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“I felt my lungs inflate with the onrush of scenery—air, mountains, trees, people. I thought, "This is 

what it is to be happy.”  

Sylvia Plath, The Bell Jar 

 

https://www.goodreads.com/work/quotes/1385044
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Resumo Alargado  

A destruição florestal de origem antropogénica e a perda de habitat são as principais ameaças à 

biodiversidade na actual crise de extinção do Antropoceno. Quando consideramos esse impacto em 

ecossistemas ricos em espécies como as florestas tropicais, a perda de grandes frugívoros leva à 

diminuição do serviço de dispersão, a alteração de padrões de recrutamento de árvores e abundância 

relativa de espécies. Estas paisagens têm sido continuamente convertidas em zonas de pastoreio e 

cultivo, resultando em manchas reduzidas de floresta intercaladas por sistemas modificados. 

A dispersão de sementes é uma função dos ecossistemas criticamente importante, sendo essencial para 

lidar com a fragmentação de paisagens, sobre-exploração de recursos, invasões biológicas e até 

alterações climáticas. Este serviço depende em grande parte das relações entre plantas e animais 

frugívoros, que funcionam como uma rede de dispersão. As ferramentas derivadas da teoria de rede têm 

permitido compreender estes padrões de interação entre espécies, providenciando uma perspetiva 

abrangente do funcionamento da comunidade.  

Em África as redes de dispersão são ainda pouco estudadas, constituindo um facto alarmante devido à 

defaunação contínua por todo o continente. A Guiné-Bissau possui uma das últimas florestas primárias 

sub-humidas de África, onde está incluído o Parque Nacional de Cantanhez. A área do parque tem 

sofrido alterações ao longo dos anos, vendo assim a sua floresta já naturalmente fragmentada sujeita a 

aumentos de pressão de actividades antropogénicas, com conversão de terrenos para agricultura. 

Este trabalho tem como principal objectivo explorar as consequências da indução antropogénica de 

margens de floresta, através da comparação de redes de dispersão entre floresta madura e orla, em duas 

manchas de floresta integradas no Parque Nacional de Cantanhez. Pretende-se também compreender o 

papel de cada espécie na rede, e como estas poderão afectar o serviço de dispersão providenciado às 

plantas. Adicionalmente, espera-se compreender se existe influência do tipo de habitat e disponibilidade 

de frutos na riqueza e abundância de frugívoros e plantas. 

Para tal realizaram-se observações focais de árvores ao longo de transectos na floresta madura e nas 

orlas das manchas de floresta de Lauchande e Madina. Foram identificados frugívoros e registados os 

eventos de consumo ou transporte de frutos. Adicionalmente registou-se o número de árvores com frutos 

maduros ao longo dos transectos. As redes de dispersão foram posteriormente construídas através da 

análise de matrizes de interação, considerando o número de eventos de consumo de frutos por cada 

espécie de frugívoro. 

Foram identificadas mais interações na floresta madura, sendo que os frutos mais consumidos 

pertenciam a Ficus sp., Antiaris toxicaria e Strombosia pustulata, enquanto na margem as Ficus sp. 

foram o recurso mais amplamente preferido. Os maiores consumidores na floresta madura foram 

Ceratogymna elata, Treron calvus e Cercopithecus mona, enquanto na orla foram os Ploceus sp., 

Pycnonotus barbatus e Cercopithecus mona. Grandes frugívoros como calaus e primatas foram mais 

comuns na floresta madura, e a rede neste habitat estava mais ligada, com maior equitabilidade de 

interações e maior robustez a extinções tanto de plantas como de frugívoros. 

A estrutura de rede foi similar entre habitats, com o mesmo número de espécies de plantas, e apenas 

mais um frugívoro na floresta madura. Para ambos, foram detectados baixos valores de aninhamento, 

conectividade, especialização (H2’) e modularidade, em contrapartida a equitabilidade das interações 

foi elevada. A sobreposição de nicho foi baixa e a robustez elevada para as plantas e frugívoros das duas 

redes. No que diz respeito à importância das espécies de um nível da rede para as espécies no nível 

oposto, C. elata, C. mona e Pan troglodytes foram as mais importantes, enquanto as espécies de árvores 

foram a A. toxicaria, Ficus sp., e S. pustulata. Para a rede da orla, as espécies de árvores mais 
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importantes coincidiram com as da floresta madura e os frugívoros mais importantes foram Ploceus sp., 

P. barbatus e C. mona. Métricas como o Krisk, permitiram a criação de uma hierarquia do risco e 

vulnerabilidade da rede à perda individual de espécies, sendo que A. toxicaria e Ficus sp., foram 

respetivamente as mais preocupantes para a floresta madura e a margem. Todas as espécies de frugívoros 

e plantas nas duas redes, foram consideradas periféricas em relação ao papel que desempenham na rede, 

à excepção de Parinari excelsa e A. toxicaria, identificadas como conectoras de diferentes comunidades 

para a floresta madura e a orla respectivamente. A disponibilidade de frutos foi superior na floresta 

madura, mas a abundância e riqueza de frugívoros foi superior na orla.  

O facto de a floresta madura apresentar maior conectividade e maior equitabilidade de interação, poderá 

ser explicado pela maior presença de grandes frugívoros neste habitat. Para além disso, os baixos níveis 

de especialização e equitabilidade de interação resultam em elevada robustez para ambas as redes devido 

a redundância na rede, que providencia vias alternativos para a persistência da rede aquando a extinção 

de uma espécie. Dos vários módulos que compõe as redes, alguns incluíam aves de grande porte como 

calaus, e primatas. É possível que estes módulos sejam formados por espécies com limitações 

morfológicas e funcionais semelhantes, como a abertura do bico e o tamanho dos frutos. Árvores como 

A. toxicaria e P. excelsa, possíveis conectoras, com sementes grandes, foram consumidas por uma vasta 

gama de frugívoros de diferentes tamanhos, sendo que a forma de tratamento dos mesmos difere. Os 

frugívoros mais pequenos tendem a extrair a polpa e a deixar cair as sementes debaixo da planta-mãe, 

enquanto os primatas as transportam para longe nas suas bochechas. Outras árvores como Ficus sp. e S. 

pustulata possuem elevada importância para os frugívoros, sendo que as primeiras são consideradas 

recursos chave em florestas tropicais e consumidas por quase todos os frugívoros no estudo, enquanto a 

última parece estar mais associada à dieta de grandes frugívoros.  

Calaus e primatas apresentaram maior importância na floresta madura, sendo que o seu papel como 

dispersores já está amplamente documentado. Os seu grandes home ranges, a sua capacidade de se 

deslocarem entre manchas de habitat e atravessarem zonas degradas, e a capacidade de voo no caso dos 

calaus, e a sua capacidade de consumirem grandes frutos, resulta num aumento da sua importância para 

a dispersão e restauração de zonas degradadas. Nas margens, esse papel recai sobre Ploceus sp. e P. 

barbatus, sendo que o papel de dispersão para o primeiro não está muito estudado, enquanto o último é 

considerado um importante dispersor para uma espécie de pequeno tamanho. A maior abundância de 

potenciais dispersores na orla poderá dever-se ao maior número de visitantes da floresta aí registados. 

Esta maior ocorrência na margem pode também dever-se à baixa heterogeneidade da vegetação, árvores 

amplamente visíveis e elevada abundância de frugívoros nas áreas de cultivo circundantes. 

A dispersão de sementes é um importante condutor da regeneração de várias espécies de plantas. Estudos 

como este são relevantes porque permitem aceder à estrutura e funcionamento desta função ecológica 

numa perspetiva integrativa de rede. Para além disso, a identificação de árvores e potenciais dispersores 

mais importantes, permite propor medidas especificas, como a de plantação de determinadas espécies 

em zonas de forma a atrair frugívoros e as sementes que transportam. A identificação de potenciais 

dispersores permite ainda acompanhar o estado das suas populações e propor medidas direccionadas 

para a sua conservação.  

Em suma, medidas de conservação para o PNC, devem ter em conta os papeis de todos os componentes 

da rede de dispersão e os comportamentos das espécies que as compõem, procurando uma abordagem 

que tenha em conta o contexto regional e cultural do parque. 

Palavras-chaves: Interações planta-frugívoro; Degradação de floresta, Análise de rede; Aves; 

Mamíferos. 
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Summary 

Human induced forest destruction and habitat loss are the current main threats to biodiversity. Impacts 

on species rich ecosystems such as tropical forests are considered, along with the abundance of 

mutualistic relationships they include, the loss of a species, may have unpredictable and deleterious 

consequences in the continuity of these ecological processes. Most tropical plant species rely on animals 

to disperse their seeds, thus studying the disruption of mutualistic networks becomes urgent in 

fragmentation scenarios. In the last couple of decades ecologists have been using the network theory as 

a tool to understand the pattern of mutualistic interactions. However, few are the studies that use this 

tool to compare populations in different types of strata or habitat.  

In Africa, seed dispersal networks are poorly studied, which is alarming considering the increasing 

defaunation in the continent. Guinea-Bissau contains one of the last primary sub-humid forest in Africa, 

where the National Park of Cantanhez (CNP) is included. The area of the park has been continuously 

converted for agriculture practices and the forest increasingly fragmented.  

The goal of this work is to explore the consequences of induced forest edges, by comparing seed 

dispersal networks between mature forest and forest edge, in two forest patches within the CNP. 

Additionally, I aim to understand the role of each species within the network, and how they may affect 

the seed dispersal service provided to plants.  

Focal tree observations were carried along transects at the edge and mature forest in two forest remnants 

of the Cantanhez National Forest (Guinea Bissau) for 39 days, and fruit consumption events were 

registered. Additionally, trees along each transect were inspected for ripe fruits to test the influence of 

fruit availability on the frugivore community.  

Fruit availability was higher at the mature forest whereas frugivore abundance and richness was higher 

at the forest edge, mostly due to an increase in forest visitors. The structure of plant frugivore networks 

was quite similar in the two habitats, with low nestedness, connectance, specialization (H2’) and 

modularity. Interaction evenness was quite high for both. Niche overlap was low, and robustness was 

high for frugivore level and plant level in both networks. Regarding species roles, most species were 

peripheral, with only one connector detected for each habitat. In the mature forest there was a prevalence 

of large bodied frugivores, whereas small bodied frugivores were more abundant at the edge. Species 

such as the Yellow casqued hornbill, the Bark cloth tree and the Guinea Plum, pose the highest risk for 

the cohesion of the network of interactions if they go extinct for the mature forest, whereas Weaver, Fig 

trees and the Bark cloth tree bear the same roles at the forest edge.  

These results suggest that the dispersal by large bodied frugivores may be hindered at the forest edges. 

Moreover, mature forest had higher interaction evenness, slightly higher connectance and higher 

robustness for plants and frugivores, which may be explained by the increase in the importance of large 

bodied frugivores. Nevertheless, both networks had low to moderate nestedness, modularity and 

specialization, resulting in functional redundancy and network robustness in both habitats. These results 

are positive, but there is still a need for more information on how seed dispersers are moving between 

the two habitats, and how effectively is the service being provided.  

 

Keywords: Plant-frugivore interactions; Network analysis; Forest degradation; Birds; Mammals. 
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1. INTRODUCTION 
 

1.1 Habitat loss and forest fragmentation 

 

In the last 500 years humans have been impacting ecosystems, triggering an extinction wave 

with a rate and magnitude similar to previous events of mass extinction on Earth (Barnosky et al. 2011, 

Dirzo et al. 2014). Species extinctions may lead to the loss of different functional roles (Fahrig 2003, 

Hagen et al. 2012, Dirzo et al. 2014, Emer et al. 2018), which in turn has worrying consequences for 

ecological processes and functions, and  ecosystem services they provide (Bello et al. 2015, Haddad et 

al. 2015, Emer et al. 2018). Although extinctions are of great importance, declines in abundance and 

changes in species composition tend to have immediate impacts in ecosystem functions (IUCN 2007, 

Galetti et al. 2013, Dirzo et al. 2014). 

Human induced habitat loss and forest destruction are two of the main threats to biodiversity 

under the current extinction crisis of the Anthropocene (Ceballos et al. 2015). If we consider impacts on 

species rich ecosystems such as tropical forests (Turner 1996, Laurance 1999, Hill & Curran 2003), 

studies have shown that when depleted of large frugivores, this habitats tends to experience a decrease 

in seed dispersal, altered patterns of tree recruitment and relative species abundance (Terborgh et al. 

2001, Peres et al. 2002, Andresen 2007, Stoner et al. 2007, Wright et al. 2007a). These landscapes have 

been continuously converted to pasture or cultivated land (Brown & Lugo 1994), resulting  in forest 

fragmentation, which leads to smaller forest patches imbedded in a matrix of modified habitats (Sala et 

al. 2000, Laurance et al. 2014). Consequences of fragmentation and habitat loss occur both at the 

landscape and patch level (Turner 1996), affect biodiversity (Findlay & Houlahan 1997, Gurd et al. 

2001, Schmiegelow & Mönkkönen 2002, Lande 1987, Venier & Fahrig 1996, Gibbs 1998, Hargis et al. 

1999, Guthery et al. 2001) and also changing  habitat characteristics (Robinson et al. 1995, Boulinier et 

al. 2001, Fahrig 2003).  

A common feature of forest fragmentation is the increase  of edge habitats, transitional areas 

between forested and non-forested habitats, with their relative importance increasing as patch size 

decreases (Murcia 1995, Turner 1996). This leaves populations of plants and animals not only reduced 

and sub-divided, but also exposed to ecological changes associated with edges to which they may not 

be adapted (Wilcove et al. 1986, Laurance & Yensen 1991). Moreover, the impacts of such edges, may 

differ according to the size of the resulting patch, with small forest patches containing fewer species, as 

fragmentation typically triggers local extinctions (MacArthur & Wilson. 1968, Laurance 1997, Cordeiro 

& Howe 2003). Although remnant patches are able to sustain a significant fraction of biodiversity 

(Morante-Filho et al. 2016, Sfair et al. 2016, Beca et al. 2017), the long term persistence of viable 

populations require connectivity between patches (Hanski 1998, Leibold et al. 2004). The extensive 

fragmentation and habitat loss will ultimately isolate populations and may reduce their persistence, not 

only by physical isolation but also through barriers to gene flow. This process will eventually lead to 

lower genetic diversity and consequently low effective population sizes (Darvill et al. 2006, Ellis et al. 

2006, Vanbergen 2014). Tropical forests are rich in mutualistic relationships, as those found between 

plants and their pollinators and seed dispersers, thus the loss species may have unpredictable and 

deleterious effects on the continuity of these ecological processes (Howe 1977, Tewksbury et al. 2002, 

Cordeiro & Howe 2003). 
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1.2. Seed dispersal 

 

Seed dispersal is an essential stage in the life cycle of plants, corresponding to the mobile stage 

of this cycle, often requiring a vector for the transport of seeds (Janzen 1971, Howe & Smallwood 1982, 

Nathan et al. 2008), and is an important process for ecosystem functioning. It allows plants to evade 

intraspecific competition and avoid high mortality rates due to higher levels of predation and frequency 

of fungi attacks near the parental plant (Janzen 1970, Stiles 1992, Poulsen et al. 2002). It also allows 

plants to reach and colonize new areas (Howe & Smallwood 1982, Traveset et al. 2014, Correia et al. 

2017).  Plants have different strategies of seed dispersal that can either require an abiotic vector, e.g. 

water (hydrochory) or wind (anemochory), a biotic vector, such as the mutualistic animal dispersers 

(zoochory), or just an intrinsic mechanism, such as explosive structures (balistochory) (Howe & 

Smallwood 1982). Regarding zoochory, or animal-mediated seed dispersal, seeds can be transported 

externally through fur, hair and/or skin adhesion (exozoochory), or internally in the digestive tract of an 

animal after ingestion of fleshy fruits (endozoochory) (Howe & Smallwood 1982). Animals are 

important dispersal vectors, and up to 80% of the vascular plants in the tropics depend of them to some 

extent (Howe & Smallwood 1982). Animals actively remove seeds away from the parental plants, 

influencing dispersal patterns from short distance dispersal events (< 25m) to long distance dispersal 

events (> 10 km) (Traveset et al. 2014), transporting seeds to locations with favorable conditions for 

recruitment such as forest openings (Wenny & Levey 1998), enhancing germination through 

scarification (Verdú & Traveset 2004) and providing with their feces a micro-site with conditions 

favorable to germination (Sánchez de la Vega & Godínez-Alvarez 2010). The efficiency of seed 

dispersal depends on several factors, including the number of seeds carried, the quality of the gut 

treatment when being dispersed, the distance of dispersal, and the conditions of the dropping area for 

germination and recruitment (Schupp et al. 2010, Correia et al. 2017). Knowledge on seed dispersal has 

become critically important to deal with the ongoing landscape fragmentation, overharvesting, 

biological invasions, and even climate change (McConkey et al. 2012, Reid et al. 2015, Stone et al. 

2017). 

 

1.3 Mutualistic networks 

 

It is widely accepted that the loss of biodiversity has the potential to disrupt ecosystems and 

their functioning (Kaiser-Bunbury et al. 2017), especially if we consider that a diverse assemblage of 

dispersers is essential to maintain long-term vegetation dynamics and forest regeneration (Terborgh 

2013, Heleno et al. 2014, Correia et al. 2017). It has also become evident, that habitat restoration should 

not focus solely on the recovery of diversity, flagship species and physiognomic vegetation traits, but 

also in the complex interactions that are involved in providing ecosystem functions and sustaining its 

communities, which may as a whole, perpetuate our conservation efforts by natural processes (Group 

2004, Palmer et al. 2006, Rodrigues et al. 2009, Heleno et al. 2010b, Devoto et al. 2012, Ribeiro da 

Silva et al. 2015, Correia et al. 2017). A network perspective can be used to study the interactions 

patterns of interdependencies between plant and frugivores. In the last couple of decades ecologists have 

used network theory and tools derived from it, to understand these patterns of interactions, which allows 

a community-wide perspective (Solé & Montoya 2001, Bascompte & Jordano 2007), while 

simultaneously aiming to explore the role of individual species within these networks (Olesen et al. 

2007). Such tools have been applied in multiple contexts (Memmott et al. 2004, Tylianakis et al. 2007, 

Memmott 2009, Mello et al. 2011a) and have provided useful information for species conservation 

(Tylianakis et al. 2010, Gray et al. 2014, Kaiser-Bunbury & Blüthgen 2015). Initially, network studies 
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used binary networks (Hall & Raffaelli 1993), with interaction being recorded as present or absent. 

However, interactions between species are not equally important (Paine 1980, Benke & Wallace 1997, 

Ings et al. 2009), and such acknowledgment has resulted in an increased effort to use quantitative data 

on species interactions. 

The structure of such networks can be assessed through metrics that consider the diversity and 

distribution of interactions, and also the importance of each species within them (Donatti et al. 2011, 

Saavedra et al. 2014). The increasing research effort on how these networks are structured has started 

to uncover similar patterns and contrasting differences across different types of interactions (Bascompte 

et al. 2003, Lewinsohn et al. 2006, Thebault & Fontaine 2010, Stouffer 2012). Recent studies have 

shown that interactions tend to be asymmetric in terms of degree (number of links of a species) and 

interaction strength, in mutualistic and antagonistic networks (Bascompte et al. 2003, 2006, Vázquez & 

Aizen 2004, Vázquez et al. 2005, Guimarães et al. 2006). Regarding their structure, mutualistic networks 

tend to have a nested pattern, in which less connected species (specialists) tend to interact strongly with 

a subset of highly connected species (generalists), which form a core of highly connected generalist 

species (Bascompte & Jordano 2007). This introduces functional redundancy in the system, offering 

different routes for network persistence and conferring robustness against species extinctions cascades 

(Bascompte & Jordano 2007, Blüthgen et al. 2007). This contrasts with  antagonistic networks, such as 

plant-herbivore, which are less nested and more modular, and are characterized by the existence of well-

defined groups of tightly interacting species (modules), with many intragroup links and fewer 

intergroups links (Dicks et al. 2002, Guimarães et al. 2007, Olesen et al. 2007, Bascompte 2010, 

Thebault & Fontaine 2010). These contrasting architectures are thought to be what allows the persistence 

of species on both network types (Thebault & Fontaine 2010). However, they are not mutually exclusive 

(Fortuna, et al. 2010), rather reflect complementarity and convergence phenomenon’s, related to co-

evolution and trait-matching between interacting species within a network (Nuismer et al. 1999, 

Thompson 2005, Jordano et al. 2007, Santamaria & Rodriguez-Gironés 2007, Vázquez et al. 2009, 

Fortuna et al. 2010, Guimarães Jr et al. 2011). Mutualistic networks define the nexus of ecosystem 

functions (Ings et al. 2009), and allow important insights about the robustness of a network, and its 

susceptibility to a cascade of secondary extinctions following the extinction of a specific species 

(Bascompte & Jordano 2007, Bastolla et al. 2009, García-Algarra et al. 2017). Previous works with both 

pollination networks and food webs, have shown that systems with skewed link distributions, are more 

robust to the loss of random and less connected species. On the other hand, the loss of generalist species 

(highly connected), may be of greater risk for the networks (Dunne et al. 2002, Memmott et al. 2004). 

Important work has also been done regarding species roles in the network, to further identify key species 

and prevent the collapse of the whole system. Such roles explore the position of a species within modules 

and in relation to species in other modules: peripheral species have few links within their module and 

seldom to others, a connector has multiple links to other modules, being extremely relevant to the 

cohesion of the network. A module hub on the other hand is paramount for the consistency of its own 

module, and finally a network hub acts as both a connector and a module hub, and is a key node for the 

coherence of both its module and the network (Guimerà & Amaral 2005a, 2005b, Guimerà et al. 2005, 

Olesen et al. 2007). 

Network approaches are thus  important as they offer a community wide perspective that 

addresses issues such as ecosystem resilience and functional performance of the community (Rodrigues 

et al. 2009, Devoto et al. 2012, Walker 2013, Kaiser-Bunbury et al. 2017), which have been proven 

useful to test the efficiency of conservation efforts and restoration programs (Ribeiro da Silva et al. 

2015, Correia et al. 2017, Kaiser-Bunbury et al. 2017). Furthermore, a network approach seems to be 

useful to promote guidelines for conservation, as it allows the characterization of a species role within 
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its network and their importance for the landscape scale, which in turn may help accelerate network re-

construction and combat effects of habitat fragmentation (Ribeiro da Silva et al. 2015). 

 

1.4 The case study of Cantanhez National Forest 

 

African seed dispersal networks have so far been poorly studied, which is alarming in face of 

the defaunation occurring across the continent, where key dispersers such as primates, birds and bats are 

becoming critically endangered (Vanthomme et al. 2010, Campos-Arceiz & Blake 2011, Schleuning et 

al. 2011), and forests are lost (Rudel & Roper 1996). The community wide effects of the extinction of 

such species depends on the structure of mutualistic networks and ecological correlates (Bascompte & 

Jordano 2007), thus more studies on this issue are of paramount urgency. Guinea-Bissau contains one 

of Africa’s remaining sub-humid forest (Oom et al. 2009), and  has been identified by World Wide Fund 

for Nature as one of the 200 most important ecoregions in the world. This recognition resulted in large 

swaths of forest being included in the Cantanhez Forest National Park (CNP). The CNP was created in 

February 2011 and encompasses an area of 1067.67 km². As in most parts of the world, this forest has 

been changing considerably due to human encroachment, and consequent human activities. In this area, 

activities consist mainly of slash and burn agriculture to allow the cultivation of staple food such as rice 

(Oryza spp.) and cassava (Manihot esculenta), along with the conversion of forests into cashew 

(Anacardium occidentalis) plantations (Hockings & Sousa 2013). Conversion of the forest land into 

scrubland and cultivation areas, has resulted in forest degradation and habitat fragmentation. The result 

of land use changes has been the depletion of the natural landscapes of resources that are essential for 

its regeneration and forest succession through animal seed dispersal (da Silva et al. 1996, Nepstad et al. 

1996). Thus, understanding the structure and function of the seed animal-dispersal network in forest 

fragments of the CNP will add to the knowledge about this system, which is essential to inform 

conservation strategies that aim to enhance the forest’s natural regeneration through animal conservation 

directives.  

 

1.5 Main Goals 

 

My main goal was to explore the consequences of induced forest edges, by comparing seed dispersal 

networks between mature forest and forest edge, in two forest patches within the CNP. Furthermore, I 

aimed to understand the role of each species within the network, and how they may affect the seed 

dispersal service provided to plants. To this end the objectives of the present work were three-fold: 

1. Characterize the plant-frugivore interactions of the forests of CNP, and how they differ between 

mature forest and forest edge. 

2.  Identify the role of the different species in the plant-frugivore networks. 

3. Assess the influence of resource availability, i.e. fruit availability, on parameters such as frugivores’ 

species richness and frugivores’ abundance. 

 

2. Methods 
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2.1 Study area and sampling design 

 

Field work was conducted from January to March 2018, in the CNP (Fig. 2.1) located in the 

southwestern region of Guinea-Bissau and the Tombali Administrative region (10°55’–12°45’ N, 

13°37’–16°43’ W). With a tropical semi-humid climate, the CNP experiences a long dry season from 

November to May, and a rainy season from June to October (Catarino 2004). In this region, rainfall may 

reach up to 2,400 mm each year and the average temperature ranges from 28º to 31º C. The CNP is 

composed of a patchy mosaic of forest, savanna and mangroves (Gippoliti & Dell’Omo 2003, Catarino 

2004) supporting a large proportion of the West Africa’s remaining sub-humid forest (Oom et al. 2009). 

In 2008, Cantanhez was declared National Park due to the recognized need of conservation of the local 

biodiversity and the promise of development of ecotourism ideas that would financially benefit the local 

communities (Gippoliti et al. 2003). In the last three decades, the intensification of anthropogenic 

pressures, mainly crop production, led to an annual rate of deforestation of 1,17%, increased habitat 

fragmentation, and a shift from closed to open forest and savanna-woodland mosaic (Oom et al. 2009).  

 

Two forest remnants, Lauchande and Madina, were selected as study sites within the CNP. At 

each site, two forested habitats were sampled: mature forest, starting ca 200m from the edge, and forest 

edge, the transition area from mature forest to deforested areas, with multiple soil uses mainly for 

agricultural purposes. Madina was surrounded by mangroves and farmlands on opposite sides of the 

forest, while Lauchande was mainly delimited by abandoned or cultivated fields. To control for the edge 

effect, which usually includes proliferation of shade intolerant vegetation along fragment’s edges as 

Figure 2.1 Location of the two forest remnants (Lauchande and Madina) located within the PNC (coloured in light yellow) in 

Guinea Bissau. The squared frame shows the transects made within both forest remnants. The orange lines represent the edge 

transects while the lines in different blue shades corresponds to mature forest transects. 
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well as changes in the microclimate and light regimes (Laurance & Yensen 1991), a strip of ca 25m in 

the transition between the two types of forest was not considered. 

Within each forest habitat, I selected transects ranging from 2-3 km and mapped the location of 

fleshy fruit trees present along the transects. All mapped fleshy fruit trees were registered only when 

found within 7 meters to the left or right of the main path. At Madina, two transects were chosen for 

each habitat, and at Lauchande three, making a total of 5 edge and 5 mature forest transects. Each 

transect was sampled at least three times, alternating between forest remnants for 39 days. All transects 

were mapped using the Runkeeper app (available at https://runkeeper.com/).  

 

2.2 Plant-Frugivore interactions 

 

Plant-frugivore interactions, as in fruit-consuming events by each frugivore species, were 

recorded along each transect by focal observation, with the assistance of binoculars, and performed at 

all fruiting trees with good visibility. These transects were covered during two four-hour periods, one 

starting at sunrise and one late in the afternoon until the sunset. To facilitate focal tree observations in 

both forest remnants, the edge trees were observed from the deforested areas looking in. Observation 

sessions at focal trees started when a tree with ripe fruits was located and lasted up to 1h. Every new 

arrival or departure of a frugivore restarted the clock. If no activity was detected for a period of 15 

minutes, the session would end before reaching the 1h limit. On the second half of the day, the 

observation sessions were repeated for the same trees. In total I performed 138 hours of observations. 

All animals visiting the focal trees were recorded, and the frugivore identified to the lowest taxonomic 

level possible, resorting to published field guides (Borrow & Demey 2001, Kingdom 2016). The 

duration of animal visits and the number of fruits removed (either by swallowing on the spot or carrying 

it away) were also registered. When birds visited the focal tree in flocks, and simultaneous observations 

were impossible, foraging behavior was recorded for visible randomly chosen individuals (Saavedra et 

al. 2014). At the end of each session tree height was estimated and its GPS coordinates registered. To 

maximize data collection and the number of interactions, whenever a frugivore was spotted on a tree 

between observation periods, that was registered as occasional. 

 

2.3 Networks analysis 

 

To analyze the pattern of interactions between plant species and their potential seed dispersal 

animal species, a network of interactions was compiled for each forest habitat. Interaction frequency 

was defined as the number of fruit-eating events of each animal species to the different plant species, or 

if an animal left the focal tree carrying fruits. Interactions were then organized in a matrix with animals 

as columns and plants as rows.  

Networks were characterized by calculating several commonly used network descriptors to 

evaluate the distribution of interactions across the network and its overall structure: 

1) Network specialization (H’2), which measures the degree of niche complementarity between 

species, integrating species-level specialization across the entire community, and reflecting the 

functional niche of frugivore species relative to the available fruit resources (Blüthgen et al. 2006, 

Albrecht et al. 2013, Chama et al. 2013). 
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2) Weighted connectance, that estimates the proportion links that are actually observed in the 

networks (Jordano 1987). 

3) Interaction evenness, which estimates how homogenous is the distribution of interactions 

between all species in the network (Tylianakis et al. 2007). 

4) Vulnerability, which is the weighted mean of species in the frugivore level of the network 

per species in the plant level (Tylianakis et al 2007). It indicates the mean number of frugivores per 

plant species. Vulnerability is commonly calculated alongside its analogue network descriptor - 

generality, which quantifies the mean number of plants species per frugivore in the network (Schoener 

1989). 

5) Nestedness, measures how strongly interactions of a network conform to a nested pattern. 

This pattern is characterized by little connected species (specialists) interacting with others that are a 

subset of species interacting with highly connected ones (generalists) (Bascompte et al. 2003). 

6) Modularity, which estimates the extent to which species form groups of tightly connected 

species-modules, interacting more often with each other than with species in other modules (Guimerà 

& Amaral 2005b). 

7) Network robustness, quantifies the degree to which a network can withstand a cascade of 

secondary extinctions of plant species following the random loss of their animal dispersers (Memmott 

et al. 2004, Burgos et al. 2007). 

8) Niche overlap, which determines the closeness in interaction patterns between species that 

share the same trophic level (Krebs 1989). 

To test if the empirical network parameters were not a mere result of stochastic processes, I 

resorted to null models, i.e. generation of randomized data sets (Gotelli 2000). There are several types 

of null models, but their foundation consists on randomly reassigning pairs of interacting species from 

the observed interaction matrix to obtain simulated networks (Gotelli 2000, Vázquez & Aizen 2003, 

Blüthgen et al. 2008, Ribeiro da Silva et al. 2015). I used the vaznull model, based on the algorithm by 

Vázquez et al 2007, which is a conservative model that preserves the original structure of the network 

and considers the original species richness, interaction frequency and connectance (Dorman et al 2008). 

Finally 1000 null networks were produced, to which observed networks were compared using a z-score 

test to check if the observed scores were significantly different from random expectations (Ribeiro da 

Silva et al. 2015). 

 

2.4 Network species’ roles 

 

To investigate the potential importance of animal species to the seed dispersal service provided 

to plants species level metrics were also calculated, such as: 

1) Species’ degree, which quantifies the number of links of each species (Bascompte et al. 2003). 

2) Species’ strength, which quantifies the importance of each frugivore species for the set of 

plant species and vice versa. It is defined as the sum of the dependencies of species from one level of 

the network to the species on the other level (Bascompte et al. 2006). 

3) Species’ roles: the modules obtained in modularity analyses allow the classification of nodes 

(species) into different roles, such as peripheral, connectors, module and network hubs (Olesen et al. 



8 

 

2007). These roles are described by two parameters: z, i.e., standardized number of links to other species 

in the same module, and c, i.e., the level to which the species is connected to species in other modules 

(Guimerà & Amaral 2005a, Olesen et al. 2007). A peripheral species has both a low z (≤2.5) and a low 

c (≤0.62), it has a few links inside its own module and rarely any to other modules. A connector species 

has a low z (≤2.5) and a high c (> 0.62), connecting different modules and is thus important to network 

cohesion. A module hub has a high z (> 2.5) and a low c (≤ 0.62) and has an important role to the 

consistency of its own module. A network hub has both a high z (> 2.5) and a high c (> 0.62) and is thus 

important to the coherence of both the network and its own module (Guimerà & Amaral 2005a, 2005b, 

Guimerà et al. 2005).  

4) Krisk was estimated to assess how vulnerable the network is to the loss of a particular species, 

allowing the identification of a species whose disappearance poses a greater risk to the entire network 

(García-Algarra et al. 2017). 

All network and species-level metrics were calculated using the bipartite package (Dormann et 

al. 2008, 2009) in R software (version 3.5) (The R Development Core team 2008), except for Krisk, which 

was estimated with the package kcorebip (García-Algarra et al. 2017) also in R environment. 

 

2.5 Influence of fruit availability and habitat type 

 

Fruit availability was estimated by counting all ripe fruiting trees along all the transects, 

including trees that did not hold the adequate visibility conditions for focal observations. During this 

stage, tree samples were collected from both Lauchande and Madina, for later identification. Plants were 

photographed and other information such as habitat, vegetation type and GPS coordinates were 

registered. All plant samples were pressed and dried at room temperature or under the sun. Fruits and 

seeds were also collected and stored in porous coin envelopes with silica gel. 

To account for effects of habitat type on fruit availability, generalized linear mixed models 

(GLMMs) were performed. Habitat type (forest edge and mature forest) was included as a fixed effect, 

whereas forest remnant (Lauchande and Madina) and sampling date were included as random effects.  

GLMMs were also fitted to assess the effects of habitat type and fruit availability on frugivore 

abundance and richness considering interactions, i. e. fruit consumption event by an individual on a tree. 

For fixed effects, habitat type (forest edge and mature forest) was considered once more, along with 

fruit availability, and for random effects, again forest remnant (Lauchande and Madina) and sampling 

date.  

All independent variables were subject to a graphical exploratory analysis and checked for 

collinearity using a Spearman correlation matrix. Variables with correlation values > 0.7 were excluded 

from the analysis; such was the case of the variable “fruit availability” that was excluded as it was 

correlated with habitat type, in the models of frugivore abundance. All GLMMs assumptions were tested 

beforehand and different models of the same dataset were compared using the Akaike Information 

Criteria for small samples (AICc) (Burnham & Anderson 2014). Some species were not included in the 

modelling procedure, because they were only present in one of the habitat types. All models were 

analyzed with a Poisson distribution with the R package lme4 (Bates et al. 2015). 

The average size of all potential disperser species observed was estimated using data obtained 

from published literature (Zihlman & Cramer 1978, Smith & Jungers 1997, Glenn & Bensen 1998, 

Nowak 1999, Borrow & Demey 2001). 
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3. Results 
 

During the sampling period, 1540 animal visitors (visits with and without fruit consumption) 

were recorded at the focal trees, of which 77 frugivores were observed feeding on fruits. Nine tree taxa 

were considered for observation: Fig trees (Ficus sp.), Bark cloth tree (Antiaris toxicaria, Lesch.), White 

silk-cotton tree (Ceiba pentranda, L., Gaertn), Velvet tamarind (Dialium guineense, Willd.) African oil 

palm (Elaeis guineensis, Jacq.), Guinea Plum (Parinari excelsa, Sabine) and African nutmeg 

(Pycnanthus angolensis, Welw.), Anthostema senegalense (A. Juss) and Sterculia sp. 

Regarding the selected forest habitat, mature forest had 900 registered visitors while the edge 

had 640. In both forest remnants, trees in the mature forest received more visitors than the edge, and the 

frugivore species richness followed the same trend with 29 species in the interior versus 19 in the edge. 

Twenty-six bird species, 5 primates and at least 2 species of squirrels were detected. Trees attracting the 

highest number of visitors were Fig trees (n=734), Bark cloth tree (n=201), White silk-cotton tree 

(n=197) and S. pustulata (n=175). At the mature forest, African Green pigeons (Treron calvus) (n=238), 

Common bulbuls (Pycnonotus barbatus) (n=106), Western piping hornbills (Bycanistes fistulator) 

(n=78) and Great blue turacos (Corythaeola cristata) (n=68) were the most frequent visitors to fruiting 

trees, while in the forest edge these were replaced by Weavers (Ploceus sp.) (n=143), Violet-backed 

starlings (Cinnyricinclus leucogaster) (n=108), Commons bulbuls (n=97) and African green pigeons 

(n=85). The median weight of frugivores was higher at the mature forest, mostly due to the presence of 

large bodied species such as all primates and bird species such as hornbills and turacos (Fig. 3.1). 

 

 

3.1 Plant-Frugivore networks 

 

When considering fruit consumption events, fewer interactions (36) were detected in the edge 

in relation to the mature forest habitat (41). At the forest edge, fruits of Fig trees (n=19) were the most 

consumed, whereas at the mature forest the most consumed were Bark cloth trees (n=13), Fig trees (n=9) 

and Strombosia pustulata (Oliv.) (n=9) (Fig. 3.1). At the mature forest, the most significant consumers 

were Yellow-casqued Hornbills (Ceratogymna elata) (17.1%), African green-pigeons (17.1%) and 

Figure 3.1 - Differences in median weight of frugivores at the forest edge and mature forest forest. Boxplot 

on the left, includes mammals and birds, and the right only birds are compared. 
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Mona monkeys (Cercopithecus mona) (17.1%), while at the edge the most significant were Weavers 

(Ploceus sp.) (16.7%) and Common bulbuls (Pycnonotus barbatus) (16.7%) (Fig. 3.2).  

 

 

   

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

The structure of the-plant-frugivore networks from both types of forest was very similar, having 

the same number of plant species (7 species) and differing by one in the number of frugivore species 

(11 for the edge, 12 for the mature forest) (Fig. 3.2). Nestedness and interaction evenness of the 

secondary forest network were the only descriptors that significantly differed from random expectations, 

and both were lower than expected by null model. Nestedness showed the most noticeable difference 

between forest types, with the forest edge showing a much higher value of nestedness than the mature 

Figure 3.2 - Quantitative plant-frugivore network of the mature forest forest (top) and forest edge (bottom) in the Cantanhez 

National Park, Guinea-Bissau. The upper boxes represent frugivore species, whereas the lower boxes represent plant species. 

Box width corresponds to the relative fraction of interactions contributed by each species to the networks. Line width is 

proportional to the interaction frequency between each frugivore and plant species. At the upper level, black rectangles are 

mammals and grey are bird dispersers. Species names may be found in Table 3.3. 
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forest. Connectance was relatively low and slightly higher in mature forest. Interaction evenness was 

high, with the mature forest exhibiting the highest scores. Mature forest had higher generality, while the 

edge showed higher vulnerability (Tab. 3.1). Both habitats showed moderate levels of modularity and 

network specialization, with the forest edge being more modular and more specialized. Five modules 

were found at the mature forest, whereas at the forest edge 6 modules were detected. 

Niche overlap for the frugivore level was slightly higher for the forest edge, whereas the niche 

overlap for the plant level showed an opposite trend. Robustness for both levels was high, with the 

mature forest exhibiting the highest scores for the frugivore and plant levels (Tab. 3.1). 

 

Table 3.1 - Network level descriptors calculated for mature forest (Mature_F) and forest edge (Edge F). The observed values 

are presented for each descriptor, along with the significance results of a z-score test used to compare the observed values 

with that of the mean of 1000 randomly regenerated networks. 

 

Metrics Mature_F z score p value Edge_F z score p value 

Weighted nestedness 0.065 -2.058 0.039 0,403 -0.083 0.933 

Weighted connectance 0.189 -1.613 0.107 0,182 0.098 0.922 

Interaction evenness 0,692 -2.897 0.004 0,639 1.647 0.099 

Specialization (H2’) 0.308 0.885 0.376 0,476 0.065 0.948 

Niche Overlap HL 0.323 -0.809 0.419 0,395 0.042 0.967 

Niches Overlap LL 0.255 -0.709 0.478 0,119 -0.767 0.443 

Robustness HL 0.783 0.624 0.533 0,653 -0.294 0.769 

Robustness LL 0.696 0.605 0.545 0,587 -1.195 0.232 

Generality 2.594 -1.215 0.224 1,774 -0.284 0.777 

Vulnerability 4.570 -1.079 0.280 4,768 0.148 0.883 

Modularity 0.382 0.631 0.375 0.463 0.923 0.357 

 

3.2 Network species’ roles 

 

For mature forest, species strength, ranged from 1.17 to 0.08 for frugivores, whereas that of 

plants on frugivores ranged from 3.64 to 0.29. The most important frugivores were Yellow casqued 

hornbills, Mona monkeys and Chimpanzees (Pan troglodytes). Additionally, trees with the highest 

strength were Bark cloth tree, Fig tree and S. pustulata. For forest edge, species strength of frugivores 

on trees ranged from 1.80 to 0.05 whereas that of plants on frugivores ranged from 6.0 to 0.25. Weavers, 

Common bulbuls and Mona monkeys had the strongest impact, and as for tree species, Fig tree, Bark 

cloth trees and S. pustulata had the highest scores (Tab. 3.2). 

Using Krisk analyses I was able to identify species whose loss poses a greater risk to network 

cohesion. For mature forest the frugivore species posing the highest risk were Yellow casqued hornbill 

followed by African green pigeon, Mona monkeys and Congo pied hornbill (Lophocerus fasciatus) 

whereas for tree species were Bark cloth tree, Fig tree and S. pustulata. For forest edge the riskiest to 

lose frugivores, were Weavers, followed by Common bulbuls and Mona monkeys, whereas the tree 

species were Fig tree, Bark cloth tree, and S. pustulata . If we look at the system without differentiating 

groups, the species whose loss poses a greater risk for the mature forest was the bark cloth tree whereas 

for the forest edge was the Fig tree (Tab. 3.2). 
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Regarding species roles in the networks, in mature forest all frugivore species were peripheral, 

with four out of the twelve species having no links outside their own module. Most of the plant species 

(5) were peripheral, with three species showing no links outside their own module. Guinea Plum was 

identified as possible connector. For forest edge, all frugivore species were peripheral, with six having 

no links to species outside their own module. All six plants species were peripherals except for the Bark 

cloth tree which was a connector (Tab. 3.2, Fig. 3.3). 

 

Table 3.2 - Species level descriptors calculated for mature forest (left) and forest edge (right). The 

observed values are presented for each frugivore and plant species.  

 

Figure 3.3 Distribution of frugivore and plant species according to their network role. Each dot represents a species, and 

each small pane shows the role distribution of selected group of species. Upper panes are of the mature forest, and lower 

panes of the forest edge. From left to right, frugivore and plant graphs.  
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3.3 Habitat type and fruit availability 

 

There was an overall effect of habitat type on fruit availability with mature forest displaying the 

highest availability (Mature forest with 440 trees and the edge with 114). Concerning individual species, 

White silk-cotton tree, Sterculia sp. and Velvet tamarind showed a significantly higher abundance at the 

forest edge. Some species were not included in the model because they were only present in one of the 

forest types: the African nutmeg registered only in the mature forest and A. senegalense and African oil 

palm in the forest edge (Tab. 3.3). 

Frugivore abundance and richness differed significantly between habitats and was slightly 

higher at the forest edge. Habitat type affected several frugivores: African pied hornbill, Mona monkeys, 

Green turacos (Tauraco persa) and African green pigeons consumed more fruits at the mature forest, 

whereas Squirrels, Great blue turacos, Chimpanzees and Weavers seemed to prefer to forage at the forest 

edge. Common bulbuls showed no significant effects on either habitat type or fruit availability. Some 

animal species were not modelled because they were observed in only one of the habitats: African pied 

hornbills, Yellow-casqued hornbills and Temminck’s Red Colobus (Piliocolobus badius temminckii), at 

the mature forest, whereas Violet backed-starlings and the Double-toothed barbets (Pogonornis 

bidentatus) were recorded exclusively at the edge (Tab. 3.4).  

 

 

 

 

 

Table 3.3 - Selected models regarding the influence of habitat type on fruit availability. 
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4. Discussion 
 

In the present work I was able to assess how the process of seed dispersal might be affected by 

deforestation of the native forest in the CNP, by looking at differences between the structure of plant-

frugivore interaction networks, and the role of species in this process. Network structure was quite 

similar in mature forest and forest edge, with low nestedness, connectance, specialization and 

modularity. Interaction evenness was high for both networks. Furthermore, niche overlap for plants and 

frugivores was low, while robustness was quite high. Generality and vulnerability were low, and similar 

in both networks. The results also show that both networks, probably due to their size, are composed of 

mostly peripheral species, having few links and mostly within their module. Some species are of greater 

importance to the network: in the mature forest, frugivores such as Yellow casqued hornbills and trees 

such as the Bark cloth trees possess the most connections and represent the highest risk for the network 

if they go extinct. For the forest edge, those roles fall to Weavers, for the frugivore level, whereas Fig 

trees seem to be the most important plant species. Frugivore abundance and richness were higher at the 

forest edge, while fruit availability was higher at the mature forest. Fruit availability was highly 

correlated with habitat type, so no isolated significant effects were detected on frugivore abundance and 

richness. 

Regarding limitations or possible biases, it is important to consider the observation conditions 

in each habitat. The characteristics of the two study sites, only allowed observations of the edge from 

outside the forest remnant. This context may have benefited focal observations by allowing a picture of 

the whole tree, providing greater visibility. On the other hand, it should be taken into to account, that 

Table 3.4 - Selected models regarding the influence of habitat type and fruit availability on 

frugivores. 
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the greater visibility also meant more exposure of the observer, due to the absence of camouflaging 

vegetation such as trees in those surrounding open areas. In this study, fruit availability was established 

as the number of ripe fruit trees along the transects. This approach may be over/under estimating the 

fruit availability for both habitats, and ultimately the importance of tree species for frugivores and the 

network as a whole. Finally, the number of frugivore visits was significantly higher than the registered 

number of fruit consuming events. Although this may signal an underestimation of the number of 

frugivores consuming fruits, I consider that this information is important, and that the effort should be 

directed towards improving and using techniques that allow this type of data collection, such as camera 

traps in tree canopies.  

 

4.1 Plant-Frugivore networks 

 

The structure of the plant-frugivore networks was quite similar between the two habitat types 

considered, although some differences should be emphasized. The network at the edge was more nested, 

and this may be related to differences in the frugivore community, considering, that there was a 

significant overlap between plant species present in both habitats.  Menke et al., (2012), found the same 

pattern, with nestedness increasing strongly from mature forest to forest edge. The less nested pattern 

seen at the mature forest seems to underline that frugivores are not all equivalent at dispersing seeds in 

regards to their abundance (Blüthgen 2010, Fortuna et al. 2010, Correia et al. 2017). Moreover, a higher 

prevalence of large bodied frugivores at the mature forest was detected, with some consuming fruits 

exclusively there. Previous studies reported that specialist frugivores are often large species (>250g) 

that rely on fruits as a critical resource and live in small groups (Howe 1993, Cramer et al. 2007). The 

presence of large bodied frugivores along with small bodied ones at the mature forest, contrasts with the 

edge, where the most important frugivores are small bodied birds. Although network specialization 

(H2’) is slightly higher at the edge, both networks show medium to low scores, which are expected for 

networks in sub-tropical and tropical ecosystems (Blüthgen & Klein 2011, Schleuning et al. 2011, 2012, 

Ribeiro da Silva et al. 2015). In the case of the Cantanhez forest, it’s possible that the low network 

specialization is a consequence of the distance between fruiting trees and the low number of trees 

producing fruits simultaneously, which limits the fruit choice and concentrates fruit consumption in a 

smaller number of species. With low specialization, the high interaction evenness for both networks 

comes with no surprise. A more homogenous distribution of the interactions may have impacts on seed 

dispersal services not accessed by fruit consuming events. Frugivores may be consuming mostly the 

same plant species and, although niche overlap was low, their roles as dispersal agents might still be 

complementary (Fleming & Estrada 1993, Schleuning et al. 2011). Seed dispersal for both habitats might 

differ not by the distribution of frugivores but by their behavior, such as the use of micro-habitats, the 

distance travelled before seed release, home range size and habitat preferences (Bascompte & Jordano 

2007, Schleuning et al. 2011, Morales et al. 2013, Saavedra et al. 2014). An even contribution of species 

with different morphologies in the mature forest may in the end contribute to a higher quantity and 

quality of seed dispersal (Saavedra et al. 2014). 

Connectance is a network descriptor closely related to specialization, being sometimes 

interpreted as the degree of generalization or redundancy of the network (May 1972, Dunne et al. 2002, 

Estrada 2007, Blüthgen et al. 2008). This descriptor follows the same trend as specialization in this study 

and is slightly higher at the mature forest. Modularity was moderate for both networks, but slightly 

higher for forest edge. Modularity is an important descriptor when it comes to providing information 

about network robustness (Schleuning et al. 2011). Modular networks are connected not only by hubs, 

i.e., species with many interactions, but also by connectors, i.e., species connecting different modules, 
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so their structure is more sensitive to the removal of species (Schleuning et al. 2011). In this study, low 

levels of connectance were also detected for both networks, which may be concurrent with the data 

provided by Fortuna et al., (2010), stating that communities with low connectance will have equal values 

of modularity and nestedness. These results point to the communities at least at the edge being 

moderately nested and modular at same time (Fortuna et al. 2010). This pattern has been observed in 

pollination networks, with the overall network being modular and a nested pattern being detected within 

its modules (Olesen et al. 2007). 

Vulnerability and generality are analogous indices and provide complementary information, 

regarding the two different levels of the network (Bersier et al. 2002). It is important to consider that 

these metrics were initially used for plant-parasite networks, with more parasites per plant, resulting in 

higher network vulnerability (Tylianakis et al. 2007). In the case of plant-frugivore networks, its 

interpretation is the opposite, with higher vulnerability meaning a higher number of animals providing 

a dispersal service to each plant. In this case, these results are quite concurrent with low specialization 

and high interaction evenness found for both networks, but we should take caution in inferring about 

network vulnerability considering the small network size (Dormann et al. 2009). 

Robustness for both frugivores and plants was quite high in the two habitats, although slightly 

higher at mature forest. High robustness is a common characteristic of various mutualistic networks 

(Memmott et al. 2004, Mello et al. 2011a), and is usually associated with more nested networks, which 

allow for different paths for network persistence when a species is removed (Memmott et al. 2004, 

Bascompte et al. 2006, Bastolla et al. 2009, Thebault & Fontaine 2010, Ribeiro da Silva et al. 2015). 

High network robustness is also associated with low specialization, due to functional redundancy 

(different frugivores consuming most of the same fruits) and low modularity(Whitney et al. 1998), which 

we also detected in this study. It is possible that these results may be associated with the higher fruit 

availability, higher interaction evenness and generality (mean plant species available per frugivore) that 

once associated with the differences in the frugivore community and species-specific roles may provide 

different paths for network persistence in the mature forest. 

In conclusion, both networks had low to moderate scores of nestedness, modularity and 

specialization, and high scores of interaction evenness and robustness to extinctions. Moreover, mature 

forest had slightly more connectance and interaction evenness, which may be explained by the increase 

importance of large bodied frugivores. In the future, studies should evaluate the effectiveness of 

dispersal to open areas, and how it may be impacted by the absence of species that disperse large seeded 

plant species.  

 

4.2 Network species’ roles 

 

The ecological role of a species within a network, is a direct result of its interactions with other 

species (Luczkovich et al. 2003, Olesen et al. 2007, Allesina & Pascual 2009, Stouffer 2012). The 

consequences of species extinctions for a network, depend on their role, e.g. an extinction of a module 

hub may cause its module to fragment with no relevant consequences or cascading impacts on other 

modules (Prado & Lewinsohn 2004, Stouffer 2012), whereas the extinction of connectors may fragment 

the networks into isolated modules (Olesen et al. 2007). Regarding module structure, all frugivore 

species were peripheral, and only the Guinea plum for mature forest and Bark cloth tree for forest edge 

were found to be connectors, thus connecting distinct parts of the network. The bark cloth tree fruits are 

>13mm of diameter and fruit mass is >1 gram (Taylor 1960, Hall & Swaine 1981, Kankam & Oduro 
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2009), and is consumed by a wide range of frugivores from primates to birds (Irvine 1961, Kankam & 

Oduro 2009). At forest edge, this species was consumed by one of its most relevant frugivores, the 

common bulbul, and by two large-bodied frugivores also common to the mature forest: Mona monkey 

and African pied hornbill. Kankam et al., (2009) showed that these three species may handle Bark cloth 

tree fruits differently: for example, the Common bulbul was registered extracting the pulp and letting 

the seed fall beneath the parent tree, while turacos such as the Violet turaco (Musophaga violacea) seem 

to be able to ingest the whole fruit (Kankam & Oduro 2009). Primates such as the Campbelli’s monkey 

(Cercopithecus campbelli), were also recorded consuming fruits of this tree, by storing them in their 

cheek-pouches and releasing the seed in big amounts in one place few meters away from the parent tree 

(Kankam & Oduro 2009), and the same behavior has been registered for other primates (Howe 1980, 

Russo & Augspurger 2004). The Guinea plum is mostly consumed by large bodied frugivores, specially 

mammals (Campos-Arceiz & Blake 2011, Gross-Camp & Kaplin 2011, Beaune 2012). The Guinea 

plum’s fruits are ellipsoid with 2.5-6cm x 2-4 cm (Catarino et al. 2006) and in this study they were only 

consumed at mature forest. Previous studies have shown that primates such as Bonobos and 

Chimpanzees, often remove the mesocarp of this fruit, chew the wedges and spit the seed (Gross-Camp 

& Kaplin 2011, Beaune 2012). They may walk several meters from the parent tree before spitting the 

seed. In our study, the Yellow casqued hornbills and the great blue turacos were both recorded 

consuming fruits from this species. To my knowledge, such event has not been recorded previously, 

although the Great blue turaco has previously been recorded consuming flowers of this tree (Sun & 

Moermond 1997). Further studies should explore if these bird species are of relevance for seed dispersal 

of this tree species. Jordano (1987) postulated that networks are composed of subsets of phylogenetic 

related species which have similar ecological roles. Mello et al., (2011) found that birds and bats seem 

to occupy different modules possibly due to differences in their phylogenetic history. That might be the 

case for some groups, but in this study, both at the mature forest and at the forest edge, I found modules 

that included both primates and bird species, such as the Yellow casqued hornbills, Mona monkeys and 

the Temminck’s red colobus. Other studies argue that interactions between plants and dispersers are not 

limited by their phylogenetic history, but rather by morphological and functional limitations (trait-

matching), such as their gape width and fruit size (Mello et al. 2014).  Probably due to the low richness 

of fruiting trees observed in these forests, the Bark cloth tree and Guinea plum fruits appear as preferred 

by many frugivores in these communities, and thus have the ability to connect different modules of these 

networks.  

The relevance of a frugivore for the set of plants and vice versa, varied strongly between 

habitats, and the only common important species seems to be the Mona monkeys. Regarding plants 

species, the ones with most impact for frugivores, were bark cloth tree, Fig trees and S. pustulata for 

both habitats. Ficus is the most globally diverse woody plant genus (Corner 1988, Berg 1989, Shanahan 

et al. 2001) and is considered a key resource in tropical forests, sustaining frugivores in periods of low 

fruit availability (Shanahan et al. 2001). Studies have shown that hornbills and turacos eat this fruit and 

defecate its seeds intact (Compton et al. 1996, Barlow & Wacher 1997, Whitney & Smith 1998), along 

with Chimpanzees and monkeys from the Cercopithecus genus (Whitney & Smith 1998, Newton-Fisher 

1999, Gross-Camp & Kaplin 2011). Bulbuls are also known to regurgitate or defecate them still viable 

in pellets (Shanahan et al. 2001). In this study, African green pigeons, usually seed predators, were 

recorded consuming these fruits. Nevertheless, some seeds may survive gut passage even in this species 

(Lambert 1988), and thus considering their flight ability, seed dispersal services may benefit from their 

intervention. This adds to studies reporting the dispersal of seeds by species assumed not to be seed 

dispersers (e.g. seed predators, insectivorous), thus possibly effectively contributing to this process 

(Heleno et al. 2010a, Cruz et al. 2013, Timóteo et al. 2016, Genrich et al. 2017).  
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S. pustulata is an evergreen tree, that produces ellipsoid fruits with 1-3cm of diameter (Catarino 

et al. 2006). There are not many records of frugivores consuming these fruits, but the few available, 

point to Yellow casqued hornbill, Western piping hornbill and some primates species such as Colobus 

monkeys as possible dispersers (Whitney et al. 1998, Holbrook et al. 2002). During the sampling period, 

I found Chimp dung filled with these fruits, and observed birds such as Green turacos and African green 

pigeons actively feeding on these trees. My results showed that Madina forest remnant was mainly 

structured by this tree species. This dominance within the Madina forest remnant should be further 

explored in the context of the effectiveness of the seed dispersal provided. 

In the mature forest, large bodied frugivores had the biggest impact on plant species. The Yellow 

casqued hornbill was the largest bird frugivore registered consuming fruits, and although there aren’t 

many studies on this species specifically, hornbills are well known as important dispersal agents 

(Whitney et al. 1998, Holbrook & Smith 2000, Kitamura 2011). Yellow casqued hornbill and the Black 

casqued hornbill (Ceratogymna atrata) usually present higher densities in mature forests (Whitney & 

Smith 1998), and with their large gape width (consuming fruits 36 – 29 mm), home ranges and their 

ability to fly over degraded areas (Whitney & Smith 1998) may prove crucial for the maintenance of a 

seed dispersal network by dispersing a wider range of plant species (Whitney et al. 1998). Mona 

monkeys and Chimpanzees seem to be as important for the plants in the mature forest. A study in the 

Bia Biosphere reserve in Ghana, showed that both primates deposited seeds in open forest habitats, 

which in turn experienced high germination and establishment rates (Wrangham et al. 1994, Chapman 

1995, Kankam & Oduro 2009). They postulated that even if only few seeds are deposited in these 

habitats, considering that one primate defecation can contain in average 22 big seed from almost 3 

species (Wrangham et al. 1994, Chapman & Chapman 2009), it may still be relevant for maintenance 

of some fruit plants. Another study has reported that Chimpanzees effectively move seeds between forest 

patches in western Uganda (Wrangham et al. 1994, Chapman 1995). Big primates often consume big 

meals of fruits belonging to different tree species, have large home ranges, and even if they seem to 

prefer matures forests like what was observed in the present study, they may use different stages of 

regenerating forests (Wrangham et al. 1994).  

At the forest edge, weavers and common bulbuls were the most important bird species. Weavers 

in West Africa and around the world occupy a great variety of habitats and are mostly considered seed 

predators (Borrow & Demey 2001). Studies have shown that they incorporate fruit in their diet, but there 

is not enough data regarding their role as potential seed dispersers for trees with small seed such as the 

figs, which they consumed at the edge in the PNC (Bleher & Böhning-Gaese 2001). Common bulbuls 

on the other hand have been found to be important dispersers, in two separate studies, one in Kakamega 

forest in Kenya and the other in South Africa (Compton et al. 1996, Schleuning et al. 2011). This species 

is associated with a variety of wooded or bushy habitats with usually fluctuating with fruit crop 

tendencies. Although no relationship was found with fruit availability, they may also occupy forest 

edges, entering the canopy of primary or old secondary forests according to that availability (Borrow & 

Demey 2001). 

It comes with no surprise that the species with higher Krisks scores are somewhat overlapping 

with the ones found to be the most important for the other level of the network, when using species 

strength. Bark cloth trees for mature forest had high species strength and present high risks for the 

network if removed, whereas for the edge, Fig trees seem to be even more important to maintain stability. 

Krisk allows the identification of keys species to preserve most of the giant component, which ultimately 

is the goal of all conservation strategies (García-Algarra et al. 2017). 
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4.3 Habitat type and fruit availability 

 

This study showed that induced forest edges affect frugivore species richness, composition and 

abundance. There was a great overlap in composition of fruit trees between mature forest and edge. 

However, the number of fruiting trees and fruit availability was higher at the mature forest probably due 

to the dominance of S. pustulata in the Madina mature forest remnant. The frugivore abundance and 

richness was higher at the forest edge and this pattern has already been found (Menke et al. 2012, 

Saavedra et al. 2014). However, it contrasts with other findings that partially justified higher frugivore 

richness and/or abundance with increasing fruit availability (Herrera 1985, Fleming et al. 1987, Bleher 

et al. 2003, Menke et al. 2012, Chama et al. 2013, Saavedra et al. 2014). The higher presence of 

frugivores at the edge of the forest may be rather due to the higher permeability this habitat type presents 

to visiting species more common in opens areas and the farmland surrounding the forest remnants 

(Menke et al. 2012) and that may in fact be attracted by fruit abundance at the mature forest. As 

previously observed in the Kakamega forest (Kenya), the three most common bird visitors at the edge 

in Cantanhez were typical farmland, open woodland and savannah species like weavers (Borrow & 

Demey 2001, Eshiamwata et al. 2006, Garcia et al. 2010). This pattern may be due to additional factors 

not accounted for in this study, such as the low vegetation heterogeneity, widely visible trees and even 

high frugivore diversity in surrounding farmland areas (Galetti et al. 2003, Eshiamwata et al. 2006, 

Laube et al. 2008, Menke et al. 2012, Saavedra et al. 2014). These results, raise further awareness to the 

role of forest visitors as seed dispersers along induced forest edges, enhancing the urgency of future 

studies that explore these patterns (da Silva et al. 1996, Menke et al. 2012).  

Regarding frugivore species registered in both habitats, there was an overlap, but the mature 

forest had more large bodied species and some, such as Yellow casqued hornbill, Western piping 

hornbill and Temminck’s red colobus, fed exclusively on trees from in this habitat. Large bodied 

frugivores are known to possess large home ranges and long gut passage time (Sun et al. 1997, Yumoto 

et al. 1999, Holbrook & Smith 2000, Schleuning et al. 2011), to travel long distances, and due to their 

wider gapes width, consume fruits inaccessible to smaller frugivores (Moran et al. 2004, Cramer et al. 

2007). For example, hornbills are among the most important seed dispersers in the tropics, consuming 

fruits from at least 22% of the existing plant species (Whitney & Smith 1998, Poulsen et al. 2002). As 

well as hornbills, primates also possess diverse diets and compromise 25% to 40% of the frugivore 

biomass in tropical forests (Chapman 1995). Although they are more limited in terms of mobility, they 

possess the dexterity and strength needed to handle different types of fruits (Poulsen et al. 2002).  Big 

dispersers such as these are more susceptible to extinction, considering they are more affected by habitat 

loss and degradation, and hunting pressures (Corlett 2007, Wright et al. 2007b, Kitamura 2011). 

Moreover, primates rarely move between fragments especially when those patches are deprived of 

preferred fruit resources (Schwarzkopf & Rylands 1989, Estrada et al. 1994, Bollen et al. 2004, 

Ratiarison & Forget 2005, Cramer et al. 2007). Considering this higher prevalence of large bodied 

frugivores in the mature forest, it is plausible that the quality of the seed dispersal services along the 

forest edges may be affected due to a reduction in functional diversity of dispersers species and hindering 

the natural recovery of these areas because they are not attractive to these species (Restrepo et al. 1999, 

Lehouck et al. 2009, Menke et al. 2012). 

 

4. 4 Implications for Conservation 
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The results I found for the networks in the CNP, show a lack of large bodied frugivores 

consuming fruits at the edge of the forest remnants. Moreover, network specialization was low and 

interaction evenness was high, which points to redundancy and network robustness within forest edge 

and mature forest. Such characteristics are positive signs for maintenance of plant communities within 

those habitats, but there is not enough information about how frugivores move from within the mature 

forest, and how they may act as to help regenerating abandoned fields surrounding the forest remnants. 

Previous studies have shown that seed dispersal is a huge driver of the regeneration of several 

of the studied plants (García et al. 2005, Mendoza et al. 2009, Garcia et al. 2010). In that sense, network 

studies are useful because they allow access to the whole system, and through their structure reflect how 

a community is providing the seed dispersal service allowing inferences regarding the redundancy and 

robustness of those systems (McConkey et al. 2012). Metrics such as nestedness and modularity, reflect 

how the network is structured, and both are influenced by habitat fragmentation which often leads to 

lower species abundance (Krishna et al. 2008, Hadley & Betts 2012, Hagen et al. 2012), the extinctions 

of top frugivores and invasion by hyper-generalists (Aizen et al. 2008). Moreover, metrics such as 

specialization, niche overlap, and interaction evenness provide information on the redundancy of 

ecological properties within the network, and although regional temporal fluctuations in resource 

availability should be considered, they allow inferences on the robustness of networks to extinctions 

(Chama et al. 2013, Kaiser-Bunbury et al. 2017). Future studies should focus on following changes in 

these patterns along gradients of fragmentation, to aid in improving the knowledge on how these metrics 

vary.  

However, it is impracticable to propose strategies to preserve or restore forests, without 

considering the specific roles frugivores play within seed dispersal networks. Especially when 

considering the continuous anthropogenic pressures acting and changing environmental gradients that 

affect their behavior (Sanford et al. 2009, Garcia et al. 2010). Although studies have shown that networks 

are often robust to the loss of frugivores (Jordano et al. 2003, Mello et al. 2011a), little is known about 

the how efficient is the replacement of ecological roles (McConkey et al. 2012). 

The network theory may help identify, hubs and connectors(Donatti et al. 2011, Mello et al. 

2011b) as it did for this system. S. pustulata and Bark cloth trees are clearly important as connectors, 

along with fig trees, as highly sought-after fruit resources in both habitats, and thus may be important 

species to consider in regeneration strategies. As many studies point out, remnant isolated trees in 

abandoned fields or between once connected forest patches, may act as catalysts for succession, 

facilitating the re-colonization of the native vegetation (Parrotta 1992, Lugo et al. 1993, Brown & Lugo 

1994, Wunderle 1997). Not only they will attract frugivores due to their fruits, they will also attract 

frugivores that are morphologically different, and thus may have different ecological roles. Moreover, 

they will influence microclimate and soil fertility, suppressing dominant grasses (Parrotta 1992), 

potentiating seed dispersal effectiveness. Seed rain seems to be significantly higher bellow perches 

comparing to empty sites (Wunderle 1997). In that sense, it would be useful to consider including a tree 

nursery for species that have the most impact, in a reforestation project for abandoned areas surrounding 

the PNC forest remnants.   

Regarding frugivores, I was able to detect which poses greater risks if extinct, using metrics 

such as species strength and Krisk These metrics allow inferences on how species composition may alter 

the seed dispersal services provided. In this study, large bodied frugivores, such as the Yellow casqued 

hornbill and Mona monkeys, were pivotal frugivores in the mature forest. The network role of large 

frugivores may shed light on how degraded habitats around the world, are performing or evolving 

through time in relation to relatively undisturbed habitats. Although there is little understanding on how 

frugivore species abundance and density may influence their seed dispersal service (Schupp et al. 2010, 
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McConkey et al. 2012), it may be important to consider performing surveys not only on their mature 

forest presence, but also on their movements between forest remnants and towards forest edges (Garcia 

et al. 2010).  

Species level metrics are of great importance and should be combine in future studies, in order 

to better understand ecological roles within the network (species roles – (Olesen et al. 2007, Stouffer 

2012)), the impact of a specific species on the other set (species strength – (Bascompte et al. 2006)) and 

finally by ranking them according to vulnerability to possible extinction scenarios (Krisk – (García-

Algarra et al. 2017)). Being able to identify the most relevant species for the seed dispersal service, such 

as C. elata and C. mona., allows the elaboration of specific legislation to protect them, 

It is important to use behavioral studies and integrate that information in network approaches. 

Assessing frugivores’ home ranges and gut passage times is crucial to understand their impact on this 

service. Moreover, nocturnal frugivores such as bats should also be accounted for, due to their confirmed 

importance and role as seed dispersers (Fleming & Heithaus 1981, Gorchov et al. 1993, Galindo-

González et al. 2000, Galindo-González & Sosa 2003, Abedi-Lartey et al. 2016). Studies such as this, 

should lead to follow up research, on the effective role of network frugivores as dispersers, using seed 

traps or netting to understand who crosses the edges, and what seeds arrive at open and abandoned areas 

surrounding forest remnants.  

Finally, conservation measures and directives should use the knowledge and culture of human 

communities integrated in natural reserves such as the PNC, and work alongside them to ensure and 

reinforce sustainable agriculture practices and to find a balance that allows the coexistence and 

persistence of natural processes. Increased park surveillance and monitoring is still crucial to control 

hunting practices and guarantee the prevalence of reforestation measures if ever implemented.  Several 

forest and trees in the PNC, such as S. pustulata, White silk cotton tree and the Velvet Tamarin, have 

symbolic or religious meaning (Frazão-Moreira 2001, Sousa & Frazão-Moreira 2010). As for animals, 

chimpanzees are considered important due to their like human-like appearance, which inhibits hunting 

by the community (Sousa et al. 2011, Hockings & Sousa 2013). Such information may prove useful and 

should be assessed in parallel with network studies for the design of forest restoration measures. The 

best strategy is to add what is known of networks hubs and connectors for plant and frugivore species, 

to the regional and cultural context of the study site, to propose measures that allow the enhancement of 

seed dispersal service.  
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