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Resumo 

 

Ao longo do seu desenvolvimento, o ser humano sempre necessitou de recorrer a fontes de energia para 

satisfazer as suas necessidades básicas, quer na forma de calor ou trabalho. As fontes de energia 

renováveis que tal como o nome indica, são fontes inesgotáveis e sem qualquer tipo de emissões 

poluentes para o ambiente, surgiram como uma alternativa às fontes de energia de origem fóssil 

(petróleo, gás natural e carvão) e nuclear. Alguns exemplos destas fontes de energia renovável são: 

vento, sol, biomassa, ondas e marés, hídrica e geotermia.  

A energia que potencialmente pode ser gerada pelo vento seria suficiente para suprir toda a procura 

energética no mundo (entre 81-118 PWh/ano). No entanto, este potencial nem sempre é aproveitado 

devido a certas restrições, como a localização do parque eólico ou a limitação da altura das turbinas. As 

tecnologias para geração de energia eólica a altas altitudes, com cotas superiores a 100 metros, 

pretendem minimizar parte desses problemas, uma vez que a estas alturas o vento sopra com maior 

velocidade. A principal preocupação é entender se estas tecnologias também podem competir com as 

turbinas eólicas convencionais em termos de produção de energia, com melhor relação qualidade-custo. 

Este tipo de tecnologia tem o potencial de reduzir o custo de investimento, porque tem uma estrutura 

menos complexa do que uma turbina convencional e aumenta a energia produzida, acedendo a lugares 

de maior potencial eólico, o que resulta num menor custo unitário de energia. No entanto, é preciso ter 

em conta que o preço por kilograma do material tipicamente utilizado nestas tecnologias, a fibra de 

carbono, é bastante superior ao preço do aço utilizado na construção das estruturas das turbinas eólicas.  

No protótipo criado pela Makani, alega-se um custo unitário de energia de 0.026 €/kWh, um valor 

consideravelmente menor quando comparado com o de uma turbina convencional de 2.5 MW que ronda 

os 0.078 €/kWh. 

A principal objetivo desta dissertação é avaliar o potencial energético que é possível atingir com o 

protótipo “M600”, desenhado pela Makani. Esta tecnologia tem como base um planador com 26 metros 

de envergadura com oito pequenos rotores dispostos ao longo das suas asas. Estes rotores ao serem 

atravessados pelo vento, produzem energia sendo esta transmitida para uma estação no solo através de 

um cabo condutor elétrico com cerca de 400 metros. A fibra de carbono que constitui o corpo do 

planador concede lhe uma alta resistência à tração, e um baixo peso que favorece as suas manobras 

durante o voo. O cabo condutor elétrico, revestido também por fibra de carbono, apresenta no seu 

interior alumínio, um material com uma baixa impedância elétrica, sendo por isso um bom condutor 

elétrico, garantindo que as perdas de energia na sua transmissão são mínimas. O planador arranca do 

seu ponto inicial, com o plano das asas em posição vertical e com os rotores a trabalharem como 

propulsores para fazê-lo levantar voo, consumindo energia elétrica. O sistema ascende, e quando o cabo 

está completamente estendido, este entra no modo de voo livre, descrevendo uma trajetória circular 

restringida pelo comprimento do cabo. Neste modo de voo, os rotores funcionam como geradores que 

convertem o poder do vento em energia elétrica. Quando o vento não é suficiente para o dispositivo se 

manter no ar, ou por qualquer outro motivo este tem de aterrar, o sistema muda novamente o seu modo 

de voo, para poder aterrar no solo. Durante as fases de arranque e aterragem do sistema, a energia 

consumida é uma pequena fração da energia que é produzida no modo de voo livre. 

Para simular a operação e o comportamento deste equipamento, foi implementado um modelo numérico, 

proposto por Miles L. Loyd no seu artigo de 1980 "Crosswind Kite Power", com o auxílio do programa 

informático Simulink. No modelo proposto por Loyd, os seus cálculos foram realizados tendo como base 

um avião militar com 68 metros de envergadura e cerca de 230 toneladas. Numa primeira aproximação, 
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a simulação em Simulink foi testada nas mesmas condições que as do modelo criado por Loyd, até os 

resultados da simulação se aproximarem dos obtidos por ele mesmo. Após isto acontecer, o modelo foi 

testado tendo com os valores do protótipo da Makani, o “M600”, para se poder estudar o seu 

comportamento. Com esta simulação foi possível concluir que o “M600” descreve um trajeto circular 

com um tamanho da órbita de 0.4 radianos, a uma velocidade de aproximadamente 98.7 m/s, variando 

entre altitudes de 75 até 363 metros. Foi criado também um modelo do vento baseado numa Lei de 

Potência com a velocidade deste a oscilar entre 8.66 e 10.86 m/s. Esta simulação permitiu ainda concluir 

que este protótipo teria uma potência média à saída de 0.598 MW aquando da realização de três ciclos 

completos de rotação, valor bastante próximo da potência nominal do “M600”: 0.6 MW. Verificou-se 

ainda que em alguns momentos a potência registada à saída excedia a potência nominal, pelo que os 

geradores poderão ter de ser sobredimensionados para aceitar estes valores, uma vez que de outra forma 

estariam a desperdiçar energia. Alternativamente, este fenómeno pode ser controlado com arrasto 

adicional provocado por flaps nas asas ou pelos próprios rotores, que levam a uma redução da potência 

média por ciclo. Este processo deve ser assegurado por controladores abordo do sistema. A tensão 

máxima criada no cabo pelo planador foi de aproximadamente 486 kN, sendo este capaz de suportar 

estas tensões.  

Na realização desta dissertação não foi possível prever de forma concreta o comportamento do 

controlador do movimento do planador recorrendo a um PID (controlador Proporcional Integral 

Derivativo). Apesar desta hipótese ter sido testada, os seus resultados foram inconclusivos, com o 

planador a descrever uma trajetória bastante irregular, inclusivamente atravessando o solo com o registo 

de cotas negativas. Tendo por base o artigo de Loyd, este controlador é definido como a tangente do 

ângulo de rolamento, que representa a rotação realizada em torno do eixo longitudinal do planador. Para 

esse fim, foi feita uma aproximação deste ângulo forçando o planador a descrever um movimento 

circular uniforme a uma velocidade constante, variando este ângulo entre -7 e 47 graus nos pontos de 

maior e menor cota respetivamente. Nos pontos médios da ascensão e descida, à mesma cota, quando 

este está perfeitamente perpendicular à direção vento, o ângulo de rolamento foi considerado zero. Após 

vários testes, a velocidade constante de rotação para o qual os resultados obtidos mais se aproximavam 

aos obtidos por Loyd, foi a de 5.5 RPM, com menores erros relativos registados. O facto de o planador 

descrever uma velocidade constante pode trazer algumas incertezas ao modelo, impossibilitando o 

cálculo de algumas características desta tecnologia como a curva de potência ou o fator de capacidade. 

No entanto fica em aberto um futuro estudo para poder prever o comportamento de um controlador mais 

elaborado num eixo com seis graus de liberdade. 

 

 

Palavras chave: “M600” Makani, Miles Loyd, energia eólica de alta altitude, Simulink, energia 

renovável  
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Abstract  

 

The potential energy that can be generated by wind should be sufficient to supply all the energy demand 

in the world (between 81-118 PWh /year). However, this potential is not always harnessed due to certain 

constraints such as the location of the wind farm and the limitation of turbine heights. 

The technologies for wind power generation at high altitudes, with heights higher than 100 meters, 

intend to settle some these problems. The main concern is to understand if these technologies can also 

compete with the conventional wind turbines in terms of energy production, with better cost-quality 

relation. This type of technology has the potential to reduce the investment cost, due to a less complex 

structure than a conventional turbine, and increase the energy produced accessing to higher wind 

potential places, resulting in a lower levelized cost of energy. For Makani’s prototype, a levelized cost 

of energy of 0.026 € / kWh is claimed, a considerably lower value when compared to a conventional 2.5 

MW turbine that is around 0.078 € / kWh. 

The main objective for the development of this dissertation is to evaluate the energy potential that can 

be achieved with the “M600” Makani prototype. This technology is based on a crosswind kite that 

produces energy through mini rotors placed on-board the kite. This energy is transmitted to a ground 

station through an electric conductor tether. To simulate the operation and the behaviour of this 

equipment was implemented with the help of Simulink software, the numerical model proposed by Miles 

L. Loyd in his article “Crosswind Kite Power”.  

After this simulation was possible to conclude that this prototype describes a circular path with an orbit 

size of 0.4 radians, at a velocity of approximately 98.7 m/s, varying between altitudes of 75 and 363 

meters. A wind model was also created based on a Power Law, with the wind oscillating between 8.66 

and 10.86 m / s. This simulation also led to the conclusion that this prototype would have an average 

power output of 0.598 MW after three complete cycles of rotation were performed, a value similar to 

the 0.6 MW of nominal power of the “M600”. The peak tether tension was approximately 486 kN, being 

able to withstand the proposed stresses. 

In this dissertation realization wasn’t possible to predict concretely the controller behaviour of the kite 

movement using a PID, since the results were inconclusive. Based on Loyd’s article, this controller was 

defined as the role angle’s tangent, so an approximation of this angle was made forcing the kite to 

describe the desired motion at a constant speed of 5.5 RPM per cycle. This factor can bring some 

uncertainties to the model and makes it impossible to calculate some characteristics of this technology 

as the power curve or the capacity factor, however a future study is still open to be able to predict this 

controller behaviour. 

 

Keywords: “M600” Makani, Miles Loyd, cross wind kite, high altitude wind power, renewable energy, 

Simulink 
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Chapter 1. Introduction 

 

1.1    General Framework 

 

Energy resources have been used by mankind for thousands of years to satisfy some of their basic needs 

in the form of heat and work, and their availability is one of the main factors for the development of 

humanity. 

The growth in world’s population led, in the last century, to an exponential increase of the demand and 

use of electricity and fossil fuels, including coal, petroleum and natural gas. Despite the benefits that 

fossil fuels have brought us in the last century, serious concerns make them unfeasible for the 

development of society due to their finiteness and pollution they cause to the environment. Therefore, 

it’s essential to generate alternative sources called renewable energies, that can satisfy the ever-growing 

energy necessities of human beings without compromising their environment.  

Many alternatives to fossil fuels are available and the investment in this area doubled, in developed 

countries, between 1990 and 2000 [1]. Some examples of renewable energies are: wind, solar, 

geothermal, hydropower, tidal and biomass energies. The current state of growth and development of 

our society requires a growing, and often unsustainable exploitation of natural resources, which allows 

the creation and scenario predictions in which renewable energy will be the only solution for a society 

that is increasingly in need of new forms of energy. 

Traditionally, wind turbines are used to harness wind energy, which require no fuel and do not produce 

toxic neither radioactive wastes. Still, they are huge fixed constructions, and, although they undergo a 

lot of research and development to improve their efficiency, they will have reached their limits. 

According to a 2005 study of the Standford University [2], the potential that can be generated by wind 

is sufficient to supply all the energy demand in the world (between 81-118 PWh/year). However, this 

potential is not always harnessed due to certain constraints such as the location of the wind farm and the 

limitation of turbine heights. At present, the highest wind turbine reaches 200 meters, where the wind is 

still unstable but with an acceptable speed in order to produce energy [3]. The atmospheric boundary 

layer is the part of the troposphere that is directly influenced by the presence of the Earth's surface, 

which depending on its roughness has a determinant influence in the wind speed behaviour, which 

usually increases with altitude [4]. It is known that the power generated by wind turbines increases with 

the cube of wind velocity (equation 1.1), and higher velocities are expected for higher altitudes (Figure 

1.1). In fact, strong wind could be present at higher altitudes with little or no wind at low altitudes.  

 

 

 𝑃𝑖𝑛𝑐 = 1
2⁄ 𝜌𝐴𝑉𝑤

3 (1.1) 
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Figure 1.1 Map of average wind speed (m / s) with height of 100m (a) and 250m (b) above surface level [5] 

 

To overcome this typical wind-turbine limitation, new solutions to extract energy from high altitudes 

winds are still being investigated [3]. The main concern of these technologies is to understand if they 

can also compete with the conventional wind turbines in terms of energy production and with a lower 

levelized cost of energy (LCOE). This parameter is obtained by the following formula: 

 𝐿𝐶𝑂𝐸(€ 𝑀𝑊ℎ⁄ ) =
𝐶𝑎𝑝𝐸𝑥 +  ∑

𝑂𝑝𝐸𝑥𝑡

(1 + 𝑖)𝑡
𝑛
𝑡=1

∑
𝐴𝐸𝑃𝑡

(1 + 𝑖)𝑡
𝑛
𝑡=1

 (1.2) 

 

The numerator of the latter represents the sum of the capital (initial investment) plus the operational and 

maintenance expenditures throughout its lifetime, and the denominator represents the amount of energy 

production over its lifetime too, updated with the discount rate (𝑖).  The goal of these new technologies 

for wind extraction at higher altitudes is to increase the denominator and reduce the numerator to 

decrease the LCOE. 

 

1.2    State of the Art 

 

In 1980, an American electrical engineer, member of AIAA, called Miles L. Loyd suggested that lifting a 

wind turbine into the atmosphere, at some significant distance above the ground, where winds tend to blow 

more consistently and at greater speed than they do at ground level, could increase the energy production 

significantly. Loyd thought that if a kite’s aerodynamic surface converts wind energy into motion of the kite, 

this motion could be converted into useful power by driving turbines on the kite or by pulling a load on the 

ground. His propositions where published in a paper called “Crosswind Kite Power (for Large-Scale Wind 

Power Production)” in the Journal of Energy [6], where he predicted that such turbines could generate electricity 

at a significant greater magnitude and more consistently than they could if build on the ground.  

 

https://en.wikipedia.org/wiki/Operations_and_maintenance


Technical evaluation and modelling of a cross wind kite based on Loyd’s model 

 

 

3 
 

Loyd’s suggestion was largely ignored for many years but has received considerably more attention in the 

second decade of the twenty-first century. Many companies are still working on designing and/or constructing 

of one or more variations of Loyd’s so-called airborne wind turbine, also known as Airborne Wind Energy 

Systems (AWES) [7]. So far, many prototypes were tested whit the production of energy, however they 

weren’t tested long enough to be marketed.  

These systems have two ways to operate [8][9]: 

 

➢ In Ground-Generator Airborne Wind Energy Systems (GG-AWES), electrical energy is 

produced on the ground by mechanical work done by traction force, transmitted from the 

aircraft to the ground system through one or more ropes, which produce the motion of an 

electrical generator. Among GG-AWES we can distinguish between fixed-ground-station 

devices, where the ground station is fixed to the ground and moving-ground-station systems, 

where the ground station is a moving vehicle (Figure 1.2a). 

 

➢ In Fly-Generator Airborne Wind Energy Systems (FG-AWES), electrical energy is 

produced on the aircraft and it is transmitted to the ground through a special rope which 

carries electrical cables. In this case, electrical energy conversion is generally achieved 

using wind turbines. FG-AWES produces electric power continuously while in operation, 

except during take-off and landing manoeuvres in which energy is consumed. Among FG-

AWES it is possible to find crosswind systems and non-crosswind systems depending on 

how they generate energy (Figure 1.2b). 

 

 

Figure 1.2 Airborne Wind Energy Systems. Ground Generation (a) and Fly Generation (b) [8] 

 

1.2.1 Ground-Gen Airborne Wind Energy Systems 

 

As previously anticipated, this kind of devices can be distinguished with fixed or moving ground 

stations.  

The fixed ground station GG-AWES (or Pumping Kite Generators) are among the most exhaustively 

studied by private companies and academic research laboratories. Energy conversion is achieved with a 

two-phase cycle composed by a generation phase, in which electrical energy is produced, and a recovery 

phase, in which energy is consumed. In the generation phase (Figure 1.3a) the aircraft is driven in a way 

to produce a lift force and consequently a traction force (unwinding) on the ropes that induce the rotation 
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of the electrical generators producing energy. In the recovery phase (Figure 1.3b) motors rewind the 

ropes bringing the aircraft back to its original position from the ground. To have a positive balance, the 

net energy produced in the generation phase must be larger than the energy spent in the recovery phase.  

 

Figure 1.3 Scheme of the two-phase discontinuous energy production for GG-AWES: Generation (a) and recovery (b) 

phases [8] 

 

The Italian KiteGen Research was one of the first companies to test a prototype of GG-AWES. The 

technology developed by this company called “KiteGen Stem” that could reach a nominal power of 3 

MW, is based on an arch-kite that is controlled by two power-ropes winded on winches, that are driven 

by a pulley system through a 20 meters flexible rod, called ‘stem’, which is linked to the top of the 

ground station. At the beginning of the take-off manoeuvres, the kite is hanged upside down at the end 

of the stem, and once it takes off, the generation phase starts, in which the kite makes a crosswind flight 

with ‘eight shaped’ paths. At the same time ropes are unwinding causing the winches to rotate and the 

motor-generators transform mechanical power into electric power [10]. 

The Ampyx Power, a Dutch company, has developed a glider model that describes an ‘eight shaped’ 

path. After many prototypes, they are currently developing and testing the model AP3 that will be 

available in 2020. This device will have a wingspan of 12 meters, a power output of 250 kW and will 

achieve altitudes between 100 and 465 meters. This aircraft has a carbon fibre body, with on-board 

sensors and actuators (a rudder, an elevator and four flaperons- two ailerons and two flaps) to control 

the flight path. One tether connects the kite to a single winch in the ground station. When the device 

ascends, the tether is unwound due to the lifting force acting on the kite. Once the cable is fully extended 

(~ 900m), the kite descends from altitude, causing the tether to reel in. This cycle is repeated to the point 

where there is not enough wind to hold the device, so it lands autonomously in his platform, in the 

recovery phase [11]. 

Omnidea, a Portuguese company, designed a tethered inflatable and easily deployable platform. This 

one keeps the payload airborne by having her mildly lighter than air with the ability to generate by 

Magnus effect an aerodynamic lift force that withstands the drag imposed by wind. Since it is a tethered 

platform its subsystems can be permanently fed from the ground minimizing the need to land. This 

device called LEMAP is in its testing phase, so its power production is unknown [12]. 

At Delft University of Technology, research in kite power generation has been initiated by Professor 

Wubbo Ockels in 1993. The research group was established in 2005 and currently comprises 2 staff 

members, 5 researchers, and several MSc students. Recently, Delft University of Technology and 
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Karlsruhe University of Applied Sciences started a joint project to continue the development and testing 

of a tethered 20 kW experimental pumping kite generator. A main objective of this project is to improve 

the reliability and robustness of the technology and to demonstrate a continuous operation of 24 hours 

[13]. They demonstrated fully automatic operation of their 20 kW system in 2012 [14], with a LEI kite 

wing of 25m2 wing surface. This prototype is based on a single tether and an airborne control pod, but 

they also control the angle of attack for powering and depowering the wing during production and 

recovery phase, respectively. An automatic launch and retrieval system for 100 m2 LEI kites is under 

development for commercial application [13].  

The Belgian university KU Leuven began its research on airborne wind energy systems in 2006. After 

significant theoretical contributions, the team developed a test bench to launch and landing a tethered 

glider with a pulley technique. This kite is brought up to speed by an arm rotating around a central axis. 

Once the airplane has gained enough speed, the tether can be unrolled, allowing the airplane to gain 

altitude [15]. They are currently developing a larger experimental test set-up, 2 m long with a 10 kW 

winch. 

In addition to pumping systems, a few AWES concepts with moving-ground-station have been 

proposed. These ones are generally more complex systems, in which the aim is to provide an always 

positive power flow that makes it possible to simplify their connection to the grid by producing a 

continuously or nearly continuously energy. Differently from the pumping generator, the rope winding 

and unwinding is not producing/consuming significant power but is eventually used only to control the 

aircraft trajectory. The generation takes place thanks to the traction force of ropes that induces the 

rotation (or linear motion) of a generator that exploits the ground station movement rather than the rope 

winding mechanism. There are different concepts of moving-ground-station GG-AWES but only a few 

companies are working on systems like these and there are more patents and studies than prototypes 

under development.  

The first moving-ground-station project has been proposed by Sequoia Automation and acquired by 

KiteGen Research. In this AWES concept called KiteGen Carousel, tethered aircrafts are fixed on the 

periphery of the rotor of a large electric generator with vertical axis. The aircraft forces make their 

ground stations rotate together with the rotor, which in turn transmits torque to the generator that convert 

it into electricity [16]. There is no prototype under development, but the concept has been simulated 

showing that 100 kites with 500 m2 area could generate 1000 MW of average power with a wind speed 

of 12 m/s [17]. 

An alternative system based on ground stations that moves on closed track circuits has proposed by 

German company NTS [18]. Since 2011, NTS started testing a prototype where four tethered kites are 

controlled by a vehicle which moves on a 400 m flat straight railway track. They can produce up to 1 

kW per m2 of wing area with kites up to 40 m2 [19]. The final product should have a closed loop railway 

where more vehicles run independently. 
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1.2.2 Fly-Generator Airborne Wind Energy Systems 

 

As it was said before, in the FG-AWES the conversion of mechanical energy in electrical energy is done 

on the aircraft, being this energy transmitted to the ground by a tether that has both to conduct electricity 

and withstand a strong tension. These systems can be distinguished by its motion into crosswind or non-

crosswind (stationary) systems.  

The Californian company Sky Windpower [20] proposed a tethered rotorcraft called Flying Electric 

Generator (FEG) where conventional rotors generate power and simultaneously produce sufficient lift 

to keep the system aloft. Four rotors are arranged on an airframe, tethered to the ground by insulated 

aluminium conductors with Kevlar-type cords wrapping them. The aircraft can be supplied with energy, 

to be extended to a desired altitude and to reel the tether to retrieve the craft. When operating 

as a power source, two, four, or more rotors are inclined at an adjustable angle to the oncoming wind, 

generally up to 50º. The wind on the inclined rotors generates lift and forces rotation, which generates 

electricity [21]. Multiple rotors can be combined in a large-scale array to obtain more energy closer to 

jet streams. Jet streams are strong air currents, generated by the combination of the planet's rotation over 

its axis and atmospheric heating. Usually these are located near the boundaries of adjacent air masses 

with significant temperature differences, such as the transition from the troposphere (where temperature 

decreases with altitude) to the stratosphere (where the temperature increases with altitude) [22]. Sky 

Windpower tested two FEG prototypes. At 15 000 ft (4600 m) and above is possible to obtain individual 

rated outputs of up to 40 MW [21]. Unfortunately, the company went recently out of business. 

The Altaeros Energies, company founded in 2010 at the Massachusetts Institute of Technology (MIT), 

conceived another stationary device: a tethered aerostat (industrial version of blimps and dirigibles) 

called Bat. The Bat is placed at 600 meters of altitude from the ground, tied to four conductor’s cables, 

with a structure that contains helium, lighter than the air that simplifies the take-off and landing 

manoeuvres, and a rotor with three blades. The Bat concept is not much different from a normal wind 

turbine, with the difference of taking advantage of higher wind speeds at higher altitudes. This prototype 

has already been tested and is expected to produce twice the energy of a wind turbine at a conventional 

level [23]. 

Founded in 2008, the US company Joby Energy [24] developed a crosswind multi-frame structure with 

embedded aerofoils and turbines installed in his joints. Like other technologies, the take-off and landing 

manoeuvres are accomplished with energy consumption with the rotors of the turbines working as 

engines to move the device. Once the tether is fully unwound, the device takes a circular flight path 

powered by the wind and the rotors work as generators of energy [25] They claim that with a device 

with an output potential of 2 MW, operating at 2,000 feet of altitude (≈ 600 meters) can produce 2 

GWh/year with a mean wind speed of 20 m/s. 

The company Makani Power, developed also his own prototype, based on Loyd’s work. This company 

was founded in 2006 with the goal of developing a low-cost renewable energy solution using kite 

technology [26]. In eight years, they developed and tested several AWES concepts including GG-AWES 

with arch-kites, but their specification was in glider’s models. In 2013 they tested the “Wing 7”, a kite 

with 8 meters of wingspan, 20 kW of rated power and four on-board rotors, with a new idea of bimodal 

flight to solve take-off and landing issues. In the bimodal flight [27] the device takes off with the wing 

plane in a vertical position, driven by its propellers thrust. This flight mode is similar to a quadcopter 

flight and rotors are used as engines. Once all the tether has been unwound, the device changes flight 

mode, becoming a tethered flight airplane. In this second flight mode a circular flight path is powered 
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by the wind itself and rotors are used as generators to convert power from the wind. During this phase 

the cable length is fixed, avoiding the tether fatigue. To land, a new change of flight mode is performed, 

and he lands as a quadcopter. After previously investing in the company, Google acquired Makani in 

2013 and included them in the project X, a research and development facility [5] Makani is currently 

developing a 600 kW prototype, ‘the M600’. The M600 has eight turbines, each with five propeller 

blades, and has a wingspan of 26 m.  

 

 

Figure 1.4 Classification of AWES and summary of the different companies/colleges and its prototypes 

 

1.3  Goals and Dissertation Structure 

 

This dissertation goal is to create a numeric model that can predict the power curve and amount of 

energy produced by a cross wind kite based in Makani’s prototype. This model was developed with 

Simulink and Matlab, based on the equations from Loyd’s paper “Crosswind Kite Power" [6] and was 

analysed the impact of several parameters as wind speed, kite size, tether length, roll angle, orbit 

amplitude and kite’s system of force and compare them with Loyd’s paper results. 

 The following structure was adopted for the organization of work: 

➢   In chapter 2 will be presented the theoretical concepts necessary for a better 

understanding of the studied subject. This chapter intends to present all the equations 

system used during the dissertation as the spherical coordinates, system of forces in the kite 

and tether, kite and wind velocities and power output. 

 

➢   In chapter 3 will be described the numerical implementation of the equations of chapter 

2 in the model created in Simulink and validate the obtained results in agreement with Loyd 

results. 

 

➢   In chapter 4 will be presented the case study, the "M600" prototype, created by Makani 

Power, were will be specified some of its characteristics and will be implemented the model 

created in chapter 3. This chapter intends to show how much energy this technology would 

https://en.wikipedia.org/wiki/Research-and-development
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produce, compare him with the Loyd’s results based in the C-5A aircraft and discuss the 

obtained results 

 

➢   In chapter 5 will be presented the final conclusions and futures studies that can be made 

in this area and to complement this MSc dissertation. 
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Chapter 2. Theoretical Concepts 

 

This chapter is intended to analyse some aerodynamic concepts allowing to posteriorly characterize the 

kite’s motion using Loyd’s equation system.  

In his model, Loyd compares three power generation models: the relative lift power from a weightless 

simple kite (FS) and from a crosswind kite (FC), and the relative drag power produced by from a 

crosswind kite (FD) [6]. 

Kites behave like an aerodynamic vehicle restrained by a tether, producing lift �⃗⃗� and drag �⃗⃗⃗� as they 

move relative to the air. 

 

Figure 2.1 Forces and velocities applied on a simple kite (a) and on a crosswind kite (b) both in lift power production and on 

a crosswind kite in drag power production (c) [6] 

 

The simple kite (Figure 2.1a) faces into the wind, remaining static if the tether is restrained. When the 

kite is pulled upwind, by a lift force, that acts on the tether to produce power (FS). That mode of operation 

is called lift power production. Looking at Figure 2.1a, 𝑉𝐴
⃗⃗⃗⃗⃗ is the relative kite velocity through air, that 

is the resulting vector of the wind (𝑉𝑤
⃗⃗⃗⃗⃗) and load (𝑉𝐿

⃗⃗ ⃗⃗ ) velocity vectors, so his magnitude is given by:  

 𝑉𝐴 = √𝑉𝐿
2 + 𝑉𝑊

2 (2.1) 

 

The angle of attack, represents the angle between the kite’s chord line (imaginary straight line, joining 

the leading and trailing edges of the aerofoil) and the flow direction (𝑉𝐴
⃗⃗⃗⃗⃗). If this angle is zero, lift is 

null, in other words, the lift only exists if the angle of attack is greater than zero and for that, the wing 

profile must be asymmetrical. 

The drag (�⃗⃗⃗�), represents the force of resistance to kite’s movement, in the opposite direction to the 

kite’s apparent velocity (𝑉𝐴
⃗⃗⃗⃗⃗), and perpendicular to �⃗⃗�. �⃗⃗� is the kite’s tether tension that is always in the 

tether’s direction.  

https://en.wikipedia.org/wiki/Angle_of_attack
https://en.wikipedia.org/wiki/Chord_(aeronautics)
https://en.wikipedia.org/wiki/Aerofoil
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In the case of the crosswind kite (Figure 2.1b), the main difference is that the device does not remain 

static, moving through the air with a velocity 𝑉𝐶
⃗⃗⃗⃗⃗ which is normal to the wind. Power (FC) is generated 

by the load created by lifting the kite. The velocity created by this load (𝑉𝐿
⃗⃗ ⃗⃗  ) is parallel to 𝑉𝑤

⃗⃗⃗⃗⃗ , so the 

effective velocity of the wind is reduced to 𝑉𝑤
⃗⃗⃗⃗⃗ − 𝑉𝐿

⃗⃗ ⃗⃗ . 

Power can also be produced by loading the kite with additional drag (FD), like is shown in the Figure 

2.1c. Air turbines on the wing of the kite result in drag power. In this mode of operation, the tether is 

not extensible, so his length is always the same. The total drag �⃗⃗⃗� is the sum of the drag on the kite 𝐷𝑘
⃗⃗ ⃗⃗ ⃗ 

and the air turbines drag 𝐷𝑃
⃗⃗⃗⃗⃗⃗ , and the velocity created by the load is zero, 𝑉𝐿

⃗⃗ ⃗⃗ =0.   

In the following figure is possible to compare the power output of these three modes of operation: 

 

 

Figure 2.2 Relative power from the different modes of operation with L/Dk of 10 [6] 

 

This last mode of power generation (FD) is the one that will be studied in this MSc dissertation, which 

is the mode of operation performed by the M600 prototype. 

 

2.1  Assumptions 

 

In Loyd’s paper, some assumptions were made that need to be referred and taken into account 

throughout this dissertation.  

A better understanding of the efficiencies of the kite or the turbine depends on the design details, which 

are beyond the scope of the paper, so the kite and turbine are assumed to have no losses. Based on that, 

that assumption has an error between 10 and 20%. The efficiencies of the additional power conversions 

required to deliver shaft power at the ground were also not considered.  
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The criteria for the efficiencies of a kite or its turbines are different from those used by Betz. The kite 

sweeps out an annulus that could be compared to a turbine disk. However, the section occupied in this 

annulus by the kite is much smaller than the one occupied by the turbine blades and consequently the 

slowing of the wind is smaller too. In the Betz sense, if this slowdown effect is small, the kite's efficiency 

will be low. However, the power produced is higher than it would be if the kite were flying in wind that 

had been more slowed down. Since calculations of kite performance have resulted in Betz efficiencies 

of a few percentage points, the induced effects of the kite slowing the wind are assumed to be negligible.  

The wind was assumed to blow only along the x-axis. 

 

2.2  Equations System 

 

To predict the flight path of the kite it’s necessary to define its equations system. To reach this goal, this 

system was obtained based on Loyd’s model [6].  

  

2.2.1 Spherical Coordinates  

 

A spherical coordinate system is a coordinate system for three-dimensional space where the position of 

a point is specified by three numbers: the radial distance of that point from a fixed origin (R), the polar 

angle measured from a fixed zenith direction (θ − theta), and the azimuth angle of its orthogonal 

projection on a reference plane that passes through the origin and is orthogonal to the zenith (∅ − phi), 

measured from a fixed reference direction on that plane. 

 

Figure 2.3 Representation of kite’s motion, spherical coordinates, velocities components and unit vectors [6] 

 

The Figure 2.3 illustrates the parameters allowing the characterization of the kite’s motion which will 

be defined further ahead in this dissertation. 
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2.2.2 Velocities 

 

In Loyd’s paper, the velocity of the kite, also called ground speed, is defined as:  

 �⃗⃗� = 𝑅(�̇� 𝑙 + ∅̇𝑠𝑖𝑛𝜃�⃗⃗⃗�) (2.2) 

 

And assuming that wind only blows along the abscissa axis, so: 

 �⃗⃗�𝑤 = 𝑉𝑤 (𝑐𝑜𝑠𝜃𝑐𝑜𝑠∅𝑙 −  𝑠𝑖𝑛∅�⃗⃗⃗� +  𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅�⃗⃗�) (2.3) 

 

The important quantity in the generation of lift is the relative velocity between the object and the air, 

also called airspeed. Airspeed cannot be directly measured from a ground position, it must be computed 

from the ground speed and the wind speed. Airspeed is the vector difference between the ground speed 

and the wind speed [28]. Once �⃗⃗�𝑤 and �⃗⃗� are defined in the coordinate system (𝑙, 𝑚, 𝑛), the velocity of 

the kite through the air (airspeed) 𝑉𝐴
⃗⃗⃗⃗⃗ comes: 

 �⃗⃗�𝐴 = 𝑉𝑙 𝑙 + 𝑉𝑚 �⃗⃗⃗� +  𝑉𝑛 �⃗⃗�  (2.4) 

                                                                   

Where, 

 𝑉𝑙 = 𝑅�̇� − 𝑉𝑤𝑐𝑜𝑠𝜃𝑐𝑜𝑠∅ (2.5) 

 

 𝑉𝑚 = 𝑅∅̇ 𝑠𝑖𝑛𝜃 + 𝑉𝑤𝑠𝑖𝑛∅ (2.6) 

 

 𝑉𝑛 = −𝑉𝑤𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅ (2.7) 

 

 

 

 

 

 

 

 

 

https://www.grc.nasa.gov/www/k-12/airplane/vectadd.html
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2.2.3 System of Forces 

 

The acceleration of the kite is determined by four forces: tether tension �⃗⃗�, weight �⃗⃗⃗⃗�, lift �⃗⃗� and drag �⃗⃗⃗�𝑘, 

as shown in the next figure: 

 

Figure 2.4 Forces actuating on the system 

 

Assuming the gravity in the -z direction only, the weight of the kite is: 

 �⃗⃗⃗⃗� = 𝑊(𝑠𝑖𝑛𝜃 𝑙 − 𝑐𝑜𝑠𝜃 �⃗⃗�) (2.8) 

 

The drag is opposite in the direction of 𝑉𝐴
⃗⃗⃗⃗⃗, so is defined as: 

 �⃗⃗⃗�𝐾 = −
1

2
 𝜌 𝐶𝐷 𝐴𝑘 �⃗⃗�𝐴 √𝑉𝑙

2 + 𝑉𝑚
2 + 𝑉𝑛

2 (2.9) 

 

where 𝜌 is air density (1,225 kg/m3), 𝐶𝐷 is the kite drag coefficient and Ak is wing reference area of kite. 

To maintain a precise orbit, the flight path must be controlled by the variation of the tangent of roll angle 

(C), which is further defined.  

It’s convenient to define the factor H, to simplify the calculations:  

 𝐻 = √(1 + 𝐶2) (𝑉𝑙
2 + 𝑉𝑚

2)  (2.10) 

 

The direction of the lift �⃗⃗�  has two components while on a turn, each one normal to �⃗⃗�𝐴, in agreement 

with the definition of lift. One is in the plane of  �⃗⃗�𝐴 and �⃗⃗� (L’) and the other is normal to this plane (FC), 

as shown in the next figure: 
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Figure 2.5 Lift components and weight applied on the kite in a turn [29] 

 

Taking that into account, lift becomes: 

 �⃗⃗� = {
1

2
 𝜌 𝐶𝐿 𝐴𝑘  𝑉𝐴/√(1 + 𝐶2) (𝑉𝑙

2 + 𝑉𝑚
2)} [− (𝑉𝑙𝑉𝑛 + 𝑉𝑚𝑉𝐴𝐶)𝑙 − (𝑉𝑚𝑉𝑛 − 𝑉𝑙𝑉𝐴𝐶)�⃗⃗⃗� + (𝑉𝑙

2 + 𝑉𝑚
2) 𝑛 ⃗⃗⃗ ⃗] (2.11) 

 

where CL is the kite lift coefficient. 

The tether tension is in the negative �⃗⃗� direction only (see Figure 2.3). Thus, 

 �⃗⃗� = − [𝑊 {
(𝑅2�̇�2 + 𝑅2∅̇2 𝑠𝑖𝑛2𝜃)

(𝑔𝑅)
− 𝑐𝑜𝑠𝜃} − 1/2𝜌 𝐶𝐿 𝐴𝑘 𝑉𝐴 {

𝑉𝑛

𝐿/𝐷
−

(𝑉𝑙
2 + 𝑉𝑚

2)

𝐻
}] �⃗⃗� (2.12) 

                    

g represents the acceleration of gravity (9,8 m/s2) and D the total drag. 

It’s now possible to define the acceleration components: 

 �̈� = ∅̇2 sin 𝜃 cos 𝜃 +
𝑔 sin 𝜃

𝑅
−

𝑔𝐶𝐿𝜌𝐴𝑘𝑉𝐴

2𝑊𝑅
× (

𝑉𝑙

𝐿
𝐷⁄

+
𝑉𝑙𝑉𝑛 − 𝑉𝑚𝑉𝐴𝐶

𝐻
) (2.13) 

 

 ∅̈ =
−2�̇�∅̇ cos 𝜃

sin 𝜃
−

𝑔𝐶𝐿𝜌𝐴𝑘𝑉𝐴 sin 𝜃

2𝑊𝑅
× (

𝑉𝑚

𝐿
𝐷⁄

+
𝑉𝑚𝑉𝑛 − 𝑉𝑙𝑉𝐴𝐶

𝐻
) (2.14) 

 

Once the four forces are defined, the total acceleration of the kite comes: 

 �⃗� = 𝑅(�̈� − ∅̇2 sin 𝜃 cos 𝜃)𝑙 + 𝑅(∅̈ sin 𝜃 + 2�̇�∅̇ cos 𝜃)�⃗⃗⃗� − 𝑅(�̇�2 + ∅̇2 sin2 𝜃)�⃗⃗� (2.15) 
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The tether must be strong enough to provide the tension given in equation 2.12. When this tether tension 

is equal to the strength of the cable, the weight of the tether is: 

 𝑊𝑇 = 𝑔𝑅𝑇𝜌𝑇/𝜎 (2.16) 

                                                                                                                           

𝜌𝑇 is the tether density and 𝜎 is the tether working stress (Pa). Working stress is the maximum allowable 

stress that a material may carry. 

Since the part of the tether near the kite moves faster than the part near the ground, the drag load 

produced by the tether on the kite is evaluated by integration of the incremental moment created by the 

tether drag over the length of the tether. Assuming the tether reference area to be 4𝑅√𝐴𝑇, where AT is 

the tether cross-sectional area, the resulting drag of the tether is: 

 𝐷𝑇 =
1

2
𝜌𝐶𝐷𝑇𝑅√𝑇

𝜎⁄ 𝑉𝐴
2 (2.17) 

                                                                                                                  

𝐶𝐷𝑇 represents the tether drag coefficient. 

 

2.2.4 Power Drag 

 

As previously mentioned, power can be produced by on-board air turbines that create drag. Looking at 

Figure 2.2, the maximum value of FD occurs at 0.5 DP/Dk. Considering the tether’s drag, the power drag 

comes: 

 𝐷𝑃 = 0.5 (𝐷𝐾 + 𝐷𝑇) (2.18) 

                                                                                                                        

Since total drag is the sum between 𝐷𝑃, 𝐷𝐾 and 𝐷𝑇, comes: 

 𝐷 = 1.5 (𝐷𝐾 + 𝐷𝑇) (2.19) 

          

This means that on-board turbines increase the total system drag by 50%.                                                                                           

It’s known that power is the amount of energy transferred per unit time, defined in the SI units by joules 

per second (J/s) recognised as Watt (W). In other words, power is the rate of doing work expressed by: 

 𝑃 =
𝑑𝑤

𝑑𝑡
 (2.20) 

 

The work (w) is a force F applied over a distance r, so: 

 𝑤 = 𝐹 × 𝑟 (2.21) 

https://en.wikipedia.org/wiki/Energy_(physics)
https://en.wikipedia.org/wiki/Work_(physics)
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So, equation 2.20 can be rewritten as: 

 𝑃 =
𝑑

𝑑𝑡
(𝐹 × 𝑟) = 𝐹 ×

𝑑𝑟

𝑑𝑡
= 𝐹 × 𝑉1 (2.22) 

 

Neglecting turbine losses, the power produced by air turbines adding a drag 𝐷𝑃, to the kite moving 

through the air at 𝑉𝐴 is: 

 𝑃 =  𝐷𝑃 × 𝑉𝐴 (2.23) 

 

  

                                                           
1 In this particular case, V is representative of a common velocity and not the kite velocity 
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Chapter 3. Numeric Implementation 

 

In a preliminary stage of a project, it is very important to use tools that gives us the chance to test several 

solutions and to predict (and overcome) some problems that may exist in the future. Nowadays, there 

are plenty of computer simulation which programs makes this possible, and in this dissertation, the 

program chosen to simulate the crosswind kite behaviour was Simulink version 8.5, an extension of 

MATLAB R2015a.  

In the next subchapters will be described the numeric implementation of the model in 

Simulink/MATLAB. 

 

3.1  Initial Conditions 

 

As first approach, as it shown in Loyd’s paper [6], it was created a model based on a C-5A aircraft 

(Figure 3.1), a large military transport aircraft  with 68 meters of wingspan [30]. 

 

 

Figure 3.1 C-5A model aircraft [31] 

 

 

 

 

 

 

 

 

https://www.linguee.pt/ingles-portugues/traducao/preliminary+stage.html
https://en.wikipedia.org/wiki/Military_transport_aircraft
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In Loyd’s paper, he studied three examples of large-scale power production, resumed on Table 3.1: 

 

Table 3.1 Examples of Loyd's article calculations 

 Example I II III 

Kite 

Wing area (m2) 576 1000 2000 

Lift-to-drag ratio 20 40 40 

Strength-to-weight ratio 10 10 10 

Coefficient of lift 1 1 1 

Tether 

Length (m) 400 1200 1200 

Working stress (MPa) 345 345 345 

Density (Mg/m3) 8 8 8 

Coefficient of drag 0.04 0.04 0.04 

Wind Speed (m/s) 10 10 10 

Results of 

calculation 

Average power output (MW) 6.7 19 45 

Peak tether tension (MN) 3.2 10.6 22.2 

 

The kite and tether’s parameters, of example I, were applied in a Matlab’s model which recognize them 

as constants in his algorithm (see Attachment 1). The tether’s coefficient of drag is a fairly undersized 

value for a circular cylinder shape, however since the tether shroud need not produce lift [6], that value 

was approximated to the drag coefficient of a streamlined body . To verify the model, the final results 

must approach to average power output and peak tether tension of example I, which are 6.7 MW and 

3.2 MN, respectively. 

 

3.2  Simulink Model  

 

Simulink, developed by MathWorks, is a graphical programming environment for modelling, simulating 

and analysing multidomain dynamic systems. Simulink is integrated with MATLAB, enabling the user 

to incorporate MATLAB algorithms into models and export simulation results to MATLAB for further 

analysis. This program is widely used in automatic control and digital signal processing for 

multidomain simulation and Model-Based Design (MBD). MBD is a mathematical and visual method 

of addressing problems associated with designing complex control, signal processing and 

communication systems. Rather than using complex structures and extensive software code, designers 

can use Model-based design to define plant models with advanced functional characteristics using 

continuous-time and discrete-time building blocks [32].  

This blocks model was created with the equations system defined in chapter 2 and was structured with 

blue blocks that represents subsystems of the main system, that will be described more detailed below 

(see Attachment 2). 

 

 

 

https://en.wikipedia.org/wiki/MathWorks
https://en.wikipedia.org/wiki/Dynamic_systems
https://en.wikipedia.org/wiki/Automatic_control
https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Model-based_design
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3.2.1 Spherical Coordinates 

 

This subsystem is the base for this model implementation, once as anticipated in the chapter 2.2.1, the 

spherical coordinates definition will allow the prediction of the kite’s motion in three-dimensional space.  

The kite flight path is circular about an orbit axis directly downwind from the anchor point, one radian 

down from the z axis and 0.4 radians up to orbit axis. To define this, it was considered the time function 

of the angular position of a uniform circular motion: 

 𝛽 = 𝛽0 + 𝛽0̇. 𝑡 (3.1) 

 

Where 𝛽0 is the initial position of the kite, and 𝛽0̇ his derivative given in radians per second. As a first 

aproximation, 𝛽0 = 0 𝑟𝑎𝑑 and 𝛽0̇ = 3 𝑟𝑝𝑚 (
𝜋

10
 𝑟𝑎𝑑/𝑠), which means that the kite gives a full rotation 

in 20 seconds. It was considered that 𝛽 is zero in the highest position (when the altitude is maximum) 

and the kite moves in counter-clockwise direction, so 𝛽 increases in this way as shown in Figure 3.2. 

 

 

Figure 3.2 Representation of the Beta parameter 

  

To define the spherical coordinates it was used the Rodrigues’s formula rotation [33], an efficient 

algorithm for rotating a vector in a 3D space, given an axis (𝑢)  and angle of rotation (𝜑) defined by: 

 𝑣𝑟𝑜𝑡 = 𝑣 cos 𝜑 + (𝑢 × 𝑣) sin 𝜑 + 𝑢(𝑢 ∙ 𝑣)(1 − cos 𝜑) (3.2) 

 

𝑣 is a vector in ℝ3 and 𝑢 is a unit vector describing an axis of rotation about which 𝑣 rotates by an 

angle 𝜑 according to the right hand rule. In this case, 𝑢 is the vector represented in Figure 2.3 by orbit 

axis that is defined in the spherical coordinate system by [1 1 0]; 𝑣 is the vector defined by spherical 

coordinates [R 𝜃 ∅]; and 𝜑 is the angle of rotation defined by  𝛽 in equation 3.1. (𝑢 × 𝑣) and (𝑢 ∙ 𝑣) 

are, respectively, the cross and the dot product between 𝑣 and 𝑢 vectors. 

https://en.wikipedia.org/wiki/Vector_(geometric)
https://en.wikipedia.org/wiki/Axis_angle
https://en.wikipedia.org/wiki/Angle_of_rotation
https://en.wikipedia.org/wiki/Unit_vector
https://en.wikipedia.org/wiki/Right_hand_rule#Direction_associated_with_a_rotation


Technical evaluation and modelling of a cross wind kite based on Loyd’s model 

 

 

20 
 

To apply equation 3.2, was used the “MATLAB Function” block, presented in Simulink library. This 

block allows the inclusion of a Matlab function in the Simulink model, where is necessary to specify its 

inputs and outputs. In this case, the input is 𝛽 which is already defined in Simulink model, and the return 

values (outputs) are the spherical coordinates (𝑣𝑟𝑜𝑡). 𝑢 and 𝑣 are specified in block editor, where 𝑣 must 

be defined as the first position of the kite, when 𝛽 = 0, that is [400 0.6 0].  The desired 𝑣𝑟𝑜𝑡 must be in 

the form of spherical coordinates (R,𝜃, ∅), however to use the Rodrigues formula, these must be in 

cartesian coordinates (x,y,z) so is necessary to use the coordinate systems conversions [34]: 

 

Table 3.2 Coordinate systems conversions 

  

 

 

 

 

 

 

The output, 𝑣𝑟𝑜𝑡 gives a three columns matrix, where the first one is the radial distance (R) which is a 

constant value, and the second and third columns are respectively the polar (𝜃) and azimuth angles (∅) 

obtained for each value of 𝛽. 

 

 

Figure 3.3 Spherical coordinates representation for 3 RPM in one cycle of rotation (20 seconds) 

Spherical to Cartesian Cartesian to Spherical 

𝑥 = 𝑅 sin 𝜃 cos ∅ 𝑅 = √𝑥2 + 𝑦2+𝑧2 

𝑦 = 𝑅 sin 𝜃 sin ∅ 𝜃 = cos−1 (
𝑧

√𝑥2 + 𝑦2+𝑧2
) = cos−1 (

𝑧

𝑅
) 

𝑧 = 𝑅 cos 𝜃 ∅ = tan−1 (
𝑦

𝑥
) 
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Based in Table 3.2, is possible to convert these spherical to cartesian coordinates, that allows to know 

strictly the spatial position of the kite. The block “Derivative” of Simulink, allows to obtain the time 

derivative of spherical (
𝑑𝜃

𝑑𝑡
,

𝑑∅

𝑑𝑡
) and cartesian (

𝑑𝑥

𝑑𝑡
,

𝑑𝑦

𝑑𝑡
,

𝑑𝑧

𝑑𝑡
) coordinates which are used in equations 2.2, 

2.5, 2.6, 2.12, 2.13, 2.14 and 2.15 with the notation of �̇� and ∅̇.  Is possible to export the values of 

spherical coordinates and his derivatives to MATLAB editor with the “To Workspace” block and draw 

a three-dimensional representation of the kite flight path and his velocity, with “plot3” and “quiver3” 

respectively, commands of MATLAB.  

 

 

Figure 3.4 Position and velocity of the kite for 3 RPM  

 

3.2.2 Velocities and Wind Model 

 

This subsystem block has the purpose of calculate the kite velocities by application of equations 2.2, 

2.4, 2.5, 2.6 and 2.7. To insert these and all the equations of Chapter 2.2 in the Simulink model, was 

used the “Fcn” block, which applies the specified mathematical expression to its inputs. The inputs, 

equations and outputs of this subsystem are illustrated in Figure 3.5: 
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Figure 3.5 Representation of the block “Velocities” operation 

 

To obtain these values is necessary to estimate the wind speed (equation 2.3). In a first approximation, 

like in Loyd’s paper, it was considered the constant value of 10 m/s for Vw, then it was considered a 

wind model to estimate his variation with the altitude in the atmospheric boundary layer (ABL). The 

ABL is the part of troposphere that is directly influenced by the Earth's surface presence and responds 

to this influence with a time scale of about an hour or less.  The air layer above the ABL is called the 

free atmosphere. The ABL depth is quite variable, but it’s generally below 2 to 3 km [35]. The diurnal 

variability and the high frequency of turbulence near the ground are characteristics that distinguish the 

ABL from the rest of the atmosphere. 

The mean velocity profile of a turbulent atmospheric boundary layer can be obtained by two ways [36]:  

By the Prandtl’s logarithmic law, commonly called wall law, which can be described as:  

 𝑈(ℎ) =
𝑢∗

𝑘
𝑙𝑛 (

ℎ

ℎ0
) (3.3) 

 

where 𝑢∗ is the friction velocity in the ground, k is the universal Von Kármán constant, h is the height 

and ℎ0 is the surface roughness length; 

Or by a power law assumption, which allows the calculation of speed values from a reference value: 

 
𝑈(ℎ)

𝑈𝑟𝑒𝑓
= (

ℎ

ℎ𝑟𝑒𝑓
)

𝛼

 (3.4) 

 

where 𝑈𝑟𝑒𝑓 is the velocity of wind at the height of ℎ𝑟𝑒𝑓 and 𝛼 is a parameter which varies in function of 

the surface roughness.  

To obtain the wind profile it was used the equation 3.4  instead of equation 3.3, because it’s difficult to 

predict the ground friction velocity (𝑢∗). The 𝛼 parameter was defined as 1/7, typical of mostly flat 

𝜃

∅

�̇�

∅̇

𝑉 = 𝑅 �̇� 𝑙 + ∅̇𝑠𝑖𝑛𝜃𝑚

𝑉𝑙 = 𝑅�̇� − 𝑉𝑤𝑐𝑜𝑠𝜃𝑐𝑜𝑠∅

𝑉𝑚 = 𝑅∅̇ 𝑠𝑖𝑛𝜃 + 𝑉𝑤𝑠𝑖𝑛∅

𝑉𝑛 = −𝑉𝑤𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅

𝑉𝐴 = 𝑉𝑙 𝑙 + 𝑉𝑚 𝑚 + 𝑉𝑛 𝑛

𝑉⬚

𝑉𝑙

𝑉𝑚

𝑉𝑛

𝑉𝐴



Technical evaluation and modelling of a cross wind kite based on Loyd’s model 

 

 

23 
 

surfaces with little roughness (excluding water, snow and ice), like the locals where this system will 

operate [37]. Based on a 2000 study carried out by Cristina L. Archer and Mark Z. Jacobson, they 

concluded that locations with appreciable wind power potential (class ≥ 32), can register a mean V10 

(wind speed from an elevation of 10 m) of 6,50 m/s at onshore stations [2]. With these values and in 

consistency with the wind speed of 10 m/s considered in Loyd’s paper, it is possible to obtain the 

corresponding height, by applying equation 3.4, which gives a value of 204 m, a consistent value taken 

into account the kite mean altitude (Figure 3.4). Resorting again to equation 3.4, it is possible to 

construct the wind model for this situation, knowing that h is the altitude of the kite which is given by 

the multiplication of  𝑐𝑜𝑠𝜃 for the tether length (see Table 3.2). 

 

 
Figure 3.6 Graphic representation of wind model and his corresponding altitude (top graph) and kite and apparent velocities 

(bottom graph) to 3 RPM 

 

 In the first plot of Figure 3.6 is possible to observe, as already mentioned in chapter 1.1, that the growth 

and decrease of the wind speed (black line) is proportional to the altitude (red line). This graph also 

intends to show the contrast between the two models used to represent the wind variation: assuming the 

wind constant (neglecting the wind boundary layer effect - blue line) and variable (black line). In the 

graphic below is possible to see that V (orange line) and VA (cyan and green lines) both have a much 

greater magnitude than Vw, and as previously noted VA = V-Vw. Then it is predictable that wind velocity 

does not cause much variation in VA, whether constant or variable given the range of altitudes seen by 

the kite and the boundary layer conditions assumed. Also, since in this model the speed of rotation is 

being enforced, the speed of the kite (V) is approximately constant (orange line). 

 

                                                           
2 At a specified height above the ground, each class represents a range of mean power density (W/m2), with class 1 winds 

containing the least energy and class 7 winds containing the most energy. Each class has equivalent wind speed ranges, but 

these are dependent on the height at which the wind map is referring. In this dissertation the class is referred to a height of 80 

meters. 
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3.2.3 Roll Angle Variation 

 

One of the challenges with using a kite type system for extracting wind energy is his susceptibility to 

gusts and turbulence, in other words, variations in the wind speed can disturb the system significantly, 

causing it to enter into an unrecoverable spin or dive. It’s important to be able to establish whether the 

system is capable of following a desired trajectory determined in the presence of variations in the wind 

speed around the mean. Then, it is necessary to stablish some kind of control to maximize the generated 

energy. In Loyd’s paper the control action is guaranteed by the tangent of roll angle figured by C letter, 

which is not defined in the paper, so it is necessary to characterize it. 

The roll angle is the rotation operation performed around the longitudinal axis of the kite [38]. Positive 

angles correspond to the starboard (right) wing lowered below the horizontal plane, that leads the kite 

to fly to the right and negative angles corresponds to the opposite like illustrated in Figure 3.7. 

 

 

Figure 3.7 Variation of roll angle about the kite horizontal plane [39] 

 

To get an approximation of C, the equation 2.14 was used, which gives the second order derivative of 

the spherical coordinate ∅, that was already calculated. Looking at Figure 3.3,  ∅ has three roots. These 

three points corresponds to the positions 𝛽 = 0, 𝜋 and 2𝜋 but as representative of a looping motion the 

first and last positions represent the same. By definition, the second derivative has the same roots of his 

own function, so equating equation 2.14 to zero and solving in order to C it’s possible to obtain his 

values for the positions of 𝛽 = 0 and 𝜋. To help with this calculation, the function “fzero” of Matlab 

was used. In the sides (𝛽 = 𝜋
2⁄  and 3𝜋

2⁄ )  the roll angle was assumed to be zero (C=0), when the kite 

is directly downwind and upwind. In the next figure is possible to see the value of the roll angle in each 

one of these positions. 
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Figure 3.8 Representation of the kite position and the respective values of roll angle in four positions for 3 RPM 

 

The obtained results for the roll angle are in agreement with the flight path of the kite: the negative roll 

angle lifts the right wing and lowers the left wing and the kite descends to the left, the positive angle 

lowers the right wing and lifts the left wing and the kite ascends to the left. Knowing these four positions, 

it’s now possible to create a linear variation to make an approximation of the roll angle behaviour (Figure 

3.9) given by the next expression:  

 

 𝑅𝑜𝑙𝑙 𝑎𝑛𝑔𝑙𝑒 (𝛽) = [
𝑅𝑜𝑙𝑙 𝑎𝑛𝑔𝑙𝑒(𝛽 = 0) + 𝑅𝑜𝑙𝑙 𝑎𝑛𝑔𝑙𝑒(𝛽 = 𝜋)

2
] cos2 𝛽 − [

𝑅𝑜𝑙𝑙 𝑎𝑛𝑔𝑙𝑒(𝛽 = 𝜋) − 𝑅𝑜𝑙𝑙 𝑎𝑛𝑔𝑙𝑒(𝛽 = 0)

2
] cos 𝛽 (3.5) 

 

 

Figure 3.9 Roll angle variation for 3 RPM to one cycle of rotation (20 seconds) 
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And finally, C is given by: 

 𝐶(𝛽) = tan[𝑅𝑜𝑙𝑙 𝑎𝑛𝑔𝑙𝑒(𝛽)] (3.6) 

 

Looking at the previous equation is not clear its relationship with the turbulence and with variations in 

the wind speed. To ensure this kind of control, a more elaborate controller would be needed, based in 

new technology, that can control the kite’s flight path in its six degrees of freedom (6DoF).  

 

3.2.4 System of Forces 

3.2.4.1 On Kite 

 

This subsystem block has the purpose of obtaining the results of equations 2.8, 2.9, 2.11 and 2.12. The 

goal of this subsystem is illustrated in the next figure: 

 

Figure 3.10 Representation of the block “Forces on Kite” operation 

 

In this model, W corresponds to C-5A weight which is given by the product between the aircraft mass 

and the gravity acceleration. This aircraft weighs about 233 tons [30] and the gravity acceleration has 

conventionally the value of 9.8 m/s2, which gives a weight of approximately 2.28 MN. 
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3.2.4.2 On Tether 

 

This subsystem block has the purpose of obtaining the results of equations 2.16 and 2.17. The goal of 

this subsystem is illustrated in the next figure: 

 

 

 

 

 

 

 

𝑇
𝜎⁄  is the transversal area of the tether, once is the division of a force by a pressure, that by definition 

gives an area (m2), so is possible to obtain the tether diameter equating this to 𝜋𝑟2, being 𝑟 half of the 

tether diameter, which becomes: 

 𝑑 = 2 × √
𝑇

𝜎 × 𝜋
 (3.7) 

 

Replacing T and 𝜎 with the values of Table 3.1 (example I), that are 3.2 MN and 345 MPa respectively, 

is possible to obtain a diameter of approximately 11 cm, which gives an idea of the tether thickness. 

 

3.2.5 Acceleration 

 

In this subsystem block, the acceleration and its components are calculated based on the equations 2.13, 

2.14 and 2.15. The goal of this subsystem is illustrated in the next figure: 

 

 

 

𝑉𝐴

𝑇

𝑊𝑇 =
𝑔𝑅𝑇𝜌𝑇

𝜎

𝐷𝑇 =
1

2
𝜌𝐶𝐷𝑇𝑅 ⁄𝑇

𝜎 𝑉𝐴
2

𝐷𝑇

𝑊𝑇

Figure 3.11 Representation of the block "Forces on tether" operation 
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Figure 3.12 Representation of the block "Acceleration" operation 

 

3.2.6 Power Output and Model Verification 

 

With the last subsystem of this model called “Power Output”, it is possible to obtain the power curve of 

the tethered system by applying of equation 2.23. This model was simulated for one orbit cycle with a 

fixed step of 0.1 seconds based in the Bogacki-Shampine solver which is a default of the program.  

As referred before, to verify the model, the final result must approach to the average power output and 

peak tether tension of example I of Table 3.1. For this purpose, several tests were made, for different 

RPM (𝛽0̇) and wind speed (constant or variable) values and the relative error between the measured 

values and those obtained by Loyd, was calculated. The final results are summarized on the next table: 
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Table 3.3 Simulations results for each RPM, and windspeed variable and constant and comparation with Loyd’s results 

 

RPM=3 RPM=5 RPM=5.5 RPM=6 RPM=8 
Loyd’s 

Paper (One orbit 

cycle: 20s) 

(One orbit cycle: 

12s) 

(One orbit cycle: 

10,91s) 

(One orbit cycle: 

10s) 

(One orbit cycle: 

7,5s) 

Vw 

Constan

t 

Vw 

Variabl

e 

Vw 

Constan

t 

Vw 

Variable 

Vw 

Constant 

Vw 

Variabl

e 

Vw 

Constant 

Vw 

Variabl

e 

Vw 

Constant 
Vw Variable 

Vw 

Constant 

Peak 

tether 

tension 

(MN) 

1.347 1.350 2.161 2.040 2.581 2.390 3.086 2.9 4.855 4.330 3.200 

Relative 

error (%) 
57.91 - 32.47 - 19.34 - 3.56 - 51.72 - 0 

Av. power 

output 

(MW) 

1.138 1.136 5.037 5.033 6.680 6.674 8.701 8.695 20.850 20.830 6.700 

Relative 

error (%) 
83.01 - 24.82 - 0.30 - 29.87 - 211.19 - 0 

Tether’s 

thickness 

(cm) 

7.05 7.06 8.93 8.68 9.76 9.39 10.67 10.35 13.39 12.64 10.87 

 

In order to compare the obtained results with those obtained by Loyd, is necessary to take into account 

the same conditions, so the right velocity of rotation must be chosen when the windspeed has a constant 

value of 10 m/s, reason why the relative error is only calculated in those cases. 

Looking at the previous table is possible to verify that 3 RPM, chosen at a first place, isn’t a good 

approximation for the velocity of rotation of the study case, with high relative errors shown discrepancy 

between the values. For 8 RPM the discrepancy is even higher, with relative errors bigger than 100%. 

After making the test for 5 and 6 RPM became obvious that the best result lies in a range between these 

values, so was made an intermediate test for 5.5 RPM. Therefore, observing the results in its overall, the 

chosen velocity was 5.5 RPM, where the result of the average power output gets very close to the desired 

one, with a relative error inferior to 1% and the peak tether tension with a relative error of 19%. It’s 

interesting to see that the tether’s thickness increases with the growth of the tension, by application of 

equation 3.7, which leads to the conclusion that higher tensions require stronger tethers.   

To approximate the results to the reality, the wind model described in sub-chapter 3.2.2 was applied, 

and its results are presented also in Table 3.3, so the model created with these conditions is the chosen 

one as representative of the kite’s flight path and his graphs and results are presented in the attachments 

(see Attachment 3 and Attachment 4). In the next chapter this model will be applied to the study case, 

the Makani prototype. 
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Chapter 4. Study Case 

 

In this chapter will be analysed with more detail, the model “M600” of the Makani Power company, to 

realize what is its energy potential. With this propose, the model created in Chapter 3, based on a C-5A 

aircraft, will be now calculated with M600 characteristics.  

 

4.1  Makani Power Prototype 

 

Makani Power the Californian company, founded in 2006 by Corwin Hardham, Don Montague and Saul 

Griffith, was created with the goal of developing a low-cost renewable energy solution using kite 

technology [26]. After many years testing several prototypes, in 2016 they finish their first commercial 

scale system, a kite called “M600” with a rated power of 600 kW and 26 meters of wingspan (see Figure 

4.1).   

 

Figure 4.1 Makani's prototype- M600 [40] 

 

As seen in the previous figure, this prototype has eight turbines mounted along the wings, each drives a 

permanent magnet motor/generator that generates electricity on-board, when they are crossed by 

airflow. Direct-drive generator units of high power density are supported by the strength and 

aerodynamic leverage of its wings. The wing is made by a composite material which includes e-glass in 

its skin and carbon fibre in the spar, a high tensile strength and low weight material, which favour the 

kite flight manoeuvres due to L/D ratio. For airplanes, this ratio is also referred to as the gliding number, 

it describes how faster a kite without propulsion can move horizontally compared to its vertical sink 

rate. The material properties of the tether are important as a tether needs to withstand strong tensions 

due to high velocity winds. A high voltage tether is required to transmit the electricity to ground level, 

although the tether weight is an important constraint which could increase the load on the kite. For their 
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prototype, M600 tether is made in pultruded carbon fibre with a working stress of 2137 MPa and a 

density of 1760 kg/m3 [41] which is 6 times stronger, and 4 times less dense than steel used in Loyd’s 

model. The voltage conductor is aluminium, which because its low electrical impedance ensure that the 

power lost along the tether is minimal. This tether with 440 meters length, allows the kite to reach 

altitudes between 140 to 310 meters.  

The kite takes off from the ground station with the wing plane in a vertical position, driven by the turbine 

rotors that are used as propellers, like a quadcopter. Once the tether is all unwinded, the device changes 

flight mode becoming a tethered flight fully autonomous airplane, describing a circular flight path 

powered by the wind, which is restricted by the tether length. In this flight mode the turbine rotors work 

as generators to convert power from the wind that is transmitted to the ground station by the conductor 

tether. In order to land the kite, a new change of flight mode is made, and the device returns to the 

ground station as a quadcopter. During the take-off and landing phases the device consumes energy, a 

minimal fraction of the energy which is produced in the autonomous flight mode. In the next figure is 

summarized the operation of M600 device: 

 

Figure 4.2 M600 bimodal flight [42] 

 

The potential failure of either the device or the tether must be considered in regard to ground safety. In 

case of the device failure, such as rotor failure due to mechanical malfunctions, the worst scenario is 

that the radius of influence will be the tether length, so at least one tether length must be guaranteed as 

safety perimeter. In the case of a fatal tether failure, the M600 on-board generating systems could land 

safely with the use of their rotors as a quadcopter, given that there is energy storage available 

otherwise the device could float away. Makani has implemented a supervisory control and data 

acquisition system that will control and monitor the health of the device including sensors to detect 

impendence in individual sections of the tether [43]. There are also, regulation and safety procedures 

which need to be fulfilled, so Makani is committed to working with the Federal Aviation 

Administration (FAA) of USA to open a safe AWES farm for the operation of several devices. In a 
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response to FAA [42], they explain how they expect to ensure the safety of its devices and some 

upcoming tests that need to be done as the operation at night, over long periods of time (weeks, 

months) and up to 610 meters above ground level and study multiple system farm environments. In 

this response they specify some characteristics of M600 which will be useful to the next subchapter as 

the wing area of 35 m2, the coefficient of lift of 2 and the wing mass of 1050 kg. 

 

4.2  Numerical Implementation 

 

In this subchapter is intended to compare the new inputs for the model created in chapter 3 and compare 

them with the Loyd’s values so then shown their outputs. This comparison is shown in the next table: 

 

Table 4.1 Comparation between C-5A aircraft and Makani prototype M600 

 
C-5A Aircraft  

(Loyd model) 

M600 prototype  

(Makani) 

Wing area (m2)- A 576 35 

Kite Weight (kg) 232 693 1 050 

Kite coefficient of lift (CL) 1 2 

Kite coefficient of drag (CD) 0.05 0.05 

Tether coefficient of drag (CDT) 0.04 0.04 

Lift-to-Drag ratio (L/D) 20 40 

Tether’s length (m)- R 400 440 

Tether’s working Stress (MPa)- 𝜎 345 2 137 

Tether’s Density (kg/m3)- 𝜌𝑇 8 000 1 760 

Tether’s Material Steel Carbon fibre 
 

Looking at previous table, it’s possible to see that C-5A is approximately 16 times bigger and 220 times 

heavier than M600, however with half of the lift coefficient. Typically, a lift coefficient of 2 is difficult 

to achieve, so this could be a little over estimated, but due to the Makani confidentiality, its actual value 

isn’t really known. This discrepancy intends to show a better climbing performance by the M600 design, 

revealed in a higher gliding number (L/D), once the kite’s drag coefficient was considered the same. 

The tether drag coefficient was also considered the same of C-5A because the resemblance of cylindrical 

shape facing the wind. However, as said before, the tether material of both devices will influence the 

flying performance, therefore M600’s carbon fibre tether is stronger (can withstand greater tensions) 

and less dense than C-5A’s steel tether. The drag coefficients of both the kite and tether might be 

improved, thanks to the surface treatment that force the turbulent boundary layer and reduce drag 

(similar to the effect of a golf ball surface). However, due to the uncertainty of their actual values, which 

still may be in research processes, they were kept the same.  
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4.3  Results Discussion 

 

After setting the new inputs in Table 4.1, is possible now to re-run the model created in Chapter 3. The 

obtained results are presented next: 

  

Table 4.2 Comparation between the results obtained for the C-5A and M600 

 C-5A Aircraft  

(Loyd model) 

M600 prototype 

(Makani) 

Average power output (MW) 6.674 0.5981 

Peak tether tension (MN) 2.390 0.486 

Kite speed (m/s) 89.700 98.670 

Average apparent speed (m/s) 90.180 99.200 

Tether’s thickness (cm) 9.39 4.08 

 

Looking at Table 4.2 it’s possible to verify that M600’s average power output gets close to its nominal 

power of 600 kW. That fact reveals some consistence in the model proposed by Loyd, showing that it’s 

possible to produce energy by the drag force actuating in a crosswind kite, which he called drag power 

production. Despite both kites fly at 5.5 RPM, the M600 reaches a higher apparent velocity of about 357 

km/h due to its larger tether. This apparent velocity is the one which really contributes to make the 

turbines in the wing spinning and produce energy. 

 

 

Figure 4.3 Absolute value of forces acting on M600 and his tether for three cycles of rotation  
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Figure 4.4 Absolute value of forces acting on C-5A and his tether for three cycles of rotation  

 

In these two figures it’s possible to see the absolute values of the forces acting in M600 (Figure 4.3) and 

C-5A (Figure 4.4), where the force with greater magnitude is lift, keeping the devices in the air, despite 

the tether tension overcome it in some instants in the case of M600. The pultruded carbon fibre material 

used in M600 structure grants him a low weight that can be almost negligible in the global system of 

forces, when compared with the C-5A weight which has more impact, like is showed in the first plot of 

Figure 4.4. The C-5A higher weight (either kite and tether) increases the load on the kite, meaning that 

it needs to generate more lift to sustain the tether with a value of around 3 MN and the opposite in the 

M600 kite with around 0.43 MN of magnitude. The higher density of the steel concedes to the C-5A 

tether a weight of about 85 kN, a higher value when compared with the carbon fibre’s M600 tether with 

a weight of 1.4 kN approximately. 

The M600 kite’s drag is also minimal as in C-5A, due to their aerodynamic wings design, not affecting 

too much their motion. The maximum tension registered in the M600 tether was 0.49 MN, which 

combined with a greater carbon fibre’s working stress, allows a diameter of 4 centimetres, 5 centimetres 

thinner tether than the C-5A one (Table 4.2). This thinner tether results in a minimal tether drag with a 

mean value of 1.4 kN while the C-5A tether drag has a mean value of 63 kN. However, it’s important 

to understand if the kite can withstand the tensions induced by the tether. 

The tether is capable of withstand the proposed stresses if the peak tether tension is lower than the 

maximum breaking tension. The maximum breaking tension is the maximum force that can be supported 

by the tether over its sectional area. Therefore, this value can be obtained by the product of the tether’s 

working stress (Table 4.1) and its section area given by π(d/2)2 (Table 4.2), due to its circular shape. 

That gives a maximum breaking tension of around 2.69 MN, which is a much bigger value when 

compared with the peak tether tension registered: 0.49 MN (Table 4.2), then this tether can withstand 

the proposed stresses.  
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Figure 4.5 Sum of the forces actuating in the kite (lift, drag, tether tension and weight) in each components of the unit 

vectors l (ϕ direction), m (θ direction) and n (radial direction) 

 

The previous figure represents the sum of the forces that act in the kite in each of their components: 𝑙, �⃗⃗⃗� 

and �⃗⃗�. Is interesting to verify that the sum of forces acting in the kite’s centre of pressure in the radial 

direction (�⃗⃗�) are almost null, which prove that the tether is fully extended. 

 

 

Figure 4.6 Power produced over time and respective amount of energy 
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The previous figure represents the variation of the power produced over time, calculated by the product 

between the drag power (DP) and the apparent velocity (equation 2.23).  This power drag is 1/3 of the 

drag which is induced in the total system, increasing them in 50%. In this plot was interesting to calculate 

the integral between the interval [0, 32.73] seconds, by the trapezoidal method. That gives the area of 

the region bounded by its graph, which corresponds to the energy produced by the M600 in three cycles 

of rotation, which is approximately 5.45 kWh. With the device working for one hour without any 

interruption, it would produce 599.92 kWh.  

Still looking at this plot is possible to conclude that the turbine generators may need to be over 

dimensioned, to accept up to the nominal power of 600 kW, because otherwise they would be wasting 

energy. Typically, this phenomenon could be controlled with additional drag provoked by flaps in the 

wings or by the turbine rotors themselves, that lead to the reduction of the average power over cycle.  

This additional drag must be assured by the on-board controllers.  
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Chapter 5. Conclusions 

 

In 1980, the engineer Miles L. Loyd suggested that lifting a wind turbine into the atmosphere, at some 

significant distance above the ground, where winds tend to blow more consistently and at greater speed than 

they do at ground level, could increase the energy production significantly. His suggestion was ignored for 

many years but in the second decade of the twenty-first century has received considerably more attention. 

Loyd’s tested his model in a large military aircraft (C-5A), a study absolutely theoretical that intended 

only to demonstrate the potential that is possible to achieve from wind extraction at high altitudes (higher 

that 200 meters) but unfeasible in practical terms due to its high weight. In 2016, Makani company 

started developing the M600, a technology designed for large generating capacity that intends to 

accomplish Loyd’s ideas for drag power production. This prototype is a substantially smaller aircraft 

made with different materials and autonomous controls that increase the aerodynamics of the kite.  

In this dissertation, the goal was to predict the behaviour of the M600, and study how much energy he 

could produce. The kite takes approximately 10.91 seconds to make each full rotation in the counter-

clockwise direction, with an orbit size of 0.4 radians, a constant velocity of approximately 98.67 m/s 

(5.5 RPM) and an average apparent velocity of 99.20 m/s which contributes to make the on-board 

turbines to spin and produce energy. It was considered a wind model to predict his variation with 

altitude, oscillating between 8.66 and 10.86 m/s to altitudes between 75 and 363 meters (Figure 3.6), 

however with a wind speed constant of 10 m/s the obtained results are very similar like it’s showed in 

Table 3.3.  

To maintain an accurate orbit, the flight was controlled by the variation of the tangent of the roll angle, 

which is defined in equation 3.6 by C letter. To re-run the Simulink model with the values of M600, it 

was necessary to calculate again the roll angle in equation 3.5, so the newly obtained values for Roll 

angle (β=0) and Roll angle (β=π) were -7.25 and 46.68 respectively.  These values are very similar to 

the ones obtained for C-5A (see Attachment 3), therefore these changes in C calculation has no 

significant influence in the final results. It can be concluded that this control action isn’t the most correct 

way to ensure that the kite takes the desired path. In fact, a more accurate controller should be needed 

that can adjust the kite in its six degrees of freedom, capable of respond within compatible time lags to 

disturbances in the system. 

The obtained results show some consistency with the expected ones, with an average power output of 

0.5981 MW, very close to the M600 nominal power and peak tether tension of 0.49 MN, a value that 

the kite is able to withstand. However, the turbine generators may need to be over dimensioned because 

the device registers values above the nominal power and in that case would be wasting energy. To assure 

values below the 600 kW, additional drag may be induced by flaps or by the turbine rotors.  

Many assessment issues regarding safety and aviation authority, that are beyond the goal of this 

dissertation, must be approved before these devices can be marketed. It is important to understand the 

interaction of these devices within a farm, the consequences of a tether or device failure to avoid 

unnecessary accidents, the localization where these devices will operate that will depend on weather 

groundings and the ground area occupied to build a wind farm [44]. Despite this, in 2017 Makani 

published a 37 minutes video on their personal page at Youtube, showing a full test flight of the M600 

prototype [45], an enticing video that shows that this prototype truly works. 
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5.1  Future Work 

 

One of the challenges in this MSc dissertation was to predict the velocity of rotation, for the kite to 

follow the desired trajectory. So, the flight path was approached by the time function of the angular 

position of a uniform circular motion (equation 3.1). This approach does not portray the real behaviour 

of the system, since the speed of the M600 will depend on external conditions such as wind speed and 

although the variation of wind speed has been taken into account in the model, this revealed not to cause 

great changes in the output power of the system. It would be interesting to trace a power curve and 

calculate the capacity factor of the device with a more realistic value for the tether’s coefficient of drag, 

using a more detailed model.  

To try to solve this problem, a closed loop model was made, therefore after the calculation of �̈� and ∅̈, 

their integral was obtained which gives the velocity components and their second integral gives the 

position components: 𝜃 and ∅. In this model it wasn’t necessary to resort to Rodrigues’s formula or 

define the beta (β) parameter, since the position and velocity of rotation of the kite were calculated 

automatically by the model, however for the kite to follow the desired trajectory, a correct controller 

must be used. For that, a proportional–integral–derivative (PID) controller was tested, which is a control 

loop feedback mechanism. The PID controller continuously calculates an error value as the difference 

between a desired setpoint and a measured process variable and applies a correction based 

on proportional, integral, and derivative terms (denoted P, I, and D respectively). To apply this PID 

controller, those three terms must be defined, however after several tests the desired flight path wasn’t 

taken, as can be seen in the Figure 5.1, with the kite describing a very irregular trajectory, which even 

crosses the ground with negative heights.  

 

Figure 5.1 Flight path described by the kite in the closed loop model 

 

As the results of this model did not allow to get conclusions, the open model was used in this dissertation. 

However, it remains open for a future study, the development of a controller that allows to rectify not 
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only the roll angle but also the other degrees of freedom of the kite as the yaw and pitch angles, the 

variation of the wind angle of attack in function of his direction and the match of kite’s velocity with a 

realist tether drag coefficient. This implementation would improve the results of the closed loop.  

It’s also important to be made a future study from an economic point of view, to predict if this technology 

can compete with the traditional ones. The value of its operational expenditures (OpExt) is a major 

question which need to be clarified and will help to realize if this technology is viable. One advantage 

of the M600 is the use of a fixed tether length. As it isn’t being always winded up and unwinded this 

can reduce the tether fatigue and consequently it can last longer.  

The carbon fibre is much more expensive per kilogram (in the order of 90-100€/kg) than steel or fibre 

glass (in the order of 2-5€/kg) [46] which are the typical materials used in the construction of wind 

turbines. However, when comparing these two kind of technologies to harness wind energy, it’s 

necessary to consider that they have a proportion of 1 to 260 tonnes but also have different nominal 

powers of 0.6 and 2 MW [47]. All these factors need to be taken into account when looking to the capital 

cost (CapEx) which allied with the OpExt gives the total cost of the technology over its lifetime. The 

division of this cost by the value of all energy produced over its lifetime gives the levelized cost of 

energy (equation 1.2), that as it was previously mentioned, is one important parameter to predict if it's 

worth investing in this technology. 

Nowadays, onshore wind power LCOE’s could round the 0.05/kWh [48], and Makani claim that his 

prototype can reach a competitive value of 0.026 €/kWh [49], however to be able to prove this value it’s 

necessary to continue the development of the technology towards commercial projects. 
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Attachments 
 

Attachment 1 Input constants inserted in Matlab to build the Simulink model based on C-5A aircraft 

 

 

 

Attachment 2 Representation of the Simulink model  
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Attachment 3 Matlab 3D graph, where is represented the flight path of the C-5A aircraft at 5.5 RPM, as the vectors velocity 

and his absolute value, the position, and the roll angle in four positions 

 

Attachment 4 Matlab graph that show the apparent and absolute velocities of the C-5A to 5.5 RPM in three cycles of rotation 

 


