
UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

STUDYING ELEMENTS OF GENETIC
PROGRAMMING FOR MULTICLASS

CLASSIFICATION

João Eduardo Silva Pombinho Batista

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Interação e Conhecimento

Dissertação orientada por:
Prof. Dra. Sara Guilherme Oliveira da Silva

2018





Are you doing anything next Saturday?

We could go for a walk, or watch ducks and talk.

i





Agradecimentos

First of all, I would like to thank my advisor Sara Silva for all her support through
these last two years. I would also like to thank her for allowing me to freely explore any
approaches I came up with and using a part of her time to discuss them with me. I would
also like to thank her for, when I was having doubts, reminding me which path I wanted
to take my life to, and supporting my decisions.

A special thank to all the faculty members who, directly or indirectly, helped me
through these five years with words of support, suggestions, by making an example of
how good professionals work, or by explaining to me how the academic world works.
Namely, my advisor Sara Silva, Francisco Martins, João Marques Silva, Paulo Urbano,
and António Branco.

I would also like to thanks everyone that both support and allowed me to delay the
work done in my thesis. Namely, from the group ”Questões da Vida”, Filipe Pereira,
João Cardoso, João Antunes, João Rodrigues, and Dharmite Prabhudas, from the group
”Fculianos”, João Becho, João Pinto, Tiago Correira, Francisco Araújo, Pedro Vieira,
and Nuno Rodrigues, and everyone that I met during this last year, namely, Margarida
Penedos, José Sousa, João Nobre, Kelly Silveira, Daniela Oliveira, and João Ye.

I would like to thank the Department of Informatics for allowing me to have the role
of Monitor over this year and all my students, for their company over this year. Without
them this year would have been way more monotonous.

A great thanks to those who took their time to read my thesis and give me suggestions
on how I should improve my writing. Namely, my advisor Sara Silva, Filipe Pereira,
Tiago Costa, Mário Carvalho, and Nuno Rodrigues.

Last but not least, I would like to thank those who, although I haven’t been mee-
ting very frequently, were inspiring, supporting, and always provided a great company.
Namely, Luı́s Sampaio, David Silva, and my best friend, Ana Beatriz Alves.

iii





Resumo

A classificação é tanto uma das mais fundamentais tarefas no que toca à tomada de
decisões como um dos principais tipos de problemas que a aprendizagem automática tenta
resolver. Ela encontra-se dividida em duas categorias, classificação binária e classificação
multiclasse. O primeiro tipo pode ser facilmente resolvido de várias formas utilizando
métodos já disponı́veis. Por outro lado, a classificação multiclasse requer métodos mais
especializados, devido à alta complexidade dos problemas desta natureza. Outro pro-
blema que este tipo de classificação enfrenta é que métodos como redes neuronais ou
florestas aleatórias, apesar de serem os métodos que actualmente fornecem melhores re-
sultados, podem não oferecer modelos facilmente interpretáveis.

Na implementação padrão de Programação Genética (PG), descrita em Genetic Pro-
gramming: vol. 1, On the programming of computers by means of natural selection (1992)
[3], cada indivı́duo é representado como uma árvore em que os nós não terminais contêm
funções e os nós terminais contêm valores numéricos ou ı́ndices para as caracterı́sticas
de cada amostra, permitindo-lhes calcular valores em R quando lhes são dadas amostras
de um conjunto de dados. Estes indivı́duos conseguem facilmente resolver problemas de
regressão linear e de classificação binária. A classificação binária é tipicamente resolvida
de uma forma simples. Por exemplo, num problema com uma classe A e uma classe
B, o individuo pode associar a amostra à classe A se o valor obtido for negativo, caso
contrario associará a amostra à classe B. Em (J. R. Koza, 2010) [7], é possı́vel ver que
a PG tem ótimos resultados nestes dois tipos de problemas. No entanto, como foi dito
anteriormente, um problema de classificação com múltiplas classes requer métodos mais
especializados para obter bons resultados, fazendo com que a implementação padrão de
PG não seja adequada para este tipo de problemas.

Apesar da PG nunca ter sido o método mais adequado para resolver problemas de
classificação multiclasse, em (V. Ingalalli, 2014) [8], foi proposto um novo método, ba-
seado em PG, que não só consegue ter bons resultados em classificação multiclasse, con-
segue também devolver modelos interpretáveis. Este método, chamado M2GP (Multidi-
mentional Multiclass Genetic Programming), é uma variante do algoritmo tradicional em
que cada indivı́duo em vez de ter apenas um nó na sua raiz, tem vários nós. Esta alteração
fez com que os indivı́duos em vez de devolverem um valor em R, devolvessem um valor
em Rn. Agora os indivı́duos conseguem ter um espaço de saı́da com n dimensões onde

v



são representadas as amostras do conjunto de treino. A geometria deste espaço de saı́da
permite que seja feita uma abordagem de classificação baseada em agregados, onde cada
classe é representada pelo conjunto de coordenadas obtidas pelo indivı́duo quando lhe são
dadas as amostras dessa classe. Neste tipo de classificação cada ponto é associado à classe
cujo centroide se encontra mais próximo. O M2GP consegue ter resultados comparáveis
aos dos perceptrões multicamadas e das florestas aleatórias. Desde a sua criação foram
feitos melhoramentos ao algoritmo como o M3GP [4], o eM3GP [2] e o M4GP [20].

Neste projeto, iremos estudar o algoritmo M3GP. Este algoritmo é semelhante ao seu
antecessor M2GP. A diferença entre as duas abordagens encontra-se no número de nós que
um indivı́duo tem quando é criado e como é que esse número varia ao longo das gerações.
No M2GP, os indivı́duos começam todos com um número preestabelecido de nós e esse
número é mantido até ao final do treino. No M3GP, cada indivı́duo começa com apenas
um nó na sua raiz, tal como no algoritmo padrão de PG, de forma a procurar soluções
em espaços com menos dimensões nas primeiras gerações. À medida que as gerações
passam, são usados operadores genéticos que permitem adicionar e remover dimensões
aos indivı́duos, permitindo-lhes explorar espaços em dimensões superiores.

Apesar do M3GP dar resultados melhores que o seu antecessor, este continua a po-
der ser melhorado. A implementação original deste algoritmo avalia os indivı́duos da
população com base no número de amostras corretamente classificadas no conjunto de
treino. Este método de avaliação tem dois problemas. O primeiro é que uma avaliação
deste tipo não incentiva que haja uma evolução suave do espaço geométrico gerado por
este indivı́duo. O segundo problema deve-se à complexidade da função utilizada para
associar amostras a uma classe. Este algoritmo utiliza a distância de Mahalanobis [12]
para associar as amostras à classe do centroide mais próximo. Usando esta distância, a
complexidade do cálculo da distância de um ponto a um centroide em Rn é de O(n3),
enquanto que a complexidade usando a distância Euclidiana é de O(n). O método usado
para selecionar os operadores genéticos também pode ser melhorado. Na implementação
original são usadas probabilidades fixas para escolher os operadores genéticos. Apesar
desta abordagem dar bons resultados, da mesma forma que existem operadores que são
inúteis na fase inicial da evolução, pode haver operadores que só são úteis em fases ini-
ciais da evolução. Um exemplo seria o operador que remove nós da raiz dos indivı́duos
no algoritmo M3GP, se os indivı́duos começam com apenas uma dimensão, este método
é inútil na primeira geração. Selecionar estes métodos em etapas de evolução em que eles
têm uma probabilidade reduzida de aumentar os resultados da avaliação dos indivı́duos
pode, no mı́nimo, atrasar a evolução da população.

A primeira etapa deste projeto foi a implementação e validação do M3GP. Esta foi
feita em Java [40] e tentou seguir à risca todas as especificações do algoritmo M3GP,
descritas em M3GP - Multiclass Classification with GP (2015) [4], de modo a que esta
pudesse ser validada replicando os resultados exibidos no artigo. Apesar dos indivı́duos

vi



obtidos na nossa implementação serem maiores e com um maior número de dimensões,
seguimos para a segunda e terceira etapas deste projeto quando os indivı́duos mostraram
resultados que não eram necessáriamente piores em termos de número de amostras corre-
tamente classificadas, tanto no conjunto de treino como no conjunto de teste. A diferença
no tamanho dos indivı́duos pode ser devido ao M3GP original ter sido implementado
usando o GPLAB [39], que utiliza medidas adicionais de controlo de inchaço [37, 38] por
defeito.

A segunda etapa deste projeto foi a criação de novas funções de avaliação. Estas
funções foram desenhadas com o objetivo de adotar uma função de avaliação que permi-
tisse que a evolução do espaço de saı́da dos indivı́duos fosse mais suave. Para tal, em vez
de usar uma função de avaliação baseada no número de amostras do conjunto de treino
corretamente classificadas, passamos a usar uma função baseada em distância que tenta
afastar os centroides dos agregados de amostras enquanto tenta puxar as amostras para
o seu respetivo centroide. Havendo a necessidade de obter resultados em tempo útil, em
vez de distância de Mahalanobis, foi usada a distância Euclidiana. Os resultados obti-
dos foram comparados com uma função semelhante à usada no algoritmo original, com a
diferença de que esta usa uma função que associa as amostras ao centroide mais próximo
usando a distância Euclidiana.

Das duas funções testadas nesta etapa, uma delas deu resultados péssimos e foi ime-
diatamente ignorada. A outra função testada deu resultados equivalentes à função usada
como ponto de comparação, não só no número de amostras corretamente classificadas,
como no tamanho dos indivı́duos, no número de dimensões, e na evolução em geral,
enquanto tem uma complexidade computacional inferior à função base. Durante esta
fase tivemos um problema com a criação da função de avaliação dos indivı́duos. As
distâncias tendem a ser maiores em espaços geométricos com um número de dimensões
mais elevado, como tal foi necessário pensar numa forma de normalizar distâncias entre
indivı́duos com diferentes numeros de dimensões. Esta tarefa foi feita com sucesso mas
acreditamos que existirão funções que consigam fornecer melhores resultados.

A terceira etapa deste projeto foi alterar o método de seleção dos operadores genéticos
de modo a que o programa inicialmente desse uma igual probabilidade a cada opera-
dor genético de ser selecionado e, com o passar das gerações aprendesse que operadores
genéticos melhoram, ou não, os indivı́duos. Desta forma, os operadores que estiverem
a ser benéficos para os indivı́duos da população terão uma maior probabilidade de se-
rem selecionados, enquanto que os operadores prejudiciais irão ter uma probabilidade
reduzida. Numa segunda sub-etapa, foram também criados novos operadores genéticos,
alegadamente maus, com o objetivo de estudar a evolução das suas probabilidades.

Os resultados obtidos além de indicarem melhorias significativas no número de amos-
tras corretamente classificadas em metade dos conjuntos de dados utilizados, também
indicaram que o cruzamento da versão padrão de PG é sempre útil e a sua utilidade tende

vii



a aumentar com o passar das gerações. Também indicam que os operadores que trocam
dimensões entre individuos tendem a perder a sua utilidade com o passar das gerações.
Uma conclusão tirada nesta etapa final que serve de confirmação para observações fei-
tas nas outras etapas é que as populações tendem a usar mais vezes o operador genético
que muta o indivı́duo adicionando uma dimensão quando o conjunto de dados tem muitas
classes. Por fim, foi proposto um novo método de cruzamento que troca as dimensões
entre três indivı́duos. Este método, por ter uma maior probabilidade de seleção em todos
os conjuntos de dados, mostrou ser preferı́vel ao cruzamento que troca as dimensões entre
dois individuos.

Palavras-chave: Programação Genética, Aprendizagem Automática, Classificação,
Multi-classe, Aglomeração Multi-dimensional

viii



Abstract

Although Genetic Programming (GP) has been very successful in both symbolic re-
gression and binary classification by solving many difficult problems from various do-
mains, it requires improvements in multiclass classification, which due to the high com-
plexity of this kind of problems, requires specialized classifiers.

In this project, we explored a multiclass classification GP-based algorithm, the M3GP
[4]. The individuals in standard GP only have one node at their root. This means that their
output space is in R. Unlike standard GP, M3GP allows each individual to have n nodes
at its root. This variation changes the output space to Rn, allowing them to construct
clusters of samples and use a cluster-based classification.

Although M3GP is capable of creating interpretable models while having competitive
results with state-of-the-art classifiers, such as Random Forests and Neural Networks, it
has downsides. The focus of this project is to improve the algorithm by exploring two
components, the fitness function, and the genetic operators’ selection method.

The original fitness function was accuracy-based. Since using this kind of functions
does not allow a smooth evolution of the output space, we tried to improve the algorithm
by exploring two distance-based fitness functions as an attempt to separate the clusters
while bringing the samples closer to their respective centroids.

Until now, the genetic operators in M3GP were selected with a fixed probability. Since
some operators have a better effect on the fitness at different stages of the evolution, the
fixed probabilities allow operators to be selected at the wrong stages of the evolution,
slowing down the learning process. In this project, we try to evolve the probability the
genetic operators have of being chosen over the generations. On a later stage, we proposed
a new crossover genetic operator that uses three individuals for the M3GP algorithm. The
results obtained show significantly better results in the training set in half the datasets,
while improving the test accuracy in two datasets.

Keywords: Genetic Programming, Machine Learning, Classification, Multiclass,
Multidimensional clustering

ix





Contents

List of figures xv

List of tables xviii

1 Introduction 1
1.1 Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Structure of the document . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related work 7
2.1 M3GP and other variants . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Other Genetic Programming clustering methods . . . . . . . . . . . . . . 8

2.3 Non-clustering GP for multiclass classification . . . . . . . . . . . . . . 9

2.4 Real world applications of GP in clustering techniques . . . . . . . . . . 10

2.5 Feature Evolution with Genetic Programming . . . . . . . . . . . . . . . 11

2.6 Adaptation of Genetic Operator probabilities . . . . . . . . . . . . . . . . 12

3 Methodology 17
3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Elements of the M3GP algorithm . . . . . . . . . . . . . . . . . 19

3.3.2 Fitness Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.3 Genetic Operators . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Implementation 27
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Java Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

xi



5 Results 33
5.1 Implementation of our M3GP . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 Comparison of results . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.2 Evolution of the population . . . . . . . . . . . . . . . . . . . . 34

5.2 Fitness Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.1 Comparison of results . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.2 Evolution of the population . . . . . . . . . . . . . . . . . . . . 37

5.3 Genetic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.1 Comparison of results . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.2 Evolution of the population . . . . . . . . . . . . . . . . . . . . 41
5.3.3 Evolution of the operator probabilities . . . . . . . . . . . . . . . 43

6 Conclusions 57
6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Bibliography 60

Glossary 65

A Implementation 67

B Results 69

xii



List of Figures

5.1 Evolution of training(left) and test(right) accuracies of the EA-FF and ED1-FF popula-

tions when learning the WAV dataset. . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Evolution of training(left) and test(right) accuracies of the EA-FF and ED1-FF popula-

tions when learning the YST dataset. . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Evolution of training(left) and test(right) accuracies of the EA-FF and ED1-FF popula-

tions when learning the HRT dataset. . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 Evolution of training(left) and test(right) accuracies of the EA-FF and ED1-FF popula-

tions when learning the MCD3 dataset. . . . . . . . . . . . . . . . . . . . . . . 38

5.5 Evolution of probability of selection of the St-XO GO over the generations in all dataset,

using the EA-FF(left) and the ED1-FF(right), using the five original GOs. . . . . . . . 45

5.6 Evolution of probability of selection of the Swap-dim GO over the generations in all

dataset, using the EA-FF(left) and the ED1-FF(right), using the five original GOs. . . . 45

5.7 Evolution of probability of selection of the St-Mut(left), the Add-dim(right), and the

Rem-dim(bottom) GOs over the generations in all dataset, using the EA-FF and the five

original GOs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.8 Evolution of probability of selection of the Swap-dim(left) and the Chop(right) GOs

over the generations in all dataset, using the EA-FF and the ten GOs. . . . . . . . . . 51

5.9 Evolution of probability of selection of the Grow or Trim(left) and the Trim(right) GOs

over the generations in all dataset, using the EA-FF and the ten GOs. . . . . . . . . . 51

5.10 Evolution of probability of selection of the Swap-dim(solid line) and the Swap3-dim(dashed

line) GOs over the generations in the HRT and MCD-3 dataset, using the EA-FF and the

ten GOs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.1 Class Diagram section of the implementation used for the first stage of the project,

referent to the initialization of the classifier . . . . . . . . . . . . . . . . . . 67

A.2 Class Diagram section of the implementation used for the first stage of the project,

referent to the evaluation of the population’s individuals . . . . . . . . . . . . 68

A.3 Class Diagram section of the implementation used for the first stage of the project,

referent to the usage of genetic operators . . . . . . . . . . . . . . . . . . . . 68

xiii



B.1 Comparison of the number of dimensions between using the accuracy-based

function (EA-FF) and using the distance-based function (ED1-FF), marked with

*1, in the 8 datasets listed in 3.1. . . . . . . . . . . . . . . . . . . . . . . . 69

B.2 Comparison of training accuracy between the original and our implementation

of M3GP, marked with *, in the 8 datasets listed in 3.1. . . . . . . . . . . . . . 70

B.3 Comparison of test accuracy between the original and our implementation of

M3GP, marked with *, in the 8 datasets listed in 3.1. . . . . . . . . . . . . . . 71

B.4 Comparison of training accuracy on all datasets between using the Euclidean

Accuracy fitness function (EA) and using the first distance-based fitness function

(ED1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

B.5 Comparison of test accuracy on all datasets between using the Euclidean Ac-

curacy fitness function (EA) and using the first distance-based fitness function

(ED1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

B.6 Comparison of training accuracy on the HRT, and MCD3 datasets between using

the Euclidean Accuracy fitness function (EA), and using the first distance-based

(ED1) fitness function, while using five genetic operators (5) and ten genetic

operators (10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

B.7 Comparison of training accuracy on the MCD10, and M-L datasets between us-

ing the Euclidean Accuracy (EA) fitness function, and using the first distance-

based (ED1) fitness function, while using five genetic operators (5) and ten ge-

netic operators (10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

B.8 Comparison of training accuracy on the SEG, and WAV datasets between using

the Euclidean Accuracy (EA) fitness function, and using the first distance-based

(ED1) fitness function, while using five genetic operators (5) and ten genetic

operators (10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B.9 Comparison of training accuracy on the VOW, and YST datasets between using

the Euclidean Accuracy (EA) fitness function, and using the first distance-based

(ED1) fitness function, while using five genetic operators (5) and ten genetic

operators (10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B.10 Comparison of test accuracy on the HRT, and MCD3 datasets between using

the Euclidean Accuracy (EA) fitness function, and using the first distance-based

(ED1) fitness function, while using five genetic operators (5) and ten genetic

operators (10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B.11 Comparison of test accuracy on the MCD10, and M-L datasets between using

the Euclidean Accuracy (EA) fitness function, and using the first distance-based

(ED1) fitness function, while using five genetic operators (5) and ten genetic

operators (10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xiv



B.12 Comparison of test accuracy on the SEG, and WAV datasets between using the

Euclidean Accuracy (EA) fitness function, and using the first distance-based

(ED1) fitness function, while using five genetic operators (5) and ten genetic

operators (10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
B.13 Comparison of test accuracy on the VOW, and YST datasets between using the

Euclidean Accuracy (EA) fitness function, and using the first distance-based

(ED1) fitness function, while using five genetic operators (5) and ten genetic

operators (10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xv



xvi



List of Tables

3.1 Datasets used and their number of classes, attributes, and samples . . . . . . . 17

3.2 Parameters used on the runs by default . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Variables used in the fitness functions . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 Comparison of results between the original implementation of M3GP and our imple-

mentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Evolution of the number of nodes and dimensions over the generations for our imple-

mentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Comparison of results between the different fitness functions . . . . . . . . . . . . 36

5.4 p-values obtained by comparing the results from the populations learning the datasets

using the EA-FF and the ED1-FF. The underline is used to symbolize that the EA had a

significantly better result than ED1. . . . . . . . . . . . . . . . . . . . . . . . . 36

5.5 Evolution of the number of nodes and dimensions over the generations for the EA-FF . 39

5.6 Evolution of the number of nodes and dimensions over the generations for the ED1-FF . 39

5.7 Comparison between the average number of nodes, dimensions, and nodes per dimen-

sion of using the EA-FF and the ED1-FF, over all the datasets . . . . . . . . . . . . 40

5.8 Comparison of results between the Euclidean Accuracy fitness function and the first

sigmoid fitness function for both five and ten genetic operators (GO) . . . . . . . . . 41

5.9 p-values obtained by comparing the results from the populations learning the datasets

using the EA-FF and the ED1-FF, with their respective counter part with 5 GOs with

adaptable probabilities and these counterparts with the 10 GOs counterparts. The un-

derline is used to symbolize that the first population has a significantly better result and

bold symbolizes a worse result. . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.10 Evolution of the number of nodes, dimensions, and nodes per dimension over the gener-

ations for the EA-FF with five genetic operators . . . . . . . . . . . . . . . . . . 42

5.11 Evolution of the number of nodes, dimensions, and nodes per dimension over the gener-

ations for the EA-FF with ten genetic operators . . . . . . . . . . . . . . . . . . 43

5.12 Evolution of the probability of selection of the original genetic operators on all eight

datasets using the Euclidean Accuracy fitness function (EA-FF), and its standard deviation 47

5.13 Evolution of the probability of selection of the original genetic operators on all eight

datasets using the first distance-based fitness function (ED1-FF), and its standard deviation 48

xvii



5.14 Evolution of the probability of selection of the original five genetic operators when all

ten genetic operators were tested, and their standard deviation. Results obtained from

using the EA-FF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.15 Evolution of the probability of selection of the new five genetic operators when all ten

genetic operators were tested, and their standard deviation. Results obtained from using

the EA-FF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.16 Evolution of the probability of selection of the original five genetic operators when all

ten genetic operators were tested, and their standard deviation. Results obtained from

using the ED1-FF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.17 Evolution of the probability of selection of the new five genetic operators when all ten

genetic operators were tested, and their standard deviation. Results obtained from using

the ED1-FF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xviii



Chapter 1

Introduction

The focus of this project is the study and improvement of the multiclass classification
algorithm M3GP (Multidimentional Multiclass Genetic Programming with multidimen-
sional populations), proposed in M3GP - Multiclass Classification with GP (2015) [4].

This chapter will first give a brief introduction about what Genetic Programming (GP)
is, and then, we will explain why it’s worth to do research on Multiclass classification,
why we are using genetic programming to do this kind of classification, how we will
improve the M3GP algorithm, and what changes this project will bring to the GP field
and the machine learning community.

1.1 Genetic Programming

As stated by Koza in Genetic Programming: On the programming of computers by
means of natural selection (1992) [3], ”In nature, biological structures that are more suc-
cessful in grappling with their environment survive and reproduce at a higher rate. Bi-
ologists interpret the structures they observe in nature as the consequence of Darwinian
natural selection operating in an environment over a period of time. In other words, in
nature, structure is the consequence of fitness. Fitness causes, over a period of time, the
creation of structure via natural selection and the creative effects of sexual recombination
(genetic crossover) and mutation. That is, fitness begets structure.”. In nature, each indi-
vidual has their own structure and behavior, even within the same population. Since each
individual need to execute several tasks in order to survive and reproduce, individuals who
are better prepared to execute these tasks will have a higher chance of survival and repro-
duction while the other individuals, who are less fit for survival, will have a lower chance
of survival and reproduction. This is the concept of survival of the fittest and natural se-
lection described by Charles Darwin in On The Origin of Species by Means of Natural
Selection (1859) [32]. Over many generations, the population as a whole comes to contain
more individuals whose structure and behavior enable them to better execute their tasks
and to survive and reproduce. Over time, the structure of the individuals changes because

1



Chapter 1. Introduction 2

of this natural selection that tries to raise their fitness.
Having this in mind, Genetic Programming (GP) is a machine learning approach

where the main algorithm follows the principles of the Darwinian natural selection. This
algorithm first receives a task and then creates a population of randomly generated pro-
grams that will try to solve it. Although the most likely scenario is one where all these
individuals will have a bad result in solving their task, some of these individuals will
achieve better results and therefore a better fitness. The selection of individuals for re-
production favors the individuals with higher fitness. This way, those individuals will
be more likely to reproduce, leaving their offspring to the next generation. After a new
generation of individuals is completed, these individuals are evaluated, and the process
starts all over again, trying to improve the results of the population over the course of the
generations.

1.2 Motivation

Classification is not only one of the most fundamental tasks in order to make decisions
in real-world problems, it’s also one of the main type of problems in which machine learn-
ing is used. This creates a great interest in improving the available methods to solve this
kind of problems. Classification can be divided into two categories, binary classification,
and multiclass classification. The first type can be solved in endless ways using many
different available methods. Multiclass classification requires more specialized methods
due to the high complexity of this kind of problems. Another problem it faces is that
the best methods used, normally Neural Networks and Random Forests, don’t generate
models that are ready to be easily interpreted by humans.

Although GP has not always been an adequate method for multiclass classification, in
(V. Ingalalli, 2014) [8], a new GP-based method was implemented. This method not only
gave good results in multiclass classification, it also provided interpretable models. This
algorithm is a variation of the standard GP in which an individual is able to convert each
sample into a point in Rn. The geometric properties of this kind of output space allow the
individuals to use a cluster-based classification. This classification is made by creating
a cluster for each class using the samples on the training set, converted to coordinates
in the output space, an then associating the samples to the closest class centroid using
the Mahalanobis distance[12]. This method, named M2GP (Multidimentional Multiclass
Genetic Programming), had results comparable to those of the Multilayer Perceptron and
the Random Forests. Since then, there have been a few variants the algorithm such as the
M3GP [4], the eM3GP [2] and the M4GP [20].

The M3GP algorithm has two issues that motivate the study of an alternative fitness
function. In its original state, M3GP uses a fitness function that not only doesn’t take
into consideration the intra-cluster and inter-cluster distances but is also very expensive



Chapter 1. Introduction 3

in terms of computational complexity. This function uses the Mahalanobis distance which
is very complex. To calculate the distance between two points in Rn, this function has a
complexity of O(n3), while the Euclidean distance has a complexity of O(n).

Another issue with GP algorithms is that since the population selects the crossover and
mutation genetic operators with a fixed probability, they might be selected on stages of the
evolution where they are not needed. Using these genetic operators on the wrong stages
can slow down the evolution. The variance of the importance of each genetic operator over
the generations was already an issue in standard GP. Since the M3GP algorithm has more
genetic operators, this problem is bound to be worse in this algorithm. This motivates us
to try to solve this issue by adapting the probabilities that each genetic operator has of
being selected to the needs of the population.

1.3 Goals

This project had three goals: 1) to implement the M3GP algorithm and replicate the
results reported in (L. Muñoz, 2015) [4], 2) to make improvements in the fitness function
of the M3GP algorithm, and 3) to automatically adapt the probabilities that each genetic
operator has of being used during the evolution. These goals will be mentioned later as,
respectively, the first, second, and third stages of this project.

The fitness function used by M3GP in (L. Muñoz, 2015) [4] was the classification
accuracy. The accuracy of an individual was obtained by classifying each sample of the
training set by associating it with the closest class centroid using the Mahalanobis dis-
tance. In order to make an improvement to the fitness function, we are making an attempt
to use a distance-based fitness function rather than an accuracy-based fitness function. To
obtain results quickly the fitness functions we are testing use the Euclidean distance. The
results are compared with the results obtained using an accuracy-based fitness function
that uses the Euclidean distance.

To automatically adapt the probabilities that each genetic operator has of being used,
we are changing the method of selection of the genetic operator to one that initially gives
each genetic operator an equal chance of being selected. From this point, every time
an individual uses an operator which improves the individual’s fitness, the probability of
occurrence of that genetic operator will increase, otherwise, it will decrease. If the opera-
tor doesn’t create changes on the individual’s fitness the probability will also decrease to
avoid choosing useless operators. With this, the operators that are beneficial to the evo-
lution will be used more often, while the prejudicial operators will be avoided, hopefully
speeding learning.



Chapter 1. Introduction 4

1.4 Contributions

This project offers the following contributions:

• A full implementation of the M3GP (M2GP with Multidimensional Populations)
method, written in Java [40] and ready to be used on Weka [6].

• New, and more efficient in terms of computational complexity, fitness functions
were implemented and tested on the M3GP algorithm. A study over the results
obtained by testing these fitness function was then made, in order to understand
the differences in the accuracy, and on the evolution of the population when using
different fitness functions.

• New methods for the automatic adaptation of the probabilities of selection of ge-
netic operators were proposed and tested. A study was made on the influence of
these adaptations on the accuracy of the population and on the evolution of the
probabilities each genetic operator has over the generations.

In this project, we made a contribution to the GP community by validating the previ-
ously obtained results using the M3GP, and by presenting alternatives that increase this
algorithm’s efficiency by using different fitness functions and methods to select genetic
operators. Since there are not many robust methods for multiclass classification that pro-
duce an easily interpretable model, the improvement of the M3GP algorithm is an impor-
tant contribution to the machine learning community in general.

1.5 Structure of the document

This document is organized with following structure:

• Chapter 2 - Describes some applications of the M3GP algorithm and other related
implementations in real life problems. Some other methods with different ap-
proaches are also mentioned such as non-clustering based GP methods and methods
that rely on genetic programming to do feature evolution but use other clustering
methods for classification.

• Chapter 3 - Contains information about the datasets and parameters used in each
simulation and information about the algorithm used. The algorithm section is di-
vided into three parts, the original algorithm, the modifications made to test new
fitness functions, and the automatic adaptation of the genetic operator probabilities.

• Chapter 4 - Describes the implementation made to run the classifier. It also includes
a resume with the purpose of each of the classes used.



Chapter 1. Introduction 5

• Chapter 5 - Contains the results of all the runs made in this project and their analy-
sis.

• Chapter 6 - Contains the conclusions of the project and discusses possible future
work.

The later sections of this document are the bibliography, glossary, and the appendices.





Chapter 2

Related work

In this section, we will mention some applications of GP algorithms such as classifica-
tion, feature evolution, and evolution of the probabilities of selection of genetic operators.
The topics related with classification discussed in this section are the M3GP algorithms
considered to be similar, other GP-based algorithms that use clustering techniques, non-
clustering GP algorithms for multiclass classification, and real-world applications of GP
algorithms to solve classification problems. There are many articles referring ways to use
GP in multiclass classification, and many of these approaches use GP for feature evolu-
tion, so the explanations about these topics will be brief. A longer explanation will be
given on the papers related to the evolution of operator probabilities, as the topic will be
studied further in this project and it seems to be a topic of importance with few recent
works.

2.1 M3GP and other variants

Since there are many variants of the M3GP classifier, this section will cover some
of those variants, namely its predecessor M2GP, its successor M4GP, its brother eM3GP,
and another approach which can be considered as similar to the M3GP classifier for being
cluster-based classifiers and using a similar method of classification.

A new GP framework, named Multi-dimensional Multiclass Genetic Programming
(M2GP), was proposed in (V. Ingalalli, 2014) [8]. At the time, this method was a novel
algorithm for tree-based GP where each individual could have n nodes at its root instead
of only one, allowing the individuals to have an output space in Rn. The geometry of
the output space allowed this GP method to use a cluster-based classification method
and solve multiclass classification problems. This approach was tested on a large set of
benchmarks problems from several different sources and was able to compete against the
Multilayer Perceptron and the Random Forests, showing GP was able to solve this kind
of problems.

The M3GP algorithm is very similar to the M2GP algorithm, the main difference

7



Chapter 2. Related work 8

being in the evolution of the number of dimensions in each individual. While the M2GP
uses a fixed number of dimensions, established in the initialization of the classifier, the
M3GP creates all individuals with only one dimension and the mutation operators allow
each individual to create or destroy dimensions.

M4GP was presented in (La Cava W., 2017) [20] as a new classification method to
evolve feature transformations. This is a stack-based GP system that allows each individ-
ual to produce multiple outputs. Like M2GP and M3GP, this method has the advantage
over typical classification methods of producing models that are easily interpretable by
humans. The results obtained indicate that M4GP outperforms other GP methods for
classification and performs competitively with other machine learning methods in terms
of accuracy.

Like many other classifiers, M3GP appears to be suffering from overfitting, and is
negatively affected by class imbalance, and also suffers from bloat on a dimensional level.
A new method named ensemble M3GP (eM3GP) was proposed in (S. Silva, 2016) [2],
intended to address some of the M3GP issues. Some variants of the eM3GP were tested
and the results observed had competitive results with classifiers like Random Forests,
Random Subspaces, and Multilayer Perceptron.

In (Smart W., 2004) [16], the authors describe a probability-based GP approach to
multiclass classification problems. Although it’s not explicit that clustering methods are
being used, the approach has several similarities with M2GP. This approach, instead of
directly associating a sample to the class of the closest class centroid on the output space,
uses a Gaussian distribution to create probabilities of the samples being in a point in space,
and associates each sample to the class it has the higher probability of belonging to. The
results suggested that this approach is more effective and more efficient than the basic GP
approach.

2.2 Other Genetic Programming clustering methods

Not all cluster-based methods are as simple, or direct, as the one used in M2GP, or
in M3GP. In this section, some other methods that use different cluster-based approaches
are mentioned, namely a graph-based clustering method and a lattice-based clustering
method.

In (Andrew L., 2017) [17], the authors propose a method that uses GP for graph-based
clustering (GPGC). This approach performs a graph-based clustering that does not require
that the number of clusters is set in advance. GPGC was compared with a number of
well-known methods on a large number of datasets that vary on the number of samples,
features, and classes. The results indicated that GPSC is the most generalizable of the
methods that were tested, achieving good performance across all datasets. It’s worth
mentioning that GPSC outperformed all the tested methods on the hardest ellipsoidal



Chapter 2. Related work 9

datasets, without needing the user to pre-define the number of clusters. To the knowledge
of the article’s authors, this was the first work which proposed using GP for a graph-based
clustering.

In (C. Wu, 2013) [18], the authors discuss the performance of regression-based coor-
dinate transformations for GPS applications. Then, for building better regression models
for coordinate transformation, they develop and integrate with GP a lattice-based cluster-
ing method. This method partitions the GPS application into lattices that will be used as
clusters that have their sizes determined by the geographic locations and distributions of
the GPS reference points. Each cluster of lattices serves as a training dataset for the ge-
netic regression model of coordinate transformations. This way, the data points contained
in each lattice can be considered to be of the same importance. With this, the biased
regression results, caused by the imbalance distribution of data, can also be eliminated.
The experimental results show that the proposed method can further improve positioning
accuracy than previous methods.

2.3 Non-clustering GP for multiclass classification

Not all methods for multiclass classification rely on clustering techniques. In this
section, some other methods such as linear GP, an approach based on dividing multiclass
classification problems into binary classification problems, and an approach based on a
voting scheme, will be mentioned.

An alternative form of GP, Linear GP (LGP), is studied in (Downey C., 2010) [22].
LGP demonstrates a great promise as a classifier since the division of classes is inher-
ent in this technique. Two new crossover genetic operators that significantly improve the
performance of the classifier were developed in this article by combining biological in-
spiration with detailed knowledge of program structure. The first genetic operator mimics
biological crossover between alleles, which helps reduce the disruptive effect on building
blocks of information. The second genetic operator is an extension of the first where a
heuristic is used to predict offspring fitness guiding search to promising solutions. The
results obtained indicate that the novel crossover operators improve the performance of
the LGP algorithm on the tested datasets.

A common approach for binary classification is to use a threshold of the output value
of an individual. For example, if the classifier uses a function that outputs a number when
it receives a sample from a dataset, we can classify the sample as one class when this
value is negative and as the other when the value is not negative. Although this approach
is commonly used for binary classification, it is not practical for multiclass classification.
The method proposed in (Smart W., 2005) [24] uses a variation of this approach, used
to solve binary classification problems, to solve multiclass classification problems. It
divides a multiclass classification problem into many binary classification problems. This



Chapter 2. Related work 10

classifier, Communal Binary Decomposition (CBD), was compared with two other GP-
based classifiers, Program Classification Map (PCM) and Probabilistic Multiclass (PM)
showing good results in all datasets, having the best test accuracy in three of the four used
datasets. A similar approach was also used in (K. Liu, 2009) [25].

In (Zhang M., 2009) [26], the authors discuss an approach where each individual pro-
duce an output for each class. These output values are meant to be used in a voting scheme
to determine the class of the sample that was given to the individual. This approach was
examined and compared with the standard GP approach in four multiclass classification
problems with increasing difficulty. The results obtained indicate that, in these problems,
this approach outperforms the standard GP approach. Another advantage this method has
is that the program structure allows to easily produce multiple outputs for multiclass clas-
sification problems while keeping the advantages of the standard GP approach for an easy
crossover and mutation.

2.4 Real world applications of GP in clustering techniques

In this section, we will mention a few real-world applications for clustering tech-
niques. Although these applications are all related with GP, it is only used to tune the
clusters into some more easily separable ones and is not used for classification. Other
already well-known classifiers are then used after this tunning.

In (F. Ratle, 2008) [13], the authors study a GP-based approach with the intention of
tuning the affinity matrix of a spectral clustering matrix. This was made using a database
with clusters confirmed by a police investigation, used to assess the potential of the anal-
ysis of the chemical signature of heroin and cocaine in the investigation process. The
results obtained were compared to standard methods that are used in the field of chemical
drug profiling and indicate that conventional approaches miss the inherent structure in the
data, which is highlighted by methods such as spectral clustering and its variants.

In (J. P. Papa, 2016) [14], the authors study unsupervised land-use / land-cover using
K-Means. Although this method already plays an important role in the pattern recognition
community, there is always room for improvement. One problem usually found is that the
dataset samples are not near the centroid of the cluster, which may increase the difficulty a
program has in learning a dataset. With this in mind, the approach in this paper was using
a GP-based algorithm in order to enhance the K-Means effectiveness by minimizing the
distance of the samples to the centroid of each cluster. This allowed a better separation of
the cluster and consequently a better classification of the dataset samples.

In (N. P. Shetty, 2016) [15], the authors make an attempt to use GP with two objectives.
The first was to remove unnecessary features from the samples of a dataset. The second
objective was to convert the dataset into clusters, one for each different class the dataset
has. The dataset used was the KDD Crup’99 [9]. This dataset contained samples with



Chapter 2. Related work 11

features from different kinds of informatic intrusions or the lack of intrusion and a label
for their respective kind of intrusion. This dataset contained some noise and unnecessary
features. The clusters obtained by this process were then classified by both K-Means
and K-Medoid. The results obtained indicate that K-Medoid has a significantly better
accuracy than the K-Means in this given dataset.

It’s worth to mention that not all applications of GP rely on other methods. In (A.
Patnaik, 2016) [21], a GP-based clustering method was used to define the level of service
(LOS) criteria of urban roads in India using multiclass classification. This classification
was made using a dataset that had the physical properties of the streets and other features
such as the average speed of the traffic and the pedestrian activity. Unlike the cases
previously mentioned that rely on other methods to do the classification, this approach
was based solely on GP. The results of this research were well received and suggested
that the road network needed geometric improvements in order to produce a better quality
of service.

2.5 Feature Evolution with Genetic Programming

Besides classification and symbolic regression, another application of GP is feature
evolution. Feature evolution tries to create a new set of features from the initial one. This
is accomplished by removing unnecessary features and/or by synthesizing new features.
The objective is to create a new set of features that are easier for the program to learn,
or simply to know if a feature is needed. As stated in [36], a reason that leads to a
classifier success or failure is the quality of the features used. If these features correlate
well with the output, the dataset can be easily learned. If the features do not correlate with
the output in a simple way, the classifier can have some difficulties learning the dataset.
Feature engineering helps the classifier by synthesizing valuable features from the original
features, that might not have been useful while separated. It also solves the dimensionality
problem by synthesizing new features from more than one of the original features, or
simply by removing unnecessary features. This also helps the classifier by reducing the
number of features that are used to learn the problem. Since a dataset with d binary
features would need to be tested in 2d samples, making it exponentially harder to verify
as the number of features increases, this reduction of the number of features is highly
beneficial to the classifier. In this section, some projects related to feature engineering
will be mentioned.

The authors present in (Y. Zhang, 2009) [27] a generic feature extraction method for
pattern classification using multi-objective GP. This method is able to evolve the near-
optimal set of mappings from pattern space to a multi-dimensional decision space while
optimizing the dimensionality of that decision space. This framework evolves feature
extractors that maximize class separability. The efficiency of this approach was demon-



Chapter 2. Related work 12

strated by making statistically-founded comparisons with a wide variety of established
classifier paradigms over a range of datasets. The results showed that this method delivers
statistically smaller misclassification errors. At the very worst, these methods displayed
no statistical difference in a few comparisons.

The extraction of features for classification is often performed heuristically, despite
the effect this step has on the performance of the classifier. The authors present the Evo-
lutionary Pre-Processor in (J. Sherrah, 1998) [28]. This is an automatic non-parametric
method for the extraction of non-linear features. This method uses GP to pre-process the
data to improve the performance of a classifier. This method was tested on nine real-world
datasets and was able to increase the test set accuracy when compared to the classifica-
tion of the original samples. The dimensionality of the data used was decreased and the
features not required for classification were removed. This Pre-Processor was also able
to behave intelligently by deciding where it should perform feature extraction or perform
feature selection.

Two GP-based approaches are proposed in (N. Al-Madi, 2013) [23]. The first ap-
proach, GP-K, uses the K-means clustering technique in order to transform the produced
value of GP into class labels. The second approach, GP-D, uses a discretization tech-
nique to perform a transformation, equivalent to the one performed by GP-K. After a
comparison made between GP, GP-K, GP-D, and other state-of-the-art classifiers, using
both binary and multiclass datasets, the results showed good improvements in terms of
accuracy when compared to the original GP. GP-D achieved higher accuracy values than
those of the original GP as well as the GP-K. The comparison with the state-of-the-art
classifiers revealed competitive accuracy values.

In (L. Guo, 2011) [29], the authors apply GP to perform automatic feature extraction
from original feature database used in this experiment, with the aim of improving the dis-
criminatory performance of a classifier while reducing the input feature dimensionality.
In experiments on two common epileptic EEG detection problems, the classification ac-
curacy of the KNN classifier on the GP-based features is significantly higher than on the
original features. Simultaneously, the dimension of the input features for the classifier is
much smaller than that of the original features.

2.6 Adaptation of Genetic Operator probabilities

A common problem in GP is knowing when each genetic operator is needed. Some
genetic operators can have a more positive impact on the initial stage of the evolution
and others on later stages. As we will see in this project, the effect each genetic operator
has on each stage of the evolution may vary from dataset to dataset. The usual approach
is to use a fixed probability to select each genetic operator. This section describes work
related to adapting the probabilities of selecting each genetic operator to the need of the



Chapter 2. Related work 13

population.
This subject has already been studied before in (A. Tuson, 1998) [30]. However,

unlike what will be done in this project, the author used Genetic Algorithms (GA), not
GP. Unlike GP, which is very robust in terms of parameters, as will be explained in this
section, GAs are very sensitive to their parameters, needing to be adapted to each problem.
In this dissertation, the author states that the automatic adaptation of probabilities could
benefit the population in three criteria. By reducing the amount of time that is spent
finding suitable values for GA control parameters, by increasing the quality of solutions
obtained, and by allowing the GA to find a solution of a given quality more quickly. To
study the effects varying the operators’ probabilities have on the GA performance, five
test problems were selected, each with differing properties. The conclusions taken were
that the operator probabilities used have a significant effect upon GA performance, and
appropriate values vary from problem to problem and that the population model used
has a big impact both upon performance and upon the behavior of the GA with different
operator probabilities.

Tuson’s dissertation [30] also touched a similar subject, not the adaptation of genetic
operator probabilities but the adaptation of the genetic operators. The conclusions taken
from this study are that adapting the genetic operator is not necessarily a good thing. It’s
also mentioned that these adaptations should be made outside that main GA algorithm
after analyzing the information on the datasets and that if improvements in performance
occur, they are likely to be in the speed of search, which can result in a possible detriment
of solution quality.

In (Niehaus J., 2001) [31], the authors make an attempt to reduce the number of free
parameters within GP without reducing the quality of the results by adapting the opera-
tors’ probabilities. This was a common procedure in areas such as Evolution Strategies,
and Genetic Algorithms, but GP had very few attempts with this procedure. In this paper,
three different methods of adaptation were tested.

The first method, Population-Level Dynamic Probabilities (PDP), states that the prob-
ability that each genetic operator has of being used, increases with the number of con-
secutive uses that increase the individual’s fitness. This method uses a counter to know
how many times a genetic operator has successfully increased the fitness of an individual.
This counter is reset if the operator fails to increase the individual’s fitness. The probabil-
ity each genetic operator has of being selected is given by the following expression 2.1,
where n is the number of genetic operators and pi is the probability of the operator i.

pi = pall +
⌊
ri
100− n · pall

scale

⌋
(2.1)

where

pall =
⌊20
n

⌋
, ri =

success2i
usedi

, scale =
n∑

j=1

rj .



Chapter 2. Related work 14

The second method, Fitness Based Dynamic Probabilities (FBDP), was created after
the initial experiments have shown that different operators have different success rates de-
pending on the fitness of their parent individual. This method gives different probabilities
to the genetic operators based on their previous success on the individuals with different
fitnesses, having a different probability for individuals with low or high fitness. Since the
article does not seem to be very explicit on how this probability evolve, the equations will
not be mentioned.

In the third method, Individual-Level Dynamic Probabilities (IDP), each individual
j has two arrays of values. One where its kept the genetic operator’s probabilities and
another, filled with counters cnt, that contain the number of consecutive uses of each
genetic operator on the individual that did not improve its fitness. Each counter is reset
if its respective GO is able to improve the individual’s fitness. The probabilities each GO
has of being used are calculated using a relation between their counter’s value and the
sum of all GO’ counters on the individual. The probability pi that each genetic operator
has of being selected is given by the expression 2.2.

pi = pall +
⌊(max1≤k≤n cnt

k
j + 1− cntij)(100− n · pall)

n(max1≤k≤n cntkj + 1)−
∑n

k=1 cnd
k
j

⌋
, (2.2)

where

pall =
⌊20
n

⌋
.

These three methods were compared to the standard method of selection and the re-
sults suggested that the average fitness of the population was higher when an adaptative
method was being used. Out of these three methods, the one with the best result was the
IDP. The reasoning used by the author was that the PDP uses the same probability for
all individuals and a good genetic operator for an individual with a good fitness may not
be good to an individual with lower fitness. The FBDP solves this problem by showing
different probabilities for individuals with different fitnesses but it fails at evolving larger
individuals where their structure is different and the same operator in two individuals
can have different results. With IDP, every individual has its own probabilities evolved,
learning what is good or bad for its fitness.

When working with evolutionary computation (EC), it is necessary to tune many pa-
rameters within the algorithm. In (M. Sipper, 2018) [33], the authors discuss an approach
for an automatic parameter-seeking process.

This method tried to optimize the values for the population size, number of genera-
tions, crossover rate, mutation rate, and tournament size, by using a meta-level genetic
algorithm over these parameters. This meta-GA’s population’s individuals select these
parameters from a predefined range of values and use them to evolve a population. The
evolution of this GA uses the results of n runs as its fitness, other than that, is very similar
to any other GA algorithm, not being worth to mention the evolutionary algorithm.



Chapter 2. Related work 15

The results obtained from this experiment indicate, unlike the common approach of
focusing on predefined ”good” values tends to suggest, there is a large range of good
parameter sets. The conclusions related to the size of the population, and the number
of generation, were that increasing these values does not necessarily lead to fitness im-
provements. The results should be good as long as they are not both low. The authors
refer to (Arnold C., 2017) [34], mentioning that recent findings suggest the use of fewer
generations. The conclusion related to the tournament size was that although the values
usually used are from 3 to 7, using higher values also give good results. Lastly, the con-
clusions related to the crossover and mutation rate are that these values can have many
diverse values, as long as they are not both small as that would decrease the variation of
the population over the generations.



Chapter 2. Related work 16



Chapter 3

Methodology

3.1 Datasets

The first stage of the project was the implementation of the M3GP algorithm and the
replication of the results reported in M3GP – Multiclass Classification with GP (2015)
[4]. In order to validate our implementation, we ran the algorithm with the same param-
eters and datasets as those used on the article. These datasets included a nice variability
on the number of samples, features, and classes, and therefore they were maintained for
the remainder stages of the project. They are HRT (Heart), SEG (Image Segmentation),
VOW (Vowel), YST (Yeast), M-L (Movement-Libra) and WAV (Waveform) which are
found in the UCI dataset repository [9] and the IM-3 and IM-10, from the U.S. geologi-
cal survey (USGS) earth resources observation systems (EROS) data center (EDC) [10].
Their number of classes, attributes, and samples are refered in Table 3.1.

Data Set HRT IM-3 IM-10 M-L SEG VOW WAV YST
No. of classes 2 3 10 15 7 11 3 10
No. of attributes 13 6 6 90 19 13 40 8
No. of samples 270 322 6798 360 2310 990 5000 1484

Table 3.1: Datasets used and their number of classes, attributes, and samples

3.2 Parameters

Since this project started with the comparison of our implementation with the original
M3GP work [4], the parameters used were also the same. They are listed in Table 3.2
and briefly described in this section. For a more comprehensive explanation of the M3GP
algorithm, the reader is refered to the next section.

The parameters determining the composition of the individuals are the function set
and the terminal set. The function set includes the sum, subtraction, multiplication and

17



Chapter 3. Methodology 18

protected division, in order to ensure the closure property [3]. The difference between the
normal division and our protected division is that if the divisor is 0, this division returns
the dividend. The terminal set contains the indices to the features of the data and random
constants between 0 and 1.

At the start of each run, the data set is shuffled and the first 70% of the samples
are selected as the training set. A population containing 500 individuals is then created
using the Full method [3] with a depth of 6. After its creation, the population evolves
until either reaching the 100th generation or the best individual of a generation achieves a
perfect accuracy on the training set.

During evolution, the best individual is selected to be pruned and the second best
is selected by elitism to move to the next generation while the remainder of the new
population is filled by selection individuals using a tournament of size 5 and applying one
of two crossover genetic operators or one of the three mutation genetic operators to create
a new individual. The individuals have a maximum depth of 17, which is enforced by
discarding any individuals that have a depth above this value when they are created.

All these parameters were maintained over the project with the exception of the prob-
ability that each genetic operator (GO) has of being picked. In the third stage of this
project, the boundary between mutation and crossover genetic operators is removed and
each genetic operator will start with an equal probability of being selected. This proba-
bility is meant to evolve for each individual over the generations.

Function set +, -, *, // (protected division)
Terminal set Index of features ∪ ]0,1[
Training set size 70% of the data set
Population size 500
Population initialization method Full
Initial maximum tree depth 6
Maximum tree depth 17
Number of generations 100
Tournament size 5
Elitism 1
Probability of crossover 0.50
Probability of mutation 0.50

Table 3.2: Parameters used on the runs by default



Chapter 3. Methodology 19

3.3 Algorithm

3.3.1 Elements of the M3GP algorithm

The initialization of our implementation of the M3GP is very similar to the one used
in standard GP and specified in Genetic Programming: On the programming of computers
by means of natural selection (1992) [3], and was made an attempt to be the same used in
(L. Muñoz, 2015) [4]. In this sub-section, we will describe the elements of our approach
when implementing the M3GP algorithm: we will describe how it is initialized, how the
individuals are evaluated, how the individuals are selected and evolve, what is the function
of the pruning GO, and how the elitism was implemented. In this sub-section, we may not
give details about some parameters that were already mentioned in 3.2. We will mention
some of the new genetic operators, but further details about them will only be given in
3.3.3. We should mention that the new mutation GOs are allegedly bad and were only
implemented in order to test the behavior of M3GP when it’s given the chance to avoid
using these operators.

Initialization: In order to search for more simple solutions first, each individual is
created with only one branch at its root. This means that in the first generation, all in-
dividuals have only one dimension. To promote diversity among the initial population,
every individual is created using the Full method. In other words, the initial population
would be the same in standard GP with the exception that the root node is a dummy
node whose only purpose is to agregate the branches that represent each dimension. This
dummy node is never changed by the genetic operators.

Evaluation: When an individual is created, it converts the training dataset into points
in a Rn space, where the centroid and covariance matrix of each class are then calculated.
Using these two elements, when a sample from a dataset is given to the individual, the Ma-
halanobis distance from the sample to each centroid is calculated, and the closest centroid
is selected class as the predicted class. Another variation was made in this project. This
variation used the Euclidean distance instead of the Mahalanobis distance. Other than
this, the fitness function is equivalent. The individuals are evaluated using an accuracy-
based fitness function. This kind of fitness function considers an individual superior to
another if it has the highest accuracy. If they tie on accuracy, the smaller individual is
preferred. The individuals could also be evaluated using a distance-based fitness function
that tried to increase the distance between centroids while decreasing the distance that
each sample has to their respective centroid. These fitness functions will be mentioned
later in 3.3.2.

Selection for breeding: The parents of the next generation of individuals are selected
by tournament. Each tournament receives the population and randomly selects five in-
dividuals. From these individuals, the one with the highest fitness is the winner of the
tournament, and a future parent.



Chapter 3. Methodology 20

Crossover: This implementation uses two crossover methods. Both methods receive
two individuals. The first method (St-XO) randomly selects a node in each individual
and swaps the nodes, just like the subtree crossover method proposed by Koza for the
standard GP. The second method (Swap-dim) randomly selects a dimension in each in-
dividual and swaps the dimensions. At the third stage of this project, a third crossover
method (Swap3-dim) was implemented. This method randomly selects a dimension in
each of three individuals and moves the first dimension to the second individual, the sec-
ond dimension to the third individual and the third dimension to the first individual.

Mutation: This implementation contains three mutation methods. The first method
(St-Mut) is the mutation used in standard GP. It randomly selects a node within the in-
dividual and replaces the node with a new tree generated using the Grow method. The
second method (Add-dim) adds a new dimension to the individual. This dimension is a
new tree generated using Grow. The third method (Rem-dim) removes a randomly se-
lected dimension from an individual with at least two dimensions. If the individual has
one dimension and the third method is selected, the individual is returned unmodified.
At the third stage of this project, four other mutation operators were implemented. One
removed all dimensions except one and turns that dimension’s root node into a terminal
node. Another randomly selects a dimension and turns its root node into a terminal node.
The other two methods randomly select a node within an individual. One turns the node
into a terminal node if it’s not terminal and if the node is terminal it’s replaced by a new
tree, generated using Grow. The other operator turns the node into a terminal node. A
more extensive description of these new mutation genetic operators is written in 3.3.3.

Pruning: Starting with the first dimension of the individual and ending with the last
dimensions. This method evaluated the individual without one of its dimensions at a time.
If its fitness improves with the removal of this dimensions, this dimensions is removed
permanently. If the individuals have only one dimension, this method does nothing to the
individual. Due to the high computational complexity of this operator, it is applied only
to the best individual of each generation.

Elitism: Besides the pruned individual, the second best individual is always selected
to move to the next generation without any modifications made.

Genetic Operator Selection: At the first stage of this project, the program would
randomly select, with equal probability, either crossover or mutation. After this, it would
randomly select a specific genetic operator of that category from those available. For the
third stage of this project, the barrier between crossover and mutation was removed and
initially each specific genetic operator has the same probability of being selected. Unlike
before, this probability does not have a fixed value, it is meant to be able to increase or
decrease according to its effect on the fitness of the individuals.

The evolution ends when the maximum number of generations is reached or when
an individual has perfect accuracy on the training set. Until one of these conditions is



Chapter 3. Methodology 21

n Number of nodes of the individual
d Number of dimension of the individual
c Number of classes on the dataset
s Number of samples on the training set
si Coordinates of the sample i on the output space
ccc Coordinates of the centroid i
cli Coordinates of the centroid of the labeled class for the sample i
Acc Overall accuracy of the individual

Table 3.3: Variables used in the fitness functions

met, the following steps will occur in a cycle: The individuals are evaluated using the
chosen fitness function. They are then sorted from best to worst. The best individual is
selected to be pruned and is added to the next generation, while the second best is selected
through elitism. Until the next generation has 500 individuals, individuals are selected via
tournament to be used in crossover or mutation. If the resulting individual from a genetic
operation has a depth greater than 17, it is discarded.

3.3.2 Fitness Functions

As mentioned before, in this project we intend to replace an accuracy-based fitness
function with a distance-based fitness function. To do that, we implemented and tested
two distance-based fitness functions. Since these functions use the Euclidean distance, to
have a fair point of comparison, we also implemented an accuracy-based fitness function
that classifies a sample by associating it with the class of the closest centroid on the output
space of the individual, using the Euclidean distance instead of the Mahalanobis distance.
This function allows us to know if a distance-based fitness function has better results than
an accuracy-based fitness function.

Here we describe each of the different fitness functions implemented. These functions
use as variables the size and number of dimensions of the individual, the number of classes
and samples on the training set, the coordinates of the samples on the output space, and
the coordinates of the centroids of each class. These variables’ description can be seen in
Table 3.3.

Sigmoid:
Sigmoid functions have a few properties that are very useful for our fitness functions.

They are strictly crescent, return a value in ]0, 1[, and, for positive values, the growth never
stops decreasing. This last part can be confirmed by deriving the sigmoid function. For
positive values, the derivate is strictly decrescent and tends to 0. We decided to use this
sigmoid function 3.1 because although all sigmoids have these properties, this sigmoid
has a slower growth. From a x value onwards, the value obtained by S(x) will be 1. This



Chapter 3. Methodology 22

happens because the program has a limited precision, implicitly rounding the value. Since
this function has a smaller growth, this x value will be greater.

The range of values on the counter domain is exploited to normalize our functions and
to untie individuals with the same accuracy on accuracy-based fitness functions. For
a dataset with n features, the accuracy of an individual will be a value in {i/n, i ∈
N
∧

i <= n}. This means that there is a 1/n gap between two values. This function
is used to untie individuals with the same accuracy by removing from their accuracy the
sigmoid of their size, divided by n.

The distance-based fitness functions use the growth of the sigmoid function to more
easily separate the clusters while bringing the samples closer to their respective centroids.
Since the growth of the sigmoid is higher for smaller values, using the sigmoid means
that the variation in fitness will be smaller after the clusters are already separated, since
the space will have large inter-cluster distances, and that as we bring the samples closer to
their class centroid, the impact of moving them even closer will only increase, since the
output space will have small intra-cluster distances.

S(x) =
x

1 + |x|
(3.1)

Mahalanobis accuracy with size to untie: (MA)
The fitness function that was initially used by our implementation of the M3GP algo-

rithm is given by the following expression. It states that individuals with higher accuracy
have a better fitness. The sigmoid function returns a value that is used to untie the in-
dividuals with the same accuracy by giving the smaller individuals a better fitness. The
smaller individuals have this benefict as by having less structure, they have less room to
overfit [36].

Acc− S(n)

s
(3.2)

Euclidean accuracy with size to untie: (EA)
Due to the high computational complexity of the previous fitness function, we imple-

mented this function to be used in the second and third stages of the project. With this
function, we can obtain the results way faster since we are using a distance with a linear
complexity, instead of a distance with polinomial complexity. This function works in the
same way as the previous expression but uses the Euclidean distance instead of the Ma-
halanobis distance.

Euclidean distance divided by the number of dimensions: (ED1)
A general problem with working with high dimensions is that intuition tends to fail

when we are making an attempt to ”visualize” the search space. One case where intuition



Chapter 3. Methodology 23

fails, mentioned in [36], is that ”Most of the volume of a high-dimensional orange is
in the skin, not the pulp.”. If we have an orange whose pulp radius is 95% of its total
radius, in R3 the pulp volume will be 85.7% of the total volume of the orange, while
in R20 the pulp will be only 35.8% of the total volume. Another well-known problem
with high-dimensional spheres is a ”the High-Dimensional Spheres in Cubes paradox”.
Image a space in R2 that has a square with opposite vertices in (1, 1) and (−1,−1), and
unit circles in each vertice. If we want to insert in this square the largest circle we can
that does not touch the sphere, we have to subtract the radius of the unit circles to half
of the diagonal of the square. This means that if we use the Pythagoras’ Theorem we
conclude that the radius of the inner circle will be

√
2− 1. The Pythagoras’ Theorem can

be extended to Rn, allowing us to know that the diagonal of an n-dimensional cube, with
side l, is l

√
n. This paradox starts in five dimensions. The solution to this problem is the

same as before. The 5-dimensional sphere will have a radius of
√
5−1. Since

√
5−1 > 1,

the inner sphere will have a radius that is larger than the side of the 5-dimensional cube.
Although ignoring these problems and hope that the classifier adapts to each is a valid

approach, it is important to acknowledge that these problems exist and try to minimize
their effect on the classifier. Since distances in higher dimensions tend to be higher, com-
paring individuals with a different number of dimensions can be something not as trivial
as comparing individuals with the same number of dimension. As an attempt to minimize
this problem, we try to normalize the distances across individuals with a different number
of dimensions by dividing the distances by the number of dimensions.

We made this function 3.3 as an attempt to increase the distance between clusters
while reducing the distance that each sample has to the centroid of its labeled class.

Since we are using the sigmoid function, after separating the cluster, the individual
will not benefit from further separation. On the other hand, the benefit each sample has
for getting closer to the centroid will always be increasing as the growth of the function
is greater for distances closer to zero.

S

(∑c
i=1

∑c
j=i+1 cci · ccj

c× (c− 1)× d

)
− S


√∑s

i=1 (si · cli)
2

d

 (3.3)

Euclidean distance divided by the root of the number of dimensions: (ED2)
After the previous fitness function was tested, we noticed that the individuals tended

to have the same number of dimensions as those on the Euclidean accuracy function.
Although this shows that we can have an equivalent population when using a distance-
based fitness function, we wanted to try another distance-based fitness function 3.4 that
would have a better normalization of the distances across spaces with different numbers
of dimensions. Since the distance from a point in Rn with all coordinates set as 1 to
the origin of the space is

√
n, we made a slight change to the function in a new attempt



Chapter 3. Methodology 24

to normalize the distances between individuals with a different number of dimensions,
hoping that this change would lower the number of dimensions.

S

(∑c
i=1

∑c
j=i+1 cci · ccj

c× (c− 1)×
√
d

)
− S

√∑s
i=1 (si · cli)

2

d

 (3.4)

3.3.3 Genetic Operators

All M3GP variants until now have worked with genetic operators that have fixed prob-
abilities of being selected. This selection was made by first randomly selecting a category,
either crossover or mutation, and then randomly selecting a specific genetic operator of
this type. In this project, we try to improve the results by implementing a new solution
for the selection of the genetic operators.

Before explaining how our proposal was implemented, it is necessary to remind the
reader that what we intend to do is evolve the probabilities each genetic operator has of
being used. The algorithm increases or reduces the probability of occurence of a genetic
operator according to the effect it has on the individuals’ fitness. In this implementa-
tion, each individual will evolve the probability it has of selecting each specific genetic
operator.

The modifications made to the algorithm were quite simple. First, the division be-
tween crossover operators and mutation operators was ignored, leaving all the genetic
operators under the same category. This means that each genetic operator has the same
probability of being chosen. Since the individual is supposed to evolve the probability
that each GO has of being used, it received a new attribute, an array with size equal to
the number of GOs where all positions start with the value 1. The probability a genetic
operator has of being selected is equal to its value divided by the sum of the value of all
operators.

To do the selection of genetic operators, we implemented a roulette, weighted with the
values of the individuals’ probability array. This method associates a randomly generated
value between 0 and the sum of the values in the array to a genetic operator. After a
genetic operator is chosen and used, it creates a descendant that receives the probability
array from one of its parents. When a genetic operator uses more than one individual,
the same number of descendants is made and each descendant receives the probability
array of one of its parents. The descendant is then evaluated using the fitness function. If
the individual has a better fitness than its parents average, the value that genetic operator
has in the descendants’ array is increased by 0.1. If the fitness decreased, the value is
decreased by 10% but never goes below 0.1. We force the value to stay above 0.1 so that
the algorithm never rejects a genetic operator completely, as it may be bad at the start of



Chapter 3. Methodology 25

the evolution but be useful in later generations. One trivial example is the genetic operator
that removes one dimension. Since the individuals are created with only one dimension,
this method is useless at the first generation. However, if its probability drops too low, it
may never be used on later generations where it is needed, because its value will be near
0.

After we observed the results using the five original genetic operators, five other ge-
netic operators were implemented to test the capability the algorithm has to avoid bad
genetic operators and, to test the algorithm reaction when faced with our new crossover
operator. This crossover method is different from the ones the algorithm already has be-
cause it uses three individuals as parents. Besides this crossover genetic operator, we
implemented four mutation genetic operators that are meant to be bad genetic operators.
The crossover genetic operators one and two, and the mutation genetic operators one
through three, are the genetic operators used on the original implementation of the M3GP
algorithm. As they were already mentioned in 3.3.1, they will not be mentioned here. A
brief description of what the newly implemented genetic operators do can be seen here:

Mutation 4 (Grow or Trim): This operator first randomly selects a node within an
individual, and has a different behavior whether the node is a terminal or a non-terminal.
If the node is terminal, it applies the standard GP mutation in this node. If the node is
non-terminal, it applies the Trim method in this node.

Mutation 5 (Trim): This method first randomly selects a node within an individual,
and then replaces it with a terminal node.

Mutation 6 (Chop): This method first randomly selects a dimension within the
individual, and then turns the root node of this dimension into a terminal node.

Mutation 7 (Singularitree): This method first removes all of the individual’s dimen-
sions, then adds a branch, created using the Full method with depth 1, to the individual’s
dimensions. The result is an individual with only one node.

Crossover 3 (Swap3-dim): This method first randomly selects one dimension in
each of three individuals, then it moves the first individual’s dimension to the second
individual, the second individual’s dimension to the third individual, and the third indi-
vidual’s dimension to the first individual. We informally call this operator ”menage à
trois”.





Chapter 4

Implementation

4.1 Overview

This implementation is based on the standard Genetic Programming algorithm, pro-
posed by J. R. Koza in Genetic Programming: vol. 1, On the programming of computers
by means of natural selection (1992) [3] and is extended to the M3GP algorithm using the
algorithm proposed by Munõz L., Silva S. and Trujillo L in M3GP - Multiclass Classifica-
tion with GP (2015) [4]. The main change to the algorithm was that now each individual’s
instead of containing a single node, they will contain a mutable array of nodes. In addi-
tion to this, the old methods for both crossover and mutation and the fitness function had
to be replaced. Some additional classes also had to be implemented in order to support
some more complex fitness functions. More details about the function of each class will
be given in the next section.

This implementation is meant to be used either on the terminal, by creating a runnable
jar file using the ClientWekaSim as the main class, or as part of a machine learning pack-
age, Weka [6].

4.2 Java Implementation

This section contains a brief explanation of the class diagram, followed by the de-
scription of the function that each class has in our original implementation of the M3GP
algorithm. The class diagram made for this implementation has been split into three parts
for a better comprehension:

• Initizalition:

The part of the class diagram referent to the initialization of the classifier can be
seen in A.1. Here, we can see that ClientWekaSim first uses the class Data to read
a data file and then creates a population. The M3GP class does not need to do this
as the dataset is read by Weka.

27



Chapter 4. Implementation 28

• Evaluation:

The part of the class diagram referent to the evaluation of the population’s individu-
als can be seen in A.2. Here, we can see that the individuals (Tree) use their Nodes
to calculate the output values of the samples to then use the Arrays and Matrix
classes to make the prediction they need to know their accuracy.

• Evaluation:

The part of the class diagram referent to the usage of genetic operators on the pop-
ulation’s individuals can be seen in A.3. Here, we can see that the Population-
Functions class uses each genetic operator type Handler to obtain new individuals.
These Handlers use the NodeHandler class to make alterations to the individuals
and obtain new ones.

The remainder of this section will describe the function that each class has in our
original implementation of the M3GP algorithm.

• weka.classifiers.trees.M3GP

This class can be the one used by Weka to run the classifier. It receives the dataset
from Weka and will use the default values for all variables of the classifier. The
user may change some of them, such as the population size and the number of
generations using parameters on Weka.

The number of variables the user can change was kept to a minimum since we
decided that the user should have as little input as possible, as one of the objectives
is to evolve the parameters rather than having them hardcoded or chosen by the user.
The reduced number of options also has the benefit of making the classifier more
user-friendly by asking only what might be critical to the user since its computer
might not have the processing power to compute a large population or the time to
complete many generations.

• weka.classifiers.trees.m3gp.client.ClientWekaSim

Since initially this implementation was meant to be part of Weka and every time we
changed the code we had to copy the classes to the Weka folder and recompile the
project, we made this class to simulate Weka and allow us to run the classifier in a
stand-alone version.

This class contains all the parameters as static attributes so that the user/programmer
may change them easily. This class has as an output a JSON file containing the re-
sults of the run. These results are the model of the best individual of each generation
and the output space that is obtained by converting the dataset.



Chapter 4. Implementation 29

• weka.classifiers.trees.m3gp.node.Node

The objects from this class represent nodes of a binary tree. Each Node object
contain as atributes a Double value v and two Nodes l and r which will not be
initialized if the Node is terminal.

If a node has both l and r set as null, the node is considered terminal, otherwise, the
node is non-terminal. For terminal nodes, v can either represent an index a feature
of a sample or be a random number between 0 and 1, decided when the node was
created. This means that v ∈ {N<No. operators ∪ ]0, 1[ }. For non-terminal nodes, v
is an index to a function on the fuction set, making v ∈ N<No. operators.

In this project, the function set includes only the sum, subtraction, multiplication,
and protected division operations. This means that a node will always return a value
in R.

• weka.classifiers.trees.m3gp.node.NodeHandler

This class contains basic functions that allow operations with nodes. Functions
such as the selection of a random node within the structure, swapping the contents
of two nodes and redirecting one node to another.

• weka.classifiers.trees.m3gp.population.Population

This class is the core of the classifier. It has a constructor that receives all the pa-
rameters, a void method to evolve the population, and a String method that receives
a dataset row and returns the prediction for the classification.

This class uses the methods from PopulationFunctions to evolve the population.

• weka.classifiers.trees.m3gp.population.Population$FitnessCalculator

The objects of this class are only meant to allow the classifier to use multiple threads
to do parallel work while evaluating the individuals. When the evaluation step of
begins, the programs creates a pool using n threads. This pool is then filled with
tasks. Each task is the evaluation of an individual. After the tasks are all submitted,
the program calculates the fitness of the individuals in parallel, saving execution
time.

• weka.classifiers.trees.m3gp.population.PopulationFunctions

The core of the algorithm is in the class Population and it is not supposed to be
changed. We made this class in order to make the alterations to the implementations
easier by separating the functions related to the evolution of the population. This
class contains the methods responsible for the fitness and for calling the handlers
for the crossover, mutation, and pruning.



Chapter 4. Implementation 30

• weka.classifiers.trees.m3gp.tree.Classification

This class contains a classification method with a switch to redirect the call to the
classification method selected at the start of the run. This class was made to switch
easily between the classification methods when trying new functions.

• weka.classifiers.trees.m3gp.tree.Tree

This class’ Objects represent the individuals of the population.

Each individual contains an ArrayList of nodes that represent the dimensions of the
individual, an ArrayList of centroids, and an ArrayList of the respective classes.
The individuals also have attributes which might or might not be initialized de-
pending on the fitness function and classification method used. These attributes are
a Double matrix which contains the coordinates of each point from the output of
the training set and the respective covariance matrix.

Since each individual contains an ArrayList of nodes and each node outputs a value
in R, the individuals’ output will be a value in Rn.

• weka.classifiers.trees.m3gp.tree.TreeCrossoverHandler

This class contains the method responsible for the crossover between two individu-
als. This method receives two parent individuals and returns two descendants. One
of the available crossover methods randomly selects a dimension in each of the in-
dividuals and swaps them, while the other method randomly selects a node within
each individual and swaps the node, using the crossover algorithm from standard
GP.

• weka.classifiers.trees.m3gp.tree.TreeMutationHandler

This class contains the method responsible for the mutation of an individual. This
method receives an individual and picks one of the methods available for the indi-
vidual with an equal chance. It can mutate one dimension, using the same process
as the standard GP algorithm, create a new dimension by adding a new node to
the individuals root and mutating it or remove a randomly selected dimension. The
method only removes a dimension if the individual has at least two dimensions.

• weka.classifiers.trees.m3gp.tree.TreeGeneticOperatorHandler

We implemented his class to replace the Mutation and Crossover handlers for the
third stage of the project. This class contains all the genetic operator methods from
the initial algorithm and a few other methods, mentioned at section 3.3.3.

• weka.classifiers.trees.m3gp.tree.TreePruningHandler

This class contains the method responsible for pruning an individual. For each
dimension the individual has, this method removes it and compares the resulting



Chapter 4. Implementation 31

individuals’ fitness to the original. If the fitness improves, this dimension is perma-
nently removed from the individual. This allows the removal of dimensions that are
prejudicial to the individuals’ fitness.

• weka.classifiers.trees.m3gp.util.Arrays

This class contains methods that operate with Arrays that were found useful to im-
plement. The only two methods that are worth mentioning here are the method that
calculates the Mahalanobis[12] distance and the one that makes the merge sort. The
implementation of the merge sort is used to sort the individuals of the population
by the values in the array containing the fitness of each individual.

• weka.classifiers.trees.m3gp.util.Data

This class is meant to be used only by the WekaSimClient. It has only one method
which reads a .csv file, stores the samples and features of the dataset in a Double
matrix, and the labeled classes of the samples in a String Array. This method returns
an Array containing the Double matrix on the first position the String Array on the
second position.

• weka.classifiers.trees.m3gp.util.Matrix

This class contains a few methods involving matrices. The more relevant methods
are those that calculate the Moore-Penrose inverse matrix [5], the covariance matrix,
and the inverse matrix.





Chapter 5

Results

5.1 Implementation of our M3GP

In order to validate our implementation, several runs using the same datasets and
parameters as those in M3GP - Multiclass Classification with GP (2015) [4] were made.
The results obtained will be analyzed in the next two subsections. The boxplot graphs
displayed in this project were made using R [41] and the plots displayed were made using
the Matplotlib library [42] for Python 3.

5.1.1 Comparison of results

In Table 5.1, we can see the comparison made between the original algorithm and
the results obtained with our implementation. These results are all related to the best
individuals of the last generation. The table contains the median values of 30 runs for
the training and test fitness, the number of nodes of the individual and its number of
dimensions, also indicating the minimum and maximum number of dimensions, observed
on the best individual at the end of each run.

Despite having followed the M3GP specifications in [4], the number of nodes and di-
mensions we observed were outside the expected range of values in most of the datasets.
This may have been due to the original M3GP being implemented over the GPLAB tool-
box [39] which contains additional bloat control [37, 38] measures set by default.

In terms of accuracy, the medians are similar in most cases, but a deeper analysis
was performed and two boxplots were drawn, one for training accuracy (Figure B.2) and
one for test accuracy (Figure B.3). Once again, some differences were detected, both in
training and test accuracy. As the results we achieved were not necessarily worse than
the original ones, we accepted we could use this implementation in the next stages of the
project.

33



Chapter 5. Results 34

HRT IM-3 IM-10 M-L SEG VOW WAV YST
Training fitness
Original M3GP 0.947 0.996 0.930 1.000 0.981 1.000 0.907 0.685
Our implementation 0.942 0.991 0.942 1.000 0.979 1.000 0.885 0.719
Test fitness
Original M3GP 0.790 0.954 0.910 0.571 0.956 0.938 0.843 0.562
Our implementation 0.790 0.948 0.921 0.532 0.958 0.919 0.849 0.549
Number of Nodes
Original M3GP 110 66 239 13 111 53 71 274
Our implementation 219 57 495 644 390 229 49 511
Nr. of dimensions
Original M3GP 12 (1-17) 5 (2-8) 12 (11-16) 12 (10-13) 11 (5-21) 20 (16-20) 31 (29-37) 13 (11-18)
Our implementation 10 (6-19) 5 (3-9) 29 (11-40) 13 (11-15) 15 (6-22) 20 (18-24) 20 (17-22) 25 (12-37)

Table 5.1: Comparison of results between the original implementation of M3GP and our implementation

5.1.2 Evolution of the population

The values displayed in Table 5.2 are the median of the number of nodes, and dimen-
sions, within the best individuals of the 15th, 25th, 50th, and 100th generations. This table
also contains the median of the number of nodes per dimension of the best individual, as
we wanted to know how the size of the dimensions would grow over the generations.

These results indicate that the populations trying to learn datasets with more classes,
such as the IM-10, M-L, VOW, and YST, have a greater initial growth on the number of
dimensions. This suggests that it is highly beneficial to the individuals to explore spaces
in high dimensions. On the other hand, populations learning datasets such as HRT, SEG,
and WAV, initially explore spaces with a lower number of dimensions and then tend to
increase the number of dimensions with the passing of the generations. This might mean
that although the population can initially evolve the individuals while maintaining them
with few dimensions, at some point it needs to increase the number of dimensions to
learn the datasets. With the IM-3 dataset, the population starts by exploring spaces with
few dimensions and continues this way, not finding benefits in exploring spaces in higher
dimensions. It’s worth mentioning that although the individuals can stop their training by
achieving perfect training accuracy, this is not the case. As we can see in Table 5.1, the
median of the training accuracy for the IM-3 dataset is not 1, meaning that at least in half
the runs, the state of perfect training accuracy was not reached.

Another conclusion we take from Table 5.2 is that with the initial generations, we
might be able to know if a dataset will need complex or simple trees to be learned since
with the exception of the SEG and VOW datasets, the number of nodes per dimension is
on the same order of magnitude.

In previous work [8], the M-L dataset showed a peculiar behaviour when compared
with other datasets. The M2GP was tested several times on this dataset using populations
with 1 to 20 dimensions. Starting from the populations that had 14 dimensions onward, all
populations showed lower training accuracy than the populations that had 13 dimensions.
This may justify why the M-L populations stop growing after reaching 13 generations.



Chapter 5. Results 35

HRT IM-3 IM-10 M-L SEG VOW WAV YST
No. of Nodes
15th Generation 133 61 105 644 65 48 13 150
25th Generation 168 69 167 644 118 97 10 224
50th Generation 202 58 324 644 210 216 16 394
100th Generation 219 57 495 644 390 229 49 511
No. of Dimensions
15th Generation 5 4 9 11 6 8 6 10
25th Generation 6 5 12 13 8 12 8 13
50th Generation 8 5 20 13 11 20 13 19
100th Generation 10 5 29 13 15 20 20 25
No. of Nodes per Dimension
15th Generation 26.6 15.3 11.7 58.5 10.8 6.00 2.17 15.0
25th Generation 28.0 13.8 13.9 49.5 14.8 8.08 1.25 17.2
50th Generation 25.3 11.6 16.2 49.5 19.1 10.8 1.23 20.7
100th Generation 21.9 11.4 17.1 49.5 26.0 11.5 2.45 20.4

Table 5.2: Evolution of the number of nodes and dimensions over the generations for our implementation

5.2 Fitness Functions

For the second stage of this project, we wanted to replace the accuracy-based fitness
function of M3GP with a distance-based fitness function, with the objective of promoting
a smoother and faster evolution. As one of the motivations for this work was to reduce
the excessive computational complexity of the original fitness function, we decided to
abandon the Mahalanobis distance on this stage of the project, and use only the Euclidean
distance. Since previous work in the M2GP [8] algorithm compared these two distances
for classification and showed that using the Mahalanobis distance provided better results,
instead of using the results obtained on the previous stage of this project, we compared
the new distance-based fitness function results with the results obtained when using an
accuracy-based fitness function that uses the Euclidean distance (EA). Both new distance-
based fitness functions have the objective of separating the class centroids on the output
space of the individual while bringing their respective samples closer to the centroid.

As mentioned before, in 3.3.2, two distance-based fitness functions were implemented.
Since distances tend to be greater in spaces of higher dimensions, an attempt was made
to normalize the distances in order to compare individuals with a different number of
dimensions. This was made in the first sigmoid fitness function (ED1) by dividing the
distances by the number of dimensions, and in the second sigmoid fitness function (ED2)
by dividing the distances by the root of the number of dimensions.

5.2.1 Comparison of results

Of the two fitness functions tested, the ED2-FF was at a clear loss since it did not
allow the population to produce a geometric space where the samples could be correctly
classified. On the other hand, the ED1-FF produced results extremely similar to the ones
obtained using the EA-FF, (even after a re-run with both functions).

Looking at Table 5.3, one can see that the populations using the ED2-FF kept their



Chapter 5. Results 36

number of dimensions really low while keeping each dimension much larger than whole
individuals from populations using EA-FF and ED1-FF. This can be caused by the fitness
function not being able to normalize the individuals across different dimensions properly,
punishing too hard individuals that attempt to obtain more dimensions. Although the
individuals maintained a very low number of dimensions, they try to separate the clusters
with very complex functions.

Discarding the ED2-FF, we tried to identify any significant differences between the
results obtained with the EA-FF and the ED1-FF. We compared the number of dimensions
Figure B.1, the training and test accuracy on all datasets in the Figures B.4 and B.5.

The comparison of the results obtained by the populations using the EA-FF and the
populations using the ED1-FF was made using the Kruskal-Wallis test to obtain the re-
sults’ p-value, displayed in Table 5.4. Adopting a significance level of 0.01, these results
show no significant differences with the exception of the IM-10 dataset that has borderline
significantly worse results when using the ED1-FF.

When comparing the plot graphs made to analyse the evolution of the populations
learning each datasets, we could see that the evolution of the fitness was quite similar in
all datasets, having plots like those on Figures 5.1 and 5.2. The only exceptions were the
HRT and MCD-3 populations, that had a bigger gap between the lines ploted, as can be
seen in the Figures 5.3 and 5.4.

HRT IM-3 IM-10 M-L SEG VOW WAV YST
Training fitness
EA-FF 0.894 0.940 0.829 0.743 0.923 0.719 0.842 0.591
ED1-FF 0.889 0.938 0.822 0.751 0.926 0.721 0.845 0.598
ED2-FF 0.569 0.324 0.111 0.116 0.150 0.104 0.333 0.018
Test fitness
EA-FF 0.815 0.887 0.823 0.560 0.908 0.635 0.833 0.555
ED1-FF 0.802 0.897 0.812 0.573 0.914 0.628 0.835 0.552
ED2-FF 0.549 0.320 0.108 0.092 0.145 0.091 0.333 0.011
No. of Nodes
EA-FF 95 46 264 839 417 120 18 245
ED1-FF 99 50 215 845 412 133 16 236
ED2-FF 836 569 555 1302 1065 609 1281 370
No. of dimensions
EA-FF 5 (2-7) 3 (1-8) 12 (7-12) 14 (9-17) 13 (7-19) 15 (10-20) 14 (11-19) 12 (8-16)
ED1-FF 5 (1-8) 3 (1-11) 12 (6-15) 13 (8-18) 11 (10-17) 15 (12-19) 14 (10-17) 13 (10-17)
ED2-FF 1 (1-2) 1 (1-2) 1 (1-2) 1 (1-2) 1 (1-2) 1 (1-2) 1 (1-2) 1 (1-2)

Table 5.3: Comparison of results between the different fitness functions

HRT IM-3 IM-10 M-L SEG VOW WAV YST
EA vs ED1
Training 0.4982 0.9586 0.0144 0.7058 0.4824 0.8649 0.0976 0.4731
Test 0.6614 0.8009 0.0087 0.1196 0.1758 0.6411 0.3706 0.4201

Table 5.4: p-values obtained by comparing the results from the populations learning the datasets using
the EA-FF and the ED1-FF. The underline is used to symbolize that the EA had a significantly better result
than ED1.



Chapter 5. Results 37

0 20 40 60 80 100
Generations

0.55

0.60

0.65

0.70

0.75

0.80

0.85
Ac

cu
ra

cy

Train-WAV
EA-FF
ED1-FF

0 20 40 60 80 100
Generations

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

TEST-WAV
EA-FF
ED1-FF

Figure 5.1: Evolution of training(left) and test(right) accuracies of the EA-FF and ED1-FF populations
when learning the WAV dataset.

0 20 40 60 80 100
Generations

0.35

0.40

0.45

0.50

0.55

0.60

Ac
cu

ra
cy

Train-YST
EA-FF
ED1-FF

0 20 40 60 80 100
Generations

0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

TEST-YST
EA-FF
ED1-FF

Figure 5.2: Evolution of training(left) and test(right) accuracies of the EA-FF and ED1-FF populations
when learning the YST dataset.

5.2.2 Evolution of the population

In order to study the evolution of populations using the EA fitness function and pop-
ulations using the ED1 fitness functions, a table containing the number of nodes, the
number of dimensions, and the number of nodes per dimension on the 15th, 25th, 50th,
and 100th generations was used. The information about the EA-FF population can be seen
in Table 5.5, and the information about the ED1-FF can be seen in Table 5.6.

The results displayed in these two tables show that when using the Euclidean distance,
the initial benefit of exploring spaces in higher dimensions is lower than when the Maha-
lanobis distance is used. This removes the initial difference of the number of dimensions
across the datasets that could be seen when we were using the Mahalanobis distance in
Table 5.2. One thing that was maintained with this change was the order of magnitude of
the size of each dimension. Once again, we can see that in most datasets, the size of each
dimension is maintained over the generations.

After analyzing these tables, we concluded that the evolution of the population using



Chapter 5. Results 38

0 20 40 60 80 100
Generations

0.80

0.82

0.84

0.86

0.88

Ac
cu

ra
cy

Train-HRT
EA-FF
ED1-FF

0 20 40 60 80 100
Generations

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

Ac
cu

ra
cy

TEST-HRT

EA-FF
ED1-FF

Figure 5.3: Evolution of training(left) and test(right) accuracies of the EA-FF and ED1-FF populations
when learning the HRT dataset.

0 20 40 60 80 100
Generations

0.89

0.90

0.91

0.92

0.93

0.94

Ac
cu

ra
cy

Train-MCD-3
EA-FF
ED1-FF

0 20 40 60 80 100
Generations

0.86

0.87

0.88

0.89
Ac

cu
ra

cy

TEST-MCD-3
EA-FF
ED1-FF

Figure 5.4: Evolution of training(left) and test(right) accuracies of the EA-FF and ED1-FF populations
when learning the MCD3 dataset.

these two fitness functions is quite similar. Even the average values over all datasets
are almost the same, as shown in Table 5.7. The only difference that might be worth
mentioning is the average number of nodes per dimensions on the 15th generation. The
population using the distance-based fitness function managed to have an average of 294.3
nodes per dimension while the population using an accuracy-based fitness function only
had 218.9 nodes per dimension. This suggests that the individuals using a distance-based
fitness function may try to initially learn the dataset with more complex dimensions.

5.3 Genetic Operators

In the third stage of the project, we changed the method for the selection of genetic
operators from one that uses a fixed probability for each genetic operator to one that tries
to evolve the probability of selection that each genetic operator has. To do so, we removed
the boundary between mutation and crossover genetic operators, giving all genetic opera-



Chapter 5. Results 39

HRT IM-3 IM-10 M-L SEG VOW WAV YST
No. of Nodes
15th Generation 54 44 51 260 106 14 5 95
25th Generation 88 50 85 384 160 25 6 133
50th Generation 104 40 147 587 262 58 10 183
100th Generation 95 46 264 839 417 120 18 245
No. of Dimensions
15th Generation 3 2 4 5 5 6 5 6
25th Generation 4 2 7 6 6 7 6 8
50th Generation 4 3 9 9 9 10 9 10
100th Generation 5 3 12 14 13 15 14 12
No. of Nodes per Dimension
15th Generation 18.0 22.0 12.8 52.0 21.2 2.33 1.00 15.8
25th Generation 22.0 25.0 12.1 64.0 26.6 3.57 1.00 16.6
50th Generation 26.0 13.3 16.3 65.2 29.1 5.80 1.11 18.3
100th Generation 19.0 15.3 22.0 69.9 32.1 8.00 1.29 20.4

Table 5.5: Evolution of the number of nodes and dimensions over the generations for the EA-FF

HRT IM-3 IM-10 M-L SEG VOW WAV YST
No. of Nodes
15th Generation 77 27 39 272 83 13 5 91
25th Generation 86 29 65 401 152 29 6 125
50th Generation 109 43 128 560 279 63 10 175
100th Generation 99 50 215 845 412 133 16 236
No. of Dimensions
15th Generation 3 2 5 5 5 6 4 7
25th Generation 3 2 6 7 6 8 6 8
50th Generation 4 3 9 10 9 11 10 10
100th Generation 5 3 12 13 11 15 14 13
No. of Nodes per Dimension
15th Generation 25.7 13.5 7.80 54.4 16.6 2.17 1.25 13.0
25th Generation 28.6 14.5 10.8 57.3 25.3 3.63 1.00 15.6
50th Generation 27.3 14.3 14.2 56.0 31.0 5.73 1.00 17.5
100th Generation 19.8 16.7 17.9 65.0 37.5 8.87 1.14 18.2

Table 5.6: Evolution of the number of nodes and dimensions over the generations for the ED1-FF

tors an equal chance of being selected. This probability then evolves with each individual,
increasing everytime the operator is used and creates a descendant with a better fitness,
otherwise, the probability that genetic operator has of being used is reduced. As a second
sub-stage, five other genetic operators were implemented and added to the algorithm. The
information in this paragraph can be further reviewed in section 3.3.3.

Since we obtained no relevant differences between using the EA-FF or using the ED1-
FF, both of them were tested in this stage of the project as another attempt to find any
difference in their evolution. Each fitness function was used twice, once when the five
original genetic operators are used, and again when the five newly implemented genetic
operators are also used. Unlike the two previous sections, this section will include a third
subsection where the evolution of the genetic operators will be studied.



Chapter 5. Results 40

Dimensions Nodes Nodes per dimension
EA-FF
15th Generation 4.50 78.63 218.9
100th Generation 11.0 255.5 339.5
ED1-FF
15th Generation 4.63 77.13 294.3
100th Generation 10.8 250.8 345.3

Table 5.7: Comparison between the average number of nodes, dimensions, and nodes per dimension of
using the EA-FF and the ED1-FF, over all the datasets

5.3.1 Comparison of results

The results obtained in this stage of the project once again show a very similar evolu-
tion between the populations using the accuracy-based or distance-based fitness functions
under the same conditions. Therefore, the results obtained from using the ED1-FF will
not be compared with the results obtained from using the EA-FF. We will however com-
pare the results that each population had in stage 2, displayed in Table 5.3, with those
obtained in this stage when using five and ten GOs with adaptable probabilities.

One observation we can make when comparing the results obtained in this stage and
displayed in Table 5.8, with the ones obtained on the second stage of the project, is that
using our method for the evolution of genetic operator probabilities tends to create in-
dividuals with a higher number of dimensions. Another interesting observation we can
make is that when the five additional genetic operators are used, the accuracy remains the
same in most cases, while the individuals have a reduced number of nodes and dimen-
sions. Over this stage, the YST populations have shown to, in most cases, have a different
behavior than other datasets. This seems to indicate that the YST dataset is more difficult
to learn.

For a deeper evalutation of the results obtained in this section, we used some boxplot
graphs and the Kruskal-Wallis test to obtain the results’ p-values when comparing the
original EA and ED1 populations to their respective counterparts with five GOs with
adaptable probabilities, and the populations using five GOs with adaptable probabilities
with the populations using ten GOs. The p-values obtained can be seen in 5.9. The
training accuracy boxplot graph for HRT and MCD-3 can be seen in Figure B.6, MCD-10
and M-L in Figure B.7, SEG and WAV in Figure B.8, and VOW and YST in Figure B.9.
Their counterparts for the test set can be seen, respectively, in Figures B.10, B.11, B.12,
and B.13.

When comparing the results obtained by having GOs with adaptable probabilities,
the outcome was quite positive. When the population using the EA-FF used the adaptable
probabilities, the training results were significantly better in four datasets, when compared
to not adapting the probabilities. The test results were only significantly better in M-L and
borderline better in VOW. The populations using the ED1-FF had a similar improvement
when they started to use the adaptable GOs’ probabilities. The training results from four



Chapter 5. Results 41

datasets were significantly better. The test results were significantly better when the pop-
ulation was classifying the MCD10 dataset and borderline better when it was classifying
the VOW dataset.

When comparing the results obtained from using the five original GOs with adaptable
probabilities and using ten GOs with adaptable probabilities, we can conclude that there
were no significicant differences in the results with the exception of the population using
the EA-FF to learn the VOW dataset and the populations using the ED1-FF to learn the
M-L dataset. Both these populations had significantly worse results in the training set of
the respective datasets.

the populations using the EA-FF to learn the VOW dataset and the populations using
the ED1-FF have a significatly worse training accuracy, there are no significant differences
on the test accuracy, in any dataset.

HRT IM-3 IM-10 M-L SEG VOW WAV YST
Training fitness
EA-FF
- 5 Gen. Op. 0.894 0.938 0.838 0.793 0.933 0.750 0.850 0.611
- 10 Gen. Op. 0.894 0.929 0.829 0.787 0.934 0.735 0.849 0.602
ED1-FF
- 5 Gen. Op. 0.889 0.936 0.831 0.805 0.932 0.758 0.850 0.606
- 10 Gen. Op. 0.884 0.938 0.829 0.781 0.932 0.750 0.851 0.604
Test fitness
EA-FF
- 5 Gen. Op. 0.827 0.887 0.827 0.610 0.915 0.667 0.837 0.565
- 10 Gen. Op. 0.809 0.887 0.820 0.601 0.921 0.663 0.837 0.561
ED1-FF
- 5 Gen. Op. 0.809 0.876 0.824 0.606 0.916 0.653 0.839 0.561
- 10 Gen. Op. 0.809 0.876 0.820 0.606 0.916 0.657 0.837 0.553
No. of Nodes
EA-FF
- 5 Gen. Op. 159 60 366 1060 509 200 22 408
- 10 Gen. Op. 58 35 263 754 348 158 18 243
ED1-FF
- 5 Gen. Op. 158 62 378 1176 629 224 20 364
- 10 Gen. Op. 62 34 274 763 300 161 18 278
No. of Dim.
EA-FF
- 5 Gen. Op. 7 (1-14) 3 (1-16) 18 (10-25) 19 (15-30) 20 (5-29) 24 (16-38) 17 (14-21) 22 (12-43)
- 10 Gen. Op. 4.5 (1-9) 2 (1-6) 17 (10-24) 15 (11-23) 16 (5-24) 20 (13-26) 16 (14-21) 17 (11-24)
ED1-FF
- 5 Gen. Op. 5.5 (3-20) 3 (1-9) 21 (9-34) 21 (15-29) 19 (11-30) 24 (13-35) 18 (14-25) 24 (12-32)
- 10 Gen. Op. 4 (1-11) 2 (1-8) 15 (9-23) 16 (10-30) 15 (9-26) 20 (16-29) 17 (13-21) 18 (9-30)

Table 5.8: Comparison of results between the Euclidean Accuracy fitness function and the first sigmoid
fitness function for both five and ten genetic operators (GO)

5.3.2 Evolution of the population

The results obtained suggest that by evolving the operator probabilities over time,
the average number of nodes per dimension is not as stable as on the previous stages
of this project. This change may come from an oscillation on the probabilities of the
operators that mutate the individuals. The probability of using mutation operators change



Chapter 5. Results 42

HRT IM-3 IM-10 M-L SEG VOW WAV YST
EA vs EA(5)
Training 0.6072 0.7108 0.0537 1.8890−6 0.0443 3.0310−8 1.7790−6 3.640−4

Test 0.3931 0.6088 0.3439 9.2800−4 0.0688 0.0057 0.0308 0.0821
ED1 vs ED1(5)
Training 0.9703 0.6512 6.0298−4 1.2960−9 0.1102 2.0820−8 9.0990−6 0.0179
Test 0.6667 0.3024 0.0023 0.2416 0.5837 0.0111 0.0434 0.1084
EA(5) vs EA(10)
Training 0.5464 0.0841 0.1171 0.7669 0.7900 4.528−4 0.8417 0.0351
Test 0.1500 0.5673 0.4687 0.1752 0.3037 0.7003 0.7170 0.4032
ED1(5) vs ED1(10)
Training 0.7041 0.9882 0.2009 0.0002 0.3475 0.5840 0.9352 0.2308
Test 0.6607 1.0000 0.2804 0.7840 0.8532 0.4197 0.6625 0.6412

Table 5.9: p-values obtained by comparing the results from the populations learning the datasets using the
EA-FF and the ED1-FF, with their respective counter part with 5 GOs with adaptable probabilities and these
counterparts with the 10 GOs counterparts. The underline is used to symbolize that the first population has
a significantly better result and bold symbolizes a worse result.

over the generations, making the population grow and shrink in their number of nodes
and dimensions when it is needed, instead of having the tendency to keep growing over
the generations. Comparing the results obtained when using the EA-FF with five and
with ten genetic operators, we can see that when we use more genetic operators, the
population is smaller, both on the number of node per individual and on the number of
dimensions per individual. Since most of the new genetic operators try to destroy the
structure of the individual, this is expectable. Although we are adapting the probabilities
that each genetic operator has of being selected, we are still using many operators that try
to shrink the individuals. The results obtained for the number of nodes, dimensions, and
the number of nodes per dimension, can be seen in 5.10 for the Euclidean Accuracy runs
with five genetic operators and in 5.11 for the runs with ten genetic operators.

HRT IM-3 IM-10 M-L SEG VOW WAV YST
No. of Nodes
15th Generation 103 29 65 316 129 18 5 106
25th Generation 145 35 119 460 178 42 7 163
50th Generation 166 39 214 733 317 106 13 239
100th Generation 159 60 366 1060 509 200 22 408
No. of Dimensions
15th Generation 4 (1-7) 1 (1-4) 6 (4-10) 6 (4-9) 6 (3-10) 7 (5-10) 5 (3-6) 8.5 (5-13)
25th Generation 4.5 (1-9) 2 (1-11) 8 (5-12) 9 (6-14) 8 (5-12) 9 (6-12) 7 (6-11) 10 (6-20)
50th Generation 6 (1-13) 2 (1-9) 12 (7-19) 14 (9-23) 13 (5-19) 16 (12-29) 12 (8-15) 15 (9-25)
100th Generation 7 (1-14) 3 (1-16) 18 (10-25) 19 (15-30) 20 (5-29) 24 (16-38) 17 (14-21) 22 (12-43)
Nodes per Dim.
15th Generation 25.8 29.0 10.8 52.7 21.5 2.57 1.00 12.5
25th Generation 32.2 17.5 14.9 51.1 22.3 4.67 1.00 16.3
50th Generation 27.7 19.5 17.8 52.4 24.4 6.63 1.08 15.9
100th Generation 22.7 20.0 20.3 55.8 25.5 8.33 1.29 18.5

Table 5.10: Evolution of the number of nodes, dimensions, and nodes per dimension over the generations
for the EA-FF with five genetic operators



Chapter 5. Results 43

HRT IM-3 IM-10 M-L SEG VOW WAV YST
No. of Nodes
15th Generation 46 25 54 267 81 11 4 92
25th Generation 46 28 84 363 122 32 7 124
50th Generation 50 34 158 555 219 84 11 189
100th Generation 58 35 263 754 348 158 18 243
No. of Dimensions
15th Generation 2 (1-4) 1 (1-3) 5 (3-9) 5 (4-7) 5 (3-9) 6 (5-9) 4 (4-6) 7.5 (4-10)
25th Generation 3 (1-6) 1 (1-3) 7 (4-11) 7 (4-15) 7 (4-12) 9 (7-15) 6 (5-8) 10 (6-14)
50th Generation 4 (1-10) 1 (1-5) 11 (5-14) 11.5 (7-19) 10 (5-17) 14 (10-17) 11 (8-15) 13.5 (9-19)
100th Generation 4.5 (1-9) 2 (1-6) 17 (10-24) 15 (11-23) 16 (5-24) 20 (13-26) 16 (14-21) 17 (11-24)
Nodes per Dim.
15th Generation 23.0 25.0 10.8 53.4 16.2 1.83 1.00 12.3
25th Generation 15.3 28.0 12.0 51.9 17.4 3.56 1.17 12.4
50th Generation 12.5 34.0 14.36 48.3 21.9 6.00 1.00 14.0
100th Generation 12.9 17.5 15.5 50.3 21.8 7.90 1.13 14.3

Table 5.11: Evolution of the number of nodes, dimensions, and nodes per dimension over the generations
for the EA-FF with ten genetic operators

5.3.3 Evolution of the operator probabilities

Here, we will give a brief commentary about the evolution of the probabilities that
each genetic operator (GO) had, on average, on the 15th, 25th, 50th, and 100th generations
of each dataset. First, we will comment on this evolution in the case where we only used
the five original genetic operators, and then we will comment the case with ten genetic
operators.

The tables containing these values are on the appendices. For the runs using five
genetic operators, the table for the EA-FF is found in 5.12, and the table for the ED1-FF
is found in 5.13. Their respective tables for ten genetic operators can be found in 5.15, and
5.17. For further analysis of the results, these tables also contain the standard deviation
of the probabilities in each generations.

The five original genetic operators

For this sub-stage, we ran the M3GP with the five original operators, with each GO
having an initial probability of 20%. Before commenting on the evolution of each genetic
operator’s probability of being selected, it is worth to mention that in most cases, the
standard deviation of the probability was a small fraction of the probability. This means
that the probabilities had some consistency across the runs, giving us some ground to be
commented on.

Crossover 1 (St-XO):
In all the datasets tested, this probability kept increasing over time, achieving prob-

abilities over 49% on seven of the eight tested datasets on the 100th generation, on both
the fitness functions, being YST the only dataset that does not show this behavior. It has
however above average probability on this GO, 29% with the EA-FF and 37% with ED1-
FF. This might suggest that as the generation pass, the advantages of using the St-XO GO



Chapter 5. Results 44

will increase.

Crossover 2 (Swap-dim): With both fitness functions, the probability of this GO
being selected decreased over time in all datasets. The main difference was that with
ED1-FF, the probability this GO has of being selected was never above 7%, while with
the EA-FF, on early stages, in seven of the eight datasets, this operator has a probability
between 16%, and 25%. These results indicate that when working with this distance-
based fitness function, swapping dimensions between individuals probably will not result
in a fitness improvement.

Mutation 1 (St-Mut): This is the only case where the standard deviation value is
near the value of the probability of selection of the GO. Although this value is, with the
exception of HRT, always below 10%, since the standard deviation has high values, this
means that the need for this genetic operator varies with the population. This operator
replaces a randomly selected branch with a new branch, created using the Grow method.
The individual is improved if the replaced branch is better than the selected branch, or
spoiled if the replacement branch is useless. This GO’s probability is one of the two
lowest in all datasets, ergo we conclude that the most common scenario is the spoiling of
the individual. The likelihood of the individual being spoiled will only increase with the
passing of the generations as the individuals are allegedly more well structured.

Mutation 2 (Add-dim): As already noticed in an earlier stage of this project, popu-
lations that are learning datasets with more classes have a greater dimensional growth on
early stages of the evolution. The results obtained show this by maintaining low proba-
bilities of selection of this GO on the datasets with a lower number of classes, and higher
probabilityies for datasets with a higher number of classes. It’s worth mentioning that
IM-10, M-L, and YST, although having a higher number of classes, reach a number of
dimensions that allow them to learn the dataset quickly, and then they try to use other
GOs. This can be seen by the drop of the probability in both cases.

Mutation 3 (Rem-dim): Unexpectedly, in most datasets, the probability of this GO
does not increase with the passing of the generations. This may be caused by the auto-
matic adaptation of the GO probabilities. Since the populations are learning when to use
the Add-dim GO, they may be learning when not to use it, making this genetic operator
less beneficial as the need to remove dimensions is reduces. Although the YST popula-
tions have a low probability of selection this GO, they try to increase its probability. This
may suggest that the increase of a GO probability when it benefits the individual is too
big, or that there should exist a limit for a GO’s probability. The probability that the YST
populations give to the Add-dim GO seems to be too high for it to be reduced and allow
the population to lose dimensions.

An interesting result we observe when we look at the evolution of the probability of
each genetic operator over the generation is that the evolution of the GO over time seems
similar when using different fitness functions. This can be seen in the Figures 5.5 and 5.6.



Chapter 5. Results 45

0 20 40 60 80 100
Generations

0.2

0.3

0.4

0.5

0.6

0.7
Pr

ob
ab

ilit
y 

of
 se

le
ct

io
n

St-XO in EA(5) populations

HRT
MCD-3
MCD-10
M-L
SEG
VOW
WAV
YST

0 20 40 60 80 100
Generations

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y 
of

 se
le

ct
io

n

St-XO in ED1(5) populations

HRT
MCD-3
MCD-10
M-L
SEG
VOW
WAV
YST

Figure 5.5: Evolution of probability of selection of the St-XO GO over the generations in all dataset,
using the EA-FF(left) and the ED1-FF(right), using the five original GOs.

0 20 40 60 80 100
Generations

0.10

0.15

0.20

0.25

0.30

Pr
ob

ab
ilit

y 
of

 se
le

ct
io

n

Swap-dim in EA(5) populations
HRT
MCD-3
MCD-10
M-L
SEG
VOW
WAV
YST

0 20 40 60 80 100
Generations

0.10

0.15

0.20

0.25

0.30

Pr
ob

ab
ilit

y 
of

 se
le

ct
io

n

Swap-dim in ED1(5) populations
HRT
MCD-3
MCD-10
M-L
SEG
VOW
WAV
YST

Figure 5.6: Evolution of probability of selection of the Swap-dim GO over the generations in all dataset,
using the EA-FF(left) and the ED1-FF(right), using the five original GOs.

Another interesting result is that, although the probabilities each GO has of being
selected greatly vary from dataset to dataset, the shape of the line is somehow similar
across datasets. For example, in Figure 5.5, we can see that after the 20th generation,
all populations increase the probability of selection of the St-XO smoothly. Looking at
Figures 5.6 and 5.7 we can see that the Add-dim GO usually has a great increase on the
selection probability and the has a smooth decrease over time, like the Swap-dim GO.
Lastly, looking at Figure 5.7, we can see that both the St-mut and the Rem-dim GOs
initially have a great decrease on the selection probability and then, the most common
scenario is a stabilization of the probability.



Chapter 5. Results 46

0 20 40 60 80 100
Generations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
ob

ab
ilit

y 
of

 se
le

ct
io

n

St-Mut in EA(5) populations
HRT
MCD-3
MCD-10
M-L
SEG
VOW
WAV
YST

0 20 40 60 80 100
Generations

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y 
of

 se
le

ct
io

n

Add-dim in EA(5) populations
HRT
MCD-3
MCD-10
M-L
SEG
VOW
WAV
YST

0 20 40 60 80 100
Generations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Pr
ob

ab
ilit

y 
of

 se
le

ct
io

n

Rem-dim in EA(5) populations
HRT
MCD-3
MCD-10
M-L
SEG
VOW
WAV
YST

Figure 5.7: Evolution of probability of selection of the St-Mut(left), the Add-dim(right), and the Rem-
dim(bottom) GOs over the generations in all dataset, using the EA-FF and the five original GOs.



Chapter 5. Results 47

St-XO Swap-dim St-Mut Add-dim Rem-dim
HRT
15th Generation 0.3998±0.1279 0.2470±0.0554 0.0639±0.0443 0.1976±0.1293 0.0915±0.0379
25th Generation 0.3919±0.1638 0.2225±0.0631 0.0850±0.0701 0.2379±0.1290 0.0624±0.0381
50th Generation 0.4452±0.1610 0.1947±0.0448 0.1092±0.1024 0.2065±0.1045 0.0441±0.0251
100th Generation 0.4995±0.1837 0.1567±0.0370 0.1049±0.0956 0.1706±0.0898 0.0681±0.0535
IM-3
15th Generation 0.5357±0.1275 0.2324±0.0566 0.0646±0.0301 0.0672±0.0806 0.1000±0.0320
25th Generation 0.6142±0.1428 0.1994±0.0671 0.0473±0.0280 0.0646±0.1039 0.0746±0.0323
50th Generation 0.6517±0.1630 0.1757±0.0654 0.0417±0.0328 0.0683±0.0947 0.0626±0.0329
100th Generation 0.6654±0.1463 0.1573±0.0446 0.0407±0.0374 0.0717±0.0873 0.0649±0.0480
IM-10
15th Generation 0.2599±0.0956 0.1876±0.0527 0.0728±0.0544 0.4502±0.0831 0.0294±0.0202
25th Generation 0.3390±0.1011 0.1538±0.0555 0.0620±0.0501 0.4214±0.0817 0.0238±0.0197
50th Generation 0.4303±0.1023 0.1249±0.0439 0.0841±0.0762 0.3361±0.0679 0.0246±0.0194
100th Generation 0.4923±0.1019 0.1021±0.0311 0.0917±0.0708 0.2843±0.0646 0.0296±0.0251
M-L
15th Generation 0.3934±0.0831 0.1601±0.0353 0.0306±0.0202 0.3971±0.0683 0.0188±0.0084
25th Generation 0.4482±0.0721 0.1390±0.0363 0.0242±0.0194 0.3726±0.0630 0.0161±0.0127
50th Generation 0.5276±0.0806 0.1115±0.0260 0.0178±0.0163 0.3305±0.0634 0.0126±0.0112
100th Generation 0.5962±0.0744 0.0969±0.0262 0.0149±0.0156 0.2739±0.0592 0.0181±0.0159
SEG
15th Generation 0.3449±0.0687 0.1957±0.0385 0.0510±0.0270 0.3792±0.0644 0.0292±0.0213
25th Generation 0.4219±0.0754 0.1385±0.0463 0.0417±0.0271 0.3779±0.0550 0.0200±0.0235
50th Generation 0.5063±0.0723 0.1080±0.0327 0.0481±0.0332 0.3218±0.0516 0.0158±0.0161
100th Generation 0.5756±0.0759 0.0872±0.0223 0.0464±0.0393 0.2738±0.0516 0.0171±0.0129
VOW
15th Generation 0.3472±0.0622 0.2032±0.0474 0.0249±0.0124 0.3900±0.0478 0.0348±0.0197
25th Generation 0.3563±0.0896 0.1657±0.0410 0.0210±0.0156 0.4265±0.0636 0.0305±0.0167
50th Generation 0.4166±0.1124 0.1369±0.0374 0.0185±0.0180 0.4049±0.0814 0.0231±0.0166
100th Generation 0.4975±0.1073 0.1078±0.0276 0.0207±0.0199 0.3446±0.0806 0.0294±0.0222
WAV
15th Generation 0.5475±0.0624 0.1978±0.0431 0.0163±0.0176 0.2182±0.0354 0.0203±0.0116
25th Generation 0.5675±0.0618 0.1741±0.0453 0.0113±0.0187 0.2366±0.0333 0.0106±0.0091
50th Generation 0.6075±0.0468 0.1366±0.0322 0.0078±0.0123 0.2395±0.0293 0.0087±0.0065
100th Generation 0.6702±0.0348 0.1104±0.0226 0.0072±0.0082 0.2032±0.0221 0.0091±0.0062
YST
15th Generation 0.1533±0.0704 0.1305±0.0435 0.0527±0.0401 0.6403±0.0890 0.0229±0.0132
25th Generation 0.1722±0.0741 0.1303±0.0599 0.0528±0.0583 0.6157±0.0912 0.0287±0.0205
50th Generation 0.2182±0.1029 0.1258±0.0453 0.0828±0.0643 0.5301±0.0736 0.0428±0.0310
100th Generation 0.2850±0.1140 0.1105±0.0300 0.0979±0.0722 0.4370±0.0682 0.0694±0.0553

Table 5.12: Evolution of the probability of selection of the original genetic operators on all eight datasets
using the Euclidean Accuracy fitness function (EA-FF), and its standard deviation



Chapter 5. Results 48

St-XO Swap-dim St-Mut Add-dim Rem-dim
HRT
15th Generation 0.4065±0.1586 0.2542±0.0617 0.0724±0.0510 0.1782±0.1250 0.0887±0.0466
25th Generation 0.4145±0.1707 0.2349±0.0699 0.0722±0.0687 0.2178±0.1119 0.0605±0.0399
50th Generation 0.4527±0.1746 0.1869±0.0549 0.0920±0.0851 0.1984±0.0946 0.0700±0.0462
100th Generation 0.5005±0.1673 0.1499±0.0329 0.1014±0.0923 0.1674±0.0772 0.0808±0.0582
IM-3
15th Generation 0.5445±0.1459 0.2261±0.0600 0.0523±0.0219 0.0779±0.1123 0.0991±0.0310
25th Generation 0.5817±0.1881 0.2030±0.0797 0.0434±0.0316 0.0986±0.1423 0.0734±0.0363
50th Generation 0.6185±0.1659 0.1813±0.0557 0.0589±0.0603 0.0846±0.0923 0.0566±0.0284
100th Generation 0.6463±0.1514 0.1572±0.0377 0.0607±0.0627 0.0783±0.0830 0.0575±0.0340
IM-10
15th Generation 0.2924±0.0909 0.1659±0.0460 0.0596±0.0359 0.4502±0.0875 0.0319±0.0180
25th Generation 0.3656±0.0767 0.1353±0.0445 0.0588±0.0417 0.4132±0.0763 0.0271±0.0209
50th Generation 0.4560±0.0816 0.1143±0.0401 0.0450±0.0376 0.3606±0.0684 0.0241±0.0264
100th Generation 0.5316±0.0774 0.0978±0.0259 0.0604±0.0524 0.2875±0.0561 0.0227±0.0267
M-L
15th Generation 0.3583±0.0786 0.1642±0.0367 0.0414±0.0251 0.4129±0.0624 0.0232±0.0137
25th Generation 0.4009±0.0880 0.1472±0.0425 0.0315±0.0255 0.4020±0.0791 0.0185±0.0122
50th Generation 0.5007±0.0827 0.1115±0.0351 0.0194±0.0168 0.3502±0.0655 0.0181±0.0105
100th Generation 0.6034±0.0659 0.0849±0.0228 0.0177±0.0169 0.2779±0.0544 0.0161±0.0125
SEG
15th Generation 0.3418±0.0714 0.1956±0.0457 0.0675±0.0530 0.3633±0.0638 0.0318±0.0208
25th Generation 0.3937±0.1089 0.1493±0.0430 0.0617±0.0730 0.3717±0.0740 0.0236±0.0186
50th Generation 0.4936±0.0961 0.1096±0.0317 0.0499±0.0565 0.3263±0.0775 0.0206±0.0175
100th Generation 0.5730±0.0793 0.0876±0.0189 0.0561±0.0575 0.2629±0.0643 0.0204±0.0180
VOW
15th Generation 0.3641±0.0715 0.1827±0.0406 0.0221±0.0116 0.3960±0.0669 0.0350±0.0221
25th Generation 0.3551±0.0993 0.1664±0.0393 0.0208±0.0201 0.4302±0.0655 0.0275±0.0235
50th Generation 0.4185±0.0911 0.1408±0.0303 0.0226±0.0216 0.3915±0.0625 0.0266±0.0238
100th Generation 0.5147±0.0724 0.1038±0.0254 0.0255±0.0248 0.3289±0.0529 0.0271±0.0229
WAV
15th Generation 0.5170±0.0693 0.1954±0.0497 0.0186±0.0190 0.2384±0.0394 0.0305±0.0259
25th Generation 0.5558±0.0686 0.1594±0.0435 0.0142±0.0157 0.2531±0.0336 0.0176±0.0162
50th Generation 0.6004±0.0569 0.1259±0.0364 0.0098±0.0124 0.2502±0.0346 0.0137±0.0099
100th Generation 0.6664±0.0409 0.1041±0.0241 0.0081±0.0080 0.2112±0.0256 0.0103±0.0070
YST
15th Generation 0.1722±0.0766 0.1365±0.0548 0.0376±0.0191 0.6318±0.0763 0.0219±0.0156
25th Generation 0.2143±0.1110 0.1185±0.0434 0.0366±0.0344 0.6066±0.1014 0.0240±0.0171
50th Generation 0.2722±0.1187 0.1039±0.0369 0.0491±0.0510 0.5379±0.1116 0.0368±0.0275
100th Generation 0.3687±0.1265 0.0998±0.0273 0.0584±0.0562 0.4295±0.1030 0.0436±0.0414

Table 5.13: Evolution of the probability of selection of the original genetic operators on all eight datasets
using the first distance-based fitness function (ED1-FF), and its standard deviation



Chapter 5. Results 49

Using ten genetic operators

Here, we implemented five new genetic operators and ran the same experiment as the
previous one, but using ten genetic operators. Having now ten operators, the initial proba-
bility of each individual is 10%. Although the standard deviation ratio to the probabilities
is slightly higher than the one obtained when using five genetic operators, we think that
we still have some ground to analyze the obtained probabilities.

Crossover 1 (St-XO): Like what was observed when using five genetic operators,
this GO has an above average probability on the populations of all datasets. With the
exception of the YST population, all population has the probability of this operator as at
least 30%. This probability increases in all cases with the passing of the generations, once
again indicating that as the population is growing, the need to restructure the individuals,
using parts of the structure of others, increases. It seems to be more beneficial to use
parts of the structure of other individuals to improve the population rather than using the
mutation operators. It can be argued that this happens because the structure of others
individuals was already partially adapted to the problem, while the mutation operators
give a randomly generated branch.

Crossover 2 (Swap-dim): Although at the last generation, the probability of selecting
this operator is still above average, the probability of selecting this operator is always
decreasing over the generations. The only exception to this is the YST population that
have a stable, average probability over the generations. This may indicate that after the
individuals have dimensions that have evolved into something usable for classification,
they won’t benefit from swapping them with other individuals.

Mutation 1 (St-Mut): With both fitness functions, all the populations seemed to reject
this operator. This conclusion is taken from the probability of selection being below 5%

in all populations, in all generations. Since the Add-dim GO has a higher probability
in most datasets, it might be safe to assume that the population will rather add a new
dimension than grafting a new branch on the individual.

Mutation 2 (Add-dim): With the exception of the HRT, IM-3, and WAV populations,
that give a stable probability to this GO of, respectively, 10%, 3%, and 19%, all other
population give probabilities of selection between 28% and 47% on the 15th generation,
that decrease to a probability between 21% and 35%. This decrease is normal since as the
individuals grow larger on the number of dimensions, they tend to stop benefiting from
further increasing the number of dimensions.

Mutation 3 (Rem-dim): Like it was mentioned in the results from using five genetic
operators, this GO’s low probabilities of selection may result from the populations being
able to learn when they should increase the number of dimensions, indicating that may
not exist a need to have an operator that removes dimensions.

Mutation 4 to 7 (Grow or Trim, Trim, Chop, Singularitree): Like what was
planned, these mutation operators are rejected by the classifier, having every one of them,



Chapter 5. Results 50

with both fitness functions, below average probabilities. The mutation operators Grow
or Trim and Trim have a higher selection probability than the mutation operator St-Mut.
This may be justified by them being similar to the original mutation operator and the pop-
ulation favoring these new methods over the original. We can allegedly say that this is
caused by the Trim effect of both these genetic operators. It is possible that after a few
generations, the individuals are able to benefit from random cuts in their structure.

Crossover 3 (Swap3-dim): This new crossover method is similar to Swap-dim with
the exception that it works with three individuals instead of one, having a similar behavior
on the evolution of the probabilities. With the exception of the YST populations that
have a stable selection probability of 13%, all other populations begin with a selection
probability between 17% and 24% on the 15th generation and have a selection probability
between 11% and 17% in the last generation. This may suggest that a crossover with
many individuals may be preferable to the standard crossover.

Like what happened when we were using five genetic operators, the evolution of the
probability over the generation tended to be similar between the EA populations and the
ED1 population. Since this happened, the following plot graphs have all been made from
results obtained from the EA populations.

Once again, each GO probability evolution showed similar behaviors when compared
with the same GO in population learning other datasets. This can be seen in Figure 5.8.
An interesting thing that was observed when using ten genetic operators was that the
evolution of the probability of the GOs was not always stable. We could have already
seen this in Figure 5.8 and this is even more clear in Figure 5.9. These two GO do not
seem to have a clear line that allows us to predict the probability in later generations.

Lastly, we had concluded that the new crossover GO (Swap3-dim) had a better prob-
ability of selection than the original crossover GO that swapped dimensions (Swap-dim).
This difference in the probability of selection of these two individuals is clear in Figure
5.10. For this plot graph, we selected the HRT and MCD-3 datasets as all datasets had a
similar evolution, and the populations learning these two datasets gave them the highest
probability of selection.



Chapter 5. Results 51

0 20 40 60 80 100
Generations

0.08

0.10

0.12

0.14

0.16

Pr
ob

ab
ilit

y 
of

 se
le

ct
io

n
Swap-dim in EA(10) populations

HRT
MCD-3
MCD-10
M-L
SEG
VOW
WAV
YST

0 20 40 60 80 100
Generations

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Pr
ob

ab
ilit

y 
of

 se
le

ct
io

n

Chop in EA(10) populations
HRT
MCD-3
MCD-10
M-L
SEG
VOW
WAV
YST

Figure 5.8: Evolution of probability of selection of the Swap-dim(left) and the Chop(right) GOs over
the generations in all dataset, using the EA-FF and the ten GOs.

0 20 40 60 80 100
Generations

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Pr
ob

ab
ilit

y 
of

 se
le

ct
io

n

Grow or Trim in EA(10) populations
HRT
MCD-3
MCD-10
M-L
SEG
VOW
WAV
YST

0 20 40 60 80 100
Generations

0.02

0.04

0.06

0.08

0.10
Pr

ob
ab

ilit
y 

of
 se

le
ct

io
n

Trim in EA(10) populations
HRT
MCD-3
MCD-10
M-L
SEG
VOW
WAV
YST

Figure 5.9: Evolution of probability of selection of the Grow or Trim(left) and the Trim(right) GOs over
the generations in all dataset, using the EA-FF and the ten GOs.

0 20 40 60 80 100
Generations

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

Pr
ob

ab
ilit

y 
of

 se
le

ct
io

n

Swap-dim vs Swap3-dim in EA(10) populations
(Swap-dim) HRT
(Swap-dim) MCD-3
(Swap3-dim) HRT
(Swap3-dim) MCD-3

Figure 5.10: Evolution of probability of selection of the Swap-dim(solid line) and the Swap3-
dim(dashed line) GOs over the generations in the HRT and MCD-3 dataset, using the EA-FF and the
ten GOs.



Chapter 5. Results 52

St-XO Swap-dim St-Mut Add-dim Rem-dim
HRT
15th Generation 0.2814±0.1065 0.1549±0.0311 0.0231±0.0105 0.0971±0.0840 0.0491±0.0312
25th Generation 0.2964±0.1735 0.1518±0.0473 0.0263±0.0242 0.1211±0.0852 0.0393±0.0375
50th Generation 0.3308±0.1976 0.1408±0.0369 0.0219±0.0209 0.1116±0.0828 0.0283±0.0248
100th Generation 0.3489±0.1795 0.1305±0.0274 0.0240±0.0224 0.0948±0.0637 0.0389±0.0298
IM-3
15th Generation 0.3406±0.0980 0.1617±0.0366 0.0445±0.0263 0.0310±0.0388 0.0751±0.0255
25th Generation 0.4147±0.1514 0.1500±0.0491 0.0356±0.0390 0.0327±0.0502 0.0591±0.0319
50th Generation 0.5123±0.1683 0.1329±0.0428 0.0243±0.0406 0.0307±0.0527 0.0453±0.0304
100th Generation 0.5504±0.1443 0.1231±0.0319 0.0203±0.0331 0.0290±0.0437 0.0420±0.0276
IM-10
15th Generation 0.1627±0.0812 0.1341±0.0481 0.0374±0.0253 0.3339±0.0631 0.0203±0.0141
25th Generation 0.2048±0.0932 0.1249±0.0372 0.0386±0.0478 0.3342±0.0700 0.0156±0.0149
50th Generation 0.2970±0.1081 0.1012±0.0325 0.0435±0.0586 0.2882±0.0570 0.0160±0.0156
100th Generation 0.3692±0.1034 0.0904±0.0285 0.0410±0.0487 0.2425±0.0449 0.0160±0.0164
M-L
15th Generation 0.2209±0.0711 0.1118±0.0339 0.0223±0.0188 0.3035±0.0590 0.0130±0.0096
25th Generation 0.2338±0.0882 0.1102±0.0423 0.0170±0.0190 0.2960±0.0698 0.0109±0.0130
50th Generation 0.2977±0.1151 0.0879±0.0370 0.0106±0.0143 0.2742±0.0558 0.0110±0.0119
100th Generation 0.3334±0.1021 0.0783±0.0261 0.0110±0.0116 0.2118±0.0448 0.0103±0.0129
SEG
15th Generation 0.1980±0.0858 0.1267±0.0448 0.0365±0.0345 0.2854±0.0688 0.0181±0.0146
25th Generation 0.2421±0.1206 0.1025±0.0483 0.0344±0.0388 0.2933±0.0753 0.0146±0.0141
50th Generation 0.3192±0.1138 0.0921±0.0395 0.0343±0.0353 0.2701±0.0730 0.0116±0.0104
100th Generation 0.3860±0.0992 0.0833±0.0292 0.0318±0.0333 0.2240±0.0583 0.0132±0.0129
VOW
15th Generation 0.2007±0.0670 0.1364±0.0435 0.0159±0.0199 0.3081±0.0385 0.0147±0.0051
25th Generation 0.1813±0.0699 0.1325±0.0400 0.0157±0.0284 0.3599±0.0500 0.0116±0.0082
50th Generation 0.2198±0.0854 0.1244±0.0393 0.0166±0.0216 0.3471±0.0525 0.0189±0.0172
100th Generation 0.2996±0.0964 0.1097±0.0298 0.0233±0.0268 0.2846±0.0487 0.0224±0.0177
WAV
15th Generation 0.2900±0.0607 0.1339±0.0333 0.0131±0.0102 0.1949±0.0302 0.0121±0.0103
25th Generation 0.3394±0.0985 0.1348±0.0381 0.0090±0.0132 0.2193±0.0359 0.0087±0.0085
50th Generation 0.4015±0.0780 0.1063±0.0272 0.0055±0.0080 0.2266±0.0350 0.0070±0.0078
100th Generation 0.4352±0.0725 0.0969±0.0213 0.0046±0.0059 0.1965±0.0260 0.0077±0.0062
YST
15th Generation 0.1023±0.0550 0.1008±0.0394 0.0420±0.0339 0.4754±0.0650 0.0137±0.0145
25th Generation 0.0929±0.0519 0.0986±0.0330 0.0399±0.0608 0.4862±0.0793 0.0184±0.0214
50th Generation 0.1361±0.0771 0.0986±0.0299 0.0262±0.0367 0.4384±0.0875 0.0195±0.0152
100th Generation 0.1681±0.0940 0.1016±0.0317 0.0251±0.0289 0.3585±0.0721 0.0337±0.0328

Table 5.14: Evolution of the probability of selection of the original five genetic operators when all ten
genetic operators were tested, and their standard deviation. Results obtained from using the EA-FF



Chapter 5. Results 53

Grow or Trim Trim Chop Singularitree Swap3-dim
HRT
15th Generation 0.0765±0.0434 0.0485±0.0250 0.0146±0.0245 0.0054±0.0030 0.2494±0.0549
25th Generation 0.0641±0.0490 0.0654±0.0687 0.0141±0.0230 0.0022±0.0008 0.2192±0.0605
50th Generation 0.0697±0.0544 0.0795±0.0818 0.0139±0.0306 0.0012±0.0014 0.2022±0.0571
100th Generation 0.0665±0.0375 0.1027±0.0988 0.0179±0.0253 0.0007±0.0015 0.1752±0.0402
IM-3
15th Generation 0.0472±0.0195 0.0580±0.0302 0.0063±0.0040 0.0042±0.0018 0.2314±0.0433
25th Generation 0.0451±0.0308 0.0458±0.0325 0.0038±0.0031 0.0020±0.0006 0.2112±0.0441
50th Generation 0.0338±0.0256 0.0354±0.0412 0.0024±0.0025 0.0010±0.0004 0.1818±0.0507
100th Generation 0.0315±0.0235 0.0349±0.0480 0.0039±0.0070 0.0007±0.0005 0.1643±0.0366
IM-10
15th Generation 0.0387±0.0286 0.0433±0.0254 0.0337±0.0279 0.0046±0.0039 0.1913±0.0520
25th Generation 0.0392±0.0241 0.0463±0.0285 0.0243±0.0253 0.0018±0.0004 0.1704±0.0400
50th Generation 0.0431±0.0320 0.0519±0.0455 0.0140±0.0155 0.0006±0.0002 0.1446±0.0370
100th Generation 0.0501±0.0332 0.0633±0.0446 0.0157±0.0147 0.0002±0.0001 0.1115±0.0287
M-L
15th Generation 0.0642±0.0386 0.0705±0.0278 0.0301±0.0285 0.0035±0.0012 0.1602±0.0444
25th Generation 0.0646±0.0411 0.0806±0.0567 0.0296±0.0349 0.0024±0.0049 0.1549±0.0406
50th Generation 0.0715±0.0537 0.0798±0.0613 0.0277±0.0409 0.0013±0.0041 0.1383±0.0368
100th Generation 0.0882±0.0591 0.1085±0.0770 0.0375±0.0416 0.0006±0.0020 0.1203±0.0325
SEG
15th Generation 0.0448±0.0255 0.0518±0.0241 0.0372±0.0362 0.0047±0.0046 0.1968±0.0537
25th Generation 0.0453±0.0376 0.0496±0.0322 0.0377±0.0399 0.0021±0.0012 0.1785±0.0442
50th Generation 0.0511±0.0395 0.0491±0.0351 0.0283±0.0314 0.0012±0.0030 0.1430±0.0448
100th Generation 0.0597±0.0388 0.0649±0.0420 0.0249±0.0233 0.0006±0.0021 0.1116±0.0283
VOW
15th Generation 0.0371±0.0298 0.0369±0.0324 0.0511±0.0409 0.0064±0.0074 0.1928±0.0397
25th Generation 0.0325±0.0241 0.0324±0.0283 0.0475±0.0362 0.0027±0.0032 0.1839±0.0456
50th Generation 0.0296±0.0234 0.0239±0.0259 0.0457±0.0471 0.0007±0.0002 0.1734±0.0433
100th Generation 0.0392±0.0326 0.0338±0.0301 0.0393±0.0335 0.0002±0.0001 0.1479±0.0317
WAV
15th Generation 0.0484±0.0380 0.0376±0.0152 0.0618±0.0635 0.0125±0.0186 0.1957±0.0440
25th Generation 0.0392±0.0456 0.0381±0.0246 0.0487±0.0450 0.0059±0.0132 0.1569±0.0524
50th Generation 0.0367±0.0390 0.0310±0.0246 0.0343±0.0343 0.0022±0.0059 0.1488±0.0423
100th Generation 0.0422±0.0378 0.0342±0.0268 0.0384±0.0315 0.0010±0.0029 0.1432±0.0346
YST
15th Generation 0.0416±0.0252 0.0447±0.0313 0.0238±0.0177 0.0036±0.0010 0.1522±0.0445
25th Generation 0.0452±0.0531 0.0472±0.0413 0.0250±0.0354 0.0017±0.0004 0.1448±0.0636
50th Generation 0.0516±0.0545 0.0621±0.0570 0.0265±0.0320 0.0008±0.0003 0.1403±0.0426
100th Generation 0.0630±0.0496 0.0809±0.0664 0.0304±0.0356 0.0003±0.0001 0.1385±0.0341

Table 5.15: Evolution of the probability of selection of the new five genetic operators when all ten genetic
operators were tested, and their standard deviation. Results obtained from using the EA-FF



Chapter 5. Results 54

St-XO Swap-dim St-Mut Add-dim Rem-dim
HRT
15th Generation 0.2868±0.1073 0.1601±0.0445 0.0408±0.0311 0.0789±0.0642 0.0525±0.0302
25th Generation 0.2975±0.1591 0.1529±0.0509 0.0381±0.0450 0.1062±0.0849 0.0407±0.0376
50th Generation 0.3559±0.1915 0.1355±0.0453 0.0260±0.0384 0.0928±0.0834 0.0287±0.0219
100th Generation 0.3848±0.1655 0.1287±0.0335 0.0265±0.0288 0.0866±0.0690 0.0297±0.0200
IM-3
15th Generation 0.3234±0.1105 0.1613±0.0373 0.0401±0.0421 0.0532±0.0637 0.0627±0.0289
25th Generation 0.3906±0.1628 0.1514±0.0388 0.0320±0.0328 0.0623±0.0834 0.0458±0.0297
50th Generation 0.4717±0.1922 0.1322±0.0411 0.0194±0.0211 0.0584±0.0802 0.0405±0.0267
100th Generation 0.5087±0.1771 0.1237±0.0306 0.0225±0.0253 0.0469±0.0604 0.0389±0.0271
IM-10
15th Generation 0.1635±0.0704 0.1240±0.0386 0.0391±0.0289 0.3351±0.0867 0.0206±0.0133
25th Generation 0.2162±0.0831 0.1134±0.0385 0.0433±0.0363 0.3146±0.0688 0.0165±0.0142
50th Generation 0.2609±0.1026 0.0995±0.0404 0.0499±0.0389 0.2852±0.0753 0.0172±0.0188
100th Generation 0.3390±0.0967 0.0877±0.0312 0.0536±0.0407 0.2431±0.0721 0.0212±0.0198
M-L
15th Generation 0.2290±0.0932 0.1071±0.0369 0.0188±0.0131 0.3214±0.0587 0.0107±0.0047
25th Generation 0.2810±0.1059 0.0978±0.0451 0.0144±0.0140 0.3079±0.0552 0.0073±0.0044
50th Generation 0.3134±0.1104 0.0977±0.0355 0.0126±0.0154 0.2728±0.0587 0.0073±0.0098
100th Generation 0.3578±0.1177 0.0834±0.0210 0.0102±0.0122 0.2193±0.0448 0.0098±0.0108
SEG
15th Generation 0.2090±0.0972 0.1364±0.0408 0.0227±0.0097 0.2615±0.0617 0.0141±0.0105
25th Generation 0.2664±0.0917 0.1199±0.0494 0.0246±0.0290 0.2784±0.0735 0.0099±0.0094
50th Generation 0.3299±0.1039 0.0856±0.0310 0.0178±0.0164 0.2539±0.0633 0.0130±0.0152
100th Generation 0.3888±0.0922 0.0801±0.0254 0.0199±0.0195 0.2147±0.0474 0.0133±0.0148
VOW
15th Generation 0.2100±0.0801 0.1308±0.0317 0.0166±0.0149 0.3120±0.0514 0.0132±0.0058
25th Generation 0.2094±0.0973 0.1179±0.0404 0.0157±0.0168 0.3580±0.0540 0.0119±0.0064
50th Generation 0.2324±0.1044 0.1133±0.0271 0.0178±0.0174 0.3400±0.0658 0.0127±0.0109
100th Generation 0.3167±0.1000 0.0975±0.0245 0.0197±0.0199 0.3013±0.0562 0.0232±0.0209
WAV
15th Generation 0.3044±0.0842 0.1255±0.0372 0.0061±0.0033 0.1974±0.0437 0.0125±0.0109
25th Generation 0.3177±0.0939 0.1291±0.0438 0.0052±0.0083 0.2147±0.0395 0.0081±0.0102
50th Generation 0.3669±0.0897 0.1078±0.0284 0.0034±0.0057 0.2248±0.0289 0.0068±0.0061
100th Generation 0.4247±0.0686 0.0937±0.0177 0.0026±0.0039 0.1943±0.0207 0.0068±0.0052
YST
15th Generation 0.1288±0.0587 0.0950±0.0337 0.0279±0.0221 0.4821±0.0522 0.0135±0.0091
25th Generation 0.1383±0.0888 0.1063±0.0428 0.0369±0.0253 0.4520±0.0727 0.0106±0.0140
50th Generation 0.1749±0.1021 0.1084±0.0392 0.0397±0.0345 0.3861±0.0623 0.0162±0.0160
100th Generation 0.2126±0.1126 0.1022±0.0315 0.0456±0.0313 0.3323±0.0625 0.0294±0.0336

Table 5.16: Evolution of the probability of selection of the original five genetic operators when all ten
genetic operators were tested, and their standard deviation. Results obtained from using the ED1-FF



Chapter 5. Results 55

Grow or Trim Trim Chop Singularitree Swap3-dim
HRT
15th Generation 0.0642±0.0368 0.0587±0.0397 0.0098±0.0070 0.0056±0.0023 0.2426±0.0455
25th Generation 0.0715±0.0637 0.0575±0.0403 0.0141±0.0201 0.0024±0.0012 0.2191±0.0626
50th Generation 0.0632±0.0492 0.0784±0.0729 0.0135±0.0171 0.0018±0.0041 0.2043±0.0536
100th Generation 0.0623±0.0454 0.0861±0.0694 0.0172±0.0182 0.0008±0.0020 0.1772±0.0285
IM-3
15th Generation 0.0554±0.0319 0.0672±0.0487 0.0104±0.0166 0.0049±0.0024 0.2215±0.0511
25th Generation 0.0463±0.0360 0.0589±0.0380 0.0135±0.0254 0.0029±0.0040 0.1963±0.0572
50th Generation 0.0331±0.0286 0.0528±0.0477 0.0131±0.0242 0.0019±0.0053 0.1767±0.0501
100th Generation 0.0337±0.0282 0.0499±0.0512 0.0159±0.0264 0.0005±0.0003 0.1593±0.0343
IM-10
15th Generation 0.0472±0.0293 0.0448±0.0232 0.0278±0.0134 0.0059±0.0118 0.1920±0.0576
25th Generation 0.0499±0.0425 0.0486±0.0328 0.0203±0.0238 0.0026±0.0046 0.1745±0.0472
50th Generation 0.0644±0.0473 0.0580±0.0389 0.0135±0.0150 0.0013±0.0039 0.1502±0.0358
100th Generation 0.0579±0.0418 0.0638±0.0486 0.0148±0.0128 0.0006±0.0020 0.1183±0.0292
M-L
15th Generation 0.0498±0.0365 0.0668±0.0428 0.0223±0.0222 0.0037±0.0008 0.1704±0.0436
25th Generation 0.0524±0.0344 0.0651±0.0416 0.0186±0.0266 0.0016±0.0004 0.1539±0.0493
50th Generation 0.0576±0.0421 0.0837±0.0668 0.0197±0.0212 0.0007±0.0002 0.1347±0.0400
100th Generation 0.0621±0.0564 0.1274±0.0906 0.0198±0.0194 0.0002±0.0001 0.1100±0.0302
SEG
15th Generation 0.0568±0.0316 0.0562±0.0331 0.0387±0.0344 0.0048±0.0032 0.1998±0.0515
25th Generation 0.0532±0.0386 0.0498±0.0373 0.0348±0.0317 0.0016±0.0004 0.1613±0.0483
50th Generation 0.0703±0.0554 0.0518±0.0459 0.0341±0.0297 0.0006±0.0002 0.1430±0.0416
100th Generation 0.0714±0.0524 0.0607±0.0453 0.0292±0.0243 0.0002±0.0001 0.1215±0.0282
VOW
15th Generation 0.0372±0.0214 0.0352±0.0200 0.0404±0.0227 0.0060±0.0059 0.1985±0.0491
25th Generation 0.0373±0.0238 0.0258±0.0211 0.0302±0.0261 0.0042±0.0087 0.1896±0.0559
50th Generation 0.0500±0.0440 0.0328±0.0332 0.0325±0.0268 0.0015±0.0045 0.1670±0.0450
100th Generation 0.0442±0.0299 0.0368±0.0316 0.0296±0.0258 0.0006±0.0020 0.1304±0.0275
WAV
15th Generation 0.0398±0.0331 0.0403±0.0275 0.0588±0.0364 0.0124±0.0159 0.2028±0.0450
25th Generation 0.0332±0.0366 0.0402±0.0440 0.0600±0.0535 0.0049±0.0099 0.1869±0.0542
50th Generation 0.0357±0.0377 0.0403±0.0473 0.0509±0.0366 0.0021±0.0056 0.1613±0.0424
100th Generation 0.0352±0.0390 0.0406±0.0410 0.0591±0.0509 0.0010±0.0030 0.1420±0.0238
YST
15th Generation 0.0486±0.0374 0.0378±0.0237 0.0267±0.0169 0.0043±0.0053 0.1352±0.0367
25th Generation 0.0508±0.0493 0.0434±0.0332 0.0229±0.0224 0.0017±0.0004 0.1371±0.0405
50th Generation 0.0471±0.0496 0.0523±0.0427 0.0244±0.0285 0.0007±0.0002 0.1501±0.0506
100th Generation 0.0542±0.0413 0.0665±0.0445 0.0252±0.0210 0.0003±0.0001 0.1316±0.0332

Table 5.17: Evolution of the probability of selection of the new five genetic operators when all ten genetic
operators were tested, and their standard deviation. Results obtained from using the ED1-FF



Chapter 5. Results 56

Overall conclusions

These results allowed us to take a few conclusions such as:

• The crossover operators that swap dimensions between individuals, are more useful
on early stages of the evolution;

• The increase of the number of dimensions on early stages is related to the number of
classes but even if the dataset has many classes, the population can learn to quickly
stop increasing the number of dimensions if it doesn’t improve the individual;

• Although the St-XO GO is always useful, it is even more preferred in the later
stages of the evolution;

• Although the new operators did not increase the accuracy of the populations, they
reduced the size of the individuals. This suggests that it might be worth to develop
new genetic operators as the St-XO and St-Mut were less preferred than the new
GOs that were developed having them as as inspiration (Grow or Trim, Trim, and
Swap3-dim);



Chapter 6

Conclusions

6.1 Results

This chapter contains the conclusions about all the three stages of the project, com-
mentaries about our approaches and problems found, and some future work we have
planned.

The first stage of the project was the implementation of our M3GP classifier, and a
comparison of the results obtained when using the same parameters and datasets as those
in [4]. The individuals from the populations created by our implementation have a greater
number of dimensions and have a larger size than those from the original implementation
of the M3GP. This difference in the number of dimensions and the size of the individuals
may have been due to the original M3GP being implemented over the GPLAB toolbox
[39] which contains additional bloat control [37, 38] measures set by default. Although
we had this problem, since the results were not necessarily worse than those of the original
implementation, we decided to keep this version and continue to the next stages, knowing
that improving the classifier could lead to better results on the following stages of this
project.

The second stage was the implementation of two distance-based fitness functions as
an attempt to replace the currently used accuracy-based fitness function. All fitness func-
tions in this stage used the Euclidean distance rather than the Mahalanobis distance. This
choice was made in order to have faster results. The results obtained from both distance-
based fitness functions were compared with an accuracy-based fitness function. One of
the distance-based fitness functions showed bad results and was dismissed. The other fit-
ness function achieved results not significantly different from the accuracy-based fitness
function in both training accuracy and test accuracy, with the exception of one problem
where borderline significantly worse results were observed. This distance-based fitness
function also maintained the number of dimensions, size of the individuals, and the overall
evolution of the population while being a fitness function that has a lower computational
complexity. During this stage, we had a problem with the creation of the fitness func-

57



Chapter 6. Conclusions 58

tion. Since distance values tend to be greater in spaces in higher dimensions, we had to
spend some time trying to find a way to normalize distance between dimensions, in order
to compare individuals with different numbers of dimensions. The fitness function we
selected gave results that are equivalent to using an accuracy-based fitness function, but
we think it’s possible to create a better fitness function, although it might not be trivial to
find a good one.

The final stage was the implementation of a new method for the selection of genetic
operators, that evolves the probabilities of each genetic operator to the needs of the popu-
lation. Five new genetic operators were also created. The results obtained here were quite
positive, showing that both the populations using accuracy-based and distance-based fit-
ness functions had significantly better training results in four of the eight datasets, than
their counter parts that use fixed probabilities of selection of the genetic operators. In both
accuracy-based and distance-based populations, the test results were significantly better
in one dataset and borderline better with one dataset, indicating that it is worth to explore
an automatic adaptation of genetic operators’ probabilities.

The results from the final stage also indicate that the standard crossover is always
useful but it is even better on later stages of the evolution; that the dimension-swapping
crossover tends to lose its value over the generations; that datasets with a higher number
of classes tend to need a higher number of dimensions to be learned; and that crossover
operators that use more individuals should be explored, as the one we implemented was
prefered over the equivalent operator that used two individuals. Overall, this method
of adaptation of probabilities of the genetic operators improved the training accuracy; al-
lowed us to identify good and bad operators; gave us good information about a reasonable
number of genetic operators by identifying those who may be worth to explore; and sug-
gested that is might be worth to explore new genetic operators that are not included in
standard GP.

Unfortunatly, although we used a distance-based fitness function as an attempt to im-
prove the populations and used a method for automatic adaptation of genetic operator
probabilities, we could not obtain the same results as those obtained when using the Ma-
halanobis distance.

6.2 Future Work

Over the course of this project, we had a few ideas of future work, some related
with issues with our approach with the M3GP algorithm, some with issues with the GP
algorithm in general, and some were just ideas we took from this project. Some of the
future work we have planned is:

• We intend to make an implementation of distance-based fitness functions on the
M2GP. Since all individuals on the M2GP have the same number of dimensions,



Chapter 6. Conclusions 59

the results from this experiment are hoped to have better results than those obtained
with the M3GP.

• We intend to make an implementation of a Geometric Semantic approach for mul-
ticlass classification. An issue with GP algorithms is that they tend to be slow when
compared to other branches of machine learning. This was the only reason why we
used the Euclidean distance on this project rather than the Mahalanobis distance, to
avoid making even slower generations. After experimenting the GSGP approach,
described in An Introduction to Geometric Semantic Genetic Programming (2017)
[35], one of our goals was to make an implementation that used Geometric Seman-
tic on the M2GP algorithm.

• Lastly, since the M3GP implicitly makes feature evolution, one of our goals, that is
already in progress, is to attempt to use the M3GP algorithm as a pre-processor of
datasets to be used together with other machine learning algorithms.



Chapter 6. Conclusions 60



Bibliography

[1] Riccardo Poli and William B. Langdon and Nicholas Freitag McPhee. A field
guide to genetic programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk (2008). With contforensicriFs by J.R. Koza.

[2] Multiclass Classification Through Multidimensional Clustering. S Silva, L Munoz,
L Trujillo, V Ingalalli, M Castelli, L Vanneschi. Genetic Programming Theory and
Practice XIII (2016), 219-239.

[3] J. R. Koza. Genetic Programming: vol. 1, On the programming of computers by
means of natural selection, volume 1. MIT press, 1992.

[4] Muñoz L., Silva S., Trujillo L. (2015) M3GP – Multiclass Classification with GP.
In: Machado P. et al. (eds) Genetic Programming. EuroGP 2015. Lecture Notes in
Computer Science, vol 9025. Springer, Cham

[5] Courrieu, Pierre. (2008). Fast Computation of Moore-Penrose Inverse Matrices. Neu-
ral Information Processing-Letters and Reviews. 8. .

[6] Eibe Frank, Mark A. Hall, and Ian H. Witten (2016). The WEKA Workbench. Online
Appendix for ”Data Mining: Practical Machine Learning Tools and Techniques”,
Morgan Kaufmann, Fourth Edition, 2016.

[7] J. R. Koza. Human-competitive results produced by genetic programming. Genetic
Programming and Evolvable Machines, 11(3-4):251–284, Sept. 2010.

[8] V. Ingalalli, S. Silva, M. Castelli, and L. Vanneschi. A multi-dimensional genetic
programming approach for multi-class classification problems. In M. Nicolau et al.,
editors, 17th European Conference on Genetic Programming, volume 8599 of LNCS,
pages 48–60, Granada, Spain, 2014. Springer.

[9] K. Bache and M. Lichman. UCI machine learning repository, university of california,
irvine, school of information and computer sciences. http://archive.ics.uci.edu/ml,
2017.

[10] U.S. geological survey (USGS) earth resources observation systems (EROS) data
center (EDC). http://glovis.usgs.gov/.

61



Bibliography 62

[11] https://www.math.hmc.edu/funfacts/ffiles/20007.2.shtml

[12] Mahalanobis, Prasanta Chandra (1936). ”On the generalised distance in statistics”.
Proceedings of the National Institute of Sciences of India. 2 (1): 49–55. Retrieved
2016-09-27.

[13] Frédéric Ratle, Christian Gagné, Anne-Laure Terrettaz-Zufferey, Mikhail Kanevski,
Pierre Esseiva, Olivier Ribaux, Advanced clustering methods for mining chemical
databases in forensic science, In Chemometrics and Intelligent Laboratory Systems,
Volume 90, Issue 2, 2008, Pages 123-131, ISSN 0169-7439.

[14] J. P. Papa, L. P. Papa, D. R. Pereira and R. J. Pisani, ”A Hyperheuristic Approach
for Unsupervised Land-Cover Classification,” in IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, vol. 9, no. 6, pp. 2333-2342, June
2016.

[15] N. P. Shetty, ”Using clustering to capture attackers,” 2016 International Conference
on Inventive Computation Technologies (ICICT), Coimbatore, 2016, pp. 1-5.

[16] Smart W., Zhang M. (2004) Probability Based Genetic Programming for Multiclass
Object Classification. In: Zhang C., W. Guesgen H., Yeap WK. (eds) PRICAI 2004:
Trends in Artificial Intelligence. PRICAI 2004. Lecture Notes in Computer Science,
vol 3157. Springer, Berlin, Heidelberg

[17] Andrew Lensen, Bing Xue, and Mengjie Zhang. 2017. GPGC: genetic programming
for automatic clustering using a flexible non-hyper-spherical graph-based approach.
In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
’17). ACM, New York, NY, USA, 449-456.

[18] Chih-Hung Wu, Hung-Ju Chou, and Wei-Han Su. 2008. Direct transformation of
coordinates for GPS positioning using the techniques of genetic programming and
symbolic regression. Eng. Appl. Artif. Intell. 21, 8 (December 2008), 1347-1359.
DOI=http://dx.doi.org/10.1016/j.engappai.2008.02.001

[19] Ingalalli V., Silva S., Castelli M., Vanneschi L. (2014) A Multi-dimensional Genetic
Programming Approach for Multi-class Classification Problems. In: Nicolau M. et al.
(eds) Genetic Programming. EuroGP 2014. Lecture Notes in Computer Science, vol
8599. Springer, Berlin, Heidelberg

[20] La Cava, William & Silva, Sara & Danai, Kourosh & Spector, Lee &
Vanneschi, Leonardo & Moore, Jason. (2018). Multidimensional genetic pro-
gramming for multiclass classification. Swarm and Evolutionary Computation.
10.1016/j.swevo.2018.03.015.



Bibliography 63

[21] Ashish Kumar Patnaik, Prasanta Kumar Bhuyan, Application of genetic pro-
gramming clustering in defining LOS criteria of urban street in Indian context,
Travel Behaviour and Society, Volume 3, 2016, Pages 38-50, ISSN 2214-367X,
https://doi.org/10.1016/j.tbs.2015.08.003.

[22] Downey C. & Zhang M. & Browne W. (2010), New crossover operators in linear
genetic programming for multiclass object classification. In Proceedings of the 12th
annual conference on Genetic and evolutionary computation (GECCO ’10). ACM,
New York, NY, USA, 885-892.

[23] N. Al-Madi and S. A. Ludwig, ”Improving genetic programming classifica-
tion for binary and multiclass datasets,” 2013 IEEE Symposium on Computa-
tional Intelligence and Data Mining (CIDM), Singapore, 2013, pp. 166-173. doi:
10.1109/CIDM.2013.6597232

[24] Will Smart and Mengjie Zhang, ”Using Genetic Programming for Multiclass Clas-
sification by Simultaneously Solving Component Binary Classification Problems”,
”Computer Science, Victoria University of Wellington”, 2005, CS-TR-05-1, New
Zealand

[25] Kun-Hong Liu and Chun-Gui Xu (2009), A genetic programming-based approach
to the classification of multiclass microarray datasets, Bioinformatics, vol 25, pages
331-337

[26] Zhang M., Johnston M. (2009) A Variant Program Structure in Tree-Based Genetic
Programming for Multiclass Object Classification. In: Cagnoni S. (eds) Evolutionary
Image Analysis and Signal Processing. Studies in Computational Intelligence, vol
213. Springer, Berlin, Heidelberg

[27] Zhang, Y., & Rockett, P. I. (2009). A generic multi-dimensional feature extrac-
tion method using multiobjective genetic programming. Evolutionary Computation,
17(1), 89-115.

[28] Sherrah, J. R., Bogner, R. E., & Bouzerdoum, A. (1997). The evolutionary pre-
processor: Automatic feature extraction for supervised classification using genetic
programming. Genetic Programming, 304-312.

[29] Ling Guo, Daniel Rivero, Julián Dorado, Cristian R. Munteanu, Alejandro Pazos,
Automatic feature extraction using genetic programming: An application to epileptic
EEG classification, Expert Systems with Applications, Volume 38, Issue 8, 2011,
Pages 10425-10436, ISSN 0957-4174,

[30] Tuson, Andrew. (1998). Adapting Operator Probabilities In Genetic Algorithms.



Bibliography 64

[31] Niehaus J., Banzhaf W. (2001) Adaption of Operator Probabilities in Genetic Pro-
gramming. In: Miller J., Tomassini M., Lanzi P.L., Ryan C., Tettamanzi A.G.B.,
Langdon W.B. (eds) Genetic Programming. EuroGP 2001. Lecture Notes in Com-
puter Science, vol 2038. Springer, Berlin, Heidelberg

[32] Darwin, Charles, 1809-1882. On The Origin of Species by Means of Natural Se-
lection, or Preservation of Favoured Races in the Struggle for Life. London :John
Murray, 1859.

[33] Sipper, Moshe et al. “Investigating the Parameter Space of Evolutionary Algo-
rithms.” BioData Mining 11 (2018): 2. PMC. Web. 28 June 2018.

[34] Arnold C. Evolution Runs Faster on Short Timescales. 2017. Quanta Magazine.
www.quantamagazine.org/20170314-time-dependent-rate-phenomenon-evolution-
viruses. Accessed 14 Mar 2017.

[35] Vanneschi L. (2017) An Introduction to Geometric Semantic Genetic Programming.
In: Schütze O., Trujillo L., Legrand P., Maldonado Y. (eds) NEO 2015. Studies in
Computational Intelligence, vol 663. Springer, Cham

[36] Pedro Domingos. 2012. A few useful things to know about machine learning. Com-
mun. ACM 55, 10 (October 2012), 78-87.

[37] S. Silva & E. Costa (2009), Dynamic limits for bloat control in genetic programming
and a review of past and current bloat theories, Genetic Programming and Evolvable
Machines 10 (2), 141–179

[38] S. Silva & S. Dignum & L. Vanneschi (2012), Operator equalisation for bloat free
genetic programming and a survey of bloat control methods, Genetic Programming
and Evolvable Machines 13 (2), 197-238, 2012

[39] S. Silva & J. Almeida (2005), Gplab - a genetic programming toolbox for matlab, In
Proc. of the Nordic MATLAB Conference (NMC-2003), 273–278

[40] Java(TM) SE Runtime Environment (build 1.8.0 151-b12),
https://docs.oracle.com/javase/8/docs/api/

[41] R Core Team (2017). R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

[42] Hunter, J. D. (2007), Matplotlib: A 2D graphics environment, Computing In Science
& Engineering, 9, 3, 90–95

[43] Python Software Foundation. Python Language Reference, version 3.6. Available at
http://www.python.org



Glossary

eM3GP ensemble M3GP
EA Euclidean Accuracy
EC Evolutionary Computation
ED1 Euclidean Distance 1
ED2 Euclidean Distance 2
Euc Euclidean
FF Fitness Function
GA Genetic Algorithm
GO Genetic Operator
GP Genetic Programming
GPGC Graph-based non-hyper-spherical Clustering GP
GPS Global Positioning System
HRT Heart
IM-3 Image 3
IM-10 Image 10
LGP Linear Genetic Programming
M-L Libras Movement
M2GP Multidimentional Multiclass Genetic Programming
M3GP M2GP with Multidimensional Populations
M4GP M3GP with stack representation and lexicase parent selection
Mah Mahalanobis
MLP Multilayer Perceptron
PG Programação Genética
SEG Image Segmentation
VOW Vowel
YST Yeast
WAV Waveform

65





Appendix A

Implementation

weka.classifiers.trees.m3gp.client

ClientWekaSim

- inputFilename: String
- operations: String[]
- terminals: String[]
- trainFraction: double
- tournamentFraction: double
- elitismFraction: double
- numberOfGenerations: int
- numberOfRuns: int
- populationSize: int
- maxDepth: int
- shuffleDataset: boolean
- data: double[][]
- target: double[]
+ datafile: BufferedWriter

+ main(String[]): void
- init(): void
- run(int): void
- treatArgs(String[]): void
- setTerminals(double[][]): void
- setPopulation(): void

weka.classifiers.trees

M3GP

- serialVersionUID : long
- population : Population
- populationSize : int
- maxDepth : in

+ buildClassifier(Instances) : void
+ getOptions() : String []
+ setOptions(String []) : void
+ classifyInstance(Instance):double
+ toString() : String

weka.classifiers.trees.m3gp.forest Population

- serialVersionUID: long
- generation: int
- maxGeneration: int
- population: Tree[]
- data: double[][]
- target: double[]
- trainFraction: double
- tournamentSize: int
- elitismSize: int
- operations: String[]
- terminals: String[]
- maxDepth: int
- bestTree: Tree

+ Population(String[], String[], int, double[][],
String[], int, double, int, int, int)
+ train(): void
+ predict(double[]): double
+ toString(): String
- nextGeneration(int): double[]
- improving(): double
- setBestToLast(Tree[]): void
- crossover(Tree[]): Tree[]
- mutation(Tree[]): Tree
- prun(Tree) : Tree

PopulationFunctions

- smallerIsBetter: boolean

~ fitnessTrain(Tree,double[][],
double[], double): double
~ fitnessTest(Tree,double[][],
double[], double): double
~ tournament(Tree[], int): Tree
~ crossover(Tree, Tree, int): Tree
~ mutation(Tree, int, String[],
String[], double, int): Tree

Population.FitnessCalculator

~ fit : double[]
~ index : int
~ t : Tree

+ FitnessCalculator (double[],
int, Tree)
+ run() : void

weka.classifiers.trees.m3gp.util Arrays

Data

+ readData(String): double[][]
+ readTarget(String): double[]
+ parseDouble(String): double

Matrix

Figure A.1: Class Diagram section of the implementation used for the first stage of the project,
referent to the initialization of the classifier

67



Appendix A. Implementation 68

weka.classifiers.trees.m3gp.node

weka.classifiers.trees.m3gp.forest weka.classifiers.trees.m3gp.tree

weka.classifiers.trees.m3gp.util

Population

Tree

~ dimensions: ArrayList<Node>
- serialVersionUID: long
- covarianceMatrix: ArrayList<double[][]>
- mu: ArrayList<double[]>
- classes: ArrayList<double[]>

+ Tree(String[], String[], double, int)
+ Tree(ArrayList<Node>)
+ getSize(): int
+ predict(double[]): String
+ getTrainAccuracy(double[][], String[], double):double
+ getTestAccuracy(double[][], String[], double):double
+ getDimensions(): ArrayList<Node>
+ cloneDimensions(): ArrayList<Node>
+ toString(): String
- makeCluster(double[][], String[], double): void
- calculate(int, double[]): double

TreeCrossoverHandler

TreeMutationHandler

TreePruningHandler

Arrays

+ euclideanDistance(double[], double[]): double
+ mahalanobisDistance(double[], double[],
double[][]): double
+ shuffle(double[][], double[]): void
+ mergeSortBy(Object[], double[]): void

Node

- serialVersionUID: long
~ v: String
~ l: Node
~ r: Node

+ Node(String)
+ Node(Node, Node, String)
+ Node(String[], String[], int)
+ calculate(double[]): double
+ getSize(): int
+ clone(): Node
+ toString(): String
- isLeaf(): boolean

NodeHandler

Data

PopulationFunctions

- smallerIsBetter: boolean

~ fitnessTrain(Tree,double[][],
double[], double): double
~ fitnessTest(Tree,double[][],
double[], double): double
~ tournament(Tree[], int): Tree
~ crossover(Tree, Tree, int): Tree
~ mutation(Tree, int, String[],
String[], double, int): Tree

Matrix

+ mpInverseMatrix(double[][]):double[][]
+ covarianceMatrix(ArrayList<double[]>): double[][]
+ multiply(double[][], double[][]): double[][]
+ inverseMatrix(double[][]): double[][]
- gaussian(double[][], int[]): void

Population.FitnessCalculator

Figure A.2: Class Diagram section of the implementation used for the first stage of the project,
referent to the evaluation of the population’s individuals

weka.classifiers.trees.m3gp.nodeweka.classifiers.trees.m3gp.forest weka.classifiers.trees.m3gp.tree

Population

Tree

TreeCrossoverHandler

+ crossover(Tree, Tree, double[]
String[], double): Tree

TreeMutationHandler

+ mutation(Tree, String[],
String[], int, double[][],
String[], double): Tree

TreePruningHandler

+ prun(Tree, double[][], String[],
double): Tree

Node

- serialVersionUID: long
~ v: String
~ l: Node
~ r: Node

+ Node(String)
+ Node(Node, Node, String)
+ Node(String[], String[], int)
+ calculate(double[]): double
+ getSize(): int
+ clone(): Node
+ toString(): String
- isLeaf(): boolean

NodeHandler

+ randomNode(Node): Node
+ redirect(Node, Node): void
+ swap(Node, Node): void
- index(Node, int): Node

PopulationFunctions

- smallerIsBetter: boolean

~ fitnessTrain(Tree,double[][],
double[], double): double
~ fitnessTest(Tree,double[][],
double[], double): double
~ tournament(Tree[], int): Tree
~ crossover(Tree, Tree, int): Tree
~ mutation(Tree, int, String[],
String[], double, int): Tree

Population.FitnessCalculator

Figure A.3: Class Diagram section of the implementation used for the first stage of the project,
referent to the usage of genetic operators



Appendix B

Results

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

H
R

T

H
R

T
*1

IM
−

3

IM
−

3
*1

IM
−

1
0

IM
−

1
0

*1

M
−

L

M
−

L
*1

S
E

G

S
E

G
*1

V
O

W

V
O

W
*1

Y
S

T

Y
S

T
*1

W
A

V

W
A

V
*1

5
1

0
1

5
2

0

N
u

m
b

e
r 

o
f 
n

o
d

e
s

Figure B.1: Comparison of the number of dimensions between using the accuracy-based function
(EA-FF) and using the distance-based function (ED1-FF), marked with *1, in the 8 datasets listed
in 3.1.

69



Appendix B. Results 70

●

●

●

●

HRT HRT* M−L M−L* YST YST* WAV WAV*

0
.6

5
0

.7
0

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

T
ra

in
 A

c
c
u

ra
c
y

●

●

●

●

IM−3 IM−3* IM−10 IM−10* SEG SEG* VOW VOW*

0
.9

4
0

.9
6

0
.9

8
1

.0
0

T
ra

in
 A

c
c
u

ra
c
y

Figure B.2: Comparison of training accuracy between the original and our implementation of
M3GP, marked with *, in the 8 datasets listed in 3.1.



Appendix B. Results 71

●

HRT HRT* M−L M−L* YST YST* WAV WAV*

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

T
e

s
t 

A
c
c
u

ra
c
y

●

● ●

●

IM−3 IM−3* IM−10 IM−10* SEG SEG* VOW VOW*

0
.8

6
0

.8
8

0
.9

0
0

.9
2

0
.9

4
0

.9
6

0
.9

8

T
e

s
t 

A
c
c
u

ra
c
y

Figure B.3: Comparison of test accuracy between the original and our implementation of M3GP,
marked with *, in the 8 datasets listed in 3.1.



Appendix B. Results 72

●

●

HRT−EA HRT−ED1 MCD3−EA MCD3−ED1 MCD10−EA MCD10−ED1 M−L−EA M−L−ED1

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0
.9

0
0

.9
5

T
ra

in
 A

c
c
u

ra
c
y

●

●

SEG−EA SEG−ED1 VOW−EA VOW−ED1 WAV−EA WAV−ED1 YST−EA YST−ED1

0
.6

0
.7

0
.8

0
.9

T
ra

in
 A

c
c
u

ra
c
y

Figure B.4: Comparison of training accuracy on all datasets between using the Euclidean Accu-
racy fitness function (EA) and using the first distance-based fitness function (ED1)



Appendix B. Results 73

HRT−EA HRT−ED1 MCD3−EA MCD3−ED1 MCD10−EA MCD10−ED1 M−L−EA M−L−ED1

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

T
e

s
t 
A

c
c
u

ra
c
y

●
●

●

●

●

SEG−EA SEG−ED1 VOW−EA VOW−ED1 WAV−EA WAV−ED1 YST−EA YST−ED1

0
.5

0
.6

0
.7

0
.8

0
.9

T
e

s
t 
A

c
c
u

ra
c
y

Figure B.5: Comparison of test accuracy on all datasets between using the Euclidean Accuracy
fitness function (EA) and using the first distance-based fitness function (ED1)



Appendix B. Results 74

●

●

●

HRT−5EA HRT−10EA HRT−5ED1 HRT−10ED1 MCD3−5EA MCD3−10EA MCD3−5ED1 MCD3−10ED1

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6
0

.9
8

T
ra

in
 A

c
c
u

ra
c
y

Figure B.6: Comparison of training accuracy on the HRT, and MCD3 datasets between using
the Euclidean Accuracy fitness function (EA), and using the first distance-based (ED1) fitness
function, while using five genetic operators (5) and ten genetic operators (10)

●

●

●

●

●

MCD10−5EA MCD10−10EA MCD10−5ED1 MCD10−10ED1 M−L−5EA M−L−10EA M−L−5ED1 M−L−10ED1

0
.7

2
0

.7
4

0
.7

6
0

.7
8

0
.8

0
0

.8
2

0
.8

4

T
ra

in
 A

c
c
u

ra
c
y

Figure B.7: Comparison of training accuracy on the MCD10, and M-L datasets between using
the Euclidean Accuracy (EA) fitness function, and using the first distance-based (ED1) fitness
function, while using five genetic operators (5) and ten genetic operators (10)



Appendix B. Results 75

●

●

● ●

SEG−5EA SEG−10EA SEG−5ED1 SEG−10ED1 WAV−5EA WAV−10EA WAV−5ED1 WAV−10ED1

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6

T
ra

in
 A

c
c
u

ra
c
y

Figure B.8: Comparison of training accuracy on the SEG, and WAV datasets between using
the Euclidean Accuracy (EA) fitness function, and using the first distance-based (ED1) fitness
function, while using five genetic operators (5) and ten genetic operators (10)

●

●

●

VOW−5EA VOW−10EA VOW−5ED1 VOW−10ED1 YST−5EA YST−10EA YST−5ED1 YST−10ED1

0
.6

0
0

.6
5

0
.7

0
0

.7
5

0
.8

0

T
ra

in
 A

c
c
u

ra
c
y

Figure B.9: Comparison of training accuracy on the VOW, and YST datasets between using
the Euclidean Accuracy (EA) fitness function, and using the first distance-based (ED1) fitness
function, while using five genetic operators (5) and ten genetic operators (10)



Appendix B. Results 76

●

HRT−5EA HRT−10EA HRT−5ED1 HRT−10ED1 MCD3−5EA MCD3−10EA MCD3−5ED1 MCD3−10ED1

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5

T
e

s
t 

A
c
c
u

ra
c
y

Figure B.10: Comparison of test accuracy on the HRT, and MCD3 datasets between using the Eu-
clidean Accuracy (EA) fitness function, and using the first distance-based (ED1) fitness function,
while using five genetic operators (5) and ten genetic operators (10)

●

●

●

● ●

●

●

●

●

MCD10−5EA MCD10−10EA MCD10−5ED1 MCD10−10ED1 M−L−5EA M−L−10EA M−L−5ED1 M−L−10ED1

0
.5

0
.6

0
.7

0
.8

T
e

s
t 

A
c
c
u

ra
c
y

Figure B.11: Comparison of test accuracy on the MCD10, and M-L datasets between using
the Euclidean Accuracy (EA) fitness function, and using the first distance-based (ED1) fitness
function, while using five genetic operators (5) and ten genetic operators (10)



Appendix B. Results 77

●
●

●

●●

●

●

●

●

●

●

●

●●

SEG−5EA SEG−10EA SEG−5ED1 SEG−10ED1 WAV−5EA WAV−10EA WAV−5ED1 WAV−10ED1

0
.8

2
0

.8
4

0
.8

6
0

.8
8

0
.9

0
0

.9
2

0
.9

4

T
e

s
t 

A
c
c
u

ra
c
y

Figure B.12: Comparison of test accuracy on the SEG, and WAV datasets between using the Eu-
clidean Accuracy (EA) fitness function, and using the first distance-based (ED1) fitness function,
while using five genetic operators (5) and ten genetic operators (10)

●

VOW−5EA VOW−10EA VOW−5ED1 VOW−10ED1 YST−5EA YST−10EA YST−5ED1 YST−10ED1

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0

T
e

s
t 

A
c
c
u

ra
c
y

Figure B.13: Comparison of test accuracy on the VOW, and YST datasets between using the Eu-
clidean Accuracy (EA) fitness function, and using the first distance-based (ED1) fitness function,
while using five genetic operators (5) and ten genetic operators (10)


	List of figures
	List of tables
	Introduction
	Genetic Programming
	Motivation
	Goals
	Contributions
	Structure of the document

	Related work
	M3GP and other variants
	Other Genetic Programming clustering methods
	Non-clustering GP for multiclass classification
	Real world applications of GP in clustering techniques
	Feature Evolution with Genetic Programming
	Adaptation of Genetic Operator probabilities

	Methodology
	Datasets
	Parameters
	Algorithm
	Elements of the M3GP algorithm
	Fitness Functions
	Genetic Operators


	Implementation
	Overview
	Java Implementation

	Results
	Implementation of our M3GP
	Comparison of results
	Evolution of the population

	Fitness Functions
	Comparison of results
	Evolution of the population

	Genetic Operators
	Comparison of results
	Evolution of the population
	Evolution of the operator probabilities


	Conclusions
	Results
	Future Work

	Bibliography
	Glossary
	Implementation
	Results

