

2018

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Code Generation for RESTful APIs in HEADREST

Telmo da Silva Santos

Mestrado em Engenharia Informática

 Especialização em Engenharia de Software

Dissertação orientada por:

Prof. Maria Antónia Bacelar da Costa Lopes

Prof. Vasco Manuel Thudichum de Serpa Vasconcelos

Resumo

Os serviços web com APIs que aderem ao estilo arquitetural REST, conhecidos por
serviços web RESTful, são atualmente muito populares. Estes serviços seguem um estilo
cliente-servidor, com interações sem estado baseadas nos verbos disponibilizados pela
norma HTTP.

Como meio de especificar formalmente a interação entre os clientes e fornecedores
de serviços REST, várias linguagens de definição de interfaces (IDL) têm sido propostas.
No entanto, na sua maioria, limitam-se ao nível sintático das interfaces que especificam e
à descrição das estruturas de dados e dos pontos de interação. A linguagem HEADREST
foi desenvolvida como uma IDL que permite ultrapassar estas limitações, suportando a
descrição das APIs RESTful também ao nível semântico. Através de tipos e asserções
é possível em HEADREST não só definir a estrutura dos dados trocados mas também
correlacionar o output com input e o estado do servidor.

Uma das principais vantagens de ter descrições formais de APIs RESTful é a capaci-
dade de gerar código boilerplate tanto para clientes como fornecedores. Este trabalho
endereça o problema de geração de código para as APIs RESTful descritas com HEAD-
REST e investiga de que forma as técnicas de geração de código existentes para os as-
pectos sintáticos das APIs RESTful podem ser estendidas para levar em conta também as
propriedades comportamentais que podem ser descritas em HEADREST. Tendo em conta
que a linguagem HEADREST adota muitos conceitos da Open API Specification (OAS),
o trabalho desenvolvido capitaliza nas técnicas de geração de código desenvolvidas para a
OAS e envolveu o desenvolvimento de protótipos de geração de código cliente e servidor
a partir de especificações HEADREST.

Palavras-chave: REST, RESTful, HTTP, Geração de código, API, Serviços Web

Abstract

Web services with APIs that adhere to the REST architectural style, known as REST-
ful web services, have become popular. These services follow a client-server style, with
stateless interactions based on standard HTTP verbs.

In an effort to formally specify the interaction between clients and providers of REST-
ful services, various interface definition languages (IDL) have been proposed. However,
for the most part, they limit themselves to the syntactic level of the interfaces and the
description of the data structures and the interaction points. The HEADREST language
was developed as an IDL that addresses these limitations, supporting the description of
the RESTful APIs also at the semantical level. Through the use of types and assertions
we not only define the structure of the data transmitted but also relate output with input
and the state of the server.

One of the main advantages of having formal descriptions of RESTful APIs is the
ability to generate a lot of boilerplate code for both clients and servers. This work ad-
dresses the problem of code generation for RESTful APIs described in HEADREST and
aims to investigate how the existing code generation techniques for the syntactical aspects
of RESTful APIs can be extended to take into account also the behavioural properties that
can be described in HEADREST. Given that HEADREST adopts many concepts from the
Open API Specification (OAS), this work capitalised on the code generation tools avail-
able for OAS and encompassed the development of a prototypical implementation of a
code generator for clients and servers from HEADREST specifications.

Keywords: REST, RESTful, HTTP, Code Generation, API, Web Services

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Context . 5
1.3 Objectives . 5
1.4 Document structure . 6

2 Background and Related Work 7
2.1 RESTful APIs . 7
2.2 RESTful Interface Definition Languages 8

2.2.1 WADL (Web Application Description Language) 9
2.2.2 Hydra . 10
2.2.3 RAML (RESTful API Modeling Language) 12
2.2.4 Open API Specification . 14
2.2.5 HeadREST . 17
2.2.6 RDLs side by side . 20

2.3 RESTful API frameworks . 22
2.3.1 Client frameworks . 22
2.3.2 Server frameworks . 23

2.4 Program generation for RDLs . 24
2.4.1 wadl2java . 25
2.4.2 RAML for JAX-RS . 25
2.4.3 Swagger Codegen for OAS . 25

3 HEADREST Codegen Overview 31
3.1 HEADREST Codegen in a nutshell . 31
3.2 Encoding of HEADREST specifications into OAS 32

3.2.1 Type encoding . 32
3.2.2 Assertion encoding . 33

3.3 Generation . 34
3.3.1 Type generation . 35
3.3.2 Operation generation . 36

iii

3.4 Resources and representations . 38
3.5 Resource logic . 39
3.6 HEADREST Codegen tool . 41

4 Encoding HEADREST into OAS 43
4.1 HEADREST analyser . 43
4.2 Core HEADREST . 44

4.2.1 Derived syntax . 46
4.3 HEADREST extension . 46
4.4 Encoder . 48

4.4.1 Behaviour view . 49
4.4.2 Module View . 51

4.5 OAS generation . 53
4.5.1 Type encoding to OAS . 53
4.5.2 Assertions . 56

4.6 Limitations . 58

5 Generating code from HEADREST specifications 63
5.1 The code produced by the generator . 63

5.1.1 Models . 63
5.1.2 Assertions . 65
5.1.3 Module views . 69
5.1.4 Components/Deployment view 71

5.2 The code generation process . 71
5.2.1 Behaviour view . 72

5.3 Limitations . 77
5.4 Good practices . 78

6 Evaluation 79
6.1 Case Studies . 79
6.2 Swagger Codegen vs HEADREST Codegen 81
6.3 HEADREST vs HEADREST with Resource Logic 83
6.4 Experimental Study . 84

6.4.1 Context . 85
6.4.2 Experimental plan . 85
6.4.3 Experiment execution . 87
6.4.4 Quantitative Results . 88
6.4.5 Qualitative Results . 91
6.4.6 Conclusions . 92
6.4.7 Threats to validity . 93

iv

7 Conclusions 95
7.1 Summary . 95
7.2 Future work . 96

A Encoding rules 99

B Predicates class 103

C Experiment files 107
C.1 Experimental Plan . 107
C.2 Work paper . 109
C.3 Presentation . 112

D Experiment Specification files 121
D.1 OAS Spec . 121
D.2 HRSpec . 125

E Experiment classes 129
E.1 Controller . 129
E.2 Controller Test . 131
E.3 Contact Representation . 135
E.4 Client API . 139
E.5 Boolean Validation Class . 143
E.6 Justified Invalid Class . 145

F HEADREST Codegen Form 147

Bibliography 154

v

vi

Acknowledgements

I would like to thank my supervisors, Prof. Antónia Lopes and Prof. Vasco Vasconce-
los for supporting me, pushing me to my limits and granting me the oportunity to develop
such a project. It was a privilege to work together with them. Throughout the year I con-
solidated my knowledge and learned even more, which will definitely be beneficial to me
as a professional. Thank you both.

Words will never be able to describe the gratitude I have towards my family. All the
laughter, all the tears ... they made me into who I am today and for that I thank my father,
my mother and my brother. They sacrificed so much in order to provide me with means of
becoming better and I used the tools they gave me to their maximum to return the favour
and the trust they put in me.

I also thank my friends and coleagues, for helping me through FCUL and helping me
reach my objectives.

Thank you all.

1

À minha família.

2

Chapter 1

Introduction

This chapter describes our main motivation for the development of this work, its context,
objectives and ends with the overall document structure.

1.1 Motivation

Web services with APIs that adhere to the REST architectural style, known as RESTful
web services, are currently very popular. These services follow a client-server style, with
stateless interactions based on standard HTTP verbs.

RESTful APIs were first introduced by Fielding on Hypermedia as the Engine of Ap-
plication State (HATEOAS)[8] and the main idea was that the client code should not be
written against a static service interface description but rather it should only use well
known entry-points and explore the service through interaction of various requests and
responses. However REST was popularised by services that do not actually follow this vi-
sion and, instead, have static interface definitions towards which clients are programmed.

The diversity in the design of web services lead to the proposal of the Richardson
Maturity Model [18], which defines four levels based on how much web services are
REST compliant. At level 0 essentially what we have are web services that use HTTP to
communicate, usually based on Remote Procedure Invocation[14]. A remote method is
invoked with the necessary information via the body of the request message and receive a
result, resulting in URIs usually referring to some sort of service (e.g. /FoodService)
and only one HTTP verb used. At level 1 we start to have the notion of resource, the URIs
now reflect resources (e.g., /restaurants/chinese/orders and /restaurants/

indian/orders) but the services still only use one HTTP method. At level 2 services
make full use of all HTTP verbs combined with the resource URIs and this allows for
more meaningful interaction with POST typically meaning addition of a resource, PUT
updating, GET obtaining and so on. At level 3 we have services that make use of hyper-
media controls and follow HATEOAS. This implies that URIs are exchanged back and
forth and the user is provided with the requested resource as well as how to proceed from

3

there on, to explore the system.

In this thesis, the focus is on REST services at level 2. These services have static inter-
face definitions towards which clients that consume their API are programmed. In order
to facilitate this task, some sort of standardization of the API’s interface was required,
through means of a description document. This lead to the proposal of various Interface
Definition Languages for documenting RESTful APIs (which we refer simply by RDLs).
However, their expressiveness is limited mainly to the syntactic aspects of the API.

Most RDLs are able to describe the representation of the resources, for example, that
there is a pet resource which is known to have a name of type String. They are also able
to document the operations, for example, that if a PUT is called to create a Pet resource
with a request body which does not represent a pet then a 400 code (Bad Request) will be
sent back. This is limited since it mainly relates the structure of the data transmitted in the
response with that sent in the request and does not allow us to describe more sophisticated
things such as, if a pet is sent with a cute name then the response will have a hidden easter
egg.1

Open API Specification (OAS) is currently de facto standard for documenting REST-
ful APIs and is supported by various industry heavyweights including Google, Microsoft,
IBM, and Adobe. Its popularity results from its expressive power and versatility in what
concerns the description of the request and response models and also to the large num-
ber of available tools, such as an online editor, a user friendly web UI, and several code
generation tools, to name a few. However, like other RDLs, the expressive power of the
language is rather limited when it comes to describing the way responses correlate with
input and with server state.

In order to address the syntactic limitations of the current RDLs, the language HEAD-
REST was proposed [6]. The language is inspired in OAS and relies on the use of refine-
ment types to add extra restrictions over the structure of the data and on the use of logic
assertions to support the description of the behaviour of the operations in the API.

One of the main advantages of having formal descriptions of RESTful APIs is the
ability to generate a lot of boilerplate code for both clients and servers. Although there
are various frameworks that ease the creation of RESTful applications and clients, a rea-
sonable part of the code is tedious to write and amenable to be generated from abstract
descriptions of the APIs. Code generation tools can also take advantage of development
frameworks in order to generate less and simpler code, that is programmed at a higher
level of abstraction.

This thesis addresses the problem of code generation for RESTful APIs described in
HEADREST. We capitalise on the code generation tools developed for OAS and devel-
oped prototypes of code generation for clients and servers from HEADREST. We start by

1https://en.wikipedia.org/wiki/Easter_egg_(media) (Seen: 2017-10-20)

4

https://en.wikipedia.org/wiki/Easter_egg_(media)

encoding the HEADREST specification into Open API Specification, taking advantage
of the extension mechanisms provided by OAS, and then generate using an extension of
the Swagger Codegen. We decided that we would be using Java and generating for the
RestEasy framework.

1.2 Context

This work was developed in the context of the project CONFIDENT (Communication
Contracts for Distributed Systems Development), a project financed by FCT, that started
in May 2016 and is a collaboration between researchers at LASIGE and IT.

The project aims at making effective development and agile evolution of complex
systems effectively viable, predictable and productive by developing tools for describ-
ing, inferring, and statically verifying component communication contracts for effective
construction and evolution of complex distributed systems, notably RESTful applications.

The development of the language HEADREST [6] was the first step toward achiev-
ing these goals. The writing of HEADREST specifications is currently supported by an
editor and validator made available through an Eclipse plugin. Techniques for generating
tests from HEADREST specifications were also investigated in [7] and implemented in
a prototypical tool. These tools are made available at the CONFIDENT project page at
http://rss.di.fc.ul.pt/tools/confident/.

1.3 Objectives

The overall goal of this work is to contribute for the development of techniques and meth-
ods that facilitate the development of RESTful systems. Specifically, the aim of the work
is to extend existing code generation techniques for REST API specifications to take ad-
vantage of behavioural properties that can be expressed with HEADREST.

To achieve this we:

• defined a mapping from HEADREST to OAS specifications, including HEAD-
REST properties that go beyond what can be expressed by OAS

• extended the Swagger Codegen in order to take the extra properties into account,
extending what it already generated with additional code

• extended the HEADREST language and analyser to allow us to generate even more
code, that abstract resources and complete their representations

• generated client SDKs and server stubs and completed them to have a working
client and server model, and assert the benefits of the extra generated code

5

http://rss.di.fc.ul.pt/tools/confident/

• conducted an experiment where users completed client SDKs generated by HEAD-
REST Codegen and Swagger Codegen, to compare both tools and further assess
HEADREST Codegen benefits

1.4 Document structure

This document is structured as follows. In Chapter 2, we provide some background
of the work and discuss RDLs, methods and tools more important and relevant for the
work aswell as interesting information relative to the tools used. In Chapter 3, we do an
overview of the encoding and generation process, and the extension we made to HEAD-
REST in order to generate more code. In Chapter 4 and 5 we cover the encoding and
generation process implementation. In Chapter 6, we show the resulting from the evalua-
tion of our tool, which includes an experiment. In Chapter 7 we conclude the document
with the work that can be done to extend the generation tool in the future.

6

Chapter 2

Background and Related Work

In this chapter we present a brief introduction to REST and RESTful APIs, we survey
several RDLs and also some RESTful API frameworks that are currently used to program
RESTful applications and their clients.

2.1 RESTful APIs

Representational state transfer (REST) is an architectural style developed to abstractly
model the arquitecture of the web, based on the concept of resource [8]. According to
Fielding and Taylor [9], a resource is a function MR(t) that maps each instance of time t
on a set of values, which might be identifiers or resource representations. The identifiers
serve to identify the resource of an interaction. To execute actions on resources, REST
components need to use representations that capture the actual state or the intended state
of the resource. An illustration of this instance can be seen in Fig.2.1 where a pet resource
has an identifier and two representations associated to it.

/pet/1

{
 "id" : 1,
 "name" : "doggie"
}

<Pet>
 <id> 1 </id>
 <name> doggie </name>
</Pet>

Figure 2.1: A resource at a given time instance – Identifiers on the left and Representations
on the right.

In this project we focus on RESTful APIs that use HTTP for interaction and URIs1 as

1Unique Resource Identifier

7

identifiers for resources. Thus, actions can be called via the HTTP verbs – GET, POST,
PUT and DELETE – and the meta-data and data are sent in the header and the body of
the request, respectively.

2.2 RESTful Interface Definition Languages

Interface definition languages (IDLs) are specification languages used to describe APIs in
a language-agnostic way. They promote both modularity, as the various components only
need to know the definition of the API, and interoperability of different systems, as they
will communicate defined data via a defined communication protocol (in the case of web
services, mostly HTTP).

For illustration purposes, we use as example a popular RESTful API of a pet store
service, that includes methods to manage (add, update and get) pets, users and orders.
The pet store service is available at http://petstore.swagger.io and has been
often used to illustrate documentation of RESTful APIs.

In the next subsections, we provide an overview of some of the more relevant Interface
Definition Languages for RESTful APIs (RDLs, for short): WADL, Hydra, RAML and
Swagger. In brief, as illustrated in Fig.2.2.

• WADL is a RDL originated from its popular predecessor WSDL (Web Services
Description Language), which is a popular IDL to describe SOAP Web Services.

• Hydra Core Language has a very different approach when compared to the other
RDLs because it uses ontologies to add semantics to data.

• RAML and Swagger are two RDLs that preceded and strongly influenced the de-
velopment of Open API Specification, which is the basis of HEADREST.

WSDL

WADL

RAML SwaggerOpen API
Specification

HeadREST

Hydra

Figure 2.2: RDLs addressed in this section and how they relate

8

http://petstore.swagger.io

In what follows we discuss about the most relevant aspects of these RDLs. We also
introduce HEADREST, the RDL addressed in this work and that was developed to be able
to specify syntactic and semantic properties of RESTful APIs.

2.2.1 WADL (Web Application Description Language)

WADL is an XML-based RDL similar to WSDL but REST-oriented. It uses XML tags
and structure, hence it is very verbose, but still simple to use. It models the resources and
relationships between them through the XML hierarchy and specific tags. WADL’s types
are defined through XSD.2

Listing 2.1: WADL example
1 <application
2 xsi:schemaLocation="http://wadl.dev.java.net/2009/02 wadl.xsd"
3 xmlns:mns="petstore.swagger.io:v2"> <!-- mns = mynamespace -->
4
5 <resources base="petstore.swagger.io/v2">
6 <resource path="pet">
7 <method name="POST" id="addPet">
8 <request>
9 <representation mediaType="application/json" element="mns:Pet"/>

10 </request>
11 <response status="200">
12 <representation mediaType="application/json" element="mns:Pet"/>
13 </response>
14 <response status="400">
15 <representation mediaType="application/json" element="

mns:ApiResponse"/>
16 </response>
17 </method>
18 <resource path="{petId}">
19 <method name="GET" id="getPetById">
20 <request>
21 <param name="petId" style="template" type="xsd:int">
22 </request>
23 <response status="200">
24 <representation mediaType="application/json" element="mns:Pet"/>
25 </response>
26 <response status="400">
27 <representation mediaType="application/json" element="

mns:ApiResponse"/>
28 </response>
29 <response status="404">
30 <representation mediaType="application/json" element="

mns:ApiResponse"/>
31 </response>
32 </method>
33 </resource>
34 </resource>
35 </resources>
36 </application>

2XML Schema Definition.

9

In Listing 2.1 we can see an example of a specification in WADL. It starts by defining
the schema used for the specification file (line 2), followed by the name space that is used
(line 3), which contains the data structures.

The example documents the "/pet" (lines 6-17), "/pet/{petId}" (lines 18-31). It says
that if we call a POST HTTP verb, on the first path, with a body of type Pet, two outcomes
are possible: code 200 returns the created resource (lines 11-13) and code 400 returns an
ApiResponse type (lines 14-16) detailing the error. If we call a GET HTTP verb, on
the second path, we need to fill the template with an integer (lines 20-22) and we are to
expect a code 200 with the requested pet (lines 23-25) otherwise we get code 400 (invalid
ID supplied – lines 26-28) or 404 (pet not found – lines 29-31).

In the listing below we can see an excerpt example of a grammar file,3 which is used
to encapsulate information, that can be then imported by various specifications.

<xs:schema targetNamespace="urn:yahoo:yn" ... xmlns="urn:yahoo:yn">
<xs:complexType name="ImageType">

<xs:sequence>
<xs:element name="Url" type="xs:string"/>
<xs:element name="Height" type="xs:integer" minOccurs="0"/>
<xs:element name="Width" type="xs:integer" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:schema>

WADL’s installation requires Maven and Git. It has both documentation generation
from code and reversed through tools such as wadl2java.

2.2.2 Hydra

Hydra [15] is a JSON-based RDL, more concretely JSON-LD,4 that adds semantics to
data via ontologies such as Hydra Core Vocabulary, an ontology for RESTful APIs.

JSON-LD is designed around the concept of context, that provides a mapping from
JSON to a RDF model, adding semantics to the data. The @context tag can be used to
define the context and additional tags such as @id and @type enabling the addition of an
URI and a type, respectively. The description itself can be demanding due to various
new @-tags and the way nesting them works, which can involve some optimisations, but
mainly because of the ontology behind the types’ semantics.

The Hydra Core Vocabulary, as mentioned before, is a RESTful API ontology which
adds the semantics of what an Operation, a Status and other REST specific concepts are.

Listing 2.2: JSON-LD example
1 {

3https://github.com/felps/Proxy/blob/master/soapui-4.0.1/Tutorials/
WSDL-WADL/NewsSearchResponse.xsd (Seen: 2017-11-06).

4JSON Linked Data.

10

https://github.com/felps/Proxy/blob/master/soapui-4.0.1/Tutorials/WSDL-WADL/NewsSearchResponse.xsd
https://github.com/felps/Proxy/blob/master/soapui-4.0.1/Tutorials/WSDL-WADL/NewsSearchResponse.xsd

2 "@context": "http://petstore.swagger.io/v2/contexts/pet.jsonld",
3 "@id": "http://petstore.swagger.io/v2/pet/0",
4 "id": 0,
5 "category": {
6 "id": 0,
7 "name": "string"
8 },
9 "name": "doggie",

10 "photoUrls": ["string"],
11 "tags": [
12 {
13 "id": 0,
14 "name": "string"
15 }
16],
17 "status": "available"
18 }

In Listing 2.2 we can see an instance of a JSON-LD object. This object not only has
an instance of id (line 4), category (lines 5-8), name (line 7), photoUrls (line 10), tags
(lines 11-16) and status (line 17) but also adds a unique id to this object (line 3) and adds
semantics to all its tags via the @context tag (line 2).

1 {
2 "@context": "http://www.w3.org/ns/hydra/context.jsonld",
3 "@id": "http://petstore.swagger.io/v2/doc/pet/",
4 "@type": "Link",
5 "title": "Petstore",
6 "description": "A link to pets with operations to create/update a pet.",
7 "supportedOperation": [
8 {
9 "@type": "Operation",

10 "title": "Add a new pet to the store",
11 "method": "POST",
12 "expects": "http://petstore.swagger.io/v2/doc/#Pet",
13 "returns": "http://petstore.swagger.io/v2/doc/#Pet",
14 "possibleStatus": [
15 {
16 "@context": "http://www.w3.org/ns/hydra/context.jsonld",
17 "@type": "Status",
18 "statusCode": 200,
19 "title": "Success",
20 "description": "Pet created successfully.",
21 ...
22 },
23 {
24 "@context": "http://www.w3.org/ns/hydra/context.jsonld",
25 "@type": "Status",
26 "statusCode": 405,
27 "title": "Invalid input",
28 "description": "The provided input was incorrect.",
29 "returns": "http://petstore.swagger.io/v2/doc/#ApiResponse",
30 ...
31 }
32]
33 }
34]
35 }

11

In the previous listing we can see a schema documentation of a POST operation on the
pet resource (denoted by line 3). It starts with a context (line 2), to add semantics to our
tags, followed by the id and the type of the resource we are POSTing to. The supported
POST operation expects a Pet type request and will return the same type as response. The
possible status are then documented in an array of possible status (lines 14-32).

We are not aware of any code generation tools for Hydra. In terms of installation,
Hydra offers the Hydra Bundle which is a package for Symphony2, a PHP framework.

2.2.3 RAML (RESTful API Modeling Language)

RAML5 is a YAML-based language. Supported types are defined in a type hierarchy
shown in Figure 2.3, which include the types defined with JSON or XML Schemas.

A RAML document that specifies a RESTful API starts with the definition of a title, a
baseUri and a version. Libraries may include data types, traits, resource types, schemas,
examples among other things. Library imports are made via the uses tag. Annotations
and traits can be also added to the main document. Entry-points to the API are defined
via the nesting of URL fragments and documented with HTTP method tags and, possibly,
other elements such as schemas to follow or examples to show.

Figure 2.3: RAML type hierarchy

In Listing 2.3 we can see an example of a excerpt of specification of the Petstore API.
The “hierarchy of tabs” allows for a very intuitive and human-readable specification.

Listing 2.3: RAML example
1 title: Petstore API
2 baseUri: http://petstore.swagger.io/{version}
3 version: v2
4
5 uses:
6 Pets: libraries/pets.raml
7

5https://raml.org/. (Seen: 2017-10-23).

12

https://raml.org/

8 /pet:
9 post:

10 body:
11 application/json:
12 type: Pets.Pet
13 responses:
14 200:
15 body:
16 application/json:
17 type: Pets.Pet
18 405:
19 description: Invalid input
20 schema: !include schemas/ApiResponse.xml
21 example: !include examples/ApiResponse.xml
22 put:
23 body:
24 application/json:
25 type: Pets.Pet
26 responses:
27 200:
28 body:
29 application/json:
30 type: Pets.Pet
31 schema: !include schemas/Pet.json
32 example: !include examples/Pet.json
33 400:
34 description: Invalid ID supplied
35 schema: !include schemas/ApiResponse.json
36 example: !include examples/ApiResponse.json
37 404:
38 description: Pet not found
39 schema: !include schemas/ApiResponse.json
40 example: !include examples/ApiResponse.json
41 405:
42 description: Validation exception
43 schema: !include schemas/ApiResponse.json
44 example: !include examples/ApiResponse.json
45 /{petId}:
46 type: integer
47 get:
48 responses:
49 200:
50 body:
51 application/json:
52 type: Pets.Pet
53 application.xml:
54 schema: !include schemas/Pet.json
55 example: !include examples/Pet.json

In the following listing we can see the library used in the previous example.

#% RAML 1.0 Pets Library
types:

Pet:
properties:
id: integer
category: Category
name: string
photoUrls: [string]

13

tags: [Tag]
status:
enum: [available, pending, sold]

Category:
properties:

id: integer
name: string

Tag:
properties:

id: integer
name: string

There are several IDEs for RAML, for instance, API Workbench6(a fully featured
IDE for API Design), API Designer7 (an intuitive web-based designer with a built-in API
console), and many IDE plugins. RAML also has many code generation tools such as
RAML for JAX-RS (a two-way code generator from RAML to JAX-RS), raml-python
(which uses NodeJS to generate a framework in Python), Nobel (to create a REST API
for Arduino board), and many more.8

2.2.4 Open API Specification

Open API Specification, formerly known as Swagger Specification, is the most commonly
adopted RDL today. It is based on JSON/YAML and its types are inherited from the JSON
Schema. OAS allows us to define what data is exposed by the operations on resources and
how the client calls the operations. Currently, it is used to document many APIs, as can
be seen in the APIs Guru website. 9

Listing 2.4: OAS Operation Spec example
1 "/pet": {
2 "post": {
3 "tags": ["pet"],
4 "summary": "Add a new pet to the store",
5 "description": "",
6 "operationId": "addPet",
7 "consumes": [
8 "application/json",
9 "application/xml"

10],
11 "produces": [
12 "application/xml",
13 "application/json"
14],
15 "parameters": [
16 {
17 "in": "body",
18 "name": "body",

6http://apiworkbench.com (Seen: 2018-05-26).
7https://www.mulesoft.com/platform/api/anypoint-designer (Seen:2018-05-

26).
8https://raml.org/developers/build-your-api. (Seen: 2017-10-23).
9https://apis.guru/browse-apis/. (Seen: 2017-10-06).

14

http://apiworkbench.com
https://www.mulesoft.com/platform/api/anypoint-designer
https://raml.org/developers/build-your-api
https://apis.guru/browse-apis/

19 "description": "Pet object that needs to be added to the store",
20 "required": true,
21 "schema": {
22 "$ref": "#/definitions/Pet"
23 }
24 }
25],
26 "responses": {
27 "405": {
28 "description": "Invalid input"
29 }
30 },
31 "security": [
32 {
33 "petstore_auth": [
34 "write:pets",
35 "read:pets"
36]
37 }
38]
39 },
40 ...

In Listing 2.4 we can see the specification of a POST operation on the "/pet" URI
identified resource (lines 1 and 2, respectively). Consumed (lines 7-10) and produced
(lines 11-14) format types are indicated as well as a list of parameters (lines 15-25). In
this specific case it is defined a request body of type Pet (denoted by line 17 and 22). In
Figure 2.4 we can see a more visually appealing version of the specification, using the
SwaggerUI online tool.

In abstract, an OAS file starts with the definition of the specification version, standard
information (a description, API version, title, terms of service, contact and license), host
(the API host) and a base path. An array tags is added to categorize the information with
a name and brief description. A schemes array is added to provide the supported transfer
protocol of the API. In the paths we detail the various paths of the API with its possible
operations, which can be further detailed and that we went over previously. A definitions
section is added to specify data types. Security definitions and external documents can
also be added.

15

Figure 2.4: A print of SwaggerUI for the Petstore POST /pet specification

Listing 2.5: OAS Data Definition example
1 "Category": {
2 "type": "object",
3 "properties": {
4 "id": {
5 "type": "integer",
6 "format": "int64"
7 },
8 "name": {
9 "type": "string"

10 }
11 },
12 "xml": {
13 "name": "Category"
14 }
15 }

16

In Listing 2.5 we can see the basic Open API Specification object definition. In this
case a Category is an object with an id field of type integer and a name of type string (line
4-7 and 8-10). An xml tag is then indicated at the end, so that encoding from JSON to
XML is possible. Figure 2.5 shows how this description is rendered in SwaggerUI.

Figure 2.5: A print of SwaggerUI for the Petstore Category specification

OAS is backed by a large ecosystem of tools that helps in designing, build, docu-
ment, and consume RESTful APIs. Some tools are available online and others can be
downloaded, ranging from code editors to code generators.

2.2.5 HeadREST

As mentioned before, HEADREST is a RESTful API specification language that adopts
several concepts from OAS. The language has been developed in order to support the
description of behavioural properties of RESTful APIs and its key ideas lie in:

• Detailing the structure of the data transferred on the different interactions, namely
resources and representations with types

• Utilising pairs of pre and postconditions to express for each interaction (a) the rela-
tion between the data sent in the requests and received in the responses and (b) the
state changes that occur afterwards

These ideas are materialized in HEADREST with three fundamental concepts:

• Refinement types, x:T where e, that consist of x values of type T that satisfy a prop-
erty e.

• A type predicate, e in T, which returns true or false depending if the value e is or
not of type T.

• Logical assertions, which are structures reminiscent of a Hoare triple, where the
behaviour of an interaction is detailed, namely through quantification over resources
and their representations.

17

Representation types

To describe the structure of the data transferred in the different interactions we use repre-
sentation types. These are inspired in models used in the Open API Specification, enabling
us not only to structure the data but also to express properties about its values. The sup-
ported representation types are: objects, arrays, refinement types, scalar types (including
integer, boolean, string and URITemplate) and any (the top type).

Listing 2.6: HEADREST representation type example
1 type PetRep = {
2 ?id: integer,
3 ?category: Category,
4 name: string,
5 photoUrls: URI[],
6 tags: Tag[],
7 ?status: (x: string where x=="available" || x=="pending" || x=="sold")
8 }

In Listing 2.6 we present the representation of a pet resource, called PetRep. This
representation dictates that a pet has an id, a category, a name, a list of photo URLs, a list
of tags and a status that matches specific strings. As we can see, the object is described
using basic types, reference to other defined types and refinement types. Additionally,
optional fields are denoted with “?”.

Request & Response

REST data is transferred in request and response, following a standardized HTTP struc-
trure. HEADREST abstracts that structure with two predefined variables, request and
response which are of the following types:

type Request = { type Response = {
location: URI, code: integer
?template: {}, ?header: {}
?header: {} }

}

A request may have information sent from an URI template, such as a path or query
argument. For instance "pet/{id}" would generate a specific type of request which would
have the following subtype:

{
location: URI,
template: {id: any},
?header: {}

}

18

/pet/0

{
 "id": 0,
 "category": {
 "id": 0,
 "name": "string"
 },
 "name": "doggie",
 "photoUrls": [
 "string"
],
 "tags": [
 {
 "id": 0,
 "name": "string"
 }
],
 "status": "available"
}

/store/order/0

{
 "id": 0,
 "petId": 0,
 "quantity": 0,
 "shipDate": "2018-06-21T09:30:43.486Z",
 "status": "placed",
 "complete": false
}

<Order>
...
</Order>

<Pet>
...
</Pet>

Pet

Order

Key:

Resource

XYZ resource type

uriof

representationof

typeof

Figure 2.6: A petstore system state

States

RESTful APIs enable interactions that let us observe and modify resources in the system,
or part of them. In terms of RESTful API specification, it is considered that a set of
values associated to a resource of the system at a given instance of time is what defines
the system at that instant.

Each resource is assumed to be of a certain type, for instance, in the Petstore ser-
vice we need to manage three resources: pets, users and stores. These resources can be
declared in HEADREST as follows:

resource Pet, User, Store

In Figure 2.6 we can see an example of a petstore system state. The states represent
what values associated with a resource are, through the primary binary operations uriof,
representationof and in (typeof in the image).

Assertions

HEADREST supports the formal description of observations and state changes resulting
from interactions exposed on a RESTful API through a set of assertions with a Hoare-
triple structure. Concretely, assertions in the shape of

{φ} a t {ψ}

where a is an action (GET, POST, PUT, DELETE), t is an URI template and φ, ψ are
expressions of boolean type. The φ formula, called precondition, addresses the state

19

in which the action is executed and the data transmitted in the request while ψ, called
postcondition, addresses the state resulting of the execution of the action and the values
transmitted in the response. The assertion says that if a request for an execution of an
action a over an expansion of t sends data that complies to φ and the action is realised in
a state that fulfils φ, then the data transferred in the response fulfils ψ, as well as the state
resulting of the execution of the action.

Listing 2.7: Assertion example
1 // addPet 200, If pet doesn’t exist
2 {
3 request in {body: PetRep} &&
4 (isdefined(request.body.id) ==>
5 (forall pet:Pet .
6 (forall petRep:PetRep .
7 petRep representationof pet && petRep.id != request.body.id
8)
9)

10)
11 }
12 POST /pet
13 {
14 response.code == SUCCESS &&
15 response in {body: PetRep} &&
16 (isdefined(request.body.id) => response.body == request.body) &&
17 (exists pet:(p: Pet where response.body representationof p) .
18 expand(/pet/{petid} , {petid: response.body.id}) uriof pet
19)
20 }

Listing 2.7 presents an example of an assertion. The precondition states that if a
request has a body of type PetRep (line 3) and value for id is provided (line 4 – it is an
optional field of PetRep), then, if we are in a state in which no pet has the same id as the
one we are about to add (lines 5-9), this POST interaction will result in a success response
code (line 14), returning in the response body the representation of the pet (line 15) that
was just added and acknowledges that the state will have that pet in the system with said
representation (lines 16-19).

2.2.6 RDLs side by side

We conclude the RDL section with Table 2.1, a consolidated view of the analysed RDLs,
for easy comparison. The Syntax property will cover the writing of the specification file
and the Types property describes what we can specify in terms of types. I&O relation,
means the possibility to establish some sort of connection between the request and re-
sponse of an execution. Installation refers to how easy it is to setup the specification
tools. Codegen refers to possible code generation tools available for the RDL.

20

RDL Properties Description

WADL

Syntax Simple XML tags and structure
Types XML Schema Definition

I&O relation Indication of mandatory fields and return values, but
no relation

Installation Maven + Git
Codegen wadl2java

Hydra

Syntax JSON-LD, which is JSON with new tags
Types JSON standard types with the addition of semantics

through the @type tag
I&O relation Relates an expected information with a returned in-

formation, in case of success
Installation Installer bundle

Codegen -

RAML

Syntax YAML based (easy to write and read)
Types Complex type hierarchy which extends XSD and

JSON Schema capabilities
I&O relation Relation between expected content and responses, in

case of success and others
Installation IDE Installer or online via internet browser

Codegen Yes

OAS

Syntax JSON & YAML support. Online tools for live-
feedback on code writing.

Types JSON Schema
I&O relation Relation between expected content and responses, in

case of success
Installation Easy installer, online via internet browser or plugins

Codegen Swagger Codegen

HEADREST

Syntax Data definition is simple with JSON like format.
Hoare triples can get complex

Types Objects, arrays, refinement types, scalar types and any

I&O relation Full input & output relation discrimination
Installation Eclipse IDE plugin

Codegen -

Table 2.1: Overview of the RDLs analysed and their properties.

21

2.3 RESTful API frameworks

RESTful API Frameworks support the development of RESTful applications and their
clients at a higher level of abstraction, making code simpler and less prone to errors.
Therefore it comes with no surprise that code generation tools take advantage of such
frameworks. For example, the Swagger Codegen has various RESTful API Frameworks
for which it generates client code as well as server code.

In what follows, we provide an overview of some of the most popular Java-based
frameworks. More concretely, for client-side we consider: RestTemplate, Vertx, OkHTTP,
Retrofit 1.x/2.x, Feign, Jersey 1.x/2.x and RestEasy; and for server-side we consider:
JAX-RS, MSF4J, Spring, Undertow, Inflector, PlayFramework and RestEasy.

2.3.1 Client frameworks

RestTemplate is the central Spring class for client-side HTTP access. Because it is syn-
chronous, it poses problems in terms of scalability, which in general is very important
for web services. Nevertheless, the invocation of methods on a RestTemplate instance
makes it very easy to consume web services if synchronicity is not an issue.

Vert.x is a toolkit for building reactive applications on the JVM. It is asynchronous
oriented, with the use of lambda expressions, streams and concurrency related classes.

OkHTTP is a simple HTTP client for both Android and Java Applications. It supports
both synchronous blocking calls and asynchronous calls with callbacks. It is very low
level and requires that programmers construct HTTP requests themselves, with the use of
fluent API helpers. After that, they just need to invoke the OkHttpClient instance and the
response is returned.

Retrofit is a type-safe HTTP client for both Android and Java built on-top of OkHTTP
in a annotation-based matter. It uses annotations to map the method invocation into the
appropriate request. It uses annotations similar to that of JAX-RS and new ones, such as
@Header which can be used to map an argument to a Header field on the HTTP request.

Feign is a Java to HTTP client binder inspired by Retrofit, JAXRS-2.0, and Web-
Socket. It only supports text-based HTTP APIs and, as a result, it is very easy to use and
test. Its usage typically starts with the creation of a JAX-RS like annotated interface to
represent the service and its operations, and Plain Old Java Objects (POJO) to represent
the data structures. The standard API invocation consists of the creation of a Retrofit java
object instance, via a fluent Builder. Creating an instance of the API interface via the
Retrofit instance and preparing a Call followed by its execution

Jersey, by Oracle, and RestEasy, by JBoss, are both powerful JAX-RS toolkit imple-
mentations. Jersey has a fluent API client creation and operation invocation. RestEasy
has the peculiarity of being able to use the server API interface (the interface annotated
with JAX-RS to expose the service) to automatically create the underlying HTTP connec-

22

tor (called a proxy because it mimics the interaction with a server in a RMI like fashion).
This allows for enhanced modularity and server implementation abstraction.

2.3.2 Server frameworks

JAX-RS, which stands for Java API for RESTful Web Services, is an API specification
that provides support in creating RESTful web services. JAX-RS defines annotations that
allows simplifying the development and deployment of web service clients and endpoints.

MSF4J, which stands for Microservices Framework for Java, is a lightweight high
performance framework for developing and running microservices that supports JAX-RS
and Swagger annotations. The generated server is composed of an <API>Service class
which has typical JAX-RS annotations to expose the API and of an Application class in
which the service class is deployed onto a MicroservicesRunner class (which will work
as a container).

Spring is a container and cloud-based framework with various foundational support
such as JDBC and JPA, and also supporting dependency injection and Aspect-oriented
Programming. Spring provides annotations like "@RestController" and "@RequestMap-
ping("/uri")" that allow programmers to tell the container how to map the resources

Undertow is a flexible performant web server written in Java, providing both block-
ing and non-blocking APIs. It is sponsored by JBoss and is the default web server in
the Wildfly Application Server. The server is configured by chaining handlers together.
Undertow has its unique flavour precisely because our code will comprise of the creation
of the Undertow instance through a factory, configuring the server, chaining the handlers
and finally starting the server, all in a fluent API fashion

Inflector is a JAX-RS and javax servlet-based server, which routes requests to appro-
priate controllers. Swagger Inflector utilizes the Swagger Specification as a DSL (Domain
Specific Language), removing the need for annotations and other wiring necessary to pro-
duce Swagger descriptions. It utilizes converters and processors, and others, to deal with
the serialisation, processing and validation of the data. The swagger classes are used
throughout these phases.

PlayFramework is a framework built on Akka, a toolkit for building highly concur-
rent, distributed, and resilient message-driven applications for Java and Scala. It presents
itself as a developer friendly, scale predictable and modern web & mobile framework.
It uses basic concepts such as Action, Controller and Results. Action is a typical Java
method that takes care of a request. Controllers are the classes that group Actions to-
gether and Results are the classes that represent an HTTP Result, having helpers to create
standard code responses with ease. The linking of requests to Actions is done in a config-
uration file.

RestEasy is the JBoss implementation of the JAX-RS with WildFly Application Server
integration. It utilizes the typical JAX-RS annotations to map HTTP requests to its corre-

23

sponding methods. Features range from caching, gzip content-encoding, OAuth2 support
and many more. Like the other JAX-RS implementations, the use of annotations to dele-
gate the mapping of the request to a class/method makes it exceptionally easy and mod-
ular to program web services, not only that but we also have access to helpers to build
responses.

In this work, we decided that our generation prototype would make use of the RestEasy
framework since it can generate both client and server code, and the fact that it is easy to
install and use with Eclipse.

2.4 Program generation for RDLs

The development of software has two major parts, the creative part and the boring part.
The creative part is where software engineers apply their expertise to create reliable, scal-
able solutions. The boring part refers to the fact that a large part of the code that we
sometimes need to write is boilerplate code, i.e., code that has to be written in many places
with little or no alteration. Program synthesis eases the creation of solutions through the
customisable generation of big chunks of code [16].

In general, there are three main approaches to program synthesis [12]:

• Deductive, where there is an almost direct translation from specification to actual
code, in a very compiler like fashion.

• Inductive, where we give input-output to the generator and let it “cook” until we get
a program that responds to our requirements, using genetic approaches for example.

• Hybrid, where we have a meta-synthesis framework which allows the user to de-
fine the program space, through grammar or skeleton programs, and lets us define
some guidelines for the generation algorithm encoding the program in SAT/SMT
restrictions or inverse semantics of the program’s operators.

One of these approaches is then adopted by what is known as a Code Generator (i.e.,
a compiler, a computer software that writes software for us). It is code writing code. Code
generators can be divided in two different categories [16]:

• Passive code generators, that run once producing code to be completed by the de-
veloper.

• Active code generators, that produce developer-free code (code that the developer
is not supposed to touch), that is continually regenerated throughout the project’s
lifecycle.

24

Both approaches can save time and effort with the subtle difference on how the gener-
ated files are maintained over the course of the project. As explained in [16], “If the code
generator is made part of the build process and generates fresh source each time a build is
instigated, then we are using active generation. If the output from the same generator is
taken by the software engineer, modified, and placed under source control, then we have
passive code generation”.

In the next subsections we present three code generators that are used to generate from
different used RDLs.

2.4.1 wadl2java

wadl2java10 is a code generation tool for, as the name says, creating Java code from a
WADL specification file. In particular, the wadl2java tool generates a Java client from
the provided WADL specification file. It uses the deductive approach and, given its com-
piler like nature, uses an Abstract syntax tree (AST) to generate code from. It starts by
obtaining the AST that represents the WADL file and then transforms it into an interme-
diate representation (IR) AST that is very close to Java code which is finally compiled
directly into Java files.

2.4.2 RAML for JAX-RS

RAML for JAX-RS11 is a project that enables code generation from RAML specifications.
In particular, RAML for JAX-RS generates Java server code, also in a deductive way.
As in the previous generator, it starts by obtaining the AST representing a specification
file, converts it to an IR and finally compiles the code to Java files. We start noticing
a consistent pattern with deductive compilers, which will change in the following last
generator.

2.4.3 Swagger Codegen for OAS

The Swagger-Codegen12 contains a template-driven engine to generate API clients and
server stubs by parsing Open API specifications. The templates are written with Mus-
tache.13

The Mustache template file has the structure as shown in Listing 2.8. The {{name}}

tag (line 1) in a basic template will try to find the name key in the current context and, if
there is no name key, the parent contexts will be checked recursively. If the top context
is reached and the name key is still not found, nothing will be rendered. A section begins

10https://github.com/javaee/wadl/tree/master/wadl (Seen: 2017-10-25).
11https://github.com/mulesoft-labs/raml-for-jax-rs (Seen 2017-10-25).
12https://github.com/swagger-api/swagger-codegen (Seen: 2017-10-11).
13https://mustache.github.io (Seen: 2017-10-11).

25

https://github.com/javaee/wadl/tree/master/wadl
https://github.com/mulesoft-labs/raml-for-jax-rs
https://github.com/swagger-api/swagger-codegen
https://mustache.github.io

with a hash and ends with a slash (lines 3-5). That is, {{#in_ca}} begins a "in_ca" section
while {{/in_ca}} ends it. The behaviour of the section is determined by the value of
the key. False or empty list values will result in the section not being rendered while
non-false value and non-empty list will be rendered or will have its elements rendered,
respectivelly. Mustache has more complex instructions, but these will be our basic blocks
for this project.

In summary, the compilation process of a Mustache template starts with the template
file shown below:

Listing 2.8: Mustache template example
1 Hello {{name}}
2 You have just won {{value}} dollars!
3 {{#in_ca}}
4 Well, {{taxed_value}} dollars, after taxes.
5 {{/in_ca}}

that provided with the model below:

Listing 2.9: Mustache model example
1 {
2 "name": "Chris",
3 "value": 10000,
4 "taxed_value": 10000 - (10000 * 0.4),
5 "in_ca": true
6 }

compiles into the file below, via the Mustache compiler:

Listing 2.10: Mustache compiled file example
1 Hello Chris
2 You have just won 10000 dollars!
3 Well, 6000.0 dollars, after taxes.

The Swagger Codegen starts by reading its specification file into an AST and even
though it contains all the information of the specification file, given that Mustache is
a logic-less template engine, this AST is converted/processed into a template ready IR,
which is a very close representation to the AST but with added information so that it
can be used as a model for the template. It ends compiling the various template files,
that represent in whole a project, provided with the model. The listing below provides a
simplified Swagger Codegen template example, used for the operation method generation
of a Java JAX-RS project.

Listing 2.11: Simplified Mustache template for ApiImpl classes
1 {{#operation}}
2 @Override
3 public Response {{nickname}}({{#allParams}}...{{>serviceBodyParams}}...,

{{/allParams}}) throws NotFoundException {
4 // do some magic!
5 return Response.ok().entity("magic!").build();
6 }
7 {{/operation}}

26

Swagger Codegen sample from PetStore

Since the HEADREST Codegen capitalises on the Swagger Codegen, in what follows,
we consider the generated code for the PetStore API Specification,14 specifically for a
RESTEasy client15 and server.16

In Figure 2.7 depicts a runtime view of the generated system, showing how the various
components interact with each other.

PetApi

StoreApi

UserApi

FRONT
END ApiClient Client

(javax.ws.rs.client) HTTP

PetAPI

StoreAPI

UserAPI

PetApiService

StoreApiService

UserApiService

PetApiServiceImpl

StoreApiServiceImpl

UserApiServiceImpl

BACK
END

Key:

HTTP

HTTP call Java method call

Not generated
Component Interface

Stub

Container

Client Server
WebApp Container

(e.g. GlassFish)

Delegate

Figure 2.7: Pet store runtime view

We will be refering to various classes, packages and methods that are illustrated in the
following figures: Figure 2.8 presents a module view of the generated code for the client
side, Figure 2.9 illustrates a module view of the generated code for the server side. Both
client and server generated code include a /model package with a set of classes that map
resources as POJOs with Jackson, for JSON serialization/deserialization, and Swagger
annotations, to have embedded specification.

On the client side, there is an ApiClient class used to send HTTP requests, which
uses the JAX-RS Client. This is used by the various <service>Api classes (e.g. PetApi)
which is a Remote Method Invocation (RMI) like class, with methods such as addPet(Pet
body) that take a model type data and call the ApiClient accordingly, setting the correct
method, the correct headers, passing the body, etc.

On the server side, in the /api package we have <service>Api class, which has typ-
ical JAX-RS annotations to map HTTP requests into methods, and then delegates it to
a corresponding <service>ApiService abstract class which has a corresponding stub
implementation in the /impl package.

14http://petstore.swagger.io (Seen: 2017-10-25)
15https://github.com/swagger-api/swagger-codegen/tree/master/samples/

client/petstore/java/resteasy (Seen: 2017-10-25).
16https://github.com/swagger-api/swagger-codegen/tree/master/samples/

server/petstore/jaxrs-resteasy/default (Seen: 2017-10-25).

27

http://petstore.swagger.io
https://github.com/swagger-api/swagger-codegen/tree/master/samples/client/petstore/java/resteasy
https://github.com/swagger-api/swagger-codegen/tree/master/samples/client/petstore/java/resteasy
https://github.com/swagger-api/swagger-codegen/tree/master/samples/server/petstore/jaxrs-resteasy/default
https://github.com/swagger-api/swagger-codegen/tree/master/samples/server/petstore/jaxrs-resteasy/default

Fi
gu

re
2.

8:
Pe

ts
to

re
cl

ie
nt

us
es

vi
ew

28

Fi
gu

re
2.

9:
Pe

ts
to

re
se

rv
er

us
es

vi
ew

29

30

Chapter 3

HEADREST Codegen Overview

This chapter presents an overview of the main ideas underlying HEADREST Codegen,
the tool that encodes HEADREST specifications into OAS and extends Swagger Code-
gen, OAS generation tool, in order to generate client SDKs and server stubs for RESTful
services with APIs described with HEADREST.

3.1 HEADREST Codegen in a nutshell

As mentioned before, HEADREST adopts many concepts from Open API Specifica-
tion namely in what concerns the use of models to describe the requests and responses
and the underlying data schema. HEADREST then relies on the use of refinement types to
add extra restrictions over data and on the use of logic assertions to support the description
of the behaviour of the operations in the API.

Since the generation of code from OAS specifications was already addressed by a fam-
ily of code generation tools available for a panoply of different programming languages
and REST frameworks, the decision was to capitalise on the underlying generation tech-
niques and extend them to accommodate the extra expressiveness of HEADREST. This
was achieved through the definition of a mapping from HEADREST to OAS specifica-
tions. The main idea of this mapping is to identify the properties expressed in a HEAD-
REST specification that can also be expressed in OAS and take care of their encoding,
attempting to use the native OAS as much as possible, to better capitalise its generation
tool. By making use of the mechanisms provided by OAS to extend its specifications
at different points with additional data, the generated OAS specifications also include
HEADREST properties that go beyond what can be expressed in OAS. The extension of
existing code generation techniques for OAS mainly targets the generation of code that
takes advantage of these properties. This work was developed around Swagger Code-
gen for Java and JAX-RS framework.

The extension of Swagger Codegen in order to take into account refinement types
is achieved by equipping the classes that represent the models with validation methods,

31

providing a way of both clients and servers to validate the extra conditions imposed on
the data models. The extension for assertions is achieved in two ways: (1) for server code,
we create a verification structure to validate the pre and postconditions (2) for client code,
we extract the information on the assertions that is not state related and use it to create
a structure that is available for programmers so they can verify if they meet the required
conditions for a successful interaction with the server.

In order to be able to generate more code for the server, related with resources and
their representations, the HEADREST language was extended with new elements. This
extension, which we designate by Resource Logic, allows us not only to generate more
code but also produce HEADREST specifications that are easier to write and read. This
extension of the language supports the declaration of predicates on resources and the
binding of representations to resources, adding an implementation to those predicates.
Code generated from specifications that use the resource logic has richer interfaces, with
methods that represent the resource predicates, and the implementation of the resource
predicates on representations that represent resources.

In the rest of this chapter, we discuss the key aspects of the encoding process of
HEADREST into OAS and discuss the main ideas explored in the generation process of
the server code and also the client code, ending with an overview of the resource logic.
More details about encoding and generation, covering also the implementation aspects,
are discussed in Chapters 4 and 5, respectively.

3.2 Encoding of HEADREST specifications into OAS

The encoding phase can be broken down in two parts: types and assertions. OAS al-
ready supports various types, but only covers part of HEADREST types. To cope with
this we attempted to encode as much of HEADREST as possible into native OAS taking
advantage of OAS extension mechanisms when necessary.

3.2.1 Type encoding

Encoding HEADREST basic types (integer, boolean, string) into OAS is pretty straight-
forward, as we use the OAS schema supported types. Object and Array types however
demand some recursion and may need some processing if internal refined types occur. In
the following listing we illustrate a basic HEADREST object that represents a person.

Person = {
name: string,
age: integer

}

The previous type is then encoded into an OAS type, shown below.

32

Person:
type: "object"
properties:

name:
type: "string"

age:
type: "integer"

The biggest challenge in type encoding arises with refinement types, one of HEAD-
REST novelties when describing data. From refinement types, structured as x:T where e

the refining expression cannot be encoded into native OAS. We decided to approach this
by encoding the type T directly and appending the refinement expression e (the extra
information that needs to be carried on) in a OAS extension tag. For instance, the HEAD-
REST refinement type

type Digit = (d:integer where d >= 0 && d < 10)

is encoded in OAS as:
Digit:

type: "integer"
x-refinement: "d >= 0 && d < 10"

While the previous types (Person and Digit) can be directly mapped to OAS, HEAD-
REST contains other types that do not have a direct/obvious counterpart in OAS, which
make things a bit tricky. Some examples, shown below, include: intersection types, sin-
gletons, union types and optional fields in objects.

type IntersectType = Digit & OddInteger
type Singleton = ["a"]
type UnionType = ["a"] | ["b"]
type OptionalFieldObject = {?b: integer}

These types however are not part of the core fragment of HEADREST and hence,
for analysis purpose, get transformed in elements of the core. For instance, Singleton is
transformed into (x:any where x == "a"). In order to use this type, processing is done in
order to revert this translation, as the type gets much easier to encode into OAS that way.

While most of the HEADREST types are covered by the encoder, there are some types
for which no appropriate encoding in OAS was found. This is the case for instance of any
and [null], which are currently unsupported by our tool.

3.2.2 Assertion encoding

While we may have various assertions over the same operation in HEADREST, operation
specification in OAS only supports the description of a single request model (defining the
data schema required for success) and the response models for different response codes.
This results from the fact that OAS operation specification is, to some extent, happy path
oriented.

In OAS, the specification of an operation is done within a path verb member (see lines
1 and 2 of the following listing) and allows to specify (1) the parameters that are required
(body, path, query) and their types, and (2) the response types for various response codes.

33

In Listing 3.1 we present an example of an OAS specification resulting from the en-
coding of HEADREST specification of PetStore example discussed in Chapter 2 (see
excerpt in Listing 2.7). The OAS specification is presented in JSON format for a clearer
view of the map-like structure of the OAS specification. As mentioned before, there is
only one request type specified per operation (denoted by the single “parameters” field)
and, hence, the encoding has to find the request type associated with the success scenario.
This is easy if we have a single HEADREST assertion for that OAS operation with sucess
response code, but HEADREST specifications may have various assertions over the same
operation and some of them may even have the same response code. To cope with this it
was necessary to merge the various request types in assertions (for success codes) into one
and the various response types (for each response code) into one as well. This merging
restricts HEADREST specifications for which code generation is supported (see details in
Chapter 4). Due to the fact that there are various assertions over the same operation, we
propagate them making use of extension mechanisms at the operation level, namely via
the "x-axioms" tag.

Listing 3.1: Example of OAS operation
1 "paths": {
2 "/pet": {
3 "post": {
4 "parameters": [{
5 "in": "body",
6 "name": "body",
7 "description": "Pet object that needs to be added to the store

",
8 "required": true,
9 "schema": {

10 "$ref": "#/definitions/Pet"
11 }
12 }],
13 "responses": {
14 "200":{
15 "description": "Success",
16 "schema": "#/definitions/Pet"
17 },
18 "405": {
19 "description": "Invalid input"
20 }
21 },
22 "x-axioms": <assertion list>
23 }
24 }
25 }

3.3 Generation

With all the additional information that was used to create and extend the encoded OAS
specification, what remains is the generation of the RESTful API. This required the ex-
tension of the Swagger Codegen to take the new extension tags into account. As in the

34

previous section, we discuss the types first and then assertions.

3.3.1 Type generation

In the case of refinement types, from the data under extension tags included in the gen-
erated OAS specification we generate validation methods that validate instances of that
type. This required the extension of Swagger Codegen to create the validation method
and be able to translate HEADREST expressions used in refinement types into Java ex-
pressions. As shown in the following listings, a static method is generated that validates
a given instance. Refinements can be applied to primitive types and Java primitive type
classes (e.g., Integer, String). The fact that these classes are final prevents the use of in-
stance methods (types like Integer cannot be extended to include the validation method,
and we wanted to keep everything coherent all across the model classes).

The refinement type:

1 type PetRep = {
2 ?id: integer,
3 ?category: Category,
4 name: string,
5 photoUrls: URI[],
6 tags: Tag[],
7 ?status: (x: string where x=="available"||x=="pending"||x=="sold")
8 }

is encoded to an OAS type:
1 PetRep:
2 type: "object"
3 required:
4 - "name"
5 - "photoUrls"
6 - "tags"
7 properties:
8 id:
9 type: "integer"

10 name:
11 type: "string"
12 tags:
13 type: "array"
14 items:
15 $ref: "#/definitions/Tag"
16 category:
17 $ref: "#/definitions/Category"
18 photoUrls:
19 type: "array"
20 items:
21 $ref: "#/definitions/Uri"
22 status:
23 type: "string"
24 enum:
25 - "available"
26 - "pending"
27 - "sold"
28
29 Uri:
30 type: "string"
31 x-refinement: ...

35

where Uri is present for illustration purposes. The generated validation methods, included
in the Java classes for PetRep and Uri, are as follows.

Listing 3.2: Examples of generated validation methods
1 public static boolean validate(PetRep instance) { // PetRep
2 return instance.getPhotoUrls().stream().allMatch(e->Uri.validate(e));
3 }
4
5 public static boolean validate(String instance) { // Uri
6 return Predicates.matches(instance, URI_REGEX);
7 }

3.3.2 Operation generation

For servers we generate code that verifies the pre/postconditions. It starts by capturing the
preconditions, followed by a stub response creation, then the postconditions and asserting
that if a precondition was met, then a postcondition was fulfilled.

Extension tags that carry the various pre/postconditions for each operation are added
to the generated API’s operation method, generated natively by Swagger Codegen. Pre/-
postcondition variables are declared and assigned a Java expression extracted from the
respective HEADREST expression (similar to the refinement expression translation to
Java), and in the end various pre/postcondition verifications are created, as illustrated
below. This structure captures the concept of a Hoare logic triple where: when the pre-
condition is met, executing the operation establishes the postcondition.

The assertion specification:
1 // addPet 200, if pet does not exist
2 {
3 request in {body: PetRep} &&
4 (isdefined(request.body.id) =>
5 (forall pet:Pet .
6 !pet.hasid(request.body.id)
7)
8)
9 }

10 POST /pet
11 {
12 response.code == SUCCESS &&
13 response in {body: PetRep} &&
14 (isdefined(request.body.id) => response.body == request.body) &&
15 (exists pet:Pet .
16 response.body representationof pet &&
17 expand(/pet/{petid} , {petid: response.body.id}) uriof pet
18)
19 }
20
21 // addPet 200, if pet exists and id is over 9000
22 {
23 request in {body: PetRep} &&
24 (isdefined(request.body.id) =>
25 (exists pet:Pet .
26 pet.hasid(request.body.id) && request.body.id > 9000
27)

36

28)
29 }
30 POST /pet
31 { ... }
32
33 // addPet 405, Invalid input
34 {
35 !(request in {body: PetRep})
36 }
37 POST /pet
38 {
39 response.code == INVALID_INPUT &&
40 ...
41 }

generates the following operation method:
1 public Response petPost(final PetRep body, ...) throws NotFoundException {
2 boolean pre1 = PetRep.validate(body) && ...;
3 boolean pre2 = PetRep.validate(body) && body.getId() > 9000 && ...;
4 boolean pre3 = !PetRep.validate(body);
5
6 //TODO create response
7 final Response response = Response.ok().entity(...).build();
8
9 boolean pos1 = Objects.equals(response.getStatus(), 200) && ...;

10 boolean pos2 = Objects.equals(response.getStatus(), 200) && ...;
11 boolean pos3 = Objects.equals(response.getStatus(), 405) && ...;
12
13 if(pre1) assert pos1 : "{pre1} petPost {pos1} failed.";
14 if(pre2) assert pos2 : "{pre2} petPost {pos2} failed.";
15 if(pre3) assert pos3 : "{pre3} petPost {pos3} failed.";
16
17 return response;
18 }

For generating client code from assertions, we take advantage of specific parts of the
preconditions and postconditions. As seen in the previous listing, assertions often have a
request/response refining part (see lines 3 and 13) and a state related part (see lines 4-8
and 14-18), with postconditions typically starting with the response code. Clients cannot
verify the state part of assertions (this can only be verified at the server-side). So we
decided to extract every part of the precondition of assertions relative to success scenarios
that can be processed at the client-side and generate methods that the client can use to
verify whether he is guided towards success or not – note the use of guided, as without
the state verification we cannot really assume success will happen.

This makes it possible to identify potential failure scenarios even before communicat-
ing with a server. An example of this client-side generated code is shown below, where
we can see the declaration and definition of variables that capture the client useful part
of the preconditions and disjoin them, as complying with one of the partial preconditions
may lead to success.

Listing 3.3: Generated method at client-side for validation of operation precondition
public boolean petPostRequiredSuccessPrecondition(PetRep body) {

37

boolean pre1 = PetRep.validate(body);
boolean pre2 = PetRep.validate(body) && body.getId() > 9000;

return pre1 || pre2;
}

3.4 Resources and representations

HEADREST specifications declare resources and assertions express properties about the
state of these resources and their representations, often with quantificatiers over them.
Given the fact that only representations trigger code generation (the models), we needed
to generate code relative to the resources and, more importantly, code that would allow to
perform iteration over resources and representations.

A typical assertion expression is shown in Listing 3.6, where the part concerning
the state has quantifiers over resources and representations, and binds them through the
representationof predicate. In order to be able to convert this expression into a valid
Java expression, code generation encompasses the creation of (1) a Resources interface
that provides methods to iterate over the various types of resources and (2) an interface
for each resource type. To iterate over representations, since they are bound to resources,
the resource interfaces are equipped with methods that allow to convert them to represen-
tations. A RMCFactory class, internal to the Resources interface, is exposed in order to be
able to obtain the Resources implementation and be able to iterate over resources.

Examples for the aforementioned class/interfaces can be seen in Listings 3.4 and 3.5.

Listing 3.4: Example of a Resources Interface
1 public interface Resources {
2 /** Gets a stream of Pet resources */
3 Stream<Pet> getPetStream();
4 ...
5 public class RMCFactory{
6 /** The instance */
7 private static RMCFactory factory;
8
9 private RMCFactory() { }

10
11 /** @return the current instance */
12 public static RMCFactory getInstance() { ... }
13 /** @return the Resources managing class */
14 public Resources getResources() { ... }
15 }
16 }

Listing 3.5: Example of a Resource Interface
1 public interface Pet {
2 /** Gets Pet as its representation PetRep */
3 public PetRep getPetAsPetRep();

38

4 ...
5 }

Listing 3.6: Example of an expression used in a precondition
1 request in {body: PetRep} &&
2 (isdefined(request.body.id) =>
3 (forall pet:Pet .
4 (forall petRep:PetRep .
5 petRep representationof pet && petRep.id != request.body.id
6)
7)
8)

The use of these classes is illustrated below with an example that shows the code
generated from the expression presented in Listing 3.6, with a forall chain.

1 RMCFactory.getInstance().getResources().getPetStream().
2 allMatch(pet -> pet.getPetAsPetRep().getId() != body.getId())

In the previous code we iterate over all pet resources and assert if all of them comply
with a given function, in this case, we convert the pet resource to its representation and
compare the id from the request with the representation.

3.5 Resource logic

In order to be able to generate more code for the server side, namely code related to
resources and their representations, the HEADREST language was extended with new
elements. The elements added to HEADREST, which we designate Resource Logic, al-
low us not only to generate more code but also to simplify the writing of HEADREST
specifications.

With the new elements included in the language: (1) we can declare predicates rela-
tive to resources, (2) we can bind resources to their representations with the represents

expression and define resource predicates, (3) we can use the predicates on assertions.
These new elements are materialised in the generated code as: (a) interfaces that repre-
sent resources are added predicate calls (b) representations have predicate call implemen-
tations (c) ability to call resource predicates as methods because of how they were added
to the interface/class by the previous two points.

For instance, in the PetStore example, we can use the Resource Logic to define a
predicate hasId over a Pet resource, that captures if a pet resource has a given id. We could
then iterate over all pets and ask if all of them have a given id by using this predicate.

In Listing 3.7 we present an example that illustrates the elements that were added to
the language. As we can see, the assertion was simplified (one less forall loop when

39

compared to the previous version, presented in Listing 3.6), which results in a more mod-
ular and, as a consequence, organised specification. This is also reflected in the generated
code.

Listing 3.7: Example with Resource Logic in PetStore Example
1 resource Pet { // resource with logic
2 pred hasId(integer)
3 }
4
5 type PetRep = { // representation
6 id: integer
7 ...
8 }
9

10 pr:PetRep represents Pet { // resource and representation bind
11 hasId(arg0) => pr.id == arg0
12 }
13
14 {
15 request in {body: PetRep} &&
16 (isdefined(request.body.id) =>
17 (forall pet:Pet .
18 pet.hasId(request.body.id) // resource logic predicate usage
19)
20)
21 }
22 POST /pet
23 {
24 ...
25 }

The resulting code is then extended with this additional information:

• Resource interface is added the predicate declaration (see Listing 3.8)

• Representation class is added the predicate implementation (see Listing 3.9)

Listing 3.8: Resource interface with logic example
1 public interface Pet {
2 ...
3 /** Default hasid implementation */
4 default boolean hasid(Integer id){
5 return getPetAsPetRep().hasid(id);
6 }
7 }

Listing 3.9: Representation class appended method example
1 public class PetRep {
2 ...
3 /** A defined predicate */
4 public boolean hasid(Integer id){
5 return this.id == id;

40

6 }
7 }

Making use of the elements expressed with the resource logic, in the generated code,
instead of (...).allMatch(pet -> pet.getPetAsPetRep().getId()!= body.getId()) we
could simply have (...).allMatch(pet -> !pet.hasid(body.getId()))). Hence, we ob-
tain code that is more abstract, modular and in the long run simpler, if various represen-
tations are used for the same resource.

3.6 HEADREST Codegen tool

As a proof of concept, the ideas presented before were implemented in a prototype tool.
As shown in Figure 3.1, HEADREST Codegen has an encoder component that reads
a HEADREST specification and encodes it into OAS, and a generator component that
receives the generated OAS specification and generates client SDKs and server stubs,
extending the Swagger Codegen for Java and generating for the RestEasy framework. The
encoder and generator components will be described in detail in the following Chapters
(4 and 5).

The figure illustrates the use of HEADREST Codegen in a very simple example. The
figure shows:

• an excerpt of a HEADREST specification that is provided to the tool, which de-
clares ContactR as a representation type for Contact resources and that specifies
that the creation of resources of type Contact is possible through the execution of a
POST operation over /contacts with a body request of type ContactPutData,

• a partial view of the structure of the client SDK and server stubs generated by the
tool,

• an excerpt of the class that represents the representation type ContactR, equipped
with a validation method that can be used to check whether an object of type
ContactR satisfies the required properties

41

Figure 3.1: HEADREST Codegen in a nutshell

42

Chapter 4

Encoding HEADREST into OAS

In this chapter we discuss the encoding of HEADREST in OAS, a process that is accom-
plished by the HEADREST Codegen Encoder component. We cover the HEADREST
analyser, used to read and analyse the specification, and the extension we made to the
HEADREST language and its analyser. We then describe the structure of the encoder
(from multiple views), the OAS generation, and end with the limitations of the encoding
process.

4.1 HEADREST analyser

The HEADREST language analyser was developed in a previous work [7] making use
of XText [2], a framework for developing programming languages and domain-specific
languages. XText was used to define the syntactic and semantic analysis of HEADREST
specifications. It provides us with many additional benefits, the major one being that it
generates an Eclipse IDE for the language.

XText uses Eclipse Modelling Framework (EMF) models as the in-memory represen-
tation of any parsed file. In what follows we use XText EMF AST to designate the Abstract
Syntax Trees (AST) of these models. This AST contains the essence of our specifications,
abstracting from concrete syntax. It is used in later processing steps, including validation,
compilation, and interpretation. In EMF a model is made up of instances of intercon-
nected EObjects and contains various informations about the model. XText automatically
validates the syntactic part of a HEADREST specification by generating a lexer and parser
for a given language grammar.

In order to semantically validate HEADREST specifications, custom validators were
added to the XText project that rely on Z3 SMT Theorem prover [3] More concretely, the
process of semantic validation is accomplished by converting the HEADREST into a core
intermediate representation AST, which we refer as Core HEADREST AST.

43

4.2 Core HEADREST

In Figures 4.1 and 4.2 we present in detail the grammar of the core part of HEADREST.
This relies on a few base sets: that of variables denoted by x, y, z, that of resource types
denoted by α, β, and that of labels denoted by l,m. Integer literals are denoted by n,
string literals by s, and regular expressions by r. Regular expression literals conform
to ECMA-262. URI templates conform to RCF-6570 [11]. In an object of the form
{l1 : e1, . . . ln : en}, labels l1, . . . , ln must be pairwise distinct.

Multi-field record types are broken down into an empty record type {} and a singleton
record type {l : T}, cf. [5, 13]. URITemplate is a primitive type. In order to ease language
implementation, it was made primitive, and not, say, (x : String where matches(rurit, x))

for an appropriate regular expression rurit.
HEADREST specifications, rule S, are constituted by any number of variable decla-

rations, type declarations, resource declarations and assertions.
Variable declarations start with the keyword var binding a variable to a type and allow

us to have free variables to carry information from preconditions to postconditions.
Type declarations start with the keyword type and allow us to create types that are

identified by a label name. They are the data structures that are exchanged back and forth
in the various interactions. Rules B, G, and T describe the supported types, ranging
from primitive types such as Integer to more complex types such as an array of positive
integers, (x : integer where x > 0) [].

Resource declarations start with the keyword resource and allow us to declare resource
types, which are used in assertions to describe the current state of resources.

Finally, assertions are structures that allow us to specify preconditions and postcon-
ditions over operations. The pre/postconditions are written as expressions, described by
the first rule e. A typical precondition starts by describing the request structure (the body,
path or query argument types) followed by state related expressions, such as resource and
representation quantification (last two expression of rule e). A typical postcondition starts
by describing the response code, followed by the response structure (the body) and ending
with state related expressions, as described in the precondition. An assertion example can
be seen in Chapter 2 (see Listing 2.7)

Signatures for some primitive functions are presented in Figure 4.2.
In the following, we detail the behaviour of a few operators central to HEADREST.

Resource related operators representationof and uriof assert whether a given element is
a representation or identifier of a resource, respectively. The first is typically used in
assertions, when iterating over resources and representations, to associate a representation
with a resource and then evaluate an expression over the representation (see example in
Chapter 3, Listing 3.6).

Operator expand converts an URITemplate and an object into a String. The function
works according to RFC 6570 [11] when all template variables show up in the object,

44

Expression e ::= x | c | ⊕(e1, . . . , en) | e1 ? e2 : e3 | e in T

| {l1 : e1, . . . ln : en} | e.l | [e1, . . . , en] | e[e]
| ∀x : T.e | ∃x : T.e

Scalar constant c ::= n | s | true | false | null | F | r
URI template F ::= ε | sF | {l}F | {?l}F
Regex r ::= . . .

Type T ::= Any | G | {l : T} | (x : T where e) | α | {} | T []
Basic type G ::= B | Regexp | URITemplate

Primitive type B ::= Integer | String | Boolean

Verb a ::= get | put | post | delete

Specification S ::= ε | var x : T ;S | type t = T ;S | resourceα;S | {e}ae{e};S
Context Γ ::= ε | Γ, x : T

Resource ∆ ::= ε | ∆, α

Figure 4.1: HEADREST syntax

otherwise it leaves the variables as are. This justifies the fact the range of the function is
a String and not an URI.

The inductive definition of the expand function is as follows.

expand(ε, v) 7→ root

expand(sF, v) 7→ s++ expand(F, v)

expand({l}F, v) 7→ tostring(u) ++ expand(F, v) if v.template.l = u

expand({l}F, v) 7→ "{l}" ++ expand(F, v) otherwise

expand({?l}F, v) 7→ "?l = " ++ tostring(u) ++ expand(F, v) if v.template.l = u

expand({?l}F, v) 7→ "{?}" ++ expand(F, v) otherwise

It should be clear that expand yields a string that may not represent an URI. For ex-
ample expand(item{id}, {}) 7→ "item{id}", which is not a proper URI. This allows
expand to remain a total operator, hence may be used in types.

Predicate isdefined queries whether a given field is present in an object. The predicate
is defined by induction on its parameter as follows.

isdefined(e.l) 7→ isdefined(e) ? e in {l : Any} : false

isdefined(e) 7→ true otherwise

The matches predicate returns true if a given regular expression is matched by a given
String, false otherwise.

45

representationof : Any, α→ Boolean

uriof : String, α→ Boolean

expand : URITemplate, {template : {}} → String

isdefined : Any→ Boolean

matches : Regexp, String→ Boolean

tostring : Any→ String

length : Any []→ Natural

size : String→ Natural

Figure 4.2: Signatures of some primitive operators

4.2.1 Derived syntax

The concrete syntax counts with a few extensions, all obtained by translation into the core
language. We distinguish derived expressions from derived types.

Figure 4.3 and 4.4 present some derived types and derived expressions, respectively.
Most of these abbreviations are from [3]. In the definition of multi-field object types, ?
denotes ? or empty. Type URI abbreviates strings generated by a regular expression euri

defined according to RFC 3986 [1]. The symbol "!" symbolizes negation.
The first two types, [e : T] and [e] are singletons and they allow us to describe value

instanced types. As an example: [“a”] describes a String type with value “a”.
The | operator allows the creation of a sum type – sometimes called union or choice

type, to name a few –. For instance: Integer | Boolean is a type that is either an Integer or
a Boolean. A more interesting example would be: [“a”] | [“b”] | [“c”] which is a String

that is either the string literal “a”, “b” or “c”, an enumeration.
The & operator, intersection type, is analogous to the | operator but intersects types

instead. For instance: (x : integer where x > 0) & (y : integer where y < 10) will re-
sult in (z : Any where (z in (x : integer where x > 0) && z in (y : integer where y < 10)))

which could be written simply as (z : integer where z > 0 && z < 10).
The &&& expression is typically used in assertions so that the information in e can

be correctly assumed in the following expression f .
Finally, the =⇒ is the logical implication operator. A typical usage scenario is

to assert something relative to an optional field, if the field is present, (see example in
Chapter 3, Listing 3.6).

4.3 HEADREST extension

The extension to HEADREST was designed to be backward compatible so that through
abstraction and translation we could still obtain a valid and meaningful specification in

46

[e : T] , (x : T where x==e) x /∈ fv(e)

[e] , [e : Any]

T | U , (x : Any where (x in T || x in U)) x /∈ fv(T, U)

T & U , (x : Any where (x in T && x in U)) x /∈ fv(T, U)

!T , (x : Any where !(x in T)) x /∈ fv(T)

T where e , (x : T where e) x /∈ fv(e)

{?l : T} , (x : Any where x in {l : Any} ⇒ x in {l : T}) x /∈ fv(T)

{?l1 : T1, . . . , ?ln : Tn} , {?l1 : T1}& . . .&{?ln : Tn} n ≥ 1

if e then T else U , (x : T where e) | (x : U where !e) x /∈ fv(T, U)

URI , (x : String where matches(ruri, x))

Natural , (x : Integer where x ≥ 0)

Empty , (x : Any where false)

Figure 4.3: Some derived types

e &&& f , (e ? f : false)

e =⇒ f , (e ? f : true)

Figure 4.4: Some derived expressions

the original language. This also made possible to recycle the existing semantic validation.

As mentioned before we extended the HEADREST language with resource logic.
Concretely, this was accomplished by adding new elements to the language: declaration
of resource predicates, binding of representation with resource including a definition of
the resource predicates and use of these predicates (see Listing 3.7 for an example). The
extension are described in Figure 4.5.

47

Specification S ::= R;S

Represents R ::= ε | R, x : T represents α{D0, ..., Dn}
Predicate definition D ::= m(x0, ..., xn) => e

Expression e ::= α.m(e0, ..., en)

Resource ∆ ::= ∆, α{P0, ..., Pn}
Predicate declaration P ::= pred m(T0, ..., Tn)

(extends Figure 4.1)

Figure 4.5: HEADREST syntax extension

In order to take advantage of the core validation, predicate call expressions are derived,
hence converted in core HEADREST. This conversion is accomplished by following the
rule, where e[e′/x] is the result of replacing free occurrences of variable x by expression
e′ in expression e. Given the following section in a HEADREST specification:

resource α {pred m (~Tm, ...)}

x0 : T0 represents α{m(~y0) => e0, ...}
...

xn : Tn represents α{m(~yn) => en, ...}

then:

α.m(~e) , ∀x0 : T0 representationof α => e0[~e/~y0]

&&...&&

∀xn : Tn representationof α => en[~e/ ~yn]

An example of this rule in action can be seen in Chapter 3 (see Section 3.5 where we
use resource logic to simplify Listing 3.6 to Listing 3.7).

In the end of the encoding phase we append the HEADREST specification to the
generated OAS, via its extension mechanisms. In this way, we ensure that all information
in the original specification (even the parts not used in the encoding) is available.

4.4 Encoder

In order to create the HEADREST Codegen, our code generation prototype, we had to
pick an AST to work with for the encoding process, the XText EMF AST or the Core
HEADREST AST.

48

A way of encoding HEADREST into OAS would be to use the XText EMF AST
obtained directly from reading a HEADREST specification. This is much closer to the
OAS format, but we would be forced to process it for semantic validity, which is already
done by the analyser, and also we would need to cover many specification cases.

The other way, which we decided to use, is using the Core HEADREST AST since it
is canonical and, in this way, our encoder has to deal with much less possible specification
cases, making it simpler and easier to extend. Additionally, we can request the analyser
to run semantic validations directly. In the end we convert it back to XText EMF AST to
get the closest possible to the OAS structure, apply some simplifications and we can start
processing it into a OAS specification.

4.4.1 Behaviour view

XText
EMF

SF Core
HR

Z

XText
EMF

(simplified)

CV

XText
EMF

XCS

OASS

Key:

Processor
AST

(SF) SpecificationFactory
(Z) XTextToCoreHeadRestVisitor
(CV) CoreToXTextCoreVisitor
(XCS) XtextCoreSimplifier
(AMV) AssertionMergeVerifier
(OASS) OASSwitchA produces B

CB C consumes B

BA

AMV

HEADRest
Open API Specification

Specification

Figure 4.6: Encoder behaviour view

In Figure 4.6 we present a runtime view of the structure of the encoder component
while in Figure 4.7 we provide an illustration of the transition between the various ASTs.
With this example we intend to provide an better idea about the various ASTs used in
the process and a better insight on the decisions we made, namely the AST we chose to
encode HEADREST from and the processing/simplification done through them.

49

In our specification the user can use either the intersection type or use the core element
version. When translated to Core HEADREST both versions will be converted to the core
element (we go from XText EMF to an internal AST format, at this point). After that
we convert it back to XText applying the inverse rules of the ones presented in Figure
4.3. Since this was an intersection type of refinement types we simplify it. Finally, we
generate the OAS specification in a straightforward way.

(x: integer where x % 2 == 0) &
(y:any where y in (x: integer where x > 0) && y in (x: integer where x < 10))

 z: any where
 z in (x: integer where x % 2 == 0) &&
 z in (x: integer where x > 0) &&
 z in (x: integer where x < 10)

(x: integer where x % 2 == 0) & (x: integer where x > 0) & (x: integer where x < 10)

(x: integer where x % 2 == 0 && x > 0 && x < 10)

 type: "integer"
 x-refinement: "x % 2 == 0 && x > 0 && x < 10"

Core HR

XText
EMF HR

XText
EMF HR
(simplified)

XText
EMF HR

OAS

Figure 4.7: Textual AST transition view

SpecificationFactory (generated by XText) is responsible for reading a specification,
creating the XText EMF AST and converting it to the Core HEADREST AST. It also runs
the semantics analysis if needed.

CoreToXTextCoreVisitor converts the Core HEADREST AST back into the XText
EMF AST.

XTextCoreSimplifier is responsible for adapting the XText EMF AST for encoding
into Open API Specification. This includes:

• adding the URI type declaration (which is a basic type in HEADREST, but not
supported by OAS),

• replacing response codes constants by their actual values,

50

• applying type intersection rules to resolve intersection types to a single type (in
order to be able to encode into OAS),

• extracting singletons and singleton unions.

Details about these simplifications are presented in Section 4.5.1.

AssertionMergeVerifier, like the name implies, verifies that assertions can be merged
later in the encoding (recall that OAS has limitations relative to the operations – e.g., only
one request type for success). It consists in evaluating the merging of request and response
types, and that all the required arguments are defined across assertions relative to the same
operation.

OASSwitch is responsible for parsing the prepared XText EMF AST and generate an
object of type io.swagger.models.Swagger, that abstracts the OAS specification.

The assertions require a special treatment because there can only be a definition per
response code per path, while in HEADREST we can have multiple assertions for the
same operation. This requires the organisation of information and merging of assertions.

To extract the single request/response type to add to our specification, when we have
multiple assertions relative to the same operation, we gather all the possible request/re-
sponse types and create a sum type.

OASSwitch also applies certain simplifications, for instance, when we find a sin-
gleton (e.g., ["someString"]), we create a string type and use the enum field provided
natively by OAS, that way we force the type to only be that specific value. When we have
type disjunctions of singletons, the same rule applies, after converting the type we add all
the possible values to the enum field.

4.4.2 Module View

In Figure 4.8 we present a top level view of the encoder that shows the package structure
of the encoder and how the different classes use each other. The encoder is mainly com-
prised of various visitors that manipulate, verify and generate from ASTs. Some utility
classes were developed, as well as helpers and printers, whose role is as described in what
follows:

Catalog

This subsection is dedicated to classes that were not described previously.

• Encoder class is the entry point to the encoding process.

• StringUtils class has, as the name suggests, methods to help with string manipula-
tion,

51

hrgen

gen

ast

Encoder

visitors

CoreToXTextCoreVisitor

XTextCoreSimplifier

AssertionMergeVerifier

OASSwitch helpers

InformationHelper

printers

LoggerPrinter

utils

HeadRestConstants

StringUtils

HttpCodes

Key:

Package Java Class uses

Figure 4.8: Encoder top level uses view

• HeadRestConstants class isolates all the constants that are supposed to be easy to
change and that are required in the classes and template files used in the encoding
and generation process classes and template files,

• HttpCodes class loads information relative to HTTP codes from a CSV file ob-
tained from IANA.1 This information is then used to complete the encoded file,

• InformationHelper class provides various methods to help with extracting useful
information from the HeadREST XText AST, these include request/response type
extraction, conjunction/disjunction flattening methods, and many more,

• LoggerPrinter class prints EObjects to a logger, for error logging messages.

1https://www.iana.org

52

https://www.iana.org

4.5 OAS generation

In this section we go over the process of encoding HEADREST (a simplified XText EMF
AST) into OAS. We cover the encoding of basic types, refinement types, derived types
and assertions. We present the rules that the encoder follows to generate the OAS spec-
ifications from HEADREST specifications (a compiled version of the rules presented in
this section can be seen in Appendix A).

4.5.1 Type encoding to OAS

Encoding HEADREST’s types is challenging, mainly because we want to make use of
what OAS can express natively as much as possible. This allows to take advantage of the
existing Swagger Codegen. In order to illustrate the encoding rules, we took advantage
of the HEADREST language definition.

Basic types

The types currently supported by HEADREST Codegen are integer, boolean, string,

URI, {l0 : t0, ..., ln : tn}, and T []. We consider URI and multi-property objects as basic
types, even though they are derived types, because we can obtain and use them almost
directly. These are fairly easy to convert into OAS core language because it supports
basic types. An example that illustrates this is presented below. The basic type:

type Person = {id: integer, name: string}

is encoded in OAS as:
Person:

type: "object"
required:
-"id"
-"string"
properties:

id:
type: "integer"

name
type: "string"

HEADREST URI type is not supported by OAS. To address this, as mentioned before
we create a refinement type of string and add it to the HEADREST specification. Usages
of type URI simply become references to this new type. Below we present an example of
a HEADREST type definition that uses an URI type and the resulting encoding in OAS.
Note that label $ref is used in OAS to reference a named type.
The HEADREST type:

type UsingUri = {link: Uri}

is encoded in OAS as:
1 UsingUri:
2 type: "object"
3 required:

53

4 - "link"
5 properties:
6 link:
7 $ref: "#/definitions/Uri"

where "#/definitions/Uri" (line 7) is defined in the definitions section of the OAS specifi-
cation as follows:

Uri:
type: "string"
x-refinement: "matches(UriRegex, uri)"

In what follows we present the rules that define the type encoding of HEADREST
types into OAS. Function [[.]] receives a type T (as in Figures 4.1 and 4.3) and returns an
OAS specification.

[[B]] = type: “B”

[[URI]] = $ref: “#/definitions/Uri”

[[α]] = $ref: “#/definitions/α”

[[{l0 : T0 , ..., lk : Tk , ..., ?lk+1 : Tk+1 , ..., ?ln : Tn}]] = type: “object”

required:

- “l0”

...

- “lk”

properties:

- l0 : [[T0]]

...

- ln : [[Tn]]

[[T []]] = type: “array”

items: [[T]]

Refinement types

Refinements of the basic types have the refinement expression carried on the type via OAS
extension mechanisms. These mechanisms are provided in the form of extra tags that can
be appended to any location of the document, to carry extra information. In OAS, any tag
that begins with x is considered an extension and is ignored by OAS-specific tools. Some
examples of refinement types are presented below. In these examples, we first present the
HEADREST definition and then the resulting encoding. First, we refine a digit and then
an object that contains a string field to match a regular expression.
The encoding of the digit:

type Digit = (d:integer where d >= 0 && d < 10)

54

results in the OAS type:
Digit:

type: "integer"
x-refinement: "x >= 0 && x < 10"

The encoding of the object:
type MyObject = (y: {b: string} where matches(/aaa|bbb|ccc/ ,y.b))

results in the OAS type:
MyObject:

type: "object"
required:
- "b"
properties:

b:
type: "string"
x-refinement: "matches(/aaa|bbb|ccc/ ,y.b)"

The rule that allows us to encode refinement types into OAS is the following:

[[(x : T where e)]] = [[T]]

x-refinement: “e”

Derived types

Type intersection is the most complex type we support. We have defined some rules that
attempt to encode as many intersections as possible. In order to explain the complexity
of intersection types, let us start by considering an intersection of two object types with
different non-optional fields.
The intersection:

type Intersection = {a: integer} & {b: string}

is encoded into:
1 Intersection:
2 type: "object"
3 required:
4 - "a"
5 - "b"
6 properties:
7 a:
8 type: "integer"
9 b:

10 type: "string"

From the encoding of the previous example, notice that the required parameters cre-
ated a required entry (lines 4 and 5). Also, notice that object intersection results in field
conjunction.

HEADREST allows optional object fields as shown below. Having a mandatory field
with the same name of an optional one results in the mandatory field creating a required

entry. However, the types must be intersectable regardless of being optional or not.

type Intersection = {a: integer} & {?a:integer, ?b: string}

55

The resulting encoding for this example is the same as for the previous, except the b

field does not create a required entry.
In what follows we show the rules that enable us to intersect types (? denotes ? or

empty).

[[G & ... & G]] = [[G]]

[[α & ... & α]] = [[α]]

[[(x : T where e1) & T]] = [[(x : T where e1)]]

[[(x : T0 where e0) & (x : T1 where e1)]] = [[(x : T0 & T1 where e0 && e1)]]

[[{l0 : T0, ..., ln : Tn} & {?lx, Tx}]] = [[{l0 : T0, ..., ln : Tn, ?lx : Tx}]]

where lx 6∈ {l0, ..., ln}
[[{l0 : T0, ..., lk : Tk, ..., ln : Tn} & {?lk : U}]] = [[{l0 : T0, ..., lk : (Tk & U), ..., ln : Tn}]]

Other derived types that need some specific processing are: singleton and union of
singletons. These are encoded quite easily into OAS with the following rules:

[[[e : G]]] = [[G]]

enum:

- e

[[[eo : G] | ... | [ex : G]]] = [[G]]

enum:

- e0

...

- ex

Union types are not supported beyond singletons due to the fact that their translation
requires the use of OAS extension mechanisms to preserve type semantics. Union types
will be discussed in the following subsection, as we make use of it to merge request and
response types for operations.

4.5.2 Assertions

Encoding HEADREST assertions is even more challenging than encoding types. This is
because OAS requires a single request per operation, unlike HEADREST that supports
various assertions for the same operation.

The solution we found merges the various request/response types for each successful
operation code. With this, we force the request and response types of assertions relative

56

to the same operation to be mergeable, where request types are extracted from success
code assertions only (we explained previously that OAS only enables the specification of
one request type, the success case). More concretely, the types need to be mergeable via
union (denoted by the operator “ | ”), for which we have certain rules that we present later
in this section.

Assertion base encoding rule

[[{e0} a /p {e′0} ... {en} a /p {e′n}]] =

/p:
a:

parameters:
-in: "body"
name: "body"
required: true
schema: |0≤i≤k[[Ti]]

responses:
c0:

description: <code detail extracted from IANA csv file>
schema: |0≤j≤n[[Tj]] where response.code == code0

...
cn:

description: <code detail extracted from IANA csv file>
schema: |0≤j≤n[[Tj]] where response.code == coden

x-axioms:
- "{e0} a /p {e′0}"
- ...
- "{en} a /p {e′n}"

where:

• Ti and Tj are extracted from the respective ei.request.body in Ti (from precondi-
tions) and e′j.response.body in Tj (from postconditions) expressions

• c0,...,cn are extracted from the postconditions response.code == ci expressions,

• we assume that assertions from 0 to k refer to successful cases, i.e., response codes
in the interval [200,300[, while the remainder assertions have different codes,

• IANA stands for Internet Assigned Numbers Authority, which provides a list of
HTTP codes and related information (e.g., code 404 has description “Not Found”).

The previous example was the encoding of simple assertions that only restricted the
body parameter of an operation. Things get complicated when we have assertions that
specify path and query parameters.

In HEADREST a path (URI Template) can take the form /path{a,b,?c,d}. This
means a and b are path parameters, and c and d are query parameters. Because OAS
requires that all parameters have an associated type, our encode inherits this limitation. If
a path or query parameter is present, then the request must be refined with an object that
gives that parameter a type. Additionally, this must be verified for all preconditions of the
assertions relative to the same operation and a successful situation.

57

In this way, we cannot encode the following HEADREST specification, as it indicates
a query parameter status that does not have any associated type.

{
true

}
GET /pet/findByStatus{?status}

{...}

However, we can encode the following specification, as it defines the type of the query
parameter.

1 {
2 request in {template: {status: integer}}
3 }
4 GET /pet/findByStatus{?status}
5 {...}

We can observe in the previous listing (line 2) that some processing is required in
order to extract the query path type (located in request.template.status).

As a result of validating the specification (via the AssertionMergeVerifier class) we
extract the request type directly. The validation takes care of 1) identifying path and
query parameters, 2) checking that they are defined in all assertions relative to the same
operation, and 3) checking that their types are mergeable.

The addition of path and query parameters is analogous to that of the body, modifying
the -in tag to the corresponding parameter type.

Type merging

The merging of types, used to merge operation request and response types, is done via a
type union, following these rules:

[[G | ... | G]] = [[G]]

[[α | ... | α]] = [[α]]

[[(x0 : G where e0) | ... | (xn : G where en)]] = [[(x : G where e0 || ... || en)]]

[[|i{~ai : ~Ti, ?~bi : ~Ti}]] = [[(x : {?~ai : ~Ti, ..., ? ~an : ~Tn, ?~bi : ~Ti}
where ||i isdefined(~ai))]]

4.6 Limitations

In this section we present some limitations of the encoder. It is advised to take them into
consideration for best results with the HEADREST Codegen tool.

Union of objects with optional parameters Type disjunction has a restriction relative
to optional parameters. If an optional parameter appears on an object, then it must appear

58

on the other objects as well. For a certain Verb Path the request body and the response
body must both declare the same optional parameters. Let us explain why with a simple
example.

Suppose that for a given Verb Path there are two success request types: (1) {a :

T1, ?b : T1} and (2) {c : T1}. Valid instances of the resulting sum type {?a : T1, ?b :

T1, ?c : T1} where isdefined(a) ‖ isdefined(c) are: {a : T1}, {a : T1, b : T1}, {c : T1},
and {c : T1, b : T2}.

Almost every case is good, except for the last case. When we add the request type to
the swagger object we are indicating that there is an optional field b of type T1, so the last
case would be excluded as it would not match the generated method signature. Because
of this, we decided that optional types are required to be present in all the objects in the
disjunction, coherently.

So {a : T1, ?b : T1}|{c : T1} would turn into {a : T1, ?b : T1}|{c : T1, ?b : T1},
excluding this last problematic instance while not really being very restrictive on the user.

Type any The type any in HEADREST corresponds to Object in Java. Because OAS
does not support any it requires that a type is defined, as such any is not currently sup-
ported.

null value As of OAS version 2.0 (the version we are using) null is not supported and
therefore we decided not to support it.

Sum types As mentioned before when adding assertions to the Swagger object, if there
are many assertions relative to the same Verb Path, the request and response body types
are converted to a unique sum type. This is the only moment where type union is sup-
ported, because we use Swagger’s extension mechanisms to attempt to conserve the se-
mantics of the created type.

At type definition level only one sum type is supported, between singletons. Single-
tons are converted by the encoder into an enumerated type.

If we were to support sum types at type definition level, we would have to limit that
type to only be used on a singular assertion (an assertion that is the only assertion for
a given Verb Path), so that merging of two sum types would not happen. Merging two
arbitrary is a complex operation, due to our approach to object type union.

Refinement types on parameters The use of refinement types in body/path/query pa-
rameters requires the type to be defined externally. For instance:

1 {
2 request in {body: (x:integer where x > 0)}
3 }
4 POST /something
5 {

59

6 response.code == 200
7 }

The previous axiom specification generates a method signature that receives an integer
body as argument, but its refinement cannot be lost. If we extract the type however we
can refine it correctly. It would look something like:

1 type bodyT = (x:integer where x > 0)
2
3 {
4 request in {body: bodyT}
5 }
6 POST /something
7 {
8 response.code == 200
9 }

The latter would generate a BodyT.validate(body) method call, which verifies the refine-
ment.

Type negation Type negation is not supported as there are an infinite number of types
and OAS does not support negation.

Type negation with string singletons The type negation:
1 type ReservedWords = ["word1"] | ["word2"]
2 {
3 !(request.template.word in ReservedWords)
4 } ... { true }

can however be worked around as an external refined type:
1 type NotReservedWords = (s: string where !matches(/word1|word2/ , s))
2 {
3 request.template.word in NotReservedWords
4 } ... { true }

Success via type negation HEADREST allows stating that if a call with a body of any
type different from integer will trigger a response with code 200. For generation however
we don’t support this.

Unlimited Variables We consider unlimited variables, those that do not have a value
associated on the moment of a variable usage.

HEADREST allows declaring variables via the var construct. These variables can be
used in all sorts of ways, but most commonly to associate a variable in a precondition
to be the same as in the postcondition. Code generation can only use variables that have
been associated via the uriof or representationof predicates.

• x uriof e associates a resource variable x with an URI e

• x representationof R associates a representation variable x to a resource R

60

For cases where a variable has not been associated, the current assertion encoding
will be replaced by the string literal true /*list of unbound variables followed by

commented out expression*/.

61

62

Chapter 5

Generating code from HEADREST
specifications

Once the encoding of HEADREST in OAS is ready, we can proceed with code generation.
This is achieved by a component that extends the Swagger Codegen, taking advantage of
the extra information that we encoded into the generated OAS specification.

Swagger Codegen is available for many programming languages and REST frame-
works. For HEADREST Codegen we picked the version for the JAX-RS framework, as it
is popular for Java, is easy to install and deploy, and integrates well with our tools. More
concretely, we use the RestEasy [4] implementation of the JAX-RS.

In this chapter we start by discussing the most important decisions underlying HEAD-
REST Codegen in what concerns the code to be generated. Then, the generation compo-
nent of HEADREST Codegen is presented, with its most important elements, the gener-
ation process, ending with its limitations.

5.1 The code produced by the generator

In what follows we justify our decisions on what concerns the code generated from
HEADREST specifications, capitalising on the code generated by Swagger Codegen. As
before, we use the function [[.]], that receives an expression e (as in Figures 4.1 and 4.3)
and returns the corresponding Java expression, and ?l to denote ?l or l in object types.

5.1.1 Models

Models that were encoded from refinement types have the refining expression appended
via an x-tag. To take advantage of this information, it was decided to extend the generated
model classes with a validation method. There are many different cases that need to be
handled in a specific way, namely because of how basic, object, and array types generate
different sorts of Java classes.

63

In what follows, we present the different cases that were considered. We use C to
denote the set of classes generated by HEADREST Codegen.

• Case type declarations of the form type RB = (x:B where e). C includes a class
public class RB, generated by Swagger Codegen, that includes a single method:
public static boolean validate(B instance){return [[e]];}

• Case type RO = (x:T where e), a refinement of an object type T . C includes a class
public class RO, generated by Swagger Codegen, that includes a single method:
public static boolean validate(RO instance){return [[e]];}

• Case type RA = (x:T[] where e), a refinement of an array type T []. C includes
a class public class RA extends ArrayList<T>, generated by Swagger Codegen,
that includes with a single method:
public static boolean validate(RA x){return [[e]];}

• Case type A = (x:B where e)[]. C includes a class public class A extends ArrayList

, generated by Swagger Codegen, that includes with a single method:
public static boolean validate(A instance){

return instance.stream().allMatch(elem -> [[e]]);

}

• Case type A = R[], where R is the name of a non-basic refinement type. C in-
cludes a class public class A extends ArrayList<R>, generated by Swagger Code-
gen, that includes a single method:
public static boolean validate(A instance){

return instance.stream().allMatch(elem -> R.validate(elem));

}

• Case type O = {?lrb0 : B′
0, ..., ?lrbi : B′

i, ..., ?lrx0 : X0, ..., ?lrxj
: Xj, ..., ?lr0 :

R0, ..., ?lrk : Rk, ..., ?lt0 : T0, ..., ?ltn : Tn}, where B′
0...B

′
i are refinements of basic

types (in the form (x:B where eb) where B is a basic type and eb is a refinement
expression),X are either object or array types that comprise refinement types,R are
refinements of non-basic types, T are non-refined types (where objects and arrays
do not comprise refinement types). C includes a class public class O, generated
by Swagger Codegen, that includes a single method:
public static boolean validate(O instance){

return [[B′
0.eb]] && ... && [[B′

i.eb]] &&

X0 .validate(lrx0) && ... && Xj.validate(lrxj
) &&

R0 .validate(lr0) && ... && Rk .validate(lrk);

}

64

Recall that examples of generated validation methods were already presented, for in-
stance, in Listing 3.2. Another example of a generated validation method can be found in
Appendix E.3, generated for the ContactRep type specified in Appendix D.2.

5.1.2 Assertions

Operations that were encoded from assertions have the assertion expressions appended via
an x-tag. To take advantage of this information, it was decided to extend the generated
API classes (e.g., DefaultApi client class).

Clients

The client-side extension is translated in methods in the DefaultApi generated class (gen-
erated by Swagger Codegen). These methods allow the user to verify whether the interac-
tion satisfies the conditions for a successful call to the operation. An example of a client
side operation validation method is presented in Listing 3.3.

• Let {ei} a /p {e′i}, for 1 ≤ i ≤ n ≤ m, be a set of assertions relative to a given
operation a /p. Suppose also that, assertions that refer to successful cases are those
for 1 ≤ i ≤ n.

Considering that [[e]] for clients only translates part of the precondition expression
e, the part that is not state-related (recall that state properties are not verifiable
client-side). C includes a class public class DefaultApi, generated by Swagger
Codegen, that includes a method for each operation (the method name prefix op

denotes the name associated by Swagger Codegen to the generated operation —
e.g., the POST operation over the /pet path results in an operation named petPost):

public boolean opRequiredSuccessPrecondition(){
boolean pre1 = [[e1]];
...
boolean pren = [[en]];

return pre1 || ... || pren;
}

Servers

The server extension is translated in code that validates the preconditions and postcondi-
tions in the various ApiImpl class methods generated by Swagger Codegen. Example of a
server side operation validation method can be seen in Chapter 3 (see Listing 3.3.2).

• Let {ei} a /p {e′i}, for 1 ≤ i ≤ n ≤ m, be a set of assertions relative to the
operation a /p. Suppose also that, assertions that refer to successful cases are those
for 1 ≤ i ≤ n.

65

C includes a class public class MApiServiceImpl (the prefix M denotes the name
associated by Swagger Codegen to a group of operations), generated by Swagger
Codegen, that has its operation methods logic (returning a response stub) completed
with precondition and postcondition evaluations (N denotes the name associated by
Swagger Codegen to the generated operation):

public Response N(...){
boolean pre1 = [[e1]];
...
boolean prem = [[em]];

final Response response = Response.ok().entity(...).build();

boolean pos1 = [[e′1]];
...
boolean posm = [[e′m]];

if (pre1) assert pos1;
...
if (prem) assert posm;

return response;
}

Assertions have state related expressions (e.g., resource quantification) that need to
be converted into Java code. Extra classes and interfaces are added to accomplish this,
namely a predicates handling class, a Resources interface and interfaces for each re-
source.

Predicates

Class Predicates covers the various predicate that HEADREST provides (e.g., matches,
contains, etc - See Figure 4.2 for more examples). This class is generated equally for
all projects projects, except that package names change. The current Predicates class
implementation can be seen in Appendix B.

Resources

Introduced in Chapter 3 (see Listing 3.4), the Resources interface allows generating
expressions from resource quantifiers. We decided to take advantage of the Java 8 Stream
API[17] to iterate over the resources, using anyMatch and allMatch methods are what we
need for our quantification expressions.

• Let α be a resource and assume that uriof expressions are used in some assertion
to associate an URI to these resources, of the form: resource α0,...,αn

C includes an interface public interface Resources, generated by HEADREST
Codegen, that has resource stream getter methods appended for each resource de-
clared in the HEADREST specification, has resource getters by URI extracted from

66

each uriof, and an internal class public class RMCFactory that provides a way of
obtaining the Resources implementation:

Stream<α0> getα0Stream();
...
Stream<αn> getαnStream();

α0 getResourceα0(String uri);
...
αn getResourceαn(String uri);

public class RMCFactory{
/** The instance */
private static RMCFactory factory;

private RMCFactory() { }

/** @return the current instance */
public static RMCFactory getInstance() {
if(factory == null)
factory = new RMCFactory();
return factory;
}

/** @return the Resources managing class */
public Resources getResources() {
throw new UnsupportedOperationException("RMCFactory.getResources() not

implemented. Please replace stub to return an object of type
Resources."); //TODO

}

Resource interfaces

In order to talk about resources and iterate over them, we generate interfaces for every
resource. These interfaces abstract the various resources and provide us with a way of
refering to them. An example of resource interfaces can be seen in Chapter 3 (see Listing
3.5). If resource logic is used, the generated resource interfaces and models, from types
that represent resources, can be augmented with more code. An example of a resource
interface with logic can be seen in Chapter 3 (see Listing 3.8).

• Suppose that the resource logic of a HEADREST specification includes the follow-
ing definitions concerning the resource α, where R is an alias for T :

67

resource α {
pred m0(T0, ..., Ti),
...,
pred mm(T0, ..., Tj)

}

x0 : R0 represents α {
m0(arg0, ..., argi) => e00,
...,
mm(arg0, ..., argj) => e0m

}
...
xn : Rn represents α {
m0(arg0, ..., argi) => en0,
...,
mm(arg0, ..., argj) => enm

}

C includes an interface public interface α, generated by HEADREST Codegen,
that has resource to representation conversion methods, extracted from each
representationof used in the specification, has default methods appended for every
resource logic predicate declared, and is appended a hasUri method to verify if a
given URI identifies the resource:

public R0 getαAsR0();
...
public Rn getαAsRn();

default boolean m0(T0 arg0,..., Ti argi){
return getαAsR0().m0(arg0,...,argi) &&...&&

getαAsRn().mm(arg0,...,argi);
}
...
default boolean mn(T0 arg0,..., Tj argj){

return getαAsR0().mn(arg0,...,argj) &&...&&
getαAsRn().mm(arg0,...,argj);

}

public boolean hasUri(String uri);

Moreover, for each 1 ≤ i ≤ n, C includes a class public class Ri, generated by
Swagger Codegen, that is extended with resource logic methods, where .e denotes
the translation of e into a Java expression:

public boolean m0(T0 arg0,...,Ti argi){
return [[ei0]];

}
...
public boolean mm(T0 arg0,...,Tj argj){

return [[eim]];
}

The representations (i.e., types) that represent resources are rewritten, appending the
new predicate methods and their implementations. An example of a representation that
represents a resource can be seen in Chapter 3 (see Listing 3.9).

68

Translation of HEADREST expressions to Boolean Java expressions

The translation of expressions is accomplished with a set of mapping rules from HEAD-
REST to Java expressions (because we are generating Java projects). Below, we present
some examples of the more interesting translation rules. We use the function [[.]], that
receives an expression e (an in Figures 4.1 and 4.3) and returns the corresponding Java
expression.

• [[forall x:integer . e]] =

IntStream.rangeClosed(MIN, MAX).allMatch(x -> [[e]])

• [[exists x:integer . e]] =

IntStream.rangeClosed(MIN, MAX).anyMatch(x -> [[e]])

• [[forall x:(y:integer where r) . e]] =

IntStream.rangeClosed(∨(MIN,r1), ∧(MAX,r2)).filter(r3).allMatch(x->[[e]])

where
– MAX and MIN stand for Integer.MAX_VALUE and Integer.MIN_VALUE, respectively
– ∨ and ∧ are functions that return the maximum and minimum of the arguments,
respectively
– r1 is the integer extracted from processing r lower bound constraints
– r2 is the integer extracted from processing r upper bound constraints
– r3 are the remaining expressions.

• [[forall r:R . e]] =

RMCFactory.getInstance().getResources().getRStream().allMatch(r -> [[e]])

where
– R is a resource type

Example of translation for the third rule:
[[forall x:(y:integer where y > 0 && y < 10 && y % 2 == 0). e]] =

IntStream.rangeClosed(0, 10).filter(y -> y % 2).allMatch(x -> [[e]])

5.1.3 Module views

In what follows we present various views of the code that is generated by our tool, client
SDKs and server stubs.

Client module view

In Figure 5.1 we present a top level uses view of the generated client. The client is pro-
vided with a DefaultApi class, various Model classes, the ApiClient class and a Predicates
class. The DefaultApi class represents the entrypoint to consume the API and it expects

69

io.headrest.client

api

DefaultApi

model predicates

Model 1

Model 2

Model n

...

Predicates

ApiClient

Key:

Modified Native
Generated Class

package

uses

Unmodified Native
Generated Java Class

New Java Class

Figure 5.1: Generated client top level uses view (minor classes ommited for simplicity)

Models as its arguments, making use of the ApiClient to generate the HTTP requests. The
Predicates class is used to provide predicates used when models are refinement types.

The DefaultApi class comes from the Swagger Codegen but is equiped with new meth-
ods that enable the client to verify if any success precondition are (partially) met, so to
enable clients to send back error messages before communicating with the server. The
models come native as well, but have validation methods added when they are specified
as refined types.

DefaultApi contains various methods that represent the operations and allow the com-
sumption of the API (e.g., public PetRep petPost(PetRep body)).

ApiClient is an adapter that converts high level calls from the DefaultAPI into low
level HTTP requests, making use of the JAX-RS Client implementation.

Model classes are generated with various fields, with their setters and getters, and, if
refined, are appended with a validation method.

Server module view

In Figure 5.2 we can see a top level uses view of the generated server. The server is
provided with an Api class which utilizes the various JAX-RS annotations to capture
HTTP requests and then delegates them to implementations of the ApiService, which has
stubs created under the io.headrest.api.impl package. The ApiServiceImpl stub was
extended to have precondition and postcondition verifications and the user should make

70

src/gen/java

io.headrest.api

Key:

package

uses

src/main/java

io.headrest.api.impl

ApiServiceImpl

io.headrest.model io.headrest.resources

Model 1

Model 2

...

Model n

Predicates

<<interface>>
Resources

<<interface>>
Resource 1

...

<<interface>>
Resource n

<<interface>>
ApiService

Api

Modified Native
Generated Class

Unmodified Native
Generated Java Class

New Java Class

Figure 5.2: Generated server top level uses view (minor classes ommited for simplicity)

use of the extra supporting files present in io.headrest.resources, provided by the extended
generator, to manipulate the various resources. Similar to the client, the same models are
provided to serve as representations used in the requests and responses.

5.1.4 Components/Deployment view

In Figure 5.3 we can see a very simplified hybrid component and deployment view of the
client SDK and server stubs that we generate with HEADREST Codegen. Clients may
interact with the server with our client SDK or, for a developer to debug, a standalone
REST client. The server was tested to work on both GlassFish 1 and WildFly 2 containers.

5.2 The code generation process

HEADREST Codegen encompasses a wide variety of classes that further manipulate the
OAS specification, generate files and support the whole generation process. In what fol-
lows we go over the structure of the generator, providing illustrations and describing the
different components involved.

1https://javaee.github.io/glassfish (Seen: 2018-05-19).
2http://www.wildfly.org (Seen: 2018-05-19).

71

https://javaee.github.io/glassfish
http://www.wildfly.org

User PC

Internet User PC

Web browser

Application Server
(e.g. Wildfly)

Database
server

SQL

Key:
HTTP / HTTPS

Relational
data source

Client-side
application

Server-side
application Machine node WWW

JDBC database access

Web browser

Generated client
Server with

generated stubs
completed

Internet User PC

Web browser
Web browser

User PC

Client using
generated client

SDK

Figure 5.3: Hybrid components and deployment view

5.2.1 Behaviour view

In Figure 5.4 we present a behaviour view of the generator, showing the runtime inter-
actions of various components that compose the generator. As mentioned before, at the
end of the encoding phase we insert the HEADREST specification inside the OAS so
that we can later retrieve and use it. This allows us to generate the extra resource logic
information.

In order to compile the Mustache templates we start by converting the XText EMF
expressions into valid Java expressions, while also retrieving some useful extra informa-
tion to be used by our generator. Secondly, we run the specification through a processing
class that appends more extension information to the OAS specification, to help with the
templates. In the end we provide the specification and all additional information to the
generator and have it compile the templates.

In Figure 5.5 we present a top level view of the module structure of the generator to
better understand the package structure and how the different classes use each other.

Generator is the entrypoint class to the generation process, receiving directly the
Swagger object created from the Encoder. In the end it copy pastes the Predicates class
with some minor manipulations.

SwaggerXRefinementConverterToJava is the core element of the generator, as it

72

SX SH

resourceToRepresentations

_.java
_.java

_.java

Key:

Data

resourcesGetterMethodsToBeAdded

Processor

AliasAcceptingJavaClientCodegen /
AliasAcceptingJavaServerCodegen

_.java
_.java

_.mustache

template file java file

(SX) SwaggerXRefinementConverterToJava
(SH) SwaggerOperationHelper

A produces B

CB C consumes B

BA

OAS Spec

Java
expressions

HR Spec

OAS Spec

XText EMF
expressions

HR Spec
OAS Spec

Java
expressions

HR Spec

Predicates.java

HeadRest
DefaultGenerator

Specification

Figure 5.4: Generator behaviour view

processes the encoded file x-tags expressions into valid Java expressions, as well as extract
extra information.

SwaggerOperationHelper runs through the encoded file and helps prepare opera-
tions for the addition of validation calls.

HeadRestExpressionToJavaVisitor is a visitor class that enables the aforemen-
tioned conversion extending the RestSpecificationLanguageSwitch provided by the HEAD-
REST analyser.

AliasAccepter, AliasAcceptingJavaClientCodegen and AliasAcceptingJavaRe-
steasyServerCodegen classes provide a way of accepting aliases of Java native types.

Predicates class is copy pasted into the generated client and server, with minor pack-
age name changes. It implements the various HEADREST predicates used in expressions.

Configurator class provides extra configuration for the generator, mainly pom3 ma-
nipulating methods.

3Project Object Model from Maven.

73

hrgen

gen

Generator

swagger

AliasAcceptingJavaClientCodegen

AliasAcceptingJavaResteasyServerCodegen

HeadRestDefaultGenerator

SwaggerOperationHelper

SwaggerXRefinementConverterToJava

utils

HeadRestConstants

io.headrest.resources

Predicates

swagger.configurator

Configurator

StringUtils

ast

helpers

visitors

InformationHelper

HeadRestExpressionToJavaVisitor

gen.helpers

GeneratorHelper

AliasAccepter

Key:
package Java Class

uses

indirect uses

Figure 5.5: Generator top level uses view

HeadRestDefaultGenerator is our extension of the Swagger Codegen generation
class (io.swagger.codegen.DefaultGenerator). We override the generate method and del-
egate the extra file generation.

GeneratorHelper is a delegate class for helping with the generation of extra support-
ing files. It is provided, upon construction, with the extracted HEADREST specification
file, by the HeadRestDefaultGenerator class. Remember that this file was appended in
a OAS extension tag at the end of the encoding phase.

In what follows, we go over the most relevant classes and methods, for the generation

74

process.

SwaggerXRefinementConverterToJava

This class converts all the expressions (assertion pre/postconditions and refinement types
expressions) into Java expressions (because of Mustache). This conversion is accom-
plished by the HeadRestExpressionToJavaVisitor which, not only converts the expres-
sion, but also provides us with a bundle of information afterwards:

• resource to representation conversion methods to be added to each resource inter-
face, extracted from every representationof expression

• resource getter methods to be added, to get resources by URI, extracted from every
uriof expression

The first is relative to resources being represented by representations, requiring them to
have a corresponding conversion method, so that when we talk about a representation
we can obtain it from the resource (a method such as getResourceAsRepresentation is
generated), since representations only make sense when bound to a resource. The last is
relative to obtaining specific resources by URI, which needs to be added to the Resources
interface (class that provides access to all resources).

SwaggerOperationHelper

This class prepares the Swagger object for generation, mainly by creating a list of all
the refined arguments of an operation and adding it to the operation via the extension
mechanisms, this is then used to facilitate the template processing.

Generator.generateRestEasyClient/Server methods

This method creates a codegen configuration object which has been extended to:

• Change packages, maven pom file data

• Change the toBooleanGetter method

• Post process models for basic type alias acceptance

The packages and maven pom file data had to be changed in order to be coherent with
the project and the toBooleanGetter method had to be changed to make it coherent with
other getters (avoids bugs). Finally, the post processing of models to accept basic type
alias is necessary because of basic type refinement, that will be explained now.

Say we have type MyInteger = (x: integer where x > 10), this is a refinement of an
integer, which is translated natively by the Swagger Codegen as a class that extends Inte-
ger (which is impossible) and as such every mention to this class is actually exchanged by

75

the actual Integer java class. To accomplish this HEADREST Codegen extends Swagger
Codegen to enable aliases. This will enable us to have the class MyInteger created, rather
than discarded because of being an alias - remember that the refinement must be carried
forward.

In the end this method calls the generate method, explained in what follows.

HeadRestDefaultGenerator.generate method

This method is the heart of the generation extension and it runs an extension of the De-
faultGenerator.generate method (a Swagger native class and method). The method was
overwritten in order to: (1) add our HeadRestInlineModelResolver which helps prop-
agate the x-tags (which Swagger Codegen by default does not) and (2) generate extra
files.

To try and maintain the original code as much as possible we use Java Reflection [10].
Extensions made to the generate method include:

• Usage of the HeadRestInlineModelResolver

• Creation of a GeneratorHelper

• Generating extra supporting files

• Generating new definition models

HeadRestInlineModelResolver

The InlineModelResolver is a class that processes OAS to generate model classes. It
attempts to convert properties to models (properties are basically anonymous models,
declared on the fly in the specification, instead of being defined in the definitions section).
HeadRestInlineModelResolver is an InlineModelResolver extension that propagates
vendor extensions 4 when converting property to model, which is not natively done by the
original. This avoids vendor extensions loss, which would result in validation methods
being incorrect (e.g., empty arguments).

GeneratorHelper

GeneratorHelper is a delegate class for generating of extra supporting files. It generates
resource files and new definition models (if Resource Logic is used). In more concrete
terms, it generates the Resources interface , resources interfaces and modifies represen-
tation classes (models).

4The programatic name for the OAS extension mechanism.

76

Generating extra supporting files

Done via the GeneratorHelper.generateExtraSupportingFiles method call, it generates
the resources interfaces and Resources interface , for accessing the various resources.
For every resource an interface is created in which resource logic methods are added.
Additionally a Resources interface is created that provides access to iterators over the
various resources. For iterators we use streams, to take advantage of the allMatch and
anyMatch methods, which map directly with our forall and exists quantifier expres-
sions.

Generating new definition models

Done via the GeneratorHelper.generateNewDefinitionModels method call, it deals with
models that represent a resource, adding the resource logic methods and their implemen-
tation. This is done by reading the generated model file and appending the new lines of
code.

5.3 Limitations

In this section we present a collection of limitations relative to the generator. It is advised
to take them into consideration for best results with the tool.

!isdefined(request.body) The generated method signature for each operation of an API
is defined via the success case. With this a problem rises, which is the use of !isdefined(
request.body) to define an error case without having defined a success case. This means
that the generated precondition code will attempt to verify the predicate but there will
not be any body argument available causing a compilation error. This is analogous for
other parameters and to responses, for instance request.template.somePathParameter or
response.body.

Usage of underscores throughout specification The fact that Swagger Codegen has
its own internal automatic name handling makes it impossible for the extension generated
code to be compatible with the native Swagger generated code if such automatic naming
is used. Using good Java code practices, mainly in naming conventions, is advised for
better results.

Usage of reserved keywords throughout specification Usage of reserved keywords
might generate code that does not compile. Please refrain from doing so. Reserved words
include OAS, HEADREST and Java reserved keywords.

77

Extra generated models In Subsection 5.1.1 we presented the rules that translate ob-
jects and arrays. Whenever Swagger Codegen finds the schema of an object or array
associated to a property, it generates a corresponding model class. Despite the fact that
the class carries the extension tags we add, we cannot generate validation code for the
“extracted model” properties, due to the fact that the class name is internally generated
by Swagger Codegen. Efforts can be made to obtain the name generation algorithm and
append the validation method calls.

5.4 Good practices

To obtain the best generation results users should invest in good practices.

The limitations

As mentioned throughout this document, both the encoder and generator carry certain
limitations, attempting to not take them into account might cause both phases to stop with
an exception or worse, generate incorrect code.

The semantics

We recommend running the semantic validation to make sure the specification is as correct
as possible. A correct specification is more likely to be able to generate from.

The syntactics

HEADREST is capable of very complex types, expressions and assertions. Try to keep
it simple, as it will make the specification file much more readable by users, while also
helping avoid encoding/generation bugs.

78

Chapter 6

Evaluation

This chapter addresses the evaluation of the proposed techniques for code generation as
well as the code that they generate. We start by briefly presenting the various APIs that
were used for evaluating the extensions of the language and the generation techniques.
Then, a comparison between the code generated from Swagger codegen and HEADREST
Codegen is presented considering mainly the usefulness of the generated code for devel-
opers of clients and providers of RESTful web services. We also compare the code gen-
erated by HEADREST Codegen from HEADREST specifications that use/do not use the
resource logic. In order to complement this comparison, uniquely rooted in intellectual
arguments, we also present a small empirical study that was conducted with developers
and that is focused on the generated client SDK.

6.1 Case Studies

Different case studies of RESTful APIs were considered for evaluating the developed
extensions of the language and the generation techniques. This encompassed the devel-
opment of HEADREST specifications and the subsequent application of the HEADREST
Codegen to these specifications. In what follows, we briefly describe these case studies,
highlighting their most important characteristics.

• Petstore is a RESTful API often used to illustrate documentation of RESTful APIs,
namely OAS.1 It is a simple RESTful API of a service that supports the management
of pets, stores and users. It relies mainly on basic types and has a simple logic, so
being able to generate code for this case study means that we are be able to support
simple APIs. We specified part of the Petstore API with HEADREST and subject
it to HEADREST Codegen and later we used this example also to exercise the
different elements of the resource logic added to HEADREST and validated the
process of code generation for these new elements.

1http://petstore.swagger.io (Seen: 2018-05-19)

79

http://petstore.swagger.io

• Features is a more complex RESTful API of a service available at https://
github.com/JavierMF/features-service that manages features mod-
els of software product lines and the configurations of concrete products. This API
is built around a larger number of resources — products, their configurations as
well as their features, feature configurations, and constraints, and its logic is more
intricate as attested by the long assertions of their specification (some with more
than 20 lines). For instance, the following assertion relative to a POST operation
of a constraint resource (line 2) specifies that the precondition is met then the op-
eration will be sucessful (line 2 where CREATED is code 201) and that, like the
HTTP standard for code 201, it will return the URI of the created resource (line
3). In the following expression (lines 6-15) the creation of the constraint resource
and binding of the URI returned by the response Location header to the resource
is done (lines 6-7), followed by the association with its representation (lines 8-9).
In the remaining (lines 10-15) many data assertions are made due to the fact that
fields might be optional, hence the usage of the isdefined predicate. The final ex-
pression (lines 16-26) does a similar assertion, but relative to the ProductR resource,
which includes the contraint (this inclusion is also denoted by the path URI of the
operation in line 2).

1 { ... }
2 POST /products/{productName}/constraints/excludes{?sourceFeature,

excludedFeature}
3 {
4 response.code == CREATED &&
5 response in {header: {Location: URI}} &&& (
6 (exists constraintR: ConstraintR.
7 response.header.Location uriof constraintR &&
8 (exists constraint: Constraint .
9 constraint representationof constraintR &&

10 constraint.type == "excludes" &&
11 isdefined(constraint.excludedFeatureName) &&& (
12 ((isdefined(request.template.sourceFeature) ==> constraint.

sourceFeatureName == request.template.sourceFeature)) &&
13 ((!isdefined(request.template.sourceFeature) ==> constraint.

sourceFeatureName == null)) &&
14 ((isdefined(request.template.excludedFeature) ==> constraint.

excludedFeatureName == request.template.excludedFeature))
&&

15 ((!isdefined(request.template.excludedFeature) ==> constraint
.excludedFeatureName == null))

16))) &&
17 (exists product: Product. product representationof productR &&
18 (exists i: (x: integer where x >= 0 && x < length(product.

constraints)).
19 product.constraints[i].type == "excludes" &&
20 ((isdefined(request.template.sourceFeature) ==> product.

constraints[i].sourceFeatureName == request.template.
sourceFeature)) &&

21 ((!isdefined(request.template.sourceFeature) ==> product.
constraints[i].sourceFeatureName == null)) &&

80

https://github.com/JavierMF/features-service
https://github.com/JavierMF/features-service

22 ((isdefined(request.template.excludedFeature) ==> product.
constraints[i].excludedFeatureName == request.template.
excludedFeature)) &&

23 ((!isdefined(request.template.excludedFeature) ==> product.
constraints[i].excludedFeatureName == null))

24))
25)
26 }

While the specification does not use complex types, their long and complex as-
sertion expressions were a challenge for HEADREST Codegen. Although some
expressions use variables that are not bound, which results in the expression being
commented out, the fact that we can generate a partially working service is very
interesting, as the user would only need to manually work on the commented-out
lines of code or, on the other hand, modify the specification.

• GitLab is a RESTful API of a Git-repository manager. During the development
of HEADREST, an impressive part of the GitLab API was specified with HEAD-
REST. We revisited this specification so that we were able to generate code from
it. The challenge posed by this specification to HEADREST Codegen was its large
object types with multiple optional fields and their equally enormous assertions.
Generation for this specification was successful, despite its verbosity.

• Contacts is a RESTful API of a very simple contacts management service. This
API offers basic interactions to obtain the current list of contacts, and add or update
contacts. It was the API used in the experiment study. Its HEADREST specification
has sophisticated refined types over objects relating different internal fields.

These case studies are publicly available at http://rss.di.fc.ul.pt/tools/
confident/.

6.2 Swagger Codegen vs HEADREST Codegen

In this section we present a comparison between the code generated from Swagger code-
gen and HEADREST Codegen, considering mainly the usefulness of the generated code
for developers of clients and providers of RESTful web services.

As mentioned before, HEADREST adopts many concepts of OAS but extends them
with refinement types and logical assertions, that provide richer types and brings be-
havioural specification of the operations. OAS provides certain type refinements using
specific fields (e.g., for an integer type we can add the fields minimum and maximum
to refine an integer’s minimum and maximum value, respectively) which are then veri-
fied via Java Bean Validation (JBV), while HEADREST Codegen generates a validation
method with the refining expression. Since we are in the context of a RestEasy server,

81

http://rss.di.fc.ul.pt/tools/confident/
http://rss.di.fc.ul.pt/tools/confident/

JBV will require the programmer to manually create a validator and validate the data in
the operation method, while HEADREST Codegen already generates calls to our valida-
tion methods. As a novelty, we can further refine the types with predicates and imposes
contraints over the values of different object properties (e.g., type relatingObject = (x:

{a:integer, b:integer} where x.a > x.b)).
In the listings below we show the class that represents an object with an URI type field

in OAS and the same in HEADREST. In OAS we could refine a string with the @Pattern
annotation, but remember that we would still need to create a validator to verify it.

public class ClassThatUsesUri {
@Pattern(regexp = URI_REGEX)
private String uri = null;
...

}

HEADREST Codegen appends the URI type in the encoding phase, as a result we
create the Uri class, that has its own validation method.

public class Uri {
...
public static boolean validate(String instance) {

return Predicates.matches(instance, URI_REGEX);
}

}

The ClassThatUsesUri class, being its uri field a refinement type, has a validation method
added, as shown below.

public class ClassThatUsesUri {
private Uri uri = null;
...
public static boolean validate(ClassThatUsesUri instance) {

return Uri.validate(instance.getUri());
}

}

The biggest novelty of HEADREST is the fact that we can specify the behaviour of
interactions via a hoare triple like structure. Having this extra expressiveness means that
we can generate more code. From assertions described in HEADREST we generate a
structure that can not only further validate the input but also assert the state of the system.

In the listings below we illustrate the OAS and HEADREST generated code for oper-
ations. As we can see, the OAS code is empty, extracting only method input and output
types,

public Response addPet(Pet body, ...) throws NotFoundException {
// do some magic!
return Response.ok().entity(...).build();

}

In HEADREST we cover the assertions we specified, building the presented structure.
public Response petPost(PetRep body, ...) throws NotFoundException {

boolean pre1 = ...;
boolean pre2 = ...;

82

boolean pre3 = ...;

//TODO create response
Response response = Response.ok().entity(...).build();

boolean pos1 = ...;
boolean pos2 = ...;
boolean pos3 = ...;

if(pre1) assert pos1 : "{pre1} petPost {pos1} failed.";
if(pre2) assert pos2 : "{pre2} petPost {pos2} failed.";
if(pre3) assert pos3 : "{pre3} petPost {pos3} failed.";

return response;
}

We can see that HEADREST Codegen provides us with better code, that will make
the client SDK and server stubs development much easier and less error prone. Providing
better type validation and the introduction of behaviour validation.

6.3 HEADREST vs HEADREST with Resource Logic

In this section we present a comparison between the code generated by HEADREST
Codegen from the two types of HEADREST specifications, considering mainly the use-
fulness of the generated code for developers of the server code.

Specifications that take advantage of Resource Logic, as already mentioned before,
are more organized and contain less boilerplate specification code, which results in an
overall better user experience to the programmer, as it becomes easier to understand.

Assertion generated code can get quite verbose due to the fact that we do various state
assertions, multiple specification resource/representation quantifications which result in
various streams and conversions happening. The use of the Resource Logic allows us
to avoid these enormous assertions as the generated code for loops is distributed from
resources to its representations and the expressions are delegated to the representations.

In the following listing we present an assertion precondition that does not use Re-
source Logic. In the listing, we can see a nested loop of resource and representation
iteration (lines 4-8).

1 {
2 request in {body: PetRep} &&
3 (isdefined(request.body.id) ==>
4 (forall pet:Pet .
5 (forall petRep:PetRep .
6 petRep representationof Pet => !pet.id == request.body.id
7)
8)
9)

10 }

In the following listing we present a version that uses Resource Logic. Not only do we
reduce the loop lines (lines 4-6) from 4 to 2, but we also make the specification abstract,

83

as we use the hasid predicate, abstracting the implementation.
1 {
2 request in {body: PetRep} &&
3 (isdefined(request.body.id) ==>
4 (forall pet:Pet .
5 !pet.hasid(request.body.id)
6)
7)
8 }

The following listing presents the generated code for the first case (no logic). As we
can see, the generated Java expression for the precondition is verbose.

boolean pre1 = PetRep.validate(body)
&& (!(Predicates.isdefined(body, new String [] { "id" }))
|| RMCFactory.getInstance().getResources().getPetStream().allMatch(pet ->

!(Predicates.isdefined(body, new String [] { "id" }) && Objects.
equals(pet.getPetAsPetRep().id, body.getId())))));

On the other hand, the code generated for the second case, shown below, is more ab-
stract and while it is still verbose, it reduces size of the generated expression significantly,
making it much easier to read. We can deduct that this will be valuable for assertions that
are complex.

boolean pre1 = PetRep.validate(body)
&& (!(Predicates.isdefined(body, new String [] { "id" }))
|| RMCFactory.getInstance().getResources().getPetStream().allMatch(pet ->

!pet.hasid(body.getId())));

In the following we provide an illustration of the extra methods generated for the Pet
interface and PetRep class as a result of using Resource Logic.

1 // Pet resource, resource predicate declaration and delegation
2 default boolean hasid(Integer arg0){
3 return getPetAsPetRep().hasid(arg0);
4 }
5
6 // PetRep representation, resource predicate implementation
7 public boolean hasid(Integer id){
8 return Predicates.isdefined(this, new String [] { "id" }) && Objects.

equals(this.id, id);
9 }

With this we can conclude that the generated code gets much more readeable as well
as the HEADREST specification. The result being organized this way, avoids repeated
generated code (eventhough it could be refactored manually), helping with modularity,
abstraction, and modifiability, to name a few. This results in richer and simpler HEAD-
REST generated server stubs and, as collateral, specifications.

6.4 Experimental Study

In order to evaluate how HEADREST Codegen performs compared with Swagger code-
gen in what concerns the usefulness of the generated client SDKs, we performed an em-

84

pirical study with developers. The idea was to check whether the benefits stemming from
more expressive specifications could be observed in practice.

Research question: How useful is the client SDK generated by HEADREST Code-
gen tool in comparison with that generated by Swager Codegen?

6.4.1 Context

The context of the experiment was that the subjects of the experiment, hereinafter called
users/participants, were asked by a client to complete the development of a REST API
client using both the Swagger Codegen and HEADREST Codegen generated client SDK
code.

Figure 6.1 provides an overview of the code of the two clients that the users were
asked to complete. This code is structured in terms of a UI that uses a controller that, by
making use of the generated SDKs, consumes the RESTful service.

Figure 6.1: System illustration

The UI sends and receives strings to and from the controller, abstracting the data struc-
tures that are transmitted to the server. The controller processes the strings and converts
them into models using them with the ClientAPI to consume the service provided by the
server.

The participants of this experiment were students between the ages of 20-30, that
were taking a bachelor’s or master’s degree in computer science. There was a total of 8
participants, chosen from colleagues to students suggested by the supervisor.

6.4.2 Experimental plan

With this experiment we intend to compare HEADREST Codegen to Swagger Codegen.
Concretely we compared the client SDKs generated by both, asking participants to com-
plete a client to consume an API.

85

The RESTful API used is relative to a contacts management service, with two main re-
sources Contact and ContactList which are represented by ContactRep and ContactListRep,
respectively. ContactPostData and ContactPutData are used as data for the available
POST and PUT operations.

The final structure of the project should look as follows:

• UI - Developed in Swing, it makes controller calls for the various operations, giving
input and expecting a string as return to present to the user.

• Controller - To be completed. Provides methods that represent operations, receiving
necessary information via arguments and returning a string. The user is expected to
complete the controller by grabbing the input and the correct Client API call if the
input is valid.

• Client API - Generated by either the Swagger Codegen or the HEADREST Code-
gen, it is meant to be used by the controller to consume the API.

• Server - Server files already generated and working, providing the web service.

• JUnit - A set of tests to exercise some use cases on the developed Controller.

Use Cases (to test the controller against):

• User gets (GET) the list of contacts, which is empty

• User adds (POST) a valid contact

• User attempts to add (POST) an invalid contact

• User adds (POST) another valid contact

• User updates (PUT) an existent contact

• User gets (GET) the list of contacts, which is not empty

• User attempts to add (POST) a contact with invalid information

• User attempts to update (PUT) a contact with invalid information

User interface (UI)

In Figure 6.2 we can see an illustration of the UI that was created for the experiment.
A simple UI that receives the parameters as string and delegates them to an appropriate
controller method call, via the GET, POST and PUT buttons.

86

Figure 6.2: User interface illustration

Controller stub

For the controller we created a simple Controller class (Appendix E.1), with incomplete
methods on par with the ClientAPI class, that receives input via strings and returns a
string. The users are meant to complete these controller methods taking advantage of the
generated code.

JUnit

A suite of JUnit tests (Appendix E.2) was provided so that the users could verify the
development of the controller. These tests reflected the aforementioned use cases.

6.4.3 Experiment execution

Firstly we provided the users with a setting up document, to get the generated server up
and running before the experience and also the experimental plan (Appendix C.1) for
them to get the context started. On the experiment day, we provided the participants with
the necessary files (OAS Spec (Appendix D.1), HR Spec (Appendix D.2), Work paper

87

(Appendix C.2), both generated client Java-Maven projects) and made a little presentation
of the experiment (see presented slides in Appendix C.3). During the experiment we
helped the participants with minor difficulties (some did not work with Java for some
time). After the experiment users were invited to participate in a survey (Appendix F),
which they all did promptly.

During the execution we took some metrics, namely the time taken and the number of
lines of code (LOC) written needed to have a working client. In order to complete these
metrics, subjective information was collected via the aformentioned survey that allowed
us to compare the perception of usability and usefulness of HEADREST Codegen against
Swagger Codegen.

The time taken was measured from the moment the users started to write the first line
of code and ended with the last one. The LOC were counted after the previous metric was
noted.

6.4.4 Quantitative Results

With this experiment we obtained information on how useful the tool is via the time
taken to develop the controller and the number of LOC necessary to have a working
controller, resulting in a fully working client. However, some mistakes were done relative
to the way the experiment was conducted, that we will discuss further in the conclusion
of this section. We concluded that the fact that we provided JUnit tests was a flaw in the
experiment, as some users performed a test-driven development instead of using the API
specification to guide the development.

88

Time taken

1 2 3 4 5 6 7 8

10

20

30

40

50

60

40

24

37

29

35

60

30 30

16
14

19 20

13

30

13
15

participant

tim
e

(r
ou

nd
ed

to
th

e
m

in
ut

e)

OAS HR

Participant OAS time (min.) HR time (min.)

1 40 16
2 24 14
3 37 19
4 29 20
5 35 13
6 60 30
7 30 13
8 30 15

Total : 285 140
Mean : 36 18

Std Deviation : 10 5

Table 6.1: Condensed time table.

As we can see in the previous plot and Table 6.1, there is a considerable time reduc-
tion when writing code in HEADREST, time is reduced by about half. This is mainly
because HEADREST extends the OAS with classes that provide refinement type veri-
fication, which in the latter specification language normally is written down in natural
language, not generating any useful code. Also, participants were requested to start with
the OAS, which took more time due to the fact that they were trying to understand the
problem at hand and how to work with the provided classes. When going to HEADREST

89

they already had a rough idea of what to do with the core classes, and given the extra
functionality and the warmup, this resulted in faster times. Even with those variables, it
is safe to assume that there is a time reduction from OAS to HEADREST, as the latter
generates most of what the participants wrote by hand in OAS. Additionally, the gener-
ated code by HEADREST was better, as in the first case users wrote down the validations
directly in the Controller stub methods.

In the following plot and Table 6.2 we can see that, for the vast majority of partici-
pants, HEADREST implied a big reduction in the number of written LOC.

Some participants took test-driven development strictly and only made type verifica-
tions to cover the tests, if new tests were made with other invalid properties (say we tested
an invalid id but not an invalid email) then they would fail. In part HEADREST gener-
ated code is better, as it covers specified refinement types completely even in a test-driven
development.

While looking at the written code we verified that most of the code in the Open API
Specification client to verify the refinement types was written down directly in the con-
troller method, which is an incorrect way of doing so. It makes code have less quality and
it is less scalable and more prone to errors.

LOC (manually written)

1 2 3 4 5 6 7 8

10

20

30

40

50

35

17

46

23

33

41

20
18

16

10

19

7
10

26

22
24

participant

L
in

es
of

co
de

OAS HR

With this experiment we can conclude that in fact HEADREST is an advantageous
tool to use to generate RESTful APIs, reducing time taken to write code to complete the

90

Participant OAS LOC HR LOC

1 35 16
2 17 10
3 46 19
4 23 7
5 33 10
6 41 26
7 20 22
8 18 24

Total : 233 134
Mean : 29 17

Std Deviation : 10 7

Table 6.2: Condensed LOC table.

client as well as the number of lines of code. The overall quality of the code is also better,
due to the fact that the code is better organised from the start.

6.4.5 Qualitative Results

We also created a survey with Google Forms2(see Appendix F) to obtain some qualitative
results. The survey was composed mainly of simple "yes or no" and "1 to 6" questions,
and the purpose was to obtain some feedback relative to the tools as well as some subjec-
tive information relative to the experience with the tools.

Answers to the survey

In what follows, we show the summary of the responses to the different questions of the
survey.
Keys used

Table 6.3: Key used for 1 to 6 questions (greener means better)
1 2 3 4 5 6

Table 6.4: Key used for yes or no questions
no yes

Questions and Answers

2https://www.google.com/forms/about/ (Seen: 2018-05-19)

91

https://www.google.com/forms/about/

Did you know about RESTful APIs before the experiment ?
.

Did you know the Open API Specification (OAS/Swagger) language ?
.

Did you know the HEADREST (HR) language ?
.

Have you used Swagger Codegen before ?
.

How easy was OAS specification to understand ?
.

How easy was HR specification to understand ?
.

How easy was using the Swagger-Codegen ?
.

How easy was using the HEADREST-Codegen ?
.

How useful was Swagger-Codegen generated code ?
.

How useful was HEADREST-Codegen generated code ?
.

Which tool was the most useful ? (green = HR, red = OAS)
.

How easy was it to understand the OAS generated code ?
.

How easy was it to understand the HR generated code ?
.

Which client ended up with more quality ? (green = HR, red = OAS)
.

6.4.6 Conclusions

From the results we conclude that HEADREST Codegen is an improvement to the Swag-
ger Codegen, providing more and better generated boilerplate code in less time. This
comes as a result of the fact that we extend an existing tool with the extra expressiveness

92

that HEADREST allows. Models have refinement validating methods appended, which
are very easy to use, and clients have methods that allow them to check for successful
interactions before communicating with the server, allowing better error handling. All
this results in an overall better user experience for the programmer, with improved under-
standability, usability, usefulness and final product quality.

In what concerns the research question of the study, our conclusion was that the gen-
erated code by HEADREST is indeed more useful than the code generated by Swagger
Codegen. We conclude from both the quantitative and qualitative results that HEAD-
REST Codegen is a very powerful tool, reducing time taken, lines of code written and
overall providing a better final product when developing client SDKs, even with the minor
setback that the experiment was not conducted properly.

6.4.7 Threats to validity

Several problems were identified in the design of the experiment. These problems result
in additional threats to validity that must be considered when analysing the experimental
results.

• We should have conducted the experiment differently, with a special emphasis on
the specification languages rather than on the tests. As discussed before, some
participants completed the controller only to comply with the tests rather than the
provided specification — tests were meant to serve as an auxiliary tool in the de-
velopment of the controller, not as a substitute to the specification provided.

• We used the same problem example for both tools. Even though the problem so-
lution would resume to the same logic "prepare data, validate data, send request,
receive response, prepare response for UI", having different problems with similar
complexity would have been beneficial.

• Participants were asked to start with OAS and then HEADREST. We should have
split half of the participants to start differently, to avoid bias from one experiment
part to the other.

• The small number of participants and the fact that some of them were colleagues
of the author constitutes also a thread to validity. The obtained results do not ac-
curately conform to the law of large numbers and it is possible that responses were
biased.

• The participant demography was not representative nor heterogeneous of the com-
munity of developers of clients of RESTful services, as the participants were all
computer science students with very similar work experience.

93

94

Chapter 7

Conclusions

7.1 Summary

The work presented in this thesis contributes with a new technique that facilitates the
development of RESTful systems. Specifically, it proposes a new technique that extends
existing code generation techniques for REST API specification taking advantage of the
behavioural properties that can be expressed with HEADREST.

As a proof of concept, it was also developed a tool — HEADREST Codegen— that
generates Java code (that uses the RestEasy framework) from specifications of RESTful
APIs described in HEADREST. This is achieved by first encoding HEADREST specifica-
tions into OAS (taking advantage of OAS extension mechanisms to carry HEADREST’s
extra expressiveness) and then, generating client SDKs and server stubs (by extending
Swagger Codegen to acommodate for the extensions appended to the OAS specification).
Additionally, an extension of HEADREST with Resource Logic was proposed and im-
plemented that provides a way of generating better code for both resources and their
representations and, at the same time, also facilitates the description of RESTful APIs in
HEADREST.

The tool has some limitations s.a. not supporting any, null or union types that were
inherited from OAS, Swagger Codegen, and RESTEasy.

If we were to generate directly from HEADREST specifications to Java, as it is our
main programming language, the any type could, for instance, be translated as Object (the
top Java type). Other limitations could probably also be avoided in a direct translation.
However, a direct solution would require to implement all the translation related with
models, which in general terms was already covered by Swagger Codegen.

In order to evaluate the proposed techniques, we conducted an experiment in which
users were asked to implement the client side, for given specification and a given server.
The experiment should have been approached differently, but the data that was collected
suggests that our tool is an improvement with respect to the typical syntactic generation
tools.

95

In the end, the extra semantic information that HEADREST provides, the encoding
to OAS and the extension of the Swagger Codegen, all come together providing us with
richer client SDKs and server stubs.

7.2 Future work

Even though we successfully implemented HEADREST Codegen, there is still a lot of
work that can be done to improve it.

Extract ApiClient

The Swagger Codegen native ApiClient currently deals with the error codes. If we extract
the ApiClient or extend it, we may take more advantage of pre and postconditions on
the client side. Indirectly we would be able to have various return types from the server,
which might need to have some sort of union type class created and returned.

Update to OAS 3.0

This will enable, for example, the use of null types (OAS new nullable keyword) and
union types (OAS 3.0 new oneOf keyword), but did not exist at the start of this thesis.

Use OAS Categories

Based on the type of resource the assertion is based in we could categorize them. Maybe
extracting the category name from the first /uriFragment so that /person/{id} would be
categorized as "Person" and /person/{id}/limb{id2} would be also categorized as "Per-
son" but /pet would be categorized as "Pet". Generating more than "DefaultAPI" and
making the code that much more organized.

Enumerates value

When HEADREST Codegen encounters a type disjunction it attempts to generate an enu-
merate from it. When we convert a refinement type that includes enumerates, that uses
the equality operator for instance, we may encounter "unlikely argument type" warnings.
This is because we use getEnum method, which returns the enumerate, where we actually
expect its value. Some efforts can be made to try and add a getValue method call when
we try and obtain an enumerate’s value.

Update the HEADREST version used

Even though we updated the HEADREST language with new elements, during the de-
velopment of this work, further updates were done to the language. Efforts can be made

96

in order to update HEADREST Codegen to use the new version of the HEADREST lan-
guage.

97

98

Appendix A

Encoding rules

Type encoding rules

[[B]] = type: “B”

[[URI]] = $ref: “#/definitions/Uri”

[[α]] = $ref: “#/definitions/α”

[[{l0 : T0 , ..., lk : Tk , ..., ?lk+1 : Tk+1 , ..., ?ln : Tn}]] = type: “object”

required:

- “l0”

...

- “lk”

properties:

- l0 : [[T0]]

...

- ln : [[Tn]]

[[T []]] = type: “array”

items: [[T]]

Refinement type encoding rule

[[(x : T where e)]] = [[T]]

x-refinement: “e”

99

Type intersection rules

[[G & ... & G]] = [[G]]

[[α & ... & α]] = [[α]]

[[(x : T where e1) & T]] = [[(x : T where e1)]]

[[(x : T0 where e0) & (x : T1 where e1)]] = [[(x : T0 & T1 where e0 && e1)]]

[[{l0 : T0, ..., ln : Tn} & {?lx, Tx}]] = [[{l0 : T0, ..., ln : Tn, ?lx : Tx}]]

where lx 6∈ {l0, ..., ln}
[[{l0 : T0, ..., lk : Tk, ..., ln : Tn} & {?lk : U}]] = [[{l0 : T0, ..., lk : (Tk & U), ..., ln : Tn}]]

Type merging rules

[[G | ... | G]] = [[G]]

[[α | ... | α]] = [[α]]

[[(x0 : G where e0) | ... | (xn : G where en)]] = [[(x : G where e0 || ... || en)]]

[[|i{~ai : ~Ti, ?~bi : ~Ti}]] = [[(x : {?~ai : ~Ti, ..., ? ~an : ~Tn, ?~bi : ~Ti}
where ||i isdefined(~ai))]]

Singleton merging rules

[[[e : G]]] = [[G]]

enum:

- e

[[[eo : G] | ... | [ex : G]]] = [[G]]

enum:

- e0

...

- ex

100

Assertion encoding rule [[{e0} a /p {e′0} ... {en} a /p {e′n}]] =

/p:
a:
parameters:
-in: "body"
name: "body"
required: true
schema: |0≤i≤k[[Ti]]
responses:
c0:
description: <code detail extracted from IANA csv file>
schema: |0≤j≤n[[Tj]] where response.code == code0
...
cn:
description: <code detail extracted from IANA csv file>
schema: |0≤j≤n[[Tj]] where response.code == coden
x-axioms:
- "{e0} a /p {e′0}"
- ...
- "{en} a /p {e′n}"

where:

• Ti and Tj are extracted from the respective ei.request.body in Ti (from precondi-
tions) and e′j.response.body in Tj (from postconditions) expressions

• c0,...,cn are extracted from the postconditions response.code == ci expressions,

• we assume that assertions from 0 to k refer to successful cases, i.e., response codes
in the interval [200,300[, while the remainder assertions have different codes,

• IANA stands for Internet Assigned Numbers Authority, which provides a list of
HTTP codes and related information (e.g., code 404 has description “Not Found”).

101

102

Appendix B

Predicates class

103

Predicates.java

1 package io.headrest.resources;
2
3 import java.lang.reflect.Field;
4 import java.util.Arrays;
5 import java.util.List;
6 import java.util.Map;
7 import java.util.Map.Entry;
8 import java.util.regex.Pattern;
9
10 /**
11 * Predicates handling class.
12 *
13 * @author Telmo Santos
14 *
15 */
16 public class Predicates {
17
18 /**
19 * Checks if a string matches a given pattern
20 *
21 * @param pattern
22 * the pattern
23 * @param string
24 * the string
25 * @return true if string matches the pattern, false otherwise
26 */
27 public static boolean matches(String pattern, String string) {
28 return Pattern.compile(pattern).matcher(string).matches();
29 }
30
31 /**
32 * @return length of string
33 */
34 public static int length(String string) {
35 return string.length();
36 }
37
38 /**
39 * @return length of array
40 */
41 public static int length(Object[] array) {
42 return array.length;
43 }
44
45 /**
46 * @return length of list
47 */
48 public static int length(List<? extends Object> list) {
49 return list.size();
50 }
51
52 /**
53 * Verifies if a string contains another
54 *
55 * @param s1
56 * the contained
57 * @param s2
58 * the container
59 * @return true if s2 contains s1
60 */
61 public static boolean contains(String s1, String s2) {
62 return s2.contains(s1);
63 }
64
65 /**
66 * Verifies if an array contains an object
67 *
68 * @param array
69 * the array
70 * @param o
71 * the object
72 * @return true if array contains o
73 */
74 public static boolean contains(Object[] array, Object o) {
75 for (int i = 0; i < array.length; i++)
76 if (array[i].equals(o))
77 return true;
78 return false;
79 }
80
81 /**
82 * Verifies if a string contains all of the elements in an array
83 *
84 * @param array
85 * the array
86 * @param s
87 * the string
88 * @return true if s contains all elements in array
89 */
90 public static boolean contains(Object[] array, String s) {
91 try {
92 for (int i = 0; i < array.length; i++)
93 if (!s.contains((CharSequence) array[i]))
94 return false;
95 } catch (ClassCastException cce) {
96 return false;
97 }
98 return true;
99 }
100
101 /**
102 * Verifies if an instance has a member/sub-member defined
103 *
104 * @param instance

Page 1

Predicates.java

105 * the instance
106 * @param remaining
107 * the list of members
108 * @return true if members are defined, false otherwise
109 */
110 public static boolean isdefined(Object instance, String[] remaining) {
111 try {
112 // Get the field in question, if field doesn't exist
113 // NoSuchFieldException is thrown
114 Field field = instance.getClass().getDeclaredField(remaining[0]);
115
116 // If last field, it exists otherwise NoSuchFieldException would've
117 // been thrown, so return true
118 if (remaining.length == 1)
119 return true;
120
121 // If not last field, recursively descend on the field
122 return isdefined(field.get(instance), Arrays.copyOfRange(remaining, 1, remaining.length));
123 } catch (NoSuchFieldException nsfe) {
124 return false;
125 } catch (Exception e) {
126 throw new RuntimeException("isdefined failed for instance:" + instance + " with remaining: " + remaining);
127 }
128 }
129
130 /**
131 * Expands an uri template with a given dictionary
132 *
133 * @param uriTemplate
134 * the uri template
135 * @param dictionary
136 * the dictionary
137 * @return the expanded uri template
138 */
139 public static String expand(String uriTemplate, Map<String, Object> dictionary) {
140 String result = uriTemplate;
141 for (Entry<String, Object> e : dictionary.entrySet())
142 result = result.replace(getAsExpandee(e.getKey()), valueToString(e.getValue()));
143 return result;
144 }
145
146 /**
147 * @param o
148 * the object
149 * @return the string representation of an object
150 */
151 private static CharSequence valueToString(Object o) {
152 return o.toString();
153 }
154
155 /**
156 * @param expandee
157 * the element to be expanded
158 * @return the expandee in the form it appears on an uriTemplate string
159 * (e.g. uriTemplate = "/someuri/{id}" dictionary = {id:"0"} ->
160 * expandee = id is converted to {id})
161 */
162 private static String getAsExpandee(String expandee) {
163 return "{" + expandee + "}";
164 }
165
166 }
167

Page 2

106

Appendix C

Experiment files

C.1 Experimental Plan

107

Experiment Plan
Context
With this experiment we intend to compare two tools that generate client SDKs for consuming
RESTful APIs. Swagger Codegen is an existent generation tool for, a popular RESTful API
definition language, the Open API Specification (OAS). HEADREST Codegen is the tool that we
developed for the HEADREST (HR) specification language.

OAS: https://swagger.io
HR: http://rss.di.fc.ul.pt/tools/confident/

Experiment
We want to find out if our client generation from HR is more useful than OAS in what concerns
the client side development. For this we want to create a working client, generating from both
HR and OAS.

The RESTful API is relative to a contacts management API, with two main resources Contact
and ContactList which are represented by ContactRep and ContactListRep, respectively.
ContactPostData and ContactPutData are used as data for the available POST and PUT
operations.

The final structure of the project should look as follows:

UI
Developed in Swing, it makes controller calls for the various operations, giving input and
expecting a string as return to present to the user.

Controller
To be completed. Provides methods that represent operations, receiving necessary
information via arguments and returning a string. The user is expected to complete the
controller by grabbing the input and the correct Client API call if the input is valid.

Client API
Generated by either the Swagger Codegen or the HEADREST Codegen, it is meant to be used
by the controller to consume the API.

Server
Server files already generated and working, providing the web service.

JUnit
A set of tests to exercise some use cases on the developed Controller.

Use Cases
- User gets (GET) the list of contacts, which is empty
- User adds (POST) a valid contact
- User attempts to add (POST) an invalid contact
- User updates (PUT) an existent contact
- User gets (GET) the list of contacts, which is not empty

C.2 Work paper

109

Work
Scenario
Our clients want to develop a RESTful API relative to a contacts management API, with two

main resources Contact and ContactList which are represented by ContactRep and

ContactListRep, respectively.

They have provided the specification of the system via HEADREST/OAS files, which were used

to generate client code via HEADREST Codegen and Swagger Codegen respectively. They then

created a stub Controller class which is meant to serve as interface for a User Interface, which

they require that you complete.

Overview of the final structure of the project should look as follows:

UI
Developed in Swing, it makes controller calls for the various operations, giving input and

expecting a string as return to present to the user.

Controller
To be completed. Provides methods that represent operations, receiving necessary

information via arguments and returning a string. The user is expected to complete the

controller by grabbing the input and calling the correct Client API call if the input is valid.

Client API
Generated by either the Swagger Codegen or the HEADREST Codegen, consumes the API.

Server
Server files already generated and working, providing the web service.

JUnit
A set of tests to exercise some use cases on the developed Controller.

Use Cases
- User gets (GET) the list of contacts, which is empty

- User adds (POST) a valid contact

- User attempts to add (POST) an invalid contact

- User updates (PUT) an existent contact

- User adds (POST) another valid contact

- User gets (GET) the list of contacts, which is not empty

- User attempts to add (POST) a contact with invalid information

- User attempts to update (PUT) a contact with invalid information

- User attempts to add (POST) a contact with incomplete information (nulls)

- User attempts to update (PUT) a contact with invalid information (nulls)

Generated project packages
- src/main/java – main java package

o io.headrest/swagger.client.ui

▪ the user interface

o io.headrest/swagger.client.controller

▪ the controller used by the user interface

o io.headrest/swagger.client.api

▪ contains the DefaultApi.java – the Client API

o io.headrest/swagger.client.model

▪ contains the model files

- src/main/test – test java package

What to do?
You will do a sort of Test Driven Development where your objective is to clear all the tests

from src/main/test/io.headrest/swagger.client.controller/ControllerTest.java while taking note

of how much time it takes until all tests run green and, in the end, using a diff tool to count to

number of written LOC, as well as provide the final project.

The generated file you start with will be OAS first and HR last, and you will have to make both

HR and OAS generated client controllers.

You will also be asked to participate in a qualitative/voluntary survey where you will be asked a

couple of answers - yes/no, range from x to y.

Survey link: https://goo.gl/forms/HZSnZJPcgDznBlVJ2

Survey password: aAbBcCdD4321

Output
• On experiment (for each client project)

o Total time taken

o LOC (lines of code)

o Project

• After experiment

o Survey

Feel free to ask any questions and good luck!

C.3 Presentation

112

1

Client generation with
HEADREST and OAS/Swagger

Telmo Santos

Context

• Client created a UI

• Client has a working server

• Client needs you to create the Controller
• The UI gets and gives everything as strings

• Wants to abstract from request data structure

2

HROAS

View

UI

OAS/Swagger
Controller

HEADREST
Controller

OAS/Swagger
ClientAPI

HEADREST
ClientAPI

Server

OAS/Swagger Models HEADREST Models

OAS/Swagger Specification File

• Explain OAS/Swagger Spec

• Go over the generated code

3

Client API –OAS/Swagger

• ClientAPI found as DefaultAPI class
• Provides methods do consume the API

Models –OAS/Swagger

• Models are found on the io.(…).model package
• Provide the data structure

4

OAS/Swagger development

• Let the users create the Controller for the OAS/Swagger generated files

HEADREST Specification File

• Explain HEADREST Spec

• Go over the generated code

5

Client API – HEADREST

• ClientAPI found as DefaultAPI class
• Provides methods do consume the API

• Provides success precondition verification methods (HR only)
• Uses special classes to return precondition success or failure (with cause)

• BooleanValidation

• JustifiedInvalid (extends BooleanValidation to make it false and carry the cause)

Models – HEADREST

• Models are found on the io.(…).model package
• Provide the data structure

• Provide validation method for instances of those models

6

Usage of the extra generated code

{

request in {body: PersonPostData} &&&
(forall p: Person . !p.hasName(request.body.name))

}

POST /person

{

response.code == SUCCESS &&

response in {body: PersonRep}

}

Usage of the extra generated code

• Server-side verifications cannot happen client-side
• basically state verifications

• (forall p: Person . !p.hasName(request.body.name))

• Part of the precondition can be verified client-side
• mainly data structure validation

7

Usage of the extra generated code

{

request in {body: PersonPostData} &&&

request.body.age > 20 &&

(forall p: Person . !p.hasName(request.body.name))

}

POST /person

{

response.code == SUCCESS &&

response in {body: PersonRep}

}

• Extra restrictive, not only does the person have to
be over age (to be a valid PersonPostData) but also
over 20 years old in order to be SUCCESS

Usage of the extra generated code

• Abstracts the precondition validation
• Easier error management

8

HEADREST development

• Let the users create the Controller for the HR generated files

Appendix D

Experiment Specification files

D.1 OAS Spec

121

swagger: "2.0"

info:

 version: "1.0.0"

 title: "ContactsWithLogic"

basePath: "/headrest-jaxrs-resteasy-server"

paths:

 /contacts/{id}:

 put:

 parameters:

 - in: "body"

 name: "body"

 required: true

 schema:

 $ref: "#/definitions/ContactPutData"

 - name: "id"

 in: "path"

 required: true

 type: "integer"

 format: "int32"

 responses:

 200:

 description: "OK"

 schema:

 $ref: "#/definitions/ContactRep"

 /contacts:

 get:

 parameters: []

 responses:

 200:

 description: "OK"

 schema:

 $ref: "#/definitions/ContactListRep"

 post:

 parameters:

 - in: "body"

 name: "body"

 required: true

 schema:

 $ref: "#/definitions/ContactPostData"

 responses:

 201:

 description: "Created"

 schema:

 $ref: "#/definitions/ContactRep"

 headers:

 Location:

 type: "string"

 409:

 description: "Conflict"

definitions:

 ContactRep:

 type: "object"

 required:

 - "birthDate"

 - "email"

 - "id"

 - "name"

 - "newsSubscriptionType"

 - "newsSubscriptionWhen"

 - "registerDate"

 properties:

 id:

 type: "integer"

 format: "int32"

 description: "id must be positive"

 registerDate:

 type: "integer"

 format: "int32"

 description: "must be greater than birth date"

 birthDate:

 type: "integer"

 format: "int32"

 description: "must less than register date"

 email:

 type: "string"

 description: "string that contains @"

 newsSubscriptionType:

 type: "string"

 enum:

 - "ANUAL"

 - "SEMANAL"

 - "DIARIO"

 name:

 type: "string"

 newsSubscriptionWhen:

 type: "integer"

 format: "int32"

 description: "natural (includes 0) and newsSubscriptionType ANUAL

goes to 365, SEMANAL goes to 7, DIARIO goes to 24"

 ContactPutData:

 description: "must comply with ContactRep"

 type: "object"

 required:

 - "email"

 - "name"

 - "newsSubscriptionType"

 - "newsSubscriptionWhen"

 properties:

 name:

 type: "string"

 newsSubscriptionType:

 type: "string"

 enum:

 - "ANUAL"

 - "SEMANAL"

 - "DIARIO"

 email:

 type: "string"

 newsSubscriptionWhen:

 type: "integer"

 format: "int32"

 ContactListRep:

 type: "object"

 required:

 - "contacts"

 properties:

 contacts:

 type: "array"

 items:

 $ref: "#/definitions/ContactRep"

 ContactPostData:

 description: "must comply with ContactRep"

 type: "object"

 required:

 - "birthDate"

 - "email"

 - "id"

 - "name"

 - "newsSubscriptionType"

 - "newsSubscriptionWhen"

 properties:

 id:

 type: "integer"

 format: "int32"

 email:

 type: "string"

 newsSubscriptionType:

 type: "string"

 enum:

 - "ANUAL"

 - "SEMANAL"

 - "DIARIO"

 name:

 type: "string"

 birthDate:

 type: "integer"

 format: "int32"

 newsSubscriptionWhen:

 type: "integer"

 format: "int32"

 Uri:

 type: "string"

D.2 HRSpec

125

specification ContactsWithLogic

// Resource declaration
resource Contact {
 pred hasId(integer),
 pred hasName(string),
 pred hasEmail(string),
 pred hasBirthDate(integer)
}

resource ContactList {
 pred contains(Contact)
}

// Type declaration
type ContactRep = (cr: {
 id: integer,
 name: (x : string where x.length > 2),
 email: (e: string where contains(["@"],e)),
 birthDate: integer,
 registerDate: integer,
 newsSubscriptionType: (subType: string where subType in ["ANUAL"] || subType in ["SEMANAL"] || subType in ["DIARIO"]),
 newsSubscriptionWhen: integer
} where
 (cr.newsSubscriptionWhen > 0) &&
 (cr.birthDate < cr.registerDate) &&
 (cr.newsSubscriptionType == "ANUAL" => cr.newsSubscriptionWhen <= 365) &&
 (cr.newsSubscriptionType == "SEMANAL" => cr.newsSubscriptionWhen <= 7) &&
 (cr.newsSubscriptionType == "DIARIO" => cr.newsSubscriptionWhen <= 24)
)

type ContactPostData = (cpd: {
 id: integer,
 name: (x : string where x.length > 2),
 email: (e: string where contains(["@"],e)),
 birthDate: integer,
 newsSubscriptionType: (subType: string where subType in ["ANUAL"] || subType in ["SEMANAL"] || subType in ["DIARIO"]),
 newsSubscriptionWhen: integer
} where
 (cpd.newsSubscriptionWhen > 0) &&
 (cpd.newsSubscriptionType == "ANUAL" => cpd.newsSubscriptionWhen <= 365) &&
 (cpd.newsSubscriptionType == "SEMANAL" => cpd.newsSubscriptionWhen <= 7) &&
 (cpd.newsSubscriptionType == "DIARIO" => cpd.newsSubscriptionWhen <= 24)
)

type ContactPutData = (cpd: {
 name: (x : string where x.length > 2),
 email: (e: string where contains(["@"],e)),
 newsSubscriptionType: (subType: string where subType in ["ANUAL"] || subType in ["SEMANAL"] || subType in ["DIARIO"]),
 newsSubscriptionWhen: integer
} where
 (cpd.newsSubscriptionWhen > 0) &&
 (cpd.newsSubscriptionType == "ANUAL" => cpd.newsSubscriptionWhen <= 365) &&
 (cpd.newsSubscriptionType == "SEMANAL" => cpd.newsSubscriptionWhen <= 7) &&
 (cpd.newsSubscriptionType == "DIARIO" => cpd.newsSubscriptionWhen <= 24)
)

type ContactListRep = {
 contacts: ContactRep[]
}

/**
 * Link representation with resource, defining a predicate
 */
contact:ContactRep represents Contact{
 hasId(var1) => var1 == contact.id,
 hasName(var1) => var1 == contact.name,
 hasEmail(var1) => var1 == contact.email,
 hasBirthDate(var1) => var1 == contact.birthDate
}

contactList:ContactListRep represents ContactList{
 contains(contact) => (exists i:(x: integer where x >= 0 && x < contactList.contacts.length) . contact.hasId(contactList.contacts[i].id))
}

// Constant declarations
def SUCCESS = 200
def CREATED = 201
def CONFLICT = 409

// Axioms
{
 true
}
 GET /contacts
{
 response.code == SUCCESS &&
 response in {body: ContactListRep} &&&
 (exists l: ContactList .
 response.body representationof l
)
}

{
 request in {body: ContactPostData} &&&
 (forall c: Contact . !c.hasId(request.body.id))
}
 POST /contacts
{
 response.code == CREATED &&
 response in {body: ContactRep, header: {Location: URI}} &&&
 (exists l: ContactList .
 (exists c: Contact .
 l.contains(c) &&
 response.body representationof c &&
 response.header.Location uriof c &&
 c.hasId(response.body.id) &&
 c.hasName(response.body.name) &&
 c.hasEmail(response.body.email) &&
 c.hasBirthDate(response.body.birthDate)
)
)
}

// add contact, CONFLICT
{
 request in {body: ContactPostData} &&&
 (exists c: Contact . c.hasId(request.body.id))
}
 POST /contacts
{
 response.code == CONFLICT
}

// update contact, SUCCESS
{
 request in {body: ContactPutData, template:{id:integer}} &&&
 (exists c: Contact . c.hasId(request.template.id))
}
 PUT /contacts/{id}
{
 response.code == SUCCESS &&
 response in {body: ContactRep} &&&
 (exists l: ContactList .
 (exists c: Contact .
 l.contains(c) &&
 response.body representationof c &&
 c.hasId(response.body.id) &&
 c.hasName(response.body.name) &&
 c.hasEmail(response.body.email) &&
 c.hasBirthDate(response.body.birthDate)
)
)
}

128

Appendix E

Experiment classes

E.1 Controller

129

Controller.java

1 package io.headrest.client.controller;
2
3 import io.headrest.client.ApiException;
7
8 /**
9 * Class that serves as interface to the UI
10 */
11 public class Controller {
12
13 /**
14 * The generated client api
15 */
16 private static final DefaultApi API = new DefaultApi();
17
18 /**
19 * Executes the <i>GET /contacts</i> operation
20 *
21 * @return the result of the operation
22 */
23 public String contactsGet() {
24 try {
25 ContactListRep result = API.contactsGet();
26 if(result.getContacts().size() == 0)
27 return "No contacts added yet.";
28 return result.toString();
29 } catch (ApiException e) {
30 return e.getMessage();
31 }
32 }
33
34 /**
35 * Executes the <i>PUT /contacts/{id}</i> operation
36 *
37 * @param name
38 * the name to update to
39 * @param email
40 * the email to update to
41 * @param newsSubscriptionType
42 * the newsSubscriptionType to update to
43 * @param newsSubscriptionWhen
44 * the newsSubscriptionWhen to update to
45 * @param pathId
46 * the id of the path
47 * @return the result of the operation
48 */
49 public String contactsIdPut(String name, String email, String newsSubscriptionType, String newsSubscriptionWhen,
50 String pathId) {
51 try {
52 // TODO complete
53 ContactRep cr = API.contactsIdPut(null, null);
54 return cr.toString();
55 } catch (ApiException e) {
56 return e.getMessage();
57 }
58 }
59
60 /**
61 * Executes the <i>POST /contacts</i> operation
62 *
63 * @param id
64 * the contact id
65 * @param name
66 * the contact name
67 * @param email
68 * the contact email
69 * @param birthDate
70 * the contact birth date
71 * @param newsSubscriptionType
72 * the contact newsSubscriptionType
73 * @param newsSubscriptionWhen
74 * the contact newsSubscriptionWhen
75 * @return the result of the operation
76 */
77 public String contactsPost(String id, String name, String email, String birthDate, String newsSubscriptionType,
78 String newsSubscriptionWhen) {
79 try {
80 // TODO complete
81 ContactRep cr = API.contactsPost(null);
82 return cr.toString();
83 } catch (ApiException e) {
84 return e.getMessage();
85 }
86 }
87 }
88

Page 1

E.2 Controller Test

131

ControllerTest.java

1 package io.headrest.client.controller;
2
3 import static org.junit.Assert.assertTrue;
8
9 /**
10 * Tests for the controller
11 *
12 * @author Telmo Santos
13 *
14 */
15 @FixMethodOrder(MethodSorters.NAME_ASCENDING)
16 public class ControllerTest {
17
18 /**
19 * Controller
20 */
21 private static final Controller CONTROLLER = new Controller();
22
23 @Test
24 public void test0_contactsGetTestEmptyContactsList() {
25 // when
26 String result = CONTROLLER.contactsGet();
27 // then
28 assertTrue(
29 "contactsGetTestEmptyContactsList failed..."
30 + " Server already has contacts ... "
31 + "this test is meant to be run immediatly after the start of the server",
32 "No contacts added yet.".equals(result));
33 }
34
35 @Test
36 public void test1_contactsPostMaria() {
37 // when
38 String result = CONTROLLER.contactsPost("0", "Maria Joao", "mail@mailhost.com", "02121990", "ANUAL", "100");
39 // then
40 assertTrue(
41 "contactsPostMaria failed ..." + "\nGot:\n" + result + "\nExpected:\n" + "class ContactRep {\n"
42 + " id: 0\n" + " registerDate: 10102018\n" + " birthDate: 2121990\n"
43 + " email: mail@mailhost.com\n" + " newsSubscriptionType: ANUAL\n"
44 + " name: Maria Joao\n" + " newsSubscriptionWhen: 100\n" + "}",
45 ("class ContactRep {\n" + " id: 0\n" + " registerDate: 10102018\n" + " birthDate: 2121990\n"
46 + " email: mail@mailhost.com\n" + " newsSubscriptionType: ANUAL\n"
47 + " name: Maria Joao\n" + " newsSubscriptionWhen: 100\n" + "}").equals(result));
48 }
49
50 /*
51 * System.out.print of the string expected above ^
52 *
53 * class ContactRep { id: 0 registerDate: 10102018 birthDate: 2121990 email:
54 * mail@mailhost.com newsSubscriptionType: ANUAL name: Maria Joao
55 * newsSubscriptionWhen: 100 }
56 */
57
58 @Test
59 public void test2_contactsPostMariaAgain() {
60 // when
61 String result = CONTROLLER.contactsPost("0", "Maria Joao", "mail@mailhost.com", "02121990", "ANUAL", "100");
62 // then
63 assertTrue("contactsPostMariaAgain failed ..." + "\nGot:\n" + result + "\nExpected:\n"
64 + "Conflict. Id already exists", ("Conflict. Id already exists.").equals(result));
65 }
66
67 @Test
68 public void test3_contactsIdPutMaria() {
69 // when
70 String result = CONTROLLER.contactsIdPut("Maria Joao 2", "mail2@mailhost2.com", "SEMANAL", "4", "0");
71 // then
72 assertTrue(
73 "contactsPutMaria failed ..." + "\nGot:\n" + result + "\nExpected:\n" + "class ContactRep {\n"
74 + " id: 0\n" + " registerDate: 10102018\n" + " birthDate: 2121990\n"
75 + " email: mail2@mailhost2.com\n" + " newsSubscriptionType: SEMANAL\n"
76 + " name: Maria Joao 2\n" + " newsSubscriptionWhen: 4\n" + "}",
77 ("class ContactRep {\n" + " id: 0\n" + " registerDate: 10102018\n" + " birthDate: 2121990\n"
78 + " email: mail2@mailhost2.com\n" + " newsSubscriptionType: SEMANAL\n"
79 + " name: Maria Joao 2\n" + " newsSubscriptionWhen: 4\n" + "}").equals(result));
80 }
81
82 /*
83 * System.out.print of the string expected above ^
84 *
85 * class ContactRep {
86 * id: 0
87 * registerDate: 10102018
88 * birthDate: 2121990
89 * email: mail2@mailhost2.com
90 * newsSubscriptionType: SEMANAL
91 * name: Maria Joao 2
92 * newsSubscriptionWhen: 4
93 * }
94 */
95
96 @Test
97 public void test4_contactsPostJoao() {
98 // when
99 String result = CONTROLLER.contactsPost("1", "Joao Maria", "mail@mailhost.com", "23111980", "ANUAL", "200");
100 // then
101 assertTrue(
102 "contactsPostJoao failed ..." + "\nGot:\n" + result + "\nExpected:\n" + "class ContactRep {\n"
103 + " id: 1\n" + " registerDate: 11102018\n" + " birthDate: 23111980\n"
104 + " email: mail@mailhost.com\n" + " newsSubscriptionType: ANUAL\n"
105 + " name: Joao Maria\n" + " newsSubscriptionWhen: 200\n" + "}",
106 ("class ContactRep {\n"
107 + " id: 1\n" + " registerDate: 11102018\n" + " birthDate: 23111980\n"
108 + " email: mail@mailhost.com\n" + " newsSubscriptionType: ANUAL\n"

Page 1

ControllerTest.java

109 + " name: Joao Maria\n" + " newsSubscriptionWhen: 200\n" + "}").equals(result));
110 }
111
112 /*
113 * System.out.print of the string expected above ^
114 *
115 * class ContactRep {
116 * id: 1
117 * registerDate: 10102018
118 * birthDate: 23111980
119 * email: mail@mailhost.com
120 * newsSubscriptionType: ANUAL
121 * name: Joao Maria
122 * newsSubscriptionWhen: 200
123 * }
124 */
125
126 @Test
127 public void test5_contactsGetTestTwoContactsOnContactsList() {
128 // when
129 String result = CONTROLLER.contactsGet();
130 // then
131 assertTrue(
132 "contactsGetTestTwoContactsOnContactsList failed ..." + "\nGot:\n" + result +
133 "\nExpected:\n" + "class ContactListRep {\n" +
134 " contacts: [class ContactRep {\n" +
135 " id: 0\n" +
136 " registerDate: 10102018\n" +
137 " birthDate: 2121990\n" +
138 " email: mail2@mailhost2.com\n" +
139 " newsSubscriptionType: SEMANAL\n" +
140 " name: Maria Joao 2\n" +
141 " newsSubscriptionWhen: 4\n" +
142 " }, class ContactRep {\n" +
143 " id: 1\n" +
144 " registerDate: 11102018\n" +
145 " birthDate: 23111980\n" +
146 " email: mail@mailhost.com\n" +
147 " newsSubscriptionType: ANUAL\n" +
148 " name: Joao Maria\n" +
149 " newsSubscriptionWhen: 200\n" +
150 " }]\n" +
151 "}",
152 ("class ContactListRep {\n" +
153 " contacts: [class ContactRep {\n" +
154 " id: 0\n" +
155 " registerDate: 10102018\n" +
156 " birthDate: 2121990\n" +
157 " email: mail2@mailhost2.com\n" +
158 " newsSubscriptionType: SEMANAL\n" +
159 " name: Maria Joao 2\n" +
160 " newsSubscriptionWhen: 4\n" +
161 " }, class ContactRep {\n" +
162 " id: 1\n" +
163 " registerDate: 11102018\n" +
164 " birthDate: 23111980\n" +
165 " email: mail@mailhost.com\n" +
166 " newsSubscriptionType: ANUAL\n" +
167 " name: Joao Maria\n" +
168 " newsSubscriptionWhen: 200\n" +
169 " }]\n" +
170 "}").equals(result));
171 }
172
173 /*
174 * System.out.print of the string expected above ^
175 *
176 * class ContactListRep {
177 * contacts: [class ContactRep {
178 * id: 0
179 * registerDate: 10102018
180 * birthDate: 2121990
181 * email: mail2@mailhost2.com
182 * newsSubscriptionType: SEMANAL
183 * name: Maria Joao 2
184 * newsSubscriptionWhen: 4
185 * }, class ContactRep {
186 * id: 1
187 * registerDate: 11102018
188 * birthDate: 23111980
189 * email: mail@mailhost.com
190 * newsSubscriptionType: ANUAL
191 * name: Joao Maria
192 * newsSubscriptionWhen: 200
193 * }]
194 * }
195 */
196
197 @Test
198 public void test6_contactsPostInvalidMario() {
199 // when
200 // invalid id, mail and newsSubscriptionWhen
201 String result = CONTROLLER.contactsPost("-1", "Mario Maria", "mailATmailhost.com", "02121990", "ANUAL", "400");
202 // then
203 assertTrue(
204 "contactsPostInvalidMario failed ..." + "\nGot:\n" + result + "\nExpected:\n" + "contactsPost - " + "Precondition1 failed.",
205 ("contactsPost - " + "Precondition1 failed.").equals(result));
206 }
207
208 @Test
209 public void test7_contactsIdPutInvalidMariaUpdate() {
210 // when
211 // invalid mail
212 String result = CONTROLLER.contactsIdPut("Maria Joao 3", "mailATmail.com", "ANUAL", "200", "0");

Page 2

ControllerTest.java

213 // then
214 assertTrue(
215 "contactsPutInvalidMariaUpdate failed ..." + "\nGot:\n" + result + "\nExpected:\n" + "contactsIdPut - " + "Precondition1 failed.",
216 ("contactsIdPut - " + "Precondition1 failed.").equals(result));
217 }
218 }
219

Page 3

E.3 Contact Representation

135

ContactRep.java

1 /*
2 * ContactsWithLogic
3 * No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen)
4 *
5 * OpenAPI spec version: 1.0.0
6 *
7 *
8 * NOTE: This class is auto generated by the swagger code generator program.
9 * https://github.com/swagger-api/swagger-codegen.git
10 * Do not edit the class manually.
11 */
12
13 package io.headrest.client.model;
14
15 import java.util.Objects;
22
23 /**
24 * ContactRep
25 */
26 public class ContactRep {
27 @JsonProperty("id")
28 private Integer id = null;
29
30 @JsonProperty("registerDate")
31 private Integer registerDate = null;
32
33 @JsonProperty("birthDate")
34 private Integer birthDate = null;
35
36 @JsonProperty("email")
37 private String email = null;
38
39 /**
40 * Gets or Sets newsSubscriptionType
41 */
42 public enum NewsSubscriptionTypeEnum {
43 ANUAL("ANUAL"),
44
45 SEMANAL("SEMANAL"),
46
47 DIARIO("DIARIO");
48
49 private String value;
50
51 NewsSubscriptionTypeEnum(String value) {
52 this.value = value;
53 }
54
55 @JsonValue
56 public String getValue() {
57 return value;
58 }
59
60 @Override
61 public String toString() {
62 return String.valueOf(value);
63 }
64
65 @JsonCreator
66 public static NewsSubscriptionTypeEnum fromValue(String text) {
67 for (NewsSubscriptionTypeEnum b : NewsSubscriptionTypeEnum.values()) {
68 if (String.valueOf(b.value).equals(text)) {
69 return b;
70 }
71 }
72 return null;
73 }
74 }
75
76 @JsonProperty("newsSubscriptionType")
77 private NewsSubscriptionTypeEnum newsSubscriptionType = null;
78
79 @JsonProperty("name")
80 private String name = null;
81
82 @JsonProperty("newsSubscriptionWhen")
83 private Integer newsSubscriptionWhen = null;
84
85 public ContactRep id(Integer id) {
86 this.id = id;
87 return this;
88 }
89
90 /**
91 * Get id
92 *
93 * @return id
94 **/
95 @ApiModelProperty(required = true, value = "")
96 public Integer getId() {
97 return id;
98 }
99
100 public void setId(Integer id) {
101 this.id = id;
102 }
103
104 public ContactRep registerDate(Integer registerDate) {
105 this.registerDate = registerDate;
106 return this;
107 }
108
109 /**
110 * Get registerDate

Page 1

ContactRep.java

111 *
112 * @return registerDate
113 **/
114 @ApiModelProperty(required = true, value = "")
115 public Integer getRegisterDate() {
116 return registerDate;
117 }
118
119 public void setRegisterDate(Integer registerDate) {
120 this.registerDate = registerDate;
121 }
122
123 public ContactRep birthDate(Integer birthDate) {
124 this.birthDate = birthDate;
125 return this;
126 }
127
128 /**
129 * Get birthDate
130 *
131 * @return birthDate
132 **/
133 @ApiModelProperty(required = true, value = "")
134 public Integer getBirthDate() {
135 return birthDate;
136 }
137
138 public void setBirthDate(Integer birthDate) {
139 this.birthDate = birthDate;
140 }
141
142 public ContactRep email(String email) {
143 this.email = email;
144 return this;
145 }
146
147 /**
148 * Get email
149 *
150 * @return email
151 **/
152 @ApiModelProperty(required = true, value = "")
153 public String getEmail() {
154 return email;
155 }
156
157 public void setEmail(String email) {
158 this.email = email;
159 }
160
161 public ContactRep newsSubscriptionType(NewsSubscriptionTypeEnum newsSubscriptionType) {
162 this.newsSubscriptionType = newsSubscriptionType;
163 return this;
164 }
165
166 /**
167 * Get newsSubscriptionType
168 *
169 * @return newsSubscriptionType
170 **/
171 @ApiModelProperty(required = true, value = "")
172 public NewsSubscriptionTypeEnum getNewsSubscriptionType() {
173 return newsSubscriptionType;
174 }
175
176 public void setNewsSubscriptionType(NewsSubscriptionTypeEnum newsSubscriptionType) {
177 this.newsSubscriptionType = newsSubscriptionType;
178 }
179
180 public ContactRep name(String name) {
181 this.name = name;
182 return this;
183 }
184
185 /**
186 * Get name
187 *
188 * @return name
189 **/
190 @ApiModelProperty(required = true, value = "")
191 public String getName() {
192 return name;
193 }
194
195 public void setName(String name) {
196 this.name = name;
197 }
198
199 public ContactRep newsSubscriptionWhen(Integer newsSubscriptionWhen) {
200 this.newsSubscriptionWhen = newsSubscriptionWhen;
201 return this;
202 }
203
204 /**
205 * Get newsSubscriptionWhen
206 *
207 * @return newsSubscriptionWhen
208 **/
209 @ApiModelProperty(required = true, value = "")
210 public Integer getNewsSubscriptionWhen() {
211 return newsSubscriptionWhen;
212 }
213
214 public void setNewsSubscriptionWhen(Integer newsSubscriptionWhen) {

Page 2

ContactRep.java

215 this.newsSubscriptionWhen = newsSubscriptionWhen;
216 }
217
218 @Override
219 public boolean equals(java.lang.Object o) {
220 if (this == o) {
221 return true;
222 }
223 if (o == null || getClass() != o.getClass()) {
224 return false;
225 }
226 ContactRep contactRep = (ContactRep) o;
227 return Objects.equals(this.id, contactRep.id)
228 && Objects.equals(this.registerDate, contactRep.registerDate)
229 && Objects.equals(this.birthDate, contactRep.birthDate)
230 && Objects.equals(this.email, contactRep.email)
231 && Objects.equals(this.newsSubscriptionType, contactRep.newsSubscriptionType)
232 && Objects.equals(this.name, contactRep.name)
233 && Objects.equals(this.newsSubscriptionWhen, contactRep.newsSubscriptionWhen);
234 }
235
236 @Override
237 public int hashCode() {
238 return Objects.hash(id, registerDate, birthDate, email, newsSubscriptionType, name, newsSubscriptionWhen);
239 }
240
241 @Override
242 public String toString() {
243 StringBuilder sb = new StringBuilder();
244 sb.append("class ContactRep {\n");
245 sb.append(" id: ").append(toIndentedString(id)).append("\n");
246 sb.append(" registerDate: ").append(toIndentedString(registerDate)).append("\n");
247 sb.append(" birthDate: ").append(toIndentedString(birthDate)).append("\n");
248 sb.append(" email: ").append(toIndentedString(email)).append("\n");
249 sb.append(" newsSubscriptionType: ").append(toIndentedString(newsSubscriptionType)).append("\n");
250 sb.append(" name: ").append(toIndentedString(name)).append("\n");
251 sb.append(" newsSubscriptionWhen: ").append(toIndentedString(newsSubscriptionWhen)).append("\n");
252 sb.append("}");
253 return sb.toString();
254 }
255
256 /**
257 * Convert the given object to string with each line indented by 4 spaces
258 * (except the first line).
259 */
260 private String toIndentedString(java.lang.Object o) {
261 if (o == null) {
262 return "null";
263 }
264 return o.toString().replace("\n", "\n ");
265 }
266
267 /**
268 * Method used to validate an instance of this type
269 *
270 * @param instance
271 * the instance
272 */
273 public static boolean validate(ContactRep instance) {
274 return instance.getNewsSubscriptionWhen() > 0 && instance.getBirthDate() < instance.getRegisterDate()
275 && (!(Objects.equals(instance.getNewsSubscriptionType().value, "ANUAL"))
276 || instance.getNewsSubscriptionWhen() <= 365)
277 && (!(Objects.equals(instance.getNewsSubscriptionType().value, "SEMANAL"))
278 || instance.getNewsSubscriptionWhen() <= 7)
279 && (!(Objects.equals(instance.getNewsSubscriptionType().value, "DIARIO"))
280 || instance.getNewsSubscriptionWhen() <= 24)
281 && instance.getEmail().contains("@") && instance.getName().length() > 2;
282 }
283 }
284

Page 3

E.4 Client API

139

DefaultApi.java

1 package io.headrest.client.api;
2
3 import java.util.ArrayList;
20
21 public class DefaultApi {
22 private ApiClient apiClient;
23
24 public DefaultApi() {
25 this(Configuration.getDefaultApiClient());
26 }
27
28 public DefaultApi(ApiClient apiClient) {
29 this.apiClient = apiClient;
30 }
31
32 public ApiClient getApiClient() {
33 return apiClient;
34 }
35
36 public void setApiClient(ApiClient apiClient) {
37 this.apiClient = apiClient;
38 }
39
40 /**
41 *
42 *
43 * @return ContactListRep
44 * @throws ApiException
45 * if fails to make API call
46 */
47 public ContactListRep contactsGet() throws ApiException {
48 Object localVarPostBody = null;
49
50 // create path and map variables
51 String localVarPath = "/contacts".replaceAll("\\{format\\}", "json");
52
53 // query params
54 List<Pair> localVarQueryParams = new ArrayList<Pair>();
55 // headers params
56 Map<String, String> localVarHeaderParams = new HashMap<String, String>();
57 // form params
58 Map<String, Object> localVarFormParams = new HashMap<String, Object>();
59
60 final String[] localVarAccepts = {
61
62 };
63 final String localVarAccept = apiClient.selectHeaderAccept(localVarAccepts);
64
65 final String[] localVarContentTypes = {
66
67 };
68 final String localVarContentType = apiClient.selectHeaderContentType(localVarContentTypes);
69
70 String[] localVarAuthNames = new String[] {};
71
72 // if (!contactsGetRequiredSuccessPrecondition())
73 // throw new ApiException();
74
75 GenericType<ContactListRep> localVarReturnType = new GenericType<ContactListRep>() {
76 };
77 return apiClient.invokeAPI(localVarPath, "GET", localVarQueryParams, localVarPostBody, localVarHeaderParams,
78 localVarFormParams, localVarAccept, localVarContentType, localVarAuthNames, localVarReturnType);
79
80 }
81
82 /**
83 *
84 *
85 * @param body
86 * (required)
87 * @param id
88 * (required)
89 * @return ContactRep
90 * @throws ApiException
91 * if fails to make API call
92 */
93 public ContactRep contactsIdPut(ContactPutData body, Integer id) throws ApiException {
94 Object localVarPostBody = body;
95
96 // verify the required parameter 'body' is set
97 if (body == null) {
98 throw new ApiException(400, "Missing the required parameter 'body' when calling contactsIdPut");
99 }
100
101 // verify the required parameter 'id' is set
102 if (id == null) {
103 throw new ApiException(400, "Missing the required parameter 'id' when calling contactsIdPut");
104 }
105
106 // create path and map variables
107 String localVarPath = "/contacts/{id}".replaceAll("\\{format\\}", "json").replaceAll("\\{" + "id" + "\\}",
108 apiClient.escapeString(id.toString()));
109
110 // query params
111 List<Pair> localVarQueryParams = new ArrayList<Pair>();
112 // headers params
113 Map<String, String> localVarHeaderParams = new HashMap<String, String>();
114 // form params
115 Map<String, Object> localVarFormParams = new HashMap<String, Object>();
116
117 final String[] localVarAccepts = {
118
119 };
120 final String localVarAccept = apiClient.selectHeaderAccept(localVarAccepts);

Page 1

DefaultApi.java

121
122 final String[] localVarContentTypes = {
123
124 };
125 final String localVarContentType = apiClient.selectHeaderContentType(localVarContentTypes);
126
127 String[] localVarAuthNames = new String[] {};
128
129 // if (!contactsIdPutRequiredSuccessPrecondition(body, id))
130 // throw new ApiException();
131
132 GenericType<ContactRep> localVarReturnType = new GenericType<ContactRep>() {
133 };
134 return apiClient.invokeAPI(localVarPath, "PUT", localVarQueryParams, localVarPostBody, localVarHeaderParams,
135 localVarFormParams, localVarAccept, localVarContentType, localVarAuthNames, localVarReturnType);
136
137 }
138
139 /**
140 *
141 *
142 * @param body
143 * (required)
144 * @return ContactRep
145 * @throws ApiException
146 * if fails to make API call
147 */
148 public ContactRep contactsPost(ContactPostData body) throws ApiException {
149 Object localVarPostBody = body;
150
151 // verify the required parameter 'body' is set
152 if (body == null) {
153 throw new ApiException(400, "Missing the required parameter 'body' when calling contactsPost");
154 }
155
156 // create path and map variables
157 String localVarPath = "/contacts".replaceAll("\\{format\\}", "json");
158
159 // query params
160 List<Pair> localVarQueryParams = new ArrayList<Pair>();
161 // headers params
162 Map<String, String> localVarHeaderParams = new HashMap<String, String>();
163 // form params
164 Map<String, Object> localVarFormParams = new HashMap<String, Object>();
165
166 final String[] localVarAccepts = {
167
168 };
169 final String localVarAccept = apiClient.selectHeaderAccept(localVarAccepts);
170
171 final String[] localVarContentTypes = {
172
173 };
174 final String localVarContentType = apiClient.selectHeaderContentType(localVarContentTypes);
175
176 String[] localVarAuthNames = new String[] {};
177
178 // if (!contactsPostRequiredSuccessPrecondition(body))
179 // throw new ApiException();
180
181 GenericType<ContactRep> localVarReturnType = new GenericType<ContactRep>() {
182 };
183 return apiClient.invokeAPI(localVarPath, "POST", localVarQueryParams, localVarPostBody, localVarHeaderParams,
184 localVarFormParams, localVarAccept, localVarContentType, localVarAuthNames, localVarReturnType);
185
186 }
187
188 /**
189 * @returns BooleanValidation with true
190 */
191 public BooleanValidation contactsGetRequiredSuccessPrecondition() {
192 boolean pre1 = true;
193 return new BooleanValidation(pre1); // will always be valid
194 }
195
196 /**
197 * @returns BooleanValidation with true if the success precondition is
198 * verified, JustifiedInvalid with reason otherwise
199 */
200 public BooleanValidation contactsIdPutRequiredSuccessPrecondition(ContactPutData body, Integer id) {
201 boolean pre1 = ContactPutData.validate(body);
202 return pre1 ? new BooleanValidation(true) : new JustifiedInvalid(getReasonString(pre1) + " failed.");
203 }
204
205 /**
206 * @returns BooleanValidation with true if the success precondition is
207 * verified, JustifiedInvalid with reason otherwise
208 */
209 public BooleanValidation contactsPostRequiredSuccessPrecondition(ContactPostData body) {
210 boolean pre1 = ContactPostData.validate(body);
211 return pre1 ? new BooleanValidation(true) : new JustifiedInvalid(getReasonString(pre1) + " failed.");
212 }
213
214 /**
215 * Returns the booleans that failed in a prepared string
216 *
217 * @param booleans
218 * the list of booleans
219 * @return the prepared string
220 */
221 public String getReasonString(boolean... booleans) {
222 StringBuilder sb = new StringBuilder("");
223 for (int i = 0; i < booleans.length; i++)
224 if (!booleans[i])

Page 2

DefaultApi.java

225 if (sb.length() == 0)
226 sb.append("Precondition" + (i + 1));
227 else
228 sb.append(" && Precondition" + (i + 1));
229 return sb.toString();
230 }
231
232 }
233

Page 3

E.5 Boolean Validation Class

143

BooleanValidation.java

1 package io.headrest.client.api.validation;
2
3 /**
4 * Basic boolean validation
5 */
6 public class BooleanValidation {
7
8 /**
9 * If is valid

10 */
11 private boolean valid;
12
13 /**
14 * Construct
15 * @param valid if is valid
16 */
17 public BooleanValidation(boolean valid) {
18 this.valid = valid;
19 }
20
21 /**
22 * @return true if valid, false otherwise
23 */
24 public boolean isValid() {
25 return valid;
26 }
27 }
28

Page 1

E.6 Justified Invalid Class

145

JustifiedInvalid.java

1 package io.headrest.client.api.validation;
2
3 /**
4 * Justified invalid with reasoning
5 */
6 public class JustifiedInvalid extends BooleanValidation{
7
8 /**
9 * The reason

10 */
11 private String reason;
12
13 /**
14 * Construct
15 * @param reason the reason
16 */
17 public JustifiedInvalid(String reason) {
18 super(false);
19 this.reason = reason;
20 }
21
22 /**
23 * @return the reason
24 */
25 public String getReason() {
26 return reason;
27 }
28
29 }
30

Page 1

Appendix F

HEADREST Codegen Form

147

HeadRest Codegen Form
HeadRest Codegen is a tool for generating server stubs and client SDKs for a RESTful API
specified with HeadRest.

In what follows, we will conduct a survey regarding your opinion on the usage of the tool, done
previously.

Participation in this survey is voluntary. Participants may withdraw by not submitting the survey at
any time. Depending on your answers, this survey takes approximately 5 to 15 minutes to
complete.

No identifying information will be collected and all participants shall remain anonymous. Collected
data are planned to be published along with a MSc thesis.

By clicking through the consent statement and submitting the completed survey, individuals are
indicating their willingness to participate.

We really appreciate your time and input.

* Required

Accept and continue *

Mark only one oval.

Yes

No After the last question in this section, stop filling out this form.

1.

Password *2.

Context questions
Here we will question you about your past experience with RESTful APIs and tools

Did you know about RESTful APIs before the experiment ? *

Mark only one oval.

Yes

No

3.

Did you know the Open API Specification (OAS/Swagger) language ? *

Mark only one oval.

Yes

No

4.

Did you know the HEADREST (HR) language ? *

Mark only one oval.

Yes

No

5.

HeadRest Codegen Form https://docs.google.com/forms/d/1edA_jZGEYQ78_xeY5B1zSdy46V...

1 de 4 18-06-2018, 11:43

Have you used Swagger Codegen before ? *

Mark only one oval.

Yes

No

6.

Languages questions
Here we ask a series of questions relative to the languages used

How easy was OAS specification to understand ? *

Mark only one oval.

1 2 3 4 5 6

very hard very easy

7.

How easy was HR specification to understand ? *

Mark only one oval.

1 2 3 4 5 6

very hard very easy

8.

Tools questions
Here we ask a series of questions relative to the tools used

How easy was using the Swagger-Codegen ? *

Mark only one oval.

1 2 3 4 5 6

very hard very easy

9.

How easy was using the HEADREST-Codegen ? *

Mark only one oval.

1 2 3 4 5 6

very hard very easy

10.

How useful was Swagger-Codegen generated code ? *

Mark only one oval.

1 2 3 4 5 6

very useful

11.

HeadRest Codegen Form https://docs.google.com/forms/d/1edA_jZGEYQ78_xeY5B1zSdy46V...

2 de 4 18-06-2018, 11:43

How useful was HEADREST-Codegen generated code ? *

Mark only one oval.

1 2 3 4 5 6

very useful

12.

Comparison
Here we compare both languages and tools

Which tool was the most useful ? *

Mark only one oval.

HR

OAS

13.

How easy was it to understand the OAS generated code ? *

Mark only one oval.

1 2 3 4 5 6

very hard very easy

14.

How easy was it to understand the HR generated code ? *

Mark only one oval.

1 2 3 4 5 6

very hard very easy

15.

Which client ended up with more quality ? *

Mark only one oval.

1 2 3 4 5 6

OAS HR

16.

Additional remarks
Here we ask for any additional remarks relative to the experiment

Remarks *17.

HeadRest Codegen Form https://docs.google.com/forms/d/1edA_jZGEYQ78_xeY5B1zSdy46V...

3 de 4 18-06-2018, 11:43

Powered by

HeadRest Codegen Form https://docs.google.com/forms/d/1edA_jZGEYQ78_xeY5B1zSdy46V...

4 de 4 18-06-2018, 11:43

152

Bibliography

[1] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform resource identifier (URI):
Generic syntax. RFC 3986, Network Working Group, 2005. https://tools.
ietf.org/html/rfc3986.

[2] Lorenzo Bettini. Implementing Domain Specific Languages with Xtext and Xtend -
Second Edition. Packt Publishing, 2nd edition, 2016.

[3] Gavin M. Bierman, Andrew D. Gordon, Cătălin Hriţcu, and David Langworthy.
Semantic subtyping with an SMT solver. J. Funct. Program., 22(1):31–105, 2012.

[4] Bill Burke. RESTful Java with Jax-RS. O’Reilly Media, Inc., 1st edition, 2009.

[5] Luca Cardelli and John C. Mitchell. Operations on records. Mathematical Structures
in Computer Science, 1:3–48, 1991.

[6] F. Ferreira, T. Santos, F. Martins, A. Lopes, and V. Vasconcelos. Especificação de
Interfaces Aplicacionais REST. In Actas do 9o Encontro Nacional de Informática,
INFORUM 2017, Aveiro, Portugal, 2017.

[7] Fábio Ferreira. Automatic Tests Generation for RESTful APIs. Master’s thesis,
Faculdade de Ci|encias da Universidade de Lisboa, 2017.

[8] Roy T. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, 2000.

[9] Roy T. Fielding and Richard N. Taylor. Principled design of the modern Web archi-
tecture. In ICSE, pages 407–416, 2000.

[10] Ira R. Forman and Nate Forman. Java Reflection in Action (In Action Series). Man-
ning Publications Co., Greenwich, CT, USA, 2004.

[11] J. Gregorio, R. Fielding, M. Hadley, M. Nottingham, and D. Orchard. URI template.
RFC 6570, Internet Engineering Task Force, 2012. https://tools.ietf.

org/html/rfc6570.

153

https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc6570
https://tools.ietf.org/html/rfc6570

[12] Sumit Gulwani. Dimensions in program synthesis. In Proceedings of the 12th In-
ternational ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, July 26-28, 2010, Hagenberg, Austria, pages 13–24, 2010.

[13] Robert Harper and Benjamin Pierce. A record calculus based on symmetric con-
catenation. In POPL, pages 131–142. ACM, 1991.

[14] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing, Build-
ing, and Deploying Messaging Solutions. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2003.

[15] Markus Lanthaler and Christian Guetl. Hydra: A vocabulary for hypermedia-driven
web apis. In Proceedings of the WWW2013 Workshop on Linked Data on the Web,
Rio de Janeiro, Brazil, 14 May, 2013, 2013.

[16] A. Monnox. Rapid J2EE Development: An Adaptive Foundation for Enterprise
Applications. Hewlett-Packard professional books. Prentice Hall PTR, 2005.

[17] Richard Warburton. Java 8 Lambdas: Pragmatic Functional Programming.
O’Reilly Media, Inc., 1 edition, 2014.

[18] Jim Webber, Savas Parastatidis, and Ian Robinson. REST in Practice: Hypermedia
and Systems Architecture. O’Reilly Media, Inc., 1st edition, 2010.

154

