 - V34➔3 - V34➔ 

dPI345P3 = V45➔345 - V345➔45 - V345➔34 - V345➔ 
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 Thickness of the airway surface liquid layer in the lung is affected 

in cystic fibrosis by compromised synergistic regulation of the ENaC 

ion channel 

 

This Chapter is an integral reproduction of the paper: 

Olivença, D. V., Fonseca, L. L., Voit, E. O., & Pinto, F. R. (2018). Thickness of the 

airway surface liquid layer in the lung is affected in cystic fibrosis by compromised 

synergistic regulation of the ENaC ion channel. [submitted] 

 

3.1. Abstract  

The lung epithelium is lined with a layer of airway surface liquid (ASL), which is 

crucial for healthy lung function. The thickness of ASL is controlled by two ion 

channels: The epithelium sodium channel (ENaC) and the cystic fibrosis 

transmembrane conductance regulator (CFTR). Here we present a minimal 

mathematical model of ENaC, CFTR and ASL regulation that sheds light on the control 

of ENaC by the short palate lung and nasal epithelial clone 1 (SPLUNC1) protein and 

by phosphatidylinositol 4,5-biphosphate (PI(4,5)P2). The model, despite its simplicity, 

yields a good fit to experimental observations and is an effective tool for exploring the 

interplay between ENaC, CFTR and ASL. We show that the available data can 

constrain the model’s parameters without ambiguities. The control of the ENaC 

opening probability, exerted by PI(4,5)P2, is sufficient for fitting available experimental 

data. We test the hypothesis that PI(4,5)P2  protects ENaC from ubiquitination and 

results suggest that it does not improve the model’s ability to reproduce observations, 

but changes the sign of the steady-state sensitivity of ENaC with respect to changes in 

PI(4,5)P2 from negative to positive. Finally, model analysis shows that ASL at the 

steady state is sensitive to small changes in PI(4,5)P2 abundance, particularly in cystic 

fibrosis conditions, which suggests that manipulation of phosphoinositide metabolism 

may promote therapeutic benefits for cystic fibrosis patients. 
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3.2. Introduction 

Cystic fibrosis (CF) is a genetic disease caused by mutations in a chloride channel: the 

cystic fibrosis transmembrane conductance regulator (CFTR). A mutated CFTR may 

cause loss of function or not even reach the plasma membrane, thereby not only 

affecting the lungs but also many other organs, such as the pancreas. In the lungs, this 

condition leads to the gradual destruction of tissues, due to repeated inflammation and 

infections [1,2]. CF cause has been known for several decades, but an effective 

treatment for the disease has eluded the best efforts of the biomedical community, 

although substantial gains in life expectancy and quality of life have been achieved by 

the targeted management of symptoms. Good results were recently obtained with 

Lumacaftor and Ivacaftor, but some mutations remain untreatable by drugs [3].  

The Epithelium Sodium Channel (ENaC) may be affected in CF [2,4–6]. The 

upregulation of this channel function is thought to contribute of the accumulation of 

thick dehydrated mucus that is one of the hallmarks of CF and a frequent source of 

consequent lung problems [2]. Inadequately hydrated mucus and/or mucus over-

production are also the cause of a number of other diseases, including primary ciliary 

dyskinesia, chronic obstructive pulmonary disease, bronchiectasis and asthma [1]. 

ENaC is furthermore important in non-mucus related conditions like blood pressure 

control problems, edema [7] and heart disease [8]. Given the important roles of ENaC 

in such a wide range of conditions it is imperative that we improve our fundamental 

understanding of this channel in health, disease, and with respect to novel treatments.  

In this work we focus on the crosstalk between two of the crucial regulators of ENaC: 

the short palate lung and nasal epithelial clone 1 (SPLUNC1) extracellular protein and 

phosphatidylinositol 4,5-biphosphate (PI(4,5)P2). Distinct parallel mechanisms of 

ENaC regulation have been investigated [9,10], and several models of airway surface 

liquid (ASL) and ENaC regulation and their impact on ion-driven water fluxes have 

been proposed (e.g., [11–15]). However, these models do not account for the synergistic 

regulation of ENaC and ASL by SPLUNC1 and PI(4,5)P2. Thus, our goal is to deepen 

our understanding of this synergism with the design of a simple, targeted mathematical 

model that allows us to explore the specific roles and interactions of these regulators. 
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3.3. Background 

ENaC is a membrane-bound ion channel that transports Na+ ions according to the 

electrochemical gradient. It is a constituted by three of α or δ, β or γ subunits that present 

common tertiary structures and similar amino acid sequence. Other stoichiometries are 

possible but the most common is a αβγ trimer [16]. 

The role of ENaC in CF is still unclear [17–19]. The majority of researchers, however, 

appears to be convinced that ENaC function is upregulated in CF. Indeed, several 

hypotheses explaining this upregulation have been proffered [2,4,7,20–22]. Among 

them is the postulate that the absence of functional CFTRs in the cell membrane causes 

the acidification of the airway surface liquid (ASL), which lines and protects the lungs 

[23–25]. This acidification, in turn, is suspected to inactivate SPLUNC1, a protein 

involved in protecting ENaC from proteolysis, among other roles. SPLUNC1 also 

promotes ENaC ubiquitination and disassembly, removing the α and γ subunits from 

the plasma membrane [6]. Taken together, the lack of CFTR activity would lead to a 

loss of SPLUNC1 and to an elevated ENaC activity or an increased number of channels. 

We analyze this hypothesis here, because it could lead to truly novel therapeutic 

applications [26], if it can be confirmed. The dynamics of ENaC is represented 

graphically in Figure 3.1.  

Phosphoinositides are lipids in the cell membranes that have numerous functions [27]. 

One of them is the regulation of plasma membrane proteins. Several studies have shown 

that some phosphoinositides, specifically PI(4,5)P2 and phosphatidylinositol 3,4,5-

triphosphate (PI(3,4,5)P3), influence ENaC [27–31]. A mechanistic explanation of this 

phosphoinositide control of ENaC was advanced by Kota et al. [32], who found that 

when the intracellular N-terminal of γ ENaC connects to phosphoinositides, a 

conformational change occurs that exposes the extracellular loops of the channel to 

proteases. Once these loops are cleaved, the channel channel-open probability (Po) of 

ENaC is increased. While ENaC is initially cleaved by furin in the Golgi, further 

protease action can greatly increase the Po [33]. 
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Figure 3.1. ENaC regulation by proteases, SPLUNC1, PI(4,5)P2 and NEDD4-2. 

When ENaC is created and placed into the cell membrane, it presents a low activity. Full activation is 

contingent on the cleavage of its extracellular loops by proteases. To expose the loops, ENaC’s N-termini 

need to interact with PI(4,5)P2 in the cell membrane. The extracellular protein SPLUNC1 induces a 

conformation shift in ENaC that expose intracellular ubiquitination sites   of α and γ subunits. These sites 

are ubiquitinated by the neural precursor cell expressed developmentally down-regulated protein 4 - 2 

(NEDD4-2) that, in turn, cause the disassembly of the channel and the removal of the ubiquitinated 

subunit from the cell membrane. In CF, the ASL is more acidic due to the lack of CFTR in the membrane. 

The acidity inactivates SPLUNC1, which in turn reduces the ubiquitination of ENaC by NEDD4-2 and 

consequently decreases the removal of ENaC channels from the membrane.  

 

Therefore, if the levels of PI(4,5)P2 or PI(3,4,5)P3 are decreased, proteases do not cut 

the extracellular loops of ENaC and the channel activity is reduced. The N-terminal can 

also be ubiquitinated, which marks ENaC for internalization and degradation. The fact 

that ENaC is sensitive to anionic phospholipids and ubiquitinated in the same region 

raises the question whether PI(4,5)P2 or PI(3,4,5)P3 could protect ENaC from 

ubiquitination. Kota and colleges [32] observed that the γ-N-terminal is structurally 

more compact in the presence of PI(4,5)P2, which indicates that connecting to PI(4,5)P2 

or PI(3,4,5)P3 might indeed protect these sites from ubiquitination. In this work we 

investigate the phosphoinositide and NEDD4-2 competition for the ENaC N-terminus 

by comparing two models: one where PI(4,5)P2 does not protect ENaC from 

degradation and another where it does.   
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While these chains of possible causes and effects appear to make a priori sense, it is 

known that intuition regarding the consequences of changes of any of the components 

in a complex nonlinear system are treacherous and often unreliable. We therefore 

incorporate all pertinent information regarding the regulation of ENaC and ASL by 

SPLUNC1 and PI(4,5)P2 into a dynamic mathematical model, which permits 

explorations of every aspect of the system in a quantitative manner. In particular, this 

model allows us to test if the dual effect of PI(4,5)P2 increasing the Po of ENaC and 

decreasing ENaC degradation is compatible with experimental observations. More 

generally, the model enables us to investigate quantitatively if PI(4,5)P2 has a 

significant impact on ASL thickness, which ultimately determines the severity of the 

CF lung phenotype.      

3.4. Results 

3.4.1. Model description 

The proposed model of ENaC and ASL regulation by SPLUNC1 and PI(4,5)P2 is 

diagrammed in Figure 3.2. It contains two dependent variables, ENaC and ASL, and 

accounts for channel production and degradation, as well as ASL influx and efflux. 

SPLUNC1 and PI(4,5)P2  are included as independent variables with regulatory roles 

in the system. 

The ENaC variable represents the number of channels in a m2 of apical plasma 

membrane. The rate of ENaC production is assumed to be constant (V1). PI(4,5)P2 

affects ENaC´s Po. The PI(4,5)P2-dependent Po, multiplied by ENaC, corresponds to 

ENaC’s activity. 

SPLUNC1 causes a conformational change that will expose ENaC’s ubiquitination 

sites. This will lead to the disassembly of the channel and internalization of the α and γ 

subunits [6,25]. Therefore, SPLUNC1 indirectly activates one of the ENaC degradation 

fluxes (V3), thereby maintaining low levels of active channels. The number of 

SPLUNC1 molecules is considered to be constant. To model SPLUNC1 dilution on 

ASL, we assume that SPLUNC1 activity is inversely proportional to ASL thickness. 

ENaC has a second degradation flux (V2) that is independent of SPLUNC1. This flux 

is important for the system’s ability to reach a steady state when SPLUNC1 activity is 

inhibited.  
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Figure 3.2. Diagrams of the two model variants. 

Graphical representation of the two models tested. a) In Model A, PI(4,5)P2 only influences ENaC’s Po 

but does not protect the channel from degradation. b) In Model B, PI(4,5)P2 influences ENaC’s Po and 

also protects the channel from degradation. Solid arrows represent fluxes and dashed arrows regulatory 

processes.   

 

The ASL variable represents the thickness or height of the liquid, expressed in m, 

above the apical plasma membrane. ASL has two influxes: V5 accounts for the influx 

of material, which depends on CFTR activity, whereas V4 accounts for other channels 

like aquaporins and tight junctions that allow material to passes through. ENaC activity 

induces water absorption and reduces the thickness of ASL through the flux V6. V7 is 

an ENaC-independent efflux from ASL that ensures that a steady state is reached if 

ENaC activity on ASL is blocked.  

To study the hypothesis that PI(4,5)P2 additionally protects ENaC from ubiquitination, 

we created two model variants: in model A, PI(4,5)P2 does not protect ENaC from 

ubiquitination (Figure 3.2 a), whereas in model B, PI(4,5)P2 inhibits both degradation 

fluxes of ENaC (Figure 3.2 b). Differential equations for both models are presented in 

Table 3.1.  
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Table 3.1. Model equations, parameter values and initial values for model variant 

A and B. 

Variant A, where PI(4,5)P2 does not protect ENaC from degradation, and variant B, where PI(4,5)P2 does 

protect ENaC from degradation. 

 Variant A Variant B 

Differential Equations 

dENaC/dt V1 - V2- V3 

dASL/dt V4 + V5 - V6- V7 

Fluxes 

V1 γ1 

V2 γ2ENaC γ2ENaC(PI(4,5)P2)-1 

V3 γ3ENaC(SPLUNC1/ASL) γ3ENaC(SPLUNC1/ASL)         

(PI(4,5)P2)-1 

V4 γ4 

V5 γ5 

V6 γ6ASLENaCPo(PI(4,5)P2) 

V7 γ7ASL 

Initial conditions for the dependent variables 

ENaC 35 molecules/μm2 

ASL 7 μm 

Parameters 

γ1 1.7310-2 moleculesmin-1 

γ2 2.1710-4 molecules-1min-1 2.17 min-1 

γ3 2.5310-7 μmmolecules-1min-1 2.5310-3 μmmin-1 

γ4 5.9210-2 μmmin-1 

γ5 2.3910-2 μmmin-1 

γ6 2.6410-4 molecules-1min-1 

γ7 9.5910-3 min-1 

Independent variables 

SPLUNC1 7714 molecules/μm2 

PI45P2 10000 molecules/μm2 

  

The model parameters were optimized so that the model behavior was consistent with 

experimental observations retrieved from the literature (Table 3.2). In particular, the 

model was adjusted to replicate steady states in both, wild type (WT) and CF, the known 

half-life of ENaC, and ASL perturbation time courses in WT epithelia. To simulate the 

CF phenotype, SPLUNC1 and the rate constant γ5 were set to zero.  
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Table 3.2. Observed experimental phenomena used to calibrate and validate the model. 

Data Description Usage Reference 

In WT lungs, the number of ENaC channels per 

μm2 of plasma membrane is between 30 and 50. 

Set steady-state value of ENaC in WT to 

35.  

Used do define γ4, γ5, γ7, γ1, γ2and γ3     

[35] 

In CF, ENaC will be degraded more slowly 

because of low pH inactivation of SPLUNC1 and 

because the channel numbers are more than 

double. 

Set steady-state value of ENaC to 80 for 

CF. 

Used do define γ4, γ5, γ7, γ1, γ2 and γ3     

[6] 

ASL thickness has a steady state of 7 m in WT 

basal conditions and a steady state of 4 m in CF; 

ASL maximal thickness should not surpass 20 

m. 

Used do define γ4, γ5, γ7, γ1, γ2 and γ3     [34,36] 

Estimates for half-life of ENaC vary from 20 

minutes to several hours. 

Set ENaC half-life to 40 minutes. 

Used do define γ1, γ2 and γ3     

[37–39] 

According to a mathematical model of epithelial 

ion and water transport, the relation between the 

ASL influx due to CFTR activity and the ASL 

efflux due to ENaC activity in resting WT 

conditions should be around 1.5. 

Used do define γ4, γ5, γ7, [14] 

The concentration of SPLUNC1 is about 50 

ng/ml. ASL in WT has a thickness of 7 m, and 

considering a 1 m2 patch of membrane, the 

number of SPLUNC1 molecules is 7714. 

Set value for SPLUNC1. [24] 

ENaC activity (N * Po) and mean open and closed 

times of ENaC for situations when PI(4,5)P2 

levels are low, close to basal and high (5000, 

10000, 15000 molecules per m2, respectively).   

Assuming we know N, we can determine 

and parameterize a function relating Po 

and PI(4,5)P2 levels. 

[40] 

ASL time courses for WT and CF.  WT data were used to adjust value of γ6. 

CF data were used for validation. 

[24,36,41,42] 

ENaC activity, measured for WT and CF as the 

difference in the short circuit current with and 

without amiloride, which is an ENaC inhibitor.  

PLC was manipulated to alter PI(4,5)P2 levels.  

WT data were used to calibrate decrease 

in PI(4,5)P2 due to PLC activation. CF 

data were used to validate model 

predictions. 

[43] 

In a normal plasma membrane there are 10,000 

PI(4,5)P2 molecules per m2 

Set value for PI(4,5)P2 [27,45–48] 

 

3.4.2. Model validation  

To validate the models, we compared our predictions with experimental observations 

that were not used to define parameter values. For this purpose, we used data from 

(1)time courses of ASL thickness above CF airway epithelial cultures and (2) ENaC 

activity changes after phospholipase C (PLC) activation (Table 3.2).   
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1. In the first validation, both model variants successfully replicated ASL thickness 

dynamics in CF airway epithelial cultures after an initial artificial increase to 25 or 30 

m (Figure 3.3, A3 and B3 plots). 

2. We retrieved measurements of ENaC activity under WT and CF conditions with and 

without activation of phospholipase C (PLC) [43]. PLC is not a variable in our models, 

but PLC activity is known to decrease the level of PI(4,5)P2. Thus, we estimated the 

degree of PI(4,5)P2 reduction caused by the activation of PLC by determining the 

decrease in PI(4,5)P2 that predicts, for a WT system, a reduction in ENaC activity 

similar to the experimental observation. We found that reductions of 10% and 9% in 

PI(4,5)P2 levels, for models A and B respectively, reproduce the PLC activation effect 

well. This reduction is mild when compared with reports of 50% reduction after PLC 

activation [40]. However, this numerical discrepancy might well be attributable to 

differences in cell type. We are simulating human airway epithelial cells and 

Pochynyuk et al. used immortalized mouse renal cells from the collecting duct. Also, 

different experimental procedures or activation protocols could contribute to the 

discrepancy. Using the estimated reductions in PI(4,5)P2 for both models, the levels of 

ENaC activity for CF without PLC activation are within the reported interval (Figure 

3.3, A1 and B1 plots). Although the model predicts a large drop of ENaC activity in CF 

with PLC activation, results are above the experimentally observed interval. This 

difference suggests that the PI(4,5)P2 drop may be underestimated by the models. Using 

a reduction by 15% of basal PI(4,5)P2 levels in model A and 14.5% in model B, all 

predictions fall within the experimental intervals of data published by Almaça’s et al. 

(Figure 3.4). 

Use of an alternative CF specific ENaC open-probability function with a value of 0.6 

for basal levels of PI(4,5)P2, as proposed in several reports [49–51], did not improve 

the comparison with PLC activation data, but compromised the adjustment to ASL 

thickness time courses in CF. 

Details on how these simulations were set in the model are in section 5.5 in Methods.  
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Figure 3.3. Model results corresponding to ENaC activity and ASL time courses 

in WT and CF. 

The two columns refer to results for model A and model B. The first row exhibits a comparison between 

model results (bars) and Almaça’s data [43] of ENaC activity for different PI(4,5)P2 levels (means and 

confidence intervals). The second and third rows display model results (lines) superimposed on time 

course data of ASL thickness (symbols) after perturbations under WT and CF conditions, respectively 

[24,36,41,42].  
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Figure 3.4. Consequences of an alternative model parameterization. 

A reduction by 15% of basal PI(4,5)P2 levels in model A and 14.5% in model B causes the predictions 

of the two models to fall inside the confidence intervals reported by Almaça et al. [43].  

 

3.4.3. ASL is sensitive to changes in PI(4,5)P2  

After parameterization and validation of both model variants, we assessed if changes 

in PI(4,5)P2 have a significant impact on ASL. Toward this end, we analyzed the 

sensitivities of model variables relative to small changes in independent variables and 

parameters at the steady state (Table 3.3). 

All other sensitivities to changes in parameter values are smaller than 1 (in absolute 

value) in the WT scenario, which means that perturbations are attenuated, which is 

desirable. Under CF conditions, only the sensitivity of ASL with respect to γ4 reaches 

a value of 1. These low values show that the model is very robust to reasonable changes 

in model parameters.   

 Considering sensitivities to independent variables, sometimes called gains, only one 

high sensitivity stands out in both model variants, namely the gain of ASL, with respect 

to changes in PI(4,5)P2 (Table 3.3). This sensitivity is approximately doubled in CF 

versus WT conditions. The fact that ASL has a high sensitivity to PI(4,5)P2, especially 

in CF, supports the hypothesis that alterations of PI(4,5)P2 could affect ASL thickness 

with possible therapeutic benefit for CF patients. 
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Table 3.3. Model sensitivity matrix for models A and B. 

Sensitivities WT CF 

Model A Model B Model A Model B 

ENaC ASL ENaC ASL ENaC ASL ENaC ASL 

PI(4,5)P2 -0.67 -1.28 0.16 -1.45 0 -2.57 0.66 -2.81 

SPLUNC1 -0.47 0.09 -0.47 0.09 0 0 0 0 

γ1 0.84 -0.16 0.84 -0.16 0.66 -0.23 0.66 -0.23 

γ3 -0.47 0.09 -0.47 0.09 0 0 0 0 

γ2 -0.37 0.07 -0.37 0.07 -0.66 0.23 -0.66 0.23 

γ6 -0.09 -0.17 -0.09 -0.17 0 -0.35 0 -0.35 

γ4 0.34 0.65 0.34 0.65 0 1 0 1 

γ5 0.14 0.26 0.14 0.26 0 0 0 0 

γ7 -0.38 -0.73 -0.38 -0.73 0 -0.64 0 -0.64 

Note that only ASL has a high sensitivity (sensitivity greater than 1 in absolute value) with respect to 

PI(4,5)P2, and only these PI(4,5)P2 sensitivities are noticeably different between the two models. 

 

The increase in ASL sensitivity to PI(4,5)P2 from WT to CF conditions is associated 

with a relative change in flux distribution between the respective steady states (Table 

3.4). These distributions are equal for both model variants, A and B, because the 

adjusted rate constants compensate for the inclusion of PI(4,5)P2 in the fluxes V2 and 

V3. In WT, 56% of ENaC degradation is due to SPLUNC1 activity. CFTR is only 

responsible for 39% of ASL influx. ENaC activity is also a minor contributor (19%) for 

the ASL efflux in WT. In CF, V3 and V5 are set to zero to simulate the disease condition. 

These alterations increase the contribution of ENaC in the ASL efflux to 36%. This CF-

specific increased role of ENaC in the ASL efflux may be responsible for the greater 

sensitivity of ASL to changes in PI(4,5)P2. Reports in the literature suggest that the 

increase in ENaC activity in CF could be even higher, with increase ratios of 4.5 within 

a model of epithelial ion and water transport [14], 3 in human colon cells [52] and 2.2 

in bronchial epithelial cells [43].   
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Table 3.4. Fluxes of the model at steady state in WT and CF. Values are identical 

for models A and B. 

 
WT CF 

V1 0.01733 0.01733 

V2 0.00758 0.01733 

V3 0.00975 0.00000 

V4 0.05915 0.05915 

V5 0.02389 0.00000 

V6 0.01592 0.02079 

V7 0.06712 0.03836 

 

Although it has a small absolute value, the sensitivity of ENaC with respect to PI(4,5)P2 

shows the main difference between model variants A and B. In variant A, where 

PI(4,5)P2 only influences ENaC’s Po, a small increase in PI(4,5)P2 leads to a decrease 

in the number of ENaC molecules present in the cell membrane. This is an indirect 

effect, mediated by SPUNC1/ASL feedback regulation of ENaC activity. In CF, where 

SPLUNC1 is absent, this sensitivity is 0. By contrast, a small increase in PI(4,5)P2 

within model variant B leads to a small increase in the value of ENaC. This qualitative 

change in the sign of the sensitivity is due to the PI(4,5)P2-mediated protection of ENaC 

from degradation. 

Finally, we assessed how ASL changes with larger perturbations in PI(4,5)P2 and the 

number of ENaC molecules (Figure 3.5). These results confirm the sensitivity analysis, 

as ASL changes significantly when PI(4,5)P2 is altered. Again, the increase in ASL is 

greater under CF conditions. Manipulation of the number of ENaC molecules is also 

able to influence ASL thickness, but with smaller efficiency.       
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Figure 3.5. Sensitivity of ASL with respect to PI(4,5)P2 and ENaC. 

Figures in the top panels show the effects of different levels of PI(4,5)P2 on ASL thickness for WT and 

CF in the two models. Figures in the bottom panels show the effects of different numbers of ENaC 

channels on ASL thickness, also in WT and CF and for both models. In the bottom Figures, ENaC 

numbers were changed by varying the ENaC influx in the system, V1. ENaC numbers were artificially 

inflated in order to reach stabilization of ASL thickness values; thus, the trends for high numbers are 

very unlikely to occur in vivo.   

   

3.5.  Discussion  

In this work we propose a model of ASL regulation by ENaC, SPLUNC1 and PI(4,5)P2. 

ENaC is subject to multiple additional regulations [53], and it could be interesting in 

the future to expand our model to include the effects of protein kinase C (PKC) and 

cyclic adenosine monophosphate (cAMP), as well as more detailed regulation by 

NEDD4-2. More complex models of epithelial ion and water transport are available, 

but do not facilitated the exploration of the role of PI(4,5)P2 in the regulation of ENaC 

and, consequently, of ASL. By contrast, the simplicity of the model proposed here 

permitted the successful, direct determination of parameter values from limited 

experimental data, without the need for complex multi-parametric optimization. Given 

this direct derivation of parameter values and the good agreement between model 

predictions and validation data, we cautiously conclude that the model represents the 

ASL and ENaC regulation by SPLUNC1 and PI(4,5)P2 quite well.  
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As our model considers PI(4,5)P2 as an independent variable, it can be easily coupled 

with models of the phosphoinositide pathway that are now starting to emerge [54,55]. 

This coupling will allow a deeper exploration of potential manipulations of 

phosphoinositide metabolism leading to a more efficient recovery of ASL in CF 

patients.  

Two model variants were explored to test the hypothesis whether PI(4,5)P2, besides its 

influence on ENaC’s Po, may also protect ENaC from ubiquitination. We did not find 

any noticeable differences between the two variants when comparing model predictions 

with validation data. Both were equally successful in reproducing the systems at the 

WT and CF steady states, as well as the observed ASL dynamics in WT. Thus, the 

simpler model, where PI(4,5)P2 only regulates ENaC open probability, is sufficient to 

explain the system behavior. However, this sufficiency does not rule out the protective 

role of PI(4,5)P2 in ENaC ubiquitination, and if future experimental evidence supports 

this role of PI(4,5)P2, the more complex model variant may be deemed more 

appropriate. This secondary role of PI(4,5)P2 could be of practical interest, because the 

dual regulatory function would make ASL more sensitive to PI(4,5)P2 changes, thereby 

improving the possible success of PI(4,5)P2 manipulations as a therapeutic approach. 

Whether or not PI(4,5)P2 plays a dual role, the model analysis reveals that the synergism 

between SPLUNC1 and the phosphoinositide system is an important mechanism for 

controlling ASL in the healthy lung and that this system is compromised in CF. 

3.6. Methods 

3.6.1. Mathematical framework  

The model of ENaC/ASL dynamics was designed within the framework of Biochemical 

Systems Theory (BST) [56–60], using ordinary differential equations (ODEs) in the 

format of a generalized mass action (GMA) system. In this approach, each ODE 

describes the dynamics of a dependent variable Xi, which is formulated 

stoichiometrically as a sum of all fluxes that are directly related to this variable; 

furthermore, each flux vj is formulated as a power-law function, as indicated in Eq. 3.1. 
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γj represents the rate constant for flux vj, respectively. The effect of each substrate Xi 

on the flux is modeled by a kinetic order fij. If no kinetic order is depicted it’s because 

it is equal to 1. ns and mp are the stoichiometric coefficients for influxes and effluxes. a 

denote the number of fluxes. b and c represent the number of dependent and 

independent variables, respectively.  

3.6.2. Model design and equations  

The core of the model consists of two dependent variables: ENaC represents the number 

of channels in a 1 μm2 patch of plasma membrane and ASL represents the thickness of 

ASL in μm. The differential equations for each model variant (A: PI(4,5)P2 only 

regulates ENaC’s Po; B: PI(4,5)P2 regulates both ENaC’s Po and removal) are presented 

in Table 3.1. 

3.6.3 Open-probability (Po) of ENAC 

For both models we determine the Po of ENaC as a function of PI(4,5)P2 by fitting a 

sigmoidal (logistic) function to data published by Pochynyuk et al. (Table 3.2 and 

Figure 3.6) [40].  

The resulting function (Eq. 3.2) predicts Po values close to 0 for very low levels of 

PI(4,5)P2 and 1 for very high levels of PI(4,5)P2.  

   25.6 4 )0 (4 52 ,

0.96
(4,5)

1 786
e PI P

P P
e

PI
− − 

=
+ 

 ( 3.2 ) 

In reality, it is to be expected that the absence of PI(4,5)P2 will not completely shut 

down Po and that PI(4,5)P2 saturation will not permanently open every ENaC channel 

in the membrane. To account for these reality checks, we considered different bounds 

and found that the minimum and maximum observed Po’s (0.02 and 0.82, respectively) 

are still observed when PI(4,5)P2 tends to 0 or 20,000, respectively. To create a function 

with this behavior, we added four points with ordinates equal to 0.02 and abscissas 

equal to 1000, 2000, 3000 and 4000. We also added four points with ordinates equal to 
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.82 and abscissas of 16000, 17000, 18000 and 19000. We allowed an additional term 

in the function to enable a lower asymptote greater than zero for low PI(4,5)P2 levels. 

The resulting function (Eq. 3.3) was used for both model variants. 

 

 

Figure 3.6. Open-probability function Po for ENaC. 

A logistic function (line) represents the effect of PI(4,5)P2 on Po well. Squares represent data points from 

Pochynyuk et al. [40].  
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I P
− − 

= +
+ 

  ( 3.3 ) 

Parameter values for the functions where obtained with the general optimization 

function (optim)  in R [61]. Initial values for the optimization where found with a TI-

83 logistic regression.   

It is known that channels with different subunit stoichiometries may be present [62] in 

the cell membrane and that they could have a different open-probability distribution. 

For simplification, we only considered αβγ ENaC channels and assumed that any 

regulation that affects one of the subunits will affect the expression of the trimeric 

channel with the same magnitude [62].  
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Additionally, ENaC cleavage by furin and extracellular proteases may be an important 

regulatory mechanism of ENaC’s Po [32,33,62]. SPLUNC1 may have a role in 

protecting ENaC from these proteases [63]. For simplicity, we did not consider this as 

part of the model, but this role can certainly be introduced in future versions. Making 

the Po function dependent also on the concentration of extracellular proteases could 

render the PI(4,5)P2 regulation more accurate in CF conditions. ENaC´s Po is also 

dependent on another phosphoinositide, PI(3,4,5)P3. We did not consider this 

regulation because we were interested in ENaC at the apical part of the plasma 

membrane of an epithelial cell, which is characterized by the absence or low levels of 

both PI(3,4,5)P3 and the enzyme responsible for its production, PI3KI [64].  

3.6.4. Parameter estimation 

Values for the three parameters in the differential equation for ENaC were obtained by 

solving the corresponding steady-state equations using steady-state values of ENaC and 

ASL in WT and CF lungs from the literature (Table 3.2). The resulting two steady-state 

equations are not sufficient to solve for the values of the three parameters uniquely. To 

obtain a unique solution, we used information about the half-life of ENaC in WT (Table 

3.2). Some of the ENaC half-life values in the literature appear to be very high, which 

could be due to the fact that they were measured in oocytes that were cultured in low 

temperatures, which is known to increase the half-life of ENaC [38]. A consequence of 

adopting high half-life values is that the transition from WT to CF will take a substantial 

amount of time. For example, with an ENaC half-life of 80 minutes, our model 

estimates that a subject would need more than a month to proceed from a WT-like to a 

CF-like steady state. With a shorter half-life of 20 minutes, this process will take only 

14 days. This lower number is in accordance with the literature; for instance, Stoltz and 

colleagues [19] report that loss of CFTR does not directly increase activity of ENaC at 

the onset of disease. Thus, based on the range of estimates documented in the literature, 

we considered an ENaC half-life of t1/2 = 40 minutes in WT conditions. Assuming that 

ENaC degradation is well modeled by an exponential decay, we were thus able to 

calculate the overall rate of ENaC degradation γ (Eq. 3.4) from three equations (Eq. 

3.5) that uniquely determine the values of γ1, γ2 and γ3. 
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A similar approach was followed to determine the parameters for the B model variant 

(Eq. 3.6). In this model variant, ENaC effluxes are divided by the PI(4,5)P2 

concentration to reflect that PI(4,5)P2 protects ENaC from ubiquitination. 
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The differential equation for ASL has four parameters. As for the case of ENaC, we 

used steady-state equations for ASL under WT and CF conditions. We added a third 

equation imposing a ratio between the ASL fluxes induced by CFTR and ENaC in WT, 

according to modelling results found in the literature (Table 3.2). This system of three 

equations (Eq. 3.7) allowed us to express three of the parameters as functions of γ6.   
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To define γ6, and consequently the remaining three parameters, we adjusted its value to 

reproduce observed ASL dynamics data in WT (Table 3.2). Starting from an initial 

guess of γ6 = 4e-4 (chosen to avoid problems with the numerical differential equation 

solver), the local optimizer identified the best solution as 2.6e-4.  

The four parameters associated with the differential equation for ASL are equal for both 

model variants. The complete list of model parameter values is presented in Table 3.1.  

3.6.5. Model conditions for experiments simulation presented in Figures 3.3 and 

3.4 

For Figure 3.3 A1 and B1, ENaC activity was measured in four situations. First, at basal 

conditions (PI(4,5)P2 = 10000 molecules/μm2, SPLUNC = 7714 molecules/μm2, γ5 = 

2.39e-2 μmmin-1). Second, a decrease in PI(4,5)P2 was found to match the data from 

Almaça (PI(4,5)P2 = 9200 molecules/μm2, SPLUNC = 7714 molecules/μm2, γ5 = 

2.39e-2 μmmin-1). Third, the models were set to simulate CF condition with the basal 

level of PI(4,5)P2 (PI(4,5)P2 = 10000 molecules/μm2, SPLUNC = 0 molecules/μm2, γ5 

= 0 μmmin-1). Forth, in CF condition with the same decrease in PI(4,5)P2 that was 

found previously (PI(4,5)P2 = 9200 molecules/μm2, SPLUNC = 0 molecules/μm2, γ5 = 

0 μmmin-1). 
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Figure 3.4 is similar to Figure 3.3 A1 and B1. The difference is the reduction of 

PI(4,5)P2 in the second and fourth columns, which is more pronounced in Figure 3.4, 

to 8500 molecules/μm2.in model A and 8550 molecules/μm2 for model B.        

For the simulations presented in Figures 3.3 A2 and B2, no alterations were made to 

the models except for the initial value of the ASL height, that was altered to match the 

initial ASL height of the experiments. These were 22.59, 29.96, 24.28 and 31.17 m 

for the data sets that can be found in the following references. [23,35,40,41] 

In Figures 3.3 A3 and B3 the models were set to simulate CF condition by setting 

SPLUNC1 and the rate constant γ5 to zero. As in the previous case, the only alteration 

made to the model’s parameters were the initial value of the ASL height. These were 

31.276586, 25.993151, 35.005454 m and these data sets can be found in the same 

references as in the previous case. 

3.6.6. Sensitivity analysis 

Local sensitivity analysis was implemented as described in Chen et al. [65]. Briefly, 

parameter sensitivities were assessed numerically by increasing each parameter, one at 

a time, by 1% and computing the new steady state of the system. When the relative 

change in the steady-state value of a dependent variable is higher than 1% (or lower 

than -1%) the sensitivity indicates that a change in the parameter value is amplified in 

the steady-state value of the dependent variable. Smaller sensitivities indicate 

attenuation of a perturbation. 

3.6.7 Model Implementation 

The model was implemented in the programming language R v3.1.0 [61] together with 

the package deSolve [66]. We used the ODE integration function with the LSODA 

method.  
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 ENaC regulation by phospholipids and SPLUNC1 protein explained 

through mathematical modelling 

 

Olivença, D. V., Voit, E. O., & Pinto, F. R. (2018). ENaC regulation by phospholipids 

and SPLUNC1 protein explained through mathematical modelling [submited] 

4.1. Abstract 

Cystic fibrosis (CF) is a condition caused by mutations in the cystic fibrosis 

transmembrane conductance regulator (CFTR), a chloride and bicarbonate channel. A 

secondary effect of CF seems to be an increase in the number of epithelial sodium 

channels (ENaCs), and the greater absorption of sodium and water by these channels is 

thought to be one of the causes of the accumulation of mucus in the lungs that 

characterizes the disease. This mucus is at least partially responsible for recurrent 

pulmonary infections and inflammation events that ultimately destroy the lungs of 

affected subjects. 

Phosphoinositides are rare signaling lipids that constitute a complex network regulating 

numerous cellular processes. One of the many functions of phosphoinositides is the 

regulation of cell membrane proteins, and several studies specifically implicate 

phosphatidylinositol 4,5-biphosphate (PI(4,5)P2) in ENaC regulation. 

Inhibition of diacylglycerol kinase (DGK), an enzyme of the phosphoinositide 

pathway, is known to moderate ENaC function and therefore might become a candidate 

for novel therapeutics against cystic fibrosis. However, progress in this direction has 

been slow as the mechanism of moderation of ENaC by DGK is not sufficiently well 

understood. A hypothesis is that DGK modulates PI(4,5)P2 production by halting 

phosphoinositide recycling, but this mechanism has not been proven. 

Here we propose to combine two metabolic pathway models: one representing the 

dynamics of phosphoinositides and the other accounting for the roles of ENaC and the 

protein SPLUNC1 (short palate lung and nasal epithelial clone 1) in the control of 

Airway Surface Liquid (ASL). The merging of the models enables, for the first time, a 

detailed study of the intricate interactions between DGK and ENaC. The results of the 

computational analysis strongly suggest that, contrary to a widely accepted hypothesis, 
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the regulation of ENaC is primarily exerted through the control of PI(4,5)P2 production 

by type I phosphatidylinositol-4-phosphate 5-kinase (PIP5KI), which in turn is 

controlled by phosphatidic acid (PA), the product of the DGK reaction. 

Key words:  

Cystic fibrosis, epithelium sodium channel (ENaC), airway surface liquid (ASL), 

phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), short palate lung and nasal epithelial 

clone 1 (SPLUNC1), diacylglycerol kinase (DGK) 

4.2. Introduction 

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a 

chloride and bicarbonate membrane channel, can cause problems in several organs and, 

in particular, lead to cystic fibrosis (CF). In the lungs, the production of thick, 

dehydrated mucus associated with these mutations leads to recurrent infections and 

frequent inflammation events that eventually compromise organ function [1]. Life 

expectancy for subjects with CF has improved considerably [2], and promising new 

drugs containing lumacaftor or ivacaftor were recently brought to the market [3]. 

Despite these advancements, a complete cure for CF has not yet been achieved, in part 

due to mutations that are not treatable with the available drugs.     

While the mutation causing CF is found in the gene for CFTR, other ion channels are 

affected. In particular, changes in the Epithelium Sodium Channels (ENaCs) play a role 

in CF. It has been hypothesized that lack of CFTR in CF lungs causes ENaC function 

to increase. Consequently, large amounts of sodium and water are absorbed, which 

implies that this channel may be one of the contributors to the accumulation of mucus 

in the lungs that characterizes this disease. Interestingly, ENaC was found to be 

dependent on CFTR in sweat glands, and inhibition or removal of the chloride channel 

prevents ENaC activation [4].   Perturbations in ENaC have also been linked to several 

other diseases, including high blood pressure control, edema [5] and heart disease [6]. 
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Figure 4.1. Model map. 

The faint components represent our previous model [7], while the prominent components show the new 

modules and extensions. The arrow from PI(4,5)P2 to ENaC represents the control that the lipid exerts 

over the channel. Thick black arrows represent input and output fluxes of material entering and leaving 

the system. Thin black arrows represent regulations. Red and blue arrows represent fluxes of 

phosphorylation and hydrolysis, respectively. For each flux, the name (vi➔j) and the group of enzymes 

that catalyze the reaction are shown. Orange arrows represent phospholipase fluxes. PTEN and PI3KI 

have an active (a) and inactive (i) state. O_I_SK_SA2 is a group of phosphatases, consisting of OCRL1, 

INPP5 B/J, SAC2 and SKIP. PI4K+PIP5KI+DVL denotes a complex formed by the three proteins. 

Proteins separated by commas catalyze the same reaction. INPP5: Inositol polyphosphate 5-

phosphatases; OCRL1: Lowe Oculocerebrorenal Syndrome Protein. 

 

Phosphoinositides are rare membrane lipids with various signaling functions. Several 

studies have shown that two of these lipids, PI(4,5)P2 and PI(3,4,5)P3, have an effect 

on ENaC [8]–[12]. Their key precursor, phosphatidylinositol (PI), is created in the ER 

from phosphatidic acid (PA) and transported to the plasma membrane, where it is 

phosphorylated into the other phosphoinositide species (Figure 4.1). PI(4,5)P2 is 

cleaved by PLC into inositol triphosphate (IP3) and diacylglycerol (DAG) and 

transformed into PA, which is transported back to the ER to close the cycle.  
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Figure 4.2. Consequences of inhibiting DGK for phosphoinositide metabolism, 

ENaC and ASL. 

a) Normal state. b) DGK inhibition reduces the production of PA which, in turn, reduces the production 

of PI(4,5)P2, which is catalyzed by PIP5KI. Low levels of PI(4,5)P2 reduce ENaC activity and the 

absorption of ASL by this channel, which consequently leads to an increase in ASL thickness.  

 

DGK is the kinase that transforms DAG into PA. Almaça et al. [13] found that 

inhibiting DGK causes a moderation of ENaC activity and normalizes the increased 

sodium channel activity in CF. These authors specifically hypothesized that inhibiting 

DGK might bring the recycling of the phosphoinositides to a halt, which in turn would 

decrease the levels of PI(4,5)P2 and PI(3,4,5)P3 and cause the observed ENaC 

moderation. However, DGK is active in the plasma membrane, while phosphoinositide 

synthesis occurs in the ER. Transport of lipids between membranes of different 

compartments is mediated by vesicles or specialized proteins, and quantitative details 

about the dynamics of this transport are still lacking. Thus, many open questions remain 

unanswered. Crucially, it is not clear what the dynamics of the control of ENaC by 
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DGK is, and if and how DGK could potentially be used as a therapy in situations where 

ENaC function is deregulated.   

In the work described here, we investigate ENaC control by DGK. As an alternative to 

Almaça’s hypothesis, we proffer that ENaC is regulated by PI(4,5)P2, which is 

produced by PIP5KI under the control of PA, which in turn is produced from DAG 

under the control of DGK  (Figure 4.2). We furthermore suggest that PI(4,5)P2 

specifically influences the probability that ENaC is open (“open-probability” Po) but 

not the number of channels in the membrane (N), which is a consequence of 

ubiquitination by the protein NEDD4-2 (neural precursor cell expressed 

developmentally down-regulated protein 4 – 2) [14] and an interaction with the protein 

SPLUNC1 (short palate lung and nasal epithelial clone 1) [15]. 

Our core objective in this work is to test this hypothesis with a strategy that uses 

computational modelling and to achieve a deeper understanding of how DGK and 

phosphoinositides control ENaC activity. The proposed model consists of two modules 

that embedded in an appropriate context, established from the literature, and offers an 

explanation of the regulation of ENaC function. One of the two modules address the 

phosphoinositide pathway, while the other captures the regulation of ENaC and ASL. 

The merging of these modules allows, for the first time, a detailed study of the dynamics 

of ENaC regulation by phosphoinositides. The model of the phosphoinositide pathway 

is taken from our recent work [7], expanded with processes that are fundamental to 

study the pathway regulation, namely ENaC regulation and PI(4,5)P2 degradation by 

PLC, DAG or PA, while the model of ENaC dynamics was presented in [16]. 

In the following, we present an extended version of the prior phosphoinositide pathway 

model, which takes into account the competition of enzymes for the same substrates 

and regulation among PTEN, PI3KI, PI(4,5)P2 and PI(3,4,5)P3. We further add a new 

module, which was constructed with similar principles and includes four new processes 

(Figure 4.1): first, the cleavage of PI(4,5)P2 into DAG and IP3 by phospholipase C 

(PLC); second, the production of PA by the phosphorylation of DAG by DGK; third, 

the hydrolysis of PA back to DAG by phosphatidate phosphatases (LLP’s); and fourth, 

the replenishment of the PA pool from phosphatidylcholine (PC) by phospholipase D 

(PLD).  
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We also account for PA activation of PIP5KI, the enzyme that transforms PI(4)P into 

PI(4,5)P2, as previously described in the literature [17]–[19]. This collective 

mechanism is able to sustain PI(4,5)P2 levels upon PLC activation [20]–[22]. 

To study the influence of PI(4,5)P2 and DGK on ENaC and ASL, we couple the 

extended model of phosphoinositide dynamics with our recent model designed to 

elucidate the dynamics of ENaC and ASL regulation [16]. 

Finally, we use Suratekar’s model  of the phosphoinositide pathway [23] to demonstrate 

that Almaça’s hypothesis does not truly replicate the observed behavior. However, after 

adding PA regulation of PIP5KI and implementing a few other adjustments, the model 

replicates the observed DGK attenuation of ENaC.  

Our results show that the combined and extended model of the phosphoinositide 

pathway fits data from different sources remarkably well. Most importantly, testing our 

and Suratekar’s models against the observations of Almaça et al. yields good 

agreement. This agreement suggests that the models and our hypothesis, that ENaC 

regulation by DGK is accomplished though PA activation of PIP5KI, provide a good 

explanation for ENaC regulation and can be used to explore therapeutic interventions 

in clinical conditions where ENaC is thought to be relevant. 

4.3. Background 

DAG is composed of a glycerol backbone with two hydrophobic fatty acid chains 

attached. DAG can be transformed through the Kennedy pathway into other 

phospholipids [24], such as phosphatidylcholine (PC), phosphatidylserine (PS) and 

phosphatidylethanolamine (PE). DAG can also be phosphorylated at the last free 

carbons of glycerol, thereby becoming PA. An inositol ring of six carbons can be 

attached to this phosphate, which converts PA into phosphatidylinositol (PI). This 

inositol ring can be further phosphorylated at the third, fourth and fifth carbons, and 

these phosphorylation events give rise to the seven species of phosphoinositides. These 

relatively rare lipids, which comprise about 10% of the phospholipids in cell 

membranes [12], [25], [26], are at the center of this study. 

Phosphoinositides have been implicated in nearly all aspects of cell physiology. They 

are identifiers of different types of cell membranes and also play a dynamic role in cell 
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process control as second messengers and precursors of other messengers. As a 

consequence, phosphoinositides are important in a myriad of cell functions like 

cytoskeleton formation, chemotaxis, cell polarization, T cell activation and cytokinesis 

[12], [27]. Here, we are particularly interested in their function as docking sites for 

proteins to the cell membrane and as membrane protein regulators. 

Several studies have shown that phosphoinositides, especially PI(4,5)P2 and 

PI(3,4,5)P3, influence ENaC [8]–[12]. In particular, Almaça et al. [13] studied ENaC 

function with siRNA screens in the context of CF and demonstrated that the 

phosphatidylinositol pathway is highly influential with respect to ENaC activity. These 

authors found that inhibiting DGK, which can influence phosphoinositide production, 

moderates ENaC activity in primary human lung cells affected by CF and that ENaC 

function is essentially restored to normal, non-CF levels.  

The reasons for ENaC’s upregulation in CF are not clear, but there is no  shortage of 

hypotheses [5], [15], [28]–[32]. Among these, Tarran and colleagues [33]–[35] 

advanced a hypothesis based on the protein SPLUNC1, which not only protects ENaC 

from cleavage by proteases but also promotes the channel disassembly and removal of 

ENaC α and γ subunits from the plasma membrane [15]. According to this hypothesis, 

the absence of CFTR in the membrane leads to a decreased secretion of bicarbonate, 

which in turn leads to SPLUNC1 inactivation by the now more acidic ASL. Therefore, 

ENaC channels with high Po will be more common, have less probability of being 

removed from the plasma membrane and, ultimately, is function will be up-regulated. 

We adopted this view because it was at least partially validated by results obtained 

under practically relevant conditions [36]. 

Kota et al. [37] offered an explanation linking phosphoinositides to ENaC control. They 

found that when the intracellular N-termini of ENaC connect to phosphoinositides, a 

conformational change occurs that exposes the extracellular loops of the channel to 

proteases. Severing these loops leads to an increase in the “channel open probability” 

(Po) of ENaC. Thus, if the levels of PI(4,5)P2 or PI(3,4,5)P3 are decreased, proteases 

will not cut ENaC’s extracellular loops as often and the channel action is reduced. 

It is clear that the regulation of ENaC and ASL is complex and that intuition alone may 

lead to faulty conclusions. To overcome this challenge, we are here employing 
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mathematical models that allow us to study the dynamics of ENaC and its regulation 

by PI(4,5)P2 in an objective manner. Specifically, we expand an existing model of 

phosphoinositide dynamics and couple it with a model capturing the processes 

controlling ENaC and ASL.  

To the best of our knowledge, only Sandefur and colleagues [38] made an attempt to 

study ENaC regulation by phosphoinositides. However, these authors did not consider 

SPLUNC1 and practically ignore phosphoinositides, only referring to them as 

mediators of P2Y2 purinoreceptor signaling, which is activated by extracellular 

adenosine triphosphate (ATP). This simplification has the crucial disadvantage that it 

becomes difficult to study the regulation of PIP5KI by DGK, which could be a 

promising drug target. 

Other models have been proposed to simulate the phosphoinositide pathway or parts of 

it. Falkenburger, Dickson and Hille [39], [40] studied the kinetics of PI(4)P, PI(4,5)P2, 

PLC, DAG, IP3 and calcium. They showed that an acceleration of PI(4,5)P2 production 

during PLC activation is necessary for IP3 production. Expressed differently, IP3 

production will fade or stop if PI(4,5)P2 production is not accelerated. This study did 

not account for the activation of PIP5KI by PA, although it considered an increase in 

PI4K function when PLC was activated, which has a similar effect.  

Narang et al. [41] developed a mathematical model that takes the activation of PIP5KI 

by PA into account. However, this model oversimplifies the phosphoinositide pathway 

by representing PI, PI(4)P, PI(4,5)P2 and PI(3,4,5)P3 with just one variable and 

implementing PA activation of PIP5KI with an auto-activation of the 

phosphoinositides. 

Purvis et al. [22] built a model of the pathway in platelets. While generally impressive, 

this model does not account for all pertinent phosphoinositide species and does not 

include the activation of PIP5KI by PA. 

PI is twice phosphorylated to become PI(4,5)P2: first by PI4K and afterwards by 

PIP5KI. The limiting rate of this process seems to be PI4K phosphorylation, which is 

20 times slower than the phosphorylation of PIP5KI. In an attempt to explain this 

difference, Falkenburger, Dickson and Hille [39], [40] suggested that an acceleration 

of the production of PI(4,5)P2, which would compensate for the depletion caused by 
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PLC, should impact PI4K. We cannot fully agree with this rationale because of the 

following observations. PIP5KI is inhibited by its substrate, PI(4)P, which 

Falkenburger’s argument ignores. Specifically, Jarquin-Pardo et al. [19] stated that 

PIP5KI has an inhibitory as well as an active site for PI(4)P and that, in the absence of 

PA, the KM for the inhibitory site is 50-fold smaller than the KM for the active site. They 

furthermore state that “the addition of PA increases the affinity with which the active 

site of mPIP5K-Ib binds PI(4)P by 67-fold.” Furthermore, Moritz et al. [17] report that 

the PIP5KI activation by PA is inhibited by PI(4,5)P2. These two pieces of evidence 

suggest that PIP5KI only functions fully in the presence of PA and with reduced levels 

of PI(4,5)P2. Finally, PI4K has PI as its substrate, which is 300 times more abundant 

than PI(4)P, the substrate for PIP5KI. These observations suggest that PIP5KI is the 

rate limiting component of PI(4,5)P2 production.  

Falkenburger et al. [39] used in their model an amount of PI(4)P that is less than a third 

of the quantity of PI(4,5)P2 and assumed that two thirds of PI(4,5)P2 were in a bound 

state while all PI(4)P was free. We tried to keep the amounts of these two 

phosphoinositides similar, in accordance with what is commonly accepted [12], [26].  

4.4. Results 

All major findings in this section are inferences from analyses of our proposed model. 

This model is composed of two sub-models. One of these was shown in Chapter 2; it 

represents the phosphoinositide pathway. The other sub-model captures the dynamics 

of ENaC; details can be found in Chapter 3 . The main connection between the two sub-

models is PI(4,5)P2. This connection is critical, as it permits explorations of the 

interactions between phosphoinositides and the dynamics of ENaC and ASL. 

The map for the expanded phosphoinositide pathway model is depicted in Figure 4.1. 

Fluxes and equations are presented in Table 4.1 and parameters and initial values are 

given in Table 4.2. References for parameters can be found in Supplementary Table 4.4 

and in Chapters 2 and 3. The earlier phosphoinositide pathway model was successfully 

tested against a long list of phenomena reported in the literature, and the results were 

described in Chapter 2. Corresponding results for the extended phosphoinositide model 

are summarized in Figure 4.10. As is to be expected, the new modules and extensions 

slightly affect the model fits in comparison to the previous sub-model, but the combined 
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phosphoinositide-ENaC model yields fits to the data that are similar. In addition, the 

combined model generates genuinely new results, which are summarized in Table 4.3 

and detailed in the following, along with reports from the literature. 

 

Table 4.1. Format of the Extended Model. 

Fluxes 

V➔0 = γ➔0 

V➔4 = γ➔4 

V➔3 = γ➔3 

V0➔3b = γ0➔3b * PI^f0➔3b_PI * PI3KII 

V0➔3c = γ0➔3c * PI^f0➔3c_PI * PI(4)P^ f0➔3c_PI(4)P* PI3KIII 

V3➔0a = γ3➔0a * PI(3)P^f3➔0a_PI(3)P * PI(4)P^f3_0a_PI(4)P * PI(5)P^f3_0a_PI(5)P * PI(3,5)P2^f3_0a_PI(3,5)P2 * 

PI(4,5)P2^(f3_0a_PI(4,5)P2_PI + f3_0a_PI(4,5)P2_PI(4)P + f3_0a_PI(4,5)P2_PI(5)P) * PI(3,4,5)P3^f3_0a_PI(3,4,5)P3 * SYNJ 

V3➔0c = γ3➔0c * PI(3)P^f3➔0c_PI(3)P * PI(4)P^f3_0c_PI(4)P * PI(5)P^f3_0c_PI(5)P * PI(3,5)P2^f3_0c_PI(3,5)P2 * SAC1 

V3➔0d = γ3➔0d * PI(3)P^f3➔0d_PI(3)P * PI(3,5)P2^f3_0d_PI(3,5)P2 * MTMR1_6_14 

V3➔0e = γ3➔0e * PI(3)P^f3➔0e_PI(3)P * MTMR78 

V0➔4 = γ0➔4 * PI^f0➔4_PI * PI4K  

V4➔0a = γ4➔0a * PI(4)P^f4➔0a_PI(4)P* PI(3)P^f4_0a_PI(3)P * PI(5)P^f4_0a_PI(5)P * PI(3,5)P2^f4_0a_PI(3,5)P2 * 

PI(4,5)P2^(f4_0a_PI(4,5)P2_PI(4)P + f4_0a_PI(4,5)P2_PI(5)P + f4_0a_PI(4,5)P2_PI) PI(3,4,5)P3^f4_0a_PI(3,4,5)P3 * SYNJ 

V4➔0c = γ4➔0c * PI(4)P^f4➔0c_PI(4)P * PI(3)P^f4_0c_PI(3)P * PI(5)P^f4_0c_PI(5)P * PI(3,5)P2^f4_0c_PI(3,5)P2 * SAC1 

V0➔5 = γ0➔5  * PI^f0➔5_PI * PI(3)P^f0_5_PI(3)P * PIKfyve  

V5➔0a = γ5➔0a * PI(5)P^f5_0a_PI(5)P * PI(3)P^f5_0a_PI(3)P * PI(4)P^f5_0a_PI(4)P * PI(3,5)P2^f5_0a_PI(3,5)P2 * 

PI(4,5)P2^(f5_0a_PI(4,5)P2_PI(4)P + f5_0a_PI(4,5)P2_PI(5)P + f5_0a_PI(4,5)P2_PI) PI(3,4,5)P3^f5_0a_PI(3,4,5)P3 * SYNJ  

V5➔0c = γ5➔0c * PI(5)P^f5_0c_PI(5)P * PI(3)P^f5_0c_PI(3)P * PI(4)P^f5_0c_PI(4)P * PI(3,5)P2^f5_0c_PI(3,5)P2 * SAC1 

V3➔35 = γ3➔35 * PI(3)P^f3➔35_PI(3)P * PIKfyve  

V35➔3a = γ35➔3a * PI(3,5)P2^f35_3a_PI(3,5)P2 * PI(3)P^f35_3a_PI(3)P * PI(4)P^f35_3a_PI(4)P * PI(5)P^f35_3a_PI(5)P * 

PI(4,5)P2^f35_3a_PI(4,5)P2_PI(4)P + f35_3a_PI(4,5)P2_PI(5)P + f35_3a_PI(4,5)P2_PI) PI(3,4,5)P3^f35_3a_PI(3,4,5)P3 * SYNJ 

V35➔3c = γ35➔3c * PI(3,5)P2^f35_3c_PI(3,5)P2 * PI(3)P^f35_3c_PI(3)P * PI(4)P^f35_3c_PI(4)P * PI(5)P^f35_3c_PI(5)P * SAC1 

V35➔3d = γ35➔3d * PI(3,5)P2^f35➔3d_PI(3,5)P2 * SAC3  

V35➔3e = γ35➔3e * PI(3,5)P2^f35_3e_PI(3,5)P2 * PI(4,5)P2^f35_3e_PI(4,5)P2 * PI(3,4,5)P3^f35_3e_PI(3,4,5)P3 * INPP5E  

V4➔45 = γ4➔45 * PI(4)P^f4➔45_PI(4)P * PIP5KI * HS(PA) * PI(4,5)P2^f4_45_PI(4,5)P2 
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V45➔4a = γ45➔4a * PI(4,5)P2^f45_4a_PI(4,5)P2_PI(4)P * PI(3)P^f45_4a_PI(3)P * PI(4)P^f45_4a_PI(4)P * PI(5)P^f45_4a_PI(5)P * 

PI(3,5)P2^f45_4a_PI(3,5)P2 * PI(4,5)P2^(f45_4a_PI(4,5)P2_PI(5)P + f45_4a_PI(4,5)P2_PI) * PI(3,4,5)P3^f45_4a_PI(3,4,5)P3 * SYNJ 

V45➔4c = γ45➔4c * PI(4,5)P2^f45_4c_PI(4,5)P2 * PI(3,4,5)P3^f45_4c_PI(3,4,5)P3 * (ORCL1 + INPP5BJ + SKIP + SAC2) 

V45➔4d = γ45➔4d * PI(4,5)P2^f45_4d_PI(4,5)P2 * PI(3,5)P2^f45_4d_PI(3,5)P2 * PI(3,4,5)P3^f45_4d_PI(3,4,5)P3 * INPP5E 

V5➔45 = γ5➔45 * PI(5)P^f5➔45_PI(5)P * PIP5KII  

V45➔5a = γ45➔5a * PI(4,5)P2^f45_5a_PI(4,5)P2_PI(5)P * PI(3)P^f45_5a_PI(3)P * PI(4)P^f45_5a_PI(4)P * PI(5)P^f45_5a_PI(5)P * 

PI(3,5)P2^f45_5a_PI(3,5)P2 * PI(4,5)P2^(f45_5a_PI(4,5)P2_PI(4)P + f45_5a_PI(4,5)P2_PI) * PI(3,4,5)P3^f45_5a_PI(3,4,5)P3 * SYNJ 

V45➔5c = γ45➔5c * PI(4,5)P2^f45➔5c_PI(4,5)P2 * TMEM55  

V45➔345 = γ45➔345 * PI(4,5)P2^f45➔345_PI(4,5)P2 * PI3KI_a  

V345➔45 = γ345➔45 * PI(3,4,5)P3^f345➔45_PI(3,4,5)P3 * PI(3,4)P2^f345_45_PI(3,4)P2 * PTEN_a  

V35➔5 = γ35➔5 * PI(3,5)P2^f35➔5_PI(3,5)P2 * PI(3)P^f35_5_PI(3)P * MTMR1_6_14 

V34➔3 = γ34➔3 * PI(3,4)P2^f34➔3_PI(3,4)P2 * INPP4  

V345➔34a = γ345➔34a * PI(3,4,5)P3^f345_34a_PI(3,4,5)P3 * PI(3)P^f345_34a_PI(3)P * PI(4)P^f345_34a_PI(4)P * PI(5)P^f345_34a_PI(5)P * 

PI(3,5)P2^f345_34a_PI(3,5)P2 * PI(4,5)P2^(f345_34a_PI(4,5)P2_PI(4)P + f345_34a_PI(4,5)P2_PI(5)P + f345_34a_PI(4,5)P2_PI) * SYNJ 

V345➔34c = γ345➔34c * PI(3,4,5)P3^f345➔34c_PI(3,4,5)P3 * PI(4,5)P2^f345_34c_PI(4,5)P2 * (ORCL1 + INPP5BJ + SKIP  + SAC2) 

V345➔34d = γ345➔34d * PI(3,4,5)P3^f345➔34d_PI(3,4,5)P2 * PI(3,5)P2^f345_34d_PI(3,5)P2 * PI(4,5)P2^f345_34d_PI(4,5)P2 * INPP5E 

V345➔34e = γ345➔34e * PI(3,4,5)P3^f345➔34e_PI(3,4,5)P3 * SHIP2 

V45➔ = γi➔ * PI(4,5)P2 

V0➔ = γi➔ * PI 

V4➔ = γi➔ * PI(4)P 

V345➔ = γi➔ * PI(3,4,5)P3 

V3➔ = γi➔ * PI(3)P 

V35➔ = γi➔ * PI(3,5)P2 

V5➔ = γi➔ * PI(5)P 

V34➔ = γi➔ * PI(3,4)P2 

V0➔45 = γ0➔45 * PI^f0➔45_PI * (PI4K_PIP5KI) * HS(PA) * PI(4,5)P2^f0_45_PI(4,5)P2 

V45➔0 = γ45➔0 * PI(4,5)P2^f45_0_PI(4,5)P2_PI * PI(3)P^f45_0_PI(3)P * PI(4)P^f45_0_PI(4)P * PI(5)P^f45_0_PI(5)P * PI(3,5)P2^f45_0_PI(3,5)P2 

* PI(4,5)P2^f45_0_PI(4,5)P2_PI(4)P * PI(4,5)P2^f45_0_PI(4,5)P2_PI(5)P * PI(3,4,5)P3^f45_0_PI(3,4,5)P3 * SYNJ 

V4➔34a = γ4➔34a * PI(4)P^f4➔34a_PI(4)P * PI3KI_a 

V4➔34b = γ4➔34b * PI(4)P^f4➔34b_PI(4)P * PI^f4_34b_PI * PI3KII  

V34➔4 = γ34➔4 * PI(3,4)P2^f34➔4_PI(3,4)P2 * PI(3,4,5)P3^f34_4_PI(3,4,5)P3 * PTEN_a 

PI3KI_c = PI3KI - PI3KI_a 

VPI3KIc➔PI3KIa = γPI3KIc➔PI3KIa * (PI3KI - PI3KI_a) ^ fPI3KIc➔PI3KIa_PI3KI_c * PI(3,4,5)P3 ^ fPI3KIc➔PI3KIa_PI(3,4,5)P3 
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VPI3KIa➔PI3KIc = γPI3KIa➔PI3KIc * PI3KI_a 

PTEN_c = PTEN - PTEN_a 

VPTENc➔PTENa = γPTENc➔PTENa * (PTEN - PTEN_a) ^ fPTENc➔PTENa_PTEN_c * PI(4,5)P2 ^ fPTENc➔PTENa_PI(4,5)P2 

VPTENa➔PTENc = γPTENa➔PTENc * PTEN_a ^ fPTENa➔PTENc_PTEN_a  

 

V45➔DAG = γ45➔DAG * PI(4,5)P2^f45➔DAG_PI(4,5)P2 * PI(4)P^f45➔DAG_PI(4)P * PS^f45➔DAG_PS * PLC 

VPA➔DAG = γPA➔DAG * PA^fPA➔DAG_PA * LPP 

VDAG➔PA = γDAG➔PA * DAG^fDAG➔PA_DAG * DGK 

V➔DAG = γ➔DAG  

VDAG➔ = γDAG➔ * DAG^f DAG➔_DAG  

V➔PA = γ➔PA  

VPA➔ = γPA➔ * PA^f PA➔_PA 

VPC➔PA = γPC➔PA * PI(4,5)P2^fPC_PA_PI(4,5)P2 

VIP3➔ = γIP3➔ * IP3^f IP3➔_IP3 

VPI4P➔DAG = γ4➔DAG * PI(4)P^f4➔DAG_PI4P * PI(4,5)P2^f4_DAG_PI(4,5)P2 * PS^f4➔DAG_PS * PLC 
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Table 4.2. Initial Values and Model Parameters. 

PI3KI 1000 
 

f5➔0a_PI4P -0.04385 
 

f35➔5_PI3P -0.00066 

PTEN 50 
 

f5➔0a_PI5P 0.999562 
 

γ34➔3 1.33E+12 

PI3KII 75 
 

f5➔0a_PI35P2 -0.00022 
 

f34➔3_PI34P2 0.998198 

PI3KIII 5 
 

f5➔0a_PI45P2_PI4P -0.04385 
 

γ345➔34a 2.48E+12 

PI4K 400 
 

f5➔0a_PI45P2_PI5P -0.23834 
 

f345➔34a_PI3P -0.00044 

PIKfyve 48 
 

f5➔0a_PI345P3 -0.00167 
 

f345➔34a_PI4P -0.04385 

PIP5KI 330 
 

f5➔0a_PI45P2_PI -0.01096 
 

f345➔34a_PI5P -0.00044 

PIP5KII 845 
 

γ5➔0c 5.1E+12 
 

f345➔34a_PI35P2 -0.00022 

PI4K_PIP5KI 230 
 

f5➔0c_PI5P 0.999378 
 

f345➔34a_PI45P2_PI4P -0.04385 

SYNJ 30 
 

f5➔0c_PI3P -0.00062 
 

f345➔34a_PI45P2_PI5P -0.23834 

SAC1 100 
 

f5➔0c_PI4P -0.06219 
 

f345➔34a_PI345P3 0.998332 

SAC2 1 
 

f5➔0c_PI35P2 -0.00031 
 

f345➔34a_PI45P2_PI -0.01096 

SAC3 5 
 

γ3➔35 1.62E+16 
 

γ345➔34c 2.79E+11 

INPP4 50 
 

f3➔35_PI3P 0.999622 
 

f345➔34c_PI345P3 0.997636 

TMEM55 20 
 

f3➔35_PI -0.45347 
 

f345➔34c_PI45P2 -0.06214 

MTMR1_6_14 63 
 

γ35➔3a 4.56E+13 
 

γ345➔34d 2.79E+11 

MTMR78 18 
 

f35➔3a_PI3P -0.00044 
 

f345➔34d_PI345P3 0.997637 

ORCL1 3 
 

f35➔3a_PI4P -0.04385 
 

f345➔34d_PI35P2 -0.00031 

INPP5BJ 1 
 

f35➔3a_PI5P -0.00044 
 

f345➔34d_PI45P2 -0.06212 

INPP5E 1 
 

f35➔3a_PI35P2 0.999781 
 

γ345➔34e 1.68E+11 

SKIP 5 
 

f35➔3a_PI45P2_PI4P -0.04385 
 

f345➔34e_PI345P3 0.998198 

SHIP2 1 
 

f35➔3a_PI45P2_PI5P -0.23834 
 

γi➔ 0.045 

PS 150000 
 

f35➔3a_PI345P3 -0.00167 
 

γ0➔45 2.67E+14 

PLC 5 
 

f35➔3a_PI45P2_PI -0.01096 
 

f0➔45_PI 0.286462 

DGK 50 
 

γ35➔3c 5.1E+12 
 

f0➔45_PA 0.2 

LPP 100 
 

f35➔3c_PI35P2 0.999689 
 

f0➔45_PI45P2 -0.05 

γ➔0 15000 
 

f35➔3c_PI3P -0.00062 
 

γ4➔34b 5.64E+14 

γ➔4 150 
 

f35➔3c_PI4P -0.06219 
 

f4➔34b_PI4P 0.929698 

γ➔3 10 
 

f35➔3c_PI5P -0.00062 
 

f4➔34b_PI -0.82386 

γ0➔3b 8.80959e+14 
 

γ35➔3d 3.06E+12 
 

γ34➔4 5.04E+11 

f0➔3b_PI 0.1761429 
 

f35➔3d_PI35P2 0.999934 
 

f34➔4_PI34P2 0.99989 

f0➔3b_PI4P -0.07030248 
 

γ35➔3e 5.14E+12 
 

f34➔4_PI345P3 -0.04443 

γ0➔3c 5.45988E+14 
 

f35➔3e_PI35P2 0.999689 
 

γ45➔0 1.14E+12 

f0➔3c_PI 0.1138439 
 

f35➔3e_PI45P2 -0.06212 
 

f45➔0_PI3P 0.999562 

γ3➔0b 4.55762E+13 
 

f35➔3e_PI345P3 -0.00236 
 

f45➔0_PI4P -0.04385 

f3➔0a_PI3P 0.9995615 
 

γ4➔45 8.49E+15 
 

f45➔0_PI5P -0.00044 

f3➔0a_PI4P -0.04385422 
 

f4➔45_PI4P 0.045962 
 

f45➔0_PI35P2 -0.00022 

f3➔0a_PI5P -0.00043854 
 

f4➔45_PA 0.2 
 

f45➔0_PI45P2_PI4P -0.04385 

f3➔0a_PI35P2 -0.00021927 
 

f4➔45_PI45P2 -0.05 
 

f45➔0_PI45P2_PI5P -0.23834 

f3➔0a_PI45P2_PI4P -0.04385422 
 

γ45➔4a 4.56E+13 
 

f45➔0_PI345P3 -0.00167 

f3➔0a_PI45P2_PI5P -0.2383381 
 

f45➔4a_PI3P -0.00044 
 

f45➔0_PI45P2_PI -0.01096 

f3➔0a_PI345P3 -0.00166827 
 

f45➔4a_PI4P -0.04385 
 

γPI3KIc➔PI3KIa 3.35E-06 

f3➔0a_PI45P2_PI -0.01096355 
 

f45➔4a_PI5P -0.00044 
 

fPI3KIc➔PI3KIa_pi_3KI_c 1 

γ3➔0c 5.09681E+12 
 

f45➔4a_PI35P2 -0.00022 
 

fPI3KIc➔PI3KIa_PI345P3 0.7 

f3➔0c_PI3P 0.9993781 
 

f45➔4a_PI45P2_PI4P 0.956146 
 

γPI3KIa➔PI3KIc 0.000622 
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f3➔0c_PI4P -0.06218905 
 

f45➔4a_PI45P2_PI5P -0.23834 
 

fPI3KIa➔PI3KIc_pi_3KI_a 1 

f3➔0c_PI5P -0.00062189 
 

f45➔4a_PI345P3 -0.00167 
 

γPTENc➔PTENa 1.25E-07 

f3➔0c_PI35P2 -0.00031095 
 

f45➔4a_PI45P2_PI -0.01096 
 

fPTENc➔PTENa_PTEN_c 1 

γ3➔0d 3.05908E+12 
 

γ45➔4c 5.13E+12 
 

fPTENc➔PTENa_PI45P2 1 

f3➔0d_PI3P 0.9993364 
 

f45➔4c_PI45P2 0.937861 
 

γPTENa➔PTENc 0.003 

f3➔0d_PI35P2 -0.00033179 
 

f45➔4c_PI345P3 -0.00236 
 

fPTENa➔PTENc_PTEN_a 1 

γ3➔0e 3.06733E+12 
 

γ45➔4d 5.14E+12 
 

fPTENa➔PTENc_PI345P3 1 

f3➔0e_PI3P 0.9993362 
 

f45➔4d_PI45P2 0.937881 
 

γ45➔DAG 1.88E+19 

γ0➔4 5.10064E+14 
 

f45➔4d_PI35P2 -0.00031 
 

f45➔DAG_PI45P2 0.977042 

f0➔4_PI 0.2864618 
 

f45➔4d_PI345P3 -0.00236 
 

f45➔DAG_PI4P -0.0126 

γ4➔0a 4.55762E+13 
 

γ5➔45 2.95E+13 
 

f45➔DAG_PS -0.96424 

f4➔0a_PI3P -0.00043854 
 

f5➔45_PI5P 0.87844 
 

γPA➔DAG 5.54E+11 

f4➔0a_PI4P 0.9561458 
 

γ45➔5a 3.24E+12 
 

fPA➔DAG_PA 0.96528 

f4➔0a_PI5P -0.00043854 
 

f45➔5a_PI3P -0.00044 
 

γDAG➔PA 1.65E+13 

f4➔0a_PI35P2 -0.00021927 
 

f45➔5a_PI4P -0.04385 
 

fDAG➔PA_DAG 0.947551 

f4➔0a_PI45P2_PI4P -0.04385422 
 

f45➔5a_PI5P -0.00044 
 

γ➔DAG 0.00001 

f4➔0a_PI45P2_PI5P -0.2383381 
 

f45➔5a_PI35P2 -0.00022 
 

γDAG➔ 0.1 

f4➔0a_PI345P3 -0.00166827 
 

f45➔5a_PI45P2_PI4P -0.04385 
 

fDAG➔_DAG 1 

f4➔0a_PI45P2_PI -0.01096355 
 

f45➔5a_PI45P2_PI5P 0.761662 
 

γ➔PA 4 

γ4➔0c 5.09681E+12 
 

f45➔5a_PI345P3 -0.00167 
 

γPA➔ 0.1 

f4➔0c_PI4P 0.937811 
 

f45➔5a_PI45P2_PI -0.01096 
 

f PA➔_PA 1 

f4➔0c_PI3P -0.00062189 
 

γ45➔5c 4.13E+12 
 

γPC➔PA 14.35507 

f4➔0c_PI5P -0.00062189 
 

f45➔5c_PI45P2 0.648722 
 

fPC➔PA_PI45P2 0.3 

f4➔0c_PI35P2 -0.00031095 
 

γ45➔345 1.89E+14 
 

γIP3➔ 2 

γ0➔5 4.70283E+11 
 

f45➔345_PI45P2 0.306333 
 

f IP3➔_IP3 1 

f0➔5_PI 0.5465332 
 

γ345➔45 2.9E+15 
 

γ4➔DAG 2.55E+18 

f0➔5_PI3P -0.00037789 
 

f345➔45_PI345P3 0.955575 
 

f4➔DAG_PI4P 0.987396 

γ5➔0a 4.55762E+13 
 

f345➔45_PI34P2 -0.00011 
 

f4➔DAG_PI45P2 -0.02296 

f5➔0a_PI3P -0.00043854 
 

γ35➔5 6.06E+14 
 

f4➔DAG_PS -0.96424 

  
 

f35➔5_PI35P2 0.999668 
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Table 4.3. Observed experimental phenomena used to calibrate the model and 

model performance for each phenomenon. 

  

 

 

Phenomenon 

 

Model 

 

1 In the apical part of the cell membrane, 

inhibiting PLC should cause an increase 

of 50 % in PI(4,5)P2 in the first 15 min. 

[42] 

 

Figure 4.3 a, blue line and points.  

2 In the apical part of the cell membrane, 

PLC activation will decrease PI(4,5)P2 by  

50% in the first 15 min. [42] 

 

Figure 4.3 a, red line and points. 

3 Intense activation of PLC can lead to 75% 

[21] or 90% [43] of PI(4,5)P2 depletion. 

 

Increasing 7 times the basal activity of PLC will 

deplete PI(4,5)P2 by 73%, but PLC must be 

increased 20 times to deplete PI(4,5)P2 by 

90%. 

 

4 Inhibition of class I DGK in BSC-1 cells 

results in a 50% reduction in total PA 

levels, indicating the majority of cellular 

PA is synthesized by type I DGKs. [44] 

 

Inhibiting DGK by 75% will reduce PA in 52%. 

Knockout of DGK will reduce PA by 75%.  

5 Time series data for activation and 

inhibition of PI3KI and PI(3,4,5)P3 

dynamics. [45] 

 

Figure 4.4 a, b. 

6 Time series data on PI3KI inhibition with 

LY294002 and readings of PI(3,4,5)P3 

levels in a cell-attached patch made on a 

principal cell from a collecting duct freshly 

isolated from a salt restricted rat. [46] 

 

Figure 4.4 c. 

   

4.4.1. PI(4,5)P2 behavior in PLC perturbations  

Xu et al. [20], Gericke et al. [21] and Purvis et al. [22] state that PI(4,5)P2 recovers 

rapidly form an initially steep decrease in response to activation of PLC. For this 
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recovery, the activation of PIP5KI by PA is essential [17]–[19]. These reports do not 

quantify the magnitude of the recovery or the magnitude of PLC activation that allows 

a recovery, but it is known that a strong activation of PLC causes PI(4,5)P2 depletion 

[40].    

The model confirms PI(4,5)P2 recovery for a range of levels of PLC activation, which 

is presented in Supplement Figure 4.11. The original parameter set allows only a 

modest recovery, but a combination of stronger PA / PIP5KI activation and an adequate 

activation of PLC produces very clear PI(4,5)P2 recovery.  

If the activation of PIP5KI by PA is sufficiently strong, the model system becomes 

bistable, and the levels of the dependent variables do not return to the initial steady 

state, even if PLC activation is returned to its initial level. Instead, the system becomes 

locked into a state of high PA levels that increase PI(4,5)P2 production so much that 

the basal activity of PLC produces enough PA to keep the high PA levels and maintain 

the new steady state. This model result could be an artifact because PLC saturation 

would prevent high DAG and PA production only as a consequence of a great increase 

in PI(4,5)P2. However, if this bistability were real, it would be an effective way to 

maintain the signal after the initial stimulus has ceased. Interestingly, Purvis et al. [22] 

encountered the same phenomenon with their model.  

Pochynyuk et al. [42] measured the levels of PI(4,5)P2 for the first 15 minutes after 

altering PLC activity. The data and model results can be seen in Figure 4.3a. The model 

presents a good fit to these data. Furthermore, although no data exist for later time 

points, the simulation can be extended and shows that, after about 500 minutes, 

PI(4,5)P2 reaches a steady state that is increased to 1.6-fold for PLC inhibition and 

decreased to 0.4-fold for a 4-fold activation of PLC activity in comparison to the basal 

level.  

4.4.2. Degradation of PI(4)P and PI(4,5)P2 

Várnai et al. [47] presented data using reporters for PI(4)P and PI(4,5)P2 that derived 

from two experiments: one where SAC1 4-phosphatase was used to degrade PI(4)P and 

another where the INPP5E 5-phosphatase was used to degrade PI(4,5)P2. For the SAC1 

experiment, our model produced a good fit (Figure 4.3b) with an initial 8-fold increase 
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in the model’s SAC1 activity followed by an attenuation to a 2-fold activation after 4 

minutes.  

Our model was initially unable to reproduce the INPP5E results when we used 

perturbations of a reasonable magnitude. This failure was probably due to the fact that 

we had underestimated the amount of enzyme in the cell membrane or the enzyme 

activity. Raising the activity of the enzyme 30-fold, we obtain noticeable alterations to 

the PI(4)P and PI(4,5)P2 levels. Furthermore, the shape of the data seems to suggest 

that the chimera INPP5E used by Várnai et al. was, in addition to its 5-phosphatase 

ability, able to hydrolyze the 4-phosphate of PI(4,5)P2. To test this speculation, we 

increased the activity of the SYNJ phosphatase, which is able to hydrolyze the 4th and 

5th position of the inositol ring in PI(4,5)P2. With this activation, the model presented a 

reasonable fit to the time course (Figure 4.3c). 

 

 

Figure 4.3. Perturbation that affect PI(4)P and PI(4,5)P2. 

a) PLC was inhibited (blue) or activated (red) and levels of PI(4,5)P2 were measured. Triangles and 

squares represent data points [42] and lines the model time courses where PLC was inhibited to 1% or 

activated to 4-fold of the enzyme’s basal activity. b) PI(4)P and PI(4,5)P2 time course in a 4-phosphatase 

activation. Points represent data [47] and lines show model results. c) PI(4)P and PI(4,5)P2 time courses 

following 5-phosphatase activation. Points represent  data [47] and lines show model results. 
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4.4.3. Perturbations in PTEN, PI3KI, PI(4,5)P2 and PI(3,4,5)P3 

Fitting the earlier phosphoinositide model to data reported by Feng et al. [45] and 

Pochynyuk et al. [8] indicates that the specific activity of PTEN must be greater than 

the value retrieved from the enzyme database BRENDA [48]. This discrepancy is in 

line not only with Feng’s conclusions, but also with reports by McConnachie et al. [49] 

and Johnston and Raines [50]. We proceed by using the values presented by Johnston 

and Raines [50]. We also adjust the amounts of total and active PI3KI to obtain an 

adequate quantity of PI(3,4,5)P3.   

Feng et al. [45] presented two time courses that resulted from first activating PI3KI 

with rCD1 at time point t=5 min and then inhibiting the enzyme with FK506 at time 

point t=40 min. We simulate these perturbations with a 28-fold increase in the 

activation flux of PI3KI at t=5 min and a return of PI3KI to its steady state values at 

t=40 min (Figure 4.4a).  Figure 4.4b shows results of blocking PTEN activity with H2O2 

at t=2 min and inhibiting PI3KI with FK506 at t=8 min. We simulate these perturbations 

with a decrease of 50% in PTEN at t=2 min and a decrease of PI3KI of 30% values at 

t=8 min. The simulation results reflect the observations quite well.  

Pochynyuk et al. [46] present a PI(3,4,5)P3 time course  where PI3KI is inhibited with 

LY294002. We simulate this perturbation with a 90% decrease in PI3KI (Figure 4.4c). 

Again, our model was able to reproduce this experimental observation. 

4.4.4. Connection of two sub-modules through PI(4,5)P2 

We previously created a model of ENaC and ASL regulation by SPLUNC1 and 

PI(4,5)P2 that was elsewhere described in detail [16]. In fact, we tested two versions of 

this ENaC model, with similar results. Here, we opt for the simpler version, which is 

briefly summarized below. The model simulates the numbers of ENaCs, which are 

regulated by SPLUNC1 and ASL thickness. ASL thickness, in turn, is regulated by 

CFTR influx, ENaC numbers and ENaC’s open probability (Po), which is determined 

by PI(4,5)P2 levels.  The ENaC and ASL model can be set to simulate healthy and CF 

lungs. Specifically, CF is simulated by setting to zero the SPLUNC1 parameter and the 

influx of material to the ASL, V5, which is dependent of CFTR. 
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Figure 4.4. Perturbations that affect PI(3,4,5)P3. 

a) PI3KI and PI(3,4,5)P3 time courses in response to enzyme activation at t = 5 and inhibition at t = 40. 

Circles and intervals represent data [45], lines are model results. b) PI3KI and PI(3,4,5)P3 time courses 

in response to PTEN inhibition at t = 3 and PI3KI inhibition at t = 8. Circles and intervals represent data 

[45], lines are model results. c) PI(3,4,5)P3 time courses in a PI3KI inhibition. Black circles represent  

data [46] and green line shows model results.  

 

The combined model proposed here accepts information regarding the PI(4,5)P2 level 

from the phosphoinositide model and translates it into Po. Po contributes to the 

determination of the ENaC activity level that regulates ASL thickness and, through 

SPLUNC1 dilution, the number of ENaC channels.  

4.4.5. ENaC control by DGK 

Our hypothesis for the combined model is that ENaC is regulated by PI(4,5)P2 though 

PA control of PIP5KI. To test this hypothesis, we performed a series of simulations 

with the combined model where we perturbed the phosphoinositide pathway and 

evaluated the consequences for ENaC. The extended phosphoinositide sub-model was 

used to supply the appropriate level of PI(4,5)P2. With this input, the model for the 
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dynamics of ENaC generates the number of active ENaC channels in the plasma 

membrane (N), while results on PI(4,5)P2 and the effect on ENaC reveal ENaC’s open 

probability (Po). Multiplying N and Po results in the activity of ENaC.    

The work of Antonescu et al. [44] demonstrated that the inhibition of DGK causes a 

decrease of about 50% in the level of PA. If our hypothesis regarding the role of DGK 

is valid, the reduction in PA should decrease PI(4,5)P2 production by PIP5KI. Indeed, 

the model exhibits a decrease of 52% in PA when DGK is inhibited 75%. The same 

perturbation reduces PI(4,5)P2 by 28%. 

 

 

Figure 4.5. PA, PI(4,5)P2 and ENaC open probability. 

PA has two sources in the model. One is through PLC that produces DAG, which is transformed by DGK 

into PA. The other is through PLD that produces PA from PC. a) DGK, b) PLD and c) PLC levels where 

varied from 0.1 to 10-fold and the levels of PA, PI(4,5)P2 and the open probability (Po) of ENaC here 

recorded.     

 

The PA pool is fed by two sources: PI(4,5)P2/PLC/DAG and PLD/PC (recall Figure 

4.2). According to our hypothesis, alterations in these elements of the system should 

yield changes in PA, PI(4,5)P2 and ENaC. We tested different values for PLC, PLD and 
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DGK to characterize the dynamic effects of these perturbations on PA, PI(4,5)P2 levels 

and Po. The results are shown in Figure 4.5. For the basal levels of the involved 

compounds, the model predicts Po = 0.22, which is similar to the value presented in 

Pochynyuk et al. [42].  

Almaça et al. [13] preformed siRNA screens to find modulators of ENaC activity and  

noticed the following phenomena: DGK inhibition reduces ENaC activity to WT basal 

levels in CF F508del cells, but does not have a significant effect in WT cells. Also, 

DGK has no effect on ENaC when PLC is activated or inhibited. This information is 

summarized in Figure 4F of their paper. 

To explore these findings with our model, we start by studying the effects of SPLUNC1 

and DGK perturbations. In WT, inhibition of DGK decreases the activity of ENaC 

roughly in 40%. This effect is caused by a decrease in Po and a slightly increase in N; 

the estimated drop in ENaC’s activity is mainly due to the reduction in Po (Figure 4.6a). 

Almaça et al. report a non-significant change in ENaC activity, and it appears that the 

remaining ENaC activity could be similar to basal conditions. The reason is that this 

reduction is similar to what should be expected in an individual with just one functional 

copy of scnn1, which codes for ENaC proteins, and there are no reports of problems in 

heterozygotes, only in homozygotes [1].  

When we simulate CF conditions, by setting SPLUNC1 and the V  flux equal to zero 

(CF), N increases to 2.26 times the number of channels in WT, which is close to the 

value reported by Tarran’s group [34]. Concerning ENaC activity, ENaC is projected 

to be 2.26 more active in CF than in WT (Figure 4.6a). It should be noted that, in the 

model, the increase of ENaC activity is due to an increase in the number of channels.  

In CF, N is affected by DGK inhibition but, due to the drop in Po, the activity of ENaC 

decreases to about half. Almaça et al. report a reduction of ENaC in this condition, and 

the model predictions agree, yielding a difference of ENaC activity between WT / 

DGK+ and CF / DGK- of only 1.91, which corresponds to only 25% of the basal activity 

of ENaC in WT. This result is significant if one takes into account that ENaC activity 

in CF is increased to 126% of the basal activity of ENaC in WT. Overall, the model 

predicts a DGK induced reduction of ENaC activity under CF conditions similar to the 

basal activity of ENaC in WT, which can be classified, with a high degree of certainty, 

as a considerable decrease. 
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Figure 4.6. Consequences of DGK inhibition on ENaC activity in a) WT and CF, 

b) CF with PLC inhibition, c) CF with PLC activation and d) CF with PI3KI 

inhibition. 

In all four plots, the first and third bar in dark blue correspond to basal levels of DGK activity level 

(DGK +), the second and forth bar in light blue to DGK 25% inhibition (DGK -). a) DGK inhibition in 

CF (CF / DGK -) induces ENAC’s activity to a similar level as the channel activity in WT (WT / DGK 

+), as reported by Almaça et al. [13]. b) With PLC inhibition, a decrease in PI(4,5)P2 caused by DGK 

inhibition does not affect ENaC’s action. c) When PLC is activated, DGK inhibition still reduces ENaC 

activity. d) The model suggests that PI3KI inhibition in the apical part of the plasma membrane has no 

effect on ENaC activity, which is expected. 

 

Next, we study PLC inhibition and DGK perturbations in CF (Figure 4.6b). With basal 

activity levels of PLC (PLC +), inhibition of DGK produces the same result as in Figure 

4.6a under CF conditions, as expected. By contrast, if PLC is inhibited by 99%, the 

effect of DGK vanishes. The estimated levels of PI(4,5)P2 are around 16,000 

molecules/μm2 when PLC is inhibited, which corresponds to an increase of 

approximately 50% over the basal level. The levels of PA, and even more so DAG, are 

greatly reduced to 2600 and 42 molecules/μm2, which corresponds to 33% and 1% of 

their basal levels, respectively. The severe reduction of DAG explains the lack of 

DGK’s influence over PA and PI(4,5)P2 production, as well as the activity of ENaC.  



 

161 

We can also explore PLC activation and DGK perturbations in CF (Figure 4.6c). Again, 

if the activity of PLC is normal (PLC +), inhibition of DGK will reduce ENaC activity 

to levels similar to WT. By contrast, if PLC is activated to 20% over its basal activity, 

ENaC activity is reduced to levels similar to those in WT, which is due to the decrease 

in PI(4,5)P2 consumed by PLC. With DGK inhibition, the levels of ENaC activity drop 

further, but not much.  

Finally, inhibition of PI3KI, even by 99%, has no effect on ENaC activity (Figure 4.6d). 

This result is actually to be expected because the extended phosphoinositide model used 

here was calibrated to simulate the apical part of the plasma membrane, which is 

characterized, among other features, by the lack of PI3KI and its product PI(3,4,5)P3 

within this region.  

Given the good agreement between all available data and the results from our model 

analyses, we can cautiously conclude that our hypothesis regarding the mechanisms of 

ENaC regulation, combined with the models of ENaC regulation by DGK and 

SPLUNC1, provides a good explanation for the activity of ENaC in WT and CF. 

4.4.6. Almaça’s et al. hypothesis tested with our phosphoinositide model 

The model allows us to test the hypothesis of Almaça and colleagues that the damping 

of ENaC activity by DGK is caused by a general decrease in phosphoinositides due to 

their reduced recycling. To assess this hypothesis, we alter the extended 

phosphoinositide model in two ways. First, we allow the efflux from the PA pool, VPA➔, 

to supply the PI pool with material, which simulates the transformation of PA into PI 

in the ER. This additional, simplified step in a crude way closes the circle of 

phosphoinositide recycling. Because the efflux of PA is only 5% of the influx of PI, we 

maintain the already present influx into the PI pool, which is now reduced by an amount 

equal to the PA efflux. The new flux V➔0 in this model extension can be interpreted 

biologically as the amount of PI produced in the ER from PA that did not originate in 

the plasma membrane; expressed differently, it represents PA created de novo. Second, 

we remove the regulation of PIP5KI by PA.  

With these presumably reasonable settings, the model does not replicate the observation 

by Almaça and colleagues that, if DGK is inhibited, it no longer affects ENaC activity, 

whether in WT or CF (Figure 4.7a). To remedy the situation, it would be necessary to 
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balance the input into PI and the efflux out of PA. Specifically, the input into PI would 

have to be an exact multiple of the efflux VPA➔ out of PA such that this multiple would 

be equal to the original PI influx. Such a coupling would make the PI pool dependent 

on the PA efflux. In a simulation with these settings, the ENaC activity is more sensitive 

to DGK inhibition, but the decrease in cation channel activity is very small (Figure 

4.7b). If the inhibition of DGK in the model is made stronger, this configuration of the 

model can actually replicate the data reported by Almaça and colleagues (Figure 4.7c). 

However, to achieve this configuration, PI would have to be hypersensitive to the PA 

efflux, or the levels of PA and PI in the plasma membrane would somehow have to be 

closely coordinated. There is no evidence of PI hypersensitivity to PA efflux, and while 

there are no exact measurements for these lipids in the plasma membrane, all existing 

cell measurements suggest that PI is 10 times more abundant than PA  [25], [51]. 

Moreover, it is known that PA is produced de novo in the ER, and this production 

affects the sensitivity of PI to plasma membrane PA. Thus, the model does not support 

the hypothesis of Almaça et al. [13] that inhibiting DGK brings the recycling of the 

phosphoinositides to a halt, which in turn decreases PI(4,5)P2 and PI(3,4,5)P3 and 

causes reduced ENaC activity. 

 

 

Figure 4.7. Extended phosphoinositide model, altered to simulate PI recycling 

without PIP5KI regulation by PA. 
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To test Almaça’s hypothesis, we altered the extended phosphoinositide model to simulate 

phosphoinositide recycling and removed the regulation of PIP5KI by PA. a) Under these conditions the 

model does not replicate the observation of ENaC moderation when DGK is inhibited, as reported by 

Almaça and colleagues.  b) Making the influx of PI a multiple of the PA efflux, the model does not 

replicate the observation from Almaça and colleagues either. c) With the same conditions as in b), we 

furthermore inhibited DGK by 75% instead of the usual 25%. With these alterations, the model does 

replicate the observation of Almaça and colleagues. However, this degree of sensitivity of PI to plasma 

membrane PA efflux is not an accurate representation of reality.     

 

4.4.7. A puzzling result regarding Po   

ENaC is usually composed of three subunits:  ,  and  [52]. Channels with alternate 

stoichiometries have been reported to have very low activity [53], so that it is 

imaginable that some ENaC channels could be constitutively closed. Also, not all ENaC 

channels are necessarily equal, due to variability introduced by alternative splicing, 

alternative folding, glycosylation and ubiquitination. Thus, one might expect a range of 

ENaCs where, at one end, some channels are open even if ENaC controllers are 

signaling a closed configuration, and where the opposite is true at the other end. If there 

are indeed constitutively open and closed ENaC channels, the open probability function 

would have a much higher minimum than the reported value, which is about 0.02 [54]. 

By the same token, as a result of constitutively closed channels, the maximum should 

be lower than reported. To explore this situation, we tested an alternative ENaC Po 

function with a minimum of 0.12, a basal ENaC Po of 0.22, and maximum of 0.72. With 

this Po function, the model exhibit results that are similarly good as previous result but 

yields much improved results with respect to perturbations in PLC activation. This 

alteration would likely make the activity of ENaC less sensitive to DGK inhibition and 

yield model results that are more similar to observations by Almaça and colleagues. 

Unfortunately, there are no data supporting this strategy. 

4.4.8. Suratekar’s phosphoinositide cycle model 

Phosphoinositides are created from PA in the ER and transported to the plasma 

membrane where they are phosphorylated, cleaved by PLC into IP3 and DAG and 

transformed back to PA, which is transported back to the ER, thereby closing the cycle. 

Almaça et al. [13] hypothesized that inhibiting DGK would bring the recycling of 
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phosphoinositides to a halt, which in turn would decrease PI(4,5)P2, and consequently 

reduce ENaC action. 

Suratekar and colleagues [23] recently simulated the phosphoinositide cycle in the PM 

and in the ER. Using their information on PI(4,5)P2 levels and coupling Suratekar’s 

model with our ENaC and ASL model allowed us to test Almaça’s hypothesis in a 

different, almost independent manner. Suratekar and colleagues [23] tested many 

versions of the model, including open and closed cycles and even a model where they 

considered PA as a regulator of PIP5KI. We used this model, implemented with 

Michaelis–Menten kinetics, which was shown to be consistent with all data available 

to the authors, an open cycle with influx of PA into the ER and efflux out of DAG in 

the plasma membrane, and without PA regulation of PIP5KI. Alas, this representation 

of the phosphoinositide pathway turned out to be unable to replicate Almaça’s 

observations of ENaC moderation under DGK inhibition (Figure 4.8a). The reason 

seems to be the following: Suratekar’s model contains an influx of PA into the ER that 

is independent of plasma membrane PA. This influx suffices to maintain 

phosphoinositide levels, when we inhibit DGK, and severely reduces PA in the plasma 

membrane.    

It is interesting to note that PA in the plasma membrane decreases by 90% when DGK 

is inhibited. This strong effect raises the question if including regulation of PIP5KI by 

PA in the plasma membrane would enable Suratekar’s model to replicate Almaça’s 

observations. We implemented this regulation of PIP5KI in two ways: first, by making 

the Vmax of PIP5KI dependent of PA in the plasma membrane according to a Hill 

function and, second, by making the KM of PIP5KI inversely proportional to plasma 

membrane PA. In both cases, the inhibition of DGK decreases PA in the membrane, 

and this information is passed on to PIP5KI, resulting in a decreased rate of PI(4,5)P2 

production. But as PIP5KI loses efficiency, PI(4)P accumulates rapidly because there 

is no other exit from the pool. This chain of events continues until the amount of PI(4)P 

compensates the reduced efficiency of PIP5KI, thereby establishing a new, very 

elevated steady state of PI(4)P and restoring the levels of PI(4,5)P2.  

Assigning an efflux from the pool of PI(4)P with a small rate constant (0.08) creates an 

escape valve that prevents PI(4)P from unduly accumulating when DGK is inhibited. 

This setting alters the steady state, but only very slightly, and can be balanced by 
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increasing the endoplasmic reticulum PA source by 1.1%, which compensates for the 

new loss of material from the system. These settings lead to a model that is consistent 

with Suratekar’s data and replicates Alamaça’s observations (Figure 4.8b). 

 

 

Figure 4.8. Suratekar’s model of phosphoinositide recycling does not replicate 

Almaça’s observations of ENaC moderation when DGK is inhibited. 

a) This discrepancy happens because the external influx of PA into the ER sustains the phosphoinositide 

recycling and consequently the PI(4,5)P2 levels, when DGK is inhibited. b) Suratekar’s model of 

phosphoinositide recycling is modified to include PA regulation of PIP5KI and an efflux out of the PI(4)P 

pool. This refined model does replicate Suratekar’s data and Almaça’s observations of DGK control of 

ENaC. DGK inhibition causes a moderation of ENaC action. In CF, this moderation brings the ENaC 

activity close to the WT ENaC activity. c) Modified Suratekar’s model replicates data from mutants in 

Drosophila melanogaster photoreceptor cells. d) Lipid ratios from the literature, from the model 

simulation and absolute difference between the two.   

 

Taking all results together gives us confidence that our hypothesis of DGK moderating 

ENaC through PA control of PIP5KI convincingly explains the available data.   

4.5.  Discussion and Conclusions 

The objective of the work described here and previously was to shed light on the effect 

of phosphoinositides and the protein SPLUNC1 on the functionality of the ion channel 
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ENaC, which plays an important role in several diseases and, especially, in CF. We 

started by creating two models, one representing the phosphoinositide pathway and the 

second capturing the dynamics of the ENaC ion channel and its effects on ASL, which 

is dependent on the transport protein CFTR that is typically mutated in CF. After 

expanding the phosphoinositide model, by accounting for all elements necessary to our 

study, we merged the two models. The combined model allowed us to test our 

hypothesis, that moderation of ENaC, observed after DGK inhibition, is accomplished 

through a decrease in PA, which in turn ceases to activate the PI(4,5)P2 producing 

enzyme, PIP5KI. We compared the model results from several pathway perturbations 

with observed data from reports by Almaça et al. of the same perturbations and obtained 

good agreement. 

In a second step we modified the model of the phosphoinositide pathway to enable an 

assessment of opposing hypotheses suggested by Almaça and colleagues, namely, that 

moderation of ENaC in response to DGK inhibition is caused by stopping 

phosphoinositide recycling. We found that, for the model to replicate the data, one 

possibility is that plasma membrane and endoplasmic reticulum PA would have to have 

similar concentrations, which is contrary to the best data available on the subject [25], 

[51]. Another possibility could be that the production of PA in the endoplasmic 

reticulum and its transport to the plasma membrane would exhibit high sensitivity to 

PI(4,5)P2 degradation by PLC, to plasma membrane PA levels, or to plasma membrane 

PA transport to the endoplasmic reticulum. There is no evidence in the literature 

supporting any of these possibilities. 

Finally, we used a model of the phosphoinositide cycle created by Suratekar et al. [23] 

to test both hypotheses independently of our earlier conclusions. This model failed to 

replicate Almaça’s data when activation of PIP5KI by plasma membrane PA was not 

taken into account, but succeeded when this regulation was included.  

The past years have witnessed numerous new discoveries regarding lipid transfer 

proteins (LPTs) (e.g., [55]). Thus, it is conceivable that a so-far unknown cellular 

mechanism could create the high sensitivity of PA production in the endoplasmic 

reticulum to the levels of PA in the plasma membrane, which would validate the 

hypothesis of Almaça et al. At the same time, extensive research over several decades 

has not identified such a mechanism.  Thus, all things considered, it appears that our 



 

167 

hypothesis regarding ENaC regulation by DGK has a higher likelihood of being correct 

than the earlier hypothesis of Almaça and colleagues. According to this new hypothesis, 

which is supported by our computational analyses here, the regulation of ENaC is 

primarily exerted through the control of PI(4,5)P2 production by type I 

phosphatidylinositol-4-phosphate 5-kinase (PIP5KI), which in turn is controlled by 

phosphatidic acid (PA), the product of the DGK reaction.   

4.5.1. Future directions 

Tarran and colleagues [15] proffer that SPLUNC1 causes channel disaggregation and 

internalization of ENaC  and  subunits. If so, the  subunit persists in the plasma 

membrane with SPLUNC1 attached. SPLUNC1 is known to exert bacteriostatic and 

antibiofilm effects, bind to lipopolysaccharide, and act as a fluid-spreading surfactant 

[33]. In CF patients, with SPLUNC1 inactivated by the acidic ASL, these normal tasks 

cannot be accomplished. Thus, it will be interesting to study the importance of attaching 

an antimicrobial molecule to the pulmonary epithelial cell membrane in an attempt to 

control lung infections.  

It would also be beneficial to study more deeply the positive feedback loop between 

PI(4,5)P2, PLC, PA and PLD. Not only would it be interesting to see the regulatory 

capabilities of this functional arrangement, but there are intriguing observations like the 

one made by Antonescu et al. [44], where the knock-down of an PLD isoform led to 

increased PA levels. There are ten DGK isoforms [56], [57], thirteen PLC isoforms 

[58], two PLD isoforms [59] and nine PKC isoforms. In the present work, we did not 

account for these details but the diversity could be important for explaining some of the 

surprising observations in the field.  

Our computational results point to the conclusion that DGK inhibition and the 

consequent decrease in PI(4,5)P2 levels moderate ENaC gain of function in CF by 

compensating for SPLUNC1 inactivation, which is caused by an increase in acidity of 

the airway surface liquid. Also, there is strong indication that this regulatory mechanism 

is mediated through the regulation of PIP5KI by PA. While altering the levels of 

PI(4,5)P2 could seem to be an interesting therapeutic target, caution is necessary as such 

alterations will probably have unpredictable and possibly undesirable consequences. A 

case in point is Balla’s work [12], which shows that PI(4,5)P2 not only influences ENaC 

but many other proteins in the cell. In addition, alterations in the levels of PI(4,5)P2 
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obviously lead to changes in other phosphoinositide levels, such as PI(3,4,5)P3, which 

can have further ramifications, such as alterations in the AKT signaling pathway, to 

name just one. 

A promising aspect of this research is that there is evidence that phosphoinositides act 

locally [12], [60] and that this fact can possibly be exploited to create safe and effective 

therapies for CF and other diseases. However, before we pursue such avenues, we need 

to understand far better how these local activities interact and how they are controlled. 

4.6. Materials and Methods 

4.6.1 Available Datasets and their limitations 

For the calibration of the model proposed here, we used numerous datasets and other 

types of information from the literature. As far as this information pertains to the 

original phosphoinositide pathway model, it was presented in Chapter 2 [7]. It mainly 

consists of concentrations of phosphoinositides and changes in their amounts in 

response to numerous perturbations of the pathway. These perturbations usually 

affected enzymes and their activators and inhibitors or consisted of alterations to 

influxes or effluxes of the system. The results of these experiments are summarized in 

the supplementary information of Chapter 2 [7].    

The new additions to the model resulted in data fits of a similar quality as for the simpler 

version of the model, but allowed us to assess a host of new features. In particular, they 

permitted assessments of the effects of alterations in phosphoinositides on the dynamics 

of ENaC, as shown in the Results section and also in the Supplements, which provide 

further details on the interactions between PI, PI(4)P, PI(5)P, PI(4,5)P2, PI4K and 

PIP5KI. 

In the new model proposed here, which consists of a combination of the 

phosphoinositide model and a model describing the dynamics of ENaC, we used several 

additional datasets that were not used in the previous sub-models. They are summarized 

below.     

4.6.2. Almaça’s data 

Almaça and colleagues [13] investigated A549 cell, which are adenocarcinomic human 

alveolar basal epithelial cells. Because these are cancer cells, they probably are not 
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completely polarized. This feature is not ideal for studying ENaC because the majority 

of ENaC channels is found in the apical part of the membrane [54].  

Almaça also studied the effects of PKC activation and DGK perturbations on ENaC 

activity in CF. PKC has an enormous variety of effects [61], [62] but, in our model, we 

assume that this kinase will solely activate PLD and regulate the DGK independent PA 

production. Consequently, an activation of PKC immediately increases PA production 

and, through an increase in PI(4,5)P2, raises ENaC activity; which is contrary to 

Almaça’s observations. Instead, it might be that the inhibiting effect of PKC activation 

on ENaC is mediated by cAMP or the MAPK pathway [63], [64], which are not parts 

of the model.    

Finally, Almaça et al. tested the possibility that ENaC could be inhibited by a PI3KI 

knockdown [13]. The authors state that ENaC is activated by PI(3,4,5)P3, an 

observation confirmed by others [9], [65]. Unfortunately, these studies do not take into 

account the polarity of human pulmonary epithelial cells. In these cells, ENaC and its 

influence on ASL tickness are found in the apical part of the plasma membrane, which 

contains very small quantities of PI(3,4,5)P3 and PI3KI; indeed these low quantities are 

among the hallmarks of the apical part of human pulmonary epithelial cells. Further 

studies are necessary to confirm that polarity is truly important in this context, but given 

the known facts it seems improbable that PI3KI inhibition would have any practical 

effect on apical located ENaC activity in vivo.  

It is imaginable that the effect on ENaC could come from PI(4,5)P2 rather than from 

PI(3,4,5)P3 but it is not clear if PI3KI activity influences PI(4,5)P2 levels in the plasma 

membrane. So far, the data of the highest quality are pointing to a uniform distribution 

of PI(4,5)P2 throughout the plasma membrane in polarized cells [66].   

4.6.3. Moritz’ data 

Moritz et al. [17] studied PIP5KI activation as a function of PA concentration (Figure 

4.12) using Triton X-100 which, as Jones et al. [67] report, greatly inhibits the basal 

PIP5KI activity. This inhibition causes the reported basal activity to be lower and the 

apparent fold change activation to be increased. The authors report a basal activity of 1 

pmol/min and a maximum activation of the enzyme of 20-fold. We adjusted for the 

effects of the detergent, as described in the Methods. 
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4.6.4. Jarquin-Pardo’s data 

Jarquin-Pardo and colleagues [19] reported on an impressive amount of work 

addressing PIP5KI kinetics and its activation by PA. Unfortunately, they also used 

Triton X-100. Their data on PIP5KI activation as a function of PA concentration can 

be seen in Figure 4.12. The authors report a basal activity of 0.2 molecule/min/unit of 

PIP5KI and a maximum activation of the enzyme of 30-fold.  

To find the range of PA concentrations in Jarquin-Pardo’s experiments we had to 

estimate the total concentration of Triton X-100 they used. Our calculations suggested 

that a pure Triton X-100 solution at 0.1% volume will have a concentration of 1,600 

μM. Because the Triton X-100 was in a mixture, we searched for a number that would 

produce a better agreement between Jarquin-Pardo’s and Moritz’ data. We found that 

a Triton X-100 concentration of 35,000 μM would produce good agreement between 

the two datasets and was close enough to the calculated value. Furthermore, although 

we do not know the exact figure for PA levels, different sources report them close to 

the levels of PI(4)P and PI(4,5)P2 [17], [22], [25], which is in good agreement with 

Moritz’ data. 

4.6.5. Jenkins’ data  

Jenkins et al. [68] studied PIP5KI activation by PA with and without triton X-100. 

Unfortunately, they only showed the data for the experiment with the detergent. The 

authors report a maximum activation of the enzyme of 8, 15 and in some cases even 

50-fold with Triton X-100. For the experiment without the detergent they reported that 

the maximum activation was around 3-fold, which agrees with reports by Jones and 

colleagues.    

4.6.6. Other pertinent data 

Pochynyuk et al. [42] provided information about the concentrations of PI(4,5)P2 under 

different levels of PLC activity and measured 15 minutes after the perturbations 

occurred. We used this information from Pochynyuk’s article, as well as the levels of 

DAG, PA and IP3, for the parameterization of PLC activity in the model.  

The paper by Sampaio et al. [25] contains values for PA and DAG levels that 

correspond to 0.5% – 1% of total cell lipids in polarizing MDCK cells. This level makes 
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them similarly rare as PI(4)P and PI(4,5)P2, which are found at around 10,000 

molecules/μm2. PA and DAG values were set in the model to 5,600 and 7,800 

molecules/μm2, respectively.  

Studies on platelets [22], [69] suggest that the levels of IP3 are between 300 to 700 

molecules/μm3; the model uses a value of 500 molecules/μm3. This value was achieved 

by enabling fast removal of IP3 from the system, which is in agreement with the fact 

that IP3 is a soluble molecule.  

Some components of the system are faced with a large dispersion of parameter values, 

especially in specific enzyme activity. For instance, according to James et al. [70], PLC 

is inhibited by many detergents commonly used in laboratory experiments, specially 

Triton X-100. James et al. used dodecylmaltoside, which was shown not to affect the 

activity of PLC. They report values between 0.11 and 0.18 μM for the KM and between 

31.3 and 38.9 μmol/min/mg for the specific activity. We decided to use these parameter 

values but deemed the activity of PLC too strong. As a correction, we considered that 

PI(4)P competes for PLC, as shown by Ginger, Seifert and others [71], [72] and that 

PLC is inhibited by PS [72].  Values for PS were taken from Sampaio et al. [25]. 

4.6.7. Parameter values from BRENDA 

Several papers cited in the BRENDA database [48] suggest very different values for 

the kinetic parameters of PLC. In particular, values for the KM of human PLC are listed 

between 0.0123 and 0.0391 mM, and values for specific activity range between 0.5784 

and 200 μmol/min/mg. For Rattus norvegicus the ranges are also quite large, namely, 

between 0.006 and 0.182 mM for KM and between 3.1 and 204.1 μmol/min/mg for 

specific activity. 

Similarly, it is not clear which parameters for PI3KI that are listed in BRENDA are 

most appropriate here, and we are therefore not fully confident about the representation 

of the function of this enzyme. The large amount of enzyme necessary to balance the 

powerful action of PTEN could be an indication that the values retrieved from 

BRENDA are not entirely suited for our purposes.  

For our model calibration, we ensured that all pertinent values fell into the ranges 

provided by BRENDA and obtained specific values through various fitting procedures. 
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4.6.8. Mathematical framework  

A dynamical model of phosphoinositide metabolism was recently designed within the 

framework of Biochemical Systems Theory (BST) [73]–[79], using ordinary 

differential equations (ODEs) in the format of a generalized mass action (GMA) 

system. In this approach, each ODE describes the dynamics of a dependent variable Xi, 

which is formulated as a sum of all fluxes that are directly related to this variable; 

furthermore, each flux vi➔j is formulated as a power-law function, as shown in Eq. (4.1). 
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Each quantity i→j or Ei→j represents the rate constant or enzyme activity for a given 

flux, respectively, fi→j is the kinetic order, and ns→i and mi→p are the stoichiometric 

coefficients for the influxes and outfluxes. 

4.6.9. Model design, equations and parameters estimation 

The model proposed here is a functional merger of two sub-models. The first in an 

extension of a phosphoinositide pathway model that was recently published, along with 

all pertinent information regarding equations and parameter values [7]. The second sub-

model captures the dynamics of ENaC and ASL and is described elsewhere [16]. The 

main coupling point between the two sub-models is PI(4,5)P2. This coupling, for the 

first time, permits an investigation of the complex regulation of ENaC and ASL by 

phosphoinositides.  

Functionally connecting the phosphoinositide pathway to the dynamics of ENaC 

suggests slight modifications to the phosphoinositide model, which are depicted Figure 

4.1; the fluxes and equations are presented in Table 4.1 and parameters and initial 

values are given in Table 4.2. References for parameters can be found in Supplementary 

Table 4.4 and in Chapters 2 and 3. 

The rather complex phosphoinositide sub-model accounts for all phosphoinositide 

species and their interconversions, as well as PI, the precursor of all phosphoinositides. 

It reproduces several phenomena described in the literature that characterize the 
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pathway, even for phosphoinositides present in small quantities. Notably, however, this 

model does not account for ENaC or other elements that are needed to study the 

regulation of this channel.  

Thus, we connect this model to a module containing all biochemical components that 

are necessary for studying ENaC regulation by PI(4,5)P2. Specifically, we add 

phospholipase C (PLC), which cleaves PI(4,5)P2 into DAG and IP3, and allow for 

competitive inhibition of this phospholipase by PI(4)P and PS. In addition to DAG and 

IP3, we explicitly define the enzyme DGK, which facilitates the transformation of DAG 

into PA. We also add LPPs that hydrolyze PA back to DAG.  

A new input flux of material to the PA pool now accounts for the transformation of PC 

into PA by phospholipase D (PLD). We opted for this implementation because PC 

exists in abundance in the cell membrane, with approximately 3,000,000 

molecules/μm2, which corresponds to approximately 25% of the cell membrane [25], 

and will therefore never be significantly depleted by the action of PLD. It also has a 

structural role in the cell membrane, and severe depletion of PC causes the cell to lyse. 

The flux rate constant is adjusted to include the contribution of PC.  

We also include the observed activation of PLD by PI(4,5)P2 [80], [81] by letting the 

levels of phosphoinositide influence the influx of material. This activation creates a 

positive feedback between PI(4,5)P2 and the production of PA by PLD, which enables 

the system very elegantly to increase the sensitivity of PI(4,5)P2 production to 

alterations in PA when PLC is active (Figure 4.9). This mechanism appears to do the 

following: PA has two main sources. It may be created from PC by PLD, or it may be 

derived from the cleavage of PI(4,5)P2 by PLC. When PLC displays low activity, a 

good amount of PA is being produced by PLD. However, when PLC is activated, more 

PA is produced via degradation of PI(4,5)P2. Less PI(4,5)P2 reduces the activation of 

PLD and leads to less PA production from PC. Not only does this dual mechanism 

contribute to the stability of PA levels, but it also alters the ratio between PA coming 

from PLC and PA coming from PLD. 
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Figure 4.9. Positive feedback regulation of PI(4,5)P2 and PA. 

In the plasma membrane, PA may be created from PC by PLD and by cleavage of PI(4,5)P2 by PLC. 

When PLC displays low activity, PA is mainly produced by PLD. When PLC activity increases, more 

PA is produced via degradation of PI(4,5)P2, which lowers the pool of PI(4,5)P2, secondarily reduces the 

activation of PLD, and ultimately leads to less PA production from PC. This dual activation mechanism 

could alter the ratio between PA coming from PLC and from PLD and contribute to the stability of PA 

and PI(4,5)P2 levels; however, confirmation of this mechanism will require further laboratory 

investigation.   

 

The combined model moreover accounts for the activation of PIP5KI by PA, a 

regulation frequently described in the literature [17]–[19]. This regulation renders 

PI(4,5)P2 production dependent on DGK and allows us to study the activity of ENaC 

under different DGK levels of activation.    

In addition to including these mechanisms, we introduce three minor refinements. First, 

we separate some enzymes catalyzing the same reaction into different fluxes when there 

is sufficient information to do so. For instance, we define two groups of the 

myotubularin phosphatase family: MTMR_1_6_14, which corresponds to 

myotubularins 1 to 6 plus 14, and MTMR78, which contains myotubularins. We cannot 

really separate these groups into individual enzymes because no information is 

available for specific differences among MTMR’s.  For the same reason, ORCL1, 

INPP5 B/J, SKIP and SAC2 are grouped into O_I_SK_SA2. Outside these exceptions, 

the enzyme separation allows a better understanding of the mechanics in the model and 

a more accurate replication of experimental perturbations to the pathway, especially 

with respect to explorations that involve the inhibition or activation of enzymes. 
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Finally, we account for substrate competition in accordance to observations of wet lab 

experiments that reported the existence of multiple substrates, especially in the case of 

phosphatases [82]. The regulation among PTEN, PI3KI, PI(4,5)P2 and PI(3,4,5)P3 is 

implemented by creating pools of active (PTENa and PI3KIa) and inactive (PTENc and 

PI3KIc) PI3KI and PTEN and allowing the products of these enzymes to activate the 

enzymes. Parameters for this part of the model were found by fitting the model behavior 

to data reported by Feng et al. [45], which were not used in the earlier phosphoinositide 

model.  

As for the earlier models, rate constants and kinetic orders are derived from enzyme 

kinetic information provided by the BRENDA database [48] or from the literature, after 

the necessary unit transformations. In this model, KM values are in molecules/µm3, 

specific activities in molecules/min/mg of enzyme and enzymes in mg.  Details can be 

found in the Supplementary information, or in Table 2.3 of Chapter 2 [7]. The kinetic 

parameters of enzymes used only in the combined model are presented in Table 4.4 of 

the Supplements. Enzyme activities and transport fluxes where manually set to 

approximate reported phosphoinositide steady-state values. In some cases, the rate 

constants were estimated based on data fits.   

The parameters were derived from different data sources. Initially, we manually 

adjusted the parameters to fit the data adequately. Next, for each dataset, a local, 

general-purpose optimization function implemented in the R language was used to 

search for the best fit. The Nelder–Mead method was used. In the final step, a hybrid 

genetic algorithm was implemented in the GA package to search for the global 

minimum.   

With regard to the ENaC model, Chapter 3 explored two models: one where PI(4,5)P2 

protected ENaC from ubiquitination and another where this was not the case. As we 

did not detect significant differences in results, we chose here the simpler model, where 

PI(4,5)P2 does not protect ENaC from ubiquitination. The equations, parameters and 

initial values for this model are presented in Chapter 3.   

While most of the information regarding the two sub-models was presented somewhere, 

the connection of the two models requires additional effort. Most of this effort concerns 

the dynamics of PI(4,5)P2. 
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4.6.10. Activation of PIP5KI by PA 

PIP5KI is the enzyme responsible for phosphorylating the fifth carbon on the PI(4)P 

inositol ring and transforming it into PI(4,5)P2. It has two identified binding sites for 

PA in the C-terminal domain [19]. PIP5KI also has two binding sites for is substrate, 

PI(4)P, and these have different functions. One allows inhibition of the enzyme, 

whereas the other is a catalytic site that phosphorylates PI(4)P into PI(4,5)P2. According 

to Jarquin-Pardo et al., [19], the catalytic site has a KM of 134 μM in the absence of PA, 

which is much higher than the inhibitory site with 2.4 μM. Consequently, the enzyme 

is inactive or in a reduced activity state if the concentration of PA is low. In the presence 

of PA, the situation is reversed: the KM for the catalytic site is 2 μM and the KM for the 

inhibitory site is 4.2 μM. The values of the kcat for both these cases are 16.4 and 17 min-

1. They suggest that PA will mainly alter the affinity of the catalytic site for PI(4)P.   

To identify a function that describes the PIP5KI activation by PA, we consulted three 

papers containing data on PI(4,5)P2 production under different levels of PA [17], [19], 

[68]. These articles were described before, and we focus here specifically on PIP5KI 

activation. Unfortunately, all three studies used Triton X-100, which Jones et al. [67] 

describe as greatly inhibiting the basal lipid kinase activity. We explored different 

means of compensating for this inhibition. In Moritz’ case, we altered the basal activity 

of PIP5KI from 1 to 1.5 molecules/min/unit of PIP5KI and scaled the data in such a 

manner that the maximum activation was 3, as reported by Jenkins and colleagues. We 

achieved this scaling by multiplying the values of PI(4,5)P2 production with 3/20. For 

Jarquin-Pardo’s data, we performed two transformations of the data. First, we altered 

the basal activity of PIP5KI from 0.2 to 1.5 molecules/min/unit of PIP5KI. Second, we 

scaled the data so that the maximum activation was again 3. In this case, we achieved 

this scaling by multiplying the values of PI(4,5)P2 production with 3/30. Finally, for 

Jenkins’ data, we altered the basal activity of PIP5KI to 1.5 molecules/min/unit of 

PIP5KI and scaled the data so that the maximum activation was again 3. In this case, 

we multiplied the values of PI(4,5)P2 production with 2.2/13. 

4.6.11. Creating a PIP5KI PA activation function 

Because data presented by Moritz and Jarquin-Pardo both suggest a sigmoid function, 

we chose a shifted Hill function to describe the activation of PIP5KI by PA. This 
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function (Eq. 4.2) has a KM of 10,000, a Hill coefficient of 2 and a maximal fold-

activation of PIP5KI of 2; it is furthermore shifted by 1.  

( )
2

2 2

2
PIP5KI_activation = 1+

10000

PA
PA

PA



+
   (4.2) 

These settings ensure that the maximum activation of the PIP5KI enzyme is 3-fold (4.5 

molecules/min/unit of PIP5KI), which is in line with the range of 2.2 and 3-fold 

activation reported by Jones et al. [67] and Jenkins et al. [18]. When PA has a 

concentration of 10,000 molecules/μm3, the enzyme is activated at half the maximum 

rate, and this value is within the physiological range for PA [17], [22], [25]. The Hill 

coefficient of 2 agrees well with the two reported binding sites for PA [19].  

4.6.12. Modified Suretekar’s phosphoinositide pathway model  

To explore the likelihood that Almaça’s hypothesis regarding the regulation of ENaC 

by DGK, we used a model that in some sense represents a coarse alternative to our 

combined model. This model was proposed by Suratekar and colleagues [23] and uses 

data from photoreceptor cells of Drosophila melanogaster. One must note that this 

model, although addressing the same phosphoinositide pathway, may have features that 

are not entirely representative of human cells.  

Suratekar and colleagues tested many versions of their phosphoinositide pathway 

model and ultimately decided on one that was in accordance with all data available to 

them. It contains an open cycle with influx of PA in the ER and efflux of DAG into the 

plasma membrane, but does not include PA regulation of PIP5KI. We used this version 

implemented with Michaelis–Menten kinetics, as proposed by the authors. 

The steady-state levels of our model and Suratekar’s do not completely agree. In order 

to successfully link Suratekar’s and our ENaC-ASL model, we therefore divided the 

PI(4,5)P2 level by its steady-state value and multiplied it by 10,000. In this way, the 

steady state of PI(4,5)P2 becomes similar to the one considered by our model. 

For the model to be able to replicate Almaça’s observations of DGK regulation of 

ENaC, we must make three alterations. The first is an implementation of a PA 

dependent Vmax for PIP5KI, according to the Hill function in (4.3), which makes the 

production of PI(4,5)P2 dependent on the levels of PA. 
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The shift constant 0.3 guarantees that PIP5KI is still active without PA, KM,pip5KI
* 

corresponds to the steady-state level of PMPA and Vmax,pip5KI
* was calculated for 

Vmax,pip5KI to have the same value as in the original model at the steady state of PMPA. 

We substituted Vmax,pip5KI in the flux equation for PIP5KI by this new  expression. 

Because this alteration would cause an explosive increase of PI(4)P when DGK is 

inhibited, we added an efflux from the PI(4)P pool. The efflux is shown in Eq. (4.4) 

and included in the differential equation for PI(4)P as a negative term.  

( )4 _V =.08 * PI 4 PPI P exit          (4.4) 

The value for the rate constant in this flux was obtained by trial and error until the 

model exhibited the behavior coherent with experimental observations. We are not 

aware of any direct biological evidence of a significant efflux of this type but it seems 

reasonable to assume that every phosphoinositide pool should have an efflux 

representing the phospholipids that exit the plasma membrane by vesicle or non-vesicle 

transport. It is not clear how relevant this postulated efflux is for the phosphoinositide 

pools, but we have implemented effluxes in our phosphoinositide pathway model. 

Finally, although the steady-state levels of the model are not drastically perturbed by 

these alterations, we compensated for the new exit of material from the system by 

increasing the ER PA source flux by 1.1%. Again, trial and error were used to determine 

this parameter.   

One should note that we are not trying to find an optimized set of parameter values for 

the model. Our objective is solely to test whether Suratekar’s model can replicate 

Almaça’s observations when regulation of PIP5KI by PA accounted for. 
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4.6.13. Model Implementation 

The model was implemented in the programming language R v3.1.0 [83] together with 

the package deSolve [84]. We used the ODE integration function with the LSODA 

method.  
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4.8. Supplements 

4.8.1. Model Extensions 

The new additions have some effect on the model’s fit, but overall, the fits to the data 

are similar to the earlier, simpler version of the model. Figures 4.10 a and c show model 
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results as bar plots, while the blue lines represent data. When PI is depleted, the 

decreases in PI(4)P and PI(4,5)P2 are now slightly closer to 50%, whereas the results 

of perturbations in PI4K and PI4P5KI are somewhat inferior (Figure 4.10 a). 

Perturbations that affect the lipids in small amounts produce similar results (Figure 4.10 

c).   

Figure 4.10 b indicates that we can still create conditions where PI(4,5)P2 levels are 

maintained with low levels of PI(4)P, but the PI(4,5)P2 pool is much more dependent 

on the V0➔45 flux. In the new model, the contribution of PI(5)P  to the PI(4,5)P2 pool is 

small. Figures 4.10 c and d show that PI(4)P is also more dependent on the V0➔4 flux. 
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4.8.2. Supplementary figures 

 

Figure 4.10. Perturbations to the phosphoinositide pathway. 

Blue lines represent experimental observations and bars represent model predictions. a) Perturbation of 

PI levels and PI4K and PI5KI activities and resulting effects on PI(4,5)P2 and PI(4)P. γ➔0 is decreased to 

50% to trigger a decrease of 50% in PI. b) Perturbation of input fluxes into the poos of PI(4)P and 

PI(4,5)P2. After stopping all inputs into PI(4)P and PI(4,5)P2, the inputs are re-activated, one at a time, 

to test if they are sufficient to restore PI(4,5)P2 levels. Enzyme knockouts were simulated by setting the 

rate constant of the corresponding fluxes to zero, except for γ0➔4, which was decreased to 20% of its 

original value, in order to avoid numerical errors in the simulation due to very small levels of PI(4)P. c) 

Perturbations to MTMR, SYNJ_TMEM55 and PIKfyve that were used to fit the model to the behavior 

of phosphoinositides with small pools: PI5P, PI(3,5)P2 and PI(3)P. d) Consequences of Golgi PI(4)P 

input (γ➔4) for the levels of PI(4)P and PI(4,5)P2 pools. Golgi PI(4)P has a significant impact on the 

PI(4)P pool but barely affects the PI(4,5)P2 pool. 
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Figure 4.11. PI(4,5)P2 recovery after 0.5-fold activation of PLC. 

PLC cleaves PI(4,5)P2 into DAG and IP3. Several authors report a recovery of PI(4,5)P2 for some 

magnitudes of PLC activation [1–3]. The model shows modest recovery of PI(4,5)P2 after an 50% 

increase in PLC action.   
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Figure 4.12. Data and model results regarding PIP5KI activation by PA. 

Model results are shown as lines and points represent data. Black symbols represent data used to estimate 

the sigmoid function in the model, which is shown in blue. Grey points represent Jarquim-Pardo’s data 

with the estimated correction for the use of Triton X-100.   
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4.8.3. Supplementary table 

Table 4.4. Enzymes added to the phosphoinositide model and their characteristics. 
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 Conclusion and future directions 

 

The objectives for this PhD project were to build a dynamic model of the 

phosphoinositide pathway, expand the model to include ion channels, plan laboratory 

experiments and search for therapeutic approaches in the context of cystic fibrosis. 

Our strategy to find therapeutic approaches is deeply rooted in the fact that ENaC is 

influenced by phosphoinositides and proteins related to the phosphoinositide pathway. 

As previously referred, the ASL in CF is dehydrated and the ability to moderate ENaC 

action could contribute to improve ASL hydration. Also, PI(4,5)P2 and PI(3,4,5)P3 are 

known to stimulate ENaC function [1]–[3] and DGK inhibition was found to moderate 

ENaC action [4]. 

The first objective was completed with the paper presented in Chapter 2 of this work. 

There we present a model that simulates the pathway in a 1 m2 patch of plasma 

membrane and looked for ways to manipulate PI(4,5)P2, in order to influence ENaC 

action. 

The model suggests that PI(4,5)P2 can be supplied by a variety of sources apart from 

the one that is traditionally seen as the main source, PIP5KI phosphorylation of PI(4)P. 

Another source of PI(4,5)P2 is the direct transformation of PI into PI(4,5)P2 catalyzed 

by a complex of proteins that includes PI4K and PIP5KI. Also, the PI(4,5)P2 pool can 

be supplied by PIP5KII transformation of PI(5)P. These multiple sources make 

manipulation of PI(4,5)P2 not trivial.  

Sensitivity analysis reveals that the system is robust to perturbations in most of the 

parameters and the high sensitivities reveal the pressure points for controlling the 

phosphoinositide pathway.  

The model also suggests that inhibiting PIP5KI, PI4K or promoting the disassembly of 

the protein complex that catalyzes the direct transformation of PI, are the best strategies 

to decrease PI(4,5)P2 levels. Alternatively, one could increase the action of 

phosphatases like SYNJ 1/2, INPP5 B/J/E, OCRL1, SAC2, SKIP, but increasing the 

action of a protein is usually more difficult than inhibiting it and phosphatases, at least 
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in this pathway, seem more promiscuous comparing to the kinases. This conclusion 

fulfilled the search for therapeutic targets objective. 

In the second paper, presented in Chapter 3, we create a model of ENaC and ASL that 

are influenced by SPLUNC1 and PI(4,5)P2. This enables us to connect the 

phosphoinositide model and fulfill the second objective of the project, expand the 

model to include ion channels. Also, it enables us to study ENaC and ASL by 

perturbations in the phosphoinositide pathway. In this paper, the model suggests that 

PI(4,5)P2 can influence, not only ENaC but also ASL thickness. Also, the model 

suggests that alterations ENaC activity in CF are not caused by an increase in open 

probability but are caused by the increase in the numbers of this ion channel. 

Finally, in the third paper, presented in Chapter 4, we expand the phosphoinositide 

model with PLC, DAG, DGK, LPPs, PA and PIP5KI regulation by PA. These additions 

and the merge of the phosphoinositide model with the ENaC-ASL model allow us to 

compare two hypotheses on how DGK influences the activity ENaC.  

The first hypothesis was advanced by Almaça et al. [4]. DGK inhibition stops the 

recycling of phosphoinositides by the phosphoinositide cycle, reducing the levels of 

PI(4,5)P2 that is being consumed by PLC. Consequently, the depletion of PI(4,5)P2 will 

cause the moderation of ENaC action.    

We explore a second hypothesis, that DGK inhibition reduces PA levels and PIP5KI 

activation by PA. This will decrease PI(4,5)P2 production by PIP5KI and the reduction 

of PI(4,5)P2 levels will cause ENaC moderation.  

The model analysis strongly favors the second hypothesis. This is also observed when 

we use a phosphoinositide cycle model by Suratekar and colleagues [5]. This 

conclusion enabled us to challenge the established view on the mechanisms of the DGK 

regulation of ENaC. 

Despite the encouraging results, we should point that PI(4,5)P2 influences many 

membrane proteins [6] and tinkering with its levels will probably cause unforeseen and 

undesirable consequences.   
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Plan laboratory experiments was, as referred above, one of the objectives of this project. 

We can suggest several experiments but two stand out since we think the results would 

clarify certain obscure aspects of the phosphoinositide pathway, both in CF and WT 

conditions. Moreover, the experiment implementation would be simple and 

straightforward.  

First, we would like to know if the levels of PI(4,5)P2 and PI(3,4,5)P3 are different in 

the plasma membrane of WT and CF human bronchial epithelial cells. CF human 

bronchial epithelial cells present a lower level of differentiation relative to their WT 

counterparts and this could impact the levels of PI(4,5)P2 and PI(3,4,5)P3 [7]. The 

experiment would be done as follows: 1) culture cells from the cystic fibrosis bronchial 

epithelial (CFBE) cell line with normal and mutated CFTR that also express a chimera 

with a green fluorescence protein fused to a PI(4,5)P2 binding PH domain; 2) Measure 

the florescence in the apical and basolateral part of the plasma membrane; 3) Compare 

the florescence measurements between WT and CF cells. If PI(4,5)P2 or PI(3,4,5)P3 

levels are altered in CF, this would lead research to normalize it. If not, we should keep 

our focus on normalizing ENaC action. 

Second, we would like to validate the significance of the role of the protein complex 

formed by PI4K, PIP5Ki and DVL that transform PI into PI(4,5)P2. The experiment 

would be done as follows: 1) culture cells from the cystic fibrosis bronchial epithelial 

(CFBE) cell line with normal and mutated CFTR that also express a chimera with a 

green fluorescence protein fused to a PI(4,5)P2 binding PH domain; 2) create five cell 

lines: control, PI4K knockdown, PIP5KI knockdown, DVL knockdown and WNT3A 

knockdown; 3) Measure the florescence in the plasma membrane; 4) Compare the 

florescence measurements in the different cell lines. We would like to highlight that 

even if this protein complex prove not to be relevant to the levels of PI(4,5)P2, other 

protein complexes could fulfill this role and the conclusions of Chapter 2 will not be 

disproved. Even so, it would be important to identify a protein complex that directly 

transforms PI into PI(4,5)P2. 

As for future perspectives, concerning the phosphoinositides, much remains to be 

studied. Better understanding of the distribution of phosphoinositides in the different 

cell organelles and the distribution of the different acyl chains in the phosphoinositide 
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subspecies will certainly shed light into some of the less understood aspects of the 

pathway.  

At the start of this PhD project, the study of the phosphoinositide cycle was hindered 

by the lack of information on LTPs. Now, due to advances in LTPs research, a clearer 

picture of the cycle is emerging [8], [9]. When the information is available, I would like 

to build and study the model corresponding to the map depicted in Figure 5.1.  

 

 

Figure 5.1. Phosphoinositide pathway map in different compartments. 

This model will enable the study of the transport of phosphoinositides between organelles and of 

phosphoinosidide powered cholesterol transport. OSBP, PITP-b, ORB5/8 Nir2 and E-SYTs are LTP’s. 

 

Nir2’s exchanges PA from the PM for PI from the ER and are very important for the 

recycling of phosphoinositides when PLC is activated [9], as are extended-

synaptotagmins (E-SYTs) that transport DAG from the PM to the ER [10]. OSBP’s 

exchange PI(4)P and cholesterol between the Trans-Golgi network and the ER [11]. 

ORP5/8 exchanges PI(4)P from the PM for PS from the ER [11]. Wong and colleagues 

studied the rates at which PA is transported in yeast. One lipid per second for transport 

between two liposomes and twelve lipids per second for import of PA in mitochondria 

[8]. Unfortunately, information about the kinetics of the LTPs and levels of the 

phosphoinositides in the different organelles is missing. 



198  

 

Another part of the phosphoinositide pathway that I am very keen to study is the control 

of PI(4,5)P2 and PA levels by PLC, PLD and PIP5KI. 

There are two positive feedback loops between PA and PI(4,5)P2. The first is created 

by PLC and PIP5KI. PLC will transform PI(4,5)P2 into DAG that is transformed in to 

PA by DGK. In turn, PA will activate the synthesis of PI(4,5)P2 by PIP5KI. Because 

PI(4,5)P2 is consumed, this is more of a replenishing mechanism than a positive 

feedback. However, in a system with higher PA levels, more PI(4,5)P2 and PA are 

produced. The second is mediated by PLD. PLD transforms PC into PA that will 

activate the production of PI(4,5)P2 by PIP5KI and we know PLD is activated by 

PI(4,5)P2 [12], [13]. For a graphical representation of these systems see Figure 5.2. 

 

 

Figure 5.2. Maps of the PA, PI(4,5)P2, PLC, PLD and PIP5KI subsystem with 

different levels of granularity. 

a) the simplest representation of the subsystem. b) The subsystem with the intermediate intervenients 

that mediate the transformation of PI(4,5)P2 into PA. c) The same case as in b) but with an exit to the 

DAG pool catalyzed by E-SYTs [10]. 
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The interesting aspect of these loops is that they seem to self-regulate the amounts of 

PA and PI(4,5)P2, especially when PLC is activated. When PI(4,5)P2 is high, the PA is 

predominantly synthesized by PLD. When PLC is activated, PI(4,5)P2 decreases and 

PA is momentarily increased. Less PI(4,5)P2 will reduce PA production by PLD but the 

increase in PA will activate PI(4,5)P2 production by PIP5KI that will replenish the 

phosphoinositide. By these mechanisms, the levels of PA and PI(4,5)P2 could be 

maintained.    

Also, it would be interesting to study this system with the newly found regulation of 

PI(4)P and PI(4,5)P2 by ORP5/8 found by Sohn and colleagues [14]. 

I would like to study more deeply these positive feedback loops, not only to evaluate 

their regulatory capabilities, but also to understand its purpose, if there is one, of the 

many isoforms of the enzymes present in this subsystem. There are ten isoforms for 

DGK [15], [16], thirteen PLC isoforms [17], two PLD isoforms [18] and nine PKC 

isoforms. PKC is a kinase that increase the levels and is activated by many of the 

components in the subsystem depicted in figure 5.2.   

Recent developments highlight the subversion of phosphoinositide signaling by 

pathogens [19]. Several picornaviruses and hepatitis C virus employ a similar 

mechanism depending on PI4Ks, PI(4)P and OSBP [20], [21]. In order to get 

cholesterol for their viral replication compartments, they recruit PI4KIIIb to enrich 

them with PI(4)P. PI(4)P will function as an anchor for OSBP, an LPT that exchanges 

PI(4)P for ER cholesterol. There are several questions that could be answered with a 

study of these mechanisms. Can we prevent the virus from high-jacking these proteins? 

Will this hinder the virus development? Also, some virus are sensitive to 

pharmacological inhibitors of PI4Ks and OSBP, other are not [20]. What are the 

differences in the mechanisms between sensitive and insensitive virus? 

Finally, it would be important to bring together the signaling of phosphoinositides, 

sphingolipids and the remaining phospholipids like PC, PS and PE.  

There is much to be done. 
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